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Abstract

In this thesis, we aim to conduct analytical and approximate (numerical) studies on higher-

order partial differential equations.

In the first work, we investigate a class of nonlinear parabolic integro-differential equations
with an unknown flux on a part of the Dirichlet boundary, treating it both analytically and nu-

merically. To this end, we employ the Rothe method.

The second work is primarily theoretical, we study hyperbolic p(.)-biharmonic equation
with no flux boundary condition. We prove the existence and blow-up behavior of the weak

solution using the Galerkin method.

Finally, in the third work, we show the approximation studies to evolution p-biharmonic

problem employing the mixed finite element method combined with the Rothe method.

Key-words : A priori error estimation, weak solution, fully discretized problem, mixed fi-

nite element method, Rothe method, Galerkin method, blow-up of the solution, global ex-
istence, parabolic equation, hyperbolic equation, p-Laplace equation, p(.)-biharmonic equa-

tion, integro-differential equation, unknown Dirichlet condition, negative initial energy.
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Résumé

Dans cette thése, nous visons a mener des études analytiques et approximatives (numériques)

sur les équations aux dérivées partielles d’ordre élevé.

Dansle premier travail, nous étudions une classe d’équations intégro-différentielles paraboliques
non linéaires avec un flux inconnu sur une partie de la frontiere de Dirichlet, en la traitant a la

fois analytiquement et numériquement. A cette fin, nous utilisons la méthode de Rothe.

Le deuxieéme travail est principalement théorique, nous étudions I’équation hyperbolique
p()-biharmonique avec une condition de non-flux au bord. Nous prouvons 'existence et le

comportement d’explosion de la solution faible en utilisant la méthode de Galerkin.

Enfin, dans le troisieéme travail, nous montrons les études d’approximation du probleme
d’évolution p-biharmonique en utilisant la méthode des éléments finis mixtes combinée a la

méthode de Rothe .

Mots-Clés: Estimation a priori de I’erreur, solution faible, probleme complétement discrétisé,

méthode d’élément fini mixte, méthode de Rothe, méthode de Galerkin, explosion de la solu-
tion, existence globale, équation parabolique, équation du p-Laplacien, équation p(.)—biharmonique,

équation intégro-différentielle, énergie initiale négative.
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Introduction

Partial differential equations (PDEs) are fundamental in engineering and the phys-
ical sciences, as they model complex systems and phenomena, particularly those that
evolve continuously over time. High-order PDEs arise in various applications, such as
elastic beam deformations [30, 35], thin film theory [41, 14], non-Newtonian fluid mo-
tions [43], and image inpainting and restoration [44]. Among these, parabolic p—Laplace
equations have received significant attention due to their relevance in modeling non-

linear diffusion processes.

For 1 < p <2, the parabolic p—Laplace equation appears in the study of non-Newtonian

fluid theory [3]. Furthermore, when f(u) = u, the problem under investigation (2.1)

0 t
L;(tu) —div(IVulP~2Vuw) = f(t,x) +f M(s, u(s, x))dsin I x Q,
0
ou
~5n - abX) onlxTy,
{0
u:p(t) OHIXFD,
(0, x) = uo on Q.

2.1)



Introduction

can describe heat propagation, where the heat flux depends on the process history [5].
In the special case of p = 2, problem (2.1) models reaction contaminant transport in
saturated zones, where u(f) represents the contaminant concentration, p = ulr, de-
scribes contact with a winer medium through fast diffusion, and o () denotes the total

contaminant mass in Q.

There are many methods for solving partial differential equations, both theoreti-
cally and numerically. In this thesis, we discuss some of these methods, such as the
Rothe method, the Galerkin method, the finite element method and the mixed finite

element method.

Rothe method is a numerical technique for solving partial differential equations
(PDEs). It is also known as Rothe’s time-discretization method. In this approach, the
time domain is divided into discrete intervals, transforming the original PDE into a

sequence of elliptic problems. The discretization process proceeds as follows:

Time Discretization:
The time interval [0, T] is divided into »n subintervals (¢;_1, t;), where i = 1,..., n.

The discrete time steps are defined as t; = i, where 7 = % represents the time step size.

Approximation of the Time Derivative :

The time derivative %—Lf is approximated by

Wwij— wi-1
T

where w; = w(t;,x)foralli=1,...,n.

Transformation into a Discrete System:

Khalfallaoui Roumaissa 2 University of 8 May 1945-Guelma



Introduction

This discretization leads to a system of n equations in x, where w;(x) represents the
unknown at each time step.

At each time ¢;, the continuous problem is approximated by a discrete problem, lead-
ing to the Rothe function w,, which approximates the solution w using a linear poly-

nomial on each subinterval (£;_1, ;).

The Approximate Solution:

The approximate solution is given by:

Wi—wWj-1 .
Wnp = wi—1+(ti_tl’—l)f) te[ti—l!ti]) l:]-)---rn
Step Function:

The discrete function w,, () can be expressed using step functions:

w; te([tiy, L],

wy te[-T,0],

The Galerkin Method is a powerful numerical technique used to solve differential
equations, especially partial differential equations (PDEs) which is based on approx-
imating the solution within a finite-dimensional subspace by projecting the problem
onto a set of basis functions. This approach transforms the original partial differential
equation into a system of algebraic equations, facilitating its numerical and theoretical

analysis.

In this context, evolution p—biharmonic equations have attracted considerable re-

search interest. For instance, in [12, 15], the authors established the existence and

Khalfallaoui Roumaissa 3 University of 8 May 1945-Guelma
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uniqueness of weak solutions and provided numerical results for parabolic and degen-
erate parabolic p—biharmonic equations with a constant exponent using the mixed fi-
nite element method combined with the Backward-Euler scheme. Comert et al. [21]
analyzed the global existence and exponential decay of solutions for a higher-order
parabolic equation with logarithmic nonlinearity. More recently, authors in [39] in-
vestigated the blow-up behavior of a p(x)—biharmonic heat equation with a variable
exponent. Additional relevant results can be found in [6, 23, 33].

The thesis consists of an introduction and four chapters.

Chapter 1 contains fundamental notions of functional analysis, along with key def-
initions, lemmas, and fundamental theorems that will be used in subsequent chapters.

Additionally, it provides an overview of mixed finite element methods.

In chapter 2, We study a nonlinear degenerate parabolic p—Laplace equation with
an unknown Dirichlet boundary condition and a memory term. An additional integral
measurement allows us to eliminate the unknown Dirichlet condition p, which leads to
the weak formulation of the problem. We apply Rothe’s method for time discretization
and use the monotone operator theorem to solve the semi-discretized problem at each
time step. Furthermore, we show some a priori estimates and establish the existence
and uniqueness of the weak solution. Finally, we conduct computational experiments

to support the theoretical results.

Chapter 3 is dedicated to studying the hyperbolic p(x)—biharmonic problem under
homogeneous Neumann boundary conditions using the Galerkin method. We estab-
lish the global existence of a weak solution and derive some key a priori estimates.

Finally, we investigate conditions leading to finite-time blow-up in the case of negative

Khalfallaoui Roumaissa 4 University of 8 May 1945-Guelma
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initial functional energy.

In Chapter 4, we study the initial boundary value problem for a high-order parabolic
p—biharmonic equation with a memory term. We propose a numerical scheme based
on the Rothe method and the mixed finite element method to approximate the solu-
tion. Furthermore, we establish the existence and uniqueness of weak solutions under

suitable conditions .

Finally, we end with a conclusion that encompasses the main results of this work

and some future perspectives.

Khalfallaoui Roumaissa 5 University of 8 May 1945-Guelma



Preliminaries

1.1 Introduction

The aim of this chapter is to recall fundamental concepts, basic notations, def-
initions, theorems, lemmas, and key properties that will be used in the subsequent

chapters.



Chapter 1. Preliminaries

1.2 Functional Spaces

Let Q be a bounded open domain of R” with n=1and T > 0.

1.2.1 Lebesgue Spaces

1.2.1.1 Lebesgue Spaces with Constant Exponent L” (Q2)

Definition 1.2.1. [13] For a constant exponent p such that1 < p < oo, the Lebesgue space

LP(Q) is defined as:
LP(Q) = {y : Q — R measurable, such that f lw (x)|P dx < oo},
Q

with the norm

1
P
vl = (fQIU/(x)Ipdx) )

For p = oo, the norm is defined as the essential supremum:
l¥lloo = €8S Sup ol (x)| = inf{C >0:|y(x)| = C pp over Q}.

The space LP(Q) is a Banach space for all 1 < p < co, and when p = 2, it becomes a

Hilbert space with the inner product:

<y, >:fQ1//(x)<p(x)dx,

Definition 1.2.2. A functiony € L?(Q) is said to be weakly differentiable in L*>(Q) if there
exist functions w; € L*>(Q) for each i = 1,..., n, such that for all test functions ¢ € C(Q),

the following integral identity holds:

Khalfallaoui Roumaissa 7 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

fwax, fa)c/) Vo € C(Q),

In this case, the functions w; are called the weak derivatives of v, denoted as % =

w;i. The space C°(Q2) consists of infinitely continuously differentiable functions with

compact support in .

1.2.1.2 Lebesgue Spaces with Variable Exponent LP") (Q)

LetpeC (Q, (1,00)) satisfies the growth condition

1
lp(m) —p)l < Vln—€|<5,

_°c
[In|n—¢||
for some ¢ > 0.

Definition 1.2.3. [22] The variable exponent Lebesgue space L") (Q) is defined as follows
LPYQ) = {1{/ : Q — R,y is measurable : f Iu/(x)lp(x)dx < oo},
Q

equipped with the following Luxemburg norm

p(x)
dx < 1}.

1100y = inf{A > 0: fQ ‘@

Note that (LPXQ), || - | [r(q)) IS a separable Banach space.

1.2.2 Sobolev Spaces

Let § = (B, ..., Bn) be a multi-index, meaning a vector with n components, where each

Bi is anon-negative integer (f5; = 0).

Khalfallaoui Roumaissa 8 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

We define the length of § as:

n
1BI=3_Bi.
i=1
For a function f, we denote its partial derivative with respect to f as:

olbl f
0P1x,...0Px,,

1.2.2.1 Sobolev Spaces with Constant Exponent W57 (Q)

Definition 1.2.4. [4, 15] For an integer k € N, and 1 < p < oo the Sobolev spaces with

constant exponent WP (Q) is defined as follows
wkr(Q) = {u, € LP(Q) such that DPy € LP(Q), VB € N" and |f| < k}

where DPy denotes the weak derivative of w. Equipped with the norm

1

14
I lwergy=| 2 1DPWIT,q,

lal<k

Definition 1.2.5. For k=1, We define the Sobolev space W'P (Q) as follows

0
WhP(Q) = {(y € LP(Q) such that% elP(Q),i=1,..,n}

Xi

equipped with the following norm

p _ p p
W12, = 190y + IV -

The Sobolev space with zero boundary values is defined as:

W,P(Q) = CX(Q) in WhP(Q),

Khalfallaoui Roumaissa 9 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

and we write

W,'P(Q) = fy € WHP(Q) such thatylr =0},
whereT denotes the boundary of the open set Q) c R".

Remark 1.2.6. The norm | - | y1.pq) and the semi norm |V ()|l1r ) are equivalent over

the space WO1 PQ).

Definition 1.2.7. [4] For p = 2, the Sobolev space wk2(Q) is denoted as H*(Q). This
space consists of functions whose weak derivatives up to order k are square-integrable

over Q), making it a Hilbert space with inner product

W, P ey = . (DPy, DP¢p),
|Bl<k

equipped with the norm

1
Il ey = (ImgkuDﬁwniz(m)z.

1.2.2.2 Sobolev Spaces with Variable Exponent W57V (Q)

Definition 1.2.8. For some p € C(Q,(1,00)) and k € N*, we define the generalized vari-

able exponent sobolev space WP (Q) as follows
whkro(Q) = {1// e LPY(Q); DPy e LPY (Q), VB € N such that |f| < k}
endowed with the norm

- Bol|P
”u/”Wk,p(')(Q) - |’6|Z<’k”D w”LP('J "

Khalfallaoui Roumaissa 10 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

Definition 1.2.9. We introduce the space WO2 PY(Q) as follows
Wy P (@) = {y e W2PO(Q); ylon = 0 and Vyrlag = 0
0 =V s Wloa =0andVylaa =0,

2,p( .
Over the space W, p()(Q), the semi norm |A() o (q) and the norm || - |20 q) are

equivalent.

Remark 1.2.10. Letp, g € C(Q, (1,00)), such that q(-) the conjugate of p(-) i.e.,

1 1

—+—=1
pe  q()
D Ifp(x)<qx)in Q, then
L19@Q) — LPO(Q). (1.1)
2) Forally € LPX(Q), we have
min {1} 0 11 i )} < fQ yIPPdx < maxllyl)?,, o W10 o) A2

3) Letm(x):Q —Rbea measurable function and p(x) : Q—Rbea Lipschitz continuous
function such that1 < p~ < p* <% . Then, the embedding W*P™(Q) — L™™(Q) is

continuous if
np(x)

—a.e VxeQ
n—kp(x)

px)=m(x) <

1.2.3 Bochner Spaces

Let Q be a subset of R” and [0, T1] is a real interval. We define the following spaces :

Khalfallaoui Roumaissa 11 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

C((0,T),LP(Q)) ={w: (0, T) — LP(Q) is continuous } equipped with the norm
l¥licqo,m,r) = max Iy (Ol )-
L2((0, T), L?>(Q)) = {y : (0, T) — L?(Q) square-integrable } equipped with the norm

T
2 _ 2
”w”Lz((O,T),Lz(Q)) _‘[0 ||17[/(t)”L2(Q)dt

L2((0, T),Hé Q) ={wy:07T) — Hé (Q) square-integrable } equipped with the

norm

T
2 _ 2

LP((0,T),LP(QQ) ={w: (0, T) — LP(Q) p-integrable } equipped with the norm

T
[ fo ly (D17, at.
LP((0, T), Wy (Q)) = {w : (0, T) — WP (Q) p-integrable } equipped with the norm

T
P = ol dt.
lyll 2P @) follw()ll

LP((0,T), W, WP @

L0, T),[2(Q) = fv:0,T) — I2(Q) essentially bounded } equipped with the

norm

lYll oo, 1, 22(2) = €8S SUP sepo, 7y 1W (D)l 12 (-

L0, T), W'P(Q)) = {w: (0, T) — WP (Q) essentially bounded } equipped with

the norm

¥l oo, 1), wrp () = €88 SUP;efo, 71 1YW (D llwrr -

Khalfallaoui Roumaissa 12 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

e 12°((0,T), WO2 P QQ)={y:07T)— WO2 P (Q) essentially bounded } equipped

with the norm

Note that W~24(Q) is the dual space of W, (Q) with % + % =1.

e C((0,T),W24(Q)) = {y: (0,T) — W~29(Q) is continuous } equipped with the
norm

”/WHC((O,T),W—Z'%(Q)) = max sup Ky (8), P)I.
te(0,T] 2,p
WP Q)

101l yy2,p <1

e LI((0,T),W29(Q)) = {y: (0,T) — W~29(Q) g-integrable } equipped with the

norm
q ! q
W0 a0, m, w290 :fo 1Ol y-20g @1

where

ly(Ollw-2ap= sup Ky (1), @)l
peW P (@
lolly2.p =1

o LZ((O, 7, (Woz'p(x) (Q))’) ={y:00,T) — (Woz'p(x) (Q))' square-integrable } equipped

with the norm

T
) 2

= (1) 0oy AL

”w”Lz((O,T),(Woz'p(x] @)') fo v ”(Woz'p( @y

« 12(0, 1), WP (@Q)') = w: (0, T) — (WP (Q)) essentially bounded } equipped

with the norm

N oo (0,70, 279 ) = €58 SUPeto, W (D 200 0

Khalfallaoui Roumaissa 13 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

with

WOl g2y = Sup 10,9
Ppew "V (@)
Il yy2,p gy =1

1.3 Some Properties and Fundamental Theorems

Theorem 1.3.1. [13/(Cauchy-Schwarz Inequality)
Let Q be a subset of R", for ally, ¢ € L*>(Q), we define the continuous form and the dis-

crete form respectively

‘fQU/(x)d)(x)dx‘ < (fQW(x”Z)%(fQW(x)Iz)%’

and

D=

é%@bidx‘ < (élwilz)%(ékﬁilz) .

Theorem 1.3.2. [13/(Holder Inequality)(continuous form)

Letw e LP(Q) and ¢ € L1(Q), for1 < p, q < oo with % +% =1, we have

fQIW(x)(/)(x)Idxs(Llwu)l’”)%(fglwx)lq)%.

Theorem 1.3.3. [13/(Holder Inequality)(discrete form)

Let(a;)}_, and (b;)}_, be two sequences inR, for1 < p, q < oo with % + % =1, we have

Q=

iélaibil < (iélailp)%(élbilq) )

Lemma 1.3.4. (Young’s Inequality)

Khalfallaoui Roumaissa 14 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

1

;=1 and for all a, f = 0, we have

Forl<p,q<oo with%+
1 1

af<—af+—p19.
p q

Lemma 1.3.5. (The ¢-Young’s Inequality)

Leta, =0 andVe =0, we have
2af <ea’+C. B,

where C, = % with € is small.

Lemma 1.3.6. (Poincaré Inequality)
There exists a positive constant C(S2), such that

oy |2

1
) YV EHO.

lyll2q) < C(Q)(,-:Zl o

Lemma 1.3.7. [36] Letx,y € R", withx # y
. For p = 2 there exists C, (p) such that
(leP2x=|y" P px=y)_ = Ci(p)|x =",

. Forl < p <2 there exists C, (p) such that

723172y = Calp) - 517

Lemma 1.3.8. (Abel’s Summation Formula)

Khalfallaoui Roumaissa 15 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

Forall a;, B; € R, we have

J J
Y ai(Bi—Pi-) =ajfj—aofo—D_(a;—ai-1)Pi-1.
i=1

i=1

Theorem 1.3.9. (Trace Inequality)
Let Q c R" be a bounded open domain with Lipschitz boundaryT, for all w € H' (Q),

and0 <€ <eg, we have

2 2 2

Theorem 1.3.10. [4]/(Green’s Formula)
Let Q be a regular bounded open set with C*>~smooth boundaryT. Denote by 1(x) the

outward unit normal vector toT. Fory,¢ € H?(Q), we have

wa(pdx:—f va¢>dx+fa—w¢>da.
Q Q r on

where %—11”’ =V - is the normal derivative of y onT and do represents the surface mea-

sureonT.

Lemma 1.3.11. [19](Gronwall Inequality)(continuous form)

Lety, ¢, and { be real valued functions defined on an interval |a, b], where
w(t) and {(t) are continuous functions on [a, b]

w(t) =0 forallte€|a,b]

¢ is nondecreasing on [a, b]

The function {(t) satisfies the integral inequality:

t
((t)S<P(t)+f w(s){(s)ds, Yte]a,bl,

Khalfallaoui Roumaissa 16 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

then

t
((t)s<p(t)exp(f w(s)ds), Vtela,b].
a

Lemma 1.3.12. [19](Gronwall Inequality)(discrete form)

Let{w,}, {¢n} and {(,} be sequences of real numbers satisfying:

vp20and(,=0 foralln
¢, is nondecreasing

The sequance ,, satisfies the recurrence inequality:
n-1
Cn<¢n+ ) yili, Vn=0,
i=0

then

n-1
n S(PneXp( Y wi), VYn=0.
i=0

Definition 1.3.13. (Hemicontinuous Operator)
We say that the operator A: X — X' is hemicontinuous in X ifforve X, u+tyve X

where t,, is a sequence of positive numbers such that t, — 0, imply
A(u+t,v) — A(u)

Definition 1.3.14. (Continuity of a bilinear form «(_, .))
Afunctiona(.,.) is called a continuous bilinear form if there exists a constant C > 0, such

that for ally, ¢ € X, the following inequality holds:

la(y, d)l = Cllylliol.

Definition 1.3.15. (Coercivity of a bilinear form «(.,.))
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The bilinear form a(.,.) is coercive if
IM>0 YoeX : lalp, @) =M|¢|>.

Theorem 1.3.16. (Lax-Milgram)
Let X be a Hilbert space, and let a(.,.) : X x X — R be a continuous and coercive bilinear
form. Let L(.) : X — R be a continuous linear form. Then, there exists a unique ¥ € X

such that

Ve X, aly,¢) =L().

1.4 The Mixed Finite Element Method

Consider two Hilbert spaces X and Y. The goal is to find a solution pair (¢,¢p) € X x Y

that satisfies:

a(y,P) + Plp,d) = Lx(P) Vpe X

By,0)=0 V(€Y.

where a(.,.) and §(.,.) are bilinear forms on X x X, X x Y respectively, and Lx(.) isa

linear functional on X.

Theorem 1.4.1. (Inf-sup Stability) There exist x,C = 0 such that for v € X, we have

k< C inf M
0#CeY opyex 1Yl xIC ]y

This theorem ensures that the mixed problem above is well posed. In other words,
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there exists a unique solution (y, ) € X x Y that satisfies the stability estimate

lyll5 + llolls < CIfII5

where C) is a positive constant.

Approximate Solution Using Finite-Dimensional Subspaces: Since the function spaces
X and Y are often infinite dimensional, finding an exact solution may not be feasible.
To obtain an approximate solution, we replace these spaces with finite dimensional
subspaces Xj ¢ X and Yj, c Y. Thus, instead of solving the original problem, we seek
an approximate solution (¥, @) € X, x Yy, that satisfies a corresponding mixed prob-

lem:

a(n, $n) + B@n, ¢p) = Lx(¢Pp) Ve Xy

B, Cn) =0 V(€Y.
Thus, we can define the approximate mixed problem in a matrix representation

A, B Yh In

B, 0 On 0

where the operators Ay, : X;, — Xj, and By, : Xj, — Y}, are given by

(ApWn, Gp)x = a(Wp, bp) YYp,¢pe Xy

BrCn $n)y = bl n,dp) Yope Xy, V{peYy

(fnPn)x = L$pp) Yp € Xp.
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Convergence: The bilinear form f(.,.) satisfies the Inf-Sup condition on the finite-
dimensional spaces X}, x Yy, ensuring that the approximate mixed problem remains
well-posed. This guarantees both the existence and uniqueness of the solution (v, @)
while ensuring its convergence to the exact solution (v, ¢).

The following theorem establishes the rate of convergence:

Theorem 1.4.2. There exists a constant C > 0 independent of h such that

- + |l — <1 inf - + inf - .
ly —vnllx +llo—@nly {theXh”w Onllx (heyh”(p Cnllv}

1.5 Conclusion

In this chapter, we reviewed the fundamental concepts and mathematical tools
needed for our study. We introduced the main functional spaces, discussed key the-
oretical results, and presented the mixed finite element method that will be used in the

next chapters.
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On the Solution of Evolution p-Laplace
Equation with a Memory Term and

Unknown Boundary Dirichlet Condition

2.1 Introduction

In this chapter, we investigate a class of nonlinear parabolic integro-differential

equations with an unknown flux on a part of the Dirichlet boundary. To address this

21
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inverse problem, we employ a non-standard technique that transforms it into a di-
rect problem by eliminating the unknown Dirichlet condition p(#) using prescribed
measurement. We introduce a discrete-time approximation scheme based on Rothe’s
method and establish the existence and uniqueness of a weak solution at each time
step. Furthermore, we use a priori estimates to demonstrate the convergence of the
approximate solution to the weak solution. Finally, we present computational experi-

ments to support and validate the theoretical findings.

2.2 Position of the Problem

We consider a connected bounded open domain Q of R”, with a Lipschitz-continuous
boundary I' =TyuTlpandI=[0,T], T >0.
Here 'ynTp =@, [I'p|l >0, where I'y and I'p are two open subsets of I'. We denote

the outward unit normal vector on I'. We address the following problem:

0 t
L;(tu) —div(VulP"2Vu) = f(t,x) +f M(s, u(s, x))dsin I x Q,
0
ou
~5n - abX) onlxTy,
< o (2.1)
u:p([) OHIXFD,
w0, x) = uo on Q.

Where 2 < p < 0o, M is globally Lipschitz continuous function satisfying the growth
condition

IM(t,s)|<C(+[s|P7YH, VseR

p is a monotonically increasing continuous function verifying the growth condition

1B(s)|<CA+]|sIP7Y), VseR (2.2)
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with

B0)=0and0< A< pg'(s).

The addition integral measurement is given by

f Bu(t,x))dx=o(t). (2.3)
Q

2.3 The Variational Formulation
Let us introduce the space
V=Ct+W @ ={ulue W (Q),ulr, = C},
where
WrP(Q) = {ue W'P(Q) such th =0
f ={ue (2) such that u|r,, = 0},

which is equipped with the norm of W7 (Q).

Remark 2.3.1. V is Banach space because it is closed subspace of the Banach space

wir(Q).

2. (Poincaré-Wirtinger inequality) For all p € [1,00], there exists a constant C = C(Q, p) >0
such that

1,
lulro) < ClVulre, — Yue W Q.

3. Thenorm||.|wipq) and the seminorm ||V ()| ) are equivalent over the space er’Dp Q).
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Multiplying (2.1) by v € V and integrating over (2, we have

@:B(w), v) + (IVulP>Vu,Vu) + (@, V)ry — Uirp Oy u, D1y, = (f, 1)

t
+(f M(s, u(s))ds, v), YvelV. (2.4)
0
Taking v =1 in (2.4) and using (2.3), we get
t
(Opu, Drp = o' +(a, Dry—(f,1) - (f M(s, u(s))ds,l).
0
Hence, the variational formulation becomes

t
08w, v) + (IVul”*Vu,Vv) + (@, v)ry = (f, V) + (fo M(s,u(s))ds, v)

t
40, |0+ (@ Dy = (f,1) - (fo Msu)ds1)|,  Yvev. (2.5)

2.4 Semi-Discretized Problem

T

We subdivide the time interval I = [0, T] to n subintervals, T = S i=12,..,n where

u; = u(t;, x), t; = it and let

Sui = % §B(us) =

ﬁ(ui)—Tﬁ(ui—l), pi = p(&).

For i =1,..., n, the recurrent semi discretized problem is
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Find (u;, p;) = (u(t;,.), p(t), i =1,2,...,nsuch that,

(Bui) — Bui-1), v) +T(IVui|P"2Vu;, Vo) = —1(a;, Vry + 7(fi, ) 2.6

0, |0+ (@i, Dry = (i, D = (Zi M, upT, 1) | Yoev

+7( X M(tj, u)T, v).

Theorem 2.4.1. Let a(t) € LY(Ty), f(t) € L9(Q) and o'(t) € R, for all t € I, the problem

(2.6) admits a unique weak solution u; € V,Yi=1,...,n.

Proof. Let us define the operator A : V — V' by
(Aw), v) = (Bw), v) +T(IVulP2Vu,Vv), YveV

We apply monotone operators theory (see [45]), we must prove that the operator A is
bounded, hemicontinuous, monotone and coercive.
We have
i-1
(Aw), vy = (Bui-1),v) —T(@;, Vry +7(fi, V) + 1Y) M(tj,u;)7, V)

j=0

i—1
0,7 |0 + (@i, Dry = (Fi, D = (X, Mz, 17, 1).
j=0

Using the growth condition of the functions f and M, the Holder, Poincaré and

trace inequalities, we successively deduce that
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i—1
|(B(wi-1), V)| +Tl(@i, VIry |+ TI(fi, I +T| (Y M(tj, uj)T,v)|
j=0

[{A(u;), vyl

IA

i—1
+|v|rD|r[|a’,-| + (i, Dryl+1(fi, DI+ ][O M(tj, uj)T, 1)|]
j=0

IA

-1
(CA+ui—1 P, ) + Crllail Lacm Ivlwie + Tl fill Loy vl e
i-1 i-1
2 -1 2
+7% ) (ClujlP lvh +7 Z(C;|V|)+T||V||LP(FD)[|U;|+”ai”L‘I(FN)HIHLP(FN)
j=0 j=0
i-1 )
HlfillLa@ @ + (X (€ +Cluy P, 1)
j=0
)
Cllui-1 ||Zp(Q) | V”WLP(Q) +Clv| wir) T CrllaillLaayll V”WLP(Q)
, i )
+7l fill Lo I lwrmy + CT° ) Nl ooy 1V lwie
j=0

IA

+Cllvliwirq +Tlvliwie ) [lU/il +laillLaawp L@y
i-1 p

+I fil Lo lry +C+C )Y 7l Uil fpy @,
j=0

which implies

I{A(ui), v = CDIIvliwreq)-

For the hemicontinuity of A, we take u,, — u in V. Then for v € V, we have

{A(uy,) — A(w), v)] |(B(uy) — B(w), v) + T(\Vupn|”*Vu, — |VulP~*Vu, V)|

IA

ClB(un) — BWlraellVulr

-2 -2
+TlIVunP"“Vun = IVulP"“Vull L IVvlie @)

IA

Cllp(un) — Bl Lo vl wrr

-2 -2
+T[IVunl?~“Vu, — |VulP Vullraoll V”wl,p(g)-

r
It follows from the continuity of the operator u — IVulP2Vu in LP(Q) into L?-1(Q)
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and the continuity of § that
(A(up) — A(W), V)| —p—000, YVEV.
Finally, to show the monotony of A, using the factthat u—v e erl;p (Q), we have

(A(w) - A(v),u—vy = (Pu-Pv,u—vo) +T(VulP2Vu - |Vu|P2Vu,Vu- Vo)

2
= Mu=vlljy 0 +TIVu=Vol],q
2 Tlu=vlj,q

by virtue of Remark (2.3.1).
In similar way we get
(Aw),uy = tllul?

wlr@Q)’

this achieves the prove. B

2.5 Necessary A Priori Estimates

Now we are going to show some a priori estimates which will help us in the existence

part.
Lemma 2.5.1. There exists a positive constant C , such that

m

m
2
Y tl6uillz g <C 2 IVuill} g < C.
i=1 i=1
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Proof. Choosingin (2.6), v = u; —u;—; and summingoveri =1,...mwithl1 <m<n,

we obtain

m m m
Y T@Bw), 6u) + Y (VP Vu, Vuy) = Y (V| PV, Vui_1)
i=1 i=1 i=1

m i—1

+Y 1(fi,0u;) - Zr(al,éul)r]\, +T) Z(M(t],u])r du;)
i=1

i=1 i=1j=0
i—1
+TZ6ul|rD[0 + (@i, Dry — (fl,l)—Zb(M(t],u])T D). 2.7)
i=1 J

By the mean value theorem, we get

AZ TI6uill 72 + Z IVtill g

Z (6ﬁ(u,-),5u,-)+Z(Nu,-l”‘zwi,wi).

i=1

Holder and Young inequalities implies

(IVu; P~ V1)

IN
Ms

m
| Y (V1P 2V u;, Va )|
1

~
I

P
IVuill o IVti-1ll e

IA
NgE

~
Il
—

IA

m m
€ IVuillfy )+ Ce Y IVuUi-1 1] -
i=1 i=1

To estimate the second term in the RHS of (2.7), we use Holder, Poincare and Young

inequalities to get

A

1 )
< C(E +e Y TIVouil}, ).

i=1

‘iﬂfi»éuz’)
i=1
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The memory term can be estimated as follows

1 m
< C(E-FSZT”vaui”

P )
LP(Q))
i=1

m i—1
[TY ¥ (M@, upr6u)
i=1j=0

Thanks to Abel’s summation formula, Holder, Young and trace inequalities, we obtain

m m
‘Zr(aiﬁui)m‘ = ‘(am,um)rw—TZ(éai,ui-l)rN—(ao,uo)rN‘
i=1 i=1
m
< lamliaeplumlrey +7 ) 16ailaapllti-i @y +C
i=1
q p - q
< Cellamlfaqy +eluml gy, +Ce X Thoaill ]y,
i=1
S p
+Y reluil g, +C
i=1
<

eV}, +C.
For the last term in the RHS of (2.7), we have

‘T§5ui|rD [U; +(a;, Dry = (fi, D —g(M(tj, ujT, 1)] ‘
1

< ‘umIFD [O-;n +(@m, Dry — (fmy 1) — Wi) (M(j, uj)T, 1)] ‘
j=

m
+‘T > Ui, [50; +0a;, Dry— 6/, 1) — (M(t-1, ui-1)7, 1)] ‘
i=1

+‘u0|rD [Uf) + (o, Dry — (fo, 1)] ‘

= C||um”Ll’(l"D)(|0'/l|+”am”L‘?(FN)"'”fm”L‘f(Q)"‘l)
m
+C Y Tluillpwy) (18011 + 18l oy + 16 filLay +1) + C
i=1
< e|Vunl?, o +C

Khalfallaoui Roumaissa 29 University of 8 May 1945-Guelma



Chapter 2. On the Solution of Evolution p-Laplace Equation with a Memory Term and
Unknown Boundary Dirichlet Condition

Putting all the above considerations together, yields

m m
2
A Y Tlh8uill o + ) VUil ],
i=1 i=1

m m 1 m
<e) VUil +Ce Y. V11D, ) + C(g +e Y TIVou;lY, )
i=1 i=1 i=1

+&lVtmll},q, +C.

Choosing € > 0 small enough and using Gronwall lemma we conclude the proof. W

Lemma 2.5.2. There exists a positive constant C such that
6Bully < C.

Proof. From (2.6), we have

i-1

6B, v) = (fi,v)—(IVuil’*Vu;, Vv) = (@i, viry + (Y M(tj,u)T,v)

j=0

i—1

Ui, |0} + (@i, Dy = (i D = (L M, up),1)
=0

By invoking standard estimates, we arrive at

6 B(u;), V)| = Cllvliwie g

Thus

0B (uy),
16 Bl = 1Op, I _ - g

veviozo  llVlv
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2.6 Existence

In this part, we will show the existence of a weak solution to the problem (2.1). To

this end, let us introduce Rothe functions

) u,(0) = up
up(t) =uj1+@E—t;i-1)0u;, 1<i<n, Vre(t_1, L],
) :Bn(o) = IBO
Bn(t) =Pui—) +(t—t;-1)0P(u;), 1<si<n, Vte(ti-1, ],

Together with step functions,

Forl<i<mnandVte(t_1,t],

u_n(o) = uOru_n(t) = uj,
F2(0) = £0), fu(t) = f(12),
§ @n(0) = a(0), @, (1) = a(ty),

M;,(0,7,(0)) = M(0, ug), My, (t, U, () = M(t;,u;),

0,(0) =’ (0),0%,(t) = 0’ (¢,).

Then, (2.6) may be written as

— i
(0:Bn(D), ) + (VTP 2V, Vo) + @n(0), Wiy = (a8, 0) + (| Mi(s Tn(s)) s, )

0

S — i
#0100 + @0, Dy = G0, D = (| Ml (s dsi1 2.8)

Theorem 2.6.1. There exists u € C(I, LP(Q))nL>®(I, W'P(Q)) and p € LP(0, T) such that

{u, p} solve (2.1).

Proof. The proof s split into two parts
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Stepl:
In view of Lemma (2.5.1) and Lemma 1.3.13 in [32], we deduce that there exist a func-
tion u € C(I,LP(Q)) n L°°(I, WP (Q)) and a subsequence of {u,}en denote {up}nen,

such that

up,— u inC(I,LP(Q)
Oiuy — O;u inLI(I, W™ 9(Q))

Up(H) = u(®) inW'P(Q) (2.9)
Forall t € [t;_1, t;], we have

1Un(0) —unDllr = IE—=t)0uilr

t
H f Osup
li

(t_ti)%

IA

LP(Q)

([ @)’
(L%wwﬁ

IA

LP(Q))

1
T4

IA

@) (2.10)
(2.9) togheter with (2.10) implies that
Up— uin C(1, L7 (Q))

Taking into account (2.2), the continuity of f and DCT gives us

Blun,) — Bw) inC(I,LP()

Bin) — Pw) inC(I,LP())

By integration of (2.8) from 0 to ¢ and taking the limit (7 — oo), then Lemma (2.5.2)
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implies

t t
(,B(u(t))—ﬁ(uo),va (IVuI”_ZVu,Vv)dHf (a(s), Vryds =
t t 2‘,‘ 0
f(f(S),v)ds+f( M(z,u(z))dz,v)ds+
0 0 0

t Si
foU|FD[U'(3)+(a(s),1)rN—(f(s),l)—(fo M(z,u(z))dz,l)]ds. 2.11)

We differentiate (2.11) with respect to t we conclude the existence of a weak solution
to (2.5).

Step2:

Let us introduce the function p, = u,lr, and p = ulr,, .

In this step we prove that p exist and satisfying (2.1).

According to the imbedding C((0, T), L” (Q)) — L”((0, T), LP(T')), we have

_ P _ P
) » D n » ) D
lon =Pl 0,1),0 @) Netn = ull 0,17, 20 @0 )

IA

p
ltn = ullpp o, 79,00 )

IA

p
|1y, — ul] C((0,7),LP(Q))

When we pass to the limit (7 — 0o0), we obtain that p, converges to p in L ((0, T), L (T'p)).1R

2.7 Uniqueness of Weak Solution

Now we will show the uniqueness of a weak solution to (2.1) in the case

t t
m(x, t):f M(s,u(x,s))ds:f k(t—s)Apu(x,s)ds,
0 0
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where

keCY(0,T), Apu=div(VulP~2Vu), 2<p<oo.

The first equation of the problem (2.1) becomes
t
8,.8(w) —div(IVulP>Vu) = f(x, 1) +f k(t—s)Apu(x,s)ds
0
Simple calculation gives us

t t N
fk(t—s)Apu(x,s)ds = —f k(t—s)f k(s—2)Apu(x,z)dzds
0 0 0
t
+k(0),6(u(x,t))—k(t)ﬁ(uo(x))+f0 k'(t-s)pulx,s)ds

t
—f k(t—s)f(x,s)ds,
0
which proves that m can be written as
t
m(x,t) = —f k(t—s)m(x,s)ds+ g(x, t,u),
0
such that
t t
g(x, t,u) :fo k'(t—s)Bulx, S))ds—f0 k(t—s)f(x,s)ds+ k(0)B(u(x, 1) — k(t) B(up(x)).

Therefore, (2.1) is equivalent to the following system

Find (u, m) such that,

38w, v)+ (IVulP2Vu,Vv) = —(a, v)r, + (f, v

(1B, 1)+ )= @+ (.0 -
+(m,v)+v|rD[0’+(a,l)rN—(f,l)—(m,l)] Ve HH(Q)

(m,v) = (- [y k(t—s)m(x,s)ds, v) + (g, V)
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Theorem 2.7.1. The problem (2.12) has a unique weak solution.

Proof. Let (u;, m;) and (uy, my) be two solution to problem (2.12). Rewriting the
second equation of the problem (2.12) for m; and m, respectively, subtracting the sec-

ond from the first, putting v = m; — my, we have

t
2 2 2
I =malyg, = C [ = mal? o, ds+ Cllun = ol

t
+C [ = el s
Then, applying Gronwall’s lemma, we obtain
2 ! 2 2
”ml_mZHLZ(Q) = C\/; “Lll_uzlle(Q)dS‘l‘C”ul_ u2”L2(Q)' (2-13)
By the same way, we obtain
! 2 2
(atﬁ(ul)_atﬁ(uz))ul_MZ) = C\/; |Iu1_u2”L2(Q)dS+C”ul_u2”L2(Q)
Integrating it from 0 to ¢, ¢ € [0, T'], we have
¢ 2
(B @) = a1 = 1) = CA+0) [ (9= (s g ds

Integrating it once more from 0 to ¢, ¢ € [0, T] and using the mean value theorem, we

arrive at

t t ¢
A,j(; ” 251 (é) - u2(€)||%2(9)d€ = ](; C(l + é)ﬁ ” u—u ”i2(g)d$d€
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Then, applying Gronwall’s lemma, we obtain

t
[ 1@ -w@igde=o, . veeon

which means that u; = u, in L2((0, £),Q), Yt € [0, T], replacing this in (2.13), we get
I () = ma (D)3, =0, VI € [0, T).

Which prove that u; =up and m; =mpa.einIxQ. R

2.8 Numerical Experiment

In this section we summaries numerical tests validating the obtained results in pre-
vious sections. We begin with Rothe’s method for the time discretization. For the spa-
tial discretization, we apply the finite element method. Thus, we solve this system
iteratively relying on the Newton-Raphson method.

Here, the unknown function u(x, t) is approximated by a linear polynomial. For the
test example, the computational domain ( is taken as Q2 = (0,1) and the time interval
I=(0,1)ie T=1.

The source function f and p(t) are chosen according :

to the exact solution

u(x t)—i(t(x—x2+1)+1—6)
" 50 2" 2)

and the memory term f is given as

B(w) = u?
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Further, we prescribe the nonlinear function M as

M(s,u) = us®.

The numerical error of « in W'?(0, 1) at final time level #; = 1 is calculated by taking a

step length of space discretization intervals as follows h € {%, i, %, iﬁ, é, é} and 1 =27°.

likewise, for the numerical error of p in L”(0,1) at final space x = 1, it is calculated by
choosing 7 = Zik suchthatk=1,...,6 and h =275,

In Figure 1, we plot the error results for u and p for p =2.2,2.5 in loglog-plot.

The W'P norm error of u at t =1for p=2.2 The LP norm error of p at x=1 for p=2.2
10° '
—t— 00 e —5—llp-p(0ll,»
0.054 - 1
0.0535 |
0.053
5 .o ] &
510 W 0.0525
—%
0.052
0.0515
0.051 1
102 ‘ )
10° 10’ 102 10° 10! 102
N N
1,
The W' norm error of uatt =1 for p=2.5 The LP norm error of p at x=1 for p=2.5
10° ‘ 0.0696 [ ‘ 1
—t— luul |0 —x— Il »
0.0694 Gl
0.0692
0.069 [
— 0.0688 |
5 ] S
=10 1 0.0686 |-
—
0.0684
0.0682
0.068 [
0.0678 |
102 '
100 10! 102 10° 10°

Figure 1: The results of error for u and p in log log-plot for p = 2.2,2.5 respectively.
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2.9 Conclusion

In this chapter, we considered a degenerate parabolic problem with a memory term
and an unknown Dirichlet boundary condition. The Dirichlet boundary condition p,
initially unknown in the inverse problem, was eliminated through an appropriate inte-
gral measurement. By applying Rothe’s method together with the theory of monotone
operators, we established the existence and uniqueness of the weak solution to the

problem. Finally, we supported our theoretical results with a numerical experiment.
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Advanced Qualitative Results on
Hyperbolic p(-)-Biharmonic Equation

with No-Flux Boundary Condition

3.1 Introduction

In this chapter, we focus on studying the hyperbolic p(x)-biharmonic problem with

no-flux boundary condition in variable exponent Sobolev spaces. We will prove the
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global existence of a weak solution using the Galerkin method and discuss the criti-
cal criterion for identifying finite-time blow-up when the initial functional energy is

negative.

3.2 Position of the Problem

We consider a bounded open domain Q of R", with a Lipschitz-continuous bound-
aryI'and I =[0, T], T € R. We address the following hyperbolic p(x)-biharmonic prob-

lem subject to homogenous Newman boundary condition

0%u
W+A(|Au|P(X)—2Au)—aAut:<p(x, u) + f(x, 1) inIxQ,
u=c, Au=0 onl,
5 o (3.1)
Jr = (AuPPO2Auw)do =0 onT,
on
ou
u(0, x) = uyg, E(O, x)=U; on Q.
Where o is a positive constant. ¢ is a continuous function satisfying
pCx, )] < Blul™ ™ +y, (3.2)

np(x)
n—p(x)

forsomey,>0,1<m(x) <ocifn<p(x)and 1 < m(x) < ifn> p(x),

and

D(x,u) :f o(x,s)ds.
0

Here p € C(Q, (1,00)) such that

I<p =px)<p’<oo,
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with

p~ =essinf g px), p* =esssup, gpX).

3.3 Existence

In this section we will show the existence of a weak solution to the problem (3.1)

with the aid of Galerkin method.

Theorem 3.3.1. Let uy € WPO Q)N WO1 2 (Q),U; € L2(Q) be given functions and assume
that either (m* < 2) or (2 < m* < p~). Then the problem (3.1) admits weak solution
u:IxQ—mR, T <oo, such that

L wel®(0,7),V), V={ueW?PO@nw,"@):u? e 12y},

. u € L®((0, T), L*(Q) N L=((0, T), V),

U+ A(AUPO2AU) — o Auy = P(x, u) + f(x, 1) a.e. in L*((0,T), V).

Proof. We will demonstrate the existence of a weak solution u € V. The weak solu-

tion of our problem will be 7 = u +c.

Let {ei};?gl be the orthonormal basis of WOS’2 (Q) that satisfies

—Ae; = Aje;, ifxeQ,
—A%e; = —A?ei, ifxeQ,
e; =0, ifxerl.

Let E; = {ey,...,e;) and

(Mu, v) = (s, V) + (AulPO2Au, Av) + 0 (Vu, Vo) = (o, v) = (f,v),  VYveE
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For [ € N*, we consider Galerkin approximate solution

l
=) Ci(t)ei(x),

i=1

such that
(Muy,e;) =0, i=1,..1,
(3.3)
u;(0) = ugy, ui:(0) = uyy,
where
! 1
uor =) (up,ee;, uy =y (Upede, Ci=(ulx,1),eix),
i=1 i=1
and

Uo; — up in WP Q) nWh2(Q), uy — U in L2(Q).

From problem (3.1) we can derive the following system of [ differential equations

w! (1) = —(1Aw PO 2 Ay, Aey) — o (VO uy, Vey) + (P(uy), e)) + (f, e:),
(3.4)
ui (0) = (ug, e;), u;(0)= (U, e), i=1.1
where (,,.) is L? inner product. Note that the solution u; of (3.4) is assured by standard
theory of ODE in [0, £;]. A priori estimates that will be prove bellow, prove that the

solution u;(#) can be extended to [0,T], T > 0. multiplying each equations in system

(3.4) by C;(#) and summing with respect to i = 1,..., [, we obtain

d [ | Ay (5)|PY
Q

1 2
dt 5 - | @
dt p(x) d“zfgla"”l(”' dx fQ (x, u(0)dx
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which implies
]'(t)+0||V0tuz||ig(Q):fgfatuld%
where
Ay (1)|P) 1
J(t) = &dzw—f Iazuz(t)lzdx—f<I>(x,uz(t))dx,
Q p(x) 2Ja Q

is the energy functional.

To prove this theorem we need some a priori estimates which is given in this lemma.

Lemma 3.3.2. Forall T < oo, there exists a positive constant C, such that
2 ! 2
!
SUD e (0,71 [n U720 + fQ |Aul(t)|”“”dx] +o f IV l17, o ds < C
0
Proof. Substituting e; in (3.3) by u/(t), we get
(), up) + (AP0 Ay, M) + T IV U172 ) = (@, u) < 1 fll 2l 2 -
Integrating it over (0, f), we obtain

| L 1N 1O L T L2
M|, + Qde|O+f0 IV (I, g ds

t t
_LQ(X, UI(S))dx‘OS£ ”f”LZ(Q)”u;(S)”LZ(Q)dS
This implies

1, |Auy (1)|PY) ! L2
SO+ [ SO [ ovu 1 g ds+ [ ot unds

|Augi P

dx+f<1>(x,ul(t))dx. (3.5)
p(x) Q

t 1
! 2
5](; ||f||L2(Q)||ul(3)||L2(Q)dS+ 2||u1l||Lz(Q) + N
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Taking into account (3.2) and for m* < 2, we have

fﬂ‘foul(p(x,s)ds‘dx
fﬂfoul (ﬁlslm(x)_1+y)dsdx

Iullmm
ﬁf dx+')/”u1”L1(Q)

Cllul

f |D(x, u; (1) |dx
Q

IA

IA

IA

LZ(Q) )
zc t ||u'||2 ds+ | uoil?sm +1
2 0lll72 ()

IAuz(s)IW)
f[ A Reree dx|ds+1).

IA

IA

Assume that
Auy(1)|PW)
|Au ()] dx

(r)—lu 1%, o +
S =3l | )

Then, the inequality (3.5) becomes

t Il
/ 2 2
j(t)+f0 a||Vul(s)||L2(mds+c(z‘f0 Sl

|Aug;(s)|PXY
Q p(x)

t
dx]ds+ l)sfo ||f||i2(mds+c

! 1 | Aty
+(1+ct ds+ - 2 o+ | ————adx. 3.6

Now, for 2 < m* < p~, we have

|2y | ™)

o m(x)

Au |’"<x>
< f BT e+ Cllugll oy

IA

B

fQICD(x, up()ldx dx"‘?’”ul”Ll(Q)

|A l|p
< C dx+ CllAu|l;pw
fQ - HILp») ()
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Then
| 1o wonax < Cf AP dx+ Clligll e o
Q
p*
< cmaxtaul?, o I8ul 3+ Clurlyzso,
= Cmax{ IquIIW2p(x(m,IIuIIIW2p oy Mtlwzpe -
Thus

|Au; ()P

t
() dx+f alvVu, (s)IILZ(Q)

/
- +
+CmaxllUorl} 2 o g0 1 U012 o 0 101 w2 )}
t 1 |Aug [P
2 0!
Sf ||f||L2(Q)”u;(s)”LZ(Q)dS"i' —||ull||L2(Q) +f£;—

p(x)
+Cmax{|u ” Q’ ||ul||W2,p(x)(Q)}dx- (3.7)

w2pr® @)’ ” uj ” w2p@ Q

Applying Gronwall’s lemma in (3.6) and (3.7) we achieves the proof of lemma. W
Return to the proof of theorem (3.3.1). Using Lions-Aubin lemma, the precedent a
priori estimates enable us to deduce the existence of a subsequence of {u;} denote {u;}

and a function u such that

u, — wu inL?((0,T),L*(Q))

d;u; — O,uin L2((0,T),L*(Q))

w — u in L0, ), WP Q)

d;u; — O,uin L0, T),L*(Q)

d;u; — O,uin L*((0,T), Hy (Q))
AwPY2Au — ¢ in L0, 1), W, "Y @)

(3.8)
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and

GLou) — B(xwin L™ (0, T), L™ Q) with — + i, =1
m m

Orettr — uge in L2((0, ), Wy "™ (). (3.9)

Let w = 25:1 k;(t)e;, with k;(t) € C?[0, T]. Taking equation (3.3), multiplying it by k;(#)

and summing over i, we get
@seug, w) + (AW PO 2 Ay, Aw) + 0 (VO u;, Vw) — (p(uy), w) — (f, w) = 0.
Then, integrating it over [0, 7], we obtain

T T T
—f (atul,atw)ds+(6tul,w)‘0 +f (AW P92 Au;, Aw)ds
0 0

T T T
+af (thul,Vw)ds—f (gb(ul),w)ds—f (f,w)ds=0. (3.10)
0 0 0
Taking the limit (m — oo) and using (3.8) and (3.9), we arrive at

T r  pT T
—f (atu,atw)ds+(0tu,w)‘0+f ((,Aw)ds+af (Vo,u,Vw)ds
0 0 0

T T
—f (¢>(u),w)ds—f (f,w)yds=0a.e. (3.11)
0 0

It remains to prove that { = |Au|P“™~2Au. Let us choose w = u; in (3.10) and w = u in

(3.11), we get

T T T
_fo (atul»atul)d5+(atul;ul)‘o +f0 (AP Ay, Aup)ds

o T T T
+E(Vul,Vul)‘o —fo (c[)(uz),ul)ds—fo (f,upds=0. (3.12)
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And

T T T o T
—f (Gtu,atu)ds+(6tu,u)’ +f & Awds+ > (Vu, Vi)
0 0 0 2 0

T T
—f ((/)(u),u)ds—f (f,u)ds=0a.e. (3.13)
0 0
By virtue of the monotonicity of the operator A?)( o = A1AUPY72Au), we have
T
f (Aw P92 Aup— |AVIPP 2 Av, Au; — Av)ds = 0. (3.14)
0
According to (3.8) — (3.9) and (3.12) — (3.14), we can conclude that
T
f (= IAVIPDO2Ap, Au—Av) 20, YveCP((0,T) x Q). (3.15)
0

Substituting v in (3.15) by u — x¢ and by u + k¢ respectively and passing to the limit
(x — 0), we arrive at

T

fo = 1A01PD2 A0, Ap) 2 0,
T

fo (= |AVPP2Ap, Ag) < 0.

For some x >0 and ¢ € C;°((0, T) x Q) and from the density of Cg°((0, T) x Q), we con-

clude the proof. B

3.4 Blow-Up

In this section we will show the finite time Blow-up of the solution to the problem

(3.1) in the case

=0 ,J(0)<0, (up,Up)>0, 2<p <p'<x<m. (3.16)
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Assume that

2 < p(x) < 2" >2
< X)) ——, n ,
p n—2

and

O(x, u) = Blu|™ 02y, B> 0.

Let us define the energy function

px) m(x)
](t):f |Aul dx+1f |ut|2dx—ﬁf LS (3.17)
o px) 2Ja o m(x)

It easy to see that
T
](t)+0/ fqutlzdxdsS](O) <0. (3.18)
0o Ja
Theorem 3.4.1. The weak solution u of (3.1) which satisfies (3.17) and (3.18) Blows-up

c

in finite time T* = ——————.
p-D(H'©)

Proof. To show blow-up of solution ©, we need to define the following function

T
H(t):f Iu(t)lzdx+af fIVuIdeds.
Q 0 Q

Thus

H' (1) :2f utudx+af IVul®dx. (3.19)
Q Q

Then

H'(H = 2[ u”udx+20f VutVudx+2f lu,?dx
Q Q Q

= Zﬁflulm(’C)dx—Zf IAuI”(X)dx+2f lu ’dx.
Q Q Q
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Consequently by virtue of (3.18) and for x > 2, p* <x < m~, we have

2 ()

IV

T
H”(t)+21<(](t)+af fIVutlzdxds)
0 Q
2,6[ Iulm(x)dx—Zf IAulp(x)dx+2f lu2dx

A px) m(x)
Ayl d+f|ut|dx2,6f||
o px) (%)

+27<0f fIVutlzdxds

2/3[ Iulm(x)dx+2f (%—l)lAulp(x)dx
p(x

+(2+1<)f |ut|2dx+21<af fIVutlzdxds>0. (3.20)
Q 0 Q

v

v

Hence

H'(r)>0, H()>0, VYt>0,

from which we can infer that
H(t) = ocowhen t — T".
Inequality (3.20) leads us to
fQ lu|™¥dx < CH" (1), fQ lus>dx < CH" (1), fQ AulPPdx<CH"(t). (3.21)

On the other hand, we suppose that T* = co. Taking into account (1.1), (1.2) and (3.21),

we get

IVulpgy < ClIVulpog

L
Cmax[ flulp()dx flulp()dx P

IA

IA

Cmax[(H"(t))P‘ (H ()7 ] (3.22)
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Furthermore

||u||L2(Q) = C”u”Lm(')(Q)
< Cmax flulm()dx flulm”dx
< Cmax|(H"(1)7, (H" ()7 . (3.23)

Assuming that H' > 1 and H” = 1. Using Cauchy schwarz, (3.22) and (3.23). Then (3.19)

can be written as

H'(1)

IA

2
2||ut||Lz(Q)||u||Lz(Q)+of Vuldx

IA

c(H"w ETa H"(t)%) (3.24)

from which, we get

2+m~

1 1
C(H'(1)° < H" (1), with — = max| —)ifp~>2,m™>2.
p "p

2m~
Simple calculation gives us

H'(0)

H'(t) = —oo0as t— T7%,

(1- e aropet) ™!

with
N C
T = o1 <00, p>1,
(p—-1(H'(0)
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which leads us to the contradiction.

Using inequality (3.24) and for p =2 and m = 2, we obtain

H@) < 2||ut||L2(Q)||u||Lz(Q)+0L|Vu|2dx
< 2lluglpllull o)+ CollVul?,, . (3.25)

According to (3.18), we get

f|u,|2dxscf lu| ™™ dx, fquIp(x)dstf |u) ™9 d x
Q Q Q Q

Then, the inequality (3.25) becomes

C[(fﬂlulmdx)%+(fﬂlulmdx)’%—]

2+p

c(fQ|u|’"dx) e

H'(1)

IA

IA

Which implies that

-
HI(O) ]2+pp‘ .
—ooast—T .

1

(1 - D (H'(o))p—l)m

f lu|dx=C
Q

Therefore concluding the proof. W

Theorem 3.4.2. Let u be a weak solution of (3.1) with a = 0 which satisfies (3.17) and

(3.18). Then || ulliz(m be unbounded in finite time interval (0, T*), with

2llugll?,

T = .
K (uo—U1) —y'(0)
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Proof. We define the positive function v as

w(t) = f lu(x, DI*dx.
Q

Thus
u/’(z‘):ZfQutudx.
Then
/ 2 2
W' 0)? = 4(];2utudx)
< 4(L|ut|2dx)(f(2|u|2dx)
< 41//(t)(f9|ut|2dx).
Which gives us
! 2
flutlzdxz LA (3.26)
Q 4y (1)

Thank’s to (3.18) and (3.26) and for x > 2, we have

v'(1) 2[ Iutlzdx+2,6f lulm(X)dx—2L|Au|P(x)dx
Q Q

v (1) + 2k (1)

IV

\%

(K+2)f lu|*dx
Q

' (1))?

2 .
(x +2) (D)

This implies
v’ (1) o K+2 o
(W'(1)? ~ 4y(1)

(3.27)
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Taking into account (3.16) and (3.27), we get
v'(1) >0, t>0.

Simple calculation applies to (3.27) leads us

2
luoll?,

v(t) = , K>2

4
(1 _ tx(uo—Ul)—w'(O))m

2 2
luolZ,

therefore concluding the proof. W

3.5 Conclusion

In this chapter, we studied the hyperbolic p(x)-biharmonic problem under homo-
geneous Neumann boundary conditions. Using the Galerkin method, we proved the
global existence of a weak solution and derived key a priori estimates. Moreover, we
identified the conditions under which the solution may blow up in finite time when

the initial energy is negative.
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Approximation Studies of the Evolution

p-Biharmonic Problem

4.1 Introduction

In this chapter, we are interested in the approximation study of the evolution p-

biharmonic problem using the Rothe and mixed finite element methods.
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4.2 Position of the Problem

We consider a bounded open domain Q of R”, with a Lipschitz-continuous bound-
ary I'. In this chapter we are interested in the study of the following parabolic integro-

differential p-biharmonic problem

ou £

— + S u(t, x) :f(t,x)+f k(t— )A5u(s, x)ds inIxQ,

ot 0

u=0,Vu=0 onIxT, 4.1)
u(0,x) = ugp on Q.

Where A%u = A(|AulP2Au) is the p-bilaplacian operator, p > 1, yy € Woz’p(Q), ke CW)

and f € C(I,L9(Q)) is a Lipschitz continuous function.

4.3 Semi-Discretized Problem

4.3.1 The Variational Formulation

Considering v € WO2 'P(Q) as a test function, we multiply equation (4.1) by v and inte-

grate over (), we obtain

t
(ut,v)+(|Au|p_2Au,Av):(f,v)+(f k(t—s)lAqu_zAu,Av), Voew; Q) 4.2)
0

4.3.2 The Semi-Discretized Formulation

We subdivide the time interval I = [0, T] to n subintervals, T = %, i =1,...,n where

u; = u(t;, x), t; = it and let
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Ui — Ui
Su; = %, fio)=fu,x), kij=k(ti—t;)

For i =1,..., n, the recurrent semi discretized problem is

Find u; = u(t;,.), i =1,2,...,nsuch that,
O ui, v) + (Auil P72 Aui, Av) = (fi, v) (4.3)

+T L) ki (AW 1P2Au, Av), Yve WP (Q)

Theorem 4.3.1. The problem (4.3) admits a unique weak solution u; € Woz’p(Q),Vi =
1,..,n.

Proof. Using monotone operator theory, we can arrive at the desired result. B

4.4 Necessary A Priori Estimates

In this part, we show some a priori estimates needed to prove the existence of a weak

solution.

Lemma 4.4.1. There exists C > 0 independent of n such that

m
lumlz < Co Y TlAUl}y 0 <C, m=1,.,n
i=1

Proof. Choosing in (4.3), v = u; and summing over i = 1,...,m with 1 < m < n, we

obtain
m m m i-1 2
> wi— i, u) +T Y NAwil, o = 2 kij|Auy|P T Auy, Awy)  (4.4)
i=1 i=1 i=1 j=0
m
+TZ(f,~,u,~).
i=1
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The first term on the LHS of (4.4) can be estimates as

Zl (u’l - ul 1 Uuj ) - Zl ”ul u’l 1”L2(Q) ”um”Lz(Q) ”uO”LZ(Q)
1 l

Holder and Young inequalities give us

m — m i-1
i Z(Zk,]mu] 2aupduw)| = €Y Y 0w IAu)
i=1"j=0 i=1j=0
m i—1 P
< C), “Auj”Lqp(Q)”Aui“Lp(Q)
i=1j=0
m i-1 m
< CY Y lAujlly )+ Ced TlAuil}, -

i=1j=0 i=1

Similarly, the estimation for the last term in the RHS of (4.4) is given as follows

m
<C+Ce) tlAuilf, -
i=1

m
7Y (fi i)

i=1

Combining everything, we arrive at

m i—1
2 2 p 2
” um”Lz(Q) Ce) Z T ”Aul ”LP(Q) - CZ Z T ||Au] ||LP(Q) + ” uO ”LZ(Q) + C
i=1 i=1j=0

Since € can be chosen arbitrarily small to ensure (1 — Ce) > 0, the application of Gron-

wall’s lemma completes the proof. B

Lemma 4.4.2. There exists a positive constant C, such that

0wyl w-24(Q) = C
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Proof. let us introduce Rothe functions

un(0) = up

ul’l(t) =Uj-1+ (t_ ti—l)6ui) I<i< n, Vie (ti—lr ti])

Together with step functions,

u_n(()) = Uy, u_n(t) = Ui, Vte (ti—l! ti]) i= 1)---)n)

F2(0) = £(0), ful®=f(t), VEe(tioy, til,i=1,..,n.
Then, the equation (4.3) becomes

- i-1
Gun (1), 0)+ O30, (0, 0) = (fu (), ) +7 Y kij(A2u;v), Yve W, P (Q).  (4.5)
j=0

Since A%, : Woz’p (Q) — W24 (Q) is bounded for p > 2 (see [25]), Holder and e— Young

inequalities yield:
_ i-1 ) )
Gun @, = |G v +7 X kij (AP 180D + | A2 T (1), ) (4.6)
j=0
_ i-1 2
< |l ey 11 +7C X [Auj] [y 1801 @
j=0
+Clvrr
C iz P i—1
< (Clflloa o+ EZOT||Au,-||L,9(Q)+Zocmm 1920 -
J= J=

Taking into account Lemma (4.4.1), and putting € = 1 in (4.6), we arrive at

|G (1), ) < Cllvllyong,,  YveWy? (@,

0
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Thus

10unllw-24qp= sup  |Gu,(®),v)|=C.

v <1
1,25 g,

Hence, the proofis accomplished. W

4.5 Existence

Now we will show the existence of a weak solution to the problem (4.1).

Theorem 4.5.1. Letp >2,up € Woz’p(Q), ke C(D) and f € C(I,L9(Q)) be a Lipschitz con-
tinuous function. Then, problem (4.1) admits a weak solution u € C (I, W29 (Q)) n

1P (1L WeP (@) with u; € 19 (1, W29 Q).

Proof. The precedent lemmas allow us to conclude that

10ctunlla(rw-200) <Cr [ = Cand |[un| ¢ (120 =€

p(1we? @)

Then, the ([32], Lemma 1.3.13) implies that there exists a function u and a subsequence

of {u,}, denote {u,},, such that

up, — u inC([0,T],W >9(Q)
0iup, — O.uinL7([0,T),W >7(Q))
un () —  u(®) in Wy Q)

@ — u inl?([0,7), W (@)
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Taking into account the assumptions of f, we get

<

C
L~ n’

Ffu(t) = f (1)

this yields

fo— f inL9([0, T, L9 ().
According the hemicontinuous of A% : WO2 P Q) — W29 (Q), we obtain

(A2 (1), v) — (A2u(n),v), VveWwy’(Q),

das n — oQ.

Proceeding similarly as in [25], we get
i-1 t
T(ZO kij Ao, v) — fo k(t—$)A5u(s,x)dsin L9([0, T, W™>9(Q)) as T — 0.
]:
Integrating (4.5) over (0, T) and passing to the limit as n — oo, we arrive at
T T T T, pt 5
(e, vydt+ | N2u,vyde= | (f,vde+ ( k(t—$)A2u(s, x)ds, v)dt, Vve WP Q).
0 o 7 0 o ‘Jo P 0
Differentiating with respect to ¢, we conclude the desired result. B
4.6 Uniqueness of Weak Solution

In this part, we will show the uniqueness of a weak solution to (4.1).

Theorem 4.6.1. Forl < p < 2, there exists at most one weak solution to problem (4.1).
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Proof. Let u; and u; be two solution to problem (4.1). Rewriting the equation (4.2)

for u; and u, respectively, subtracting the second from the first, we obtain

(at(ul —up), l}) + (IAull"’_zAul - IAugl’”_zAug,Av)

t
:(f k(t—s) (IAull”_ZAul—IAugl”_zAug)ds,Av). 4.7)
0

Taking into account Lemma (1.3.7) and testing (4.7) with u; — uy, then integrating the

result from 0 to ¢ (with ¢ € [0, T]), we get

¢
I ©) = 42 O+ Co [ 18 11 = ) g

(o pt
< f(f k(t—39) (1Aw1P 7% Auy — [Aua|P 72 Awp) ds, A (ug — up) | dt,
0 0

where 17 (0) = u,(0).

Thus

¢ {(prt
le IA (1 = up) oy dt - < f(f k(t—9) (1Aurl"~% Ay — |Aua|P ™% Aup) d's, A (ur — up) | d t.
0 0 0

Using Lemma (1.3.7), together with Hélder and e—Young inequalities, and choosing €

such that (C; — Ce) > 0, we obtain

4
(€ - Ce)fo 1Ay~ )1, dt

C r¢ t q
< —f f (f k(t—ys) (lAullp_zAul_|Au2|p_2Au2)ds dxdt
€ Jo Ja\Jo
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Thus

¢
(Cl - Ce)f ”A (ul - u’2) ”fp(Q) dt
0

C ¢ ¢ q
?f f(llk”C(I)f (IAullp_zAul—IAuglp_zAuz)ds) dxdt
0 Ja 0

<
1,9
C (¢ ([t q
< —ff(llkllcu)Tll’(f ||Au1|p_2Au1—IAuzlp_zAu2|qu)q) dxdt
e Jo Ja 0
¢ ¢
< Cf ff IA (11 — u2)| P~V ds
0 JaJo
<

4 t
Cf ff A (u; — up)|P dsdxdt.
0o JaJo

Applying Gronwall’s lemma, we get

4
[ v =l g dr=o, vCel,T),

which leads us to conclude that ©; = u, in LP ([0, T, WO2 P (Q)). [ |

4.7 Mixed Formulation

In this part, we analyze the mixed formulation using the observation that if ¥(w) =

|w|P~2w, then its inverse satisfies

1

P (w) = sgn(w) [w|PTw = [w| 7w,
which motivates the introduction of the auxiliary variable

Ai = 1Aui 1P~ Au;
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Let X = WO2 'P(©Q) and Y = L9(Q). Then the problem (4.1) can be rewritten as follows

—Au; =|Ai177% A,
. (4.8)
—Adi=—fi+0u;— TZ;;II kl‘jA/li.
The mixed variational problem of (4.8) writes as follows:
Find (u;,A;) € X x Y such that
a(Ai,v)—B(u;,v) =0 Vve X, (4.9)

BAi, ) =Ly(p) Ve,

Where the bilinear and linear forms are defined as:

a(Ay, v):= (1419724, v),
ﬁ(ﬂl,(P) = _(AAZ')(P))

Ly(@):= (- fi+6ui, @)+t X121 kij B4}, )
Proposition 4.7.1. (Inf-sup Condition) There exist positive constantsk and M, such that

u;,
k<M inf M
0£peY ozyex Uil xlIPplly

Proof. For the proof see [23].

4.8 Full Discretization

Let Y 1 be a triangulation consisting of triangular elements T where the intersection of

any two distinct elements is either a vertex, an edge, or empty.
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This triangulation satisfies the regularity condition in the sense of Ciarlet, meaning

that there exists a constant p > 0 such that:

h
du>0; u= inf el VT EeYy,
TEYTpT

where pr is the diameter of the largest ball contained inside T and hr is the diameter
of T.

Let P,,(Y},) express the space of piecewise polynomials of degree m over the triangu-
lation Y,

Pu(Yp) ={¢ : 17 €Pp(T), VT € Y}

The discrete finite spaces is given by
X" =Pu(Yp)nC'@Q),

and

Xl ={peX"; pron =0},

where R is the Ritz projection operator such that
f V(Rv)Vodx = f VoVedx, Yo e X" n HE Q).
Q Q

We give the mesh size h as

h=maxhry.
TeYT
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Therefore , the fully-discrete mixed finite element scheme for (4.9) becomes

Find (ulh, /1?) € X' x X" such that
h noy
a(Al ) v) - ﬁh(ul ’ U) - 0)

Br(Al,d) = L) Y(v,¢p) € X" x X[,

This implies

Find (ufl, /lf.’) € X' x X" such that
(IAJ1972A%, v) = (Vu}, Vo) =0,

(VAR V) = (f; — Sui ) +z;’;11 kij(VA;,V$)  Y(uv,p)e XM x Xh.
Theorem 4.8.1. For m = 2, there exists a positive constant C such that

q
hp-1 h T(m+1 2 +1
i — u; ||sv2,p(9)+||wi_wl‘ lra < C(hz™ )Ilwillévmu,q(ﬂ)"’hm lwillwm+iaq)
h

-1 +1
+hm ” Uu; ” wm+Lp(Q) + hm ||6ui||wm+1,q(Q)).

proof. see [23, 43] .

4.9 Conclusion

In this work, we studied a high-order parabolic p-biharmonic equation with a memory
term. By combining the Rothe method and the mixed finite element method, we es-
tablished the existence and uniqueness of a weak solution and derived a fully discrete
numerical scheme. The obtained a priori estimates ensured the stability and conver-

gence of the proposed method.
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In this thesis, we proposed three studies to analyze high-order parabolic and hyper-
bolic problem, both theoretically and numerically.

In the first work, we solved the integro-differential diffusion equation. We obtained
avariational formulation in which the function u is the onlyunknown function because
the unknown Dirichlet boundary condition p in the inverse problem was eliminated
using the described integral measurement. We proved the existence and uniqueness
of the weak solution of problem. Using Rothe’s method and the theory of monotone
operators.

For the second work, we investigated a high-order hyperbolic p(x)—bilaplacian
equation with a variable exponent and a damping term. We studied the existence of
weak solutions and conditions that may lead to finite-time blow-up.

For the third work, We focused our attention on studying the parabolic p—biharmonic
equation with a memory term, we showed the existence and uniqueness of weak so-
lution. To this end, we employed the Rothe method and the mixed finite element
method.

Then, we may focus on various methods, both theoretical and numerical, for study-

ing and analyzing high-order PDEs. In this direction, we may also consider the role of

66
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artificial intelligence and quantum computing, which are increasingly important for
the efficient treatment of nonlinear, memory-driven, degenerate, or integro-differential

PDE:s that are otherwise intractable using classical techniques.
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