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Abstract

Oil spill detection has garnered increasing research interest in recent years due to the
profound impact such incidents have on marine environments, natural resources, and the
livelihoods of coastal communities. Hyperspectral remote sensing imagery offers a wealth
of spectral information, which is highly advantageous for monitoring oil spills in complex
oceanic scenarios. However, most existing methods rely on supervised or semi-supervised
frameworks, requiring substantial effort to annotate a sufficient number of high-quality

training samples. This process can be labor-intensive and time-consuming.

In this study, we use a novel approach which consists of an unsupervised oil spill detection
method based on the isolation forest algorithm tailored for hyperspectral images (HSIs).
The methodology begins with an estimation of noise variance across different spectral
bands because noise levels can vary significantly. Bands severely affected by noise are
subsequently discarded to improve data quality. Next, Principal Component Analysis
(PCA) is employed to reduce the high dimensionality inherent in HSIs, facilitating more

efficient processing.

The core of the approach involves estimating the probability that each pixel belongs to
either the seawater or oil spill class using the isolation forest. This probabilistic information
enables the automatic generation of pseudo-labeled samples through clustering algorithms,
which serve as training data for subsequent classification steps. An initial detection map is

then produced using support vector machines (SVM) on the dimension-reduced data.

To assess the effectiveness of our proposed method, we evaluated the method on dataset
termed the Hyperspectral Oil Spill Dataset (HOSD), comprising eighteen hyperspectral

images capturing oil spills over the Gulf of Mexico in 2010.



Résumé

La détection des marées noires suscite un intérét croissant dans la recherche ces derniéres
années en raison de I’impact profond de tels incidents sur les milieux marins, les ressources
naturelles et les moyens de subsistance des communautés cotieres. L’imagerie
hyperspectrale offre une richesse d’informations spectrales, particulierement avantageuse
pour surveiller les déversements d’hydrocarbures dans des scénarios océaniques
complexes. Cependant, la plupart des méthodes existantes reposent sur des cadres
supervisés ou semi-supervisés, nécessitant un effort considérable pour annoter un nombre
suffisant d’échantillons d’entrainement de haute qualité. Ce processus peut étre laborieux

et chronophage.

Dans cette étude, nous adoptons une approche novatrice consistant en une méthode non
supervisée de détection des marées noires basée sur 1’algorithme Isolation Forest, adaptée
aux images hyperspectrales (HSI). La méthodologie commence par une estimation de la
variance du bruit a travers les différentes bandes spectrales, car les niveaux de bruit peuvent
varier significativement. Les bandes séverement affectées par le bruit sont ensuite écartées
afin d’améliorer la qualité des données. Puis, une analyse en composantes principales
(ACP) est employée pour réduire la forte dimensionnalité inhérente aux HSI, facilitant un

traitement plus efficace.

Le cceur de I’approche consiste a estimer, pour chaque pixel, la probabilité d’appartenance
a la classe « eau de mer » ou « marée noire » a I’aide de 1’Isolation Forest. Cette information
probabiliste permet la génération automatique d’échantillons pseudo-étiquetés via des
algorithmes de clustering, qui servent de données d’entrainement pour les étapes de
classification ultérieures. Une carte de détection initiale est ensuite produite en utilisant des

machines a vecteurs de support (SVM) sur les données a dimension réduite.

Pour évaluer I’efficacité de notre méthode proposée, nous avons évalués la méthode sur un
ensemble de données hyperspectral complet, dénommé Hyperspectral Oil Spill Dataset
(HOSD), comprenant dix-huit images hyperspectrales capturant des marées noires dans le

golfe du Mexique en 2010.
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List of Acronyms

Abbreviation Full Term

HSI Hyperspectral Imaging

PCA Principal Component Analysis

SVM Support Vector Machine

AVIRIS Airborne Visible/Infrared Imaging Spectrometer
HOSD Hyperspectral Oil Spill Dataset

iForest Isolation Forest

RGB Red Green Blue (color channels)

ROC Receiver Operating Characteristic

AUC Area Under Curve

EM Electromagnetic (radiation)

MSS Multispectral Scanner (Landsat sensor)
AIS Airborne Imaging Spectrometer

PFRS Portable Field Reflectance Spectrometer
ICA Independent Component Analysis

MNF Maximum Noise Fraction

LDA Linear Discriminant Analysis

NLP Natural Language Processing

DBSCAN I]\)ke)lilsseity—Based Spatial Clustering of Applications with
TP True Positive

FP False Positive

TN True Negative

FN False Negative

TPR True Positive Rate (Recall/Sensitivity)



Abbreviation Full Term
FPR False Positive Rate
DP Detection Precision

RBF Radial Basis Function (Kernel)
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Introduction

Introduction

Oil spill detection is a necessary and important task for us to tackle because of oil leaks
high and bad effects on the environment due to the accidents caused during oil explorations
and transportation happening around the world, which leads to severe pollution in the

marine environment and damages coastal species.

If the oil leaked would not be monitored properly, the oil slick would find its way to the
coast following the sea waves, which leads to high threats to coastal species from fish to

coral reefs and even human health would be affected.

To detect and monitor the oil spills, we need to apply sensing techniques specially in remote
and inaccessible areas on a large scale, it is also possible to predict the speed and direction
of the oil movements using multi-temporal data and drift predictions models, which play

an important role in facilitating clean-up tasks.

Over the past decades, remote sensing has been extensively explored for oil spill detection

and monitoring.

Early methods utilizing airborne visible (VIS) and infrared (IR) data faced limitations such
as poor separability between oil spills and surrounding objects. In contrast, active
microwave sensors, particularly synthetic aperture radar (SAR), have become prominent
due to their ability to operate in all weather conditions and during day and night. SAR
detects oil slicks as dark spots caused by the inhibitory effect of oil on capillary waves,

reducing backscatter.

Nonetheless, challenges remain in distinguishing actual oil spills from other phenomena
such as grease ice or internal waves that also produce dark patches in SAR imagery.
Additionally, SAR data suffer from high costs, low revisit frequencies, and limited swath
widths, prompting interest in multi-platform SAR and supplementary optical sensors like

multispectral and hyperspectral imagers.

Multispectral sensors, such as MODIS and Landsat, have also been employed for oil spill

detection, relying on spectral and spatial information. However, their relatively coarse

(1]
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spatial resolutions limit effectiveness for identifying small spills. Conversely,
hyperspectral sensors mounted on aircraft offer both rich spectral and high spatial
resolution, enabling detailed analysis of oil spill features and emission types like water-in-
oil (W/O) and oil-in-water (O/W). These sensors facilitate advanced machine learning
techniques, such as spectral shape matching and feature extraction, which improve
detection accuracy and reduce false alarms. Overall, hyperspectral data represent a
promising avenue for precise oil spill identification, especially when combined with

sophisticated analytical methods.

Even though we still face several challenges to detect the oil spill accurately using

hyperspectral images due to:

e The lack of dataset in regards of oil spills either there are none or you need to pay
some money to acquire some.

e Training samples requires either a supervised or semi-supervised approach which
is expensive and time consuming

e Bad image noise due to low lighting, shadow and bad weather results in corrupted
hyperspectral images that leads to corrupted spectral bands and this has a negative

effect on the accuracy of the oil spill detection.

In order to overcome these issues in this work we have used an unsupervised oil spill
detection method based on isolation forest followed by other steps mentioned in chapter 2,
Where we used a novel hyperspectral remote sensing database for oil spill detection, which

is a publicly available benchmark dataset [1].

The manuscript is organized in three chapters. In the first one, we take a brief deviation
and introduce an aspect of what is hyperspectral imaging and what are the tools used to

capture these images, its origin and history, and differences from normal images.

Chapter 2 describes the different steps, algorithms and methods that are combined to
produce the clustered image and detect oil spills. Finally, the last chapter contains the
obtained results and discussion of numerical values and the overall evaluation of the

method. Finally, a conclusion is given.

(2]
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1.1 Introduction

Hyperspectral imaging is all about the fundamental principles of how light interacts with
materials and how this interaction enables precise material identification, it begins with
electromagnetic radiation emitted by the Sun, where different wavelengths are absorbed or

reflected by objects on Earth, forming the basis of spectral analysis.

Each material has a spectral signature, a unique pattern of reflectance highlighting their

significance in remote sensing applications.

In this chapter, we explore the technological aspects of hyperspectral imaging, including
the functioning of hyperspectral cameras and spectrometers, and distinguishing between
various acquisition techniques such as point scanning and line scanning. Additionally, the
historical development of HSI is traced from its origins in spaceborne Earth observation
missions to its current widespread applications in environmental monitoring, geology,

agriculture, and beyond.

Furthermore, we need to emphasize the importance of hyperspectral sensors, like AVIRIS,
demonstrating their capabilities for detailed surface characterization and their role in
critical environmental applications such as oil spill detection. We also underscore the
versatility of HSI across multiple fields, illustrating its expanding role in industry,

medicine, homeland security, and resource management.

1.2 Hyperspectral Imaging (HIS)

HIS is the study of light interaction with materials and how it helps identifying them, so let

us take a quick dive on how sunlight and electromagnetic energy works.

Electrical magnetic energy (EM) radiates from the sun in waves, these waves are varied in
size, most of these waves are invisible to our human eyes (figure 1.1) but the amazing thing
is that when these waves reach the surface of the earth, they either get absorbed or reflected
by objects, we call it (Spectrum). This phenomenon depends on their structures where each
object has its own spectral signature (Spectroscopy) and with this information we can
measure the intensity of the absorption or reflection using a special camera (figure 1.2)

through a process known as hyperspectral imaging.
(4]
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Figure 1.1: visible and invisible wavelengths [2].

Figure 1.2: Hyperspectral Camera scheme [3].

Each material has a unique spectral signature which allows the light to behave in a certain

way depending on that signature.

The spectrum is the amount of light in different wave lengths which shows how much light

is emitted, reflected or transmitted from the material, in other words spectrum shows how

much a certain color is contained in the light and for that aspect we can use a spectral

(5]
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signature to identify our materials because we concluded that each material has its own

signature similar to the human’s finger print.

Where a normal digital camera captures normal visible light waves reflected off of objects
and recorded the information in just 3 bands (RED, GREEN, BLUE) similar to a human
eye (figure 1.3), it can’t capture the electromagnetic waves which contain thousands of
wave lengths ranging from large radio waves to very small Gamma waves. In conclusion,
the (EM) contains thousands of waves that are transformed into bands and to capture them

we need to use a hyperspectral camera or a spectrometer.

Red (R) RGB Image

Green (G)

Blue (B)

Intensity

X B G R
Wavelength &

Figure 1.3: RGB image [4].

1.3 Hyperspectral camera (Spectrometer)

An instrument that splits the incoming light (reflected light) into its individual wavelengths
or spectral bands, it provides a two-dimensional image of a scene while simultaneously
recording the spectral information of each pixel in the image, this detailed spectral
information allows for more precise material identification, chemical composition analysis,

and environmental monitoring.

A hyperspectral image has two spatial dimensions (Sx and Sy) and one spectral dimension

(SA) which forms a 3D hyperspectral data cube (figure 1.4).

[6]
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Figure 1.4: 3D hyperspectral data cube [4].

1.3.1 Spatial Resolution

It defines the clarity of the image and not the number of pixels in an image, its
characteristics depends on the design of the sensors in terms of its field of view or altitude,
take for example a patch of land that we want to take a picture off, the smaller the size of

the patch the higher the details we can get.

1.3.2 Spectral Resolution
It is the number of spectral bands and range of electromagnetic spectrum measured by the

sensor, where the resolution corresponds to the number of bands. The higher the number

of bands, the better the resolution.

1.3.3 Temporal Resolution
Usually defined in days and it is the time needed by the sensor to revisit and obtain data

from the exact same location, which means the higher the revisit frequency the higher the

temporal resolution is.

(7]
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1.3.4 Understanding Spectral Signatures

Hyperspectral sensors allow us to measure all types of electromagnetic energy within a

specific range as it interacts with materials (absorb, transmit and reflect).

Reflectance is all about measuring the electromagnetic energy bouncing back from a
material’s surface; it can range from [0-100], where 0 means that the material absorbed the

entire light and 100 means that all the light was reflected.

To be specific the reflectance values of different materials on the surface of the earth such
as soil, forest, water and minerals can be plotted into spectral signatures (spectral response

curves) and compared (Figure 1.5).

The more spectral resolution of an imaging sensor, the more classification information can

be extracted from spectral signatures.

Hyperspectral imagery has been utilized by geologists for mapping the land and water

resources as well as to map heavy metals and other hazardous wastes in active mining areas

[6].

(8]
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Figure 1.5: Spectral signature of different materials [5].

1.4 The Origin of Hyperspectral Imaging

Hyperspectral imaging (HSI) is a powerful and non-destructive analytical technique that
captures both spatial and spectral data across a wide range of narrow and contiguous
wavelengths. Originally developed for Earth observation in remote sensing, it has since
evolved into a versatile tool applied in numerous fields such as agriculture, food quality
control, environmental monitoring, and biomedical diagnostics. By collecting a complete
spectral signature for each pixel in an image, HSI enables detailed identification of surface

and material properties, far beyond the capabilities of conventional imaging systems.

The conceptual roots of hyperspectral imaging lie in spectral remote sensing, a domain that

began with the launch of Landsat 1 in 1972, then known as the Earth Resources Technology

[9]
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Satellite (ERTS-1). This satellite carried the Multispectral Scanner (MSS), enabling the
capture of Earth surface data in several discrete bands. Though revolutionary at the time,
multispectral data lacked the spectral resolution needed for more precise material

discrimination [6].

During this period, researchers at the NASA Jet Propulsion Laboratory (JPL), including
Goetz and the late Gene Shoemaker, began analyzing MSS data for geological mapping,
particularly on the Coconino Plateau in Arizona. They encountered challenges interpreting
subtle color variations in the imagery, which could not be adequately explained without
direct spectral measurements from ground samples. This need led to the development of
the first portable field reflectance spectrometer (PFRS) in 1974, capable of capturing
reflectance data across the 0.4 to 2.5 um range the full solar-reflected spectrum [7]. These
early efforts were instrumental in influencing the design of future remote sensing

instruments, such as the addition of Band 7 to the Landsat Thematic Mapper.

Recognizing the limitations of multispectral imaging, Goetz and colleagues at JPL
proposed the concept of imaging spectrometry, formally defined as the acquisition of
images in hundreds of contiguous spectral bands such that a full radiance spectrum could
be obtained for each pixel [8]. In a 1985 Science publication, this vision culminated in the
development of the Airborne Imaging Spectrometer (AIS), the first sensor of its kind, and
it was in this context that the term “hyperspectral imaging” was first coined by Jerry

Solomon [8].

A major step forward came with the creation of AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer), developed by NASA JPL in 1987 as a more advanced successor to
the AIS. AVIRIS was designed to acquire high-quality hyperspectral data across 224
contiguous spectral bands, covering the visible to shortwave infrared range (400-2500 nm).
Its primary goal was to measure and characterize Earth's surface and atmosphere with
greater precision, allowing for the identification and mapping of surface materials,

vegetation types, mineral deposits, and atmospheric constituents [9].

[10]
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Since its inception, AVIRIS has been flown over a wide variety of geographic regions
including deserts, forests, agricultural areas, and volcanic zones providing critical data for

environmental monitoring, land use studies, and climate research [9].

Despite the technical limitations of the time, such as limited onboard processing power and
dependence on centralized computing facilities, AVIRIS established a new standard for
airborne hyperspectral sensing. It confirmed that high-resolution, laboratory-quality
spectral measurements could be achieved remotely and effectively over broad areas. The
success of AVIRIS greatly influenced both research and instrument development in the

decades that followed [9].

As sensor technology and data processing capabilities improved, hyperspectral imaging
found applications beyond its original scope. By the late 1990s, researchers such as Lu and
Chen demonstrated the technique’s potential in agriculture and postharvest quality
evaluation, notably in detecting defects in fruits like apples [10]. Soon, the food industry
began to adopt HSI as a non-invasive means to evaluate internal attributes such as sugar
content, acidity, and texture properties invisible to the human eye or standard RGB imaging

systems.

Researchers including Gowen et al. and Nicolai et al. expanded the field further, using
hyperspectral imaging for chemical imaging, allowing for spatial visualization of
biochemical content [11-12]. These developments marked a shift toward real-time
industrial applications, where quality and safety control could be automated, non-invasive,

and highly accurate.

Today, hyperspectral imaging continues to evolve rapidly, driven by advances in optics,
electronics, data science, and machine learning. From its origins in space-based Earth
observation missions to its growing presence in precision agriculture, food inspection,
medical diagnostics, and environmental science, HSI has proven to be a transformative
technology. It serves as a prime example of how foundational innovations in one field such
as NASA'’s efforts in planetary and Earth sciences can ripple across disciplines, solving

new challenges and inspiring new research directions.

[11]
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Table 1.1: The current space and airborne satellite hyperspectral sensors [4].

Sensor Origin Spectral No. of Spectral Operational Spatial
Range spectral Resolution Altitude (Km)  Resolution
bands (nm) (m)
Satellite | Hyperion NASA, UK 352-2576 220 10 707 (7.7km) 30
Based
PROBA-CHRIS ESA, UK 415-1050 1963 3417 830 (14 km) 1736
Airplane | AVIRIS Jet Propulsion 400-2050 224 10 - -
Based Laboratory, USA
CASI Itres, Canada 380-1050 288 <3.5 1-20 1-20
AISA HyMap Specim, Finland 400-970 244 33 1-20 1-20
Integrated 440-2500 128 15 - -
Spectronics,
Australia
4 Head Well Headwall 400-1000 270 Nano 6 Nano <0.15 0.01-0.5
Based Hyperspec Photonics, USA 324 Micro 2.5 Micro
UHD 185 Cubert, Germany  450-950 138 4 <0.15 0.01-0.5
Firefly

1.5 Different usages of hyperspectral imaging

This is a rapidly growing field and has a great variety of applications such as: military,
industrial, commercial (food safety and quality), medical fields, water food and resources
management, agriculture, forensics, homeland and defense security, plant detection and
fire prediction, weed and crop discrimination [4], and most importantly our main theme for

this thesis which is oil spill detection.

1.6 Conclusion

In this chapter, we have explored the fundamental principles and technological
advancements of hyperspectral imaging (HSI). Starting from the interaction of sunlight and
electromagnetic radiation with Earth's surfaces, we examined how spectral signatures
enable the precise identification of materials. The chapter outlined the operational
mechanisms of hyperspectral sensors, and traced the historical evolution of HSI from its
origins in spaceborne remote sensing to its diverse modern applications. Emphasizing the
sensor’s high spectral and spatial resolution capabilities, we highlighted its significant role
in environmental monitoring, including critical tasks such as oil spill detection. Overall,

this chapter provides a comprehensive understanding of hyperspectral imaging technology,

[12]
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laying the groundwork for its application in the subsequent analysis and detection methods

discussed in this thesis.

[13]
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2.1 Introduction

This Chapter provides a comprehensive, step-by-step methodological explanation of oil
spill detection pipeline for hyperspectral data, which integrates Principal Component
Analysis (PCA), Isolation Forests, and Support Vector Machines (SVM). Data
preprocessing, dimensionality reduction, unsupervised anomaly scoring, supervised

refinement, and performance evaluation is discussed in detail.

2.2 Machine Learning

Machine Learning is a way where computers learn from Data and use what was learned to
make judgments. It is divided into many techniques, from basic linear regression to

advanced deep learning models.

Machine learning is also known as a branch of artificial intelligence which instructs
computers to analyze data and extract conclusions by improving their performance on a

specific task through data analysis instead of a specific instruction or programming.

It is used by scientists for diverse purposes, and is a subset of artificial intelligence, where
(AI) can do problem-solving, decision-making and spotting patterns and gaining
knowledge..., (Al) aims to mimic human intellect and require human-level cognition and

reasoning.

(ML) focuses on specific tasks such as image recognition, recommendation systems,
natural language processing (NLP), healthcare, financial services, language translation and
more, which all depend on these core components (figure 2.1). It focuses on crafting
algorithms, models that enable computers to learn from data enhancing performance
progressively, where we can consider machine learning as one of the many tools used by

(AD).

e Data: can be texts, numbers, images or any information that can be processed by a
computer, not to forget the quality and quantity of this said data which plays a
significant role in (ML).

[15]
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Algorithms: are the heart of the process, and are responsible for learning patterns
and relationships in our Data, where it can be supervised or unsupervised or even
reinforcement learning.

Training: used in supervised learning, it allows the algorithm to learn from the data
where the correct answer is and make correct predictions when new data is
presented.

Model: it uses the algorithms to encapsulate the patterns and relationships it has
learned from the data during training, after that it can be used for making
predictions or decisions.

Testing and validation: it is essential after training, to ensure the model’s ability to
apply its new found knowledge on unseen examples.

Deployment: after training and validation, we can be integrated into real-world via
software, systems or devices to automate tasks, assist in decision making or make

predictions.

Data Collection

=

Data Preparation

~

Choosing Learning

Algorithm \'

Training Model

~

Evaluating Model

~

Predictions

Figure 2.1: Machine learning [14].

The rapid advancement of machine learning has brought about significant developments in

supervised and unsupervised learning which they are two fundamentals used in a wide

range of applications however, these learning methods are often faced by various

challenges from complexities of data labeling and overfitting, limiting its scalability and

[16]
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generalization in supervised learning to the intricacies of clustering and noise management

and interpretability in unsupervised learning.

2.2.1 Supervised Learning
Trained algorithms using labeled data, meaning the input data comes with corresponding
correct outputs, where the goal is enabling the algorithm to classify new data or make

predictions based on what patterns were learned during training (Figure 2.2).

Input Data What is Supervised Learning?

-

Annotation
/ Mu-del

These are

apples

Input Data Unsupervised learning

&7 ® e 111
mrﬁ——%w
09 9 I

Figure 2.2: Supervised Learning Diagram [14].

Supervised learning plays a central role especially when the objective is predicting or

classifying based on labeled data.

2.2.2 Supervised Learning Algorithms
e Linear Regression: is a foundational algorithm in supervised machine learning and
is commonly used to forecast future outcomes by establishing the relationship
between a dependent variable (target) and one or more independent variables

(features) where the objective is to predict a continuous numeric output. In the case

[17]
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where there is only one independent variable and one response variable, the model
is called "simple linear regression". In contrast, "multiple linear regression" is used
when multiple independent variables are involved.

Logistic Regression: where Linear Regression is better used and suited for

29

categorical dependent variables with binary output like “’true’’ and ‘’false’ or

“yes’” and “’no’’, we use logistic regression to tackle binary qualification issues
(spam identification), while both graphical and non-graphical seek to discover
correlations between data inputs.

Decision Trees: widely used in supervised machine learning for tasks such as
classification and regression, where the algorithm works by splitting the data into
smaller subsets based on the values of input features. Each internal node in the tree
is formed by a decision based on a specific feature, branches illustrate the possible
outcomes of those decisions, and leaf nodes provide the final prediction or
classification.

Support Vector Machine (SVM): created by Vladimir Vapnik, a well-known
supervised learning model applied to both data classification and regression, but is
used primarily in classification issues, it works by creating a hyperplane gapping a
large space between two sets of data (for example oranges and apples) into distinct
groups.

Naive Bayes: based on the Bayes theorem including Bernoulli Naive Bayes,
Multinominal Naive Bayes and Gaussian Naive Bayes. It is a classification
approach founded on the assumption of conditional independence among classes.
Commonly used in text classification, recommendation engines and spam

identification.

2.2.3 Unsupervised Learning

Focuses on uncovering patterns, structures, or relations within labeled data. Its capability

to identify similarities and distinctions in data positions is the perfect solution for tasks like

exploratory data analysis, strategies for cross-selling customer segmentation, and image

recognition (figure 2.3).

(18]
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Figure 2.3: Unsupervised Learning Diagram [14].

2.2.4 Unsupervised Learning Algorithms

Clustering is a data organizing approach which works as follows: similar attributed items
are grouped together within a cluster, and distinct items are assigned to separate clusters.
In short it categorizes data objects into groups according to if they share or do not share

characteristics (figure 2.4).
The most used unsupervised learning algorithms depicted are as follows:

e K-Means: groups data points into “’K’’ clusters, ’K’’ is a number you specify.
The point is to assign each data point to the cluster with the closest center
minimizing the distance between the data points and their center, the process is then
repeated until the clusters are as tight and distinct as possible.

e Hierarchical Clustering: dividing data into hierarchy of clusters represented as a
tree-like structure, every data point is designated as an individual distinct cluster.
Assigning data to an existing cluster, or merging two clusters iteratively a novel
cluster can be created.

e DBSCAN (Density-Based Spatial Clustering of Applications with Noise): is a
clustering algorithm distinguishing between high-density and low-density clusters,
so it is a density-based clustering technique used for locating clusters of similar

large datasets.

[19]
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Cluster Analysis

k-means Hierarchical
Clustering

Gaussian Mixture | Density-Based
Model Clustering

Figure 2.4: Unsupervised Learning algorithms.

2.2.5 Challenges encountered in supervised and unsupervised learning
e Supervised Learning:

o Expensive learning algorithms requiring significant computational
resources.

o The need for labeled data, where obtaining and annotating a large dataset
can be time-consuming and expensive.

o Models in supervised learning tend to perform well on data similar to the
training set but can struggle to generalize to new or unseen data.

o Imbalanced datasets, where one class significantly outweighs the other,

leading to biased models and difficult to make accurate predictions.

e Unsupervised Learning:

o Influenced by the choice of algorithms and decision-making in
performance.

o Subjective clustering quality evaluation, and there might be no ground truth
to compare against.

o Impacting the quality of clustering results is subjugated to selecting the
optimal number of clusters which is an unsolved problem.

o The lack of clear interpretations leading to challenges in discovering a

significance in patterns.

[20]
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o Computationally expensive and poorly scalable to large datasets in some

unsupervised learning algorithms such as hierarchical.

o Sensitivity to noisy data and outliers leading to incorrect results [14].

2.3. Oil Spill Detection Using HSI

2.3.1. Anomaly Detection

Anomaly detection in hyperspectral images focuses on identifying pixels whose spectra

significantly deviate from the background (Figure 2.5).
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(a) Hyperspectral oil spill image. (b) Spectral curve

Figure 2.5: The spectral curve of different objects [1].

Early approaches, such as the Reed-Xiaoli (RX) detector [15], model the background
distribution using Gaussian statistics and compute a Mahalanobis distance for each pixel.
Subsequent variants incorporate robust covariance estimation [16], subspace projections
[17], and kernel-based variants [18]. The challenge remains that real-time applications

require both accuracy and computational efficiency.

[21]
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2.3.2. Dimensionality Reduction Using PCA
Hyperspectral data typically have hundreds of bands (e.g., AVIRIS collects 224 bands).

Many bands are highly correlated; hence, dimensionality reduction is essential. Principal
Component Analysis (PCA) [19] is widely used to project data into an orthogonal subspace
of smaller dimensionality, capturing the majority of variance. Alternatives include
Independent Component Analysis (ICA) [20], Maximum Noise Fraction (MNF) [21], and
supervised linear discriminant analysis (LDA) [22]. PCA’s strength lies in its simplicity

and the ease of reconstructing approximate spectra.

Principal Component Analysis (PCA) is a widely used linear transformation technique for
reducing the dimensionality of hyperspectral images (HSIs). Hyperspectral data typically
consist of hundreds of contiguous spectral bands, many of which contain redundant or
correlated information. This high dimensionality increases computational complexity and
storage requirements while potentially degrading classification and detection performance
due to the "curse of dimensionality." PCA addresses these challenges by transforming the
original high-dimensional data into a lower-dimensional subspace while retaining the most

significant spectral variations [36].

Hyperspectral Data Cube

Hyperspectral Data
Cube after PCA

n bands

reduced bands

Figure 2.6: Reducing the dimensionality of data cube using PCA.
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PCA operates by projecting the original spectral bands into a new orthogonal coordinate
system defined by eigenvectors (principal components, or PCs) of the data covariance matrix.
It reorients the data from its original band-based axes into a new set of axes (dimensions) that
are orthogonal (perpendicular and uncorrelated). These new axes are the Principal Components
(PCs), and this is useful because in the original data, bands may overlap in information (e.g.,
two bands might respond similarly to vegetation), PCA finds new directions (PCs) where the
data varies the most, eliminating redundancy. The principal components are nothing but the new
coordinates of points with respect to the new axes. The result of the projection will be
represented in recombining the original spectral bands as weighted sums (projections) onto

these new PC axes [37].

Points in Original Axes Points in Rotated Axes

Axis for
Feature 2 . °
.

Axis for Feature 1

Figure 2.7: The rotation of original axes [45].

- PCA computation

1- First, we begin by calculating the covariance matrix of the dataset, it helps us
understand how variables (features) in the dataset relate to each other. For this
reason, we center the data by removing the mean (Mean Subtraction) because PCA
is sensitive to the scale of data.
We do it by computing the mean (average) of each feature (column) across all

samples then subtracting this mean from every data point in that feature.

(23]
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2.

Xcentered = X — W, 21

Now we compute the Covariance Matrix, it tells us how features vary together to

calculate it, we multiply the transposed centered data (X7, ,.,.q) by itself

/ : . .
(X contereq )» then scale by — (for unbiased estimation in statistics), we represent

it mathematically as:
1
C= _1XT Xcentered 22

centered

the result is a d X d symmetric matrix where (Ci:) is the variance of feature i [38].

The next step is finding the Eigenvectors of the Covariance Matrix. Eigenvectors
define the directions of maximum variance (Principal Components), while
eigenvalues tell us how much variance each PC captures, they tell us the directions
where data varies the most, while eigenvalues quantify their importance.
We start by solving the eigenvalue equation:

Cv=Av 2.3
where:
C = covariance matrix.
v = eigenvector (direction).
A = eigenvalue (magnitude of variance).
The result will be a set of eigenvectors (vi,v2, ... ,v4) and their corresponding
eigenvalue (41,42,...,44).
Then to rank Principal Components by importance (highest variance first) we sort
Eigenvectors by Eigenvalues. We start by sorting the eigenvalues in descending
order:

A1>A2>..>Aq, then we reorder eigenvectors accordingly. This will give us:

v = first Principal Component (direction of max variance).
v2 = second Principal Component (next best direction, orthogonal to v1), etc [39].
The last step is transforming the original data into the new PCA space, by selecting

the top-k Eigenvectors. We chose the first k eigenvectors (where k < d) that capture,
[24]
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e.g., 95% of total variance, forming a projection matrix W (size d x k) with these
eigenvectors as columns.
Now, we transform the data by multiplying the centered data by the projection

matrix:

Xpca = Xeentered - W 24

The result Xpca represents a new dataset with & dimensions instead of d [40].

After building the principal components of the dataset we simultaneously compute the
weights of the principal components. The weights are the coefficients of the original
variables (features) in each principal component (PC). They define how much each original
feature contributes to a PC [41].

Since PCs are ranked by importance (variance), we can discard weaker ones, reduce
dimensions while keep most information. And thus, orthogonality ensures that each PC is
independent (uncorrelated), meaning that PC1 explains the most variance then PC2
explains the next most, without overlapping with PC1, etc. [42].

Despite its advantages, PCA may not always improve detection performance, particularly
when the target of interest (e.g., an oil spill or mineral deposit) has a spectral signature
similar to its background. Since PCA prioritizes high-variance features, subtle but critical
spectral differences may be suppressed in the lower-variance components, reducing
detectability. Alternative methods, such as Independent Component Analysis (ICA) or
supervised feature extraction, may be more effective in such cases [43].

In summary, PCA is a powerful unsupervised tool for hyperspectral dimensionality
reduction, offering computational efficiency and enhanced classification performance.
However, its effectiveness depends on the data characteristics, and careful consideration is

needed when applying it to specific detection tasks [45].

2.3.3. Isolation Forest for Unsupervised Anomaly Scoring

Isolation Forest (iForest) [23] is an ensemble-based anomaly detection algorithm that
isolates observations in a data set. The key insight is that anomalies, being “few and

different,” get isolated more quickly in a random partitioning tree structure check (figure
[25]
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2.8).

(a) Isolating Xi (b) Isolating X0

Figure 2.8: Anomalies (Xi) and (X0) are isolated faster than normal data [24].

Unlike distance-based or density-based methods (e.g., k-nearest neighbors [25], local
outlier factor [26]), iForest directly models the notion of isolation and scales well to large

datasets.

2.3.3.1. Concept of Isolation Forest

The term isolation means ‘separating an instance from the rest of instances’, and because
anomalies are few and different which makes them easier to isolate by partitioning of
instances repeatedly until all instances are isolated. To demonstrate the idea of anomalies
are more susceptible to isolation under random partitioning, we illustrate an example in
(figure 2.9) 1s partitioning of a normal point which requires more partitions to be isolated
versus the anomaly in (Figure 2.6.b) that requires less partitions to be isolated, partitions
are generated randomly. Since repeated partitioning can be represented by tree structure it
means that the number of partitions required to isolate a point is equivalent to the path
length from the root node to a terminating node [27].

Suppose a data-induced Binary Decision Tree with an anomaly present. The assumption”
few and different” implies anomalies are decided closer to the root, and normal points are
deeper in the tree. The binary tree is built to isolate all the points and measure their

individual Path Lengths from the root.

[26]
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e Isolation Tree: T is either an external-node with no child, or an internal-node with

one test and exactly two daughter nodes (T, Tr) of an Isolation Tree. A test consists

of an attribute q and a split value p such that the test q < p divides data points into

T, and Tr.
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Figure 2.9: An Example of a Construction of an Isolation Tree [31].

e Path Length: h(x) of a point x is measured by the number of edges x traverses an

1Tree from the root node until the traversal is terminated at an external node.

e iForest: of size t is an ensemble of t iTrees. In short, DATA are matrices of real

numbers of a dimension N X P, where N is number of rows and P is number of

features. In training stage, the Isolation Forest algorithm builds an ensemble of

[27]



Chapter 2: HSI Clustering

iTree over data. In the evaluation stage, for any value x the mean h(x) in ensemble
of iTree is computed. In the following sections the average h(x) is used to calculate

the anomaly score.

2.3.3.2. Isolation Forest Algorithm [32]

The output of the iForest algorithm is an anomaly score. In short, the anomaly score is
average h(x) in iForest normalized by the average path of unsuccessful searches in a Binary
Search Tree (BST). In the following part, the individual components of the anomaly score

formula are presented.

Average h(x) of the unsuccessful search in BST for the data set of size i is:

2H(i—1) =2 for i > 2
c(i) = ' . 2.5
1 fori=2

0 otherwise
where:
H (x) = harmonic number estimated as In(x) + 0.5772156649 (Euler’s constant),
As mentioned in the height of iTree is limited so as to manage memory requirements.
Formula c(7) is used to estimate the tree height in cases, where iTree is not able to isolate

the point. This is done especially for dense clusters of normal points.

Anomaly formula:

—E(h(x)

s(x,N) =2 e | 2.6

with:

x = any row in the data
N = number of rows in the data

E(h(x)) = mean of h(x) in ensemble

(28]
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o The anomaly score is interpreted as follows:
o ifinstances return s very close to 1, then they are definitely anomalies,
o if instances have s much smaller than 0.5, then they can be quite safely

regarded as normal instances,

o ifall the instances return s around 0.5, then the entire sample does not have

any distinct anomalies.

2.3.4. Support Vector Machine for Binary Classification

Support Vector Machines (SVM) [28] are supervised learning models that find an optimal
hyperplane separating two classes in a high-dimensional feature space. By maximizing the
margin between classes, SVMs tend to generalize well. Linear SVMs can handle large
feature sets, especially when the data are linearly separable after some transformation.
Kernel SVMs extends this to nonlinear decision boundaries but at greater computational

cost.

The case of a Linear SVM, where the score function is still linear and parametric, will first
be introduced, in order to clarify the concept of margin maximization in a simplified
context. After that by introducing a kernel the SVM will be made non-Linear and non-

parametric [34].

SVM shows its significant advantages on both sparable problems (linear separable
problems and non-linear separable problems) and non-separable problems, all will be

covered in this section: [33]
e C(Case of Linearly separable

For example, let’s say we have been offered some training data with some people’s weight,
height and their gender, then we want to make use of them to predict the unknown gender
data. As shown in (Figure 2.10) these two types of points represent Male and Female, where
we can see in (figure 2.11) lines that divide the space into two regions, and we can easily
notice that the black solid line would be the optimal line. Which maximizes the margin

between itself and the nearest points of each class.

[29]
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Figure 2.10: Points representing Males Females [33].
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Figure 2.11: Classification Lines [33].

SVM extends the two-dimensional linear separable problem to multidimensional, and aims

to seed the optimal classification surface, which we call THE OPTIMAL HYPERPLANE:
wx +56 =0 2.7

W: weight vector.

[30]
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b: threshold.

The relation between x; and f(xi) can be defined as:

JS(x) = wix + 4. 2.8

Seeding the optimal hyperplane is equivalent to maximal the distance between the closest
vectors to the hyperplane. Define the Euclidean distance between the nearest points and the

hyperplane f(x) as:

)
[lwl|

2.9

f(x): Functional margin

Assume f{x) between the nearest points and the hyperplane is 1 as the (Figure 2.12) shows.

The assumption was accompanied with a constraint condition

viwx +86)=>1,7=12,...,n 210

which implies that all training data are on the two hyperplane or behind them and the
training data on the hyperplane are called support vectors (SVs). Thus, the margin between

the parallel bounding planes d can be defined as:

d=2r=-2 211

[31]
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*

Figure 2.12: Optimal Classification Line [33].

Thus, the objective function can be presented as:

min%IIWII2 s.t.yiwlx; +b) > 1,i=12,...,n. 212

e C(Case of Non-Linearly Separable
As shown in in (figure 2.13) there is no line that can classify the two classes well, only
curves, and this is where SVM shows its superiorities for nonlinearly problems, which
takes the way of mapping the input vectors in low dimension feature space to a high

dimension feature space to find a suitable line separating hyperplane.

[32]
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Figure 2.13: Non-linearly Separable [33].

e (Case of non-separable
Lastly, some points belong to positive class may be counted as negative class or we can
say that there is no hyper plane that is able to separate the points of different categories
accurately.
These error points are usually regarded as noise which can be ignored by humans but not
by machines for machines can’t deal with error points like humans do.
In summary, SVM is a powerful classifier, which is suitable for any case of classification

with the same decision function, high classification accuracy and small computation [33].

2.3.4.1. Effects of SVM and Kernel Parameters [35]

SVM has a set of parameters different from hyperplane large-margin which we call
hyperparameters. The soft margin constant, C, and any parameters the kernel function may
depend on (width of Gaussian Kernel or degree of a polynomial Kernel), all this will be
illustrated with its effect on the decision boundary of an SVN using two dimensional
examples.

o Soft-Margin Constant we see in (Figure 2.14) that for a large value of C, a large

penalty is assigned to errors/margin errors.

[33]
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Where in the left panel we see the two points closest to the hyperplane affect its orientation
making it closer to several other data points, When C is decreased in the right panel those
points become margin errors and the hyperplane’s orientation changes giving us a much

larger margin for the rest of the data.

C=10

05 1010 -05 00 05 10

Figure 2.14: The effect of soft-margin constant C [35].

o Decision boundary, the degree of the polynomial Kernel and the width parameter
of the Gaussian Kernel control the flexibility of the result in (Figure 2.14) where
we find linear kernel that means we have the lowest degree, which is not good for
a nonlinear separation.

After that we have a degree 2 polynomial and is flexible enough to discriminate between
two classes with a sizable margin.
The degree 5 polynomial has similar decision boundary but with greater curvature.

o Gaussian Kernel, when y is large, the value of the discriminant function is
essentially constant outside the close proximity of the region where the data are
concentrated, see bottom right panel in (Figure 2.15). In this regime of the y
parameter, the classifier is clearly overfitting the data.

As seen from the examples in (Figure 2.14 and 2.15), the parameter y of the Gaussian kernel
and the degree of polynomial kernel determine the flexibility of the resulting SVM in fitting
the data. If this complexity parameter is too large, overfitting will occur (bottom panels in

Figure 2.15).

[34]
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Figure 2.15: The effect of Gaussian Kernel [35].

2.3.4.2. Advantages of SVM [34]

Every classification method has its own pros and cons, and their effectiveness depends
largely on the nature of the data being analyzed. Support Vector Machines (SVMs) are
particularly beneficial when dealing with data that is irregular or lacks a clear distribution
pattern, an issue often encountered in financial distress or insolvency prediction. In these
situations, SVMs offer a powerful alternative to traditional methods, especially when
working with financial ratios that may not fit neatly into conventional classification models.
Here are several reasons why SVMs are advantageous:

e Flexible Decision Boundaries: By using kernel functions, SVMs allow for flexible

decision boundaries that aren’t limited to linear separations. The model doesn’t

[35]
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require the same functional form across all data points, this flexibility reduces the
need for manually transforming each problematic variable.

e No Need for Explicit Feature Transformation: The kernel trick used in SVMs
performs an implicit non-linear transformation of the data, allowing for better
separability without requiring assumptions about how to transform the variables
beforehand. This makes the process more efficient and less reliant on expert
judgment.

e Strong Generalization Ability: When SVM parameters like the regularization
parameter C and kernel-specific parameters (e.g., r for the Gaussian kernel) are
carefully selected, the model tends to generalize well to new data. This robustness
is especially important if the training data is biased or not fully representative.

e Unique, Stable Solution: SVMs solve a convex optimization problem, which
means there’s only one optimal solution. Unlike neural networks, which may get
stuck in local minima and produce different results depending on the initial weights
or sample variations, SVMs are more stable and reliable across different datasets.

e Similarity-Based Classification: By using kernels like the Gaussian (RBF) kernel,
SVMs place more emphasis on how similar different companies are in terms of
their financial ratios. This means that when classifying a new company, the
algorithm compares its data to the most relevant support vectors (i.e., examples
from the training set that are most similar), leading to more meaningful and accurate

classifications based on structural similarity.

2.4 Conclusion

In this chapter we have introduced the basics of machine learning algorithms especially
supervised and unsupervised methods, then we have detailed the principal algorithms used

in our work, from the PCA, Isolation Forest to SVM.

[36]
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Chapter 3: Experimental results

3.1 Introduction

In this chapter, we present a structured explanation of a MATLAB-based workflow that
combines unsupervised and supervised machine learning techniques. The rationale behind
each algorithmic choice is examined, relevant mathematical foundations are derived, and
practical considerations for implementation are presented. Finally, evaluation metrics and

visualization strategies are described before concluding with a list of key references.

We begin by preprocessing the raw data, estimating noise levels to filter out unreliable
spectral bands. We then perform PCA to reduce dimensionality, balancing information

retention with computational efficiency.

An Isolation Forest is trained on a 1% random sample of the reduced-dimensional data to

compute initial anomaly scores. These scores yield a binary anomaly map (0 = normal,
1 = anomalous), which serves as pseudo-labels for a Support Vector Machine (SVM).

The SVM is trained and then applied across the entire image to generate a refined anomaly

prediction.

1. Noisy band removal and dimension reduction
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Figure 3.1: The flowchart of the proposed unsupervised oil spill detection method [1].
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Finally, we compute performance metrics precision, receiver operating characteristic
(ROC) curves, and area under the curve (AUC) and visualize both the reference and

predicted anomaly maps.

3.2 Data Sets

3.2.1 Oil Spill Location

The area where we study the Oil spill incident is Located in the Gulf of Mexico,
North America continent, around 25° N 90° W. Known as the biggest
environmental incident in US history occurring on April 20, 2010.
More than 757 million liters of raw oil are released at that location.
At this moment is where hyperspectral data is going to be playing a critical role for
monitoring and cleaning up the oil spill by detecting the oil spill region providing

rich spectral information from the visible to the infrared spectrum.

3.2.2 HOSD Database

A large-scale hyperspectral database was created with AVIRIS sensors from
different test sites. This database was called Hyperspectral Oil Spill Database
(HOSD), Which was the first public oil spill detection dataset and is freely available
for research purposes, this availability helped develop different ground breaking
approaches for oil spill detection.

What makes HOSD so special and different from other oil spill datasets used in
other publications is the wide distribution, large coverage and large amount of data.
Field experts labeled oil spill areas pixel by pixel. The reference maps of all studied
sample images are manually annotated by using the ENVI (Environment for
Visualizing Images software), as well as the datasets have been processed with
atmospheric correction model in ENVI 5.3 software before oil spill detection.
(Table 1) lists some features of the HOSD, spectral coverage is from 365nm to

2500nm.
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Table 3.1. Some features of the HOSD [1].

Data Spatial size Resolution Fight time
GM1 1200*633 7.6m 5/17/2010
GM2 1881*%693 7.6m 5/17/2010
GM3 1430*691 7.6m 5/17/2010
GM4 1700*691 7.6m 5/17/2010
GM5 2042*673 7.6m 5/17/2010
GM6 2128*689 8.1m 5/18/2010
GM7 2302*479 3.3m 7/09/2010
GMS 1668-*550 3.3m 7/09/2010
GM9 1643*447 3.2m 7/09/2010
GM10 1110*675 7.6m 5/17/2010
GM11 1206*675 7.6m 5/17/2010
GM12 869*649 7.6m 5/06/2010
GM13 1135*527 3.2m 7/09/2010
GM14 1790*527 3.2m 7/09/2010
GM15 1777*510 3.3m 7/09/2010
GM16 1159*388 3.2m 7/09/2010
GM17 1136*660 7.6m 5/17/2010
GM18 1047*550 3.3m 7/09/2010

3.3 Noise Estimation and Band Removal

Our objective is to estimate the noise level ¢ in each band and remove bands whose noise
exceeds a threshold.

Hyperspectral images are often corrupted by noise due to sensor imperfections, calibration
errors, and random photon fluctuations during capture. This noise degrades image quality
and reduces the accuracy of critical tasks like object detection and land-cover classification.

Currently, many researchers manually remove the noisiest spectral bands before analysis.
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However, this approach is inefficient, hyperspectral images contain hundreds of bands,

making manual inspection tedious.

To solve this problem, we propose an automatic band selection method that quantifies
noise in each band using a Gaussian statistical model then filtering out severely noisy

bands using an adaptive threshold.

Real-world noise often follows a Gaussian (normal) distribution, making this model a

natural choice.

We estimate noise levels by applying a Laplacian mask (below), which amplifies noise-

induced pixel variations:
1 -2 1
M=|-2 4 =2 3.1
1 -2 1

The function estimate noise typically computes the standard deviation of local differences along spatial

dimensions [15]. Let

- Pt vy i i = 3.2
on = /2 6(1W—2)(1H—2)Z‘JII”(U) *M|,n=12,..,1Iy

Where: Iw and Ix stand for the spatial dimensions, and Iy is the total number of spectral channels.
Bands with high ¢ contain little useful signal (dominated by noise).

Compute the average noise across all 224 bands:

Sn = {I,,ifon < %Zn on @, Otherwise 3.3
N
Any band with o, 2sat is discarded.

This ensures automatic, data-driven filtering without manual intervention. Cleaner

bands improve downstream tasks like oil spill detection while saving time [1].

[41]



Chapter 3: Experimental results

3.4 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a popular method for reducing the dimensionality
of hyperspectral images. Since these images contain massive amounts of data often with
redundant spectral bands PCA helps by compressing the information into fewer key
components while keeping the most important details needed for tasks like classification

and detection.

As an unsupervised technique, PCA works by analyzing the entire image to find the most
meaningful spectral patterns. This not only lowers computational costs but also enhances

classification accuracy, which is especially useful when labeled training data is scarce.

However, research shows that PCA may have little effect on detection performance when
the target (e.g., an oil spill) has a spectral signature similar to its background. In such cases,
the key features needed for detection might not stand out clearly in the reduced PCA

components.

So basically, our objective is to reduce the dimensionality of X by projecting onto its

principal components, retaining directions of maximal variance.

The first step is to reshape the 3D data cube into a 2D matrix where each row corresponds

to a pixel’s spectral signature (pixel x band) and ensure numerical validity.

Input: X € RA(P x nbands) (P = nrows x ncols).
Output: score the projection of X onto its principal components.

- Choice of Number of Components

Although all 224 PCs can be computed, downstream algorithms will use the first Npca
=100 PCs. The first 100 PCs typically capture > 99% of the variance in hyperspectral data
[19]. Reducing from 224 of bands to 100 components mitigates the “curse of

dimensionality” and accelerates anomaly detection algorithms.

After pre-processing, the next step is to identify potential oil spill regions by detecting

anomalies in the hyperspectral data.
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3.5 Anomaly Detection Using Isolation Forest

The Isolation Forest (iForest) algorithm is an unsupervised machine learning method
designed to efficiently detect anomalies by exploiting the fundamental principle that
abnormal data points are few in number and inherently different from normal instances.
Unlike traditional anomaly detection approaches that rely on computationally expensive
distance or density measurements, iForest operates by isolating anomalies through a series
of random partitions in the feature space, making it particularly suitable for processing

large and complex datasets like hyperspectral remote sensing imagery.

The algorithm consists of two key stages: training and anomaly scoring. In the training
phase, the iForest model constructs an ensemble of Isolation Trees (i7rees), which are

binary trees built using a random partitioning process.

Each iTree is generated by recursively splitting the dataset along randomly selected
features and threshold values until all instances are isolated. Due to their distinct spectral
characteristics, anomalies such as oil spills tend to separate much faster than normal pixels
(e.g., water or oil) because they require fewer splits to be distinguished from the majority
of the data. This results in significantly shorter path lengths within the trees for anomalous

instances compared to normal ones.

Once the forest is built, the algorithm proceeds to the scoring phase, where each pixel in

the hyperspectral image is evaluated based on its average path length across all iTrees.

Since anomalies are isolated earlier in the trees, they exhibit shorter average path lengths,

which are then converted into anomaly scores.

A higher score indicates a higher likelihood of the pixel being an anomaly, allowing for

effective discrimination between oil spills and the background environment.

In summary, the iForest method effectively identifies anomalies that are both rare and

spectrally distinct - perfectly matching the needs of hyperspectral anomaly detection.

Since anomaly pixels are typically few in number and differ significantly from background
pixels in their spectral characteristics, the isolation concept works well for separating them.
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The detection process relies on calculating each pixel's average path length through the

1solation trees.

However, the standard iForest approach has limitations, it uses completely random splits
at each tree node, choosing arbitrary thresholds that may not optimally separate anomalies
from normal pixels. Additionally, during evaluation, the method simply measures path
lengths from root to terminal nodes, this becomes problematic when different pixels end
up in the same terminal node, they receive identical path lengths despite potentially being
different types of anomalies, as shown in (Figure 2.9).

In the implementation of Isolation Forest, we select 1% of the total pixels at random, then

train an Isolation Forest to assign anomaly scores.

3.6 Preparing Labels for SVM Training

To bridge the gap between unsupervised anomaly detection and supervised classification,
the outputs of the Isolation Forest algorithm specifically, the anomaly scores are
transformed into reliable training labels for the subsequent SVM model. This process
involves thresholding the anomaly scores to distinguish potential oil spill pixels
(anomalies) from the dominant water background, with the threshold selected based on the
expected contamination rate (e.g., the top 2% of scores classified as oil). Given that manual
labeling of hyperspectral data is labor-intensive and subjective, this automated approach
ensures scalability while maintaining detection sensitivity. To minimize label noise,
morphological operations such as opening and closing are applied to the binary mask,

removing isolated pixels and smoothing irregular spill boundaries.

Additionally, class imbalance is addressed by either weighting the SVM training process
or synthetically augmenting oil-labeled samples, ensuring the classifier does not bias
toward the more prevalent water class. The final labeled dataset serves as the foundation
for training the SVM, enabling precise discrimination between oil and water pixels in the

classification stage.

[44]



Chapter 3: Experimental results

So, to be direct we need to formulate pseudo-labels for a supervised classifier (SVM) based
on iForest output, where the Isolation Forest yields an initial unsupervised binary labeling

of the random sample. And these labels serve as “weak labels” for training the SVM.

So, the requirements are: At least one normal (0) and one anomalous (1) sample must exist

in training data. If not, one must adjust contamination or sample size.
3.7 Final Classification and Oil Spill Mapping

With labeled data generated from Isolation Forest, a Support Vector Machine (SVM)
classifier is trained to perform pixel-wise discrimination between oil spills and water,
leveraging its ability to handle high-dimensional hyperspectral data through kernel-based
separation. The SVM’s parameters, including the regularization term (C) and kernel
bandwidth (gamma), are optimized via grid search to maximize accuracy on a validation
set, with the Radial Basis Function (RBF) kernel selected for its effectiveness in capturing

non-linear spectral relationships.

The classifier’s output is a binary segmentation mask, which is further refined using spatial
post-processing techniques such as median filtering to reduce salt-and-pepper noise and

improve boundary coherence.

The resulting classified pixels are then projected onto geographic coordinates, generating
an interpretable oil spill map that quantifies spill extent and distribution critical for
environmental impact assessments and mitigation efforts. This map can be integrated into
GIS platforms for real-time monitoring, providing actionable insights for disaster response

teams.

3.8 Postprocessing (Median Filtering)

Reduce spurious isolated misclassifications (salt-and-pepper noise) by applying a 2D
median filter to the binary map.

For each pixel (i, j), replace the predicted label with the median of the labels in a local 3x3
neighborhood (default).
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Enforce spatial coherence: anomalies often occupy contiguous pixels; an isolated single-
pixel anomaly is less likely to be true.

Median filtering smooths small “blips” without blurring edges.

3.9 Performance Metric Computation

In this training process we used an 15-8250U 1.60GHz with 8GB of RAM and 2GB MX150
Graphics Card, Windows 11 64 bits, while using MATLAB 2024a, we also used a training
ratio for isolation forest of (1%) random samples for anomaly detection, where the scores
yield a binary anomaly map (0= normal, 1= anomaly) and contamination fraction of (2%),
which serves as a pseudo-labels for (SVM), the support vector machine is trained using
kernel-based learning to classify data by maximizing the margin between classes in high
dimensional feature space. Trained linear SVM on the PCA-reduced iForest-labeled data
then it is applied to the entire set of pixels identifying it as either oil or water using the

trained model.

3.9.1 Confusion Matrix Definitions
e True Positive (TP): Pixels correctly identified as anomalies.
e False Positive (FP): Pixels incorrectly flagged as anomalies.
e True Negative (TN): Pixels correctly identified as normal.

e False Negative (FN): Missed anomalies.

3.9.2 Derived Metrics

a) Detection Precision (DP):

DP=—— 3.4
TP+FP

Measures the proportion of predicted anomalies that are correct.

b) True Positive Rate (TPR, a.k.a. Sensitivity or Recall):

TPR = —2 35
TP+FN

[46]



Chapter 3: Experimental results

¢) False Positive Rate (FPR):

FPR = —&
FP+TN

36
3.10. Visualization of Results

The obtained results are summarized below. The calculated detection precision (DP) is
shown in (Table 3.2) and (Figure 3.2). As well as the visualization results shown in (Figures

3.3, 3.4 and 3.5) where the result is the prediction map compared to the reference map.

Figure 3.2:
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Table 3.2. Numerical results of oil spill detection

DETECTION AREA UNDER
PRECISION (DP) CURVE(AUC)

GMO1 91.22% 91.75%
GMO02 89.4% 96.53%
GMO3 98.67% 90%
GM04 99.08% 92.42%
GMO5 94.45% 92.14%
GMO6 89.53% 90.86%
GMO7 96.82% 77.19%
GMO8 97.00% 91.70%
GM09 72.96% 73.11%
GM10 84.48% 90.01%
GM11 98.90% 81.22%
GM12 81.32% 92.63%
GM13 96.98% 68.69%
GM14 94.63% 79.56%
GM15 92.91% 93.93%
GM16 97.10% 92.40%
GM17 100% 65.49%
GM18 96.72% 75.57%
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Figure 3.3: The original images, reference map and detection result From GMO1 to GMO06.
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Figure 3.4: The original images, reference map and detection result From GM07 to GM12
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Figure 3.5: The original images, reference map and detection result From GM13 to GM18.
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3.11 Discussion
To evaluate the effectiveness of our proposed method for oil spill detection, we grabbed

several state-of-the-art methods adopted for comparison such as:

O

O

a scalable exemplar-based subspace clustering (SESC) method [46].

an unsupervised method derived from rank-two nonnegative matrix
factorization (R2NMF) [47].

a detection approach based on low-rank and sparse matrix decomposition
(LRSMD) [48].

A detection method based on kernel isolation forest (KIF) [49]

For the supervised oil spill detection method, a PCA- based minimum distance

(PCAMD) detection method [50].

The last approach is an isolation Forest-Guided Unsupervised Detector, using
KPCA [1].

All these information and implementations of each approach was found in the publication

of journal mentioned in [1].

The results shown in (Table 2) by comparison shows that both LRSMD and R2NMF

struggle in detecting oil from water where the precession is very low for LRSMD and

below 50% for R2ZNMF, we see that KIF and PCAMD as well as SESC are a bit better for

oil spill detection with acceptable precision through the images but still the Mean is not

surpassing 72%, the only method that comes close to ours is the KPCA method with great

percentage through the images and even a great Mean of 85.51% but it can be seen that

our method produces the highest detection accuracy compared to other approaches on the

HOSD database.

[52]



Chapter 3: Experimental results

Table 3.3. The DP results obtained by all considered approaches on the HOSD [1].

DP SESC R2NMF LRSMD KIF PCAMD KPCA  Our Method

GMOI  96.59% 11.61% 1.46% 70.80%  57.21%  96.15% 91.22%
GMO02  3941% 14.97% 10.30%  79.53%  74.53%  96.54% 89.4%

GMO03  98.58%  90.32% 16.24%  74.58%  91.85%  92.90% 98.67%
GM04  99.73% 50.21% 8.15% 68.54%  75.72%  97.21% 99.08%
GMO5  98.56%  54.99% 8.26% 73.75%  66.52%  88.15% 94.45%
GM06  46.79%  5.17% 0.29% 80.46%  71.71%  76.26% 89.53%
GMO07  62.27%  2.62% 0% 51.48%  94.22% 76% 96.82%
GMO08  96.39%  65.97% 1.69% 70.03%  87.91%  85.35% 97.00%
GM09  2427%  0.14% 0.08% 62.41% 88.07%  60.51% 72.96%
GMI10  27.58%  45.24% 0% 41.81%  73.62%  85.26% 84.48%
GMI1  78.13% 54.77% 10.43% 86.06%  66.56% 96% 98.90%
GM12  4244%  27.77% 12.16% 83.08%  69.85%  92.24% 81.32%
GMI3  87.83% 95.76% 0,81% 38.46%  95.83%  94.04% 96.98%
GM14  99.01% 89.71% 3.63% 51.66%  95.58%  83.41% 94.63%
GMI5  97.02% 68.18% 4.55% 39.42%  79.97%  87.12% 92.91%
GM16  70.81%  69.93% 3.74% 32.53%  85.49%  89.44% 97.10%
GM17  71.12%  25.26% 0.06% 67.93%  42.89%  51.48% 100%

GMI1I8  50.26%  19.04% 0% 79.73%  69.84%  91.15% 96.72%

MEAN  71.49%  43.98% 4.55% 64.01%  77.08%  85.51% 92.89%

a) Advantages

o Scalability: PCA reduces data dimensionality, making downstream

algorithms (Isolation Forest, SVM) tractable even on large images.

o Flexibility: The combination of unsupervised (Isolation Forest) and
supervised (SVM) approaches allows the model to bootstrap from minimal

prior knowledge.
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o Localization Accuracy: SVM refines the anomaly map by learning

decision boundaries in the reduced-dimensional space.

o Parameter Control: Contamination fraction in Isolation Forest and

percentage of pixels sampled are adjustable to tune sensitivity.

b) Limitations
o Dependence on Contamination Parameter: If the contamination fraction
is set too low or too high, the initial pseudo-labels may be poor,

compromising SVM training.

o Assumption of Linear Separability: A linear SVM may not perfectly
separate anomalies from background if their distributions are highly
nonlinear in PCA space. Kernel SVMs could be considered but at higher

computational cost.

o Spatial Context Neglected in Early Stages: Both PCA and Isolation
Forest treat each pixel’s spectrum independently. Incorporating spatial

features (texture, local neighborhoods) might improve robustness [30].

¢) Impact of Parameter Choices
- Number of PCA Components (Npca)

o Too few components may discard discriminative spectral information
(increase FN).

o Too many components slow down subsequent algorithms without
proportional gain.

- Sampling Ratio (1% of pixels)
o Larger samples yield more robust iForest boundary but increase runtime.
o Smaller samples risk missing rare anomalies entirely.
- Isolation Forest Contamination Fraction (0.02)
o Setting contamination = 2% implies expecting 2% anomalies in the sample.
If true anomaly proportion is much lower, many false positives labeled in

training; if higher, may miss anomalies.
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3.12 Conclusion

This chapter details each component of the algorithm used for hyperspectral anomaly
detection that combines PCA, Isolation Forests, and SVMs. We begin by estimating per-
band noise and discarding highly noisy bands to enhance signal-to-noise ratio. We then
apply PCA to reduce the dimensionality of the hyperspectral cube, capturing the lion’s
share of spectral variance in a reduced basis. A small random sample (1% of total pixels)

is used to train an Isolation Forest, which assigns initial anomaly scores.

Our results demonstrate the superior performance of this integrated approach, consistently
achieving higher detection precision compared to several state-of-the-art methods,
including SESC, R2NMF, LRSMD, KIF, PCAMD, and even a similar KPCA-based
method. The mean detection precision of 92.89% achieved by our method on the HOSD

database stands as a testament to its effectiveness in accurately identifying oil spill regions.

We also discussed its limitations, such as the dependence on the contamination parameter
and the assumption of linear separability in the SVM. Future work could explore the
integration of spatial features and the optimization of parameter choices (e.g., number of
PCA components, sampling ratio, and SVM kernel tuning) to further enhance robustness
and accuracy. This research significantly contributes to the advancement of remote sensing
techniques for environmental monitoring, offering a powerful tool for rapid and precise oil

spill detection.
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Conclusion

This thesis presents a complete framework for unsupervised oil spill detection in
hyperspectral images using a combination of Isolation Forest and Support Vector Machines
(SVM). Beginning with an overview of hyperspectral imaging and its significance in
remote sensing applications, we explored the core concepts behind spectral data

acquisition, sensor technologies, and image processing techniques.

Our methodology introduces a noise estimation and band elimination step to improve
spectral quality, followed by Principal Component Analysis (PCA) to reduce
dimensionality while preserving essential variance. Using the Isolation Forest algorithm,
we conducted unsupervised anomaly detection to identify oil spill regions based on their
spectral uniqueness. The outputs of the Isolation Forest served as pseudo-labels to train an

SVM classifier, resulting in a robust oil spill classification map.

Experimental evaluation using the Hyperspectral Oil Spill Dataset (HOSD) demonstrated
the effectiveness and scalability of the proposed approach. Performance metrics such as
precision and AUC indicated high detection accuracy across multiple test cases. Overall,
this research offers a promising contribution to the field of environmental monitoring by
providing an efficient and automated oil spill detection system. Future work can explore
the integration of spatial features, advanced neural networks, and real-time processing for

enhanced performance and generalization
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