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Abstract 

 

 The Internet of Medical Things (IoMT) has transformed modern healthcare by enabling continuous 

patient monitoring, remote diagnostics, and real-time data exchange. While these advancements improve 

service quality and clinical outcomes, they also expose medical networks to a wide range of cyber 

threats. IoMT environments are particularly vulnerable due to their reliance on heterogeneous, resource-

constrained devices that often lack built-in security mechanisms. Conventional intrusion detection 

systems (IDS) are often inadequate for these settings, as they struggle to deliver high detection accuracy 

while remaining lightweight and adaptive. 

This study proposes a hybrid IDS framework designed specifically for IoMT ecosystems. The 

approach integrates a Clonal Selection Algorithm (CSA) for dynamic feature selection with a 

Deep Neural Network (DNN) for accurate classification of network traffic. The CSA 

component effectively reduces data dimensionality while preserving critical threat-related 

features, thereby optimizing the model for environments with limited computational capacity. 

The DNN component captures complex patterns in traffic behavior, enhancing detection 

capability across diverse attack scenarios. 

The model is evaluated using benchmark IoMT datasets, demonstrating its suitability for 

identifying both known and emerging threats. By combining bio-inspired optimization with 

deep learning, the proposed IDS offers a robust and scalable solution to enhance cybersecurity 

in sensitive and critical healthcare systems. 

 

Keywords: Internet of Medical Things (IoMT); Intrusion Detection System (IDS; Clonal 

Selection Algorithm (CSA); Deep Neural Network (DNN); Cybersecurity in Healthcare 

environments. 
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Résumé 

 

L’Internet des Objets Médicaux (IoMT) a profondément transformé le secteur de la santé 

moderne en permettant la surveillance continue des patients, le diagnostic à distance et 

l’échange de données en temps réel. Bien que ces avancées améliorent la qualité des soins et 

les résultats cliniques, elles exposent également les réseaux médicaux à un large éventail de 

menaces cybernétiques. Les environnements IoMT sont particulièrement vulnérables en raison 

de leur dépendance à des dispositifs hétérogènes et limités en ressources, souvent dépourvus de 

mécanismes de sécurité intégrés. Les systèmes classiques de détection d’intrusion (IDS) se 

révèlent souvent inadaptés à ces contextes, car ils peinent à conjuguer précision, légèreté et 

adaptabilité. 

Cette étude propose un cadre hybride de détection d’intrusion spécifiquement conçu pour les 

écosystèmes IoMT. L’approche combine un Algorithme de Sélection Clonale (CSA) pour la 

sélection dynamique des caractéristiques avec un Réseau de Neurones Profond (DNN) assurant 

la classification précise du trafic réseau. Le module CSA permet une réduction efficace de la 

dimensionnalité tout en conservant les attributs critiques liés aux menaces, optimisant ainsi le 

modèle pour des environnements à faible capacité de calcul. Le DNN capte des schémas 

complexes dans le comportement du trafic, renforçant la capacité de détection face à divers 

scénarios d’attaque. 

Le modèle est évalué à l’aide de jeux de données de référence pour l’IoMT, démontrant son 

efficacité à détecter aussi bien les menaces connues qu’émergentes. En combinant optimisation 

bio-inspirée et apprentissage profond, l’IDS proposé constitue une solution robuste et évolutive 

pour renforcer la cybersécurité dans les systèmes de santé sensibles et critiques. 

 

Mots-clés : Internet des Objets Médicaux (IoMT) ; Système de Détection d’Intrusion (IDS) ; 

Algorithme de Sélection Clonale (CSA) ; Réseau de Neurones Profond (DNN) ; Cybersécurité 

dans les environnements de santé. 
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ملخص   

 

  ساهمت   إنترنت الأشياء الطبية   في إحداث نقلة نوعية في مجال الرعاية الصحية الحديثة، من خلال تمكين  

هذه   أن  الحقيقي. ورغم  الوقت  في  البيانات  وتبادل  بعُد،  والتشخيص عن  للمرضى،  المستمرة  المراقبة 

التطورات تعزز جودة الخدمات وتحسّن النتائج السريرية، إلا أنها تجعل الشبكات الطبية عرضة لمجموعة  

متزايدة من التهديدات السيبرانية. وتعُد  هده البيئات معرضة بشكل خاص لهذه المخاطر بسبب اعتمادها  

على أجهزة غير متجانسة ومحدودة الموارد، وغالباً ما تفتقر إلى آليات الحماية المدمجة. كما أن أنظمة  

كشف التسلل التقليدية  لا تلبي بشكل كافٍ متطلبات هذه البيئات، نظرًا لصعوبة تحقيق توازن بين الدقة  

 العالية وخفة الأداء والقدرة على التكيفّ . 

 'إنترنت الأشياء الطبية' لنظام كشف التسلل مصممًا خصيصًا لبيئات   هجينا في هذا البحث، نقترح إطارًا  

لتصنيف   لاختيار الميزات الديناميكية، مع شبكة عصبية عميقة يدمج النموذج خوارزمية الاختيار التناسلي 

على تقليل أبعاد البيانات مع الحفاظ على الخصائص   خوارزميةهده الحركة مرور الشبكة بدقة عالية. تعمل  

شبكة  ال المحدودة. أما مكوّن  الحوسبةالأمنية الجوهرية، مما يجعل النموذج ملائمًا للأجهزة ذات القدرات  

يعزز من كفاءة الكشف عن التهديدات   المعقدة مما فيتمتع بقدرة عالية على تحليل الأنماط    ،عميقةالعصبية  ال

 .المختلفة

تقييم النموذج باستخدام مجموعات بيانات معيارية خاصة   وأثبت كفاءته في    الطبية،الأشياء    ترنت نبأ تم 

الكشف عن الهجمات المعروفة والناشئة. ومن خلال الجمع بين تقنيات التحسين الحيوي المستوحاة والتعلم  

العميق، يوفر النظام المقترح حلاً فعالًا وقابلاً للتوسّع لتعزيز الأمن السيبراني في البيئات الصحية الحساسة  

 .والحرجة

المفتاحية الأشياء   :الكلمات  الشبكات    ؛التسللنظام كشف    ؛الطبيةإنترنت  التناسلي؛  الاختيار  خوارزمية 

 .الأمن السيبراني في الرعاية الصحية  ؛العميقةالعصبية 
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General Introduction 
 
 

The Internet of Medical Things (IoMT) has emerged as a major technological advancement in 

modern healthcare. Through the intelligent interconnection of medical devices, IoMT enables 

real-time patient monitoring, automated medical data collection, and overall improvement in 

patient care, particularly for chronic diseases. Devices such as insulin pumps and pacemakers 

can not only monitor vital signs but also autonomously respond, thereby reducing the need for 

continuous hospitalization. Other applications include fall detection for the elderly, 

performance monitoring for athletes, and improved access to healthcare in remote areas. 

Despite these numerous benefits, the large-scale deployment of IoMT raises critical security 

concerns. The distributed nature of devices, reliance on wireless communication, limited 

computational resources, and the sensitivity of medical data make IoMT environments a prime 

target for cyberattacks. A breach in data confidentiality, integrity, or availability can lead to 

incorrect diagnoses, inappropriate treatments, or even endanger patients’ lives. 

Traditional security mechanisms, often designed for conventional IT systems, are not well-

suited to the constrained and heterogeneous nature of IoMT. Initial efforts in securing IoMT 

have relied on encryption, authentication, and trust-based models. However, these techniques 

struggle to address the growing sophistication of modern cyber threats. 

In this context, Intrusion Detection Systems (IDS) represent an essential layer of defense for 

strengthening IoMT security. Artificial intelligence-based approaches, particularly those using 

bio-inspired algorithms, offer promising capabilities for detecting abnormal behaviors, 

including previously unknown attacks. 

The aim of this study is to design, implement, and evaluate a high-performance IDS specifically 

adapted to the constraints of IoMT environments. To achieve this, we propose a hybrid approach 

that combines a bio-inspired feature selection algorithm, the Clonal Selection Algorithm (CSA), 

with a Deep Neural Network (DNN) for the classification phase. The model is evaluated using 

two benchmark IoMT datasets. The goal is to demonstrate the system’s ability to detect 

intrusions effectively while maintaining the lightweight, fast, and reliable characteristics 

required by IoMT devices. 
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This document is structured into three chapters: 

Chapter 1 provides an overview of the Internet of Medical Things (IoMT), its architecture, and 

its role in modern healthcare. It highlights the specific security challenges posed by IoMT 

environments and explains the importance of Intrusion Detection Systems (IDS) as a key line 

of defense against cyberattacks. 

Chapter 2 reviews existing security approaches used in IoMT, including machine learning, 

deep learning, and hybrids methods. It also introduces the datasets used in this research and 

explains their relevance to intrusion detection in medical networks. 

Chapter 3 presents the proposed model, combining feature selection through a bio-inspired 

algorithm with a deep learning-based classification system. It describes the implementation 

process, experimental setup, and analysis of results, demonstrating the model’s potential for 

securing IoMT environments. 

Finally, the conclusion summarizes the main contributions of this work and outlines directions 

for future research. 
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Chapter 1: Intrusion Detection Systems in the 

Internet of Medical Things (IoMT) 
 

 

1.1 Introduction  

Cybersecurity is a major concern due to the increasing number of cyber threats. Intrusion Detection 

Systems (IDS) play a crucial role in identifying attacks and protecting infrastructures. This chapter 

explores IDS, their categories, architecture, and their application in the Internet of Medical Things 

(IoMT). Finally, IoMT security challenges and potential attacks are discussed to better understand the 

risks and existing solutions. 

1.2 Intrusion Detection System  

   An Intrusion Detection System (IDS) is a relatively recent technology designed to help computer 

systems prepare for and respond to network attacks. Its primary function is to monitor and analyze user 

and system activities, assess vulnerabilities, and track violations of user policies. By collecting 

information from various sources within systems and networks, IDS compares this data against pre-

existing patterns to identify potential attacks or weaknesses. The goal of IDS is to detect anomalous 

behavior and misuse in network assets, providing a critical layer of security within the information 

security infrastructure [1]. 

1.3 Intrusion Detection System Categories 

   Intrusion detection system is classified into three categories based on its detection methodology: 

Signature-Based Detection Systems, Anomaly-Based Detection Systems and Specification-Based 

Detection Systems. 

1.3.1 Signature-Based Detection System 

   This system identifies intrusion attempts by comparing detected signatures with a predefined database 

of known threats. Upon detecting a match, it promptly generates an alert. 

1.3.2 Anomaly-Based Detection System 

   Anomaly detection system is characterized by its ability to identify unknown attacks by analyzing 

deviations from the network's usual behavior. Unlike signature-based approach, it relies on rules or 

heuristics, enabling them to detect novel threats, although they often result in a high rate of false 

positives. Its implementation requires an initial learning phase to establish a reference model of the 

system’s normal operation [1]. 
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1.4 Types of Intrusion Detection Systems 

   Intrusion detection system is classified into three types Host based IDS , Network based IDS and 

Hybrid based IDS. 

1.4.1 Host-Based Intrusion Detection Systems (HIDS) 

   HIDS monitor host computer activities and detect malicious behaviors. Installed directly on each 

machine, they analyze audit logs, identify activity patterns or signatures, and assess their behavior [2]. 

Their operation is based on three main steps: activity monitoring, attack detection, and threat response 

[3]. 

1.4.2 Network-Based Intrusion Detection Systems (NIDS) 

   NIDS (Network-Based Intrusion Detection Systems) monitor network traffic to identify potential 

attacks [2]. Deployed on network devices such as routers and switches [4], they perform three primary 

functions: traffic monitoring, attack detection, and the implementation of response mechanisms. 

1.5 Architecture of intrusion detection systems  

   The architecture of an Intrusion Detection System (IDS) is based on several essential components that 

interact to identify and manage threats. First, the information source corresponds to the monitored 

system, which generates raw data such as logs and network packets. This data is collected by sensors 

and transmitted to the detection engine. The detection engine analyzes the information and compares it 

to rules and signatures stored in the knowledge base to identify potential anomalies. If a threat is 

detected, an alert is generated and sent to the response component, which can take various actions such 

as sending a notification or blocking suspicious activity. Finally, the configuration module allows the 

system's parameters to be adjusted, including updating detection rules and response strategies. Figure1.1 

illustrates a typical IDS architecture, highlighting the interactions among its main components. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. 1. Architecture of intrusion detection systems [5]. 
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1.6 Internet of Things (IoT)  

   The Internet of Things facilitates communication between people and objects by leveraging computing 

capabilities and hardware accessibility for a wide range of applications. In general terms, IoT is defined 

as an interconnected network of objects capable of continuously generating information about the 

physical world. These objects can exchange data and be controlled by various agents (computer systems 

or users) to interact with their environment and manage numerous everyday services [6]. 

IoT applications span multiple domains, including [7]:  

Smart Cities : IoT technologies facilitate advanced traffic control and urban mobility by utilizing 

interconnected sensor networks. These systems contribute to the optimization of transportation 

infrastructures and the enhancement of urban service efficiency ; 

Smart Environments: IoT plays a crucial role in environmental monitoring, including earthquake 

prediction, fire detection, and other real-world data collection. A notable example is meteorological 

technology, which relies on IoT to track and forecast weather conditions. 

Industrial Control: IoT enables continuous monitoring of industrial operations, supporting real-time 

data acquisition, predictive maintenance, and remote fault diagnosis. These capabilities reduce the need 

for on-site inspections and enhance the operational reliability of industrial systems. 

Healthcare: The integration of IoT in healthcare systems supports remote monitoring of patient health 

by collecting biometric data through connected medical devices. This facilitates proactive health 

management and improves access to care, especially for patients with chronic conditions. 

Smart Agriculture: IoT applications in agriculture contribute to increased productivity and 

sustainability by automating critical processes such as irrigation, fertilization, and environmental 

monitoring. The real-time analysis of soil and climatic conditions allows for more precise and efficient 

farming practices. 

1.7 Internet of medical things (IoMT) 

   The Internet of Medical Things (IoMT) refers to the interconnected network of medical devices that 

communicate via the Internet to collect and transmit health-related data. This ecosystem is crucial in 

modern healthcare, enabling applications such as real-time patient monitoring, chronic disease 

management, and personalized treatments. By enhancing patient care and optimizing operational 

efficiency, IoMT supports a more data-driven, patient-centered healthcare approach [8]. 

1.7.1 Types of IoMT Devices 

   Different IoMT devices operate at various layers of smart healthcare systems, ensuring seamless 

service delivery, as illustrated in Figure 1.2 These devices can be broadly categorized into the following 

groups: 

Wearable Devices: These smart healthcare devices continuously collect patient data, enabling real-time 

health monitoring while being cost-effective. Examples include smartwatches, blood pressure and 
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glucose monitors, heart rate trackers, and fitness bands [9]. 

Home-based IoMT Devices: These include diagnostic test kits, first-aid tools, treatment devices, infant 

care equipment, feeding devices, infusion pumps, ventilators, and other medical tools designed for home 

use. These devices can connect to hospital-based systems and healthcare providers via the Internet [10]. 

Hospital-based IoMT Devices and Equipment: Hospitals can be equipped with medical devices to 

handle routine treatments and emergency situations effectively. Smart hospital devices, such as surgical 

tables, anesthesia machines, electrosurgical systems, defibrillators, and other critical equipment, play a 

vital role in ensuring high-quality patient care [11]. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

1.7.2 Architecture of IoMT 

   The architecture of the IoMT, illustrated in Figure 1.3, is structured as a multi-layered framework, 

where each layer fulfills specific functions and responsibilities [13]: 

This architecture consists of the following layers: 

1. Perception Layer: This layer is responsible for collecting data from connected medical devices, 

such as ECG monitoring sensors, insulin pumps, smartwatches, and CPAP devices. It serves as 

the interface between patients and the IoMT system. 

2. Network Layer: It ensures the secure transmission of collected data using various network 

protocols and infrastructures, including wireless routers, virtual routers, UTM routers, and 

dedicated communication servers. 

Figure 1. 2. IoMT devices [12]. 
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3. Data Layer: This layer manages the storage, synchronization, and processing of medical data 

through cloud servers, hospital physical servers, and server clusters. 

4. Application Layer: It allows end users, such as healthcare professionals and patients, to interact 

with the collected data through specific applications, such as assistive listening systems, remote 

monitoring, medical interpreters, and digital medical libraries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7.3 IoMT Security Requirements  

To ensure the protection of sensitive medical data and the reliable functioning of IoMT systems, three 

core security requirements must be addressed: confidentiality, integrity, and availability [14]. 

Confidentiality safeguards the patient's health status and treatment details by preventing unauthorized 

access to personal information during data storage and transmission in IoMT systems. 

Integrity ensures that medical data remains accurate and unaltered, preventing corruption or 

unauthorized modifications during storage and transmission. 

Availability guarantees the continuous functionality of medical devices, services, and patient records, 

playing a crucial role in ensuring timely responses to health emergencies. 

1.7.4 Attacks on IoMT     

The Internet of Medical Things (IoMT) has revolutionized healthcare by enabling seamless 

connectivity between medical devices. However, this connectivity also exposes IoMT systems to 

Figure 1. 3. IoMT architecture [13]. 
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various cyber threats (Figure 1.4). The following are some of the most critical attacks targeting IoMT 

environments: 

Denial of Service (DoS) Attacks: These attacks aim to disrupt or render a service unavailable by 

overwhelming a system’s resources, posing a major threat to data and service availability in IoMT 

environments [15,16]. 

Distributed Denial of Service (DDoS) Attacks: A DDoS attack is a type of DoS attack in which 

multiple sources simultaneously target a single system, causing IoMT devices to disrupt their healthcare 

services [17,18]. 

Man-in-the-Middle (MitM) Attacks: This type of threat occurs when an attacker intercepts 

communication between two parties to eavesdrop on their exchange. In healthcare organizations, a MitM 

attack can lead to the exposure of confidential patient data or the alteration of sensitive medical 

information. These compromised details may then be sold, used for criminal activities, or leveraged to 

blackmail affected patients [17,19]. 

Ransomware Attacks: Ransomware attacks aim to block user access to files by encrypting them and 

demanding a ransom for decryption. This threat is increasingly concerning in hospitals due to its 

financial impact and the disruption it causes to healthcare services[20]. 

Malware Attacks: Once a system is compromised, attackers can target the user by deploying various 

types of malicious software. These harmful programs, known as malware, are designed to modify, 

damage, spy on, or delete data without the user's consent. In recent years, vulnerabilities in device 

protocols and systems have been widely exploited to implant malware[21]. 

Injection Attacks: Injection attacks enable attackers to insert malicious code into a program or deploy 

malware on a system, allowing them to access sensitive information, escalate privileges, alter data, and 

compromise devices. While reported cases of injection attacks on hospitals remain limited, cybersecurity 

experts remain concerned about the significant risks they pose[22]. 

Password Attacks: This attack seeks to gain control of a system by attempting to guess the user’s 

password. Moreover, password attacks pose a significant threat due to their infrequent occurrence and 

localized nature, which makes them challenging to detect [15]. 
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1.8 Conclusion 

  This chapter presented intrusion detection systems (IDS), covering their definitions, categories, types, 

and architecture. It also introduced the Internet of Things (IoT) and the Internet of Medical Things 

(IoMT), detailing their devices, architecture, security requirements, and the main attacks targeting IoMT. 

The next chapter will provide a comprehensive literature review of the various security techniques 

applied to IoMT. 

 
 
 
 
 
 

Figure 1. 4. Attacks on IoMT [23]. 
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Chapter 2: Review of Related Works 
 
 

2.1 introduction  

  The rapid expansion of the Internet of Medical Things (IoMT) necessitates sophisticated security 

measures to protect against cyber threats. This chapter presents a comprehensive review of existing 

intrusion detection techniques applied in the Internet of Medical Things (IoMT), focusing on datasets, 

machine learning, deep learning, and hybrid bio-inspired approaches. 

2.2 IoMT Security Datasets Overview 

  Several datasets have been developed to realistically simulate Internet of Medical Things (IoMT) 

environments and support the effective evaluation of Intrusion Detection Systems (IDS). These datasets 

differ in scale, attack diversity, number of classes, and the types of medical devices modeled.  

The WUSTL-EHMS-2020 dataset, developed by Washington University in St. Louis [23], provides 

time-series data collected from smart medical devices. It includes both benign and malicious traffic, 

enriched with metadata such as timestamps, sensor readings, and communication logs, making it 

particularly suitable for behavior-based intrusion detection approaches. 

The ECU-IoHT dataset, presented in [24], was generated using the Libelium MySignals Healthcare kit. 

It simulates a realistic Internet of Health Things (IoHT) environment through a wide range of biometric 

sensors, enabling researchers to develop and test intrusion detection strategies tailored to healthcare 

systems. 

The BlueTack dataset, proposed by Zubair et al. [25], contains data related to Bluetooth Low Energy 

(BLE) and Basic Rate/Enhanced Data Rate (BR/EDR) technologies. It features multiple attack scenarios 

targeting these communication protocols, aimed at assessing the robustness of security mechanisms for 

Bluetooth-enabled medical devices. 

Lastly, the CIC-IoMT 2024 dataset, published by the Canadian Institute for Cybersecurity [26], captures 

network traffic from a simulated yet realistic IoMT setting. It includes 18 types of cyberattacks, such as 

ICMP/TCP DoS, SYN flood, MQTT-based DDoS, and port scanning, collected using Raspberry Pi 

devices and an iPad controller to emulate real-world IoMT communication patterns. 
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 In this study, we primarily selected the WUSTL EHMS (2020) and CIC-IoMT2024 (2024) datasets. 

The former provides on-body data from wearable medical devices, with attacks targeting data 

manipulation such as spoofing and alteration, which is relevant for individual patient monitoring. The 

CIC-IoMT2024 dataset simulates a broader IoMT network environment, featuring a wide variety of 

network attacks, allowing for the evaluation of detection systems’ robustness against diverse and 

realistic attack scenarios. These two datasets complement each other by covering both threats related to 

the medical devices themselves and those affecting overall network communication within an IoMT 

environment. 

2.3 Evaluation metrics of IDS  

The performance evaluation of AI-based IDS commonly relies on standard measures based on True 

Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN), including accuracy, 

precision, recall, f1-score, detection rate (DR) or True Positive Rate (TPR), false positive rate (FPR), 

training time, and detection time, described as follows [27,28,29]. 

TP Intrusions that the IDS correctly detects as attacks. 

FP refers to the benign or normal samples in the IoMT-based data that are incorrectly classified as 

malicious activity. 

TN represents the number of benign samples in the IoMT-based data that is correctly identified as 

benign. 

FN corresponds to malicious IoMT-based data that are incorrectly classified as benign samples. 

 

 

 

Accuracy describes the proportion of correctly predicted samples out of all the instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇 𝑃 + 𝑇𝑁

𝑇 𝑃 + 𝑇𝑁 + 𝐹𝑃+𝐹𝑁
                                               (1) 

 

Precision identifies the ratio of the number of true samples to all observations predicted as positives. 

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇 𝑃 

𝑇 𝑃 + 𝐹𝑃
                                                             (2) 

 

Recall calculates the ratio of the total number of true positives to all true positives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇 𝑃 

𝑇 𝑃 + 𝐹𝑛
                                                         (3) 

 

F1-Score is a harmonic average of recall and precision metrics by taking their weighted average. The 

harmonic mean is used instead of a simple arithmetic mean to give more weight to lower values, which 
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helps to penalize imbalances between precision and recall                        

𝐹1 −  𝑆𝑐𝑜𝑟𝑒  = 2𝑥
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑅𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                            (4) 

 

TPR corresponds to the relation between the number of correctly true positive samples and the total 

number of actual positive samples. 

𝑇𝑃𝑅 =
𝑇 𝑃 

𝑇 𝑃 + 𝐹𝑛
                                                                         (5) 

 

FPR is the number of incorrectly predicted negative samples related to the total of negative instances. 

FPR=
𝐹𝑃 

𝐹𝑃 + 𝑇𝑁
                                                                            (6) 

 

2.4 Literature Review on Security Techniques for IoMT 

   A structured and methodical literature review was conducted using reputable academic databases, 

including IEEE Xplore, Springer, ScienceDirect, Elsevier, and MDPI. The search strategy was based on 

a set of targeted keywords such as "intrusion detection", "IoMT security", "machine learning", "deep 

learning", "smart healthcare", and "Internet of Health Things (IoHT)", among others. To ensure 

relevance and recency, only peer-reviewed publications from 2019 to 2025 that met specific inclusion 

criteria were selected. 

   The reviewed literature was then categorized into three main classes of security approaches: machine 

learning-based methods, deep learning-based methods, and hybrid or bio-inspired techniques. This 

classification enables a comprehensive analysis of current methodologies, highlighting their strengths, 

limitations, and their practical relevance to securing IoMT environments against increasingly 

sophisticated cyber threats. 

2.4.1 Advanced Approaches in Intrusion Detection Systems for IoMT 

   With the increasing complexity of cyberattacks targeting healthcare infrastructures, conventional 

intrusion detection systems (IDS) often fall short in providing real-time, adaptive, and intelligent 

protection. In response, modern approaches leveraging Machine Learning (ML), Deep Learning (DL), 

and hybrid models have emerged as innovative and effective solutions for enhancing IDS capabilities 

within the IoMT ecosystem. 

This section reviews recent research employing these intelligent techniques to improve detection 

accuracy and adapt to the dynamic nature of medical data.  

2.4.1.1 Machine Learning-Based IDS  

   Machine Learning (ML)-based IDS are widely used to identify abnormal or malicious behavior by 

analyzing historical patterns in network or system data. These systems are capable of learning 

automatically from data and adapting to evolving threats without the need for explicit programming. In 
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Internet of Medical Things (IoMT) environments, where real-time data and security requirements are 

critical, ML offers flexible and efficient solutions for detecting intrusions with high accuracy. 

Several supervised classification algorithms are frequently applied in this context. The most commonly 

used models are described below : 

Decision Tree (DT) is a non-parametric supervised learning algorithm used for classification and 

regression. It builds a hierarchical structure by recursively splitting the data based on feature tests, 

leading to final predictions at the leaf nodes. Due to its interpretability and simplicity, it is widely applied 

in machine learning, particularly in cybersecurity and intrusion detection systems [30]. 

Figure 2.1 illustrates the basic structure of a decision tree, showing how input data is split into branches 

until reaching leaf nodes that determine the final output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random Forest (RF) is a popular ensemble learning method that combines the predictions of multiple 

decision trees to improve accuracy and robustness. During the training phase, it builds several decision 

trees on different subsets of the dataset, using a random selection of features. For classification tasks, 

the final output is determined by the majority vote of all trees, while for regression, the average of their 

predictions is used [32]. 

 

Logistic Regression (LogR) is a supervised learning algorithm mainly used for binary classification 

tasks. Although it is a linear model, it differs from classical linear regression through the use of the 

logistic function, which models the probability that a given sample belongs to a particular class. Logistic 

regression is appreciated for its simplicity, fast training speed, and good performance on linearly 

separable problems, making it a common choice for the initial stages of intrusion detection or 

exploratory data analysis [33]. 

Figure 2. 1. Decision tree [31]. 
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Naive Bayes (NB) Naive Bayes is a supervised classification algorithm based on Bayes’ theorem, which 

estimates the probability of a class given a set of features by assuming conditional independence among 

them. This method uses the prior probability of each class and the likelihood of the observed features to 

compute the posterior probability [34]. 

 

Support Vector Machine (SVM) is a supervised learning algorithm used mainly for classification and, 

in some cases, regression. It works by finding the optimal hyperplane that maximizes the margin 

between classes in a multidimensional space. SVM is effective in high-dimensional settings and can 

handle both continuous and categorical data, even when classes are not linearly separable [35]. 

Figure 2.2 illustrates the principle of binary classification using Support Vector Machines, where the 

optimal hyperplane separates two distinct classes with maximum margin. 

 

 

Figure 2. 2. SVM Classification with Optimal Hyperplane [36]. 

  

XGBoost (Extreme Gradient Boosting) is a powerful and scalable supervised learning algorithm based 

on the gradient boosting framework. It is designed to improve the performance of weak learners, 

particularly decision trees, in both classification and regression tasks. One of its key innovations is the 

use of a second-order Taylor expansion of the loss function, which allows for more precise optimization. 

XGBoost is also known for its efficiency, regularization capabilities, and high predictive accuracy, 

making it widely adopted in real-world machine learning applications [37]. 

Figure 2.3 presents the general structure of the XGBoost model, which consists of an ensemble of 

decision trees built sequentially to minimize prediction errors. 
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Figure 2. 3. XGBoost Model Structure [38]. 

 
  

 

2.4.1.2 Deep Learning-Based IDS  

A Deep Learning-based Intrusion Detection System (IDS) leverages deep neural networks to detect 

anomalies or malicious behaviors within network traffic or system activity. By learning patterns from 

large volumes of data, these systems can identify subtle deviations from normal behavior, making them 

particularly effective for securing complex environments such as the Internet of Medical Things (IoMT). 

In this context, several Deep Learning models are commonly used for intrusion detection. The most 

widely adopted architectures are presented below [43]. 

 

Convolutional Neural Network (CNN): CNNs are primarily used for spatial feature extraction from 

structured input like network traffic matrices. They are particularly effective in identifying localized 

patterns, making them suitable for detecting intrusion signatures in IoMT data streams. Figure 2.4 

presents the architecture of a Convolutional Neural Network (CNN), which utilizes convolutional and 

pooling layers to automatically learn spatial features from input data. 
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Figure 2. 4. Convolutional Neural Network (CNN) Architecture [44]. 

 

Long Short-Term Memory (LSTM): LSTMs are a type of recurrent neural network (RNN) capable of 

learning long-term dependencies, especially useful for sequential data. In IoMT environments, they can 

model the temporal evolution of network traffic, enhancing the detection of time-dependent attack 

patterns. 

Deep Neural Network (DNN): DNNs are multi-layers perceptrons that capture complex nonlinear 

relationships in large datasets. They are effective for high-dimensional intrusion detection tasks, 

especially when used with feature engineering or attention mechanisms. 

Figure 2.5 illustrates the architecture of a Deep Neural Network (DNN), composed of multiple hidden 

layers that extract and transform features to perform classification. 

 

Figure 2. 5. Deep Neural Network (DNN) Architecture [45]. 
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2.4.1.3 Hybrid and Bio-Inspired IDS Approaches 

As cyber threats targeting IoMT systems become more complex, standalone machine learning (ML) or 

deep learning (DL) techniques often face limitations in terms of efficiency and adaptability. To overcome 

these challenges, hybrid approaches that combine bio-inspired algorithms with ML or DL have been 

introduced. These methods are inspired by natural processes such as evolution, the immune system, or 

collective swarm behavior. They help improve feature selection, optimize model parameters, and 

enhance the generalization ability of detection systems. Such approaches are especially suitable for 

intrusion detection in medical environments, where both precision and resource constraints are critical. 

Various studies have employed bio-inspired techniques to enhance security in the Internet of Medical 

Things (IoMT). Below are some notable findings: 

A comprehensive review of existing research on intrusion detection in the Internet of Medical Things 

(IoMT) has been conducted, with particular emphasis on methodological trends and performance 

benchmarks. The findings of this review were presented at the IAM'24 conference, offering critical 

insights into current advancements and persisting gaps in the field [54].  
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2.5 Conclusion 

This chapter reviewed existing research on IoMT security. The comparative analysis highlights that 

hybrid approaches, especially those integrating bio-inspired algorithms with machine or deep learning 

models, offer superior performance in feature optimization and anomaly detection. These insights 

support the development of our proposed hybrid model, which will be presented in the next chapter to 

enhance intrusion detection in healthcare environments. 
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Chapter 3: Conception and Implementation 
 

3.1 Introduction  

This chapter presents the conception and implementation of MedCentry, a hybrid intrusion detection 

system designed for Internet of Medical Things (IoMT) environments. The proposed architecture 

integrates a bio-inspired Clonal Selection Algorithm (CSA) for optimal feature selection and a Deep 

Neural Network (DNN) for robust classification of network traffic. This system aims to detect cyber 

threats accurately and efficiently while considering the resource constraints and complexity of smart 

healthcare environments. 

3.2 Proposed Model 

In this study, we proposed hybrid intrusion detection system tailored for IoMT environments. The 

architecture combines two complementary components: 

• A Clonal Selection Algorithm (CSA) for optimal feature selection, 

• A Deep Neural Network (DNN) for classification of network traffic as either benign or 

malicious. 

Figure 3.1 illustrates the architecture of the hybrid CSA-DNN intrusion detection system 

 

Figure 3. 1.Proposed CSA-DNN Model Architecture. 

3.2.1 Biological Principle of Clonal Selection 

The Clonal Selection Algorithm (CSA) draws inspiration from the adaptive immune system, particularly 
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the behavior of B lymphocytes. When an antigen is detected, B-cells that match the antigen undergo 

[55]: 

• Cloning, to amplify the immune response, 

• Mutation, to introduce diversity and improve recognition, 

• Selection, based on their affinity to the antigen. 

This biological process results in memory and strong protection against future threats. CSA translates 

this mechanism into a computational optimization technique for identifying the most relevant features 

in a dataset.  

Figure 3.2 visualizes the biological clonal selection process that inspired the CSA. 

 

 

 

Figure 3. 2.Biological clonal selection process [55]. 

 

3.2.2 Functioning of CSA for Feature Selection 

In proposed model, each candidate solution is encoded as a binary vector of length D, where D is the 

total number of available features.  

A bit set to 1 means the corresponding feature is selected, while 0 means it is excluded. 
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3.3 Implementation 

3.3.1 Runtime Environment 

The experiments were conducted using Google Colaboratory (Colab), a cloud-based Python 

development environment offering free access to virtualized computational resources. The full 

implementation pipeline, including data preprocessing, feature selection, and classification, was 

developed and executed within this environment. 

The system was accessed from a local machine with the following specifications: 

• Operating System : Windows 10  

• Processor : Intel Core i5-7440HQ CPU @ 2.80GHz 

• Memory : 8GB RAM 

• Google Colaboratory, more commonly known as Google Colab, is a free cloud-based platform 

developed by Google Research. It provides a serverless Jupyter notebook environment that 

supports interactive Python development with access to powerful hardware accelerators such as 

CPUs, GPUs, and TPUs. It is widely used for prototyping and training machine learning models, 

especially in research and academic contexts.[63] 

3.3.2 Libraries and Tools 

The development of the hybrid CSA-DNN intrusion detection system relied on a combination of open-

source Python libraries and front-end web technologies. Each tool contributed to a specific stage of the 

system, from data preprocessing to model training and web deployment. 

• NumPy: (Numerical Python) is a core library for scientific computing in Python. It enables 

efficient manipulation of large multi-dimensional numerical arrays and serves as a foundation 

for many other scientific libraries [64]. 

• Pandas: (short for Python and data analysis) is an open-source Python library that provides 

powerful tools for data manipulation and analysis. It offers robust data structures, such as Series 

and DataFrames, which enable efficient handling of tabular, heterogeneous, and labeled data 

[65]. 

• Scikit-learn: is a well-established open-source machine learning library developed in 2007. It 

offers a wide range of algorithms for tasks such as classification, regression, clustering, and 

dimensionality reduction. In addition, it provides modules for data preprocessing, feature 

extraction, hyperparameter tuning, and model evaluation [66]. 



25 
 

• SMOTE: (Synthetic Minority Oversampling Technique) is an oversampling method used to 

address imbalanced datasets. It generates synthetic samples by interpolating between a minority 

class instance and its K nearest neighbors in the feature space. This technique helps reduce 

overfitting and improves the model’s ability to correctly classify minority class instances [67]. 

• TensorFlow: is a powerful open-source machine learning framework developed by Google 

Brain. It provides a comprehensive ecosystem of tools and libraries for building and training 

deep learning models, including Keras, its high-level API, which simplifies the construction of 

neural networks such as Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) [68]. 

• Matplotlib: is a widely used data visualization library in the Python ecosystem. Originally 

developed by John Hunter, it enables the creation of static, interactive, and animated plots. It is 

fully compatible with libraries such as NumPy and Pandas, making it essential for data analysis 

and visual representation in scientific research [69]. 

• Seaborn: is a Python data visualization library built on top of Matplotlib. It provides a high-

level interface for generating attractive and informative statistical graphics, such as heatmaps 

and distribution plots, which assisted in understanding the internal behavior of the model [70]. 

• Flask: is a Python micro-framework designed for rapid web application development. It 

provides only the essential core features, allowing developers to flexibly integrate additional 

functionalities as needed during implementation [71]. 

In addition to Python-based tools, this project also utilized front-end web technologies to develop the 

graphical interface of the system: 

• HTML: (HyperText Markup Language) is the standard markup language used to define the 

structure and content of web pages. Created by Tim Berners-Lee in 1989, it organizes web 

content through a set of elements that describe how text, images, and other components are 

displayed in a browser [72]. 

• CSS: (Cascading Style Sheets), as defined by the W3C (World Wide Web Consortium), is the 

language used to describe the presentation of web pages, including colors, fonts, and layouts. It 

enables responsive and customized styling for HTML documents across devices of different 

screen sizes [72]. 

• JavaScript: is a dynamically typed, high-level programming language with asynchronous 

capabilities. It was developed by Brendan Eich in 1994 and originally named Mocha, then 

LiveScript, before becoming JavaScript. It is now a core web technology used to add 

interactivity and dynamic behavior to web applications [73]. 

3.3.3 Exploratory Data Analysis 

This section explores the characteristics of the two datasets used in this study: WUSTL-EHMS-2020 
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[23] and CIC-IoMT2024[26]. The goal is to highlight class imbalances, variable types, and any 

necessary preprocessing requirements. 

  

 Figure 3.3 shows the distribution of normal and attack traffic in the WUSTL-EHMS-2020 dataset, 

where label 0 represents normal traffic and label 1 corresponds to attack traffic. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 3. Class Distribution in the WUSTL-EHMS-2020 Dataset 

 
  Figure 3.4 displays the distribution of the six traffic classes in the CIC-IoMT2024 dataset. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 

 
Figure 3. 4. Class Distribution in the CIC-IoMT-2024 Dataset 
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3.3.4 Preprocessing 

To ensure reliable training and evaluation of the proposed hybrid IDS, a dedicated preprocessing 

pipeline was applied to both the CIC-IoMT-2024 and WUSTL-EHMS-2020 datasets. This step was 

essential to clean the data, the distinct nature and structure of each dataset necessitated specific 

adaptations, as detailed below. 

a. CIC-IoMT-2024 Dataset [26] 

1. Data Cleaning: Using Pandas, the dataset was inspected for missing values, infinite values, and 

constant columns. The columns that contained only zero values were removed due to their lack 

of relevance. 

2. Data Splitting:The dataset was split using stratified sampling into: 80% training,20% testing. 

3. Label Encoding:The class labels in y were encoded into integers  to ensure compatibility with 

machine learning algorithms. 

b. WUSTL-EHMS-2020 Dataset [23] 

1. Data Cleaning 

2. Categorical Encoding 

3. Feature and Target Separation  

4. Feature Scaling:   

5. Data Splitting: The preprocessed data was divided into 80% training and 20% testing sets. The 

80/20 split is commonly used to provide enough data for training the model (80%) while 

reserving a sufficient portion for reliable evaluation (20%). 

6. SMOTE Oversampling: This method synthetically generated new instances of the minority class 

to achieve a balanced class distribution and improve classification performance. 

3.3.5 Model Building  

This section presents the design, implementation, and performance evaluation of the proposed hybrid 

Intrusion Detection System (IDS), which integrates a Clonal Selection Algorithm (CSA) for feature 

selection with a Deep Neural Network (DNN) for classification. The experiments were conducted 

independently on two datasets: CIC-IoMT-2024 and WUSTL-EHMS-2020. 

a. Feature Selection using Clonal Selection Algorithm (CSA) 

 Selected Features: At the end of the optimization process, the following features were selected: 
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For CIC-IoMT-2024 (35 features) : 

Header_Length, Protocol Type, Duration, Rate, Drate, fin_flag_number,syn_flag_number, 

rst_flag_number, psh_flag_number, ack_flag_number,cwr_flag_number, ack_count, syn_count, 

fin_count, rst_count, HTTP, HTTPS,Telnet, SMTP, IRC, TCP, DHCP, ARP, IGMP, IPv, LLC, Tot 

sum,Min, Max, AVG, Std, IAT, Number, Magnitude, Covariance. 

 

For WUSTL-EHMS-2020 (33 features): 

Dir, Flgs, SrcAddr, DstAddr, Dport, SrcLoad, DstLoad, SrcGap, DstGap,DIntPkt, SIntPktAct, 

DIntPktAct, SrcJitter, dMaxPktSz, dMinPktSz, Trans,TotPkts, TotBytes, Load, Loss, pLoss, pSrcLoss, 

pDstLoss, Rate, SrcMac, DstMac, Packet_num, Temp, SYS, DIA, Resp_Rate, ST. 

b. Deep Neural Network  

Each selected feature subset was passed into a DNN model. The architecture was consistent across 

datasets but adapted in the output layer.   

3.4 Evaluation  

The generalization capability and robustness of the proposed hybrid model were assessed on the test 

sets of both CIC-IoMT-2024 and WUSTL-EHMS-2020 datasets. For each dataset, a confusion matrix 

was generated to provide a comprehensive view of the classification performance, including correct 

predictions and misclassifications per class. 

• Figure 3.5 presents the confusion matrix for the WUSTL-EHMS-2020 dataset, demonstrating 

the model’s ability to accurately distinguish between benign and malicious instances in a binary 

classification context. 

• Figure 3.6 illustrates the confusion matrix obtained on the CIC-IoMT-2024 dataset, highlighting 

the model’s effectiveness in handling multiclass classification scenarios within heterogeneous 

IoMT traffic. 
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Figure 3. 5. Confusion Matrix of the CSA-DNN model on the WUSTL-EHMS-2020 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 6.Confusion Matrix of the CSA-DNN model on the CIC-IoMT-2024 dataset. 
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 These results indicate a high detection capability with strong sensitivity and specificity, demonstrating 

the system’s ability to effectively minimize both missed threats and false alarms.  

 

The Precision-Recall curve [75], offers a comprehensive assessment of the model’s performance across 

various decision thresholds for both datasets, highlighting its ability to maintain a balance between 

precision and recall under different classification conditions. Figures 3.7 and 3.8 illustrate the Precision–

Recall curves of the model on the WUSTL-EHMS-2020 and CIC-IoMT-2024 datasets, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 7.  Precision-Recall Curve on the WUSTL-EHMS-2020 Dataset. 
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The Precision-Recall curve remains consistently high across a wide range of recall values, indicating 

the model’s strong ability to detect true positives while keeping false positives to a minimum. 

  

  

Figure 3. 8. Precision-Recall Curve on the CIC-IoMT-2024 Dataset. 
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3.6 Web User Interface 

To facilitate the practical use of the CSA-DNN detection system, a web interface was developed using 

Flask. This interface allows users to easily interact with the model through a series of well-defined steps, 

simulating a real-world IoMT intrusion detection workflow. 

The MEDCENTRY interface guides the user through a complete offline intrusion detection and cleaning 

workflow, simulating a realistic usage scenario. It enables users — such as medical IT staff or 

cybersecurity analysts  to detect, analyze, and mitigate threats within sensitive healthcare infrastructures. 

Figure 3.9 shows the homepage of the MEDCENTRY web interface, followed by the main pages used 

for navigation and functionality.  

 

Figure 3. 9.Home Page of the MEDCENTRY Web Interface. 

The homepage of MEDCENTRY features a "Get Started" button to launch the detection process. On 

the same page, "About Us" briefly explains that MEDCENTRY helps secure IoMT networks by 

detecting and cleaning threats 
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Figure 3. 10.About Page of MEDCENTRY Web Interface. 

 
The following steps describe the typical usage process of the MEDCENTRY web interface for analyzing 

medical network traffic: 

Step 1 : CSV File Upload 

The user begins by uploading a CSV file containing network traffic data from medical devices. This file 

may include both normal traffic and potential intrusions. Figure 3.11 displays the upload form where 

users submit CSV files for analysis. 

 

 

Figure 3. 11. CSV File Upload Page. 

 
 
Step 2: Initial Intrusion Detection 
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Once uploaded, the system immediately runs the CSA-DNN model to detect any malicious instances. 

The number of detected intrusions is displayed, giving the user an overview of the dataset’s current 

threat level. Figure 3.12 shows the immediate results after the uploaded file is processed. 

 

Step 3: Automated Data Cleaning 

After the CSV file is uploaded and the initial detection is complete, the system executes an advanced 

data cleaning routine encapsulated in the function clean_data(df). This function ensures data quality and 

reliability before any re-evaluation. It performs the following operations: 

• Removal of non-informative columns: All empty columns or those with constant values are 

eliminated to reduce noise and redundancy. 

• Elimination of duplicates: Fully duplicated rows are detected and removed to prevent bias in 

the model. 

• Handling of missing values: 

o Rows with more than 50% missing values are discarded. 

o Remaining missing values in numeric columns are imputed using the median to 

preserve data distribution. 

• Outlier detection and correction: Outliers are detected using the Interquartile Range (IQR) 

method. For each numeric feature: 

First, the first quartile (Q1, 25th percentile) and the third quartile (Q3, 75th percentile) are 

calculated. The interquartile range (IQR) is then defined as the difference between Q3 and Q1: 

IQR = Q3 − Q1      (9) 

Next, the lower and upper bounds are determined using the formulas: 

Lower bound = Q1 − 1.5 × IQR     (10) 

Upper bound = Q3 + 1.5 × IQR.     (11) 

 

Figure 3. 12.Intrusion Detection Result interface. 



35 
 

Any value falling outside these bounds is considered an outlier and is corrected by clipping it to the 

nearest bound. This method reduces the impact of extreme values while preserving the integrity of the 

dataset by avoiding the removal of entire rows. 

• Attack tracking: If the prediction column is present, the system tracks the number of attacks 

(prediction = 1) before and after cleaning. 

A detailed cleaning report is automatically generated, including: 

• Initial and final dataset shape, 

• List of removed columns, 

• Number of duplicate rows eliminated, 

• Number of missing values imputed, 

• Number of outliers corrected, 

• Total number of detected attacks before and after cleaning. 

 

Figure 3.13 presents the automated report generated during the data cleaning step. 

 
 
 
 

 
Figure 3. 13. Automated Data Cleaning Summary. 

 
Step 4: Re-detection on Cleaned Data 

The cleaned dataset is then re-analyzed by the proposed CSA-DNN model. This second detection step 

verifies the effectiveness of the cleaning process. In most cases, the output shows “0 attacks detected”, 

confirming that all threats have been successfully removed. 
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Step 5: Attack Comparison Report 

The final step provides a comparative summary between the number of attacks before and after cleaning. 

This output helps users assess the real impact of the cleaning phase. If the system detects “0 attacks” 

post-cleaning, the file is declared clean and ready for reintegration into the medical network. 

 

 

Figure 3. 14. Attack Comparison Report Interface. 

 

3.7 Conclusion 

This chapter has presented the conception, development, and empirical validation of MedCentry, 

a hybrid intrusion detection system (IDS) that integrates CSA-based feature selection with DNN-based 

classification to enhance threat detection in Internet of Medical Things (IoMT) networks. The proposed 

system was rigorously evaluated on two benchmark datasets simulating real-world IoMT environments, 

demonstrating superior performance in terms of detection accuracy, precision, recall, and computational 

efficiency compared to conventional approaches. 

To ensure practical applicability, the system was implemented as a web-based platform using Flask, 

providing healthcare professionals with an intuitive, step-by-step interface for analyzing potential cyber 

threats. A comparative analysis against baseline models, including Random Forest (RF), DNN, 

Convolutional Neural Network (CNN), and Particle Swarm Optimization (PSO)-based IDS, confirmed 

that MedCentry consistently achieves higher detection rates while maintaining lower false positives and 

processing latency. 

These results confirm that MedCentry is a promising and effective solution for protecting smart medical 

networks against cyber threats. 
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General Conclusion 

In an era where medical technologies are increasingly interconnected through the Internet of Medical 

Things (IoMT), ensuring the security and integrity of sensitive health data has become a paramount 

concern. This thesis addressed the critical challenge of intrusion detection in IoMT environments, which 

are particularly vulnerable due to their heterogeneous composition, constrained resources, and the high 

sensitivity of the data they handle. 

To meet this challenge, we proposed a hybrid Intrusion Detection System (IDS) named MEDCENTRY, 

which combines a Clonal Selection Algorithm (CSA) for optimal feature selection with a Deep Neural 

Network (DNN) for efficient and accurate classification. Our approach was rigorously evaluated using 

two benchmark medical datasets: CIC-IoMT2024 and WUSTL-EHMS-2020.   

This master thesis is organized into three chapters. The first chapter introduces the IoMT paradigm, 

outlines its benefits, and highlights the specific security challenges it faces. The second chapter provides 

a synthesis of existing security solutions, particularly those based on machine learning and bio-inspired 

methods, and describes the datasets employed. The third chapter presents the proposed model, 

implementation details, and experimental validation. 

Throughout this work, we demonstrated that the synergy between evolutionary optimization and deep 

learning offers a powerful and scalable solution for real-time intrusion detection, even within the 

constraints typical of medical networks. The experimental results confirmed the robustness, 

generalization capacity, and practical viability of the MEDCENTRY framework in real-world healthcare 

contexts. 

This research contributes to the growing field of intelligent cybersecurity in medical systems by 

proposing a method that is not only accurate but also adaptable and lightweight. It opens several 

promising avenues for future research, such as deploying MEDCENTRY in live hospital networks, 

integrating federated learning for privacy preservation, and extending the model to detect zero-day 

attacks and insider threats. 

By enhancing the resilience of IoMT infrastructures, MEDCENTRY plays a crucial role in safeguarding 

patient safety, preserving trust in digital healthcare systems, and supporting the broader vision of smart, 

secure, and connected medical care. 
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