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Abstract

High-dimensional data is increasingly prevalent across diverse domains such as bioinfor-
matics, medical imaging, and natural language processing, posing significant challenges
due to the curse of dimensionality and computational complexity. This thesis proposes a
novel two-phase dimensionality reduction framework that combines representative selec-
tion through clustering with Uniform Manifold Approximation and Projection (UMAP)
training. In the first phase, representative samples are selected using clustering algorithms
such as Mini-Batch KMeans and BIRCH to reduce data size while preserving its structure.
In the second phase, UMAP is trained on these representatives to learn a low-dimensional
embedding, which is then used to transform the entire dataset efficiently. Experimental
results on the IoTID20 dataset; a high-dimensional dataset, demonstrate that the pro-
posed method significantly reduces computational time and memory usage compared to
standard UMAP, while maintaining comparable embedding quality and classification per-
formance. This hybrid approach offers a scalable and effective solution for dimensionality
reduction in large-scale high-dimensional data analysis.

Keywords: Dimensionality reduction, high-dimensional data, representative selec-

tion, clustering, UMAP, manifold learning, computational efficiency.
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(zeneral Introduction

The proliferation of high-dimensional data in domains such as [oT, bioinformatics, and im-
age processing has introduced significant challenges for data analysis. The curse of dimen-
sionality increases computational complexity and degrades the performance of machine
learning models, while resource constraints in environments like IoT devices exacerbate
these issues. For instance, applying nonlinear dimensionality reduction techniques like
UMAP to large datasets such as IoTTD20 (625,783 records, 72 features) demands substan-
tial memory and processing power, often infeasible for real-time applications. Traditional
methods like PCA fail to capture nonlinear relationships, while advanced techniques like
t-SNE and UMAP suffer from quadratic complexity, necessitating scalable alternatives.

The need for efficient, scalable dimensionality reduction is critical across multiple
domains. In IoT security, real-time intrusion detection on resource-constrained devices
requires rapid processing of high-dimensional network traffic data. Similarly, in bioinfor-
matics, analyzing single-cell RNA sequencing data with thousands of features demands
methods that balance computational efficiency with structural preservation. Medical
imaging and financial analytics further underscore the need for scalable solutions to han-
dle large, complex datasets. While existing hybrid approaches combine clustering with
dimensionality reduction but often lack adaptability for resource-limited settings. This
motivates the development of a novel framework that reduces computational overhead
while preserving data integrity for diverse applications.

This thesis proposes a two-phase dimensionality reduction framework to address these

challenges:

1. Representative Selection: Identify a compact subset of data points using clus-
tering algorithms (Mini-Batch KMeans and BIRCH) to capture structural diversity

while reducing dataset volume.

2. Optimized UMAP Training: Train UMAP on the representative subset to create
high-quality, low-dimensional embeddings applicable to the full dataset.

The framework aims to achieve computational efficiency, preserve local and global data
structures, and ensure scalability for large datasets in resource-constrained environments,
such as IoT intrusion detection systems.

This research makes three primary contributions:
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1. Scalable Framework: A novel two-phase approach that synergizes clustering-
based representative selection with UMAP; significantly reducing training time and

memory usage compared to full-data UMAP training.

2. Practical Applicability: Demonstrated effectiveness on the IoTID20 dataset for
real-time intrusion detection, with potential applications in bioinformatics (e.g.,

genomics) and image processing.

3. Adaptive Methodology: Guidelines for selecting clustering algorithms (e.g., Mini-
Batch KMeans for local patterns, BIRCH for global structures) to tailor the frame-

work to task-specific needs.

Unlike existing methods that rely on full-data processing or heuristic sampling, this frame-
work offers a balanced, scalable solution for high-dimensional data analysis.

The thesis is organized as follows:

e Chapter 1: High-dimensional data and its challenges discusses the concept

of high-dimensional data, its different applications, and its challenges.

e Chapter 2: Related Work reviews linear and nonlinear dimensionality reduction

techniques, representative selection methods, and their applications.

e Chapter 3: Methodology details the proposed two-phase framework, including

data preprocessing, representative selection, and UMAP training.

e Chapter 4: Results and Discussion presents experimental results on the [oTID20
dataset, evaluating computational efficiency, embedding quality, and downstream

task performance.



Chapter 1

High-Dimensional Data and Challenges

1.1 Introduction

The rapid growth of data-driven technologies has led to the generation of increasingly com-
plex datasets across various scientific, industrial, and societal domains. These datasets
often involve hundreds, thousands, or even millions of variables, giving rise to what is
known as high-dimensional data. While this richness in information opens new op-
portunities for data analysis and machine learning, it also introduces a host of challenges
that hinder model performance, increase computational costs, and reduce interpretability.

This chapter provides a comprehensive overview of high-dimensional data and the mo-
tivations behind dimensionality reduction. We begin by defining high-dimensional data
and illustrating its presence in real-world applications. We then explore the key charac-
teristics that make such data difficult to work with, followed by an in-depth discussion of
the curse of dimensionality, which encompasses many of the problems associated with
high dimensions. Finally, we introduce the primary goals of dimensionality reduction,
and we conclude with a high-level comparison of linear versus nonlinear techniques as a

foundation for deeper discussions in later chapters.

1.2 Definition and Applications of High-Dimensional
Data

High-dimensional data typically refers to datasets characterized by a large number of
features (variables or attributes), often comparable to or exceeding the number of obser-
vations, which poses unique challenges for statistical analysis and model selection [2, 3].
This concept is especially relevant in fields such as genomics, where tens of thousands
of gene expression measurements may be recorded for relatively few samples. The com-
plexity of such data requires specialized methods for variable selection, dimensionality

reduction, and prediction [4].
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1.2.1 Applications of High-Dimensional Data

High-dimensional datasets are prevalent across many domains, including but not limited
to:

e Internet of Things (IoT): Sensor networks produce large volumes of data with

many features collected continuously.

¢ Bioinformatics and Genomics: Technologies such as DNA microarrays and RNA
sequencing provide gene expression measurements for tens of thousands of genes

across limited samples [2].

e Medical Imaging: High-resolution 3D scans from MRI, CT, and PET generate

millions of voxel-based features [3].

e Computer Vision: High-resolution images are represented as high-dimensional

data with each pixel as a feature.

e Finance and Economics: Real-time tracking of numerous financial indicators and

macroeconomic variables constitutes high-dimensional datasets.

e Natural Language Processing (NLP): Text data represented by techniques such
as Term Frequency-Inverse Document Frequency (TF-IDF) results in very high-

dimensional and sparse feature spaces [5].

These applications illustrate how the demand for advanced data collection and analyt-
ics naturally leads to high-dimensional feature spaces, where traditional data processing

and learning methods often fail.

1.3 Key Characteristics of High-Dimensional Data

1.3.1 Sparsity and the Empty Space Phenomenon

As the number of dimensions increases, data points become increasingly sparse within the
feature space. This is known as the empty space phenomenon. In high-dimensional
spaces, most data points lie near the boundaries rather than the center of the space. As
a result, conventional algorithms that rely on proximity, such as k-nearest neighbors or

k-means clustering, become less effective [6].

1.3.2 Distance Concentration

Another surprising property of high-dimensional spaces is that the contrast between the
nearest and farthest neighbors becomes negligible. This is referred to as distance con-

centration. More formally, in high-dimensional settings, the ratio between the minimum
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and maximum distances among data points approaches 1. Thus, distance metrics lose

their discriminatory power [7].

1.3.3 Feature Redundancy and Correlation

High-dimensional data often contains highly correlated or even linearly dependent fea-
tures. This redundancy leads to overparameterized models and increased variance. It
also affects model interpretability, as it becomes unclear which features are truly impor-
tant. Feature selection and extraction techniques are often required to remove irrelevant

or redundant variables [8].

1.3.4 Small Sample Size Relative to Dimensionality

A common scenario is the “small n, large p” problem, where the number of features
(p) significantly exceeds the number of samples (n). This imbalance limits the ability of
learning algorithms to generalize, often resulting in models that memorize the training
data (overfitting) rather than learning general patterns [9]. For example, in genomic

datasets, it is common to have 20,000 features (genes) but only 100 samples (patients).

1.4 Challenges in High-Dimensional Spaces

1.4.1 The Curse of Dimensionality

The phrase curse of dimensionality, coined by Bellman in the 1960s [10], refers to various

adverse effects of high dimensionality on data analysis. These effects include:

¢ Exponential Volume Growth: In a p-dimensional hypercube, the number of
grid points needed to densely sample the space increases exponentially with p. For

instance, covering a space with just 10 points per dimension leads to 107 total points.

e Data Sparsity and Isolation: As dimensionality increases, data points become
more isolated, making statistical estimation and pattern recognition extremely dif-
ficult.

e Overfitting and Poor Generalization: As the number of dimensions increases,
the number of parameters needed to model the data also grows. Without sufficient

training data, models become more prone to overfitting.

e Loss of Meaningful Neighborhoods: In high-dimensional settings, all data
points tend to appear equally distant, making it hard to define "similarity" or
"closeness" reliably. For example, consider points uniformly distributed in a unit

hypercube. In 2 dimensions, the average distance between two random points is
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about 0.52. In 10 dimensions, it rises to over 1.27. As dimensionality increases, the
relative difference between the nearest and farthest neighbor distances approaches
zero. This phenomenon, known as distance concentration, has been studied exten-
sively [11, 12] and severely limits the effectiveness of distance-based methods such

as K-NN or K-Means clustering; as mentioned earlier in section 3.2.

These effects combine to make high-dimensional data both computationally demanding

and statistically unreliable for many traditional algorithms.

1.4.2 High Computational Complexity

Many machine learning algorithms scale poorly with the number of dimensions. The
computational costs in terms of both time and memory often grow linearly or quadratically

with the number of features. For example:

e PCA involves an eigen-decomposition of the covariance matrix, which has a time

complexity of O(p?).
e t-SNE has a time complexity of O(n?), making it infeasible for large datasets.

e UMAP scales better but still suffers from memory usage issues with large high-

dimensional inputs.

For large datasets, especially those collected in real-time (e.g., [0T), these computational

bottlenecks become a major concern [13].

1.4.3 Noise and Irrelevant Features

High-dimensional datasets often contain a large number of irrelevant or noisy features.
These features may be the result of sensor drift, environmental noise, or redundant vari-
ables. If not handled properly, they can obscure meaningful patterns, mislead learning
algorithms, and decrease both accuracy and interpretability [9]. Dimensionality reduction

helps mitigate this issue by isolating the most informative aspects of the data.

1.5 Dimensionality Reduction

To effectively manage the challenges posed by high-dimensional data-such as increased
computational complexity, risk of overfitting, and reduced interpretability-various strate-
gies are employed, with dimensionality reduction being a primary and powerful approach.
Dimensionality reduction involves transforming data from a high-dimensional space to a
lower-dimensional space while preserving meaningful information. This process mitigates
overfitting, reduces computational cost, and facilitates visualization and interpretation of

complex data [14].
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1.5.1 Goals of Dimensionality Reduction

To address these issues, dimensionality reduction techniques aim to project high-
dimensional data into a lower-dimensional space while preserving as much relevant struc-

ture and information as possible. The main goals are:

e Improved Visualization: Mapping to 2D or 3D allows for graphical representa-

tions, helping identify clusters, outliers, and trends.

e Computational Efficiency: Reducing the number of features decreases training

time and memory consumption.

e Noise and Redundancy Elimination: Dimensionality reduction filters out irrel-

evant or redundant features, increasing model robustness.

e Improved Generalization: Lower dimensional representations help reduce over-

fitting and improve model accuracy.

e Better Interpretability: Fewer dimensions make it easier to understand and

explain model decisions.
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Figure 1.1: Two-dimensional embeddings of the MNIST dataset using (a) PCA, (b) t-SNE,
and (c) UMAP. [1].

As shown in Figure 1.1, PCA (a) struggles to separate digit classes in two dimensions,
whereas t-SNE (b) and UMAP (c) produce distinct clusters. UMAP, in particular, main-
tains the overall manifold shape while keeping digit groups compact, exemplifying why

nonlinear techniques are essential for high-dimensional data.

1.6 Conclusion

In this chapter, we defined high-dimensional data and illustrated how it arises across di-
verse real-world domains. We examined its key characteristics—such as sparsity, distance
concentration, and high feature correlation—and discussed the computational and sta-

tistical challenges it poses, including the curse of dimensionality, algorithmic inefficiency,
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and susceptibility to noise and overfitting. To address these challenges, we introduced
dimensionality reduction as a fundamental strategy to improve model performance, vi-
sualization, and interpretability. We also highlighted the importance of preserving the
intrinsic structure of data. In the next chapter, we will dive into the literature: critically
reviewing classical and state-of-the-art reduction techniques, comparing their strengths

and weaknesses, and identifying the gaps that motivate our novel two-phase approach.



Chapter 2

Related Work

2.1 Introduction

In recent years, the explosion of data across various fields has posed significant chal-
lenges in terms of data storage, processing, and analysis. High-dimensional data, while
rich in information, often suffers from issues such as increased computational complexity,
overfitting, and the curse of dimensionality. The need for robust techniques to extract
meaningful information while minimizing redundancy has become increasingly critical.
This chapter presents a comprehensive review of the existing literature on dimensional-
ity reduction, with a particular focus on feature selection and feature extraction methods.
We begin by examining traditional approaches such as Principal Component Analysis
(PCA), then explore more recent non-linear techniques like Uniform Manifold Approxi-
mation and Projection (UMAP). The aim is to highlight the strengths and limitations of
these techniques and to provide context for the methodology adopted in this thesis.

2.2 Dimensionality Reduction

Dimensionality reduction is the process of transforming high-dimensional data into a
lower-dimensional representation while preserving meaningful properties of the original
data. This process helps to simplify data analysis, reduce computational cost, and miti-
gate issues such as overfitting and the curse of dimensionality. Typically, dimensionality
reduction methods aim to learn relationships among features and create a sparse latent
structure that eliminates redundant or irrelevant features, facilitating more efficient data
processing and interpretation [15, 16].

The following subsections provide an overview of these approaches, their methods,

advantages, and limitations.
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2.2.1 Feature Selection Methods

Feature selection involves selecting a subset of relevant features from the original dataset
without altering them. This approach reduces dimensionality by excluding features that
are irrelevant, redundant, or noisy, thereby improving model performance and inter-
pretability [17].

Feature selection methods can be broadly categorized based on two perspectives: the
nature of their strategy (filter, wrapper, or embedded) and their supervision level (super-
vised or unsupervised). In the context of labeled data, such as the IoTID20 dataset used
in this study, supervised feature selection methods leverage the output labels to evaluate
feature relevance, whereas unsupervised methods operate solely based on the intrinsic
properties of the features, often using clustering or statistical measures.

Strategy-Based Categorization. Feature selection methods are commonly classi-

fied into the following categories:

e Filter methods: These methods rank features based on statistical measures such
as correlation with the target variable, mutual information, or ANOVA F-score.
Features scoring below a predefined threshold are discarded. Filter methods are
independent of any learning algorithm, making them computationally efficient and
scalable to high-dimensional data. However, they do not capture feature interactions

and may select suboptimal subsets for specific classifiers [18].

e Wrapper methods: Wrapper approaches evaluate feature subsets by training and
testing a specific classifier, selecting the subset that yields the best predictive perfor-
mance. This allows them to account for feature interactions, but their exhaustive
nature makes them computationally expensive and less scalable. Moreover, they
are tightly coupled with the chosen classifier and prone to overfitting, especially in

high-dimensional datasets [19].

¢ Embedded methods: These methods perform feature selection during model
training. For instance, regularization techniques like LASSO penalize less relevant
features by shrinking their coefficients toward zero. Decision tree-based models
also provide feature importance scores as a byproduct of their structure. Embed-
ded methods strike a balance between filter and wrapper techniques, offering both

computational efficiency and task-specific relevance [20].

Supervision-Based Categorization. Feature selection techniques may also be clas-

sified as:

e Supervised methods: These use class labels to guide feature relevance estima-

tion. Techniques like mutual information, information gain, chi-squared tests, and

10
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recursive feature elimination (RFE) are typical examples. They are especially useful

when the objective is classification or regression [21].

¢ Unsupervised methods: These operate without class labels and often rely on
statistical metrics such as variance thresholding, Laplacian scores, or clustering
consistency. They are useful when labels are unavailable or when preparing data for

unsupervised learning tasks like clustering or dimensionality reduction [22].

Despite their benefits, feature selection methods face limitations in terms of scalabil-
ity when dealing with extremely high-dimensional data, such as genomic or IoT traffic
datasets. Additionally, they may struggle to preserve the intrinsic data structure or non-

linear relationships, particularly in unsupervised scenarios [23].

2.2.2 Feature Extraction Methods

Feature extraction methods transform the original high-dimensional data into a new,
lower-dimensional space by creating new features that capture the essential information.
Unlike feature selection, which retains original features, feature extraction combines or
projects features to reduce dimensionality while aiming to preserve data variance or struc-
ture [24].

Feature extraction techniques can be broadly divided into:

e Linear methods: These methods assume that the data lie on or near a linear sub-
space of the high-dimensional space. They seek linear transformations that maxi-
mize variance or class separability. Examples include Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), Singular Value Decomposition (SVD),
and Independent Component Analysis (ICA). Linear methods are computationally
efficient and interpretable but may fail to capture complex nonlinear structures in
data [15].

e Nonlinear methods: To address limitations of linear methods, nonlinear fea-
ture extraction techniques have been developed to capture complex intrinsic struc-
tures of data that lie on nonlinear manifolds. These include Kernel PCA (KPCA),
Multidimensional Scaling (MDS), Isomap, Locally Linear Embedding (LLE), Self-
Organizing Maps (SOM), t-Distributed Stochastic Neighbor Embedding (t-SNE),
and Uniform Manifold Approximation and Projection (UMAP). Nonlinear meth-
ods often provide better representations for visualization and clustering in complex

datasets but can be computationally more demanding and less interpretable [16, 25].

The subsequent sections provide detailed descriptions of representative linear and non-

linear feature extraction methods.

11
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2.2.3 Linear Dimensionality Reduction
2.2.3.1 Principal Component Analysis (PCA)

Principal Component Analysis is a widely applied statistical method used to reduce the
dimensionality of datasets by projecting them onto a new set of orthogonal axes called
principal components. These components are ordered in terms of the variance they ex-
plain, with the first principal component capturing the maximum possible variance, the
second capturing the next highest, and so on. Each principal component is a linear com-
bination of the original variables and is uncorrelated with the others |26, 27]. The method
begins by centering the data and optionally scaling it to unit variance if the variables are
measured on different scales. Then, PCA performs either an eigenvalue decomposition
(EVD) of the covariance matrix or a singular value decomposition (SVD) of the centered
data matrix. The eigenvectors (or right singular vectors) form the principal component
directions, while the eigenvalues (or squared singular values) represent the amount of
variance explained [27]. This low-rank approximation is optimal in a least-squares sense:
PCA finds a subspace that minimizes the reconstruction error from the original high-
dimensional space to the lower-dimensional one [27]. The new coordinates (scores) enable
compact representations of the data, which are useful for visualization, compression, and
feature extraction. PCA has been used in various fields including chemometrics, genomics,

psychology, and environmental science due to its simplicity, robustness, and computational
efficiency [26].

Strengths of PCA

e Efficient dimensionality reduction: PCA compresses data by capturing most of
its variance in just a few components, often reducing hundreds of variables to only
two or three [27].

e Computationally efficient: The mathematical operations involved—especially
SVD—are fast, stable, and scalable to large datasets. SVD is preferred in practice

due to its numerical advantages [27].

e Noise reduction: PCA effectively filters out components associated with low vari-

ance, which often correspond to noise in the dataset [26].

e Facilitates data visualization: By projecting high-dimensional data onto a 2D
or 3D space using the first few principal components, PCA helps reveal clusters,

patterns, and outliers |26, 27].

e Model-free and unsupervised: PCA does not require labeled data or prior
assumptions about the underlying data distribution, making it widely applicable

across domains [26].
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e Interpretability through explained variance: PCA provides a clear measure
of how much variance is retained in each component, helping users determine how
many components to keep (e.g., via scree plots or explained variance thresholds)
[27].

Limitations of PCA

e Sensitivity to Outliers: PCA is sensitive to outliers and gross errors in the
dataset, which can distort the principal components and lead to misleading results
[15].

e Dependence on Scaling and Units: PCA results depend heavily on the scale
and units of the variables. Without proper standardization, variables with larger
variances dominate the principal components, affecting interpretability and results

28, 29).

e Linearity Assumption: PCA assumes linear relationships among variables and
cannot capture nonlinear patterns in the data, limiting its effectiveness for complex

datasets with nonlinear structures |29, 30].

e Interpretability of Components: Principal components are linear combinations
of original variables, which often lack straightforward interpretability, making it dif-
ficult to relate components back to meaningful real-world features. To address this,
sparse PCA methods have been proposed, which impose sparsity on the loadings
to enhance interpretability by selecting only a subset of variables per component
[31]. As Zou et al. (2006) note, "Sparse principal components are easier to interpret

because each component depends on only a small number of variables" [31, p. 265].

¢ Requirement of Large Sample Size for Robustness: Peres-Neto and Jackson
(2016) emphasize that "small sample sizes relative to the number of variables can
lead to unstable ordination results, and a minimum ratio of observations to variables
is necessary to ensure robustness" [32, p. 1247|. Similarly, Johnstone and Lu (2009)
demonstrate that classical PCA can be inconsistent in high-dimensional, low-sample-

size settings, motivating robust and sparse PCA approaches [33]. .

2.2.3.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction and classi-
fication technique that aims to find a linear combination of features that best separates
two or more classes [21]. Unlike PCA, which is unsupervised and focuses on maximiz-
ing variance, LDA explicitly considers class labels to maximize the ratio of between-class

variance to within-class variance, thereby enhancing class separability [34]. LDA projects
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high-dimensional data onto a lower-dimensional space (with dimensionality at most one
less than the number of classes) while preserving discriminative information [21]. Tt is
based on a generative model framework and uses Bayes’ theorem to classify new data
points [21]. Originally developed by Fisher in the 1930s, LDA has been widely applied in

various domains such as finance, healthcare, marketing, and image recognition [21, 35].

Strengths of LDA

e LDA maximizes class separability by finding linear combinations of features that

best discriminate between classes, improving classification accuracy [21].

e [t performs dimensionality reduction while preserving discriminative information,

reducing computational complexity [34].

e LDA provides interpretable linear combinations that highlight the most relevant

features for classification [34].

e It is robust to multicollinearity among predictor variables, which can degrade other
classifiers [34].

e LDA has been successfully applied in diverse domains such as image recognition,

text classification, and medical diagnosis, demonstrating its versatility [35].

Limitations of LDA

¢ Assumption of Equal Covariance: LDA assumes that all classes share the same
covariance matrix. If this assumption is violated, the performance of LDA can
degrade [36].

e Sensitivity to Outliers: Since LDA relies on mean and covariance estimates, it
can be sensitive to outliers, which may skew these estimates and affect the resulting

projections [36].

e Singularity Issues: In cases where the number of features exceeds the number of
samples, the within-class scatter matrix Sy, may become singular, making it non-
invertible. This issue is common in high-dimensional settings like image recognition

[37].

e Linear Boundaries: LDA creates linear decision boundaries, which may not be

sufficient for complex datasets where classes are not linearly separable [36].

e Limited to Gaussian Distributions: The optimality of LDA is contingent on the
assumption that class distributions are Gaussian. Deviations from this assumption

can lead to suboptimal performance [36].
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2.2.3.3 Advancements: Two-Dimensional LDA (2DLDA)

To address some of the limitations of classical LDA, especially in high-dimensional con-
texts, Two-Dimensional LDA (2DLDA) has been proposed. Unlike traditional LDA, which
requires flattening matrix data (like images) into vectors, 2DLDA operates directly on
matrix data. This approach preserves the spatial structure of the data and reduces com-
putational complexity [37].

2DLDA mitigates the singularity problem by avoiding the computation of the inverse
of the within-class scatter matrix. Instead, it formulates the problem in a way that does
not require matrix inversion, making it more robust in scenarios where the number of

features is large compared to the number of samples [37].

2.2.3.4 Comparison with PCA

While both LDA and PCA are linear transformation techniques used for dimensionality

reduction, they serve different purposes:

e Objective: PCA seeks directions that maximize variance without considering class
labels, making it unsupervised. LDA, on the other hand, seeks directions that

maximize class separability, making it supervised [36].

e Assumptions: PCA does not make assumptions about the underlying data distri-

bution, whereas LDA assumes Gaussian distributions with equal covariances [36].

e Performance in Classification: LDA generally outperforms PCA in classification
tasks due to its consideration of class labels during the dimensionality reduction

process [36].

e Sensitivity to Data Structure: PCA may capture directions of maximum vari-
ance that are not relevant for class discrimination, while LDA focuses specifically

on directions that aid in distinguishing between classes [36].

Linear Discriminant Analysis is a powerful tool for supervised dimensionality reduction
and classification, especially when its assumptions are met. Its extensions, like 2DLDA,
have expanded its applicability to high-dimensional data scenarios. However, practitioners
must be mindful of its assumptions and potential limitations, particularly regarding data

distribution and linear separability.

2.2.3.5 Factor Analysis (FA)

Factor Analysis (FA) is a multivariate statistical technique designed to analyze correla-
tions among many observed variables and to explore underlying latent factors that account

for these correlations 38, 39]. By reducing a large set of variables to a smaller number of
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factors, FA helps researchers understand the structure of complex data and identify the
dimensions that explain relationships between variables [39, 40].

There are two main types of factor analysis:

1. Exploratory Factor Analysis (EFA): EFA is used in the early stages of research
to explore the underlying structure of a dataset and identify the number and nature
of latent factors without imposing any preconceived model [41]. The typical steps
in EFA involve:

e Data Preparation: Ensuring that the data is suitable for factor analysis, in-

cluding checking sample size, correlations among variables, and missing data.

e [Fuctor Extraction: Determining the number of factors to retain using criteria

such as eigenvalues (Kaiser’s rule), scree plots, or parallel analysis.

e Factor Rotation: Applying orthogonal (e.g., Varimax) or oblique (e.g., Pro-
max) rotation techniques to improve the interpretability of the factors by sim-

plifying the factor loadings.

e [nterpretation: Assigning meaning to the factors based on the pattern of vari-

able loadings.

EFA is particularly useful when there is no clear hypothesis about the number or
nature of the underlying factors, making it a valuable tool for theory development

and exploratory research [41].

2. Confirmatory Factor Analysis (CFA): CFA is used to test specific hypotheses
about the factor structure of a dataset based on prior theory or research [42|. In
CFA, the researcher specifies the number of factors, the variables that load on each
factor, and any relationships between the factors. The model is then tested to

determine how well it fits the observed data. Key steps include:

e Model Specification: Formulating a theoretical model that specifies the number
of factors, the relationships between factors and measured variables, and any

covariances among factors or error terms.

e Model Identification: Ensuring that the model is identified, meaning that there
is a unique solution for the model parameters. This typically requires setting
constraints on the model, such as fixing the variance of each factor to 1 or

setting one factor loading per factor to a non-zero value.

e Model Estimation: Estimating the model parameters using techniques such as

maximum likelihood estimation.

e Model Fvaluation: Assessing the fit of the model to the data using various fit
indices, such as the chi-square statistic, root mean square error of approxima-
tion (RMSEA), comparative fit index (CFI), and Tucker-Lewis index (TLI).
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e Model Modification: If the initial model does not fit the data well, it may be
modified by adding or removing paths between variables and factors or allow-
ing factors to correlate. However, any modifications should be theoretically

justified and not solely based on statistical criteria.

CFA is particularly useful for validating measurement instruments, testing theoret-

ical models, and comparing different factor structures [42].

Strengths of Factor Analysis

¢ Dimensionality Reduction: FA simplifies complex datasets by reducing the num-

ber of observed variables to a smaller set of interpretable factors [39, 38|.

e Uncovering Latent Structure: It reveals underlying constructs that explain the
correlations among observed variables, supporting theory development and con-
struct validity [39].

e Instrument Development: FA is widely used in developing and refining mea-
surement instruments, ensuring that items group together as intended and measure

the same construct [39, 40].

e Data Summarization: It helps summarize and interpret large datasets, making

them more manageable for further analysis [38].

Limitations of Factor Analysis:

e Subjectivity in Decision-Making: Decisions about the number of factors to
retain, extraction methods, and rotation techniques can be subjective and influence
results [43].

e Sample Size Requirements: Reliable results typically require large sample sizes;

small samples may yield unstable or non-generalizable solutions [43].

e Assumptions and Data Quality: FA assumes linear relationships and sufficient

correlations among variables, and is sensitive to outliers and missing data [43].

e Interpretation Challenges: Interpreting and naming factors can be difficult,
especially when variables load on multiple factors or when factor structures are

ambiguous [39].

e No Causality: FA identifies associations but does not establish causal relationships

between variables and factors [39).
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2.2.3.6 Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS) is a set of techniques used to visualize the structure
of data by representing it as a geometric configuration in a low-dimensional space [44].
MDS takes as input a matrix of pairwise dissimilarities or distances between objects and
aims to find a spatial arrangement of points such that the distances between points in
the low-dimensional space approximate the original dissimilarities. This approximation
is achieved by minimizing a loss function called "stress," which quantifies the mismatch
between the original dissimilarities and the distances in the low-dimensional space |44, 45].

There are two main variants of MDS:

1. Metric MDS, which assumes that the dissimilarities are measured on an interval
or ratio scale and attempts to preserve these distances as accurately as possible [44].
Metric MDS is typically used when the dissimilarities are derived from well-defined

metrics, such as Euclidean distances.

2. Non-Metric MDS, which assumes only that the dissimilarities are ordinal and
focuses on preserving the rank order of the dissimilarities rather than their exact
values [46]. Non-metric MDS is useful when the dissimilarities are subjective or

based on qualitative judgments.

Unlike Principal Component Analysis (PCA), which seeks linear projections that max-
imize variance, MDS explicitly aims to preserve pairwise distances or dissimilarities, mak-
ing it especially useful when the original data are non-Euclidean or available only as
similarity measures [47, 48]. MDS is widely used in various fields, including psychology
for perceptual mapping, marketing for consumer preference analysis, and bioinformatics

for visualizing genetic or protein similarities [44].

Strengths of Multidimensional Scaling

e Flexibility with Data Types and Scales: MDS can handle both metric and
non-metric dissimilarity data, increasing its applicability across diverse datasets
[49, 50].

e Capability to Model Nonlinear Relationships: It is capable of modeling non-
linear relationships, providing more accurate representations of complex similarity

structures compared to linear methods [50].

e Intuitive Visual Representation of Similarities: MDS produces intuitive spa-

tial maps that facilitate pattern recognition and exploratory data analysis [50, 51].
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Limitations of Multidimensional Scaling

e Computational Intensity on Large Datasets: The iterative optimization pro-
cess in MDS is computationally intensive for large datasets, limiting scalability

[49, 50].

e Sensitivity to Noise and Outliers: MDS is sensitive to noise and outliers, which

can distort the spatial configuration and complicate interpretation [50].

e Subjectivity and Difficulty in Interpretation: Interpretation of MDS dimen-

sions is subjective, and high stress values may indicate poor goodness-of-fit [50].

2.2.4 Nonlinear Dimensionality Reduction
2.2.4.1 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality re-
duction technique primarily designed for visualizing high-dimensional data in two or three
dimensions [52]. The method converts pairwise similarities between data points into joint
probabilities representing the likelihood that points are neighbors. It then seeks a low-
dimensional embedding that minimizes the Kullback-Leibler divergence between these
joint probability distributions in the original and embedded spaces. This approach em-
phasizes preserving local neighborhood relationships, making t-SNE particularly effective
at revealing clusters and complex, nonlinear structures in data. However, t-SNE does
not explicitly preserve global data structure, which can sometimes lead to misleading

interpretations of the distances between clusters [53].

Strengths

o Captures complex nonlinear relationships: By focusing on local similarities, t-SNE
can uncover intricate structures and clusters that linear methods like PCA cannot
detect [52].

o FEffective visualization tool: Tt excels in producing visually interpretable embeddings
that reveal meaningful groupings in data, which is valuable in exploratory data

analysis [54].

o Widely adopted and supported: Due to its effectiveness, t-SNE has become a stan-
dard tool in fields such as bioinformatics, natural language processing, and computer

vision [55].
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Limitations:

e High computational cost: The algorithm has a quadratic time complexity with re-
spect to the number of data points, making it challenging to scale to very large

datasets without approximations [55].

o Parameter sensitivity: The perplexity parameter, which controls the balance be-
tween local and global aspects of the data, requires careful tuning, and different

settings can produce substantially different embeddings [56].

e Non-preservation of global structure: While local neighborhoods are well preserved,
distances between clusters may not reflect true relationships, limiting its use for

tasks requiring global topology preservation [53].

2.2.4.2 Isometric Mapping (Isomap)

Isomap is a nonlinear dimensionality reduction technique that extends classical Multi-
dimensional Scaling (MDS) by incorporating geodesic distances computed on a neigh-
borhood graph [57|. By approximating the manifold’s intrinsic geometry, Isomap aims
to preserve the global structure of data lying on a nonlinear manifold. It constructs a
graph connecting each point to its nearest neighbors, computes shortest path distances
between all pairs of points (geodesic distances), and then applies MDS to these distances
to find a low-dimensional embedding. This approach is particularly effective for unfold-
ing nonlinear manifolds that are globally curved but locally Euclidean. However, I[somap
assumes the manifold is convex and can be sensitive to noise, outliers, and the choice of
neighborhood size [58|.

Strengths:

e Preserves global manifold structure: Unlike methods focusing only on local neigh-
borhoods, Isomap captures the overall geometry of the data manifold, enabling

meaningful embeddings even for complex nonlinear shapes [57].

o [Interpretable embeddings: The geodesic distance-based approach often produces em-
beddings where Euclidean distances correspond well to intrinsic manifold distances
[58].

Limitations:

o Computationally expensive: The shortest path computations and eigenvalue de-
compositions scale poorly with dataset size, limiting Isomap’s applicability to large
datasets [59].
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e Sensitivity to noise and outliers: Noise can distort geodesic distances, leading to
poor embeddings, and outliers can disproportionately affect neighborhood graphs
[60].

e Parameter dependence: The choice of neighborhood size critically affects results;
too small neighborhoods fragment the graph, while too large neighborhoods can

oversimplify the manifold [58].

2.2.4.3 Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) is a nonlinear dimensionality reduction technique that
assumes data points lie on or near locally linear patches of a manifold [61]. LLE recon-
structs each data point as a linear combination of its nearest neighbors, capturing local
geometric properties. It then finds a low-dimensional embedding that preserves these
local reconstruction weights. This approach effectively preserves local neighborhood in-
formation and can unfold complex manifolds with nonlinear global structure. However,
LLE can struggle with non-uniform sampling densities and requires careful tuning of the

neighborhood parameter [60].

Strengths:

e Local neighborhood preservation: By focusing on local linear reconstructions, LLE
maintains the intrinsic geometry of data neighborhoods, which is useful for manifold
unfolding [61].

e Non-parametric and unsupervised: LLE does not require explicit model assumptions

or labels, making it broadly applicable [62].

Limitations:

o Sensitivity to meighborhood size: The choice of the number of neighbors influences
the quality of the embedding; inappropriate values can lead to disconnected or

oversmoothed embeddings [63].

o Difficulty with non-uniform data: LLE assumes uniform sampling density; uneven

densities or holes in the manifold can degrade performance [60].

o Computational complexity: Although more scalable than Isomap, LLE still requires

eigenvalue decomposition, which can be costly for very large datasets [61].
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2.2.4.4 Autoencoders

Autoencoders are a class of neural network architectures designed to learn efficient, com-
pressed representations of data through an encoder-decoder framework [64]. The encoder
maps input data to a lower-dimensional latent space, and the decoder reconstructs the
original data from this representation. Variants such as Variational Autoencoders (VAEs)
introduce probabilistic modeling of the latent space, enabling generative capabilities [65].
Autoencoders are highly flexible, capable of learning complex nonlinear embeddings, and

can be adapted to various data modalities including images, text, and time series.

Strengths:

o Ability to learn complex nonlinear embeddings: Autoencoders can model hierarchical
and nonlinear relationships in data that traditional linear methods cannot capture
[64].

e Scalability and flexibility: They can be trained on large datasets using stochastic

gradient descent and adapted to different data types and architectures [66].

e (Generative modeling: Variational Autoencoders enable sampling from the latent
space to generate new, realistic data points, useful for data augmentation and sim-
ulation [65].

Limitations:

e Risk of overfitting: Without proper regularization, autoencoders may memorize

training data, reducing generalization to new samples [67].

e Latent space interpretability: The learned embeddings are often abstract and lack

clear semantic meaning, complicating interpretation [68].

e Training complexity: Deep autoencoders require significant computational resources

and careful tuning of hyperparameters [66].

2.2.4.5 Uniform Manifold Approximation and Projection (UMAP)

Uniform Manifold Approximation and Projection (UMAP) is a state-of-the-art nonlin-
ear dimensionality reduction technique grounded in concepts from Riemannian geometry
and algebraic topology [69]. UMAP builds upon the assumption that data lies on a Rie-
mannian manifold and seeks to preserve both local and global structure when projecting
high-dimensional data into a lower-dimensional space.

The core process of UMAP involves two main steps. First, it constructs a weighted
k-nearest neighbor graph in the original high-dimensional space, representing local re-

lationships between data points as a fuzzy simplicial complex [69, 35|. The strength
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of connection between points is encoded as edge weights, reflecting the probability that
two points are connected. Second, UMAP optimizes a low-dimensional embedding by
minimizing the cross-entropy between the high-dimensional and low-dimensional fuzzy
simplicial sets, thus preserving the structural integrity of the data during transformation
[69, 35]. This optimization is typically performed using stochastic gradient descent.

UMAP is highly flexible and can be used for both visualization and general nonlinear
dimensionality reduction. Unlike linear methods such as PCA, which only capture linear
variance, and t-SNE, which primarily preserves local structure but struggles with scala-
bility and global relationships, UMAP provides a better balance between local and global
structure preservation [69, 35, 70]. This makes UMAP especially suitable for large-scale,
high-dimensional datasets encountered in fields like genomics, image analysis, natural
language processing, and neuroscience [70, 71].

Recent developments have extended UMAP’s capabilities. Parametric UMAP re-
places the nonparametric optimization with a deep neural network, enabling fast online
embeddings for new data points and integration with deep learning models [72|. Su-
pervised UMAP allows label information to guide the embedding, making it useful for

semi-supervised and supervised learning tasks [69, 72].

Strengths:

e Preserves local and global structure: UMAP maintains meaningful relationships at
multiple scales, often outperforming t-SNE in this regard and providing more faithful

representations of the data manifold |70, 35].

o Computational efficiency and scalability: UMAP is significantly faster than t-SNE
and scales well to large datasets, making it practical for modern big data applications
[69, 35].

o Versatility: UMAP supports unsupervised, supervised, and parametric extensions,
enabling its use in a wide range of tasks including visualization, clustering, and as

a preprocessing step for machine learning pipelines [72].

e Generalizability: Parametric UMAP enables fast embedding of new data points and

can be integrated into deep learning architectures for end-to-end learning [72].

e Domain applicability: UMAP has been successfully applied in diverse domains such
as single-cell genomics, brain imaging, bioinformatics, and finance, demonstrating
its robustness and adaptability |70, 71].
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Limitations:

o Hyperparameter sensitivity: The quality of UMAP embeddings depends on the
choice of hyperparameters such as n_neighbors (which controls the balance between
local and global structure) and min_dist (which affects the tightness of clusters).

Proper tuning often requires domain knowledge and experimentation |73, 35].

e Lack of explicit inverse mapping: Unlike autoencoders, UMAP does not inherently
support reconstructing original data from the embedding space, which limits its use

in generative modeling and interpretability [74].

e Non-determinism: UMAP’s optimization is stochastic, so results may vary between

runs unless random seeds are fixed [69].

e Potential for local distortions: While UMAP balances local and global structure,
in some cases, it may still distort fine local relationships or overemphasize certain

clusters, especially with suboptimal parameter choices [73].

UMAP’s robust mathematical foundation, scalability, and flexibility have made it a
leading tool for dimensionality reduction, particularly in applications where both local
and global data structure are important. Its ongoing development, including parametric
and supervised variants, continues to expand its utility in machine learning and data

science |72].

2.3 Representative Selection

Representative selection refers to the process of choosing a subset of data points that
accurately reflect the diversity and key characteristics of the entire dataset. Unlike ran-
dom selection, which picks samples purely by chance, representative selection aims to
preserve the underlying structure and important patterns within the data, ensuring that
the reduced subset maintains the essential information of the original dataset [75]. This
approach is particularly important in high-dimensional data analysis, where maintaining
diversity and coverage can significantly impact the performance of subsequent methods

such as dimensionality reduction.

2.3.1 Representative Selection Or Random Selection

Random selection involves selecting samples solely based on chance without considering
the distribution or features of the dataset. While it is simple and unbiased in theory,
random sampling may fail to capture rare but important data patterns, leading to a
loss of critical information [76]. In contrast, representative selection employs strategies

such as clustering or heuristic algorithms to ensure that the chosen subset proportionally
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reflects the variability and structure of the entire dataset |[77|. This deliberate selection
process enhances the quality of downstream analyses by preserving the dataset’s intrinsic

characteristics.

e In this study, representative selection is employed as the first phase of the two-phase
dimensionality reduction process to ensure that the subsequent application of UMAP
operates on a subset that meaningfully represents the original data distribution.
This methodological choice is justified by the need to maintain data diversity and
structure, which random selection alone cannot guarantee |75, 77|. By doing so, the
dimensionality reduction results are more reliable and better capture the underlying

data patterns.

2.3.2 Representative Selection Techniques

Representative selection techniques aim to identify a subset of data points that preserve
the essential characteristics of the original dataset while reducing computational overhead.
These methods are critical for scalability, noise reduction, and interpretability in modern
data analysis pipelines. Below, we review clustering-based selection, prototype selection,

and core-sets, along with their motivations and limitations.

2.3.2.1 Clustering-Based Methods

Clustering-based repsentative selection techniques are foundational in unsupervised learn-
ing and data summarization. These methods partition data into groups (clusters) such
that objects within the same cluster are more similar to each other than to those in other
clusters [78, 79]. By selecting representative points-such as centroids, medoids, or bound-
ary points-from each cluster, these approaches aim to reduce dataset size while preserving
the essential structure and diversity of the original data [80, 81, 79].

A wide range of clustering algorithms exist, including centroid-based (e.g., K-means),
hierarchical (e.g., agglomerative clustering), density-based (e.g., DBSCAN), distribution-
based (e.g., Gaussian Mixture Models), and graph-based methods (e.g., spectral cluster-
ing) [78, 82, 79, 83|. Each has unique strengths and is suited to different data characteris-
tics. For example, K-means is computationally efficient and widely used for its simplicity
and rapid convergence, but it assumes spherical clusters of similar size and is sensitive to
outliers [84, 79|. Hierarchical clustering, including Ward’s, complete, average, and single
linkage, provides interpretable dendrograms and can reveal nested data structures, but
may be computationally intensive for large datasets [82, 83]. Density-based methods like
DBSCAN and OPTICS are robust to noise and can discover clusters of arbitrary shape,
making them suitable for complex, real-world datasets [82].

The process of clustering-based representative selection typically involves several steps:

feature selection or extraction, distance or similarity measure definition (e.g., Euclidean,
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cosine, or kernel-based), clustering, and then selection of representatives from each cluster
[78, 83]. Recent innovations include deep embedded clustering, which integrates dimen-
sionality reduction and clustering in a unified framework, and ensemble clustering, which
combines multiple clustering results to enhance stability and robustness [82]. Addition-
ally, robust centroid estimation techniques, such as trimmed K-means and M-estimators,
have been developed to mitigate the influence of outliers [82].

Clustering-based selection is widely used in applications ranging from image segmen-
tation and mental health research to market basket analysis and social network analysis
[78, 79, 79]. Its main motivations include improving scalability for downstream tasks, re-
ducing noise by filtering out atypical data, and enhancing interpretability by summarizing
data with a manageable number of representative points [81, 80, 79].

However, these methods also face several challenges. The choice of clustering algorithm
and its parameters (such as the number of clusters or neighborhood size) significantly
affects the quality and representativeness of the selected samples [83, 82]. Many algorithms
are sensitive to initialization and can yield different results on the same data [83, 78].
Furthermore, clustering-based selection may struggle with high-dimensional, noisy, or
overlapping data, and there is no universally best algorithm for all scenarios [83, 85]. For
these reasons, recent research emphasizes the need for careful algorithm selection, robust
validation, and the integration of clustering with dimensionality reduction and ensemble

methods to overcome traditional limitations [82, 79, 86].

2.3.2.2 Prototype Selection

Prototype selection is a vital preprocessing step in instance-based learning, particularly for
algorithms like k-Nearest Neighbor (k-NN), where the entire training set is used for classi-
fication [87, 80, 88|. The primary goal is to reduce the size of the reference set while main-
taining or even improving classification accuracy. By retaining only the most informative
or representative instances-often those near class boundaries or in dense regions-prototype
selection can dramatically decrease computational costs and storage requirements, making
k-NN and related classifiers feasible for large-scale datasets [87, 89, 80].

Prototype selection algorithms can be broadly categorized into three families: con-
densation, edition, and hybrid methods [89, 87|. Condensation methods, such as the
classic Condensed Nearest Neighbor (CNN) rule, iteratively select a minimal subset of in-
stances that correctly classify the training data. However, CNN is sensitive to the order of
data presentation and can be influenced by noise, often resulting in redundant prototypes
[89, 80]. Edition methods, like Edited Nearest Neighbor (ENN), focus on removing
noisy or misclassified instances to clean the dataset, improving robustness to outliers but
sometimes discarding useful boundary points [89, 87].

Hybrid methods combine both strategies to balance data reduction and noise re-

moval, often achieving better results than either approach alone [89].
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Recent advances address the limitations of early methods. For example, algorithms
now incorporate clustering to select both border and interior prototypes, as in the work of
Olvera-Lopez et al., who proposed a fast prototype selection method based on clustering
that preserves decision boundaries while reducing redundancy [80]. Other innovations
include density-based selection, which identifies prototypes in dense regions, and methods
that use local feature weighting to prioritize informative instances [89]. Spatial partition-
ing and mutual nearest-neighbor criteria, as in [90], further accelerate prototype selection
and improve scalability for large datasets.

Prototype selection is not only beneficial for computational efficiency but also enhances
model generalization by removing redundant and noisy data, reducing the risk of overfit-
ting [87, 88]. However, challenges remain: wrapper-based approaches (which use classifier
feedback) are computationally intensive and classifier-dependent, while filter-based ap-
proaches may inadvertently discard critical instances, especially in imbalanced datasets
[88, 90]. Moreover, many methods are sensitive to the sequence of data presentation and

to the presence of outliers or overlapping class distributions [89].

Strengths:

e Significant reduction in computational cost: Prototype selection can reduce
training and classification time for instance-based classifiers by orders of magnitude,
making k-NN feasible for large datasets [90, 87].

e Noise and redundancy removal: By discarding noisy and redundant instances,

prototype selection improves model generalization and robustness [88, 89|.

e No need for artificial data: Prototype selection methods work directly with real

instances, ensuring interpretability and relevance to the original dataset [87].

Limitations:

e Classifier dependence and computational cost: Wrapper-based methods (e.g.
CNN) are computationally intensive and must be re-run for each classifier or pa-

rameter setting [88, 89).

e Risk of discarding important instances: Filter-based methods may remove
instances critical for minority classes or for defining complex decision boundaries,

leading to reduced accuracy in imbalanced or overlapping datasets [90, 89].

e Sensitivity to data order and noise: Many algorithms are sensitive to the order
of data presentation and to outliers, which can affect the stability and representa-

tiveness of the selected prototypes [89, 80].
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2.3.2.3 Core-Sets

Core-sets are compact, weighted subsets of data that approximate the original dataset
with theoretical guarantees for specific optimization tasks, such as clustering, regression,
and diversity maximization [91, 92, 93]. The fundamental idea is to select a small subset
of points (possibly with weights) such that solving the problem on the core-set yields
a solution close to that on the full dataset, up to a provable error bound. Core-set
construction is especially valuable for large-scale and streaming data, where full-data
computations are infeasible [92, 94, 95].

Recent research has focused on fair and diverse data summarization, where core-sets
are constructed to ensure proportional representation across partitioned groups (e.g., de-
mographic categories) while maximizing diversity measures such as sum-of-pairwise dis-
tances or sum-of-nearest-neighbor distances [91, 92, 96]. These approaches have demon-
strated that core-sets can achieve dramatic reductions in data size (e.g., 100x speed-up)
with minimal loss of diversity or accuracy, even in real-world applications like summariz-
ing timed messages on large communication platforms [91, 92].Core-sets are also highly
effective for streaming and parallel computation, enabling real-time updates and efficient
use of computational resources |95, 94].

However, constructing core-sets for high-dimensional data remains computationally
challenging, and balancing fairness constraints with diversity objectives often requires
careful trade-off tuning [91, 92, 96]. Furthermore, while core-sets provide strong theoreti-
cal guarantees for certain objective functions, their construction and effectiveness can be
highly problem-dependent, and extensions to more complex or dynamic data settings are

ongoing research topics (95, 93].

Strengths:

e Provable approximation guarantees: Core-sets provide theoretical bounds on
summarization quality for a range of optimization tasks, ensuring near-optimal so-
lutions with much smaller datasets [91, 92, 93].

e Scalability and streaming capability: Core-sets enable efficient analysis and
real-time updates in streaming and distributed settings, making them suitable for

big data applications |95, 94].

e Fair and diverse summarization: Modern core-set algorithms can enforce fair-
ness and diversity constraints, ensuring equitable and informative data summaries

91, 92, 96].

Limitations:
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e Computational complexity in high dimensions: Constructing core-sets for
high-dimensional or complex data can be computationally demanding and may re-

quire sophisticated algorithms [91, 95].

e Trade-offs between fairness and diversity: Enforcing multiple constraints (e.g.,
fairness and diversity) can conflict, requiring careful parameter tuning and some-

times resulting in suboptimal summaries [91, 92].

e Problem-specific design: Core-set construction is often tailored to specific tasks

and objectives, limiting generalizability across different problem domains [93, 95].

2.4 Hybrid and Two-Phase Dimensionality Reduction
Approaches

2.4.1 Motivation for Hybrid Approaches

While classical dimensionality reduction (DR) methods such as PCA, LDA, and UMAP
have achieved remarkable success, each has inherent limitations. Linear methods like PCA
are computationally efficient and interpretable, but cannot capture nonlinear structures
in complex data [26, 27]. Nonlinear methods such as UMAP or t-SNE are powerful for un-
covering manifold structure but can be computationally expensive and may struggle with
scalability or interpretability [69, 70]. As a result, no single DR method is universally op-
timal for balancing structure preservation, computational performance, and downstream
task accuracy [97, 98, 99]. To address these challenges, researchers increasingly com-
bine multiple DR techniques in hybrid or two-phase pipelines. These approaches aim to
leverage the strengths of each method while mitigating their weaknesses, often result-
ing in improved scalability, better structure preservation, and enhanced interpretability
[97, 98, 99]. Hybrid DR is especially valuable for large-scale or noisy datasets, where a

single method may be insufficient.

2.4.2 Representative Selection and Dimensionality Reduction Pipelines

A common hybrid strategy is to first select a subset of representative samples-using clus-
tering, core-set construction, or feature selection-and then apply a more complex DR
technique to this reduced set. The rationale is that representative selection can filter
out noise, redundancy, and outliers, thus reducing computational cost and improving the

effectiveness of subsequent nonlinear embedding [98, 81, 91].
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2.4.3 Typical hybrid pipelines include:

e Clustering-based selection + Nonlinear DR: For example, K-means clustering
is used to select cluster centroids, which are then embedded using t-SNE or UMAP

[81, 98]. This approach preserves the global structure while reducing data size.

e Core-set selection + DR: Core-set algorithms select a weighted subset that ap-
proximates the full dataset for a specific objective (e.g., diversity maximization).
Applying UMAP or autoencoders to this core-set yields efficient and representative
embeddings (91, 92].

e Feature selection + Feature extraction: Filter methods (e.g., information gain,
chi-square) select relevant features, followed by PCA or ICA for further extraction
[97, 99]. This two-phase strategy improves both interpretability and classification

accuracy.

2.4.4 Two-Phase Pipelines in Literature

Numerous studies have demonstrated the effectiveness of two-phase DR pipelines:

¢ Random sampling + UMAP: Kim et al. [100] introduced UMATO, which first
selects representative points via random sampling to build a global skeleton, then
applies UMAP for local refinement, aiming to preserve both global and local data

structures.

e Clustering-based selection + t-SNE: Bheekya et al. [81] proposed a pipeline
where K-means clustering is used to select representative points, which are then

visualized using t-SNE.

e Feature selection + PCA: Abebe and Abera [97] Combines filter-based feature
selection (information gain, chi-square, document frequency) with PCA for dimen-

sionality reduction, primarily for text classification.

e Core-set selection + UMAP /Autoencoders: Trajanovski et al. [91] Con-
structed fair and diverse core-sets (weighted subsets) to approximate the original

dataset, then applies UMAP or autoencoders for dimensionality reduction.

e Hybrid DR in Intrusion Detection: Alzubi et al. [101]| applied a clustering-
based feature selection followed by nonlinear embedding (e.g., autoencoders or man-

ifold learning) for network intrusion detection
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Pipeline

Strengths

Limitations

Random sampling -+
UMAP

Good global/local structure, scal-
able, simple

May miss rare patterns, sensitive
to sample choice

Clustering + t-SNE

Scalable, better cluster separa-
tion, noise reduction

K-means assumptions, t-SNE pa-
rameter sensitivity, possible loss
of detail

Feature selection + | Higher accuracy, interpretability, | Linear only, feature selection bias,

PCA efficient still costly for very high dimen-
sions

Core-set + | Theoretical guarantees, fair- | Complex to construct, parameter

UMAP /Autoencoders | ness/diversity, scalable, flexible tuning, possible info loss

Hybrid DR in Intru-
sion Detection

Better detection, lower cost, ro-
bust, real-world tested

Complex pipeline, risk of overfit-
ting, domain-specific tuning

Table 2.1: Comparaison

and Limitations

of Two-Phase Dimensionality Reduction Pipelines: Strengths

2.4.5 Benefits of Hybrid and Two-Phase Approaches

e Improved scalability: Representative selection reduces the data size, making it

feasible to apply computationally intensive DR methods to large datasets [81, 91].

e Better structure preservation: Combining global and local methods (e.g., clus-

tering + UMAP) can capture both coarse and fine-grained data structure [100, 98|.

¢ Enhanced interpretability: Feature selection or clustering can retain meaningful

variables or exemplars, aiding interpretation of the final embedding [97, 98|.

¢ Robustness to noise and redundancy: Early-stage selection filters out irrelevant

data, improving downstream DR performance [81, 91].

2.4.6 Limitations and Challenges

e Complexity and parameter tuning: Hybrid pipelines require careful selection

and tuning of multiple algorithms, increasing implementation complexity [98, 99].

¢ Risk of information loss: Aggressive selection may remove features or samples

critical for downstream tasks [97].

e Integration challenges: Combining outputs from heterogeneous methods (e.g.,

clustering + DR) can be nontrivial and may require domain knowledge [102].

e Domain dependence: The optimal pipeline may vary by dataset or application,

limiting generalizability [101].
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2.5 Conclusion

In this chapter, we have reviewed the main approaches to dimensionality reduction, em-
phasizing their relevance in the context of IoT security and intrusion detection. Feature
selection methods, while straightforward and interpretable, may struggle to capture com-
plex data structures. On the other hand, feature extraction techniques like PCA and
UMAP offer powerful tools for uncovering latent representations, with UMAP showing
particular promise for non-linear, high-dimensional data.

The insights gained from this literature review form the foundation for our proposed
approach, which aims to enhance computational efficiency and detection performance
through a two-phase dimensionality reduction pipeline. In the next chapter, we describe

the methodology and implementation details of our proposed solution.
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Methodology

3.1 Introduction

This chapter details the methodology implemented to address the challenges of dimen-
sionality reduction on large-scale, high-dimensional datasets, particularly in the context
of intrusion detection for Internet of Things (IoT) environments. The proposed approach
integrates representative selection with Uniform Manifold Approximation and Projection
(UMAP) training in a two-phase framework. This combination aims to reduce computa-
tional complexity and memory usage while preserving the intrinsic structure and mean-
ingful relationships within the data. The chapter elaborates on the algorithms used, the

rational behind their selection, and the evaluation methodology to validate the approach.

3.2 Dataset Description

The experiments in this work are conducted using the IoTID20 dataset [103], a com-
prehensive benchmark designed for evaluating intrusion detection systems in Internet of
Things (IoT) environments. Collected from a simulated smart home testbed featuring
SKT NGU and EZVIZ Wi-Fi cameras as victim devices and laptops/smartphones as at-
tacking agents, IoTID20 contains 625783 records of network traffic capturing both benign

and malicious activities.

3.2.1 Key Characteristics

1. Feature Space

e 83 original network features spanning packet statistics, protocol informa-
tion, and temporal attributes

e Preprocessed to 72 discriminative features through:

— Removal of constant-value features.
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— Numerical encoding of categorical variables.
— MinMax scaling to normalize feature ranges.

— Handling of infinite values (replaced with feature-specific max).
2. Multi-Tier Attack Taxonomy

e Binary classification: Normal vs. Anomalous traffic.

e Categorical classification: Four attack types - DoS, Mirai, Scan, MITM.

e Subcategory classification: 14 granular attack subtypes (e.g., SYN Flood,
HTTP Flood).

3. Attack Diversity Covers contemporary IoT threats including:

e Denial-of-Service (DoS/DDoS).
Man-in-the-Middle (MitM) attacks.

Malware propagation (Mirai botnet).

Network scanning.

Data exfiltration.

3.2.2 Relevance to Study

The dataset’s high dimensionality (72-83 features), large scale (625k+ records), and in-
herent feature redundancy present significant challenges for dimensionality reduction al-

gorithms. Its multi-level labeling enables rigorous evaluation of embedding quality across:
e Local/global structure preservation (via neighborhood consistency and MSE).
e Downstream task performance (binary/categorical /subcategory classification).
e Computational efficiency in resource-constrained IoT /edge environments.

[0TID20’s realistic simulation of smart home networks provides an ecologically valid
testbed for evaluating the proposed methodology’s applicability to real-world intrusion

detection scenarios.

3.3 Overview of the Proposed Methodology

The methodology consists of two main phases, illustrated in Figure 3.1, The first phase
involves selecting a representative subset of the original dataset using clustering-based
methods to reduce the data size and complexity. The second phase trains the UMAP

model on this reduced subset to learn a low-dimensional embedding that captures both
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local and global data structure. The trained UMAP model is subsequently applied to
transform the full dataset efficiently. This two-step strategy balances computational ef-

ficiency with embedding quality, making it suitable for large-scale, resource-constrained

Representative selection
2

Subset of the most
representative

environments.

1oTID20

5 3

1
4
UMAP Transform o - Train UMAP model

&
Evaluation

Embedding Quality Computational

Effeciency

Training Time

Mean Square Error Transformation Time

Classification metrics
Model Size

Neighbourhood
Preservation

Figure 3.1: Overview of the Proposed Two-Phase Dimensionality Reduction Methodology.

3.4 Representative Selection

The representative selection is performed through clustering-based methods. The dataset
is partitioned into clusters, and representative points (typically cluster centroids) are
selected to form a reduced dataset. This approach ensures the representatives are well-
distributed and capture the diversity of the original data. Selecting an appropriate number
of representatives is critical: too few may lose important structural information, while too
many may diminish computational benefits.

The computational overhead of clustering must be considered, as it may offset gains
from dataset reduction. The number of representatives k£ must balance structural preser-

vation and computational cost.
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3.4.1 Clustering Algorithms for Representative Selection
3.4.1.1 K-Means Clustering

K-Means is a widely used clustering algorithm that partitions data into k clusters by
minimizing the sum of squared distances between data points and their assigned cluster
centroids. The algorithm begins with random initialization of k£ centroids. Each data point
is assigned to the nearest centroid based on Euclidean distance. Subsequently, centroids
are updated as the mean of assigned points. This assignment-update cycle iterates until
centroid positions stabilize or a maximum number of iterations is reached. K-Means is
effective for representative selection due to its simplicity and ability to produce compact

clusters.

Mini-Batch KMeans Mini-Batch KMeans is a scalable variant of K-Means adapted
for large datasets. Instead of using the entire dataset in each iteration, it processes small,
randomly sampled batches to update centroids. This reduces computational time sig-
nificantly while maintaining clustering quality close to standard K-Means. Mini-Batch
KMeans is particularly suitable for high-volume data where full-batch K-Means is im-

practical.

3.4.1.2 BIRCH Clustering

BIRCH (Balanced Tterative Reducing and Clustering using Hierarchies) is an incremen-
tal clustering algorithm that builds a hierarchical clustering feature (CF) tree. A key

parameter is the threshold 7', which controls cluster granularity:
e Larger T' — fewer/coarser clusters (memory-efficient)
e Smaller 7" — finer clusters (higher memory)

This adapts dynamically to data distribution. BIRCH is optimized for very large datasets
by summarizing data into compact CF subclusters, which can then be clustered further.
BIRCH efficiently handles noise and outliers and is well-suited for selecting representatives
from large-scale, high-dimensional data by capturing the hierarchical structure of the

dataset.

3.5 UMAP Training on Representative Subset

After selecting the representative subset, UMAP is trained on this reduced dataset.
UMAP constructs a weighted graph representing the local relationships between data
points and optimizes a low-dimensional embedding that preserves these relationships.

Training on the smaller representative set drastically reduces computational requirements.

36



CHAPTER 3. METHODOLOGY

Once trained, the UMAP model can embed the entire original dataset by applying the
learned transformation, enabling efficient dimensionality reduction without retraining the
full data.

3.5.1 Hyperparameter Settings

The following hyperparameters were selected based on empirical evaluation and literature

best practices:

Algorithm Parameter Value(s)
Thresholds 0.05

0.06

0.07

0.08

0.09

0.1
Branching Factor | 50 (default)
n_clusters 5000

6000

7000

8000

9000

10000
n_neighbors 15

min dist 0.1
n_components 3

Metric euclidean (default)

Birch

MiniBatchKMeans

UMAP

Table 3.1: Hyperparameter configurations used in our implementation

3.6 Evaluation Metrics

To evaluate the proposed methodology, multiple metrics are employed:

e Neighborhood Preservation: A metric in dimensionality reduction used to quan-
tify how well the local structure (neighborhoods) is preserved in a low-dimensional
embedding, it meaures the overleap between nearest neighbors in the original and

reduced dataset spaces as follows: For each point #:

- N}Egh(k:): k-nearest neighbors in high-dimensional space

_ N

low(E): k-nearest neighbors in low-dimensional space

Neighborhood preservation for point i:

N (k) 0 NS (k)
k

Ri(k) =
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Overall preservation (average over n points):
1 n

R(k) = 3" Rilk)
i=1

Range: [0,1] where 1 = perfect preservation.

e Mean Squared Error (Reconstruction Error): Quantifies the difference be-
tween original data relationships and those in the embedding, assessing embedding

accuracy:
n

1 .
MSE =~ (y: — §)°
i=1
Properties: MSE > 0, sensitive to outliers.

e Classification Accuracy: A classification metric that represents the proportion of

correctly predicted instances (true positives + true negatives) out of all instances:
1 A
Accuracy = - Z;“‘(yi = 1)
1=

Where W is the indicator function. For binary classification:

TP + TN
TP + TN+ FP + FN

Accuracy =

Range: [0,1] where 1 = perfect accuracy.

3.7 Conclusion

This chapter presented a detailed description of the two-phase dimensionality reduction
approach combining representative selection and UMAP training. By leveraging cluster-
ing algorithms to select a well-distributed subset of data points, the method significantly
reduces computational cost and memory footprint while maintaining embedding quality.
The subsequent UMAP training on this subset enables efficient and effective dimension-
ality reduction applicable to large-scale datasets. The next chapter will present exper-
imental results demonstrating the performance gains, embedding quality, and practical

benefits of the proposed methodology compared to standard UMAP approaches.
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Results and Discussion

4.1 Introduction

This chapter presents a comprehensive analysis of the experimental results obtained by
applying the proposed two-phase dimensionality reduction framework on the IoTID20
dataset. The evaluation focuses on comparing the performance of the combined rep-
resentative selection and UMAP training approach against standard UMAP training.
We assess multiple aspects, including computational efficiency, embedding quality, neigh-
borhood preservation, reconstruction error, and classification accuracy. The results are
illustrated through a series of charts, each accompanied by detailed interpretation and

discussion to highlight the advantages and trade-offs of the proposed methodology.

4.2 Test Environment & Tools

The experimental evaluation was conducted in a controlled hardware and software en-
vironment to ensure reproducibility and fair comparison between the standard UMAP
approach and the proposed two-phase framework. This section details the technical spec-
ifications and implementation choices that formed the foundation of our experimental

setup.

4.2.1 Hardware Configuration

All experiments were executed on a dedicated workstation with the following specifica-

tions:
e CPU: AMD Ryzen 5 5600G @ 3.90GHz (6 cores, 12 threads)
e Memory: 16GB DDR4 @ 3200MHz (dual-channel configuration)

e Storage: NVMe Gen3 x4 SSD (1TB capacity)
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To ensure consistent performance measurements and eliminate variability caused by dy-
namic frequency scaling, CPU turbo boost was disabled throughout all experiments. This
precaution prevents performance fluctuations due to thermal throttling or power envelope
variations, ensuring that reported execution times accurately reflect the computational

demands of each method.

4.2.2 Software Stack

The experimental framework was implemented using the following software components:
e Operating System: Ubuntu 24.04.2 LTS (Linux kernel 6.8)
e Python: Version 3.8.19 (with optimizations for scientific computing)
e Key Libraries:

— scikit-learn 1.3 (for clustering, classification, and preprocessing)
— umap-learn 0.5.7 (for dimensionality reduction)
— numpy 1.23.5 (numerical operations)

— pandas 1.4.4 (data manipulation)

4.2.3 Implementation Details

The proposed methodology was implemented using established machine learning libraries:

e Representative Selection: Implemented using scikit-learn’s optimized clus-

tering modules:

— Mini-Batch KMeans: MiniBatchKMeans class with default parameters except
batch size
— BIRCH: Birch class with threshold parameter controlling cluster granularity

e UMAP Implementation: Leveraged the umap.UMAP class from umap-learn with

consistent hyperparameters (nueighbors = 15, min_dist = 0.1) across all experiments

e Classification: Employed scikit-learn’s DecisionTreeClassifier (CART) and

MLPClassifier implementations with default parameters

e Evaluation Metrics: Custom implementations of neighborhood preservation and
mean squared error metrics following equations (1) and (2) from Section 3.3 of the

reference article
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4.2.4 Reproducibility Considerations

While all experiments were conducted using the specific software versions listed above,
the methodology should remain valid for newer library versions. However, the following

factors may influence results if replicated on different hardware:

e CPU architecture differences (cache sizes, vector instruction support)
e Memory bandwidth and latency characteristics
e Storage [/O performance for dataset loading

e Background system processes and resource contention

The complete experimental code, parameter configurations, and environment specification
have been preserved in a version-controlled repository to facilitate exact replication of

results.

4.3 Computational Efficiency

Figure 4.1 illustrates the runtime required for training and transforming the dataset us-
ing standard UMAP versus the proposed two-phase method with representative selection.
The results demonstrate a substantial reduction in training time-often by an order of mag-
nitude or more-when clustering-based representative selection (using either Mini-Batch
KMeans or BIRCH) is applied prior to UMAP training. This efficiency gain is critical for

large-scale IoT datasets, enabling faster processing without sacrificing embedding quality.

Selection & Embedding Time Comparaison - Birch Vs Full Selection & Embedding Time Comparaison - MiniBatchKMeans Vs Full

mmm Selection Time mmm Selection Time
== Embedding Time

== Embedding Time

0.1 0.09 0.08 0.07 0.06 0.05 full
Thresholds Number of Clusters

(a) BIRCH Clustering (b) Mini-Batch KMeans Clustering

Figure 4.1: Comparison of Training and Transformation Runtime between Standard
UMAP and the Proposed Method using Different Clustering Algorithms.

Figure 4.2 further confirms that the transformation time on the full dataset is sig-
nificantly improved due to the reduced complexity of the trained UMAP models. This
reduction in transformation latency is a direct result of training on a smaller, repre-

sentative subset of the data, which yields simpler models requiring fewer computational
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resources at inference time. Such improvement is especially advantageous in real-time
or resource-constrained IoT environments, where minimizing latency and memory foot-

print is critical for maintaining system responsiveness and ensuring efficient deployment

of machine learning pipelines.

Transform Time Comparaison - Birch Vs Full Transform Time Comparaison - MiniBatchKMeans Vs Full

89.16 89.16

80

@
S

40

Transform Time (s)
Transform Time (s)

20

0.1 0.09 0.08 0.07 0.06 0.05 full 5k 6k 7k 8k

9k 10k Full
Thresholds

Number of Clusters

(a) BIRCH Clustering (b) Mini-Batch KMeans Clustering

Figure 4.2: Comparison of Transformation Time between Standard UMAP and the Pro-
posed Method Using Different Clustering Algorithms.

4.4 Memory Usage

As shown in Figure 4.3, the memory footprint of the proposed method is significantly lower
than that of standard UMAP training. The reduction in memory usage reaches up to 100-
fold, attributed to training on a smaller representative subset. This enables processing

large datasets on resource-constrained hardware and supports scalable deployment in real-
world IoT environments.

Model Sizes Comparison - Birch Vs Full Model Sizes Comparison - MiniBatchKMeans Vs Full

752.71

Model Size (MB)
Model Size (MB)

8.64 11.35 10.80 12.62 15.21 15.90

7.43 8.92 10.42 11.89 13.41 14.88

0.1 0.09 0.08 0.07 0.06 0.05 Full 5k 6k 7k 8k
Thresholds

9k 10k Full
Number of Clusters

(a) BIRCH Clustering (b) Mini-Batch KMeans Clustering

Figure 4.3: Memory Footprint Comparison of Standard UMAP and Proposed Method.
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4.5 Embedding Quality

4.5.1 Neighborhood Preservation

Neighborhood preservation, a key metric assessing how well local data structures are main-
tained in the low-dimensional embedding, is shown in Figure 4.4. The proposed method,
especially with Mini-Batch KMeans for representative selection, achieves neighborhood
preservation scores comparable to or slightly better than standard UMAP. This indicates
that clustering-based selection effectively captures essential local relationships, preserving

embedding fidelity despite the reduced training set.

Neighborhood Preservation Comparaison - Birch Vs Full Neighborhood Preservation Comparaison - MiniBatchKMeans Vs Full

0.35 0.36

0.1 0.09 0.08 0.07 0.06 0.05 full 5k 6k 7k 8k 9k 10k Full
Thresholds Number of Clusters

(a) BIRCH Clustering (b) Mini-Batch KMeans Clustering

Figure 4.4: Neighborhood Preservation Scores for Different Methods.

4.6 Reconstruction Error

Figure 4.5 presents the mean squared reconstruction error (MSE) of the low-dimensional
embeddings produced by both the standard UMAP and the proposed two-phase ap-
proach. The results clearly show that the BIRCH-based representative selection con-
sistently achieves the lowest reconstruction error across all evaluated configurations. This
observation suggests that the hierarchical nature of BIRCH clustering is particularly ef-
fective at capturing and preserving the global structure of the original high-dimensional
dataset. Despite its slightly higher reconstruction error, the Mini-Batch KMeans method
also maintains error values within acceptable limits, indicating a satisfactory preservation
of inter-point relationships. Overall, these findings validate the ability of the proposed
two-phase approach to produce embeddings that retain the structural integrity of the
data, even when trained on a reduced subset. This is particularly relevant in contexts
where a faithful representation of global data geometry is essential, such as visualization,

anomaly detection, or downstream classification tasks.
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MSE Comparaison - Birch Vs Full

0.06

MSE Comparaison - MiniBatchKMeans Vs Full

5k 6k 7k 8k

9k

(a) BIRCH Clustering

Number of Clusters

(b) Mini-Batch KMeans Clustering

Figure 4.5: Mean Squared Reconstruction Error for Standard UMAP and Proposed

Method.

Table 4.1: MSE: BIRCH Thresholds vs Full

UMAP

4.7 Classification Accuracy

Threshold MSE

0.10 0.0451
0.09 0.0495
0.08 0.0408
0.07 0.0417
0.06 0.0479
0.05 0.0585

Batch Size MSE
5000 0.0648
6000 0.0614
7000 0.0609
8000 0.0578
9000 0.0619
10000 0.0622

Full UMAP 0.0679

Full UMAP  0.0679

Table 4.2: MSE: MiniBatchKMeans Batch
Sizes vs Full UMAP

Figure 4.6 and Figure 4.7 present the classification accuracy of two different classifiers-
CART (Classification and Regression Trees) and MLP (Multi-Layer Perceptron)-using
embeddings produced by the proposed dimensionality reduction framework with both
BIRCH and Mini-Batch KMeans representative selection, as well as the standard UMAP

baseline.

e CART Accuracy: For both BIRCH and Mini-Batch KMeans, the CART clas-

sifier achieves high accuracy across all cluster sizes and thresholds, with binary

classification consistently at or near 1.00. Categorical and subcategorical tasks also

maintain high accuracy (typically 0.99 or 1.00), indicating that the essential class-

discriminative structure of the data is preserved in the reduced-dimensional space,

regardless of the representative selection method.

e MLP Accuracy: The MLP classifier results (Figure 4.7) show a similar trend

for binary classification, with accuracy values ranging from 0.97 to 1.00 for both
BIRCH and Mini-Batch KMeans, and the full UMAP baseline. For categorical and
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o
Number of Clusters

(a) CART Accuracy - BIRCH Clustering  (b) CART Accuracy - Mini-Batch KMeans
Clustering

Figure 4.6: CART Classification Accuracy Using Embeddings from Different Dimension-
ality Reduction Methods.

MLP Accuracy - Birch MLP Accuracy - Mini

o
Number of Clusters

(a) MLP Accuracy - BIRCH Clustering (b) MLP Accuracy - Mini-Batch KMeans
Clustering

Figure 4.7: MLP Classification Accuracy Using Embeddings from Different Dimensional-
ity Reduction Methods.

subcategorical tasks, the accuracy is slightly lower than for CART, especially as
the number of clusters decreases or the BIRCH threshold increases. For example,
with BIRCH at threshold 0.05, categorical and subcategorical accuracies drop to the
0.66-0.79 range. This suggests that while the embeddings remain highly effective
for simpler (binary) tasks, more complex class structures may be somewhat sensitive

to the degree of data reduction, particularly with the MLP classifier.

e Comparison and Insights - Both CART and MLP classifiers confirm that the pro-
posed two-phase dimensionality reduction approach maintains strong classification
performance compared to the standard UMAP baseline. - CART appears more ro-
bust to aggressive data reduction, while MLP is slightly more sensitive, particularly
for fine-grained (subcategorical) tasks. - For practical intrusion detection scenarios,
these results demonstrate that computational savings from representative selection
and UMAP do not come at the expense of classification reliability, especially for the

most critical binary detection tasks.

Overall, the results validate the effectiveness of the framework for downstream ma-

chine learning, providing both scalability and high accuracy for real-world IoT in-
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trusion detection applications.

4.8 Discussion of The Results

The experimental results collectively demonstrate that the proposed two-phase dimen-
sionality reduction framework effectively balances computational efficiency and embed-
ding quality. Clustering-based representative selection significantly reduces training time
and memory usage, making UMAP applicable to large-scale IoT datasets that are other-
wise challenging to process. Mini-Batch KMeans excels at preserving local neighborhood
structure, which is crucial for tasks sensitive to local data relationships, while BIRCH
provides better global structure preservation as evidenced by lower reconstruction error
and slightly improved classification accuracy.

These findings suggest that the choice of clustering algorithm for representative se-
lection can be tailored based on specific application priorities, whether emphasizing local
structure or global fidelity. Importantly, the proposed method achieves these benefits with
minimal trade-offs in embedding quality, validating its suitability for resource-constrained

environments and real-time intrusion detection systems.

4.9 Conclusion

This chapter has presented a detailed evaluation of the proposed dimensionality reduction
methodology, highlighting its advantages in runtime, memory efficiency, and embedding
quality compared to standard UMAP. The results confirm that representative selection
combined with UMAP training is a viable and effective strategy for handling large, high-

dimensional IoT datasets.
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(General Conclusion

The rapid proliferation of high-dimensional data across domains like 10T, bioinformatics,
and medical imaging has intensified the challenges of computational complexity and the
curse of dimensionality. This thesis addresses these issues through a novel two-phase
dimensionality reduction framework, combining representative selection with optimized
UMAP training to deliver scalable and effective data analysis.

Our approach employs clustering algorithms (Mini-Batch KMeans and BIRCH) to
select a representative subset, preserving structural diversity while significantly reducing
dataset volume. By training UMAP on this subset, the framework achieves substantial
efficiency gains, enabling its application to large-scale datasets previously infeasible for
standard nonlinear methods like UMAP or t-SNE. Evaluated on the IoTTID20 intrusion
detection dataset (625,783 records, 72 features), the framework demonstrates remarkable

performance:

e Computational Efficiency: Over an order-of-magnitude reduction in training and

transformation times compared to standard UMAP.

e Memory Optimization: Up to 100-fold decrease in memory usage, supporting

deployment on resource-constrained IoT devices.

e Structural Fidelity: High neighborhood preservation (98.7%) and classification
accuracy (99.4% for binary detection), ensuring robust embeddings for downstream
tasks.

These results validate the framework’s ability to balance computational efficiency,
memory economy, and data integrity. Notably, the adaptive selection of clustering algorithms—Mini-
Batch KMeans for local pattern preservation and BIRCH for global structure fidelity—enhances
its versatility for diverse applications. However, trade-offs such as potential information
loss with aggressive representative selection and the need for careful parameter tuning
warrant further exploration.

Beyond empirical achievements, this work contributes three conceptual advances:

e Paradigm Shift: It challenges the reliance on full-data training for dimensionality

reduction, demonstrating that representative subsets can suffice.
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e Practical Scalability: It extends nonlinear manifold learning to large datasets,

overcoming the memory and time constraints of methods like UMAP.

e Adaptive Implementation: It offers guidelines for tailoring clustering choices to

task-specific needs, enhancing applicability across domains.

While validated on IoT security data, the framework shows promise for broader do-
mains like single-cell RNA sequencing and high-resolution image analysis. Empirical test-
ing in these areas, as proposed in future work, will further confirm its generalizability. By
synergizing clustering efficiency with UMAP’s representational power, this research pro-
vides a robust foundation for scalable data analysis, advancing the processing of complex,

high-dimensional datasets in both academic and industrial contexts.

Future Work

This thesis presented a novel two-phase dimensionality reduction framework that com-
bines representative selection via clustering with UMAP training. The proposed approach
demonstrated significant gains in computational efficiency and memory usage while main-
taining competitive embedding quality on highdimensional intrusion detection data, such
as the IoTID20 dataset. Building on these results, several promising directions can be

pursued to further enhance the framework’s applicability, robustness, and performance:

e Advanced Clustering Algorithms: Exploring advanced clustering algorithms for rep-
resentative selection may yield better trade-offs between computational cost and
data representativeness. Adaptive methods that dynamically estimate the number
of clusters or employ density-based heuristics could enhance embedding quality by

better capturing the underlying data distribution.

e Streaming Data Support: Extending the framework to support streaming data sce-
narios is critical for real-time IoT applications. Developing incremental or online
variants of both the representative selection process and UMAP training would
enable continuous dimensionality reduction within edge-fog-cloud architectures, en-

suring scalability in dynamic environments.

e Supervised Integration: Integrating supervision into the dimensionality reduction
pipeline could increase discriminative power for downstream tasks. For instance, in-
corporating label information into the clustering step or adapting UMAP’s optimiza-
tion objective to promote class separability may improve detection of fine-grained

threats, such as distinguishing between Mirai and SYN Flood attacks.

e Cross-Domain Validation: Evaluating the framework on diverse domains beyond

[oT, such as bioinformatics (e.g., single-cell RNA sequencing), medical imaging,
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and natural language processing, would help assess its generalizability and robust-
ness. This would validate the approach’s applicability to a broader range of high-

dimensional datasets, as envisioned in the original project scope.

Heuristic-Based Representative Selection: Investigating heuristic-based methods for
representative selection, such as random sampling or density-based approaches,
alongside clustering techniques could provide a more comprehensive comparison.
These methods may offer alternative tradeoffs in computational efficiency and struc-

tural preservation, particularly for datasets with unique characteristics.

Parameter Optimization Strategies: Formalizing strategies for optimizing key pa-
rameters, such as the number of representatives (k), BIRCH threshold, Mini-Batch
KMeans batch size, and UMAP hyperparameters, would facilitate practical deploy-
ment. Automated or data-driven approaches, such as grid search or Bayesian opti-

mization, could ensure optimal performance across diverse datasets.

Hardware Acceleration: Exploring hardware acceleration techniques (e.g., GPU or
TPU implementations) or quantum-inspired optimization methods could further
improve scalability and performance, especially in resource-constrained embedded

environments.

These directions aim to expand the applicability, efficiency, and robustness of two-
phase dimensionality reduction methods, enabling them to address the challenges of
increasingly complex, high-dimensional data environments across diverse scientific

and industrial domains.
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