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Abstract

The Internet of Medical Things (IoMT) has transformed modern healthcare by enabling continuous
patient monitoring, remote diagnostics, and real-time data exchange. While these advancements improve
service quality and clinical outcomes, they also expose medical networks to a wide range of cyber
threats. [oMT environments are particularly vulnerable due to their reliance on heterogeneous, resource-
constrained devices that often lack built-in security mechanisms. Conventional intrusion detection
systems (IDS) are often inadequate for these settings, as they struggle to deliver high detection accuracy
while remaining lightweight and adaptive.

This study proposes a hybrid IDS framework designed specifically for [oMT ecosystems. The
approach integrates a Clonal Selection Algorithm (CSA) for dynamic feature selection with a
Deep Neural Network (DNN) for accurate classification of network traffic. The CSA
component effectively reduces data dimensionality while preserving critical threat-related
features, thereby optimizing the model for environments with limited computational capacity.
The DNN component captures complex patterns in traffic behavior, enhancing detection
capability across diverse attack scenarios.

The model is evaluated using benchmark [oMT datasets, demonstrating its suitability for
identifying both known and emerging threats. By combining bio-inspired optimization with
deep learning, the proposed IDS offers a robust and scalable solution to enhance cybersecurity

in sensitive and critical healthcare systems.

Keywords: Internet of Medical Things (IoMT); Intrusion Detection System (IDS; Clonal
Selection Algorithm (CSA); Deep Neural Network (DNN); Cybersecurity in Healthcare

environments.



Résumé

L’Internet des Objets Médicaux (IoMT) a profondément transformé le secteur de la santé
moderne en permettant la surveillance continue des patients, le diagnostic a distance et
I’échange de données en temps réel. Bien que ces avancées améliorent la qualité des soins et
les résultats cliniques, elles exposent également les réseaux médicaux a un large éventail de
menaces cybernétiques. Les environnements IoMT sont particuliérement vulnérables en raison
de leur dépendance a des dispositifs hétérogenes et limités en ressources, souvent dépourvus de
mécanismes de sécurité¢ intégrés. Les systémes classiques de détection d’intrusion (IDS) se
révelent souvent inadaptés a ces contextes, car ils peinent a conjuguer précision, 1égereté et
adaptabilité.

Cette étude propose un cadre hybride de détection d’intrusion spécifiquement congu pour les
¢cosystemes IoMT. L’approche combine un Algorithme de Sélection Clonale (CSA) pour la
sélection dynamique des caractéristiques avec un Réseau de Neurones Profond (DNN) assurant
la classification précise du trafic réseau. Le module CSA permet une réduction efficace de la
dimensionnalité tout en conservant les attributs critiques liés aux menaces, optimisant ainsi le
modele pour des environnements a faible capacité de calcul. Le DNN capte des schémas
complexes dans le comportement du trafic, renforcant la capacité de détection face a divers
scénarios d’attaque.

Le modele est évalu¢ a 1’aide de jeux de données de référence pour I’loMT, démontrant son
efficacité a détecter aussi bien les menaces connues qu’émergentes. En combinant optimisation
bio-inspirée et apprentissage profond, I’IDS proposé constitue une solution robuste et évolutive

pour renforcer la cybersécurité dans les systémes de santé sensibles et critiques.

Mots-clés : Internet des Objets Médicaux (IoMT) ; Systéme de Détection d’Intrusion (IDS) ;
Algorithme de Sélection Clonale (CSA) ; Réseau de Neurones Profond (DNN) ; Cybersécurité

dans les environnements de santé.
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General Introduction

The Internet of Medical Things (IoMT) has emerged as a major technological advancement in
modern healthcare. Through the intelligent interconnection of medical devices, [oMT enables
real-time patient monitoring, automated medical data collection, and overall improvement in
patient care, particularly for chronic diseases. Devices such as insulin pumps and pacemakers
can not only monitor vital signs but also autonomously respond, thereby reducing the need for
continuous hospitalization. Other applications include fall detection for the elderly,
performance monitoring for athletes, and improved access to healthcare in remote areas.
Despite these numerous benefits, the large-scale deployment of IoMT raises critical security
concerns. The distributed nature of devices, reliance on wireless communication, limited
computational resources, and the sensitivity of medical data make [oMT environments a prime
target for cyberattacks. A breach in data confidentiality, integrity, or availability can lead to
incorrect diagnoses, inappropriate treatments, or even endanger patients’ lives.

Traditional security mechanisms, often designed for conventional IT systems, are not well-
suited to the constrained and heterogeneous nature of [oMT. Initial efforts in securing [oMT
have relied on encryption, authentication, and trust-based models. However, these techniques
struggle to address the growing sophistication of modern cyber threats.

In this context, Intrusion Detection Systems (IDS) represent an essential layer of defense for
strengthening IoMT security. Artificial intelligence-based approaches, particularly those using
bio-inspired algorithms, offer promising capabilities for detecting abnormal behaviors,
including previously unknown attacks.

The aim of this study is to design, implement, and evaluate a high-performance IDS specifically
adapted to the constraints of [oMT environments. To achieve this, we propose a hybrid approach
that combines a bio-inspired feature selection algorithm, the Clonal Selection Algorithm (CSA),
with a Deep Neural Network (DNN) for the classification phase. The model is evaluated using
two benchmark IoMT datasets. The goal is to demonstrate the system’s ability to detect
intrusions effectively while maintaining the lightweight, fast, and reliable characteristics

required by IoMT devices.



This document is structured into three chapters:

Chapter 1 provides an overview of the Internet of Medical Things (IoMT), its architecture, and
its role in modern healthcare. It highlights the specific security challenges posed by [oMT
environments and explains the importance of Intrusion Detection Systems (IDS) as a key line
of defense against cyberattacks.

Chapter 2 reviews existing security approaches used in [oMT, including machine learning,
deep learning, and hybrids methods. It also introduces the datasets used in this research and
explains their relevance to intrusion detection in medical networks.

Chapter 3 presents the proposed model, combining feature selection through a bio-inspired
algorithm with a deep learning-based classification system. It describes the implementation
process, experimental setup, and analysis of results, demonstrating the model’s potential for
securing [oMT environments.

Finally, the conclusion summarizes the main contributions of this work and outlines directions

for future research.



Chapter 1: Intrusion Detection Systems in the
Internet of Medical Things (IoMT)

1.1 Introduction

Cybersecurity is a major concern due to the increasing number of cyber threats. Intrusion Detection
Systems (IDS) play a crucial role in identifying attacks and protecting infrastructures. This chapter
explores IDS, their categories, architecture, and their application in the Internet of Medical Things
(IoMT). Finally, [oMT security challenges and potential attacks are discussed to better understand the

risks and existing solutions.

1.2 Intrusion Detection System

An Intrusion Detection System (IDS) is a relatively recent technology designed to help computer
systems prepare for and respond to network attacks. Its primary function is to monitor and analyze user
and system activities, assess vulnerabilities, and track violations of user policies. By collecting
information from various sources within systems and networks, IDS compares this data against pre-
existing patterns to identify potential attacks or weaknesses. The goal of IDS is to detect anomalous
behavior and misuse in network assets, providing a critical layer of security within the information

security infrastructure [1].

1.3 Intrusion Detection System Categories

Intrusion detection system is classified into three categories based on its detection methodology:
Signature-Based Detection Systems, Anomaly-Based Detection Systems and Specification-Based

Detection Systems.

1.3.1 Signature-Based Detection System

This system identifies intrusion attempts by comparing detected signatures with a predefined database

of known threats. Upon detecting a match, it promptly generates an alert.

1.3.2 Anomaly-Based Detection System

Anomaly detection system is characterized by its ability to identify unknown attacks by analyzing
deviations from the network's usual behavior. Unlike signature-based approach, it relies on rules or
heuristics, enabling them to detect novel threats, although they often result in a high rate of false
positives. Its implementation requires an initial learning phase to establish a reference model of the

system’s normal operation [1].



1.4 Types of Intrusion Detection Systems

Intrusion detection system is classified into three types Host based IDS , Network based IDS and
Hybrid based IDS.

1.4.1 Host-Based Intrusion Detection Systems (HIDS)

HIDS monitor host computer activities and detect malicious behaviors. Installed directly on each
machine, they analyze audit logs, identify activity patterns or signatures, and assess their behavior [2].

Their operation is based on three main steps: activity monitoring, attack detection, and threat response

[3].
1.4.2 Network-Based Intrusion Detection Systems (NIDS)

NIDS (Network-Based Intrusion Detection Systems) monitor network traffic to identify potential
attacks [2]. Deployed on network devices such as routers and switches [4], they perform three primary

functions: traffic monitoring, attack detection, and the implementation of response mechanisms.

1.5 Architecture of intrusion detection systems

The architecture of an Intrusion Detection System (IDS) is based on several essential components that
interact to identify and manage threats. First, the information source corresponds to the monitored
system, which generates raw data such as logs and network packets. This data is collected by sensors
and transmitted to the detection engine. The detection engine analyzes the information and compares it
to rules and signatures stored in the knowledge base to identify potential anomalies. If a threat is
detected, an alert is generated and sent to the response component, which can take various actions such
as sending a notification or blocking suspicious activity. Finally, the configuration module allows the
system's parameters to be adjusted, including updating detection rules and response strategies. Figurel.1

illustrates a typical IDS architecture, highlighting the interactions among its main components.

Knowledge Base
Configuration

System
State

Response

Data Collection Component

(Sensors)
= Actions

Information Source - Monitored System

Figure 1. 1. Architecture of intrusion detection systems [5].



1.6 Internet of Things (IoT)

The Internet of Things facilitates communication between people and objects by leveraging computing
capabilities and hardware accessibility for a wide range of applications. In general terms, [oT is defined
as an interconnected network of objects capable of continuously generating information about the
physical world. These objects can exchange data and be controlled by various agents (computer systems
or users) to interact with their environment and manage numerous everyday services [6].

IoT applications span multiple domains, including [7]:

Smart Cities : IoT technologies facilitate advanced traffic control and urban mobility by utilizing
interconnected sensor networks. These systems contribute to the optimization of transportation
infrastructures and the enhancement of urban service efficiency ;

Smart Environments: [oT plays a crucial role in environmental monitoring, including earthquake
prediction, fire detection, and other real-world data collection. A notable example is meteorological
technology, which relies on IoT to track and forecast weather conditions.

Industrial Control: [oT enables continuous monitoring of industrial operations, supporting real-time
data acquisition, predictive maintenance, and remote fault diagnosis. These capabilities reduce the need
for on-site inspections and enhance the operational reliability of industrial systems.

Healthcare: The integration of [oT in healthcare systems supports remote monitoring of patient health
by collecting biometric data through connected medical devices. This facilitates proactive health
management and improves access to care, especially for patients with chronic conditions.

Smart Agriculture: IoT applications in agriculture contribute to increased productivity and
sustainability by automating critical processes such as irrigation, fertilization, and environmental
monitoring. The real-time analysis of soil and climatic conditions allows for more precise and efficient

farming practices.

1.7 Internet of medical things (IoMT)

The Internet of Medical Things (IoMT) refers to the interconnected network of medical devices that
communicate via the Internet to collect and transmit health-related data. This ecosystem is crucial in
modern healthcare, enabling applications such as real-time patient monitoring, chronic disease
management, and personalized treatments. By enhancing patient care and optimizing operational

efficiency, [oMT supports a more data-driven, patient-centered healthcare approach [8].

1.7.1 Types of IoMT Devices

Different [oMT devices operate at various layers of smart healthcare systems, ensuring seamless
service delivery, as illustrated in Figure 1.2 These devices can be broadly categorized into the following
groups:

Wearable Devices: These smart healthcare devices continuously collect patient data, enabling real-time

health monitoring while being cost-effective. Examples include smartwatches, blood pressure and

5



glucose monitors, heart rate trackers, and fitness bands [9].

Home-based IoMT Devices: These include diagnostic test kits, first-aid tools, treatment devices, infant
care equipment, feeding devices, infusion pumps, ventilators, and other medical tools designed for home
use. These devices can connect to hospital-based systems and healthcare providers via the Internet [10].
Hospital-based IoMT Devices and Equipment: Hospitals can be equipped with medical devices to
handle routine treatments and emergency situations effectively. Smart hospital devices, such as surgical
tables, anesthesia machines, electrosurgical systems, defibrillators, and other critical equipment, play a
vital role in ensuring high-quality patient care [11].
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Figure 1. 2. [oMT devices [12].

1.7.2 Architecture of IloMT

The architecture of the IoMT, illustrated in Figure 1.3, is structured as a multi-layered framework,
where each layer fulfills specific functions and responsibilities [13]:
This architecture consists of the following layers:
1. Perception Layer: This layer is responsible for collecting data from connected medical devices,
such as ECG monitoring sensors, insulin pumps, smartwatches, and CPAP devices. It serves as

the interface between patients and the IoMT system.

2. Network Layer: It ensures the secure transmission of collected data using various network
protocols and infrastructures, including wireless routers, virtual routers, UTM routers, and

dedicated communication servers.



3. Data Layer: This layer manages the storage, synchronization, and processing of medical data

through cloud servers, hospital physical servers, and server clusters.

4. Application Layer: It allows end users, such as healthcare professionals and patients, to interact
with the collected data through specific applications, such as assistive listening systems, remote

monitoring, medical interpreters, and digital medical libraries.
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1.7.3 IoMT Security Requirements

To ensure the protection of sensitive medical data and the reliable functioning of [oMT systems, three
core security requirements must be addressed: confidentiality, integrity, and availability [14].
Confidentiality safeguards the patient's health status and treatment details by preventing unauthorized
access to personal information during data storage and transmission in [oMT systems.

Integrity ensures that medical data remains accurate and unaltered, preventing corruption or
unauthorized modifications during storage and transmission.

Availability guarantees the continuous functionality of medical devices, services, and patient records,
playing a crucial role in ensuring timely responses to health emergencies.

1.7.4 Attacks on IoMT

The Internet of Medical Things (IoMT) has revolutionized healthcare by enabling seamless

connectivity between medical devices. However, this connectivity also exposes IoMT systems to



various cyber threats (Figure 1.4). The following are some of the most critical attacks targeting [oMT
environments:

Denial of Service (DoS) Attacks: These attacks aim to disrupt or render a service unavailable by
overwhelming a system’s resources, posing a major threat to data and service availability in [oMT
environments [15,16].

Distributed Denial of Service (DDoS) Attacks: A DDoS attack is a type of DoS attack in which
multiple sources simultaneously target a single system, causing loMT devices to disrupt their healthcare
services [17,18].

Man-in-the-Middle (MitM) Attacks: This type of threat occurs when an attacker intercepts
communication between two parties to eavesdrop on their exchange. In healthcare organizations, a MitM
attack can lead to the exposure of confidential patient data or the alteration of sensitive medical
information. These compromised details may then be sold, used for criminal activities, or leveraged to
blackmail affected patients [17,19].

Ransomware Attacks: Ransomware attacks aim to block user access to files by encrypting them and
demanding a ransom for decryption. This threat is increasingly concerning in hospitals due to its
financial impact and the disruption it causes to healthcare services[20].

Malware Attacks: Once a system is compromised, attackers can target the user by deploying various
types of malicious software. These harmful programs, known as malware, are designed to modify,
damage, spy on, or delete data without the user's consent. In recent years, vulnerabilities in device
protocols and systems have been widely exploited to implant malware[21].

Injection Attacks: Injection attacks enable attackers to insert malicious code into a program or deploy
malware on a system, allowing them to access sensitive information, escalate privileges, alter data, and
compromise devices. While reported cases of injection attacks on hospitals remain limited, cybersecurity
experts remain concerned about the significant risks they pose[22].

Password Attacks: This attack seeks to gain control of a system by attempting to guess the user’s
password. Moreover, password attacks pose a significant threat due to their infrequent occurrence and

localized nature, which makes them challenging to detect [15].
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Figure 1. 4. Attacks on [oMT [23].

1.8 Conclusion

This chapter presented intrusion detection systems (IDS), covering their definitions, categories, types,
and architecture. It also introduced the Internet of Things (IoT) and the Internet of Medical Things
(IoMT), detailing their devices, architecture, security requirements, and the main attacks targeting loMT.
The next chapter will provide a comprehensive literature review of the various security techniques

applied to IoMT.



Chapter 2: Review of Related Works

2.1 introduction

The rapid expansion of the Internet of Medical Things (IoMT) necessitates sophisticated security
measures to protect against cyber threats. This chapter presents a comprehensive review of existing
intrusion detection techniques applied in the Internet of Medical Things (IoMT), focusing on datasets,

machine learning, deep learning, and hybrid bio-inspired approaches.

2.2 IoMT Security Datasets Overview

Several datasets have been developed to realistically simulate Internet of Medical Things (IoMT)
environments and support the effective evaluation of Intrusion Detection Systems (IDS). These datasets
differ in scale, attack diversity, number of classes, and the types of medical devices modeled.

The WUSTL-EHMS-2020 dataset, developed by Washington University in St. Louis [23], provides
time-series data collected from smart medical devices. It includes both benign and malicious traffic,
enriched with metadata such as timestamps, sensor readings, and communication logs, making it
particularly suitable for behavior-based intrusion detection approaches.

The ECU-IoHT dataset, presented in [24], was generated using the Libelium MySignals Healthcare kit.
It simulates a realistic Internet of Health Things (IoHT) environment through a wide range of biometric
sensors, enabling researchers to develop and test intrusion detection strategies tailored to healthcare
systems.

The BlueTack dataset, proposed by Zubair et al. [25], contains data related to Bluetooth Low Energy
(BLE) and Basic Rate/Enhanced Data Rate (BR/EDR) technologies. It features multiple attack scenarios
targeting these communication protocols, aimed at assessing the robustness of security mechanisms for
Bluetooth-enabled medical devices.

Lastly, the CIC-IoMT 2024 dataset, published by the Canadian Institute for Cybersecurity [26], captures
network traffic from a simulated yet realistic [oMT setting. It includes 18 types of cyberattacks, such as
ICMP/TCP DoS, SYN flood, MQTT-based DDoS, and port scanning, collected using Raspberry Pi

devices and an iPad controller to emulate real-world [oMT communication patterns.
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In this study, we primarily selected the WUSTL EHMS (2020) and CIC-1oMT2024 (2024) datasets.
The former provides on-body data from wearable medical devices, with attacks targeting data
manipulation such as spoofing and alteration, which is relevant for individual patient monitoring. The
CIC-IoMT2024 dataset simulates a broader [oMT network environment, featuring a wide variety of
network attacks, allowing for the evaluation of detection systems’ robustness against diverse and
realistic attack scenarios. These two datasets complement each other by covering both threats related to
the medical devices themselves and those affecting overall network communication within an [oMT

environment.

2.3 Evaluation metrics of IDS

The performance evaluation of Al-based IDS commonly relies on standard measures based on True
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN), including accuracy,
precision, recall, f1-score, detection rate (DR) or True Positive Rate (TPR), false positive rate (FPR),
training time, and detection time, described as follows [27,28,29].

TP Intrusions that the IDS correctly detects as attacks.

FP refers to the benign or normal samples in the loMT-based data that are incorrectly classified as
malicious activity.

TN represents the number of benign samples in the loMT-based data that is correctly identified as
benign.

FN corresponds to malicious [oMT-based data that are incorrectly classified as benign samples.

Accuracy describes the proportion of correctly predicted samples out of all the instances.

TP+TN

Accuracy = ———
Y TP+TN+ FP+FN

(1

Precision identifies the ratio of the number of true samples to all observations predicted as positives.
TP

P recision = 2)
TP+ FP
Recall calculates the ratio of the total number of true positives to all true positives.
Recall = —2 3)
TP+Fn

F1-Score is a harmonic average of recall and precision metrics by taking their weighted average. The

harmonic mean is used instead of a simple arithmetic mean to give more weight to lower values, which
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helps to penalize imbalances between precision and recall
PrecisionxRecall

F1 — Score =2x——— 4)

precision+recall

TPR corresponds to the relation between the number of correctly true positive samples and the total

number of actual positive samples.

TP
T TP+Fn

TPR (5)

FPR is the number of incorrectly predicted negative samples related to the total of negative instances.

FPR= (6)

FP+TN

2.4 Literature Review on Security Techniques for loMT

A structured and methodical literature review was conducted using reputable academic databases,
including IEEE Xplore, Springer, ScienceDirect, Elsevier, and MDPI. The search strategy was based on
a set of targeted keywords such as "intrusion detection”, "loMT security”, "machine learning”, "deep
learning”, "smart healthcare”, and "Internet of Health Things (IoHT)", among others. To ensure
relevance and recency, only peer-reviewed publications from 2019 to 2025 that met specific inclusion
criteria were selected.

The reviewed literature was then categorized into three main classes of security approaches: machine
learning-based methods, deep learning-based methods, and hybrid or bio-inspired techniques. This
classification enables a comprehensive analysis of current methodologies, highlighting their strengths,
limitations, and their practical relevance to securing IoMT environments against increasingly

sophisticated cyber threats.

2.4.1 Advanced Approaches in Intrusion Detection Systems for loMT

With the increasing complexity of cyberattacks targeting healthcare infrastructures, conventional
intrusion detection systems (IDS) often fall short in providing real-time, adaptive, and intelligent
protection. In response, modern approaches leveraging Machine Learning (ML), Deep Learning (DL),
and hybrid models have emerged as innovative and effective solutions for enhancing IDS capabilities
within the [oMT ecosystem.

This section reviews recent research employing these intelligent techniques to improve detection

accuracy and adapt to the dynamic nature of medical data.

2.4.1.1 Machine Learning-Based IDS

Machine Learning (ML)-based IDS are widely used to identify abnormal or malicious behavior by
analyzing historical patterns in network or system data. These systems are capable of learning

automatically from data and adapting to evolving threats without the need for explicit programming. In
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Internet of Medical Things (IoMT) environments, where real-time data and security requirements are
critical, ML offers flexible and efficient solutions for detecting intrusions with high accuracy.
Several supervised classification algorithms are frequently applied in this context. The most commonly

used models are described below :

Decision Tree (DT) is a non-parametric supervised learning algorithm used for classification and
regression. It builds a hierarchical structure by recursively splitting the data based on feature tests,
leading to final predictions at the leaf nodes. Due to its interpretability and simplicity, it is widely applied
in machine learning, particularly in cybersecurity and intrusion detection systems [30].

Figure 2.1 illustrates the basic structure of a decision tree, showing how input data is split into branches

until reaching leaf nodes that determine the final output.
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Figure 2. 1. Decision tree [31].

Random Forest (RF) is a popular ensemble learning method that combines the predictions of multiple
decision trees to improve accuracy and robustness. During the training phase, it builds several decision
trees on different subsets of the dataset, using a random selection of features. For classification tasks,
the final output is determined by the majority vote of all trees, while for regression, the average of their

predictions is used [32].

Logistic Regression (LogR) is a supervised learning algorithm mainly used for binary classification
tasks. Although it is a linear model, it differs from classical linear regression through the use of the
logistic function, which models the probability that a given sample belongs to a particular class. Logistic
regression is appreciated for its simplicity, fast training speed, and good performance on linearly
separable problems, making it a common choice for the initial stages of intrusion detection or

exploratory data analysis [33].
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Naive Bayes (NB) Naive Bayes is a supervised classification algorithm based on Bayes’ theorem, which
estimates the probability of a class given a set of features by assuming conditional independence among
them. This method uses the prior probability of each class and the likelihood of the observed features to

compute the posterior probability [34].

Support Vector Machine (SVM) is a supervised learning algorithm used mainly for classification and,
in some cases, regression. It works by finding the optimal hyperplane that maximizes the margin
between classes in a multidimensional space. SVM is effective in high-dimensional settings and can
handle both continuous and categorical data, even when classes are not linearly separable [35].

Figure 2.2 illustrates the principle of binary classification using Support Vector Machines, where the

optimal hyperplane separates two distinct classes with maximum margin.
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Figure 2. 2. SVM Classification with Optimal Hyperplane [36].

XGBoost (Extreme Gradient Boosting) is a powerful and scalable supervised learning algorithm based
on the gradient boosting framework. It is designed to improve the performance of weak learners,
particularly decision trees, in both classification and regression tasks. One of its key innovations is the
use of a second-order Taylor expansion of the loss function, which allows for more precise optimization.
XGBoost is also known for its efficiency, regularization capabilities, and high predictive accuracy,
making it widely adopted in real-world machine learning applications [37].

Figure 2.3 presents the general structure of the XGBoost model, which consists of an ensemble of

decision trees built sequentially to minimize prediction errors.
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Figure 2. 3. XGBoost Model Structure [38].

2.4.1.2 Deep Learning-Based IDS

A Deep Learning-based Intrusion Detection System (IDS) leverages deep neural networks to detect
anomalies or malicious behaviors within network traffic or system activity. By learning patterns from
large volumes of data, these systems can identify subtle deviations from normal behavior, making them
particularly effective for securing complex environments such as the Internet of Medical Things (IoMT).
In this context, several Deep Learning models are commonly used for intrusion detection. The most

widely adopted architectures are presented below [43].

Convolutional Neural Network (CNN): CNNs are primarily used for spatial feature extraction from
structured input like network traffic matrices. They are particularly effective in identifying localized
patterns, making them suitable for detecting intrusion signatures in IoMT data streams. Figure 2.4
presents the architecture of a Convolutional Neural Network (CNN), which utilizes convolutional and

pooling layers to automatically learn spatial features from input data.
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Figure 2. 4. Convolutional Neural Network (CNN) Architecture [44].

Long Short-Term Memory (LSTM): LSTMs are a type of recurrent neural network (RNN) capable of
learning long-term dependencies, especially useful for sequential data. In [oMT environments, they can
model the temporal evolution of network traffic, enhancing the detection of time-dependent attack
patterns.
Deep Neural Network (DNN): DNNs are multi-layers perceptrons that capture complex nonlinear
relationships in large datasets. They are effective for high-dimensional intrusion detection tasks,
especially when used with feature engineering or attention mechanisms.
Figure 2.5 illustrates the architecture of a Deep Neural Network (DNN), composed of multiple hidden
layers that extract and transform features to perform classification.
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Figure 2. 5. Deep Neural Network (DNN) Architecture [45].
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2.4.1.3 Hybrid and Bio-Inspired IDS Approaches

As cyber threats targeting loMT systems become more complex, standalone machine learning (ML) or
deep learning (DL) techniques often face limitations in terms of efficiency and adaptability. To overcome
these challenges, hybrid approaches that combine bio-inspired algorithms with ML or DL have been
introduced. These methods are inspired by natural processes such as evolution, the immune system, or
collective swarm behavior. They help improve feature selection, optimize model parameters, and
enhance the generalization ability of detection systems. Such approaches are especially suitable for
intrusion detection in medical environments, where both precision and resource constraints are critical.
Various studies have employed bio-inspired techniques to enhance security in the Internet of Medical

Things (IoMT). Below are some notable findings:

A comprehensive review of existing research on intrusion detection in the Internet of Medical Things
(IoMT) has been conducted, with particular emphasis on methodological trends and performance
benchmarks. The findings of this review were presented at the IAM'24 conference, offering critical

insights into current advancements and persisting gaps in the field [54].
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2.5 Conclusion

This chapter reviewed existing research on IoMT security. The comparative analysis highlights that
hybrid approaches, especially those integrating bio-inspired algorithms with machine or deep learning
models, offer superior performance in feature optimization and anomaly detection. These insights
support the development of our proposed hybrid model, which will be presented in the next chapter to

enhance intrusion detection in healthcare environments.
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Chapter 3: Conception and Implementation

3.1 Introduction

This chapter presents the conception and implementation of MedCentry, a hybrid intrusion detection
system designed for Internet of Medical Things (IoMT) environments. The proposed architecture
integrates a bio-inspired Clonal Selection Algorithm (CSA) for optimal feature selection and a Deep
Neural Network (DNN) for robust classification of network traffic. This system aims to detect cyber
threats accurately and efficiently while considering the resource constraints and complexity of smart

healthcare environments.

3.2 Proposed Model

In this study, we proposed hybrid intrusion detection system tailored for [oMT environments. The
architecture combines two complementary components:

e A Clonal Selection Algorithm (CSA) for optimal feature selection,

e A Deep Neural Network (DNN) for classification of network traffic as either benign or

malicious.

Figure 3.1 illustrates the architecture of the hybrid CSA-DNN intrusion detection system
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Figure 3. 1.Proposed CSA-DNN Model Architecture.

3.2.1 Biological Principle of Clonal Selection

The Clonal Selection Algorithm (CSA) draws inspiration from the adaptive immune system, particularly
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the behavior of B lymphocytes. When an antigen is detected, B-cells that match the antigen undergo
[55]:

¢ Cloning, to amplify the immune response,
e Mutation, to introduce diversity and improve recognition,
e Selection, based on their affinity to the antigen.

This biological process results in memory and strong protection against future threats. CSA translates
this mechanism into a computational optimization technique for identifying the most relevant features
in a dataset.

Figure 3.2 visualizes the biological clonal selection process that inspired the CSA.
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Figure 3. 2.Biological clonal selection process [55].

3.2.2 Functioning of CSA for Feature Selection

In proposed model, each candidate solution is encoded as a binary vector of length D, where D is the
total number of available features.

A bit set to 1 means the corresponding feature is selected, while 0 means it is excluded.
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3.3 Implementation

3.3.1 Runtime Environment

The experiments were conducted using Google Colaboratory (Colab), a cloud-based Python

development environment offering free access to virtualized computational resources. The full

implementation pipeline, including data preprocessing, feature selection, and classification, was

developed and executed within this environment.

The system was accessed from a local machine with the following specifications:

Operating System : Windows 10

Processor : Intel Core 15-7440HQ CPU @ 2.80GHz

Memory : 8GB RAM

Google Colaboratory, more commonly known as Google Colab, is a free cloud-based platform
developed by Google Research. It provides a serverless Jupyter notebook environment that
supports interactive Python development with access to powerful hardware accelerators such as
CPUs, GPUs, and TPUs. It is widely used for prototyping and training machine learning models,

especially in research and academic contexts.[63]

3.3.2 Libraries and Tools

The development of the hybrid CSA-DNN intrusion detection system relied on a combination of open-

source Python libraries and front-end web technologies. Each tool contributed to a specific stage of the

system, from data preprocessing to model training and web deployment.

NumPy: (Numerical Python) is a core library for scientific computing in Python. It enables
efficient manipulation of large multi-dimensional numerical arrays and serves as a foundation
for many other scientific libraries [64].

Pandas: (short for Python and data analysis) is an open-source Python library that provides
powerful tools for data manipulation and analysis. It offers robust data structures, such as Series
and DataFrames, which enable efficient handling of tabular, heterogeneous, and labeled data
[65].

Scikit-learn: is a well-established open-source machine learning library developed in 2007. It
offers a wide range of algorithms for tasks such as classification, regression, clustering, and
dimensionality reduction. In addition, it provides modules for data preprocessing, feature

extraction, hyperparameter tuning, and model evaluation [66].
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SMOTE: (Synthetic Minority Oversampling Technique) is an oversampling method used to
address imbalanced datasets. It generates synthetic samples by interpolating between a minority
class instance and its K nearest neighbors in the feature space. This technique helps reduce
overfitting and improves the model’s ability to correctly classify minority class instances [67].

TensorFlow: is a powerful open-source machine learning framework developed by Google
Brain. It provides a comprehensive ecosystem of tools and libraries for building and training
deep learning models, including Keras, its high-level API, which simplifies the construction of
neural networks such as Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) [68].

Matplotlib: is a widely used data visualization library in the Python ecosystem. Originally
developed by John Hunter, it enables the creation of static, interactive, and animated plots. It is
fully compatible with libraries such as NumPy and Pandas, making it essential for data analysis
and visual representation in scientific research [69].

Seaborn: is a Python data visualization library built on top of Matplotlib. It provides a high-
level interface for generating attractive and informative statistical graphics, such as heatmaps
and distribution plots, which assisted in understanding the internal behavior of the model [70].

Flask: is a Python micro-framework designed for rapid web application development. It
provides only the essential core features, allowing developers to flexibly integrate additional

functionalities as needed during implementation [71].

In addition to Python-based tools, this project also utilized front-end web technologies to develop the

graphical interface of the system:

HTML: (HyperText Markup Language) is the standard markup language used to define the
structure and content of web pages. Created by Tim Berners-Lee in 1989, it organizes web
content through a set of elements that describe how text, images, and other components are

displayed in a browser [72].

CSS: (Cascading Style Sheets), as defined by the W3C (World Wide Web Consortium), is the
language used to describe the presentation of web pages, including colors, fonts, and layouts. It
enables responsive and customized styling for HTML documents across devices of different

screen sizes [72].

JavaScript: is a dynamically typed, high-level programming language with asynchronous
capabilities. It was developed by Brendan Eich in 1994 and originally named Mocha, then
LiveScript, before becoming JavaScript. It is now a core web technology used to add

interactivity and dynamic behavior to web applications [73].

3.3.3 Exploratory Data Analysis

This section explores the characteristics of the two datasets used in this study: WUSTL-EHMS-2020
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[23] and CIC-IoMT2024[26]. The goal is to highlight class imbalances, variable types, and any

necessary preprocessing requirements.

Figure 3.3 shows the distribution of normal and attack traffic in the WUSTL-EHMS-2020 dataset,

where label 0 represents normal traffic and label 1 corresponds to attack traffic.

Figure 3. 3. Class Distribution in the WUSTL-EHMS-2020 Dataset

Figure 3.4 displays the distribution of the six traffic classes in the CIC-IoMT2024 dataset.

15

Figure 3. 4. Class Distribution in the CIC-IoMT-2024 Dataset
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3.3.4 Preprocessing

To ensure reliable training and evaluation of the proposed hybrid IDS, a dedicated preprocessing
pipeline was applied to both the CIC-IoMT-2024 and WUSTL-EHMS-2020 datasets. This step was
essential to clean the data, the distinct nature and structure of each dataset necessitated specific

adaptations, as detailed below.

a. CIC-IoMT-2024 Dataset [26]

1. Data Cleaning: Using Pandas, the dataset was inspected for missing values, infinite values, and
constant columns. The columns that contained only zero values were removed due to their lack

of relevance.
2. Data Splitting: The dataset was split using stratified sampling into: 80% training,20% testing.

3. Label Encoding:The class labels in y were encoded into integers to ensure compatibility with

machine learning algorithms.
b. WUSTL-EHMS-2020 Dataset [23]
1. Data Cleaning
2. Categorical Encoding
3. Feature and Target Separation
4. Feature Scaling:

5. Data Splitting: The preprocessed data was divided into 80% training and 20% testing sets. The
80/20 split is commonly used to provide enough data for training the model (80%) while

reserving a sufficient portion for reliable evaluation (20%).

6. SMOTE Oversampling: This method synthetically generated new instances of the minority class

to achieve a balanced class distribution and improve classification performance.

3.3.5 Model Building

This section presents the design, implementation, and performance evaluation of the proposed hybrid
Intrusion Detection System (IDS), which integrates a Clonal Selection Algorithm (CSA) for feature
selection with a Deep Neural Network (DNN) for classification. The experiments were conducted
independently on two datasets: CIC-IoMT-2024 and WUSTL-EHMS-2020.

a. Feature Selection using Clonal Selection Algorithm (CSA)

Selected Features: At the end of the optimization process, the following features were selected:
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For CIC-IoMT-2024 (35 features) :

Header Length, Protocol Type, Duration, Rate, Drate, fin_flag number,syn flag number,
rst_flag number, psh_flag number, ack flag number,cwr flag number, ack count, syn count,
fin_count, rst_count, HTTP, HTTPS,Telnet, SMTP, IRC, TCP, DHCP, ARP, IGMP, IPv, LLC, Tot
sum,Min, Max, AVG, Std, IAT, Number, Magnitude, Covariance.

For WUSTL-EHMS-2020 (33 features):

Dir, Flgs, SrcAddr, DstAddr, Dport, SrcLoad, DstLoad, SrcGap, DstGap,DIntPkt, SIntPktAct,
DIntPktAct, Srclitter, dMaxPktSz, dMinPktSz, Trans,TotPkts, TotBytes, Load, Loss, pLoss, pSrcLoss,
pDstLoss, Rate, SrcMac, DstMac, Packet num, Temp, SYS, DIA, Resp_Rate, ST.

b. Deep Neural Network
Each selected feature subset was passed into a DNN model. The architecture was consistent across

datasets but adapted in the output layer.

3.4 Evaluation

The generalization capability and robustness of the proposed hybrid model were assessed on the test

sets of both CIC-IoMT-2024 and WUSTL-EHMS-2020 datasets. For each dataset, a confusion matrix

was generated to provide a comprehensive view of the classification performance, including correct
predictions and misclassifications per class.

e Figure 3.5 presents the confusion matrix for the WUSTL-EHMS-2020 dataset, demonstrating

the model’s ability to accurately distinguish between benign and malicious instances in a binary

classification context.

o Figure 3.6 illustrates the confusion matrix obtained on the CIC-IoMT-2024 dataset, highlighting

the model’s effectiveness in handling multiclass classification scenarios within heterogeneous

ToMT traffic.
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Figure 3. 5. Confusion Matrix of the CSA-DNN model on the WUSTL-EHMS-2020 dataset.
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Figure 3. 6.Confusion Matrix of the CSA-DNN model on the CIC-IoMT-2024 dataset.
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Precision

These results indicate a high detection capability with strong sensitivity and specificity, demonstrating

the system’s ability to effectively minimize both missed threats and false alarms.

The Precision-Recall curve [75], offers a comprehensive assessment of the model’s performance across
various decision thresholds for both datasets, highlighting its ability to maintain a balance between
precision and recall under different classification conditions. Figures 3.7 and 3.8 illustrate the Precision—

Recall curves of the model on the WUSTL-EHMS-2020 and CIC-IoMT-2024 datasets, respectively.
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Figure 3. 7. Precision-Recall Curve on the WUSTL-EHMS-2020 Dataset.
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Figure 3. 8. Precision-Recall Curve on the CIC-IoMT-2024 Dataset.

The Precision-Recall curve remains consistently high across a wide range of recall values, indicating

the model’s strong ability to detect true positives while keeping false positives to a minimum.
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3.6 Web User Interface

To facilitate the practical use of the CSA-DNN detection system, a web interface was developed using
Flask. This interface allows users to easily interact with the model through a series of well-defined steps,
simulating a real-world [oMT intrusion detection workflow.

The MEDCENTRY interface guides the user through a complete offline intrusion detection and cleaning
workflow, simulating a realistic usage scenario. It enables users — such as medical IT staff or
cybersecurity analysts to detect, analyze, and mitigate threats within sensitive healthcare infrastructures.
Figure 3.9 shows the homepage of the MEDCENTRY web interface, followed by the main pages used

for navigation and functionality.

MEDCENTRY

Figure 3. 9.Home Page of the MEDCENTRY Web Interface.

The homepage of MEDCENTRY features a ""Get Started' button to launch the detection process. On
the same page, ""About Us" briefly explains that MEDCENTRY helps secure [oMT networks by

detecting and cleaning threats
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Q. About Us

At MEDCENTRY, ensuring high-quality medical data is our top priority.
We swiftly detect and identify anomalies and attacks in loMT systems.
Then we clean and correct the data, significantly reducing risks.
Our intelligent solution safeguards connected medical devices and ensures the reliability of critical
health information.
With our advanced technology, healthcare professionals can make confident decisions based on secure
and accurate data.

MEDCENTRY makes data quality and security a solid shield for digital health.

Figure 3. 10.About Page of MEDCENTRY Web Interface.

The following steps describe the typical usage process of the MEDCENTRY web interface for analyzing
medical network traffic:

Step 1 : CSV File Upload

The user begins by uploading a CSV file containing network traffic data from medical devices. This file
may include both normal traffic and potential intrusions. Figure 3.11 displays the upload form where

users submit CSV files for analysis.

w Dataset Upload
Select a CSV or Excel file:

ichier " Aucun fichier choisi

¢ Targeted Attack Cleaning

Our system performs intelligent cleaning only on samples detected as attacks:
« Step1:Removing Non-Informative Columns
« Handling Missing Values
« Step3:Treating Outliers
« Step4:Detecting and Removing Duplicates

Figure 3. 11. CSV File Upload Page.

Step 2: Initial Intrusion Detection
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Once uploaded, the system immediately runs the CSA-DNN model to detect any malicious instances.
The number of detected intrusions is displayed, giving the user an overview of the dataset’s current

threat level. Figure 3.12 shows the immediate results after the uploaded file is processed.

b
Charger et analyser

Initial Results

-0.1786 -0.1109 -0.1191 0.0687

06377 -0.1164 -0.1262 0.4915

06377 -0.1182 -0.1257 -0.0541

Figure 3. 12.Intrusion Detection Result interface.

Step 3: Automated Data Cleaning
After the CSV file is uploaded and the initial detection is complete, the system executes an advanced
data cleaning routine encapsulated in the function clean_data(df). This function ensures data quality and
reliability before any re-evaluation. It performs the following operations:
e Removal of non-informative columns: All empty columns or those with constant values are
eliminated to reduce noise and redundancy.
e Elimination of duplicates: Fully duplicated rows are detected and removed to prevent bias in
the model.
e Handling of missing values:
o Rows with more than 50% missing values are discarded.
o Remaining missing values in numeric columns are imputed using the median to
preserve data distribution.
e Qutlier detection and correction: Outliers are detected using the Interquartile Range (IQR)

method. For each numeric feature:

First, the first quartile (Q1, 25th percentile) and the third quartile (Q3, 75th percentile) are
calculated. The interquartile range (IQR) is then defined as the difference between Q3 and Q1:

IQR=Q3-Q1 )

Next, the lower and upper bounds are determined using the formulas:
Lower bound = Q1 — 1.5 x IQR (10)
Upper bound = Q3 + 1.5 x IQR. (11)
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Any value falling outside these bounds is considered an outlier and is corrected by clipping it to the
nearest bound. This method reduces the impact of extreme values while preserving the integrity of the
dataset by avoiding the removal of entire rows.

e Attack tracking: If the prediction column is present, the system tracks the number of attacks

(prediction = 1) before and after cleaning.

A detailed cleaning report is automatically generated, including:

e Initial and final dataset shape,

e List of removed columns,

e Number of duplicate rows eliminated,

e Number of missing values imputed,

e Number of outliers corrected,

o Total number of detected attacks before and after cleaning.

Figure 3.13 presents the automated report generated during the data cleaning step.

Rapport de Nettoyage

Modifications Made :

12 columns removed: dMinPktSz, DstMac, prediction, dMaxPktSz, Dport, Dir, DIntPktAct, DstGap, DstAddr, SrcAddr, SrcGap, Trans
14 rows removed

0 imputed values

14 duplicates handled

401 Outlier values

0.6377 -0.1164 -0.1262 0.4915 0 01144 0.2221

Figure 3. 13. Automated Data Cleaning Summary.

Step 4: Re-detection on Cleaned Data
The cleaned dataset is then re-analyzed by the proposed CSA-DNN model. This second detection step
verifies the effectiveness of the cleaning process. In most cases, the output shows “0 attacks detected”,

confirming that all threats have been successfully removed.
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Step 5: Attack Comparison Report
The final step provides a comparative summary between the number of attacks before and after cleaning.
This output helps users assess the real impact of the cleaning phase. If the system detects “0 attacks”

post-cleaning, the file is declared clean and ready for reintegration into the medical network.

m] Res

Analysis of the results:
Targeted cleaning reduced the number of detected attacks by 622 (100.00%).
# The cl was eff yositives

Figure 3. 14. Attack Comparison Report Interface.

3.7 Conclusion

This chapter has presented the conception, development, and empirical validation of MedCentry,
a hybrid intrusion detection system (IDS) that integrates CSA-based feature selection with DNN-based
classification to enhance threat detection in Internet of Medical Things (IoMT) networks. The proposed
system was rigorously evaluated on two benchmark datasets simulating real-world [oMT environments,
demonstrating superior performance in terms of detection accuracy, precision, recall, and computational
efficiency compared to conventional approaches.

To ensure practical applicability, the system was implemented as a web-based platform using Flask,
providing healthcare professionals with an intuitive, step-by-step interface for analyzing potential cyber
threats. A comparative analysis against baseline models, including Random Forest (RF), DNN,
Convolutional Neural Network (CNN), and Particle Swarm Optimization (PSO)-based IDS, confirmed
that MedCentry consistently achieves higher detection rates while maintaining lower false positives and
processing latency.

These results confirm that MedCentry is a promising and effective solution for protecting smart medical

networks against cyber threats.
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General Conclusion

In an era where medical technologies are increasingly interconnected through the Internet of Medical
Things (IoMT), ensuring the security and integrity of sensitive health data has become a paramount
concern. This thesis addressed the critical challenge of intrusion detection in [oMT environments, which
are particularly vulnerable due to their heterogeneous composition, constrained resources, and the high
sensitivity of the data they handle.

To meet this challenge, we proposed a hybrid Intrusion Detection System (IDS) named MEDCENTRY,
which combines a Clonal Selection Algorithm (CSA) for optimal feature selection with a Deep Neural
Network (DNN) for efficient and accurate classification. Our approach was rigorously evaluated using
two benchmark medical datasets: CIC-IoMT2024 and WUSTL-EHMS-2020.

This master thesis is organized into three chapters. The first chapter introduces the IoMT paradigm,
outlines its benefits, and highlights the specific security challenges it faces. The second chapter provides
a synthesis of existing security solutions, particularly those based on machine learning and bio-inspired
methods, and describes the datasets employed. The third chapter presents the proposed model,
implementation details, and experimental validation.

Throughout this work, we demonstrated that the synergy between evolutionary optimization and deep
learning offers a powerful and scalable solution for real-time intrusion detection, even within the
constraints typical of medical networks. The experimental results confirmed the robustness,
generalization capacity, and practical viability of the MEDCENTRY framework in real-world healthcare
contexts.

This research contributes to the growing field of intelligent cybersecurity in medical systems by
proposing a method that is not only accurate but also adaptable and lightweight. It opens several
promising avenues for future research, such as deploying MEDCENTRY in live hospital networks,
integrating federated learning for privacy preservation, and extending the model to detect zero-day
attacks and insider threats.

By enhancing the resilience of [oMT infrastructures, MEDCENTRY plays a crucial role in safeguarding
patient safety, preserving trust in digital healthcare systems, and supporting the broader vision of smart,

secure, and connected medical care.
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