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Abstract 

Oil spill detection has garnered increasing research interest in recent years due to the 

profound impact such incidents have on marine environments, natural resources, and the 

livelihoods of coastal communities. Hyperspectral remote sensing imagery offers a wealth 

of spectral information, which is highly advantageous for monitoring oil spills in complex 

oceanic scenarios. However, most existing methods rely on supervised or semi-supervised 

frameworks, requiring substantial effort to annotate a sufficient number of high-quality 

training samples. This process can be labor-intensive and time-consuming. 

In this study, we use a novel approach which consists of an unsupervised oil spill detection 

method based on the isolation forest algorithm tailored for hyperspectral images (HSIs). 

The methodology begins with an estimation of noise variance across different spectral 

bands because noise levels can vary significantly. Bands severely affected by noise are 

subsequently discarded to improve data quality. Next, Principal Component Analysis 

(PCA) is employed to reduce the high dimensionality inherent in HSIs, facilitating more 

efficient processing. 

The core of the approach involves estimating the probability that each pixel belongs to 

either the seawater or oil spill class using the isolation forest. This probabilistic information 

enables the automatic generation of pseudo-labeled samples through clustering algorithms, 

which serve as training data for subsequent classification steps. An initial detection map is 

then produced using support vector machines (SVM) on the dimension-reduced data. 

To assess the effectiveness of our proposed method, we evaluated the method on dataset 

termed the Hyperspectral Oil Spill Dataset (HOSD), comprising eighteen hyperspectral 

images capturing oil spills over the Gulf of Mexico in 2010. 



Résumé 

La détection des marées noires suscite un intérêt croissant dans la recherche ces dernières 

années en raison de l’impact profond de tels incidents sur les milieux marins, les ressources 

naturelles et les moyens de subsistance des communautés côtières. L’imagerie 

hyperspectrale offre une richesse d’informations spectrales, particulièrement avantageuse 

pour surveiller les déversements d’hydrocarbures dans des scénarios océaniques 

complexes. Cependant, la plupart des méthodes existantes reposent sur des cadres 

supervisés ou semi-supervisés, nécessitant un effort considérable pour annoter un nombre 

suffisant d’échantillons d’entraînement de haute qualité. Ce processus peut être laborieux 

et chronophage. 

Dans cette étude, nous adoptons une approche novatrice consistant en une méthode non 

supervisée de détection des marées noires basée sur l’algorithme Isolation Forest, adaptée 

aux images hyperspectrales (HSI). La méthodologie commence par une estimation de la 

variance du bruit à travers les différentes bandes spectrales, car les niveaux de bruit peuvent 

varier significativement. Les bandes sévèrement affectées par le bruit sont ensuite écartées 

afin d’améliorer la qualité des données. Puis, une analyse en composantes principales 

(ACP) est employée pour réduire la forte dimensionnalité inhérente aux HSI, facilitant un 

traitement plus efficace. 

Le cœur de l’approche consiste à estimer, pour chaque pixel, la probabilité d’appartenance 

à la classe « eau de mer » ou « marée noire » à l’aide de l’Isolation Forest. Cette information 

probabiliste permet la génération automatique d’échantillons pseudo-étiquetés via des 

algorithmes de clustering, qui servent de données d’entraînement pour les étapes de 

classification ultérieures. Une carte de détection initiale est ensuite produite en utilisant des 

machines à vecteurs de support (SVM) sur les données à dimension réduite. 

Pour évaluer l’efficacité de notre méthode proposée, nous avons évalués la méthode sur un 

ensemble de données hyperspectral complet, dénommé Hyperspectral Oil Spill Dataset 

(HOSD), comprenant dix-huit images hyperspectrales capturant des marées noires dans le 

golfe du Mexique en 2010. 



 

 ملخص 

العميق لمثل هذه   للأثر  باهتمام بحثي متزايد في السنوات الأخيرة نظراً  النفط  تقنيات كشف انسكاب  لقد حظيت 

الحوادث على البيئات البحرية والموارد الطبيعية وسبل معيشة المجتمعات الساحلية. توفر صور الاستشعار عن 

ا المعلومات  من  ثروة  الدقة  فائقة  الأطياف  متعددة  في بعُد  النفط  انسكابات  لمراقبة  كبيرة  ميزة  يعُد  مما  لطيفية، 

الأساليب  معظم  تعتمد  ذلك،  ومع  معقدة.  بحرية  شبه    سيناريوهات  أو  للإشراف  أطر عمل خاضعة  على  الحالية 

هذا  يكون  وقد  الجودة.  عالية  التدريب  عينات  من  كافٍ  عدد  لتوسيم  كبيراً  جهداً  يستلزم  مما  للإشراف،  خاضعة 

 اقاً ويستغرق وقتاً طويلاً. الإجراء ش

نعتمد   الدراسة،  هذه  لكشف  علىفي  للإشراف  خاضعة  غير  على  هذهتعتمد    المسكوب،  النفط  طريقة   الطريقة 

(. تبدأ المنهجية HSIs( المصممة خصيصاً للصور متعددة الأطياف فائقة الدقة )Isolation Forestخوارزمية ) 

ستبعد الطيفية، نظراً لاختلاف مستويات الضوضاء بشكل كبير. ثم تُ   بتقدير تباين الضوضاء عبر مختلف النطاقات 

(  PCAالبيانات. بعد ذلك، يسُتخدم تحليل المكونات الرئيسية )النطاقات المتأثرة بشدة بالضوضاء لتحسين جودة  

 لتقليل البعُدية العالية في هذه الصور، مما يسهل معالجة أكثر كفاءة. 

»مياه البحر« أو »الانسكاب النفطي« باستخدام   على  كل بكسلان يتضمن  احتمال    في تقدير  متبعجوهر الاليكمن  

-pseudoن هذه المعلومات الاحتمالية من توليد عينات ذات وسم زائف )(. تمُك  Isolation Forest)  خوارزمية

labeled( التجميع  خوارزميات  عبر  تلقائي  بشكل   )clusteringلل تدريب  كبيانات  تسُتخدم  والتي  خطوات (، 

تزلة ( على البيانات المُخSVMج خريطة كشف أولية باستخدام آلات المتجهات الداعمة )التصنيفية اللاحقة. ثم تنُت  

 البعُد.

لتقييم فعالية الطريقة المقترحة، جمعنا مجموعة بيانات شاملة متعددة الأطياف فائقة الدقة، أطلقنا عليها اسم مجموعة 

متعددة   النفط  انسكاب  ) بيانات  خليج HOSDالأطياف  في  نفط  انسكابات  التقطت  ثمانية عشر صورة  وتضم   ،)

 . 2010المكسيك عام  
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Introduction 

Oil spill detection is a necessary and important task for us to tackle because of oil leaks 

high and bad effects on the environment due to the accidents caused during oil explorations 

and transportation happening around the world, which leads to severe pollution in the 

marine environment and damages coastal species. 

If the oil leaked would not be monitored properly, the oil slick would find its way to the 

coast following the sea waves, which leads to high threats to coastal species from fish to 

coral reefs and even human health would be affected. 

To detect and monitor the oil spills, we need to apply sensing techniques specially in remote 

and inaccessible areas on a large scale, it is also possible to predict the speed and direction 

of the oil movements using multi-temporal data and drift predictions models, which play 

an important role in facilitating clean-up tasks. 

Over the past decades, remote sensing has been extensively explored for oil spill detection 

and monitoring. 

Early methods utilizing airborne visible (VIS) and infrared (IR) data faced limitations such 

as poor separability between oil spills and surrounding objects. In contrast, active 

microwave sensors, particularly synthetic aperture radar (SAR), have become prominent 

due to their ability to operate in all weather conditions and during day and night. SAR 

detects oil slicks as dark spots caused by the inhibitory effect of oil on capillary waves, 

reducing backscatter. 

Nonetheless, challenges remain in distinguishing actual oil spills from other phenomena 

such as grease ice or internal waves that also produce dark patches in SAR imagery. 

Additionally, SAR data suffer from high costs, low revisit frequencies, and limited swath 

widths, prompting interest in multi-platform SAR and supplementary optical sensors like 

multispectral and hyperspectral imagers. 

Multispectral sensors, such as MODIS and Landsat, have also been employed for oil spill 

detection, relying on spectral and spatial information. However, their relatively coarse 
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spatial resolutions limit effectiveness for identifying small spills. Conversely, 

hyperspectral sensors mounted on aircraft offer both rich spectral and high spatial 

resolution, enabling detailed analysis of oil spill features and emission types like water-in- 

oil (W/O) and oil-in-water (O/W). These sensors facilitate advanced machine learning 

techniques, such as spectral shape matching and feature extraction, which improve 

detection accuracy and reduce false alarms. Overall, hyperspectral data represent a 

promising avenue for precise oil spill identification, especially when combined with 

sophisticated analytical methods. 

Even though we still face several challenges to detect the oil spill accurately using 

hyperspectral images due to: 

● The lack of dataset in regards of oil spills either there are none or you need to pay 

some money to acquire some. 

● Training samples requires either a supervised or semi-supervised approach which 

is expensive and time consuming 

● Bad image noise due to low lighting, shadow and bad weather results in corrupted 

hyperspectral images that leads to corrupted spectral bands and this has a negative 

effect on the accuracy of the oil spill detection. 

In order to overcome these issues in this work we have used an unsupervised oil spill 

detection method based on isolation forest followed by other steps mentioned in chapter 2, 

Where we used a novel hyperspectral remote sensing database for oil spill detection, which 

is a publicly available benchmark dataset [1]. 

The manuscript is organized in three chapters. In the first one, we take a brief deviation 

and introduce an aspect of what is hyperspectral imaging and what are the tools used to 

capture these images, its origin and history, and differences from normal images. 

Chapter 2 describes the different steps, algorithms and methods that are combined to 

produce the clustered image and detect oil spills. Finally, the last chapter contains the 

obtained results and discussion of numerical values and the overall evaluation of the 

method. Finally, a conclusion is given. 
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1.1 Introduction 

Hyperspectral imaging is all about the fundamental principles of how light interacts with 

materials and how this interaction enables precise material identification, it begins with 

electromagnetic radiation emitted by the Sun, where different wavelengths are absorbed or 

reflected by objects on Earth, forming the basis of spectral analysis. 

Each material has a spectral signature, a unique pattern of reflectance highlighting their 

significance in remote sensing applications. 

In this chapter, we explore the technological aspects of hyperspectral imaging, including 

the functioning of hyperspectral cameras and spectrometers, and distinguishing between 

various acquisition techniques such as point scanning and line scanning. Additionally, the 

historical development of HSI is traced from its origins in spaceborne Earth observation 

missions to its current widespread applications in environmental monitoring, geology, 

agriculture, and beyond. 

Furthermore, we need to emphasize the importance of hyperspectral sensors, like AVIRIS, 

demonstrating their capabilities for detailed surface characterization and their role in 

critical environmental applications such as oil spill detection. We also underscore the 

versatility of HSI across multiple fields, illustrating its expanding role in industry, 

medicine, homeland security, and resource management. 

1.2 Hyperspectral Imaging (HIS) 

HIS is the study of light interaction with materials and how it helps identifying them, so let 

us take a quick dive on how sunlight and electromagnetic energy works. 

Electrical magnetic energy (EM) radiates from the sun in waves, these waves are varied in 

size, most of these waves are invisible to our human eyes (figure 1.1) but the amazing thing 

is that when these waves reach the surface of the earth, they either get absorbed or reflected 

by objects, we call it (Spectrum). This phenomenon depends on their structures where each 

object has its own spectral signature (Spectroscopy) and with this information we can 

measure the intensity of the absorption or reflection using a special camera (figure 1.2) 

through a process known as hyperspectral imaging. 
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Figure 1.1: visible and invisible wavelengths [2]. 

 

Figure 1.2: Hyperspectral Camera scheme [3]. 

 

 

Each material has a unique spectral signature which allows the light to behave in a certain 

way depending on that signature. 

The spectrum is the amount of light in different wave lengths which shows how much light 

is emitted, reflected or transmitted from the material, in other words spectrum shows how 

much a certain color is contained in the light and for that aspect we can use a spectral 
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signature to identify our materials because we concluded that each material has its own 

signature similar to the human’s finger print. 

Where a normal digital camera captures normal visible light waves reflected off of objects 

and recorded the information in just 3 bands (RED, GREEN, BLUE) similar to a human 

eye (figure 1.3), it can’t capture the electromagnetic waves which contain thousands of 

wave lengths ranging from large radio waves to very small Gamma waves. In conclusion, 

the (EM) contains thousands of waves that are transformed into bands and to capture them 

we need to use a hyperspectral camera or a spectrometer. 
 

Figure 1.3: RGB image [4]. 

 

1.3 Hyperspectral camera (Spectrometer) 

An instrument that splits the incoming light (reflected light) into its individual wavelengths 

or spectral bands, it provides a two-dimensional image of a scene while simultaneously 

recording the spectral information of each pixel in the image, this detailed spectral 

information allows for more precise material identification, chemical composition analysis, 

and environmental monitoring. 

A hyperspectral image has two spatial dimensions (Sx and Sy) and one spectral dimension 

(Sλ) which forms a 3D hyperspectral data cube (figure 1.4). 
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Figure 1.4: 3D hyperspectral data cube [4]. 

 

 

1.3.1 Spatial Resolution 

It defines the clarity of the image and not the number of pixels in an image, its 

characteristics depends on the design of the sensors in terms of its field of view or altitude, 

take for example a patch of land that we want to take a picture off, the smaller the size of 

the patch the higher the details we can get. 

1.3.2 Spectral Resolution 

It is the number of spectral bands and range of electromagnetic spectrum measured by the 

sensor, where the resolution corresponds to the number of bands. The higher the number 

of bands, the better the resolution. 

1.3.3 Temporal Resolution 

Usually defined in days and it is the time needed by the sensor to revisit and obtain data 

from the exact same location, which means the higher the revisit frequency the higher the 

temporal resolution is. 
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1.3.4 Understanding Spectral Signatures 

Hyperspectral sensors allow us to measure all types of electromagnetic energy within a 

specific range as it interacts with materials (absorb, transmit and reflect). 

Reflectance is all about measuring the electromagnetic energy bouncing back from a 

material’s surface; it can range from [0-100], where 0 means that the material absorbed the 

entire light and 100 means that all the light was reflected. 

To be specific the reflectance values of different materials on the surface of the earth such 

as soil, forest, water and minerals can be plotted into spectral signatures (spectral response 

curves) and compared (Figure 1.5). 

The more spectral resolution of an imaging sensor, the more classification information can 

be extracted from spectral signatures. 

Hyperspectral imagery has been utilized by geologists for mapping the land and water 

resources as well as to map heavy metals and other hazardous wastes in active mining areas 

[6]. 



Chapter 1: Hyperspectral images (HSI) 

[9] 

 

 

 

 

 

 

Figure 1.5: Spectral signature of different materials [5]. 

 

1.4 The Origin of Hyperspectral Imaging 

Hyperspectral imaging (HSI) is a powerful and non-destructive analytical technique that 

captures both spatial and spectral data across a wide range of narrow and contiguous 

wavelengths. Originally developed for Earth observation in remote sensing, it has since 

evolved into a versatile tool applied in numerous fields such as agriculture, food quality 

control, environmental monitoring, and biomedical diagnostics. By collecting a complete 

spectral signature for each pixel in an image, HSI enables detailed identification of surface 

and material properties, far beyond the capabilities of conventional imaging systems. 

The conceptual roots of hyperspectral imaging lie in spectral remote sensing, a domain that 

began with the launch of Landsat 1 in 1972, then known as the Earth Resources Technology 
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Satellite (ERTS-1). This satellite carried the Multispectral Scanner (MSS), enabling the 

capture of Earth surface data in several discrete bands. Though revolutionary at the time, 

multispectral data lacked the spectral resolution needed for more precise material 

discrimination [6]. 

During this period, researchers at the NASA Jet Propulsion Laboratory (JPL), including 

Goetz and the late Gene Shoemaker, began analyzing MSS data for geological mapping, 

particularly on the Coconino Plateau in Arizona. They encountered challenges interpreting 

subtle color variations in the imagery, which could not be adequately explained without 

direct spectral measurements from ground samples. This need led to the development of 

the first portable field reflectance spectrometer (PFRS) in 1974, capable of capturing 

reflectance data across the 0.4 to 2.5 µm range the full solar-reflected spectrum [7]. These 

early efforts were instrumental in influencing the design of future remote sensing 

instruments, such as the addition of Band 7 to the Landsat Thematic Mapper. 

Recognizing the limitations of multispectral imaging, Goetz and colleagues at JPL 

proposed the concept of imaging spectrometry, formally defined as the acquisition of 

images in hundreds of contiguous spectral bands such that a full radiance spectrum could 

be obtained for each pixel [8]. In a 1985 Science publication, this vision culminated in the 

development of the Airborne Imaging Spectrometer (AIS), the first sensor of its kind, and 

it was in this context that the term “hyperspectral imaging” was first coined by Jerry 

Solomon [8]. 

A major step forward came with the creation of AVIRIS (Airborne Visible/Infrared 

Imaging Spectrometer), developed by NASA JPL in 1987 as a more advanced successor to 

the AIS. AVIRIS was designed to acquire high-quality hyperspectral data across 224 

contiguous spectral bands, covering the visible to shortwave infrared range (400–2500 nm). 

Its primary goal was to measure and characterize Earth's surface and atmosphere with 

greater precision, allowing for the identification and mapping of surface materials, 

vegetation types, mineral deposits, and atmospheric constituents [9]. 
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Since its inception, AVIRIS has been flown over a wide variety of geographic regions 

including deserts, forests, agricultural areas, and volcanic zones providing critical data for 

environmental monitoring, land use studies, and climate research [9]. 

Despite the technical limitations of the time, such as limited onboard processing power and 

dependence on centralized computing facilities, AVIRIS established a new standard for 

airborne hyperspectral sensing. It confirmed that high-resolution, laboratory-quality 

spectral measurements could be achieved remotely and effectively over broad areas. The 

success of AVIRIS greatly influenced both research and instrument development in the 

decades that followed [9]. 

As sensor technology and data processing capabilities improved, hyperspectral imaging 

found applications beyond its original scope. By the late 1990s, researchers such as Lu and 

Chen demonstrated the technique’s potential in agriculture and postharvest quality 

evaluation, notably in detecting defects in fruits like apples [10]. Soon, the food industry 

began to adopt HSI as a non-invasive means to evaluate internal attributes such as sugar 

content, acidity, and texture properties invisible to the human eye or standard RGB imaging 

systems. 

Researchers including Gowen et al. and Nicolaï et al. expanded the field further, using 

hyperspectral imaging for chemical imaging, allowing for spatial visualization of 

biochemical content [11-12]. These developments marked a shift toward real-time 

industrial applications, where quality and safety control could be automated, non-invasive, 

and highly accurate. 

Today, hyperspectral imaging continues to evolve rapidly, driven by advances in optics, 

electronics, data science, and machine learning. From its origins in space-based Earth 

observation missions to its growing presence in precision agriculture, food inspection, 

medical diagnostics, and environmental science, HSI has proven to be a transformative 

technology. It serves as a prime example of how foundational innovations in one field such 

as NASA’s efforts in planetary and Earth sciences can ripple across disciplines, solving 

new challenges and inspiring new research directions. 
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Table 1.1: The current space and airborne satellite hyperspectral sensors [4]. 

 

1.5 Different usages of hyperspectral imaging 

This is a rapidly growing field and has a great variety of applications such as: military, 

industrial, commercial (food safety and quality), medical fields, water food and resources 

management, agriculture, forensics, homeland and defense security, plant detection and 

fire prediction, weed and crop discrimination [4], and most importantly our main theme for 

this thesis which is oil spill detection. 

1.6 Conclusion 

In this chapter, we have explored the fundamental principles and technological 

advancements of hyperspectral imaging (HSI). Starting from the interaction of sunlight and 

electromagnetic radiation with Earth's surfaces, we examined how spectral signatures 

enable the precise identification of materials. The chapter outlined the operational 

mechanisms of hyperspectral sensors, and traced the historical evolution of HSI from its 

origins in spaceborne remote sensing to its diverse modern applications. Emphasizing the 

sensor’s high spectral and spatial resolution capabilities, we highlighted its significant role 

in environmental monitoring, including critical tasks such as oil spill detection. Overall, 

this chapter provides a comprehensive understanding of hyperspectral imaging technology, 

 Sensor Origin Spectral 

Range 

No. of 

spectral 

bands 

Spectral 

Resolution 

(nm) 

Operational 

Altitude (Km) 

Spatial 

Resolution 

(m) 

Satellite 

Based 

Hyperion 

 

PROBA-CHRIS 

 

NASA, UK 

 

ESA, UK 

352-2576 

 

415-1050 

220 

 

19 63 

 

10 

 

34 17 

707 (7.7 km) 

 

830 (14 km) 

30 

 

1736 

 

Airplane 

Based 

AVIRIS 

 

CASI 

 

AISA HyMap 

 

Jet Propulsion 

Laboratory, USA 

Itres, Canada 

 

Specim, Finland 

Integrated 

Spectronics, 

Australia 

400-2050 

 

380-1050 
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laying the groundwork for its application in the subsequent analysis and detection methods 

discussed in this thesis. 
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2.1 Introduction 

This Chapter provides a comprehensive, step‐by‐step methodological explanation of oil 

spill detection pipeline for hyperspectral data, which integrates Principal Component 

Analysis (PCA), Isolation Forests, and Support Vector Machines (SVM). Data 

preprocessing, dimensionality reduction, unsupervised anomaly scoring, supervised 

refinement, and performance evaluation is discussed in detail. 

2.2 Machine Learning 

Machine Learning is a way where computers learn from Data and use what was learned to 

make judgments. It is divided into many techniques, from basic linear regression to 

advanced deep learning models. 

Machine learning is also known as a branch of artificial intelligence which instructs 

computers to analyze data and extract conclusions by improving their performance on a 

specific task through data analysis instead of a specific instruction or programming. 

It is used by scientists for diverse purposes, and is a subset of artificial intelligence, where 

(AI) can do problem-solving, decision-making and spotting patterns and gaining 

knowledge..., (AI) aims to mimic human intellect and require human-level cognition and 

reasoning. 

(ML) focuses on specific tasks such as image recognition, recommendation systems, 

natural language processing (NLP), healthcare, financial services, language translation and 

more, which all depend on these core components (figure 2.1). It focuses on crafting 

algorithms, models that enable computers to learn from data enhancing performance 

progressively, where we can consider machine learning as one of the many tools used by 

(AI). 

● Data: can be texts, numbers, images or any information that can be processed by a 

computer, not to forget the quality and quantity of this said data which plays a 

significant role in (ML). 
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● Algorithms: are the heart of the process, and are responsible for learning patterns 

and relationships in our Data, where it can be supervised or unsupervised or even 

reinforcement learning. 

● Training: used in supervised learning, it allows the algorithm to learn from the data 

where the correct answer is and make correct predictions when new data is 

presented. 

● Model: it uses the algorithms to encapsulate the patterns and relationships it has 

learned from the data during training, after that it can be used for making 

predictions or decisions. 

● Testing and validation: it is essential after training, to ensure the model’s ability to 

apply its new found knowledge on unseen examples. 

● Deployment: after training and validation, we can be integrated into real-world via 

software, systems or devices to automate tasks, assist in decision making or make 

predictions. 

 

Figure 2.1: Machine learning [14]. 

 

The rapid advancement of machine learning has brought about significant developments in 

supervised and unsupervised learning which they are two fundamentals used in a wide 

range of applications however, these learning methods are often faced by various 

challenges from complexities of data labeling and overfitting, limiting its scalability and 
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generalization in supervised learning to the intricacies of clustering and noise management 

and interpretability in unsupervised learning. 

2.2.1 Supervised Learning 

Trained algorithms using labeled data, meaning the input data comes with corresponding 

correct outputs, where the goal is enabling the algorithm to classify new data or make 

predictions based on what patterns were learned during training (Figure 2.2). 

 

 

Figure 2.2: Supervised Learning Diagram [14]. 

 

Supervised learning plays a central role especially when the objective is predicting or 

classifying based on labeled data. 

2.2.2 Supervised Learning Algorithms 

● Linear Regression: is a foundational algorithm in supervised machine learning and 

is commonly used to forecast future outcomes by establishing the relationship 

between a dependent variable (target) and one or more independent variables 

(features) where the objective is to predict a continuous numeric output. In the case 
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where there is only one independent variable and one response variable, the model 

is called "simple linear regression". In contrast, "multiple linear regression" is used 

when multiple independent variables are involved. 

● Logistic Regression: where Linear Regression is better used and suited for 

categorical dependent variables with binary output like ‘’true’’ and ‘’false’’ or 

‘’yes’’ and ‘’no’’, we use logistic regression to tackle binary qualification issues 

(spam identification), while both graphical and non-graphical seek to discover 

correlations between data inputs. 

● Decision Trees: widely used in supervised machine learning for tasks such as 

classification and regression, where the algorithm works by splitting the data into 

smaller subsets based on the values of input features. Each internal node in the tree 

is formed by a decision based on a specific feature, branches illustrate the possible 

outcomes of those decisions, and leaf nodes provide the final prediction or 

classification. 

● Support Vector Machine (SVM): created by Vladimir Vapnik, a well-known 

supervised learning model applied to both data classification and regression, but is 

used primarily in classification issues, it works by creating a hyperplane gapping a 

large space between two sets of data (for example oranges and apples) into distinct 

groups. 

● Naïve Bayes: based on the Bayes theorem including Bernoulli Naïve Bayes, 

Multinominal Naïve Bayes and Gaussian Naïve Bayes. It is a classification 

approach founded on the assumption of conditional independence among classes. 

Commonly used in text classification, recommendation engines and spam 

identification. 

2.2.3 Unsupervised Learning 

Focuses on uncovering patterns, structures, or relations within labeled data. Its capability 

to identify similarities and distinctions in data positions is the perfect solution for tasks like 

exploratory data analysis, strategies for cross-selling customer segmentation, and image 

recognition (figure 2.3). 
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Figure 2.3: Unsupervised Learning Diagram [14]. 

 

 

 

2.2.4 Unsupervised Learning Algorithms 

Clustering is a data organizing approach which works as follows: similar attributed items 

are grouped together within a cluster, and distinct items are assigned to separate clusters. 

In short it categorizes data objects into groups according to if they share or do not share 

characteristics (figure 2.4). 

The most used unsupervised learning algorithms depicted are as follows: 

 

● K-Means: groups data points into ‘’K’’ clusters, ‘’K’’ is a number you specify. 

The point is to assign each data point to the cluster with the closest center 

minimizing the distance between the data points and their center, the process is then 

repeated until the clusters are as tight and distinct as possible. 

● Hierarchical Clustering: dividing data into hierarchy of clusters represented as a 

tree-like structure, every data point is designated as an individual distinct cluster. 

Assigning data to an existing cluster, or merging two clusters iteratively a novel 

cluster can be created. 

● DBSCAN (Density-Based Spatial Clustering of Applications with Noise): is a 

clustering algorithm distinguishing between high-density and low-density clusters, 

so it is a density-based clustering technique used for locating clusters of similar 

large datasets. 
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Figure 2.4: Unsupervised Learning algorithms. 

 

 

2.2.5 Challenges encountered in supervised and unsupervised learning 

● Supervised Learning: 

o Expensive learning algorithms requiring significant computational 

resources. 

o The need for labeled data, where obtaining and annotating a large dataset 

can be time-consuming and expensive. 

o Models in supervised learning tend to perform well on data similar to the 

training set but can struggle to generalize to new or unseen data. 

o Imbalanced datasets, where one class significantly outweighs the other, 

leading to biased models and difficult to make accurate predictions. 

 

● Unsupervised Learning: 

o Influenced by the choice of algorithms and decision-making in 

performance. 

o Subjective clustering quality evaluation, and there might be no ground truth 

to compare against. 

o Impacting the quality of clustering results is subjugated to selecting the 

optimal number of clusters which is an unsolved problem. 

o The lack of clear interpretations leading to challenges in discovering a 

significance in patterns. 
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o Computationally expensive and poorly scalable to large datasets in some 

unsupervised learning algorithms such as hierarchical. 

o Sensitivity to noisy data and outliers leading to incorrect results [14]. 

 

 

2.3. Oil Spill Detection Using HSI 

 
2.3.1. Anomaly Detection 

Anomaly detection in hyperspectral images focuses on identifying pixels whose spectra 

significantly deviate from the background (Figure 2.5). 

 

 

 

 
(a) Hyperspectral oil spill image. (b) Spectral curve 

 

Figure 2.5: The spectral curve of different objects [1]. 

 

 

Early approaches, such as the Reed‐Xiaoli (RX) detector [15], model the background 

distribution using Gaussian statistics and compute a Mahalanobis distance for each pixel. 

Subsequent variants incorporate robust covariance estimation [16], subspace projections 

[17], and kernel‐based variants [18]. The challenge remains that real‐time applications 

require both accuracy and computational efficiency. 
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2.3.2. Dimensionality Reduction Using PCA 

Hyperspectral data typically have hundreds of bands (e.g., AVIRIS collects 224 bands). 

Many bands are highly correlated; hence, dimensionality reduction is essential. Principal 

Component Analysis (PCA) [19] is widely used to project data into an orthogonal subspace 

of smaller dimensionality, capturing the majority of variance. Alternatives include 

Independent Component Analysis (ICA) [20], Maximum Noise Fraction (MNF) [21], and 

supervised linear discriminant analysis (LDA) [22]. PCA’s strength lies in its simplicity 

and the ease of reconstructing approximate spectra. 

Principal Component Analysis (PCA) is a widely used linear transformation technique for 

reducing the dimensionality of hyperspectral images (HSIs). Hyperspectral data typically 

consist of hundreds of contiguous spectral bands, many of which contain redundant or 

correlated information. This high dimensionality increases computational complexity and 

storage requirements while potentially degrading classification and detection performance 

due to the "curse of dimensionality." PCA addresses these challenges by transforming the 

original high-dimensional data into a lower-dimensional subspace while retaining the most 

significant spectral variations [36]. 

 

 

Figure 2.6: Reducing the dimensionality of data cube using PCA. 
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PCA operates by projecting the original spectral bands into a new orthogonal coordinate 

system defined by eigenvectors (principal components, or PCs) of the data covariance matrix. 

It reorients the data from its original band-based axes into a new set of axes (dimensions) that 

are orthogonal (perpendicular and uncorrelated). These new axes are the Principal Components 

(PCs), and this is useful because in the original data, bands may overlap in information (e.g., 

two bands might respond similarly to vegetation), PCA finds new directions (PCs) where the 

data varies the most, eliminating redundancy. The principal components are nothing but the new 

coordinates of points with respect to the new axes. The result of the projection will be 

represented in recombining the original spectral bands as weighted sums (projections) onto 

these new PC axes [37]. 

 

 

 

Figure 2.7: The rotation of original axes [45]. 

 

 

-  PCA computation 

1- First, we begin by calculating the covariance matrix of the dataset, it helps us 

understand how variables (features) in the dataset relate to each other. For this 

reason, we center the data by removing the mean (Mean Subtraction) because PCA 

is sensitive to the scale of data. 

We do it by computing the mean (average) of each feature (column) across all 

samples then subtracting this mean from every data point in that feature. 
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𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 

 
Xcentered = X − μ.                                                                  2.1 

 

2- Now we compute the Covariance Matrix, it tells us how features vary together to 

calculate it, we multiply the transposed centered data (𝑋𝑇 ) by itself 

(𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 
), then scale by 1 

𝑛 − 1 
(for unbiased estimation in statistics), we represent 

it mathematically as: 

C =
1

n−1
Xcentered

T  XCentered
                                                                 2.2 

the result is a d × d symmetric matrix where (𝐶𝑖𝑖) is the variance of feature i [38]. 

 

3- The next step is finding the Eigenvectors of the Covariance Matrix. Eigenvectors 

define the directions of maximum variance (Principal Components), while 

eigenvalues tell us how much variance each PC captures, they tell us the directions 

where data varies the most, while eigenvalues quantify their importance. 

We start by solving the eigenvalue equation: 

𝐶𝑣 = 𝜆 𝜈                                                                   2.3 

where: 

𝐶 = covariance matrix. 

𝑣 = eigenvector (direction). 

𝜆 = eigenvalue (magnitude of variance). 

The result will be a set of eigenvectors (𝑣1,𝑣2, ... ,𝑣d) and their corresponding 

eigenvalue (𝜆1,𝜆2,...,𝜆d). 

Then to rank Principal Components by importance (highest variance first) we sort 

Eigenvectors by Eigenvalues. We start by sorting the eigenvalues in descending 

order: 

𝜆1>𝜆2>...>𝜆d, then we reorder eigenvectors accordingly. This will give us: 

 

𝑣1 = first Principal Component (direction of max variance). 

𝑣2 = second Principal Component (next best direction, orthogonal to v1), etc [39]. 

4- The last step is transforming the original data into the new PCA space, by selecting 

the top-k Eigenvectors. We chose the first k eigenvectors (where k < d) that capture, 
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e.g., 95% of total variance, forming a projection matrix W (size d × k) with these 

eigenvectors as columns. 

Now, we transform the data by multiplying the centered data by the projection 

matrix: 

𝑋𝑃𝐶𝐴 = 𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 . 𝑊                                                                2.4 

 

The result XPCA represents a new dataset with k dimensions instead of d [40]. 

 

After building the principal components of the dataset we simultaneously compute the 

weights of the principal components. The weights are the coefficients of the original 

variables (features) in each principal component (PC). They define how much each original 

feature contributes to a PC [41]. 

Since PCs are ranked by importance (variance), we can discard weaker ones, reduce 

dimensions while keep most information. And thus, orthogonality ensures that each PC is 

independent (uncorrelated), meaning that PC1 explains the most variance then PC2 

explains the next most, without overlapping with PC1, etc. [42]. 

Despite its advantages, PCA may not always improve detection performance, particularly 

when the target of interest (e.g., an oil spill or mineral deposit) has a spectral signature 

similar to its background. Since PCA prioritizes high-variance features, subtle but critical 

spectral differences may be suppressed in the lower-variance components, reducing 

detectability. Alternative methods, such as Independent Component Analysis (ICA) or 

supervised feature extraction, may be more effective in such cases [43]. 

In summary, PCA is a powerful unsupervised tool for hyperspectral dimensionality 

reduction, offering computational efficiency and enhanced classification performance. 

However, its effectiveness depends on the data characteristics, and careful consideration is 

needed when applying it to specific detection tasks [45]. 

 

 

2.3.3. Isolation Forest for Unsupervised Anomaly Scoring 

Isolation Forest (iForest) [23] is an ensemble‐based anomaly detection algorithm that 

isolates observations in a data set. The key insight is that anomalies, being “few and 

different,” get isolated more quickly in a random partitioning tree structure check (figure 
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2.8). 
 

Figure 2.8: Anomalies (Xi) and (X0) are isolated faster than normal data [24]. 

 

 

Unlike distance‐based or density‐based methods (e.g., k‐nearest neighbors [25], local 

outlier factor [26]), iForest directly models the notion of isolation and scales well to large 

datasets. 

2.3.3.1. Concept of Isolation Forest 

The term isolation means ‘separating an instance from the rest of instances’, and because 

anomalies are few and different which makes them easier to isolate by partitioning of 

instances repeatedly until all instances are isolated. To demonstrate the idea of anomalies 

are more susceptible to isolation under random partitioning, we illustrate an example in 

(figure 2.9) is partitioning of a normal point which requires more partitions to be isolated 

versus the anomaly in (Figure 2.6.b) that requires less partitions to be isolated, partitions 

are generated randomly. Since repeated partitioning can be represented by tree structure it 

means that the number of partitions required to isolate a point is equivalent to the path 

length from the root node to a terminating node [27]. 

Suppose a data-induced Binary Decision Tree with an anomaly present. The assumption” 

few and different” implies anomalies are decided closer to the root, and normal points are 

deeper in the tree. The binary tree is built to isolate all the points and measure their 

individual Path Lengths from the root. 
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● Isolation Tree: T is either an external-node with no child, or an internal-node with 

one test and exactly two daughter nodes (𝑇𝑙, 𝑇𝑟) of an Isolation Tree. A test consists 

of an attribute q and a split value p such that the test q < p divides data points into 

𝑇𝑙, and 𝑇𝑟. 
 

 

Figure 2.9: An Example of a Construction of an Isolation Tree [31]. 

 

 

● Path Length: h(x) of a point x is measured by the number of edges x traverses an 

iTree from the root node until the traversal is terminated at an external node. 

● iForest: of size t is an ensemble of t iTrees. In short, DATA are matrices of real 

numbers of a dimension 𝑁 × 𝑃, where N is number of rows and P is number of 

features. In training stage, the Isolation Forest algorithm builds an ensemble of 
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iTree over data. In the evaluation stage, for any value x the mean h(x) in ensemble 

of iTree is computed. In the following sections the average h(x) is used to calculate 

the anomaly score. 

2.3.3.2. Isolation Forest Algorithm [32] 

The output of the iForest algorithm is an anomaly score. In short, the anomaly score is 

average h(x) in iForest normalized by the average path of unsuccessful searches in a Binary 

Search Tree (BST). In the following part, the individual components of the anomaly score 

formula are presented. 

Average h(x) of the unsuccessful search in BST for the data set of size i is: 

 

𝑐(𝑖) = {
2𝐻(𝑖 − 1) −

2(𝑖−1)

𝑖
 𝑓𝑜𝑟 𝑖 > 2

1                                     𝑓𝑜𝑟 𝑖 = 2
0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                               2.5 

where: 

H (x) = harmonic number estimated as ln(x) + 0.5772156649 (Euler’s constant), 

As mentioned in the height of iTree is limited so as to manage memory requirements. 

Formula c(i) is used to estimate the tree height in cases, where iTree is not able to isolate 

the point. This is done especially for dense clusters of normal points. 

Anomaly formula: 

 

𝑠(𝑥, 𝑁) = 2
−𝐸(ℎ(𝑥))

𝑐(𝑁) .                                                                 2.6 

with: 

x = any row in the data 

N = number of rows in the data 

E(h(x)) = mean of h(x) in ensemble 
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● The anomaly score is interpreted as follows: 

o if instances return s very close to 1, then they are definitely anomalies, 

o if instances have s much smaller than 0.5, then they can be quite safely 

regarded as normal instances, 

o if all the instances return s around 0.5, then the entire sample does not have 

any distinct anomalies. 

 

 

2.3.4. Support Vector Machine for Binary Classification 

Support Vector Machines (SVM) [28] are supervised learning models that find an optimal 

hyperplane separating two classes in a high‐dimensional feature space. By maximizing the 

margin between classes, SVMs tend to generalize well. Linear SVMs can handle large 

feature sets, especially when the data are linearly separable after some transformation. 

Kernel SVMs extends this to nonlinear decision boundaries but at greater computational 

cost. 

The case of a Linear SVM, where the score function is still linear and parametric, will first 

be introduced, in order to clarify the concept of margin maximization in a simplified 

context. After that by introducing a kernel the SVM will be made non-Linear and non- 

parametric [34]. 

SVM shows its significant advantages on both sparable problems (linear separable 

problems and non-linear separable problems) and non-separable problems, all will be 

covered in this section: [33] 

● Case of Linearly separable 

For example, let’s say we have been offered some training data with some people’s weight, 

height and their gender, then we want to make use of them to predict the unknown gender 

data. As shown in (Figure 2.10) these two types of points represent Male and Female, where 

we can see in (figure 2.11) lines that divide the space into two regions, and we can easily 

notice that the black solid line would be the optimal line. Which maximizes the margin 

between itself and the nearest points of each class. 
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Figure 2.10: Points representing Males Females [33]. 
 

 

Figure 2.11: Classification Lines [33]. 

 

SVM extends the two-dimensional linear separable problem to multidimensional, and aims 

to seed the optimal classification surface, which we call THE OPTIMAL HYPERPLANE: 

𝑤𝑇𝑥 + 𝑏 = 0                                                               2.7 

W: weight vector. 
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b: threshold. 

 

The relation between 𝑥𝑖 and 𝑓(𝑥𝑖) can be defined as: 

 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏.                                                                 2.8 

Seeding the optimal hyperplane is equivalent to maximal the distance between the closest 

vectors to the hyperplane. Define the Euclidean distance between the nearest points and the 

hyperplane f(x) as: 

r = |
f(x)

‖w‖
|                                                                    2.9 

 

f(x): Functional margin 

 
Assume f(x) between the nearest points and the hyperplane is 1 as the (Figure 2.12) shows. 

The assumption was accompanied with a constraint condition 

𝑦𝑖 (𝑤𝑇 𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1, 2, . . . , 𝑛,                                                        2.10 

which implies that all training data are on the two hyperplane or behind them and the 

training data on the hyperplane are called support vectors (SVs). Thus, the margin between 

the parallel bounding planes d can be defined as: 

 

d = 2r =
2

‖w‖
                                                                   2.11 
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Figure 2.12: Optimal Classification Line [33]. 
 

 

Thus, the objective function can be presented as:
 

𝑚𝑖𝑛
1

2
‖𝑤‖2 𝑠. 𝑡. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, … , 𝑛.                                                               2.12 

● Case of Non-Linearly Separable 

As shown in in (figure 2.13) there is no line that can classify the two classes well, only 

curves, and this is where SVM shows its superiorities for nonlinearly problems, which 

takes the way of mapping the input vectors in low dimension feature space to a high 

dimension feature space to find a suitable line separating hyperplane. 



Chapter 2: HSI Clustering 

[33] 

 

 

 

 

 

Figure 2.13: Non-linearly Separable [33]. 

 

● Case of non-separable 

Lastly, some points belong to positive class may be counted as negative class or we can 

say that there is no hyper plane that is able to separate the points of different categories 

accurately. 

These error points are usually regarded as noise which can be ignored by humans but not 

by machines for machines can’t deal with error points like humans do. 

In summary, SVM is a powerful classifier, which is suitable for any case of classification 

with the same decision function, high classification accuracy and small computation [33]. 

2.3.4.1. Effects of SVM and Kernel Parameters [35] 

SVM has a set of parameters different from hyperplane large-margin which we call 

hyperparameters. The soft margin constant, C, and any parameters the kernel function may 

depend on (width of Gaussian Kernel or degree of a polynomial Kernel), all this will be 

illustrated with its effect on the decision boundary of an SVN using two dimensional 

examples. 

o Soft-Margin Constant we see in (Figure 2.14) that for a large value of C, a large 

penalty is assigned to errors/margin errors. 
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Where in the left panel we see the two points closest to the hyperplane affect its orientation 

making it closer to several other data points, When C is decreased in the right panel those 

points become margin errors and the hyperplane’s orientation changes giving us a much 

larger margin for the rest of the data. 

 

 

Figure 2.14: The effect of soft-margin constant C [35]. 

 

 

o Decision boundary, the degree of the polynomial Kernel and the width parameter 

of the Gaussian Kernel control the flexibility of the result in (Figure 2.14) where 

we find linear kernel that means we have the lowest degree, which is not good for 

a nonlinear separation. 

After that we have a degree 2 polynomial and is flexible enough to discriminate between 

two classes with a sizable margin. 

The degree 5 polynomial has similar decision boundary but with greater curvature. 

o Gaussian Kernel, when 𝛾 is large, the value of the discriminant function is 

essentially constant outside the close proximity of the region where the data are 

concentrated, see bottom right panel in (Figure 2.15). In this regime of the 𝛾 

parameter, the classifier is clearly overfitting the data. 

As seen from the examples in (Figure 2.14 and 2.15), the parameter 𝛾 of the Gaussian kernel 

and the degree of polynomial kernel determine the flexibility of the resulting SVM in fitting 

the data. If this complexity parameter is too large, overfitting will occur (bottom panels in 

Figure 2.15). 
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Figure 2.15: The effect of Gaussian Kernel [35]. 

 

 

2.3.4.2. Advantages of SVM [34] 

Every classification method has its own pros and cons, and their effectiveness depends 

largely on the nature of the data being analyzed. Support Vector Machines (SVMs) are 

particularly beneficial when dealing with data that is irregular or lacks a clear distribution 

pattern, an issue often encountered in financial distress or insolvency prediction. In these 

situations, SVMs offer a powerful alternative to traditional methods, especially when 

working with financial ratios that may not fit neatly into conventional classification models. 

Here are several reasons why SVMs are advantageous: 

● Flexible Decision Boundaries: By using kernel functions, SVMs allow for flexible 

decision boundaries that aren’t limited to linear separations. The model doesn’t 
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require the same functional form across all data points, this flexibility reduces the 

need for manually transforming each problematic variable. 

● No Need for Explicit Feature Transformation: The kernel trick used in SVMs 

performs an implicit non-linear transformation of the data, allowing for better 

separability without requiring assumptions about how to transform the variables 

beforehand. This makes the process more efficient and less reliant on expert 

judgment. 

● Strong Generalization Ability: When SVM parameters like the regularization 

parameter C and kernel-specific parameters (e.g., r for the Gaussian kernel) are 

carefully selected, the model tends to generalize well to new data. This robustness 

is especially important if the training data is biased or not fully representative. 

● Unique, Stable Solution: SVMs solve a convex optimization problem, which 

means there’s only one optimal solution. Unlike neural networks, which may get 

stuck in local minima and produce different results depending on the initial weights 

or sample variations, SVMs are more stable and reliable across different datasets. 

● Similarity-Based Classification: By using kernels like the Gaussian (RBF) kernel, 

SVMs place more emphasis on how similar different companies are in terms of 

their financial ratios. This means that when classifying a new company, the 

algorithm compares its data to the most relevant support vectors (i.e., examples 

from the training set that are most similar), leading to more meaningful and accurate 

classifications based on structural similarity. 

 

2.4 Conclusion 

In this chapter we have introduced the basics of machine learning algorithms especially 

supervised and unsupervised methods, then we have detailed the principal algorithms used 

in our work, from the PCA, Isolation Forest to SVM. 
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Chapter 3: Experimental results 

3.1 Introduction 

In this chapter, we present a structured explanation of a MATLAB‐based workflow that 

combines unsupervised and supervised machine learning techniques. The rationale behind 

each algorithmic choice is examined, relevant mathematical foundations are derived, and 

practical considerations for implementation are presented. Finally, evaluation metrics and 

visualization strategies are described before concluding with a list of key references. 

We begin by preprocessing the raw data, estimating noise levels to filter out unreliable 

spectral bands. We then perform PCA to reduce dimensionality, balancing information 

retention with computational efficiency. 

An Isolation Forest is trained on a 1% random sample of the reduced‐dimensional data to 

compute initial anomaly scores. These scores yield a binary anomaly map (0 = normal, 

1 = anomalous), which serves as pseudo‐labels for a Support Vector Machine (SVM). 

The SVM is trained and then applied across the entire image to generate a refined anomaly 

prediction. 

 

 

Figure 3.1: The flowchart of the proposed unsupervised oil spill detection method [1]. 
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Finally, we compute performance metrics precision, receiver operating characteristic 

(ROC) curves, and area under the curve (AUC) and visualize both the reference and 

predicted anomaly maps. 

3.2 Data Sets 

 
3.2.1 Oil Spill Location 

The area where we study the Oil spill incident is Located in the Gulf of Mexico, 

North America continent, around 25° 𝑁 90° 𝑊. Known as the biggest 

environmental incident in US history occurring on April 20, 2010. 

More than 757 million liters of raw oil are released at that location. 

At this moment is where hyperspectral data is going to be playing a critical role for 

monitoring and cleaning up the oil spill by detecting the oil spill region providing 

rich spectral information from the visible to the infrared spectrum. 

 

 

3.2.2 HOSD Database 

A large-scale hyperspectral database was created with AVIRIS sensors from 

different test sites. This database was called Hyperspectral Oil Spill Database 

(HOSD), Which was the first public oil spill detection dataset and is freely available 

for research purposes, this availability helped develop different ground breaking 

approaches for oil spill detection. 

What makes HOSD so special and different from other oil spill datasets used in 

other publications is the wide distribution, large coverage and large amount of data. 

Field experts labeled oil spill areas pixel by pixel. The reference maps of all studied 

sample images are manually annotated by using the ENVI (Environment for 

Visualizing Images software), as well as the datasets have been processed with 

atmospheric correction model in ENVI 5.3 software before oil spill detection. 

(Table 1) lists some features of the HOSD, spectral coverage is from 365nm to 

2500nm. 
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Table 3.1. Some features of the HOSD [1]. 

 

Data Spatial size Resolution Fight time 

GM1 

GM2 

GM3 

GM4 

GM5 

GM6 

GM7 

GM8 

GM9 

GM10 

GM11 

GM12 

GM13 

GM14 

GM15 

GM16 

GM17 

GM18 

1200*633 

1881*693 

1430*691 

1700*691 

2042*673 

2128*689 

2302*479 

1668-*550 

1643*447 

1110*675 

1206*675 

869*649 

1135*527 

1790*527 

1777*510 

1159*388 

1136*660 

1047*550 

7.6m 

7.6m 

7.6m 

7.6m 

7.6m 

8.1m 

3.3m 

3.3m 

3.2m 

7.6m 

7.6m 

7.6m 

3.2m 

3.2m 

3.3m 

3.2m 

7.6m 

3.3m 

5/17/2010 

5/17/2010 

5/17/2010 

5/17/2010 

5/17/2010 

5/18/2010 

7/09/2010 

7/09/2010 

7/09/2010 

5/17/2010 

5/17/2010 

5/06/2010 

7/09/2010 

7/09/2010 

7/09/2010 

7/09/2010 

5/17/2010 

7/09/2010 

 

3.3 Noise Estimation and Band Removal 

Our objective is to estimate the noise level σ in each band and remove bands whose noise 

exceeds a threshold. 

Hyperspectral images are often corrupted by noise due to sensor imperfections, calibration 

errors, and random photon fluctuations during capture. This noise degrades image quality 

and reduces the accuracy of critical tasks like object detection and land-cover classification. 

Currently, many researchers manually remove the noisiest spectral bands before analysis. 
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However, this approach is inefficient, hyperspectral images contain hundreds of bands, 

making manual inspection tedious. 

To solve this problem, we propose an automatic band selection method that quantifies 

noise in each band using a Gaussian statistical model then filtering out severely noisy 

bands using an adaptive threshold. 

Real-world noise often follows a Gaussian (normal) distribution, making this model a 

natural choice. 

We estimate noise levels by applying a Laplacian mask (below), which amplifies noise- 

induced pixel variations: 

𝑀 = [
1 −2 1

−2 4 −2
1 −2 1

]                                                                    3.1 

The function estimate noise typically computes the standard deviation of local differences along spatial 

dimensions [15]. Let 

𝜎𝑛 = √
𝜋

2

1

6(𝐼𝑊−2)(𝐼𝐻−2)
∑ |𝐼𝑛(𝑖, 𝑗) ∗ 𝑀|, 𝑛 = 1,2, . . , 𝐼𝑁𝑖,𝑗                                                                 3.2 

Where: 𝐼𝑊 and 𝐼𝐻 stand for the spatial dimensions, and 𝐼𝑁 is the total number of spectral channels. 

Bands with high σ contain little useful signal (dominated by noise). 

Compute the average noise across all 224 bands: 

 

Sn = {In, if σn <
1

IN
∑ σn ∅n , Otherwise                                                               3.3 

Any band with 𝜎𝑛 ≥𝑠𝑛τ is discarded. 

This ensures automatic, data-driven filtering without manual intervention. Cleaner 

bands improve downstream tasks like oil spill detection while saving time [1]. 

 



[42] 

 

 

Chapter 3: Experimental results 

3.4 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a popular method for reducing the dimensionality 

of hyperspectral images. Since these images contain massive amounts of data often with 

redundant spectral bands PCA helps by compressing the information into fewer key 

components while keeping the most important details needed for tasks like classification 

and detection. 

As an unsupervised technique, PCA works by analyzing the entire image to find the most 

meaningful spectral patterns. This not only lowers computational costs but also enhances 

classification accuracy, which is especially useful when labeled training data is scarce. 

However, research shows that PCA may have little effect on detection performance when 

the target (e.g., an oil spill) has a spectral signature similar to its background. In such cases, 

the key features needed for detection might not stand out clearly in the reduced PCA 

components. 

So basically, our objective is to reduce the dimensionality of X by projecting onto its 

principal components, retaining directions of maximal variance. 

The first step is to reshape the 3D data cube into a 2D matrix where each row corresponds 

to a pixel’s spectral signature (pixel × band) and ensure numerical validity. 

Input: X ∈ ℝ^(P × nbands) (P = nrows × ncols). 

 
Output: score the projection of X onto its principal components. 

 

- Choice of Number of Components 

Although all 224 PCs can be computed, downstream algorithms will use the first Npca 

=100 PCs. The first 100 PCs typically capture > 99% of the variance in hyperspectral data 

[19]. Reducing from 224 of bands to 100 components mitigates the “curse of 

dimensionality” and accelerates anomaly detection algorithms. 

After pre-processing, the next step is to identify potential oil spill regions by detecting 

anomalies in the hyperspectral data. 
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3.5 Anomaly Detection Using Isolation Forest 

The Isolation Forest (iForest) algorithm is an unsupervised machine learning method 

designed to efficiently detect anomalies by exploiting the fundamental principle that 

abnormal data points are few in number and inherently different from normal instances. 

Unlike traditional anomaly detection approaches that rely on computationally expensive 

distance or density measurements, iForest operates by isolating anomalies through a series 

of random partitions in the feature space, making it particularly suitable for processing 

large and complex datasets like hyperspectral remote sensing imagery. 

The algorithm consists of two key stages: training and anomaly scoring. In the training 

phase, the iForest model constructs an ensemble of Isolation Trees (iTrees), which are 

binary trees built using a random partitioning process. 

Each iTree is generated by recursively splitting the dataset along randomly selected 

features and threshold values until all instances are isolated. Due to their distinct spectral 

characteristics, anomalies such as oil spills tend to separate much faster than normal pixels 

(e.g., water or oil) because they require fewer splits to be distinguished from the majority 

of the data. This results in significantly shorter path lengths within the trees for anomalous 

instances compared to normal ones. 

Once the forest is built, the algorithm proceeds to the scoring phase, where each pixel in 

the hyperspectral image is evaluated based on its average path length across all iTrees. 

Since anomalies are isolated earlier in the trees, they exhibit shorter average path lengths, 

which are then converted into anomaly scores. 

A higher score indicates a higher likelihood of the pixel being an anomaly, allowing for 

effective discrimination between oil spills and the background environment. 

In summary, the iForest method effectively identifies anomalies that are both rare and 

spectrally distinct - perfectly matching the needs of hyperspectral anomaly detection. 

Since anomaly pixels are typically few in number and differ significantly from background 

pixels in their spectral characteristics, the isolation concept works well for separating them. 
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The detection process relies on calculating each pixel's average path length through the 

isolation trees. 

However, the standard iForest approach has limitations, it uses completely random splits 

at each tree node, choosing arbitrary thresholds that may not optimally separate anomalies 

from normal pixels. Additionally, during evaluation, the method simply measures path 

lengths from root to terminal nodes, this becomes problematic when different pixels end 

up in the same terminal node, they receive identical path lengths despite potentially being 

different types of anomalies, as shown in (Figure 2.9). 

In the implementation of Isolation Forest, we select 1% of the total pixels at random, then 

train an Isolation Forest to assign anomaly scores. 

3.6 Preparing Labels for SVM Training 

To bridge the gap between unsupervised anomaly detection and supervised classification, 

the outputs of the Isolation Forest algorithm specifically, the anomaly scores are 

transformed into reliable training labels for the subsequent SVM model. This process 

involves thresholding the anomaly scores to distinguish potential oil spill pixels 

(anomalies) from the dominant water background, with the threshold selected based on the 

expected contamination rate (e.g., the top 2% of scores classified as oil). Given that manual 

labeling of hyperspectral data is labor-intensive and subjective, this automated approach 

ensures scalability while maintaining detection sensitivity. To minimize label noise, 

morphological operations such as opening and closing are applied to the binary mask, 

removing isolated pixels and smoothing irregular spill boundaries. 

Additionally, class imbalance is addressed by either weighting the SVM training process 

or synthetically augmenting oil-labeled samples, ensuring the classifier does not bias 

toward the more prevalent water class. The final labeled dataset serves as the foundation 

for training the SVM, enabling precise discrimination between oil and water pixels in the 

classification stage. 
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So, to be direct we need to formulate pseudo‐labels for a supervised classifier (SVM) based 

on iForest output, where the Isolation Forest yields an initial unsupervised binary labeling 

of the random sample. And these labels serve as “weak labels” for training the SVM. 

So, the requirements are: At least one normal (0) and one anomalous (1) sample must exist 

in training data. If not, one must adjust contamination or sample size. 

3.7 Final Classification and Oil Spill Mapping 

 
With labeled data generated from Isolation Forest, a Support Vector Machine (SVM) 

classifier is trained to perform pixel-wise discrimination between oil spills and water, 

leveraging its ability to handle high-dimensional hyperspectral data through kernel-based 

separation. The SVM’s parameters, including the regularization term (C) and kernel 

bandwidth (gamma), are optimized via grid search to maximize accuracy on a validation 

set, with the Radial Basis Function (RBF) kernel selected for its effectiveness in capturing 

non-linear spectral relationships. 

The classifier’s output is a binary segmentation mask, which is further refined using spatial 

post-processing techniques such as median filtering to reduce salt-and-pepper noise and 

improve boundary coherence. 

The resulting classified pixels are then projected onto geographic coordinates, generating 

an interpretable oil spill map that quantifies spill extent and distribution critical for 

environmental impact assessments and mitigation efforts. This map can be integrated into 

GIS platforms for real-time monitoring, providing actionable insights for disaster response 

teams. 

3.8 Postprocessing (Median Filtering) 

Reduce spurious isolated misclassifications (salt‐and‐pepper noise) by applying a 2D 

median filter to the binary map. 

For each pixel (i, j), replace the predicted label with the median of the labels in a local 3×3 

neighborhood (default). 
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Enforce spatial coherence: anomalies often occupy contiguous pixels; an isolated single‐ 

pixel anomaly is less likely to be true. 

Median filtering smooths small “blips” without blurring edges. 

 

3.9 Performance Metric Computation 

In this training process we used an i5-8250U 1.60GHz with 8GB of RAM and 2GB MX150 

Graphics Card, Windows 11 64 bits, while using MATLAB 2024a, we also used a training 

ratio for isolation forest of (1%) random samples for anomaly detection, where the scores 

yield a binary anomaly map (0= normal, 1= anomaly) and contamination fraction of (2%), 

which serves as a pseudo-labels for (SVM), the support vector machine is trained using 

kernel-based learning to classify data by maximizing the margin between classes in high 

dimensional feature space. Trained linear SVM on the PCA-reduced iForest-labeled data 

then it is applied to the entire set of pixels identifying it as either oil or water using the 

trained model. 

 

3.9.1 Confusion Matrix Definitions 

● True Positive (TP): Pixels correctly identified as anomalies. 

● False Positive (FP): Pixels incorrectly flagged as anomalies. 

● True Negative (TN): Pixels correctly identified as normal. 

● False Negative (FN): Missed anomalies. 

 

3.9.2 Derived Metrics 

a) Detection Precision (DP):  

 

𝐷P =
TP

TP+FP
.                                                                3.4 

                                 Measures the proportion of predicted anomalies that are correct. 

b) True Positive Rate (TPR, a.k.a. Sensitivity or Recall): 

 

TPR =
TP

TP+FN
.                                                                 3.5 
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c) False Positive Rate (FPR): 

 

FPR =
FP

FP+TN
                                                                 3.6 

3.10. Visualization of Results 

The obtained results are summarized below. The calculated detection precision (DP) is 

shown in (Table 3.2) and (Figure 3.2). As well as the visualization results shown in (Figures 

3.3, 3.4 and 3.5) where the result is the prediction map compared to the reference map. 

 

Figure 3.2: 

 

. 
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Table 3.2. Numerical results of oil spill detection 
 

 DETECTION 

PRECISION (DP) 

AREA UNDER 

CURVE(AUC) 

GM01 91.22% 91.75% 

GM02 89.4% 96.53% 

GM03 98.67% 90% 

GM04 99.08% 92.42% 

GM05 94.45% 92.14% 

GM06 89.53% 90.86% 

GM07 96.82% 77.19% 

GM08 97.00% 91.70% 

GM09 72.96% 73.11% 

GM10 84.48% 90.01% 

GM11 98.90% 81.22% 

GM12 81.32% 92.63% 

GM13 96.98% 68.69% 

GM14 94.63% 79.56% 

GM15 92.91% 93.93% 

GM16 97.10% 92.40% 

GM17 100% 65.49% 

GM18 96.72% 75.57% 
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Figure 3.3: The original images, reference map and detection result From GM01 to GM06. 
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Figure 3.4: The original images, reference map and detection result From GM07 to GM12 
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Figure 3.5: The original images, reference map and detection result From GM13 to GM18. 



[52] 

 

 

Chapter 3: Experimental results 

3.11 Discussion 
To evaluate the effectiveness of our proposed method for oil spill detection, we grabbed 

several state-of-the-art methods adopted for comparison such as: 

o a scalable exemplar-based subspace clustering (SESC) method [46]. 

o an unsupervised method derived from rank-two nonnegative matrix 

factorization (R2NMF) [47]. 

o a detection approach based on low-rank and sparse matrix decomposition 

(LRSMD) [48]. 

o A detection method based on kernel isolation forest (KIF) [49] 

o For the supervised oil spill detection method, a PCA- based minimum distance 

(PCAMD) detection method [50]. 

o The last approach is an isolation Forest-Guided Unsupervised Detector, using 

KPCA [1]. 

All these information and implementations of each approach was found in the publication 

of journal mentioned in [1]. 

The results shown in (Table 2) by comparison shows that both LRSMD and R2NMF 

struggle in detecting oil from water where the precession is very low for LRSMD and 

below 50% for R2NMF, we see that KIF and PCAMD as well as SESC are a bit better for 

oil spill detection with acceptable precision through the images but still the Mean is not 

surpassing 72%, the only method that comes close to ours is the KPCA method with great 

percentage through the images and even a great Mean of 85.51% but it can be seen that 

our method produces the highest detection accuracy compared to other approaches on the 

HOSD database. 
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Table 3.3. The DP results obtained by all considered approaches on the HOSD [1]. 
 

DP SESC R2NMF LRSMD KIF PCAMD KPCA Our Method 

GM01 

GM02 

GM03 

GM04 

GM05 

GM06 

GM07 

GM08 

GM09 

GM10 

GM11 

GM12 

GM13 

GM14 

GM15 

GM16 

GM17 

GM18 

96.59% 

39.41% 

98.58% 

99.73% 

98.56% 

46.79% 

62.27% 

96.39% 

24.27% 

27.58% 

78.13% 

42.44% 

87.83% 

99.01% 

97.02% 

70.81% 

71.12% 

50.26% 

11.61% 

14.97% 

90.32% 

50.21% 

54.99% 

5.17% 

2.62% 

65.97% 

0.14% 

45.24% 

54.77% 

27.77% 

95.76% 

89.71% 

68.18% 

69.93% 

25.26% 

19.04% 

1.46% 

10.30% 

16.24% 

8.15% 

8.26% 

0.29% 

0% 

1.69% 

0.08% 

0% 

10.43% 

12.16% 

0,81% 

3.63% 

4.55% 

3.74% 

0.06% 

0% 

70.80% 

79.53% 

74.58% 

68.54% 

73.75% 

80.46% 

51.48% 

70.03% 

62.41% 

41.81% 

86.06% 

83.08% 

38.46% 

51.66% 

39.42% 

32.53% 

67.93% 

79.73% 

57.21% 

74.53% 

91.85% 

75.72% 

66.52% 

71.71% 

94.22% 

87.91% 

88.07% 

73.62% 

66.56% 

69.85% 

95.83% 

95.58% 

79.97% 

85.49% 

42.89% 

69.84% 

96.15% 

96.54% 

92.90% 

97.21% 

88.15% 

76.26% 

76% 

85.35% 

60.51% 

85.26% 

96% 

92.24% 

94.04% 

83.41% 

87.12% 

89.44% 

51.48% 

91.15% 

91.22% 

89.4% 

98.67% 

99.08% 

94.45% 

89.53% 

96.82% 

97.00% 

72.96% 

84.48% 

98.90% 

81.32% 

96.98% 

94.63% 

92.91% 

97.10% 

100% 

96.72% 

MEAN 71.49% 43.98% 4.55% 64.01% 77.08% 85.51% 92.89% 

 

a) Advantages 

o Scalability: PCA reduces data dimensionality, making downstream 

algorithms (Isolation Forest, SVM) tractable even on large images. 

o Flexibility: The combination of unsupervised (Isolation Forest) and 

supervised (SVM) approaches allows the model to bootstrap from minimal 

prior knowledge. 
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o Localization Accuracy: SVM refines the anomaly map by learning 

decision boundaries in the reduced‐dimensional space. 

 

o Parameter Control: Contamination fraction in Isolation Forest and 

percentage of pixels sampled are adjustable to tune sensitivity. 

b) Limitations 

o Dependence on Contamination Parameter: If the contamination fraction 

is set too low or too high, the initial pseudo‐labels may be poor, 

compromising SVM training. 

o Assumption of Linear Separability: A linear SVM may not perfectly 

separate anomalies from background if their distributions are highly 

nonlinear in PCA space. Kernel SVMs could be considered but at higher 

computational cost. 

o Spatial Context Neglected in Early Stages: Both PCA and Isolation 

Forest treat each pixel’s spectrum independently. Incorporating spatial 

features (texture, local neighborhoods) might improve robustness [30]. 

c) Impact of Parameter Choices 

-  Number of PCA Components (Npca) 

o Too few components may discard discriminative spectral information 

(increase FN). 

o Too many components slow down subsequent algorithms without 

proportional gain. 

- Sampling Ratio (1% of pixels) 

o Larger samples yield more robust iForest boundary but increase runtime. 

o Smaller samples risk missing rare anomalies entirely. 

- Isolation Forest Contamination Fraction (0.02) 

o Setting contamination = 2% implies expecting 2% anomalies in the sample. 

If true anomaly proportion is much lower, many false positives labeled in 

training; if higher, may miss anomalies. 
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3.12 Conclusion 

This chapter details each component of the algorithm used for hyperspectral anomaly 

detection that combines PCA, Isolation Forests, and SVMs. We begin by estimating per‐ 

band noise and discarding highly noisy bands to enhance signal‐to‐noise ratio. We then 

apply PCA to reduce the dimensionality of the hyperspectral cube, capturing the lion’s 

share of spectral variance in a reduced basis. A small random sample (1% of total pixels) 

is used to train an Isolation Forest, which assigns initial anomaly scores. 

 

Our results demonstrate the superior performance of this integrated approach, consistently 

achieving higher detection precision compared to several state-of-the-art methods, 

including SESC, R2NMF, LRSMD, KIF, PCAMD, and even a similar KPCA-based 

method. The mean detection precision of 92.89% achieved by our method on the HOSD 

database stands as a testament to its effectiveness in accurately identifying oil spill regions. 

 

We also discussed its limitations, such as the dependence on the contamination parameter 

and the assumption of linear separability in the SVM. Future work could explore the 

integration of spatial features and the optimization of parameter choices (e.g., number of 

PCA components, sampling ratio, and SVM kernel tuning) to further enhance robustness 

and accuracy. This research significantly contributes to the advancement of remote sensing 

techniques for environmental monitoring, offering a powerful tool for rapid and precise oil 

spill detection. 
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Conclusion 

 

 

This thesis presents a complete framework for unsupervised oil spill detection in 

hyperspectral images using a combination of Isolation Forest and Support Vector Machines 

(SVM). Beginning with an overview of hyperspectral imaging and its significance in 

remote sensing applications, we explored the core concepts behind spectral data 

acquisition, sensor technologies, and image processing techniques. 

 

 

Our methodology introduces a noise estimation and band elimination step to improve 

spectral quality, followed by Principal Component Analysis (PCA) to reduce 

dimensionality while preserving essential variance. Using the Isolation Forest algorithm, 

we conducted unsupervised anomaly detection to identify oil spill regions based on their 

spectral uniqueness. The outputs of the Isolation Forest served as pseudo-labels to train an 

SVM classifier, resulting in a robust oil spill classification map. 

 

 

Experimental evaluation using the Hyperspectral Oil Spill Dataset (HOSD) demonstrated 

the effectiveness and scalability of the proposed approach. Performance metrics such as 

precision and AUC indicated high detection accuracy across multiple test cases. Overall, 

this research offers a promising contribution to the field of environmental monitoring by 

providing an efficient and automated oil spill detection system. Future work can explore 

the integration of spatial features, advanced neural networks, and real-time processing for 

enhanced performance and generalization 
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