République Algérienne Démocratique et Populaire

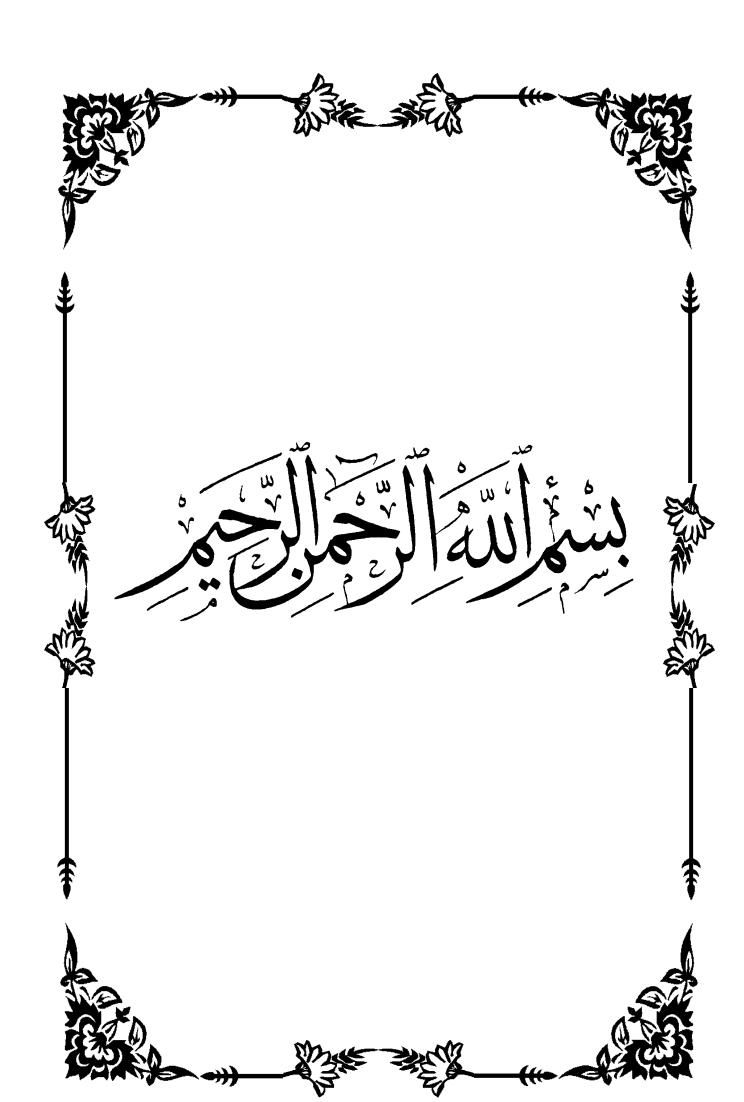
Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Mémoire De Master

Présenté à l'Université 8 Mai 1945 de Guelma Faculté des Sciences et de la Technologie

Département de : Génie Civil & Hydraulique

Spécialité : Travaux Publics


Option: VOIES ET OUVRAGES D'ART

Présenté par : Ouartsi zahra

Thème : Étude du Dédoublement de la RN16 du PK 15+530 Au PK 21+175 sur 5,65 km.

Sous la direction de : Pr. Belachia Mouloud

Juin 2025

REMERCIEMENTS

Je dédie cette première page à toutes les personnes qui ont, de près ou de loin, contribué à la réalisation de ce mémoire.

En effet, ce mémoire représente bien plus que de simples travaux. Ce mémoire est la finalité de cinq longues années d'études.

C'est pourquoi je tiens tout d'abord à adresser mes remerciements à toutes les personnes qui ont su me soutenir en amont de ce mémoire.

Ces premiers remerciements s'adressent donc à mes parents, qui m'ont apporté un soutien tant psychologique que financier, pour leur patience et leur foie en ma réussite tant scolaire que personnelle. Ma famille proche pour l'intérêt et la patience qu'ils ont su porter à l'égard de mes études.

À mon marie, qui a contribué à mon développement personnel.

C'est pourquoi j'adresse également mes remerciements à monsieur **BELACHIA MOULOUD** », qui a su me guider, m'orienter et m'apporter un grand soutient tout au long de la rédaction de ce mémoire.

Nous remercions les membres de jury qui nous font l'honneur de présider et

d'examiner ce modeste travail.

Nous souhaitons adresser nos remerciements au corps professoral è

administratif du

Département De Génie Civil et hydraulique De L'université/De Guelma

RÉSUMÉ

La route n'est pas la seule infrastructure de transport, on trouve aussi d'autres moyens comme le chemin de fer, les voies aériennes et les voies maritimes, mais le transport routier est dominant, et mime si les technologies de l'information se développent, les déplacements routiers liés tant à la vie quotidienne qu'au tourisme sont des réalités incontournables pour encore de nombreuses années.

La route joue un Rôle moteur dans l'aménagement du territoire, elle favorise l'implantation d'activités Economiques et industrielles et réduit les couts de transport et donc de production.

Notre projet Etude de dédoublement de RN16 sur 5,6 km s'inscrit parfaitement dans cette stratégie de développement et de densification du réseau autoroutier d'Algérie et permet par la même de :

- Décongestionner le trafic sur la RN 02.
- Décompresser les zones urbaines,
- Gérer le flux du trafic routier
- Assurer le confort et la sécurité des usagers de la route.
- > Réduire le nombre d'accidents de la circulation.

Most clé: Dédoublement - Route - Chaussées - Modernisation - Pr

ملخص

الطرق ليست البنية التحتية الوحيدة للنقل؛ فهناك أيضًا وسائل أخرى كالسكك الحديدية والطرق الجوية والطرق البري هو السائد، وحتى مع تطور تكنولوجيا المعلومات، سيظل السفر البري المرتبط بالحياة اليومية والسياحة واقعًا لا مفر منه لسنوات عديدة قادمة.

تلعب الطرق دورًا محوريًا في التخطيط الإقليمي، حيث تعزز إنشاء الأنشطة الاقتصادية والصناعية، وتُخفّض تكاليف النقل، وبالتالي تكاليف الإنتاج.

يتوافق مشروعنا، وهو دراسة لمضاعفة الطريق السريع رقم 16 على مسافة 5.6 كم، تمامًا مع استراتيجية تطوير وتكثيف شبكة الطرق السريعة في الجزائر، مما يُسهم في:

- تخفيف الازدحام المروري على الطريق الوطني رقم 02.

- تخفيف الضغط على المناطق الحضربة.

→ إدارة تدفق حركة المرور على الطرق.

- ضمان راحة وسلامة مستخدمي الطرق.

− تقليل عدد حوادث المرور.

الكلمات المفتاحية: مشروع الازدواجية - الطرق - الأرصفة - التحديث.

ABSTRACT

Roads are not the only transportation infrastructure; there are also other means such as railways, airways, and maritime routes. However, road transport is dominant, and even if information technology develops, road travel related to both daily life and tourism will remain an unavoidable reality for many years to come.

Roads play a driving role in regional planning, promoting the establishment of economic and industrial activities and reducing transportation and therefore production costs.

Our project, a study to double the RN16 over 5.6 km, fits perfectly with this strategy of developing and densifying Algeria's motorway network and thereby helps to:

- Relieve traffic congestion on the RN 02.
- Decompress urban areas,
- Manage road traffic flow,
- Ensure the comfort and safety of road users. ¬ Reduce the number of traffic accidents.

Sommaire:

INTRODUCTION GENERALE
CHAPITRE I : ETUDE DETRAFIQUE1
I.1 Description général de la zone d'étude :1
I.2 Présentation du projet:2
I .3. Objectif du projet :
I.4 Description Général du Nouveau Tracé :
I.5 Etude du Trafic :4
I.5.1 Introduction :
I.5.2 Définition :
I.5.3 Différent Types du Trafic :5
I.5.4 L'Analyse du Trafic :5
I.5.5. Mesure des Trafics :
I.5.7 Prolongation de L'évolution Passée :
I.5.8. Modèle Gravitaire :8
I.5.9. Modèle Des Facteurs De Croissance :
I.6. Choix de la vitesse de référence :
I.6.1. Choix de la vitesse de référence :9
I.7. CALCUL DE LA CAPACITE :9
I.7.1 Détermination de Nombre de Voies :
I.7.2 Calcul de TJMA Horizon :
I.7.3 Calcul du Trafic Effectif:
I.7.4 Débit de Point Horaire Normal :11
I.7.5 Débit Horaire Admissible :
Application au Projet :
<u>CHAPITRE</u> II CARACTÉRISTIQUES GÉOMÉTRIQUES :18
II .1 L'étude géométrique d'une route :
II .2 Objectifs de l'étude géométrique d'une route :
II .3. Trace en plan :
II.3.1 introductions:
II.3.2.Définition:
II.3.3. Les Règles à Respecter pour le Tracé en Plan :
II.3.4. Les éléments de la trace en plan :
II.3.4. Les Courbes de Raccordement :
II.3.5. Combinaison des Eléments du Tracé en Plan :
II.4. LA VISIBILITE :

II.4 .1But et méthode :28	
II.4.2. La distance d'Arrêt :29	
II.4.3. La distance de freinage :	
II.5. CALCUL D'AXE :	
II.6. PARAMETRES FONDAMENTAUX :	
Application au Projet :	
II .6 Profil en Long :	
II .6 .1 Définition :	
II .6 .2 Éléments d'un profil en long : Un profil en long comprend généralement :35	
II.6.3 Règles et paramètres de choix d'UN profil en long :	
II.6.4 Règles à respecter dans le tracé du profil en long	
II.6.5. Eléments constituants la ligne rouge :	
II.6.6 coordinations Trace en plan - Profil en long :	
Application au Projet :42	
II.7 Profil en Travers:	
II.7.1 Définition:44	
II.7.2 Classification du profil en travers:44	
II.7.3 Les éléments de composition du profil en travers :	
II.7.4 pentes transversales :	
Application au Projet47	
II .8 Cubature :	
II.8.1 Généralité :	
II.8.2 Définition :	
II.8.3 Méthode de Calcul Des Cubatures :	
II.8.4 Description des Méthodes Utilisées :50	
Application de projet :	
II.9. Conception de Carrefour :51	
II.9.1 Définition :51	
II.9.2 Les principaux types des carrefours :52	
II.9.3. Eléments de base pour l'aménagement des carrefours :54	
II.9.4. Données apprendre pour l'aménagement d'un carrefour :54	
II.9.5 Principes généraux d'aménagement d'un carrefour :55	
Application au projet :56	

Chapitre III : Etude Géotechnique	58
II.1 Définition :	59
II.2 objectifs:	59
III.3. Reconnaissance Géotechnique :	61
III.3.2 Les Différents Essais en Laboratoire :	62
III.3.2.1 Essais physiques.	62
III.3.2 .2. Essais mécaniques :	68
III.4 APPLICATION DE PROJET :	71
III.5. DIMENSIONNEMENT DU CORP DE CHAUSSE :	77
III.5.1 La Chaussée :	77
III.6 Application Au Projet	84
II.6.1 Méthode de C.B.R	84
III.6.2 Méthode du Catalogue de Dimensionnement des Chaussées Neuves (CTTP)86
Chapitre IV : Assainissement et dépendances de la route	88
IV.1 ASSAINISSEMENT	89
IV. 1.1. Introduction :	89
IV. 1.2. Objectif De L'assainissement :	89
IV.1 .3. Étude d'assainissement :	90
IV1.5. Définition des termes hydrauliques :	93
IV.1.6. Délimitation Des Sous Bassins Versants	94
IV.1.7. Contexte climatique ou météorologique	95
IV.1.8. Dimensionnement des ouvrages d'évacuations :	95
Application au projet	100
IV.2 Signalisation Routière :	103
IV.2.1 Introduction :	103
IV.2.2 Le rôle de la signalisation routière ;	103
IV.2.3 Règles A respecté pour la signalisation	104
IV.2.4 Catégories de Signalisation :	105
IV.2.5 Types de signalisation :	105
Les grands types de signalisation routière :	105
IV.2.6 Exemple des signalisations verticales :	106
IV.2.6 Exemple des signalisations horizontale :	106
IV.3 Eclairage :	107
IV.3.1 Introduction :	107
IV.3.2. Objectifs de l'éclairage public :	107
IV.3.3. Classe d'éclairage :	107

IV.3.4 Eclairage d'un point singulier :	107
IV.3.5 Paramètres de l'implantation des luminaires :	108
CONCLUSION GENERALE	111
TRACE EN PLAN ET RPOFIL EN LONG	112
DEVIS QUANTITATIF ET ESTIMATIF	139
DEVIS QUANTITATIF ET ESTIMATIF	140
Références Bibliographiques	143
Annex	146
References bibloigraphiques	169

Liste des figures

CHAPITRE I – PRESENTATION DU PROJET

Figure I.1: Zone etude	1
Figure I.2: Site géographique du projet	2
Figure I.3: Les points kilométriques de fin de projet (21+430)	4
CHAPITRE II CARACTERISTIQUES GEOMETRIQUES	
Figure II.1: trace en plan	19
Figure II.2: Les éléments d'un tracé en plan	20
Figure II.3 : Les éléments géométriques de la Clothoïde	25
Figure II.4 : courbe en S	27
Figure II.5 : Courbe à sommet	27
Figure II.6 : Courbe en C	28
Figure II.7 : Courbe en Ove	28
Figure II.8: Distance d'arrêt (trace en plan)	29
Figure II.9: les composantes géométriques d'un profil en long	36
Figure II.10: Distance d'arrêt (profil en long)	40
Figure II.11 : coordination Trace en plan - Profil en long	42
Figure II.12: Profil en travers	44
Figure II.13: profil en travers type	46
Figure II.14: profil en travers mixte	48
Figure II.15: surface remblai et surface déblais	49
Figure II.16 : Exemple de profils en long	50
Figure II.17 : Carrefour Giratoire	53
Figure II.18: Carrefour en T, Y	53
Figure II.18: Carrefour en croix	54
Figure II .19 vue en plan carrefour 1	56
Figure II .20 signalisation carrefour 1	56
Figure II .21 vue en plan carrefour 2	57
Figure II .22 signalisation carrefour 2	57

CHAPITRE II – ETUDE GEOTECHNIQUE

Figure III.1 : Carte géologique de Bouchegouf et de Souk-Ahras au 1/50 00060
Figure III.2 appareillages utilisent
Figure III .3 : Essai Analyse granulométrique
Figure III.4 : Détermination de la limite d'Alterberg
Figure III.5 : Classification des soles selon Leur Équivalent de sable
Figure III.6 : Essai bleu méthylène
Figure III .7 : Essai de Proctor
Figure III.8 : Essai CBR
Figure III.9 : Essai Micro Deval
Figure III.10. Essai Los Angeles71
Figure III.11 : Les différentes Couches De Chaussée
Figure III.12 : Les différents types de chaussée
Figure III.13 : La démarche du catalogue
Figure III.14 : Les matériaux et l'épaisseur proposer (Méthode de C.B.R)
Figure III.15 : Choix de la structure (Méthode CTTP)
CHAPITRE IV ASSAINISSEMENT ET DEPENDANCES DE LA ROUTE
Figure IV.1 : les déférents composants de drainage de la route90
Figure IV.2 : Exemple de géotextile de filtration en tranchée drainante et courbe93
Figure IV.3: Schéma d'une buse
Figure IV.4 : Schéma d'un dalot98
Figure IV.6: Schéma d'un fossé99.
Figure IV.7: Les signalisations vertical
Figure IV.5: signalisations horizontales
Figure IV.6: les types d'implantation des points

Liste des Tableaux CHAPITRE I – PRESENTATION DU PROJET

Tableau I.1 : Vitesse de base	
Tableau I.2 : Valeurs de « K_1 »	
Tableau I.3 : Coefficient de réduction de capacit	
Tableau I.4 : Capacité effective par voie	
Tableau I.5 : Récapitulatif des résultats obtenus.	
Tableau I.6: Récapitulatif des résultats obtenus	
CHAPITRE III CARACTERISTIQUES GEOMETRIQUES	
Tableau II.1 : Valeur du dévers Normes B40 22	
Tableau II.2 : Rayon en plan et dévers associes (B40) 24	
Tableau II.3 : Distance d'arrêt29	
Tableau II.4 : Paramètres fondamentaux 30	
Tableau II.5 : Rayons de Raccordements convexes	
Tableau II.6 : Le temps de perception 41	
Tableau II.7 : Valeurs du coefficient de frottement longitudinal (B40)	
Tableau II.8 : Vitesse de référence en fonction des catégories	
Tableau II.9. Valeurs des Composantes du Profil en Travers de la chaussée Projetée	
CHAPITRE II – ETUDE GEOTECHNIQUE	
Tableau III.1. Résultats de la reconnaissance géotechnique 61	
Tableau III.2. Classification des soles 65	
Tableau III.3. Classification des CBR 81	
Tableau III.4 : La classe de trafic.83	
Tableau III.5 : Classement de sol support. 83	
Tableau III.5: les zone climatique	
Tableau III.7. Tableau représente les épaisseurs calculées. 85	
CHAPITRE IV ASSAINISSEMENT ET DEPENDANCES DE LA ROUTE	
Tableau IV.1: Variable de Gausse96	
Tableau IV.2: Estimation des caractéristiques statiques des pluies max journalières 97	
Tableau IV.3: Quantiles des pluies maximales journalières	
Tableau IV.4 : Coefficient de ruissellement 97	
Tableau IV.5: Estimation des caractéristiques statiques des pluies maximales journalières	100
Tableau IV.5 : Tableau récapitulatif des ouvrages courants. 1	03

INTRODUCTION GENERALE

INTRODUCTION GENERALE

Dans le cadre de l'amélioration des infrastructures de transport et du développement territorial, le présent dossier constitue l'Avant-Projet Détaillé (APD) relatif au projet de [construction / réaménagement / réhabilitation] de la route RN 16, située sur la commune de ben beiada.

Ce projet s'inscrit dans la continuité des études préalables menées lors de l'Avant-Projet Sommaire (APS), qui ont permis de définir les grandes lignes du tracé, d'évaluer les impacts potentiels et d'étudier différentes variantes techniques. L'objectif de cette phase APD est de préciser l'ensemble des éléments nécessaires à la réalisation du projet, tant sur le plan technique que financier, environnemental et réglementaire.

L'étude APD vise notamment à :

Finaliser le tracé et les caractéristiques géométriques de la route ;

Définir les ouvrages d'art et d'assainissement à réaliser ;

Évaluer les besoins en terrassements, chaussées, signalisation et équipements ;

Identifier et intégrer les contraintes environnementales, foncières et réglementaires ;

Estimer avec précision le coût des travaux et proposer un phasage de réalisation.

Ce document constitue donc une étape essentielle avant le lancement des procédures de consultation des entreprises et la mise en œuvre concrète du projet.

Chapitre I:

Présentation du Projet

I.1 Description général de la zone d'étude :

La wilaya de Guelma s'étend sur une superficie de **4 101 km²**, située au nord-est du pays. Elle est limitée par les wilayas suivantes :

♣ Nord : Annaba nord-est : El-Tarf nord-ouest : Skikda ;

♣ Est : Souk-Ahras et El-Tarf;

♣ Ouest : Constantine ;

♣ Sud : Oum Bouaghi.

Elle compte 10 Daïra et 34 communes. La population totale de la wilaya est estimée (DPSB 2017) à 530 736 Habitants, soit une densité de 144 Hab. /Km².

La wilaya de Guelma constitue un point de rencontre entre les pôles industriels du nord (Annaba et Skikda) et les centres d'échanges au sud (Oum El Bouaghi, Souk Ahras et Tébessa). Elle occupe une position médiane entre le nord du pays, les hauts plateaux et le sud.

- La zone d'étude est composée des communes suivantes : Oued Chehame, Medjez Sfa, Bouchegoufe, Oued Fragha, Ain Ben Beida, cette zone s'étale sur une superficie de 664.35 km² et compte une population estimée à 70 229 Habitant selon le dernier recensement de la population (DPSB 2017), avec une densité moyenne de 106 hab. /km².
- Le projet de dédoublement de la RN16 commence au niveau de la commune Ain Ben Beida et ca se termine avant la commune de drean

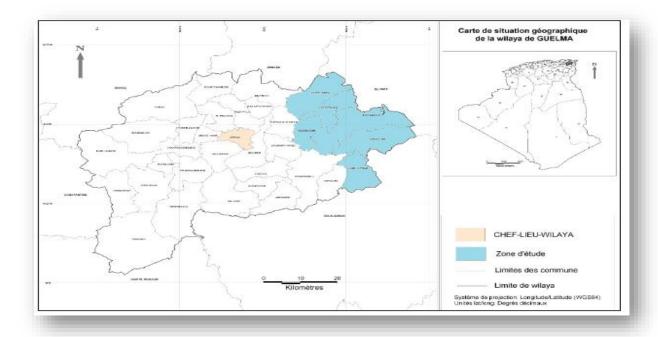


Figure I.1: zone d'étude.

I .2 Présentation du projet:

La route nationale N°16 relie les wilayas de TEBESSA, SOUK AHRAS ANNABA, elle draine actuellement plus de 16 000 véhicules par jours, dont 30% sont des poids lourds, cette situation entraine une perturbation importante de la circulation routière, et une accidentologie préoccupante. C'est pourquoi l'aménagement du dédoublement de cette route s'avère primordiale. Il permettra le désenclavement de la région, et de dynamiser l'activité économique en assurant un accès plus aisé aux grands pôles d'échange de ANNABA et SKIKDA.

Notre projet consiste à étudier le dédoublement de la RN16 sur 5 ,6 Km entre PK 15+530 et PK 21+175, le projet a été projeter en essayant d'avoir un tracé avec des courbes normalisés pour une vitesse de référence de 80 km/h.

Figure I.2: Site géographique du projet.

I.3. Objectif du projet :

La route nationale $N^{\circ}16$ est une infrastructure située dans la partie nord-est de la Wilaya de Guelma, elle constitue un axe très important sur les plans économique et social. Notre projet est un tronçon commence de Ain Ben Beida et monter vers Derean . L'élaboration de(s) variante(s) se base sur plusieurs critères techniques et environnementaux, dont :

Il s'agit, d'une part, de critères restrictifs qui commandent, dans la mesure du possible, d'éviter certains éléments ou espaces et, d'autre part, des critères indicatifs qui exigent de rechercher le plus possible éléments ou espaces au moment de la conception du projet.

Ainsi, un tracé routier doit répondre aux objectifs suivants :

- intégrer les préoccupations de la population et des organismes concernés par le projet ;
- éviter, selon leur classement, les aires les plus sensibles sur le plan environnemental ;
- rechercher les paysages de moindres impacts sur l'environnement.

Des critères plus particuliers, qui touchent les milieux naturel et humain, la conception, la construction et l'exploitation d'une route doivent aussi être considérés comme :

- éviter les espaces et les milieux bâtis ;
- éviter les espaces et les équipements affectés à la villégiature et aux loisirs ;
- éviter les zones de faible capacité portante et de forte sensibilité à l'érosion ainsi que les milieux humides ;
- éviter les secteurs au relief accidenté ;
- préserver les écrans boisés pour limiter l'impact sur le paysage ;
- rechercher des tracés respectant les normes de conception (rayon des courbes horizontales, pentes ascendante et descendante, distances minimales de visibilité, d'arrêt et aux carrefours, etc.).

D'après l'examen du terrain, et les contraintes rencontrées, le projet de dédoublement de la RN 16 suit dans son ensemble l'ancien tracé de la route existante, avec des rectifications sur quelques virages serrés.

Pour atteindre l'objectif visé, notre travail a été structuré comme suit :

- ✓ Etude de Trafic.
- ✓ Etude Géotechnique.
- ✓ Dimensionnement de la chaussée.
- ✓ Etude hydrologique.
- ✓ Etude géométrique.
- ✓ Drainage longitudinale de la chaussée.
- ✓ Etude économique.

I.4 Description Général du Nouveau Tracé :

> Faire un tracé en plan, profile en long et en travers et conservé la géométrie de la route existante.

- Faire une conception de carrefour à l'intersection de RN16 (PK 15+875).
- Dimensionnement de corps chaussé de la route neuf.
- Etudier l'assainissement du projet en tenant compte de l'existante.

I.4.1 Justification du Dédoublement :

- Au vu du trafic élevé empruntant cet axe routier, notamment le taux de poids lourds qui ne cesse d'augmenter (12,4 % en 2021) Ce trafic prend origine de la RN16, l'autoroute est/ouest à la fin du projet).
- La réalisation d'un dédoublement devient une priorité pour parier à la saturation de la route actuelle et permettre à l'usager de cette route de meilleures conditions de confort et de sécurité.

I.4.2 Justification du Carrefour:

- Flux de circulation : L'endroit choisi est un point stratégique où plusieurs routes se croisent, ce qui nécessite une régulation du trafic.
- Sécurité routière : ce carrefour permet de réduire les risques d'accidents en organisant les priorités et en installant des équipements comme des feux de signalisation ou des rondspoints.
- Accessibilité : Il facilite les déplacements entre différents quartiers ou zones, notamment pour les transports en commun et les piétons.

Figure I.3: Les points kilométriques de fin de projet (15+875).

I.5 Etude du Trafic :

I.5.1 Introduction:

L'analyse du trafic est une étape cruciale qui devrait précéder tout projet de construction ou d'amélioration d'infrastructure de transport. Elle permet d'identifier le type d'aménagement approprié, ainsi que les spécificités à lui attribuer, allant du nombre de voies aux différentes épaisseurs des couches de matériaux composant la chaussée.

L'analyse du trafic est un moyen crucial pour comprendre les grands flux à travers une nation ou une zone, elle constitue une partie significative des recherches en transport tout en étant simultanément une démarche routier indispensable dans l'élaboration des réseaux. Cette approche s'appuie sur des éléments de « stratégie, planification », sur les estimations de trafic, ainsi que sur la connaissance des réseaux routiers, ce qui est essentiel pour :

- Évaluer la valeur économique des projets.
- > Calculer les coûts d'entretien.

I.5.2 Définition :

L'étude de trafic est un recensement de l'état existant permettant de hiérarchiser le réseau routier par rapport aux fonctions qu'il assure, et de mettre en évidence les difficultés dans l'écoulement des flux avec leurs conséquences sur les activités humains.

I.5.3 Différent Types du Trafic :

- a. **Trafic normal**: C'est un trafic existant sur l'ancien aménagement sans prendre compte du nouveau projet.
- b. **Trafic dévié** : C'est le trafic attiré vers la nouvelle route aménagée et empruntant, sans investissement, d'autres routes ayant la même destination, la dérivation de trafic n'est qu'un transfert entre les différents moyens d'atteindre la même destination.
- c. Trafic induit : C'est le trafic qui résulte de :
 - Des nouveaux déplacements des personnes qui s'effectuer et qui en raison de la mauvaise qualité de l'ancien aménagement routier ne s'effectuaient pas antérieurement ou s'effectuaient vers d'autres destinations.
 - Une augmentation de production et de vente grâce à l'abaissement des coûts de production et de vente due une facilité apportée par le nouvel aménagement routier.
- d. **Trafic total :** C'est Le trafic sur le nouvel aménagement qui sera la somme du trafic induit et du trafic dévie.

I.5.4 L'Analyse du Trafic :

Afin de déterminer en un point et en un instant donné le volume et la nature du trafic, il est nécessaire de procéder à un comptage qui nécessite une logistique et une organisation approprié.

Pour obtenir le trafic, on peut recourir à divers procédés qui sont :

- La statistique générale.
- Les comptages sur route (manuel et automatique).

I.5.5. Mesure des Trafics :

Cette mesure est réalisée par différents procédés complémentaires :

- **Les comptages :** permettent de quantifier le trafic.
- Les enquêtes : permettent d'obtenir des renseignements qualificatifs.

I.5.5.1. Les Comptages :

C'est l'élément essentiel de l'étude de trafic, On distingue deux types de comptages :

Les comptages manuels et Les comptages automatiques.

a. Les comptages manuels : Ils sont réalisés par les agents qui relèvent la composition du trafic pour compléter les indicateurs fournis par les comptages automatiques. Les comptages manuels permettent de connaître le pourcentage de poids lourds et les transports communs.

Les trafics sont exprimés en moyenne journalière annuelle (T.J.M.A)

b. Les comptages automatiques : Ils sont effectués à l'aide d'appareil enregistreur comportant une détection pneumatique réalisée par un tube en caoutchouc tendu en travers de la chaussée.

On distingue ceux qui sont permanents et ceux qui sont temporaires :

- Les comptages permanents : sont réalisés en certains points choisis pour leur représentativité sur les routes les plus importantes : réseau autoroutier, réseau routier national et le chemin de Wilaya les plus circulés.
- Les comptages temporaires : s'effectuent une fois par an durant un mois pendant la période ou le trafic est intense sur les restes des réseaux routiers à l'aide de postes de comptages tournant.

L'inconvénient de cette méthode : est que tous les matériels de comptage actuellement utilisés ne détectent pas la différence entre les véhicules légers et les poids lourds.

I.5.5.2. Les Enquêtes Origine Destination :

Il est préférable d'enrichir les données par le biais de dénombrements avec des informations concernant la nature du trafic et les orientations des flux. Selon les exigences, on peut utiliser différentes méthodes. Lorsque l'enquête est réalisée sur tous les points d'accès à une zone définie (une agglomération entière, une ville ou simplement un quartier), on parle alors d'enquête cordon.

Cette technique facilite notamment l'identification des flux de trafic entre les zones, en précisant leur point de départ et leur point d'arrivée.

Il existe plusieurs types d'enquêtes :

a. Les Enquêtes papillons ou distributions :

Le principe consiste à délimiter le secteur d'enquête et à définir les différentes entrées et

sorties, un agent colle un papillon sur le pare-brise de chaque véhicule (ou on distribue une carte automobiliste), sachant que ces papillons et sont différents à chaque entrée, un autre agent identifie l'origine des véhicules en repérant les papillons ou en récupérant les cartes.

- Les avantages de la méthode : sont la rapidité de l'exploitation et la possibilité de pouvoir se faire de jour comme de nuit.
- Les inconvénients de la méthode : c'est que l'enquête ne permet pas de connaître l'origine et la destination exacte des véhicules, mais seulement les points d'entrées et de sortie du secteur étudié.

b. Relevé des plaques minéralogiques

On relève, par enregistrement sur un magnétophone, en différents points (à choisir avec soin) du réseau, les numéros minéralogiques des véhicules ou au moins une (de l'ordre de quatre chiffres ou lettres), la comparaison de l'ensemble des relevés permet d'avoir une idée des flux.

Cette méthode permet d'avoir des résultats sans aucune gêne de la circulation, par contre, le relevé des numéros est sujet à un risque d'erreur non négligeable.

c. Interview des conducteurs

Cette méthode est lourde et onéreuse mais donne des renseignements précis, on arrête (avec l'aide des forces de gendarmerie pour assurer la sécurité) un échantillon de véhicules en différents points du réseau et on questionne (pendant un temps très court qui ne doit pas dépasser quelques minutes sous peines d'irriter l'usager) l'automobiliste pour recueillir les données souhaitées :(origine, motif, fréquence et durée, trajet utilisé).

Ces informations s'ajoutent à celles que l'enquêteur peut relever directement tels que le type de véhicule.

d. Les enquêteurs à domicile – Enquête ménage

Un échantillon de ménages sélectionné à partir d'un fichier fait l'objet d'un interview à son domicile par une personne qualifiée, le temps n'étant plus limité comme dans le cas des interviews le long des routes, on peut poser un grand nombre de questions et obtenir de nombreux renseignements, en général, ce type d'enquête n'est pas limité à l'étude d'un projet particulier, mais porte sur l'ensemble des déplacements des ménages dans une agglomération.

I.5.6 Modèles de Présentation du Trafic :

La première phase de ce genre d'étude consiste à inventorier les éléments existants. Ce recensement facilitera la classification du réseau routier selon les rôles qu'il joue, et mettra en

lumière les problèmes de fluidité du trafic et leurs répercussions sur l'activité humaine.

Les différentes techniques employées pour prévoir le trafic futur sont :

- Extension de la tendance historique.
- Lien entre le trafic et les indicateurs économiques.
- Modèle basé sur la gravité.

I.5.7 Prolongation de L'évolution Passée :

La méthode consiste à extrapoler globalement au cours des années à venir, l'évolution des trafics observés dans le passé. On établit en général un modèle de croissance du type exponentiel

Le trafic Tn à l'année "n" sera:

$$T_n = T_0 (1 + \tau)^n$$

Ou:

T₀ : est le trafic à l'arrivée pour l'origine.

T: est le taux de croissance.

Elle consiste à rechercher dans le passé une corrélation entre le niveau de trafic d'une part et certains indicateurs macro-économiques :

- Produit national brut (PNB).
- Produits des carburants, d'autres part, si on pense que cette corrélation restera à vérifier dans le taux de croissance du trafic, mais cette méthode nécessite l'utilisation d'un modèle de simulation.

I.5.8. Modèle Gravitaire :

h Il est nécessaire pour la résolution des problèmes concernant les trafics actuels au futur proche, mais il se prête mal à la projection.

I.5.9. Modèle Des Facteurs De Croissance :

Ce type de modèle nous permet de projeter une matrice origine - destination. La méthode la plus utilisée est celle de FRATAR qui prend en considération les facteurs suivants

- Le taux de motorisation des véhicules légers
- La population de la zone
- Le nombre d'emploi.

I.6. Choix de la vitesse de référence :

La vitesse de référence (Vb) c'est le paramètre qui permet de déterminer les caractéristiques géométriques minimales d'aménagement des points singuliers pour le confort et la sécurité des usagers, la vitesse de référence ne devrait pas varier sensiblement entre les sections différentes, un changement de celle-ci ne doit être admis qu'en coïncidence avec une discontinuité perceptible à l'usager (traverser d'une ville, modification du relief, etc.).

I.6.1. Choix de la vitesse de référence :

Le choix de la vitesse de référence dépend de :
□ catégorie de route.
☐ Importance et genre de trafic.
☐ Topographie.
☐ Conditions économiques d'exécution et d'exploitation.

Tableau I.1. Vitesse de base

➤ Pour le cas de notre projet la route à aménager sera adaptée pour une vitesse de référence de 80km/h.

I.7. CALCUL DE LA CAPACITE:

La capacité routière se définit comme le nombre maximal de véhicules qui peuvent passer raisonnablement sur un tronçon spécifique d'une voie dans une (ou deux) directions, compte tenu des caractéristiques géométriques et de circulation sur une durée précise. La capacité est déterminée en termes de débit par heure.

- Des distances de sécurité (en milieu urbain, ce critère est avantageux, tandis qu'il est nettement moins en zone rurale, où la concentration de véhicules est considérablement plus basse).
- Des conditions atmosphériques.
- Des attributs géométriques de la route.

I.7.1 Détermination de Nombre de Voies :

• Le choix de nombre de voies résulte de la comparaison entre l'offre et la demande, c'est à dire, le débit admissible et le trafic prévisible à l'année d'exploitation. Pour cela il est donc nécessaire d'évaluer le débit horaire à l'heure de pointe pour la vingtième année d'exploitation.

I.7.2 Calcul de TJMA Horizon:

• La formule qui donne le trafic journalier moyen annuel à l'année horizon est :

TJMA horizon =
$$(1+\tau)^n \times TJMA$$
 service

•

- TJMA service : trafic journalier moyen à l'année de mise en service.
- τ : taux d'accroissement annuel.
- n : nombre d'année à partir de l'année de mise en service.

I.7.3 Calcul du Trafic Effectif:

- C'est le trafic traduit en unités de véhicules particuliers (uvp) en fonction de type de routes et de l'environnement (en plaine, vallonné ou montagneux).
- Pour cela, on utilise des coefficients d'équivalence (P) pour convertir les PL en uvp (tableau ci-dessous).
- Le trafic effectif est donné par la relation :

$$T_{eff} = (1-Z) + (PxZ) \times TJMA horizon$$

- Z : le pourcentage de poids lourds.
- P : coefficient d'équivalence pour le poids lourds, il dépend de la nature de la route.
- TJMA horizon: trafic journalier moyen à l'année horizon.
- La présence des véhicules poids lourds réduit le débit des routes ainsi l'encombrement des poids lourds est évalué come P véhicules particulaire, P variant et sa valeur est associée à la nature topographique du terrain et le nombre des voies d'une route. Le tableau si dessous nous permet de déterminer le coefficient d'équivalence « P » pour poids lourds en fonction de l'environnement et les caractéristiques de notre route.

Engineerment	E 1	E 2	E 3
Environment	(Plaine)	(Vallone)	(Montagneux)
Route à Bonne caractéristique	2-3	4-6	8-12
Route étroite, ou à visibilité réduite	3-6	6-11	16-24

• Tableau I.2: Coefficient d'équivalence « P ».

I.7.4 Débit de Point Horaire Normal :

Le débit de point horaire normal est une fraction du trafic effectif à l'horizon, il est donné par la formule :

$$Q = (1/n) \times T_{eff}$$

Q : Débit de pointe horaire ; [uvp/h]

n: Nombre d'heure, (en général n=8 heures) d'après le B40 on prend (1/n)=0,12

 T_{eff} : Trafic effectif.

I.7.5 Débit Horaire Admissible :

On détermine le débit horaire admissible :

$$\mathbf{Q}_{adm} = \mathbf{K}_1 \mathbf{x} \mathbf{K}_2 \mathbf{x} \mathbf{C}_{th}$$

Cth: capacité effective du profil en travers en régime stable par UVP/h.

K₁: coefficient dépendant de l'environnement.

K₂ : coefficient réducteur de capacité traduisant la déférence entre caractéristiques réelles et idéales de circulation.

Environnement	E1	E2	E3
K1	0,75	0,85	0,90-0,95

Tableau I.3 : Valeurs de « K_1 ».

	Catégorie de la route				
Environnement	C1	C2	С3	C 4	C 5
E1	1,00	1,00	1, 00	1 , 0 0	1 , 0 0
E2	0,99	0,99	0, 99	0 , 9 8	0 , 9 9
E3	0,91	0,95	0, 97	0 , 9 6	0 , 9 6

Tableau I.4 : Coefficient de réduction de capacité.

	Capacité théorique (uvp/h)
Route à 2 voies de 3,5 m	1500 à 2000
Route à 3 voies de 3,5 m	2400 à 3200
Route à chaussées séparées	1500 à 1800

Tableau I.5: Capacité effective par voie.

Calcul de Nombre de Voies :

Cas d'une chaussée bidirectionnelle :

 $Qadm \ge Q$

On compare Q à Q_{adm} et en prend le profil mettant d'avoir :

Cas d'une chaussée unidirectionnelle :

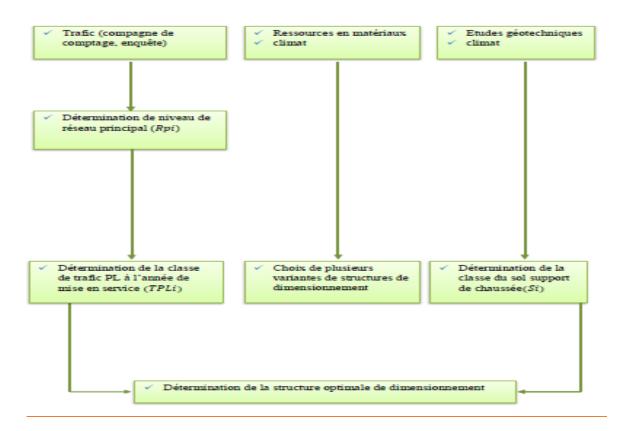
Le nombre de voie par chaussée est le nombre le plus proche du rapport Avec :

N = S. Q / Qadm

S: coefficient dissymétrie en général = 2/3

Q_{adm}: débit admissible par voie

I.8 .1Application au Projet :


1. Les données mises à notre disposition sont :

- Chaussée unidirectionnelle à deux voies, donc 90 % du trafic PL sur la voie lente
- Année de mise en service : 2021, TJMA 2021 = 10992 v/j
- Durée de vie 20 ans
- Le taux de croissement est de 4 %
- Pourcentage du poids lourd est 12.4%

L'année de mise en service sera en 2025

• Route unidirectionnelle à deux voies :

.2. La démarche du catalogue :

3. Calcul de TJMA de l'année de mise en service :

TJMA2025 =
$$(1+\tau)^5 \times$$
 TMJA 2021
*TJMA2025 = $(1+0.04)^5 \times 10.992$

$$TJMA_{2025} = 13 \ 373 \ v/j$$

L'année de mise en service sera en2025

4. Calcul de TJMA de l'année horizon (2044) :

$$TJMA\ 2044 = (1+\tau)^{20} \times TMJA2025$$

 $TJMA2044 = (1+0.04)^{20} \times 13\ 373$

$$TJMA_{2044} = 29\ 301\ v/j$$

5. Calcul des trafics effectifs :

$$\begin{split} T_{\rm eff} &= (1\text{-}Z) + (P.Z) \times TMJA2044 \\ T_{\rm eff} &= (1\text{-}0,124) + (4\times0,124) \times 29\ 301 \end{split}$$

$$T_{eff2044} = 40\ 200\ uvp/j$$

6.Débit de point horaire année horizon (2044) :

$$Q = (1/n) \times T_{eff}$$

Avec : (1/n) : coefficient de point horaire pris est égale à 0,12 (n=8heures).

$$Q = 0.12 \times 40200 = 4824 \text{ uvp/h/sens}$$

$$Q_{2044} = 4824 \text{ uvp/h}$$

7.Débit admissible :

Le débit que supporte une section donnée :

• Qadm =
$$K_1 \times K_2 \times Cth$$

Avec : $K_1 = 0.85$ pour (E2)

 $K_2 = 0.99 \text{ pour } (E2, C1)$

Cth: Capacité théorique (uvp/h)

La capacité d'une chaussée dans ce cas doit être : 1500 < Cth < 1800 uvp/h/sens

Si on prend Cth = 1800, le débit horaire admissible sera donc :

$$Qadm = 0.85 \times 0.99 \times 1800 = 1515 \text{ uvp/h}$$

$$Q_{adm} = 1515 \text{ uvp/h}$$

8.Détermination de nombre de voies cas d'une Route à chaussées séparées.

$$\mathbf{N} = S \times (Q_{2044}/Q_{adm})$$

Avec : S : Coefficient de dissymétrie, en général égal à (2/3)

$$\mathbf{N} = \frac{2}{3} \times \frac{4824}{1515} = 2,12 \approx 2$$

$$N = 2$$
 voies

9. Calcul de l'année de saturation de 2x2 voies:

$$T_{\text{eff }2025} = [(1-z) + (p \ x \ z)] \ x \ TJMA2025$$

$$T_{\text{eff }2025} = [(1 - 0.124) + (4 \times 0.124)] \times 13373$$

 $T_{eff\ 2025} = 18\ 348\ uvp/j$

$$Q2025 = 0.12 \text{ x } 18\ 348 = 2201.7 \approx 2202 \text{ uvp/h}$$

$$Q_{2025} = 2 \ 202 \ uvp/h$$

$$Q_{saturation} = 4 \times Q_{adm} = 4 \times 1515$$

$$\mathbf{Q}_{saturation} = (1+\tau)^{n} \times \mathbf{Q}_{2023}$$

$$n = \frac{log\left(\frac{Q_{Saturation}}{Q_{2023}}\right)}{log(1+\tau)} \Rightarrow \frac{log\left(\frac{6060}{2202}\right)}{log(1+0.04)} = 25.85$$

$$n = 25$$
 ans

TJMA ₂₀₂₅ (v/j)	TJMA ₂₀₄₄ (v/j)	Teff ₂₀₂₅ (uvp/j)	Teff ₂₀₄₄ (uvp/j)	Q2025 (uvp/h)	Q2044 (uvp/h)	Qadm (uvp/h)	N (voies)
13 373	29 301	18 348	40 200	2 202	4 824	1 515	2

Tableau I.6: Récapitulatif des résultats obtenus.

I.4.7 Conclusion:

Sur la base des résultats obtenus, il a été conclu qu'une conception conforme à la norme B40 nous fournissait une route composée de (2×2voies) unidirectionnelles.

• Donc l'établissement des éléments géométriques du projet On retient :

Vitesse de base: 80 km/h

Catégorie : C2

Environnement : E1Pente maximale : 7%

• Le profil en travers retenu pour le projet est constitué :

Chaussée: 2 × 2 × 3,5 m

Terre-plein central (TPC): 2m

Accotement

Chapitre II

Caractéristiques Géométriques

II Caractéristiques Géométriques :

II .1 L'étude géométrique d'une route :

Est l'ensemble des analyses et conceptions visant à définir la géométrie d'un tracé routier en fonction des contraintes techniques, économiques, environnementales et de sécurité.

II .2 Objectifs de l'étude géométrique d'une route :

- Déterminer le tracé optimal (en plan et en profil en long) pour assurer la fluidité et la sécurité de la circulation.
- Respecter les normes et réglementations en matière de conception routière.
- Minimiser les impacts environnementaux et les coûts de construction et d'entretien

a. Principaux éléments étudiés :

- Tracé en plan : courbes, lignes droites, intersections.
- Profil en long : pentes, rampes, déclivités.
- Profil en travers : largeur de la chaussée, accotements, fossés.
- Visibilité et confort de conduite : rayon des virages, visibilité en virage et en montée.

Ⅱ .3. Trace en plan :

II.3.1 introductions:

Tout projet routier débute par l'identification de l'itinéraire le plus adapté à la topographie naturelle et son intégration optimale dans le paysage.

Le tracé de la route sur le plan est obtenu en projetant tous les points de la route sur un plan horizontal.

En général, l'itinéraire d'une route se compose d'une série de lignes droites et d'arcs connectés par des courbes de raccordement progressif. la trajectoire d'une route sur le plan est définie par une vitesse de référence qui permettra d'établir les caractéristiques géométriques de la route. L'itinéraire d'une route doit garantir à la fois la sécurité et le confort.

II.3.2.Définition:

 Un tracé en plan est une vue de dessus du tracé de la route. Le tracé en plan est la projection verticale d'une route sur un plan horizontal.

- C'est, avec le profil en travers et le profil en long, l'un des trois documents qui permet de caractériser la géométrie d'une route.
- Il est obtenu par la projection horizontale sur un repère cartésien topographique de l'ensemble des points définissant le tracé de la route.

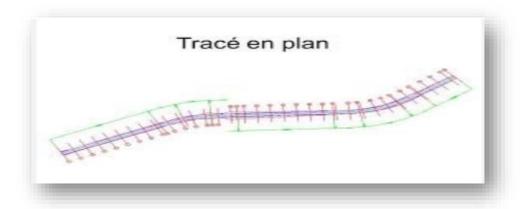


Figure. II.1. Trace en plan

II.3.3. Les Règles à Respecter pour le Tracé en Plan :

Les normes exigées et utilisées dans notre projet sont résumées dans le B40, il faut respecter ces normes dans la conception ou dans la réalisation. Dans ce qui suit, on va citer certaines exigences qui nous semblent pertinentes :

- Toutes les courbes horizontales dont le rayon est inférieur à *RHnd* (rayon horizontale non déversé) devront être introduites avec des raccordements progressifs.
- Le raccordement du nouveau tracé au réseau routier existant.
- Eviter de passer sur des terrains agricoles et des zones forestières.
- Eviter au maximum les propriétés privées.
- Eviter le franchissement des oueds afin d'éviter le maximum d'ouvrages d'arts Eviter les sites qui sont sujets à des problèmes géologiques.
- Limiter le pourcentage de longueur des alignements entre 40% et 60% de la longueur total de tracé.

II.3.4. Les éléments de la trace en plan :

Un tracé en plan moderne est constitué de trois éléments :

- > Des droites (alignements).
- Des arcs de cercle.

Des courbes de raccordement (CR) de courbures progressives.

Figure II .2 les éléments de la trace en plan

II.3.4.1. Les Alignements :

Il existe une longueur minimale d'alignement *Lmin* qui devra séparer deux courbes circulaires de même sens, cette longueur sera prise égale à la distance parcourue pendant 5 secondes à la vitesse maximale permise par le plus grand rayon des deux arcs de cercles.

Si cette longueur minimale ne peut pas être obtenue, les deux courbes circulaires sont raccordées par une courbe en C, Ove, S, ou à sommet.

La longueur maximale *Lmax* est prise égale à la distance parcourue pendant 60 secondes

$$\begin{split} \mathbf{L_{min}} &= \mathbf{t} \times \frac{V_r}{3,6} \\ \mathbf{V_r} : \text{ vitesse de référence en km/h,} \\ \mathbf{L_{min}} \text{ en m} \\ \mathbf{L_{max}} &= t \times \frac{V_r}{3,6} \\ \mathbf{V_r} : \text{ vitesse de référence en km/h,} \\ \mathbf{L_{max}} \text{ en m.} \end{split}$$

Pour des raisons de sécurité de circulation et d'esthétique, on évitera les cas particuliers suivants sont à éviter :

➤ Réunion de 2 longues courbes par un alignement court Solution : alignement à supprimer.

➤ Réunion de 2 longues alignements par une courbe courte s'est à dire de faible rayon Solution : augmenter le rayon de sa courbe.

II.3.4.2. Arcs de Cercle:

Trois problèmes se posent :

- 1. Stabilité des véhicules en courbe.
- 2. Visibilité en courbe.
- 3. Inscription des véhicules longs dans les courbes de rayon faible

Dans un virage de rayon R, **un véhicule subit** l'effet de la force centrifuge qui tend à provoque une instabilité du système, afin de réduire l'effet de la force centrifuge en incline la chaussée transversalement vers l'intérieure du virage (éviter le phénomène de dérapage) d'une pente dite devers exprimée par sa tangente.

a. Rayon Horizontal Minimal Absolu (RHm):

C'est le rayon minimum pour lequel la stabilité du véhicule est assurée, il ne faut jamais descendre au-dessous de cette valeur, et il est défini comme étant le rayon de devers maximal.

Au devers maximum correspond le rayon minimum absolu RHm avec :

- \Box dmax = 7% pour les catégories (1–2);
- \Box dmax = 8% pour les catégories (3–4);
- \Box dmax = 9% pour la catégorie 5.

NB: Il est bien de rappeler que pour une route de catégorie donnée, il n'y a aucun rayon inferieur à RHm(rayon minimum absolue), on utilise alors autant que possible des valeurs supérieures ou égale à RHm.

$$RHm = \frac{V_r^2}{127(f_t + d_{\max})}$$

b. Rayon minimal normal (RHN):

Le rayon doit permettre à des véhicules dépassant Vr de 20 km/h de rouler en sécurité.

Le dévers associé d $\max = -2 \%$ cat 1 à 4

$$dmax = 6\%$$
 cat 5

$$RHN = \frac{(V_r + 20)^2}{127(f_t + d_{\text{max}})}$$

Dans la réalité pour chaque catégorie, on lui associe un devers réel :

$$d = 5 \% \qquad \qquad V \leq 80 \text{ Km/h}$$

$$d = 4 \% \qquad \qquad V > 80 \text{ Km /h}$$

Catégorie	Environnement	D)évers
		Maximum	Associé
1-2	1-2-3	7	5
3-4	3	7	5
3-4	1-2	8	6
5	1-2-3	9	6

Tableau II.2. Valeur du dévers - Norme B40

C. Rayon au dévers minimal (RHd):

C'est le rayon au dévers minimal, au-delà duquel les chaussées sont déversées vers L'intérieur du virage et tel que l'accélération centrifuge résiduelle à la vitesse *Vb* serait équivalente à celle subit par le véhicule circulant à la même vitesse en alignement droit.

$$\mathbf{RHd} = \frac{V_r^2}{127 \times 2 \times d_{min}}$$

Dévers associé dmin = 2,5 % en cat 1-2

dmin = 3% en cat 3-4-5

d. Rayon minimal non déversé (RHnd):

C'est le rayon non déversé telle que l'accélération centrifuge résiduelle acceptée Pour un véhicule parcourant à la vitesse Vr une courbe de devers égal à dmin vers l'extérieur resteinférieur à valeur limitée

RHnd =
$$\frac{{\rm v_r}^2}{{\rm 127 \times 0.035}}$$
 catég 1-2

RHnd = $\frac{{\rm v_r}^2}{{\rm 127}(f'-d_{\rm min})}$ catég 3-4-5

Avec:
$$f' = 0.06$$
 pour cat 1 et 2

f' = 0.07 pour cat 3

f' = 0.075 pour cat 4 et

II.3.4.3. Règles pour l'utilisation des rayons en plan :

Il n'y a aucun rayon inférieur à RHm, on utilise autant que possible des valeurs de rayon ≥ à RHn.

■ Les rayons compris entre RHm et RHd sont déversés avec un dévers interpolé linéairement en 1/R arrondi à 0,5% prés.

C'est -à- dire que pour le paramètre A choisi, le produit de la longueur L et du rayon R est constant.

Si: RHm < R < RHn

$$d=d_{max}+(\frac{1}{R}-\frac{1}{RHm})\frac{d_{max}-d_{RHN}}{\frac{1}{RHm}-\frac{1}{RHN}}$$

Si: RHN < R< RHd

$$d = d_{min} + (\frac{1}{R} - \frac{1}{RHd}) \frac{d_{min} - d_{RHN}}{\frac{1}{RHd} - \frac{1}{RHN}}$$

Le manuel 'B40 - normes techniques d'aménagement des routes ', établit les normes techniques Régissant les routes algériennes. Elles sont classées en Cinq (05) catégories, correspondant aux buts économiques et administratifs des itinéraires retenus.

La route en projet est de catégorie 2, et d'environnement E1.

L'environnement, en association avec la catégorie des routes, conduit la détermination de la vitesse de référence VR et donc l'établissement des éléments géométriques du projet.

On retient:

✓ Vitesse de base : 80 km/h

✓ Catégorie : C2

✓ Environnement : E1

✓ Pente maximale : 7%

Pour notre projet la vitesse de base est de 80 Km/h. D'après le règlement 'B40', on a le tableau suivant :

Parameters	symbols	valeurs
Vitesse de base (km/h)	V B	80
Rayon horizontal minimal (m)	RHm (7%)	250
Rayon horizontal normal (m)	RHN (5%)	450 (492)
Rayon horizontal déversé (m)	RHd (2, 5%)	1000
Rayon horizontal non déversé (m)	RHnd (2, 5%)	1400

Tableau II.2 Rayons du tracé en plan B (40)

II.3.4. Les Courbes de Raccordement :

Les courbes de raccordement en route sont des éléments essentiels en ingénierie routière permettant d'assurer une transition progressive entre deux tronçons de route ayant des caractéristiques géométriques différentes. Elles améliorent le confort de conduite et la sécurité en évitant des changements brusques de direction ou de rayon de courbure.

II.3.4.1 Rôle et Nécessité des Courbes de Raccordement :

- Améliorer la sécurité routière en réduisant les changements brusques de trajectoire.
- Augmenter le confort des conducteurs et passagers.
- Réduire l'usure des véhicules et de la chaussée.
- Faciliter la perception de la route et l'anticipation des virages

II.3.4.2. Types de courbes de raccordement :

Parmi les courbes mathématiques connues qui satisfont à la condition désirée d'une variation continue de la courbure, nous avons retenu les trois courbes suivantes :

a. Raccordement en plan (horizontal):

- Utilisation de **clothoïdes** pour assurer une transition progressive entre une ligne droite et un virage ou entre deux virages de rayons différents.
- La clothoïde possède un rayon variable qui augmente ou diminue progressivement, réduisant ainsi les effets de brusques changements de force centrifuge

Expression mathématique de la Clothoïde :

- Courbure K linéairement proportionnelle a la longueur curviligne L.

- K = C. L
- On pose: $\frac{1}{c} = A^2$

 $L X R = A^2$

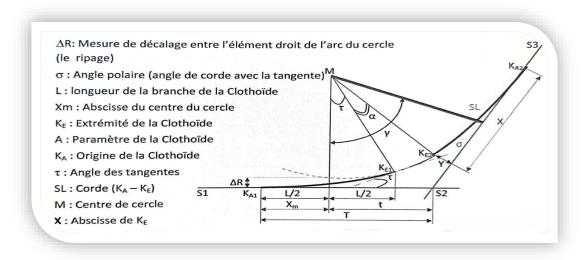


Figure. II . 3. Les éléments géométriques de la Clothoïde

b. courbes en S (ou raccordement en double clothoïde):

- Utilisées pour changer de direction avec une transition symétrique.
- Fréquentes sur les bretelles d'échangeurs et routes sinueuses.

c. Parabole cubique:

Cette courbe est d'un emploi très limité vu le maximum de sa courbure vite atteint (utilisée dans les tracés de chemin de fer).

II.3.4.2Les Conditions de Raccordement :

La longueur de raccordement progressif doit être suffisante pour assurer les conditions suivantes .

a. Condition de confort optique :

C'est une condition qui permet d'assurer à l'usager une vue satisfaisante de la route et de ses dataséventuels.

L'orientation de la tangente doit être supérieure à 3° pour être perceptible à l'œil.

 $\tau \geq 3^{\circ} \text{ soit} \geq \tau 1/18 \text{ rad.}$

 $\tau = L/2R > 1/18 \text{ rad} \Rightarrow L \ge R/9 \text{ soit } A \ge R/3.$

 $R/3 \le A \le R$

Règle générale (B40) :

Pour : R < 1500 m $\Rightarrow \Delta$ R = 1m (éventuellement 0.5m) d'où L = $\sqrt{24.R.\Delta R}$

Pour : $1500 < R < 5000 \text{ m} \tau = 3^{\circ} \text{ c'est-à- dire L} = R/9$

Pour : R > 5000m $\Rightarrow \Delta$ R limité à 2,5m soit L = 7,75 \sqrt{R}

b. Condition de confort dynamique :

Cette condition consiste à limiter le temps de parcours d'un raccordement et la variation par unité de temps de l'accélération transversale d'un véhicule. La variation de l'accélération transversale est :

 $((V^2/R) - g^*\Delta d)$ Ce dernier est limité à une fraction de l'accélération de pesanteur

Kg = g/0.2VB.

Avec une gravitation g = 9.8m/s on opte :

VB: vitesse de base (Km/h).

R: le rayon (m).

 Δd : la variation de divers ($\Delta d = dfinal-dinit$) (%).

$$L \ge \frac{Vr^2}{18} \cdot \left(\frac{Vr^2}{127 \cdot R} - \Delta d\right)$$

c. Condition de gauchissement :

Cette condition a pour but de s'assurer que la voie à un aspect satisfaisant, notamment dans les zones de variation de dévers (Δd en%), ce qui limite la pente relative du profil en long du bodde la chaussé déversées par rapport à celle de son axe. Cette pente est limitée à :

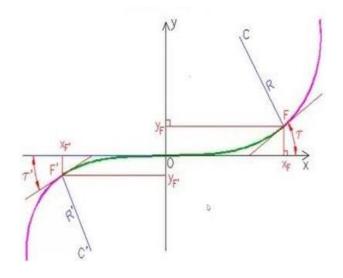
$$\Delta p = \frac{0.5}{Vr}$$

$$L \ge \frac{l \times Vr \times \Delta d}{50}$$

Cependant $\Delta P \ge 0.5\%$ afin d'assurer un écoulement satisfaisant des eaux.

La vérification des deux conditions de gauchissement et au confort dynamique, peut se faire à l'aide d'une seule condition qui sert à limiter pendant le temps de parcours du raccordement, la variation par unité de temps, du dévers de la demi-chaussée extérieure au virage. Cette variation est limitée à 2%.

$$L \ge \frac{5}{36} \cdot \Delta d. Vr$$


∆d: exprimé en valeur réelle.

II.3.5. Combinaison des Eléments du Tracé en Plan :

La combinaison des éléments du tracé en plan donne plusieurs types de courbes, on cite :

a. Courbe en S (ou à inflexion):

Une courbe constituée de deux arcs de Clothoïde, de concavité opposée tangente en leur point de courbure nulle et raccordant deux arcs de cercle.

b. Courbe à sommet :

Une courbe constituée de deux arcs de Clothoïde, de même concavité, tangents en un point de même courbure et raccordant deux alignements.

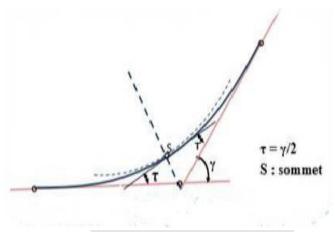


Figure II.5: Courbe à sommet.

c. Courbe en C:

Une courbe constituée de deux arcs de Clothoïde, de même concavité, tangents en un point de même courbure et raccordant deux arcs de cercles sécants ou extérieurs l'un à l'autre.

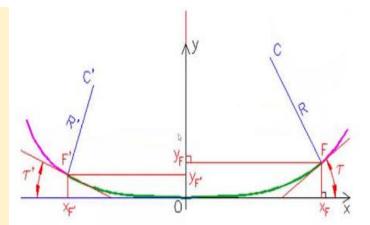


Figure II.6: Courbe en C

d. Courbe en Ove:

Un arc de Clothoïde raccordant deux arcs de cercles dont l'un est intérieur à l'autre, sans lui être concentrique.

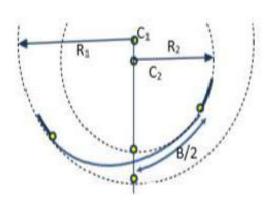


Figure II.7: Courbe en Ove

II.4. LA VISIBILITE:

II.4 .1But et méthode :

Les directives pour le comportement du conducteur lorsque les conditions de visibilité ne sont pas optimales. Cela peut concerner soit des conditions météorologiques difficiles (comme la pluie ou le brouillard), soit des configurations physiques spécifiques (tels que les sommets de côtes, les intersections ou les virages).

Pour des raisons de sécurité et de confort, la configuration géométrique des routes doit garantir une visibilité adéquate aussi bien aux points particuliers qu'en section standard. Une des missions du concepteur routier consiste à trouver un équilibre optimal entre les exigences de visibilité et les contraintes propres au projet.

Ces critères varient en fonction de la vitesse adoptée, du délai de réaction et de l'espace requis pour effectuer la manœuvre souhaitée.

II.4.2. La distance d'Arrêt :

La distance parcourue par le conducteur entre le moment ou l'œil du conducteur perçoit l'obstacle etl'arrêt effectif du véhicule est désigné sous le nom de distance d'arrêt (d₁). **Figure**

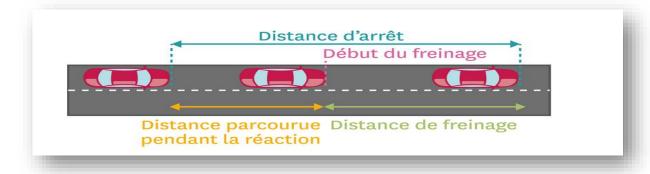


Figure II.8: Distance d'arrêt (trace en plan).

Vitesse de véhicule	40	60	80	100	120	140
Distance de freinage	15	35	60	105	170	250
Distance d'arrêt alignement droit	40	70	105	160	230	320
Distance d'arrêt en courbe	45	80	120	180	280	385

Tableau II.3 Distance d'Arrêt

Avec:

d1: distance d'arrête.

d0 : distance de freinage.

V : vitesse (km/h).

II.4.3. La distance de freinage :

C'est la distance conventionnelle nécessaire à un véhicule pour passer de sa vitesse initiale à 0 Elle ne correspond pas aux données des constructeurs automobiles et est Fonction de la vitesse initiale, de la déclivité et du coefficient de frottement longitudinal (valeur comprise entre 0 et 1). Ce dernier, de par ses hypothèses de calcul, offre des marges de sécurité importantes pour la majeure partie des situations.

II.5. CALCUL D'AXE:

Le calcul d'axe est l'opération de base par laquelle toute étude d'un projet routier doit commencer, elle consiste au calcul d'axe point par point du début du tronçon à sa fin.

On a le tableau des coordonnées (x, y) des sommets qui sont déterminés par simple lecture à partir de la carte topographique.

Le calcul d'axe se faire à partir d'un point x dont on connait ses coordonnées, et il doit suivre les étapes suivantes :

- ✓ Détermination longueur de clothoïde L.
- ✓ Calcul le paramètre A
- ✓ Calcul des gisements,
- ✓ Calcul de l'angle de comprime entre les alignements.
- ✓ Calcul de la tangente T.
- ✓ Vérification de non- chevauchement.
- ✓ Calcul de l'arc dans le cercle.
- ✓ Calcul de des coordonnées de points particuliers.

II.6. PARAMETRES FONDAMENTAUX:

Suivant le règlement des normes Algérienne B40 et pour un environnement E1 catégorie C2 et une vitesse 80km/h on définit les paramètres suivants :

Paramètres	Symboles	Valeurs
Vitesse (km/h)	V	80
Longueur minimal (m)	L min	83
Longueur maximal (m)	L max	1000
Devers minime (%)	d min	2.5
Devers maximum (%)	d max	7
Temps de perception réaction (s)	T 1	2
Frottement transversal	Ft	0.13
Distance de freinage (m)	d_0	60
Distance d'arrêt (m)	d_1	105
Distance de visibilité de dépassement Minimal	Dd	320
(m)		

Tableau II.4: paramètres fondamentaux

Application au Projet:

Longueur minimale:

$$L_{min} = t \times \frac{V_r}{3.6} = 5 \times \frac{80}{3.6} = 111, 11m$$

Longueur maximale:

$$L_{max} = t \times \frac{V_r}{3.6} = 60 \times \frac{80}{3.6} = 1333,33m$$

Rayon horizontal minimal absolu (RHm):

$$RHm = \frac{V_r^2}{127(f_t + d_{max})}$$

ft = 0,13 (B40)

 $d_{max} = 7 \%$ cat 1-2

RHM =
$$\frac{80^2}{127(0, 13 + 0, 07)} = 252 \text{ m}$$

=250 m (B40)

Rayon minimal normal (RHn):

$$RHn = \frac{(V_r + 20)^2}{127(f_t + d_{max})}$$

dmax - 2% = 5% cat 1 à 4

$$= \frac{(80 + 20)^2}{127(0, 13 + 0, 05)} = 438 \text{ m}$$
$$= 450 \text{ m (B40)}$$

Rayon au dévers minimal (RHd):

$$RHd = \frac{V_r^2}{127 \times 2 \times d_{min}}$$

Dévers associé dmin = 2,5 % en cat 1-2

$$=\frac{80^2}{127\times2\times0.025}=1008\,\mathrm{m}$$

= 1000 m (B40)

Rayon minimal non déversé (RHnd):

$$RHnd = \frac{V_r^2}{127 \times 0.035} = \frac{80^2}{127 \times 0.035} = 1440 \text{ m}$$

$$= 1400 \text{ m (B40)}$$

EXEMPLE DE CALCUL D'AXE MANUELLEMENT:

Vr = 80 km/h	X(m)	Y(m)	R(m)
S0	384411.941	4056514.464	
S1	384495.691	4056623.067	700
S2	384531.973	4056688.666	

Condition de confort optique :

On sait que : $A^2 = L \times R$

Détermination de L

$$\frac{R}{3} \le A_{min} \le R \quad d'ou \ 233,33 \le A_{min} \le 700$$

$$L > \sqrt{24 \times R \times \Delta R}$$
 comme $R = 700 \le 1500$

$$\Delta R = 1$$
 (éventuellement 0,5m) Donc $L = \sqrt{24 \times 700 \times 1} = 130$ m

Condition de confort dynamique :

$$RHn \le R \le RHd$$

$$(RHn = 450) \le (R = 700) \le (RHd = 1000)$$

$$L \geq \frac{5}{36}.\,\Delta d.\,Vr$$

$$d = d_{min} + \left(\frac{1}{R} - \frac{1}{RHd}\right) \frac{d_{min} - d_{RHn}}{\frac{1}{RHd} - \frac{1}{RHn}} = 0,033 \quad (3,3\%)$$

$$\Delta d = d + 2.5 = 3.3 + 2.5 = 5.8\%$$

 $V_r = 80 \text{Km/h}$

$$L \ge \frac{Vr^2}{18} \cdot \left(\frac{Vr^2}{127.R} - \Delta d\right) = \frac{80^2}{18} \cdot \left(\frac{80^2}{127.700} - 0,058\right) = \frac{4,97m}{18}$$

Condition de gauchissement :

$$L \ge \frac{5}{36} (5.8\% - (-2.5\%)) \times 80$$
 $\Rightarrow L = 92.22m$

$$L = max (130; 4.97; 92.22)$$
 Donc on prend: $L = 130m$

$$A = \sqrt{L \times R}$$

$$A = \sqrt{130 \times 700} = 301,66$$
 on prend: $A = 302m$

Calcul des Gisements:

$$S_{0}S_{1} \begin{cases} |\Delta X| = |X_{S1} - X_{S0}| = 83,7m \\ |\Delta Y| = |Y_{S1} - Y_{S0}| = 108,603m \\ |\Delta X| = |X_{S2} - X_{S1}| = 36,282m \\ |\Delta Y| = |Y_{S2} - Y_{S1}| = 165,602m \end{cases}$$

D'où:

$$G_{S0}^{S1} = 100 + \text{arc tg} \frac{|\Delta X|}{|\Delta Y|} = 137,62 \text{ grades}$$
 Donc: $G_{S0}^{S1} = 137,62 \text{ grades}$

$$G_{S0}^{S1} = 100 + \text{arc tg} \ \frac{|\Delta X|}{|\Delta Y|} = 137,62 \ \text{grades}$$
 Donc: $G_{S0}^{S1} = 137,62 \ \text{grades}$ $G_{S1}^{S2} = 100 + \text{arc tg} \ \frac{|\Delta X|}{|\Delta Y|} = 112,35 \ \text{grades}$ Donc: $G_{S1}^{S2} = 112,35 \ \text{grades}$

Calcul de l'angle y :

$$\gamma = |G_{S1}^{S2} - G_{S0}^{S1}| = 25,27 \text{ grades}$$
 Donc: $\gamma = 25,27 \text{ grades}$

Calcul de l'angle τ :

$$\tau = \frac{L}{2R} \times \frac{200}{\pi} = \frac{130}{2 \times 700} \times \frac{200}{\pi} = 5,46 \text{ grades}$$
 Donc: $\tau = 5,46 \text{ grades}$

Vérification de non chevauchement :

$$\tau = 5,46$$
 grades

$$\frac{\gamma}{2} = \frac{25,27}{2} = 12,63 \ grades \qquad Donc: \ \tau < \frac{\gamma}{2} \Rightarrow \text{pas de chevauchement.}$$

Calcul des distances :

$$\overline{\mathbf{S_1S_0}} = \sqrt{\Delta X^2 + \Delta Y^2} = \sqrt{=83,7^2 + 108,603^2} = \mathbf{199,05m}$$

$$\overline{\mathbf{S_1S_0}} = \sqrt{\Delta X^2 + \Delta Y^2} = \sqrt{=83,7^2 + 108,603^2} = \mathbf{199,05m}$$

$$\overline{\mathbf{S_2S_1}} = \sqrt{\Delta X_1^2 + \Delta Y_1^2} = \sqrt{36,282^2 + 165,602^{-2}} = \mathbf{169,52m}$$

Calcul de la tangente T :

On a:

$$\frac{L}{R} = \frac{130}{700} = \mathbf{0}, \mathbf{19}$$

$$\Delta \mathbf{R} = \frac{L^2}{24R} = \frac{130^2}{24 \times 700} = \mathbf{1}, \mathbf{006}m$$

$$\mathbf{X} = L\left(1 - \frac{L^2}{40R^2}\right) = 130\left(1 - \frac{130^2}{40 \times 700^2}\right) = \mathbf{129}, \mathbf{89m}$$

$$\mathbf{Y} = \frac{L^2}{6R} = \frac{130^2}{6 \times 700} = \mathbf{4}, \mathbf{02m}$$

$$\mathbf{X}_{\mathbf{m}} = X - R. \sin\tau = 129,89 - 700(\sin 5,46) = \mathbf{69}, \mathbf{93m}$$

$$\mathbf{T} = X_m + (R + \Delta R) \tan\left(\frac{\gamma}{2}\right) = 69,93 + (700 + 1,006) \times \tan\frac{25,27}{2} = \mathbf{173}, \mathbf{53}m$$

Donc : **T** = **173**, **53***m*Calcul de des coordonnées SL :

$$SL = \sqrt{X^2 + Y^2} = \sqrt{129,89^2 + 4,02^2} = 129,95m$$

Calcul de σ:

$$\sigma = arc \tan\left(\frac{Y}{X}\right) = arc \tan\left(\frac{4,02}{129,89}\right) =$$
1,97 grades

Calcul de l'arc:

$$\mathbf{K_{E1}K_{E2}} = \frac{[\pi \, R(\gamma - 2\tau)]}{200} = \frac{[\pi \, 700(25,27 - 2 \times 5,46)]}{200} = \frac{\mathbf{157,03m}}{200}$$

Calcul des coordonnées des points singuliers :

$$K_{A1} \begin{cases} X_{KA1} = X_{S0}(S0 S1 - T) \sin(G_{S0}^{S1}) \\ Y_{KA1} = Y_{S0}(S0 S1 - T) \cos(G_{S0}^{S1}) \\ X_{KA1} = 384411,941 + (199,05 - 173,53) - \sin 137,62 = 384436,767m \\ X_{KA1} = 4056514,464 + (199,05 - 173,53) - \cos 137,62 = 4056540,732m \end{cases}$$

$$K_{E1} \begin{cases} X_{KE1} = X_{KA1} + SL \times \sin(G_{S0}^{S1} - \delta) \\ Y_{KE1} = Y_{KA1} + SL \times \cos(G_{S0}^{S1} - \delta) \\ X_{KE1} = 384436,767 + 129,95 \times \sin(137,62 - 1,97) = 268827,336m^{2} \\ Y_{KE1} = 4056540,732 + 129,95 \times \cos(137,62 - 1,97) = 4056447,807m \end{cases}$$

$$K_{A2} \quad \begin{cases} X_{KA2} = X_{S1} + \ T \ \times sin \big(G_{S1}^{S2}\big) \\ \\ Y_{KA2} = Y_{S1} + \ T \ \times cos \big(G_{S1}^{S2}\big) \end{cases} \label{eq:KA2}$$

$$K_{A2} \begin{cases} X_{KA2} = 384495,691 + 173,63 \times \sin 112,35 = 355772,187m \\ Y_{KA2} = 4056623,067 + 173,53 \times \cos 112,35 = 4056557,087m \end{cases}$$

$$K_{E2} \begin{cases} X_{KE2} = X_{KA2} - SL \times sin(G_{S1}^{S2} + \delta) \\ \\ Y_{KE2} = Y_{KA2} - SL \times cos(G_{S0}^{S1} + \delta) \end{cases}$$

$$K_{E2} \begin{cases} X_{KE1} = 355772,187 - 129,95 \times \sin(112,35 - 1,97) = 355650,371m \\ Y_{KE1} = 4056557,087 - 129,95 \times \cos(112,35 - 1,97) = 4056602,341m \end{cases}$$

II .6 Profil en Long:

II .6 .1 Définition :

Le profil en long d'une route est une représentation graphique de l'altitude du terrain naturel et du tracé projeté de la route en fonction de la distance. Il permet d'étudier les variations de pente et de dénivelé sur toute la longueur de l'axe routier.

II .6 .2 Éléments d'un profil en long : Un profil en long comprend généralement :

- L'axe horizontal : représente la distance cumulée le long du tracé de la route.
- L'axe vertical : représente l'altitude (cote) du terrain naturel et du projet routier.
- Le terrain naturel : courbe indiquant les variations d'altitude du sol existant.
- Le profil projeté : courbe représentant la future chaussée avec ses pentes et rampes optimisées.
- Les pentes et rampes : exprimées en pourcentage (%), elles définissent l'inclinaison du tracé projeté.
- Les points caractéristiques : sommets, creux, points de raccordement, ouvrages d'art, intersections, etc.

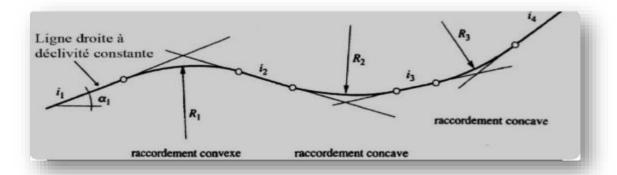


Figure II.9: les composantes géométriques d'un profil en long

II.6.3 Règles et paramètres de choix d'UN profil en long :

L'étude du profil en long ne peut être séparée de celle du tracé en plan ; on devra en effet toujours s'assurer que les inflexions en plan et en profil en long se combinent sans porter atteinte à l'harmonie, au confort et à la sécurité de la route qu'elles définissent. L'une des préoccupations majeures de l'ingénieur routier étant celle de l'écoulement de l'eau.

- On évitera les pentes trop faibles en profil en long, notamment inférieures à 0,5%.
- Si on est obligé de concevoir un palier, il faudra étudier attentivement les pentes du profil en travers afin de favoriser l'évacuation par gravité de l'eau de pluie ou de fonte.
- Le coût du trafic sur une route ne dépend, en première approximation, que des dénivelées du profil en long et non des déclivités elles-mêmes. C'est donc en cherchant à minimiser les dénivelées cumulées que l'on affaiblira les rampes ; ceci peut avoir une influence décisive sur le tracé en plan. En effet, il ne faut pas oublier que la difficulté d'une rampe est fonction de sa longueur autant que de sa déclivité.
- Lorsque la rampe a à la fois une forte déclivité et une grande longueur, il y a lieu de prévoir une voie supplémentaire pour poids lourds et à chaque fois que le relief le permet, la réalisation de quasi paliers de quelques centaines de mètres.
- Les rayons des raccordements circulaires indiqués par les instructions techniques doivent toujours être considérés comme des minimums imposés par les conditions de visibilité et de confort.
- Il est toujours préférable, lorsqu'ils peuvent être bien adaptés au terrain et qu'ils n'entraînent pas de terrassements supplémentaires, d'adopter des rayons beaucoup plus grands.

- Un profil en long composé de segments successifs sera avantageusement remplacé par un cercle unique.
- Le profil en long doit, dans tous les cas, s'adapter aux grandes lignes du paysage. Il faut éviter à tout prix sur un itinéraire :
- ✓ une déclivité locale exceptionnelle ;
- ✓ préférer un léger remblai à un léger déblai ;
- ✓ assurer en toute circonstance le confort et la sécurité de l'usager par l'obtention d'une visibilité satisfaisante.

II.6.4 Règles à respecter dans le tracé du profil en long

Le tracé du profil en long d'un projet d'infrastructure (route, canalisation, voie ferrée...) doit respecter plusieurs règles techniques et réglementaires pour garantir la sécurité, le confort et l'optimisation des travaux

a. Pentes et déclivités :

- ✓ Respecter les pentes maximales admissibles.
- ✓ Limiter les pentes trop faibles.
- ✓ Éviter les pentes trop fortes.

b. <u>Courbures verticales (convexes et concaves)</u>:

- ✓ Respecter un rayon de courbure suffisant pour les changements de pente.
- ✓ Assurer une bonne visibilité.

c. Adaptation au terrain naturel:

- ✓ Équilibrer les déblais et remblais.
- ✓ Éviter les coupures trop profondes ou les remblais trop hauts, instable.
- ✓ Respecter les contraintes géotechniques.

d. Gestion des eaux :

- ✓ Prévoir un bon drainage.
- ✓ Préserver l'écoulement naturel des eaux.
- ✓ Prévoir des ouvrages hydrauliques (caniveaux, fossés, buses).

e. Normes et réglementations :

- ✓ Respecter les **normes de conception routière** en vigueur (normes locales ou internationales, comme celles de l'**AASHTO** ou du **CCTP** d'un projet).
- ✓ Vérifier la compatibilité avec les autres infrastructures (passages à niveau, ponts, réseaux souterrains...).

f. Confort et sécurité des usagers :

- ✓ Assurer un bon confort de conduite
- ✓ Garantir une visibilité suffisante
- ✓ Adapter la conception aux véhicules circulant sur l'infrastructure

II.6.5. Eléments constituants la ligne rouge :

Sur le profil en long terrain naturel qui est constitué par des fichiers de commande du logiciel Covadis en utilisant la coordonnée z comme Etant la cote projet de la route, on a conçu la ligne rouge de notre dédoublement qui est lui-même constituée de : 4. a Les alignements : sont des segments droits caractérisés par leur déclivité.

A .Déclivité : On appelle déclivité d'une route, la tangente des segments de profil en long avec l'horizontal. Elle prend le nom de pente pour les descentes et rampe pour les montées.

- ➤ <u>Déclivité minimale</u>: Dans les tronçons de route absolument horizontaux ou le palier, pour la raison d'écoulement des eaux pluviales car la pente transversale seule ne suffit pas, donc les eaux vont s'évacuent longitudinalement l'aide des canalisations ayant des déclivités suffisantes leur minimum vaut 0.5% et de préférence 1%.
- ➤ <u>Déclivité maximale</u>: Elle dépend de l'adhérence entre pneus et chaussée qui concerne tous les véhicules, et aussi de la réduction de la vitesse qu'il provoque qui concerne le poids lourd doit .et selon (B40) elle doit Être inférieur ‡ une valeur maximale associée a la vitesse de base

Remarque: l'augmentation excessive des rampes provoque ce qui suit :

- > Effort de traction est considérable.
- > Consommation excessive de carburant.
- > Faibles vitesses.
- > Gène des véhicules.

<u>Application au projet</u>: la vitesse de base qu'on a retenue dans notre projet est 80Km/h, donc la déclivité maximale est de 6%. Correspondante (C2, VB).

B. Raccordements verticaux:

Les changements de déclivités constituent des points particuliers au niveau du profil en long. ¿ cet effet, le passage d'une déclivité une autre doit être adouci par l'aménagement de raccordement parabolique ou leur conception est subordonnée la prise en considération de la visibilité et du confort. On distingue donc deux types de raccordement :

Raccordement convexe (angle saillant):

Les rayons minimums admissibles des raccordements paraboliques en angle saillant sont déterminés partir de la connaissance de la position de lui humain. Les conceptions doivent satisfaire aux conditions suivantes : Condition de confort : Lorsque le profil en long comporte une forte courbure convexe, le véhicule subit une accélération verticale importante, qui modifie sa stabilité et gène les usagers.

Rvm = a d1 2 (Vr)

a = 0.24 pour les catégories (1et 2)

a = 0.22 pour les catégories (3, 4 et 5)

Les valeurs retenues pour les rayons minimaux absolus (d'âpre le B40) sont récapitulées dans le tableau suivant :

Davon on angle Scillant	Route unidirectionne	elle : (2x2 voies)
Rayon en angle Saillant Rv	Rvm (minimal absolu) en m	2500
	Rvn (minimal normal) en m	6000

Tableau II.5: Rayons de Raccordements convexes.

Raccordement concave (angle rentrant):

Dans un raccordement concave, les conditions de visibilités du jour ne sont pas déterminantes mais par contre lorsque la route n'est pas Eclairée, la visibilité de nuit doit être prise en compte.

$$Rvm = \frac{d_1^2}{0,35d_1 + 1,5}$$

	Route unidirectionnelle : (2x2 voies)		
Rayon en angle rentrant R _V	R _{v'm} (minimal absolu) en m	2400	
	R _{v'n} (minimal normal) en m	3000	

Tableau II.5: Rayons de Raccordements concaves.

• <u>Distance d'arrêt (d₁)</u>:

$$d_1 = d_0 + \frac{v_r}{3.6} \times t$$

Cette distance peut être décomposée en deux parties : la distance de réaction (d_R) et la distance de freinage (d_F) .

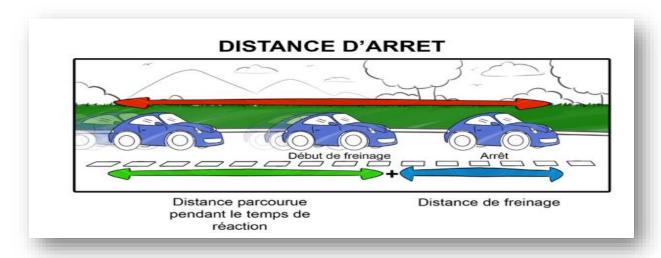


Figure II.10: Distance d'arrêt (profil en long)

t : temps de perception réaction c'est-à-dire le temps qui s'écoule entre la vision de l'obstacle et le freinage effectif. Il est fonction de la vitesse de référence, de l'environnement et de la catégorie de la route

	E1	E2	E3
C1 et C2	V > 80km/h → t = 1,8s		t = 1,8s
	V ≤ 80km/h → t = 2,0s		
C3, C4 et C5	V > 60km/h → t = 1,8s		
C3, C4 et C5	V ≤ 60km/h	→ t = 2,0s	

Tableau II.6 Le temps de perception.:

Remarque: Dans les circulaires, le temps réel de perception-réaction est fixé comme suit:

$$1,3+0,5 = 1,8s$$
 $pour Vr > 100 km/h$

$$1,5+0,5=2,0s$$
 pour $Vr \le 100 \text{ km/h}$

 d_0 : Distance élémentaire de freinage, C'est la distance nécessaire pour permettre une roue dotée de pneus normalement sculptés, roulant (une vitesse V), de s'arrêter en sécurité sur une chaussé mouillée propre.

$$\mathbf{d_0} = \frac{4}{1000} \times \frac{\mathrm{Vr}^2}{f_L \pm i}$$

+i: il s'agit d'une rampe.

-i: il s'agit d'une pente en descente.

f_L : Coefficient de frottement longitudinal des pneus sur la chaussée. Dépend de la vitessede référence et de la catégorie de la route.

V(km/h)	40	60	80	100	120
Cat 1.2	0,45	0,42	0,39	0,36	0,33
Cat 3.4.5	0,49	0,46	0,42	0,40	0,36

Tableau II.7: Valeurs du coefficient de frottement longitudinal (B40).

Catégorie	V(km/h)	40	60	80	100	120
Cat 1.2	i (%)	8	4,7	2,9	1,95	1,33
Cat 3.4.5	i (%)	8	2	3,3	2,2	1,30

Tableau II.8: Vitesse de référence en fonction des catégories.

II.6.4 coordinations Trace en plan - Profil en long:

Tenant compte également de l'implantation des points d'échanges) pour :

- Assurer les conditions minimales de visibilité ;
- Favoriser la perception générale du tracé : rechercher la cohérence du tracé en plan, du profil en long et de la topographie générale du site.

Lorsque le tracé en plan et le profil en long sont simultanément en courbe, faire coïncider les courbes horizontales et verticales, Puis respecter la condition :

R vertical > 6 R horizontal pour éviter un défaut d'inflexion.

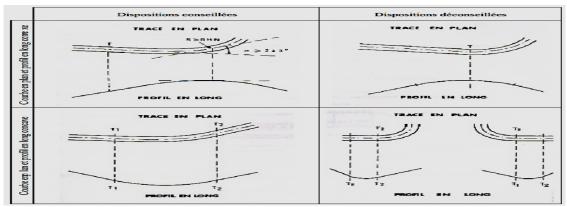


Figure II.11: coordination Trace en plan - Profil en long

Application au Projet:

Choix des rayons de raccordement en profil en long :

Catégorie (C2)

Environnement (E1)

La chaussée unidirectionnelle (Route à 2x2 voies de 3,5 m)

Vr = 80 Km / h

CALCUL LES RAYONS POUR LES ANGLES SAILLANTS « R_V »

a. Calcul la distance de freinage :

Pour notre cas, on a

 $V = Vr = 80 \text{ Km} / \text{h} \text{ et C2} \Rightarrow i = 2.9 \%$

$$\Rightarrow$$
 f_t= 0,39

$$d_0 = \frac{4}{1000} \times \frac{80^2}{0.39 + 0.029} \implies d_0 = 61,10m$$

Calcul la distance d'arrêt :

Pour : V = Vr = 80 Km / h

$$\mathbf{d_1} = \mathbf{d_0} + \frac{\mathbf{Vr}}{3.6} \times \mathbf{t}$$

Avec:
$$t = 1.5 + 0.5 = 2.0s$$
 pour $Vr \le 80 \text{ km/h}$

pour
$$Vr \le 80 \text{ km/h}$$

$$d_1 = 61,10 + \frac{80}{3.6} \times 2,0 \implies d_1 = 105,54m$$

$$d_1 = 105, 54n$$

Pour V = Vr + 20 = 100 Km / h

$$V = Vr = 100 \text{ Km} / \text{h}$$
 $\Rightarrow i = 1.95 \%$

C2 et Vr = 100 Km / h
$$\Rightarrow$$
 f_L= 0,36

$$d_0 = \frac{4}{1000} \times \frac{100^2}{0.0195 + 0.36} \Rightarrow d_0 = 105,40m$$

$$d_1 = 105,40 + \frac{100}{3,6} \times 1,8 \implies d_1 = 155,40m$$

- Le rayon minimal absolu : $RVm = RV(d_1)$ pour : V = Vr.
- Le rayon minimal normal : $RVn = RV(d_1)$ pour : $V = Vr + 20 \le 100$ Km / h.

Rayon minimal absolu

$$R_{Vm} \ge 0.24 \times d_1^2$$

$$R_{Vm} = 0.24 \times 105,54^2 \Rightarrow R_{Vm} = 2673,29m$$

♣ Rayon minimal normal

$$R_{Vn} = 0.24 \times 155,40^2 \Rightarrow R_{Vn} = 5795,80m$$

CALCUL DES RAYONS POUR LES ANGLES RENTRANT « R'V »

Rayon minimal absolu R'Vm:

V > V

V'= 60 Km / h pour C1, C2 (condition de confort)

$$R'Vm = 0.3 \times 60^2 \implies R'Vm = 1080m$$

• Rayon minimal normal R'Vn:

$$V \ge V'$$

 $V' = V + 20 = 100 \text{ Km / h pour}$
 $R'Vm = 0.3 \times 100^2 \implies R'Vm = 3000m$

II.7 Profil en Travers:

II.7.1 Définition:

Le profil en travers d'une route est une **coupe** verticale perpendiculaire à l'axe de la chaussée qui représente la forme, la largeur, les différentes couches de la structure de la route, ainsi que les éléments annexes (accotements, fossés, trottoirs, talus, etc.). Il sert à :

- Visualiser la géométrie transversale de la route
- Concevoir les dimensions et pentes de chaque élément (chaussée, fossé, etc.)
- Calculer les volumes de terrassement
- Assurer la sécurité, le drainage et la stabilité de la route

Les profils en travers permettent de calculer les paramètres suivants :

- La position des points théoriques d'entrée en terre des terrassements;
- L'assiette du projet et son emprise sur le terrain naturel;
- Les cubatures (volumes de déblais et de remblais).

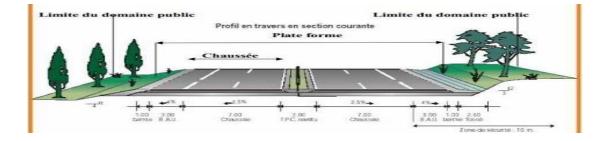


Figure II .12 profil en travers

II.7.2 Classification du profil en travers:

Ils existent deux types de classification de profil en travers :

1. Le Profil en Travers Type:

Le profil en travers type est une pièce de base dessinée dans les projets de nouvelles autoroutes ou l'aménagement des autoroutes existantes, il contient tous les éléments

constructifs de la future autoroute, dans toutes les situations (remblais, déblais, en alignement et en courbe). L'application du profil en travers type sur le profil correspondant du terrain en respectant la cote du projet permet le calcul de l'avant mètre des terrassements.

2. Le Profil en Travers Courant :

Le profil en travers courant est une pièce de base dessinée dans les projets à une distance régulière (10, 15, 20, 25 m...) qui dépendent du terrain naturel (accidenté ou plat) et qui servent à calculer les cubatures des terrassements.

II.7.3 Les éléments de composition du profil en travers :

- Chaussée: C'est la surface aménagée de la route sur laquelle circulent les véhicules, La route peut être à chaussée unique ou à chaussée séparée par un terre-plein central (T.P.C).
- La largeur Roulable : Elle comprend les surlargeurs de la chaussée : « La Chaussée et les Bandes d'Arrêt ».
- <u>Plate-forme</u>: C'est la surface de la route située entre les fossés ou les crêtes de talus de remblais, elle comprend : « La Chaussée, les Accotements et éventuellement le Terre-Plein Centre (T.P.C) ».
- Assiette : Surface de terrain réellement occupé par la route, ses limites sont les pieds de talus en remblai et crête de talus en déblai.
- Emprise : C'est la surface de terrain appartenant à la collectivité et affectée à la route et à ses dépendances, elle coïncide généralement avec le domaine public.
- Terre-plein central (T.P.C.): Le (T.P.C) s'étend entre les limites géométriques intérieures des chaussées, il assure la séparation matérielle des deux sens de circulation, sa largeur résulte de celle de ses constituants : « surlargeurs de chaussée (les deux Bandes Dérasées de Gauche B.D.G) et la partie centrale engazonnée, stabilisée ou revêtue (la Bande Médiane) ».

Bande Dérasée De Gauche (B.D.G.) :

Elle est destinée à permettre de légers écarts de trajectoire et à éviter un effet de paroi lié aux barrières de sécurité, elle contribue dans les courbes à gauche au respect des règles de visibilité. La B.D.G est dégagée de tout obstacle, revêtue et se raccorde à la chaussée sans dénivellation, sa largeur est de 1,00 m.

Bande Médiane :

Elle sert à séparer physiquement les deux sens de circulation, à implanter certains équipements c'est le cas échéant (barrières de sécurité, supports de signalisation, ouvrages de collecte et d'évacuation des eaux), des piles d'ouvrages et des aménagements paysagers, sa largeur dépend, pour le minimum, des éléments qui y sont implantés. Si elle est inférieure ou égale à 3,00 m, elle est stabilisée et revêtue pour en faciliter l'entretien. Sinon, elle peut être

engazonnée et plantée d'arbustes, à moins que sa largeur et la topographie du site ne permettent la conservation du terrain naturel et de la végétation existante.

• Accotement: Les accotements sont les zones latérales de la plate-forme qui bordent extérieurement la chaussée, ils peuvent être dérasés ou surélevés. Ils comportent généralement : « Une bande d'Arrêt d'Urgence (B.A.U.), une Berme extérieure et une Zone de Sécurité ».

La Bande d'Arrêt d'Urgence (B.A.U) :

La **B.A.**U facilite l'arrêt d'urgence hors chaussée d'un véhicule, la récupération d'un véhicule déviant de sa trajectoire, l'évitement d'un obstacle sur la chaussée, l'intervention des services de secours, d'entretien et d'exploitation, qui porte le marquage en rive, puis d'une partie dégagée de tout obstacle, revêtue et apte à accueillir un véhicule lourd en stationnement. Aucune dénivellation ne doit exister entre la chaussée et la **B.A.U.**

La Berme :

Elle participe aux dégagements visuels et supporte des équipements : « Barrières de Sécurité, Signalisation Verticale » ... Sa largeur dépend surtout de l'espace nécessaire au fonctionnement du type de barrière de sécurité à mettre en place est de 1,00 m minimum ; mais elle peut être intégrée à un dispositif d'assainissement dont la pente ne dépasse pas 25%.

Zone de Sécurité :

La largeur de la zone de sécurité est, à compter du bord de la chaussée, de 10 m pour la catégorie L1, et de 8,50 m pour la catégorie L2. En déblai, la zone de sécurité ne s'étend pas au-delà d'une hauteur de 3 m. La zone de sécurité, doit être isolé, sinon exclu de tout dispositif agressif constitué par un.

• Le Fossé: C'est un ouvrage hydraulique destiné à recevoir les eaux de ruissellement provenant de la route et talus et les eaux de pluie.

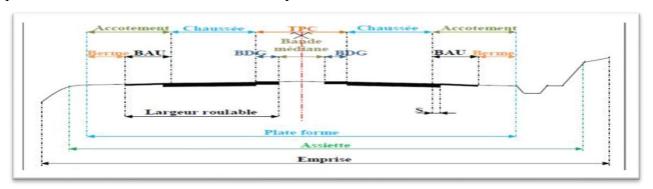


Figure II .13 profil en travers type

II.7.4 pentes transversales :

Les courbes de rayon inférieur à Rnd sont déversées vers l'intérieur de la courbe.

En alignement et en courbe non déversée :

- La pente transversale d'une chaussée est de 2,5% vers l'extérieur;
- La pente d'une B.A.U (ou d'une B.D.D), est identique à celle de la chaussée adjacente, mais au-delà de la surlargeur de chaussée portant le marquage de rive, elle peut être portée à 4 % pour des raisons techniques;
- Les pentes des B.D.G et du versant en toit d'un T.P.C revêtu sont identiques à celle de la chaussée adjacente;
- La berme extérieure présente une pente transversale de 8 % qui peut être portée jusqu'à 25 % dans le cas où elle est intégrée au dispositif d'assainissement.

En Courbe Déversée :

- La pente transversale d'une chaussée varie linéairement en fonction de 1/R entre 2,5 % pour Rnd et 7 % pour Rm;
- La pente de la B.A.U (ou la B.D.D) intérieure à la courbe est la même que celle de la chaussée adjacente;
- La pente de la B.A.U extérieure (ou la B.D.D) reste la même qu'en alignement droit tant que le dévers ne dépasse pas 4 %; au-delà, elle est de sens opposé au dévers et égale à 1,5 %, hormis la surlargeur de chaussée qui conserve la même pente que la chaussée;
- Les dispositions relatives aux autres composantes de la plate-forme restent les mêmes qu'en alignement et en courbe non déversée.

Application au Projet

Après l'étude de trafic, le profil en travers type retenu pour la RN16 sera compose d'une chaussée de dédoublement.

Les éléments du profil en travers type sont comme suit :

Voie	3 ,5m
Chaussée2 x (3,5 x 2)	$= 2 \times 7,00$
B.A. U	2.00 m
Berne	2 m
Accotement (BAU + Berme)	4x 2m
B.D. G	1.00 × 2 m

B.M	1 m
T.P.C(B.D. G \times 2+B. M)	3m
Fosse	1,5×2 m
Plate-forme	29,50m

Tableau II.9. Valeurs des Composantes du Profil en Travers de la chaussée Projetée

Figure II .14 profil en travers mixte

II.8 Cubature:

II.8.1 Généralité:

Les cubatures de remblai et de déblai sont des calculs volumétriques utilisés principalement dans les travaux publics et l'aménagement du territoire pour déterminer les volumes de terre à enlever (déblai) ou à ajouter (remblai) lors de la réalisation de travaux (routes, plateformes, bâtiments, etc.).

Les éléments qui permettent cette évolution sont :

- ☐ Les profils en long
- \square Les profils en travers
- \square Les distances entre les profils.

Les profils en long et les profils en travers doivent comporter un certain nombre de points suffisamment proches pour que les lignes qui joignent ces points soit différents le moins possible de la ligne du terrain qu'il représente.

II.8.2 Définition :

La cubature des terrassements est le calcul des volumes de terre à déplacer (en m³) lors de travaux de préparation du sol, comme dans la construction de routes, de bâtiments ou de plateformes.

Elle comprend deux types principaux :

- Déblai : volume de terre à enlever (excavation).
- Remblai : volume de terre à ajouter (remplissage).

Objectif: La cubature permet de :

- Planifier les mouvements de terre.
- Évaluer les coûts de terrassement.
- Optimiser les apports et évacuations de matériaux.

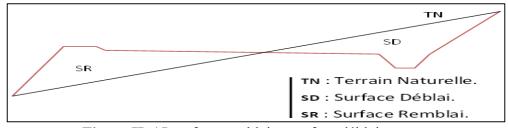
II.8.3 Méthode de Calcul Des Cubatures :

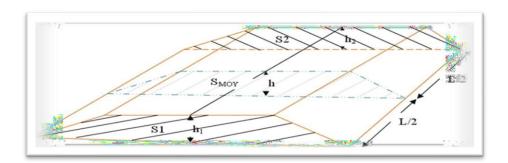
Les cubatures sont des calculs effectués pour avoir les volumes des terrassements existants dans notre projet. Les cubatures sont fastidieuses, mais

- ✓ Il existe plusieurs méthodes de calcul des cubatures qui simplifie le calcul.
- ✓ Le travail consiste a calculé les surfaces SD et SR pour chaque profil en travers, en suite on les soustrait pour trouver la section pour notre projet.

Parmi les méthodes de calcul on peut citer :

- Méthode de la moyenne des aires (la méthode SARRAUS).
- Méthode de l'aire moyenne (méthode par défaut).
- Méthode de la longueur applicable
- Méthode de GULDEN




Figure II .15 surface remblai et surface déblais

II.8.4 Description des Méthodes Utilisées :

Pour calculer un volume, il y a plusieurs méthodes parmi lesquelles il y a celle de la moyenne des aires que nous utilisons et qui est une méthode très simple mais elle présente un inconvénient c'est de donner des résultats avec une marge d'erreur, donc pour être proche des résultats exacts on doit majorer les résultats trouvés par le coefficient de 10 % et ceci dans le but d'être en sécurité.

En utilisant la formule qui calcul le volume compris entre deux profils successifs

$$\mathbf{V} = \frac{L}{6} \left(\mathbf{S}_1 + \mathbf{S}_2 + 4 \times \mathbf{S}_{Moy} \right)$$

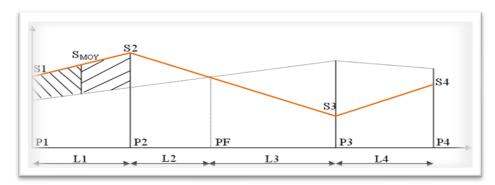


Figure II.16: Exemple de profils en long

Tel que:

PF: profil fictive, surface nulle.

Si : surface de profil en travers Pi.

Li: distance entre ces deux profils.

S_{MOY}: surface intermédiaire (surface parallèle et à mi-distance Li).

Pour éviter des calculs très long, on simplifie cette formule en considérant comme très voisines les deux expressions S_{MOY} et (S1+S2)/2 ceci donne :

$$\mathbf{V_1} = \frac{L_i}{2} \times (S_i + S_{i+1})$$

Avec:

 \mathbf{V} : Volume (\mathbf{m}^3).

Si et Si+1 : Surface de deux profils en travers successifs (m²).

Li: Distance entre ces deux profils (m)

Donc les volumes seront :

$$\mathbf{V_1} = \frac{\mathbf{L_1}}{2} \times (\mathbf{S_1} + \mathbf{S_2})$$
 Entre P1 et P2

$$\mathbf{V_2} = \frac{\mathbf{L_2}}{2} \times (\mathbf{S} + 0)$$
 Entre P2 et PF

$$\mathbf{V_3} = \frac{\mathbf{L_3}}{2} \times (0 + \mathbf{S_3})$$
 Entre PF et P3

$$\mathbf{V_4} = \frac{\mathbf{L_4}}{2} \times (\mathbf{S_3} + \mathbf{S_4})$$
 Entre PF et P3

En additionnant membres à membre ces expressions on a le volume total des

Terrassements

$$V = \left(\frac{L1}{2}\right) \times S1 + \left(\frac{L1 + L2}{2}\right) \times S2 + \left(\frac{L2 + L3}{2}\right) \times 0 + \left(\frac{L3 + L4}{2}\right) \times S3 + \left(\frac{L4}{2}\right) \times S4$$

II.8.5. Application de projet :

Dans notre projet, le calcul est fait par logiciel Autopiste. Le volume de terrassement sont joint en annexe.

L'objectif fixé est de réduire au maximum la différence entre les volumes de déblais et remblais.

Volume des déblais : **VD** = 547930 **m3**

Volume des remblais : VR = 69493 m3

II.9. Conception de Carrefour:

II.9.1 Définition:

Un carrefour est un endroit où deux ou plusieurs routes se croisent au même niveau.

L'efficacité d'un réseau routier repose principalement sur la gestion des intersections, qui constituent des points de rencontre et de contention où la fluidité du trafic et la sûreté des déplacements sont primordiales.

L'évaluation des intersections reposera sur les informations collectées lors des études directionnelles, qui doivent offrir les éléments nécessaires pour établir un diagnostic de leur fonctionnement.

II.9.2 Les principaux types des carrefours :

II.9.2.1 Carrefour type giratoire ou carrefour giratoire :

Un carrefour giratoire, souvent appelé rond-point, est une intersection routière où la circulation s'effectue autour d'un îlot central, généralement dans le sens inverse des aiguilles d'une montre dans les pays à conduite à droite, comme l'Algérie. Ce type d'aménagement vise à fluidifier le trafic et à réduire les risques d'accidents en limitant les angles morts et les collisions frontales .de plus grand rayant pour rendre le dégagement plus facile.

Types de carrefours giratoires ;

- <u>Giratoire plein</u>: L'anneau est suffisamment large pour être entièrement franchi par des véhicules de grand gabarit. Il est souvent décoré ou aménagé de manière paysagère.
- <u>Giratoire vide</u>: L'anneau est plus petit et le terre-plein central est franchissable, permettant le passage de véhicules larges comme les bus ou camions.

Règles de circulation dans un carrefour giratoire :

- Priorité: Les véhicules déjà engagés dans le giratoire ont la priorité sur ceux qui y entrent.
- Clignotants : Il est essentiel d'utiliser les clignotants pour signaler vos intentions, notamment lors de l'entrée et de la sortie du giratoire.
- Placement sur la voie :
 - Pour sortir à droite : empruntez la voie la plus à droite et signalez votre intention en activant le clignotant droit avant d'entrer.
 - Pour aller tout droit : restez sur la voie extérieure sans clignoter à l'entrée, mais activez le clignotant droit avant de sortir.
 - Pour sortir à gauche ou faire demi-tour : positionnez-vous sur la voie intérieure, signalez votre intention avec le clignotant gauche avant d'entrer, puis activez le clignotant droit avant de sortir.
- **Vitesse**: Adaptez votre vitesse en fonction des conditions de circulation et des panneaux de signalisation.

Figure II.17: Carrefour Giratoire.

II.9.2.2. Carrefour à trois branches :

a. Carrefour à trois branches (en T) :

C'est un carrefour plan ordinaire à trois branches secondaires.

Le courant rectiligne domine, mais les autres courants peuvent être aussi d'importance semblable.

b. Carrefour à trois branches (en Y):

C'est un carrefour plan ordinaire à trois branches, comportant une branche secondaire uniquement et dont l'incidence avec l'axe principale est oblique.

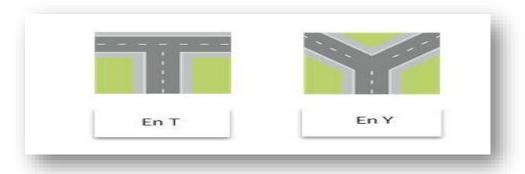


Figure II.18: Carrefour en T, Y

II.9.2.3 Carrefour à quatre branches (en croix)

Il s'agit d'un carrefour à quatre branches dont deux branches sont à peu près dans le prolongement des deux autres branches et pour lequel l'angle de ces prolongements est de 75° ou davantage tout en restant inférieur à 105°. La figure ci-dessous donne une idée de l'allure de ce type de carrefour.

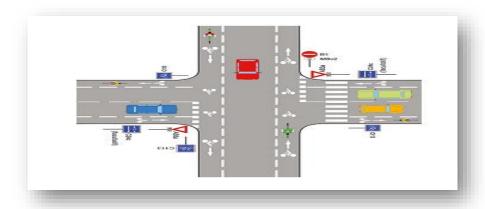


Figure II.19: Carrefour en croix

II.9.3. Eléments de base pour l'aménagement des carrefours :

Les données essentielles de base à l'aménagement d'un carrefour sont :

- ✓ Les conditions topographiques et la visibilité (plan, profil en long).
- ✓ Les conditions d'approche pratiquées par les véhicules sur les déférentes voies.
- ✓ L'intensité de la circulation sur les déférents courants.
- ✓ La composition du trafic, c'est-à-dire la proposition des véhicules lourds, encombrants en lents, sur les divers courants de circulation.

II.9.4. Données apprendre pour l'aménagement d'un carrefour :

Pour Les choix d'un aménagement de carrefour on doit suivre un certain nombre des données essentielles concernant :

- ✓ Les caractéristiques du site d'implantation (le trafic et leur révolution prévisible dans le futur, Environnement, sécurité).
- ✓ Les vitesses d'approche à vide pratique.
- ✓ Des caractéristiques sections adjacentes et des carrefours voisins.
- ✓ Condition topographique.
- ✓ Le respect de l'homogénéité de tracé.
- ✓ La valeur de débit de circulation sur les différentes branches et l'intensité des mouvements tournant leur évolution prévisible dans la future.

II.9.5 Principes généraux d'aménagement d'un carrefour :

- ✓ Les cisaillements doivent se produire sous un angle de 90 ± 20 à in d'obtenir de meilleure condition de visibilité et la prédication des vitesses sur l'axe transversal, aussi avoir une largeur traversée minimale.
- ✓ Ralentir à l'aide des caractéristiques géométriques les courants non prioritaires.
- ✓ Regrouper les points d'accès à la route principale.
- ✓ Assurer une bonne visibilité de carrefour.
- ✓ Soigner tout particulièrement les signalisations horizontales et verticales.

• La visibilité :

Dans l'aménagement d'un carrefour il faut lui assurer les meilleures conditions de visibilité possibles, la vitesse d'approche à vide remplace la vitesse de base à l'approche des carrefours. En cas de visibilité insuffisante il faut prévoir :

- ✓ Une signalisation appropriée dont le but est soit d'imposer une réduction de vitesse soit de changer les régimes de priorité.
- ✓ Renforcer par des dispositions géométriques convenables (inflexion des tracés en plan, îlot séparateur ou débouché des voies non prioritaires.

• Triangle de visibilité :

Un triangle de visibilité peut être associé à un con lit entre deux courants. Il a pour sommets

- ✓ Le point de conflit.
- ✓ Les points limites à partir desquels les conducteurs doivent apercevoir un véhicule adverse.

• Les ilots :

Les îlots sont aménagés sur les bras secondaires du carrefour pour séparer les directions de la circulation, ou aussi de limiter les vois de circulation.

• Ilot séparateur :

Les éléments principaux de dimensionnement sont :

- ✓ Décalage entre la tête d'îlot séparateur de la route secondaire et la limite de la chaussée de la route principale : 1m.
- ✓ Décalage d'îlot séparateur à gauche de l'axe de la route secondaire : 1m.
- ✓ Rayon en tête d'îlot séparateur : 0.5m à 1m.
- ✓ Longueur de l'îlot : 15m à 30m.

• <u>Ilot directionnel</u>:

Les îlots directionnels sont nécessaires pour délimiter les couloirs d'entrées Et de sortie. Leur nez est en saillie et ils doivent être arrondis avec des rayons de 0.5 à 1 m.

• Les couloirs d'entrée et de sortie :

Longueur de couloirs

Entrée 4m (accotement dérasé 1.5m).

Sortie 5m (accotement dérasé 0.5m).

Application au projet:

1. Points d'échanges de notre projet :

Carrefour N°01: Situé entre PK 15+875 et PK 16+284.56, le carrefour N°01 est un carrefour giratoire à quatre branches.Ce carrefour relie la RN16 et l'évitement de aien ne beida au début de projet,

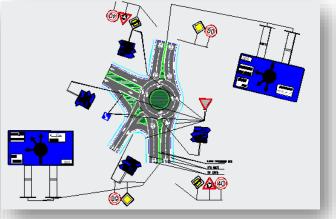
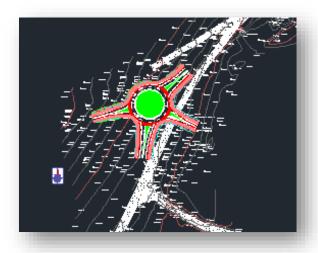



Figure II .20 vue en plan carrefour 1

Figure II .21 signalisation carrefour 1

Carrefour N°02: Situé entre PK 20+334.29 et PK 20+650, le carrefour N°02 est un carrefour giratoire à quatre branches. Ce carrefour relie l'évitement de aien ben beida vers derane a la fin du projet,

Figure II .22 vue en plan carrefour 2

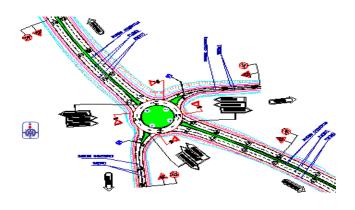


Figure II.23 signalisations carrefour

Chapitre III Etude Géotechnique

II.1 Définition :

La géotechnique routière est définie comme étant une science qui étudie d'une part, les sols sur lesquels reposent les chaussées, et d'autre part, les matériaux qui constituent les différentes couches de ces chaussées sans autant oublier la fiabilité des ouvrages construits. Elle représente 95% de la réussite d'un projet de génie civil ou de travaux publique.

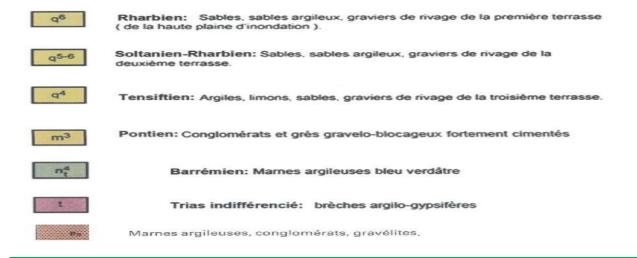
La géotechnique routière est tout simplement l'application de la géotechnique au domaine routier. Elle concerne :

- les travaux de terrassement (utilisation du sol comme matériaux de construction en déblai/remblai)
- les soutènements et stabilisation de talus
- les fondations des ouvrages d'art

Un projet géotechnique se déroule de la façon suivante :

- Les reconnaissances géotechniques
- La reconnaissance des sols
- Les diverses études
- La fixation des conditions de mise en place des matériaux
- Le contrôle qualité et la réception de la plate-forme sur chantier

II.2 objectifs:


L'objectif d'une étude géotechnique est d'analyser les caractéristiques du sol et du sous-sol d'un site afin de garantir la stabilité et la sécurité d'un projet de construction. Cette étude permet de :

- Identifier la nature du sol (argileux, sableux, rocheux, etc.).
- Évaluer la capacité portante du sol pour déterminer s'il peut supporter les charges de la future construction.
- Analyser les risques géotechniques (glissements de terrain, tassements, effondrements, liquéfaction, etc.).
- Définir les recommandations pour les fondations (profondeur, type, renforcement éventuel).
- Optimiser les coûts de construction en évitant des surdimensionnements inutiles ou des corrections tardives.

Figure III.1 Carte géologique de Bouchegouf et de Souk-Ahras au 1/50 000

Légende :

III.3 En laboratoire:

Les échantillons prélevés au droit des puits de reconnaissance ont été soumis aux essais physiques,

Mécaniques et chimiques réalisés conformément aux exigences du bureau d'étude selon les normes en

Vigueurs au LTP/Est, afin de déterminer les propriétés suivantes :

Essais physiques :

• Teneurs en eau naturelle (NF P 94. 050)

- Analyses granulométriques (NF 94.056)
- Analyses granulométriques des sols fins par sédimentométrie (NF 94.057)
- Limit terberg (NF P 94. 051)
- Essais au bleu de méthylène (VBs).
- Analyses chimiques du sol
 - ☐ Carbonates (**NF P 94. 048**).
 - \square Insolubles
 - ☐ Sulfates du sol.

Essais mécaniques :

- Essai PROCTOR.
- Essai CBR.
- Essai Los Angeles.
- Essai Micro Deval.

III.3. Reconnaissance Géotechnique :

III.3.1. Résultats de la reconnaissance géotechnique :

Profil N°	Profondeurs (m)	Lithologie		
K01	00.00 - 00.80	Terre végétale		
	00.80 - 02.50	Argile brunâtre à traces d'oxydations.		
K02	00.00 - 01.50	Terre végétale		
	01.50 – 02.70	Argile limoneuse marneuse brunâtre à jaunâtre.		
K03	00.00 - 00.70	Terre végétale		
	00.70 - 02.70	Argile limoneuse marneuse jaunâtre.		
K04	00.00 - 01.50	Remblai constitué de blocs, galets et graviers dans une matrice argileuse.		
	01.50 - 02.70	Argile limoneuse marneuse jaunâtre.		

Tableau III.1. Résultats de la reconnaissance géotechnique

Puits N°: K 01

Puits N° : *K* 02

Puits N° : K 03

Puits N°: K 04

III.3.2 Les Différents Essais en Laboratoire :

Ⅲ.3.2.1 Essais physiques

Ⅲ.3.2.1.1 La Teneur en Eau (W%):

• Principe de l'essai :

La teneur en eau désigne la quantité d'eau contenue dans une substance, un matériau ou un produit. Elle est généralement exprimée en pourcentage (%) de la masse totale ou de la masse sèche. On mesure le volume d'eau déplacé hors de l'introduction d'un certain poids de sol secla connaissance du poids des grains solide.

Voici deux manières courantes de l'exprimer :

1. Sur base humide (teneur en eau brute) :

Teneur en eau (%) =
$$\frac{w_w}{w_T} \times 100$$

2. Sur base sèche (teneur en eau sèche) :

Teneur en eau (%) =
$$\frac{w_w}{w_s} \times 100$$

• Objectif:

L'objectif de mesurer la teneur en eau dépend du contexte, mais en général, il s'agit de :

- Contrôler la qualité.
- Optimiser les procédés.
- Suivre l'état d'un matériau ou d'un sol.
- Éviter des dégradations.
- Respecter des normes.

Figure III.2 appareillages utilisent

III.3.2.1.2. Analyse granulométrique :

• Principe de l'essai :

L'analyse granulométrique est une méthode utilisée pour déterminer la distribution des tailles des particules dans un échantillon de sol, de sable, de gravier ou d'autres matériaux granulaires. Elle est essentielle dans plusieurs domaines, notamment le génie civil, la géotechnique, les carrières, l'agriculture, et l'environnement. L'essai consiste à fractionner au moyen d'une série de tamis un matériau en plusieurs classes granulaires de tailles décroissantes.

• Objectif:

Déterminer la répartition des différentes tailles de grains dans un échantillon pour :

- Classer le sol (argile, limon, sable, gravier, etc.)
- Évaluer sa compacité, perméabilité, stabilité
- Choisir un usage approprié (ex : fondation, remblai, filtration)
 - Méthodes d'analyse granulométrique :

1. Par tamisage (sédiments $> 80 \mu m$)

Utilisée pour les particules grossières (sables, graviers) :

- L'échantillon est séché puis placé dans une colonne de tamis de mailles décroissantes.
- Il est agité mécaniquement (tamis vibrant).
- Le pourcentage de masse retenu sur chaque tamis est calculé.
- On trace la courbe granulométrique (courbe de distribution cumulée en %).

2. Par sédimentation (sédiments < 80 μm)

Utilisée pour les particules fines (limons, argiles) :

- Basée sur la loi de Stokes : la vitesse de chute des particules dans un liquide dépend de leur taille.
- Méthodes : hydromètre, pipette.
- Nécessite parfois un dispersant pour éviter les agglomérations.

Figure III.3 Essai Analyse granulométrique.

<i>d</i> < 2 μm	
$2 \mu \text{m} \leq \text{d} \leq 20 \mu \text{m}$	— Limon
$20 \ \mu m \le d < 200 \ \mu m$	→ Sable fin
$0.2 \text{ mm} \le d \le 2 \text{ mm}$	── Sable grossier
$2 \text{ mm} \le d \le 20 \text{ mm}$	─ Gravier
$20 \text{ mm} \le d < 50 \text{ mm}$	Cailloux
d > 50 mm	→ Blocs

Tableau III.2. Classification des soles

III.3.2.1.3. Limites d'Atterberg:

• Principe de l'essai :

Les limites d'Atterberg sont des indices utilisés en géotechnique pour caractériser le comportement des sols fins (limons, argiles) en fonction de leur teneur en eau. Elles permettent de déterminer les états limites de consistance d'un sol.

- Objectif:
- Déterminer les états de consistance du sol : Liquide, plastique, semi-solide, ou solide.
- Classer les sols fins selon leur plasticité : Utilisation de l'indice de plasticité (IP) pour identifier la nature et la sensibilité des sols (sols argileux, limoneux, organiques...).
- Évaluer le comportement mécanique : Capacité de déformation, retrait-gonflement, stabilité, etc.
- Prédire les performances géotechniques : Portance, tassement, risques de retrait-gonflement, comportement en présence d'eau.
- Faciliter le choix d'utilisation ou de traitement d'un sol : Exemple : besoin de stabilisation à la chaux/ciment si le sol est trop plastique.
 - Les trois principales limites d'Atterberg :
 - 1. Limite de liquidité WL:
 - 2. Caractérisant le passage du sol de l'état solide à l'état plastique.
 - 3. Elle varie de 0% à 100%, miselle demeure généralement inférieure à 40%.

Lest caractérisant le passage du sol de l'état plastique à l'état liquide.

Avec:

• N : Nombre de coups.

$$\mathbf{W_L} = \mathbf{W} \times \left(\frac{\mathbf{N}}{25}\right)^{0,121}$$

W: Teneur en eau au moment de l'essai donnant N coups

2. Limite de plasticité WP :

- C'est la teneur en eau à partir de laquelle un sol passe de l'état plastique à solide (semi-solide).
- Elle est mesurée en roulant le sol en petits fils de 3 mm de diamètre. Si les fils se fissurent, on note la teneur en eau.

3.L'indice de plasticité (IP) :

L'indice de plasticité mesure l'étendue de la plage de teneur en eau dans laquelle le sol se trouve à l'état plastique. Cet indice est d'autant plus élevé que le matériau est plus Plastique, au sens commun du terme comme du point de vue de son comportement en cours de terrassement.

$$I_p = W_L - W_p$$

Suivant la valeur de leur indice de plasticité, les sols peuvent se classer comme suit :

Ip < 12 Faiblement argileux.

 $12 \le Ip < 25$ Moyennement argileux.

 $25 \le Ip < 40$ Argileux.

Ip ≥ 40 Très argileux.

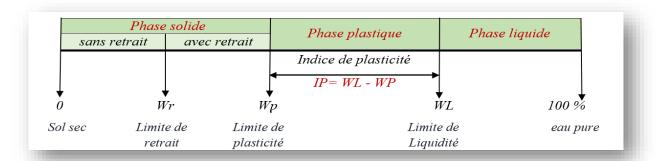


Figure III.4 Essai limites d'Atterberg

III.3.2.1.4. Equivalent du Sable :

• Principe de l'essai :

L'équivalent de sable est un indice qui mesure la propreté d'un matériau granulaire en quantifiant la proportion de fines argileuses (particules < 80 µm) contenues dans le sable ou les graves. Il est exprimé en pourcentage (%). Plus la valeur est élevée, plus le matériau est propre (c'est-à-dire qu'il contient peu d'argiles, ce qui est favorable pour la portance et la durabilité).

• Objectif:

Il permet de mesurer la **teneur en particules fines argileuses**, souvent nuisibles aux performances mécaniques des matériaux utilisés dans les structures de chaussées

§

ES	Qualité de sable
ES = 100	Sable parfaitement propre (pur)
ES > 90	Sable très propre
69 < ES < 90	Sable propre
10 < ES < 69	Sable mauvais
ES < 10	Sable très mauvais
ES = 0	Argile pure (pas de sable

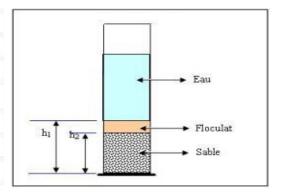


Figure III.5. Classification des soles selon Leur Équivalent de sable

III.3.2.1.5. Essai au Bleu de Méthylène :

• Principe de l'essai :

L'essai au bleu de méthylène est un test de laboratoire utilisé en géotechnique et en travaux routiers pour déterminer la quantité de fines argileuses actives (généralement $< 2 \mu m$) dans un sol ou un granulat.

• Objectif:

Evaluer la richesse en argile d'un sol en mesurant sa capacité d'adsorption de molécules de bleu de méthylène.

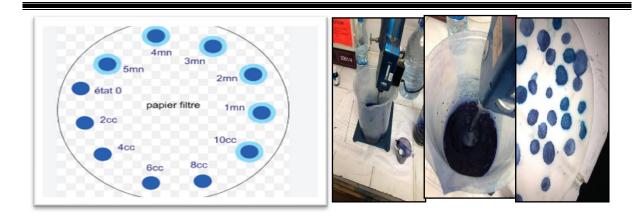


Figure III.6. Essai bleu méthylène.

III.3.2 .2. Essais mécaniques :

III.3.2.2.1. Essai Proctor;

• Principe de l'essai :

L'essai consiste à compacter un échantillon de sol dans un moule cylindrique par couches successives, en appliquant une énergie de compactage déterminée (à l'aide d'un pilon tombant). Cela est répété **plusieurs** fois avec des teneurs en eau différentes.

Pour chaque essai:

- On mesure la masse volumique apparente humide du sol compacté.
- Puis, grâce à la teneur en eau mesurée, on calcule la masse volumique sèche (densité sèche).

On trace ensuite une courbe de densité sèche en fonction de la teneur en eau.

• Objectif:

- •Améliorer la portance du sol
- Réduire les tassements futurs
- Diminuer la perméabilité
- Optimiser le taux d'humidité à l'exécution
- Aider au choix du matériel de compactage

Figure III.7. Essai Proctor

III.3.2.2.1. Essai CBR: (Californie Bearing Ratio)

• Principe de l'essai :

L'essai CBR est un essai de laboratoire ou in situ permettant de mesurer la capacité portante d'un sol en évaluant sa résistance à la pénétration. Il a été développé en Californie dans les années 1930 pour aider au dimensionnement des chaussées.

Il consiste à enfoncer une tige cylindrique standard dans un sol compacté ou naturel et à mesurer la force **nécessaire** pour atteindre des profondeurs de 2,5 mm et 5 mm. Le résultat est exprimé en pourcentage, en comparant cette force à celle requise pour pénétrer un matériau de référence (calcaire broyé bien compacté).

• Interprétation des résultats

- CBR < 5 %: sol très peu porteur (argile molle, limon humide)
- CBR 5–20 %: sol de portance moyenne (limons compacts, sables fins)
- CBR 20–50 % : bon sol porteur (graveleux ou sable bien compacté)
- CBR > 50 %: matériau très porteur (graves, matériaux traités)

• Utilisation

- Dimensionnement des couches de fondation de chaussées.
- Comparaison entre sols pour décider d'un traitement ou d'un renforcement.
- Vérification de la qualité d'un compactage sur chantier.

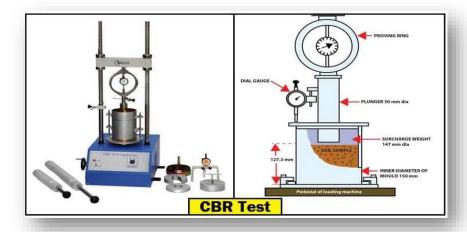


Figure III.8. Essai CBR

III.3.2.2.2 Essai Micro Deval:

• Principe de l'essai :

L'essai Micro-Deval mesure la résistance à l'usure des granulats sous l'action combinée de chocs, de frottements et d'eau dans une machine rotative. Il permet de simuler le comportement des granulats dans des conditions humides, comme dans des chaussées, des bétons ou des voies ferrées.

• But de l'essai :

- Mesurer la durabilité des granulats lorsqu'ils sont soumis à des conditions de frottement et de chocs dans un environnement humide.
- Vérifier la qualité des granulats destinés aux couches de roulement des routes, aux bétons ou aux ballasts ferroviaires.
- Prévoir le comportement à long terme des matériaux granuleux soumis à des sollicitations mécaniques et climatiques.
- Comparer différents granulats pour sélectionner les plus performants ou adaptés à un usage donné.

Figure III.9. Essai Micro Dival

III.3.2.2.2 Essai Los Angeles:

• Principe de l'essai :

L'essai consiste à mesurer la quantité d'éléments inférieurs à 1,6 mm produite en soumettant lematériau aux chocs de boulets normalisés dans la machine « Los Angles ».

• But de l'essai

L'essai a pour but de déterminer la résistance à la fragmentation par choc et la résistance obtenue parfrottement des granulats.

Figure III.10. Essai Los Angeles

III.4 APPLICATION DE PROJET :

Les échantillons prélevés au droit des puits de reconnaissance ont été soumis aux essais physiques, mécaniques et chimiques réalisés conformément aux exigences du bureau d'étude selon les normes en vigueurs au LTP/Est, afin de déterminer les propriétés suivantes :

1 Essais physiques

- Teneurs en eau naturelle (NF P 94. 050)
- Analyses granulométriques (NF 94.056)
- Analyses granulométriques des sols fins par sédimentométrie (NF 94.057)
- Densités sèches et humides (NF P 94. 053)
- Limites d'Atterberg (NF P
- 94. 051) # Essais au bleu de méthylène (VBs).
- Analyses chimiques du sol
 - ✓ Carbonates (**NF P 94. 048**).
 - ✓ Insolubles
 - ✓ Sulfates du sol.

2 Essais mécaniques

- ✓ Essais Proctor normal (NF P 94-093)
- ✓ Essais CBR imbibés. (NF P 94-078)

Description lithologique des puits de reconnaissance. :

Les puits de reconnaissance ont mis en évidence la présence de quatre formations géologiques principales suivantes :

- Une formation d'argile limoneuse marneuse dont l'épaisseur varie entre 1.50m et 2.00m. avec la présence de blocs et galets gréseux par endroits.
- Une formation de blocs, galets et graviers à matrice argilo-limoneuse dont l'épaisseur atteint 1.20m.
- Une formation marneuse plus au moins argileuse dont l'épaisseur varie entre 1.60m et
 - 1.70m.
- Une formation limoneuse dont l'épaisseur atteint 2.00m.

Reconnaissance géotechnique :

Dans le cadre de la réalisation de ce dédoublement, il a été prévu 05 puits de reconnaissance à la pelle mécanique.

N° puits	Type d'investigation in situ (m	X	Y	observation
K 17		383523.36	4052649.00	Réalisé
K 18		38373.	405454	Réalisé
K 19		38432	405643	Réalisé
K 20		20.40.5		D () (
		38485	405727	Réalisé

Résultats de la reconnaissance en laboratoire :

1. Essais physiques.

Les résultats obtenus sont regroupés dans le tableau suivant :

Puits N°			1	dentificat	ion		Limi	tes d'Atte	rberg				Granulon	nétrie				Classi
		la control of the con												1				GTR
	Profondeur (m)	□d ·/ ·	□h	VBs	W	Sr	WL	WP	IP	D max mm	%<	%<	%<	%<	%< 0.4mm	%<	%<	
		t/m³	t/m³		%	%	%	%	%	mm	50mm	31.5	20mm	10mm	0.4mm	0.2	80	
												mm				mm	μт	
																	,	
K 01	02.20 - 02.50	-	-	2.11	15.60	-	46.97	24.59	22.38	5.00	100	100	100	100	53	50	47	A_1h
K 02	02.30 - 02.70														<u> </u> 	100	100	
1. 02	02.50 02.70	-	-	2.38	16.80	-	39.19	20.54	18.65	0.080	100	100	100	100	100	100	100	A_1m
K 03	02.20 - 02.50	_	_	7.70	18.80	_	61.79	31.45	30.33	5.00	100	100	100	100	88	81	75	A₃h
K 05	02.20 - 02.50			7.70	10.00		01.79	31.43	30.33	3.00	100	100	100	100	00	01	/3	A3II
K 04	02.30 - 02.60	-	-	6.51	18.10	-	56.09	26.74	29.35	5.00	100	100	100	100	87	80	75	A₃h

Commentaire

Les résultats de la reconnaissance en laboratoire **ont** permis de classer les formations géologiques rencontrées selon une classe principale. **© Classe A**

- Les résultats des essais au bleu de méthylène Vbs **sont** compris entre $2.11 \le VBs \le 7.70$ présente des sols sablo limoneux, sablo argileux et sol argileux ce qui caractérise des sols sensibles à l'eau
 - Les résultats de l'indice de plasticité obtenus sont compris entre $18.65 \le \text{Ip} \le 30.33$ ce qui caractérise des sols moyennement plastiques à très plastiques.

• Analyses chimiques du sol.

Les échantillons prélevés au droit des puits de reconnaissance ont été soumis aux essais Chimiques :

		Teneur% par apport matériau sec			
Puits N	Profondeur	Insolubles	Carbonates	Sulfate	
K 01	02.20 - 02.50	34.36	62.22	Néant	
K 03	02.20 - 02.50	89.16	08.15	Néant	

2. Essais mécaniques :

Les résultats des essais Proctor normal, Proctor modifié et des essais CBR imbibés sont englobés dans le tableau suivant :

Essai Proctor normal, modifié et CBR imbibé

Puits N°	Profondeurs (m)	Procto	IP 95%	
		W OPN (%)	<i>□</i> d OPN (t/m3)	
K 01	02.20 - 02.50	09.54	1.88	3.32
K 02	02.30 - 02.70	13.57	1.83	1.67
K 03	02.20 - 02.50	11.52	1.67	0.83
K 04	02.30 - 02.60	13.78	1.66	1.44

Commentaire sur les essais mécaniques

- Les valeurs de l'indice CBR à 95% Opm varient entre 0.83 et 3.32, ce qui correspond à un CBR < 5, donc le sol rencontré appartient à la classe S4 de mauvaise portance, selon le catalogue de dimensionnement des chaussées neuves fascicule I.
- La réalisation d'une couche de forme s'avère nécessaire avant la réalisation du corps de chaussée, l'obtention de la capacité recherchée en fond de couche conduira généralement à une mise en œuvre en 2 couches (50cm).

Classification GTR

Selon la classification du guide technique routier (GTR), nous sommes en présence d'un sol de classes A₁h, A₂m et A₃h.

Sol de classe A₁h:

Ces sols représentent des limons peu plastiques, des lœss, des silts alluvionnaires, des sables fins peu pollués et des arènes peu plastiques. Ces sols changent brutalement de consistance pour des faibles variations de teneur en eau, en particulier lorsque leur Wn est proche de Wopn.

Le temps de réaction aux variations de l'environnement hydrique et climatique est relativement court, mais la perméabilité pouvant varier dans de larges limites selon la granulométrie, la plasticité et la compacité, le temps de réaction peut tout de même varier assez largement.

Sol de classe A₂m;

Ces sols représentent des sables fins argileux, des limons, des argiles et des marnes moyennement plastiques. Le caractère moyen des sols de cette sous-classe fait qu'ils se prêtent à l'emploi de la plus large gamme d'outils de terrassement (si la teneur en eau n'est pas trop élevée).

Sol de classe A₃h:

Cette classe représente des argiles, des argiles marneuses et des limons très plastiques. Ces sols sont cohérents à teneur en eau moyennes, faibles et collants ou glissants à l'état humide, d'où des difficultés de leur mise en œuvre sur chantier (et de manipulation en laboratoire).

Leur perméabilité très réduite rend leurs variations de teneur en eau très lentes en place.

Une augmentation de teneur en eau assez importante est nécessaire pour changer notamment leur consistance.

III.5. DIMENSIONNEMENT DU CORP DE CHAUSSE :

III.5.1 La Chaussée :

III.5.1.1 Définition:

- **Au sens géométrique** : la surface aménagée de la route sur laquelle circulent les véhicules.
- **Au sens structurel** : l'ensemble des couches des matériaux superposées qui pententla reprise des charges.

III.5.1.2 Les Différentes Couches de Chaussée:

a. Couche de surface (roulement):

Cette couche en contact direct avec le pneumatique de véhicule et la charge extérieure, elle estcomposée d'une couche de roulement et d'une couche de liaison.

Elle a pour rôle essentiel d'assurer une transition avec les couches inférieures plus rigides.

b. Couche de base :

C'est une couche intermédiaire, permet le passage progressif entre CR et CF, Elle reprend les efforts verticaux et repartis les contraintes normales qui en résultent sur les couches sous-jacentes.

c. Couche de fondation :

Elle a le même rôle que celui de la couche de base.

La couche de base et couche de fondation forment le « corps de chaussée ».

d. Couche de forme :

Elle est généralement prévue pour répondre à certains objectifs en fonction de la nature du solsupport :

Sur un sol rocheux :

Elle joue le rôle de nivellement afin d'aplanir la surface.

• Sur un sol peu portant (argileux à teneur en eau élevée) : Elle assure une portance suffisante à court terme permettant aux engins de chantier de circulerlibrement.

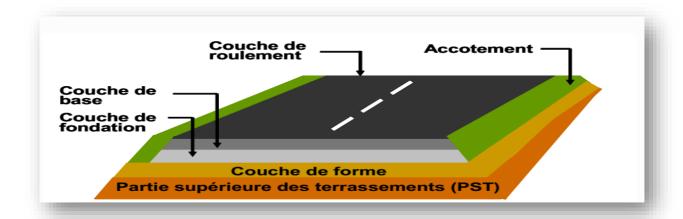


Figure III.11. Les différentes Couches De Chaussée.

III.5.1.2 Les Différents Types des Chaussées:

Les Chaussées Souples :

Qui constituent l'immense majorité de la route actuelle, elles sont composées en couche de base et en couche de fondation de graves roulées ou concassées stabilisées mécaniquement **hérisson** ou tout-venant d'oued en fondation, macadam ou tout-venant concassé en couche de base, la couche de roulement a généralement reçu une imprégnation au liant hydrocarboné, elles sont revêtues d'un enduit superficiel monocouche ou bicouche, elles sont exceptionnellement revêtues d'un enrobé à chaud (béton bitumineux) et couramment, pour les route de sud, d'un enrobé à froid.

Certaines chaussées traditionnelles, dans les zones de climat semi-aride, sont constituenten couche de base et/ou en couche de fondation d'encroûtements calcaires (tufs), elles sont revêtues d'un enduit superficiel.

Les Chaussées Semi Rigides :

Une chaussée semi-rigide possède une assise traitée par un liant hydraulique (MTLH) de 20 à 50 cm d'épaisseur et une couverture bitumineuse d'épaisseur inférieure à 14 cm.

L'assise en matériaux traités aux liants hydrauliques est disposée en une ou deux couches (base et fondation).

Les Chaussées Rigides :

Elles sont constituées d'une dalle de béton de ciment, éventuellement armée(correspondant à la couche de surface de chaussée souple) reposant sur une couche de fondationqui peut être un

grave stabilisé mécaniquement, une grave traitée aux liants hydrocarbonés ou aux liants hydrauliques. Ce type de chaussée est pratiquement inexistant en Algérie.

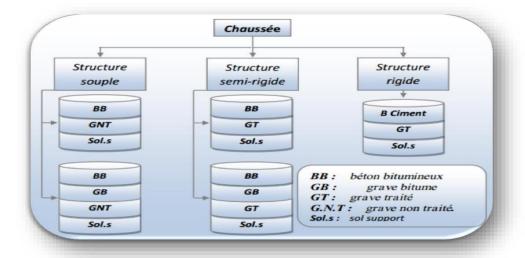


Figure III.12: Les différents types de chaussée.

III.5.2Méthodologie de dimensionnement;

Le dimensionnement dépend de plusieurs critères :

a) Le trafic poids lourds (TPR)

- Exprimé en nombre de poids lourds cumulé (en million de PL) sur la durée de vie.
- Classification en trafic faible (T1) à très lourd (T5).

b) La portance du sol support

- Déterminée par l'Indice de Portance Immédiate (IPI) ou la classe de plateforme (PF1 à PF4).
- D'autres essais : CBR, EV2, etc.

c) Conditions climatiques

• Zone climatique : importance du gel, des précipitations, etc.

d) Durée de vie souhaitée

• Généralement 20 ans pour les routes principales.

III.5.3. Méthodes de Dimensionnement :

III.5.3.1. Méthode CBR:

La méthode CBR est une méthode empirique de dimensionnement des chaussées, historiquement développée par le California Département of Transportation (CalTrans), et encore utilisée dans de nombreux pays, notamment pour les routes rurales, les pistes, les plateformes, ou en contexte de faible trafic.

Le CBR mesure la résistance d'un sol à la pénétration d'un piston standard, et permet de classer les matériaux selon leur portance. Plus le CBR est élevé, plus le sol est porteur.

- Il est utilisé pour :
 - o Dimensionner l'épaisseur des couches de chaussée.
 - o Vérifier la qualité du sol de fondation (plate-forme).
 - o Classer les matériaux de remblais ou de couches de forme.
 - L'épaisseur de la chaussée obtenue par la formule CBR améliorée, correspond à un matériau biendéfini (grave propre bien gradué). Pour ce matériau, le coefficient d'équivalence est égal
 - à 1.Et pour qualités déférents, il faudra utiliser le coefficient (ei), tel que :
 - ai : coefficient d'équivalence de chacun des matériaux à utiliser.
 - a1 × e1 : couche de roulement.
 - $a2 \times e2$: couche de base.
 - $a3 \times e3$: couche de fondation.
 - e1, e2, e3 : épaisseurs réelles des couches.

$e = \sum_{i=1}^{n} a_i \cdot e_i$

L'épaisseur est donnée par la formule suivante :

- Equivalent : épaisseur équivalent en cm
- ICBR: indice CBR
- P: charge par roue P = 6.5 t (essieu 13 t).
- Log: logarithme décimal.
- N: désigne le nombre moyen de camion de plus 1500 kg à vide.

Eeq =
$$\frac{100 + \sqrt{P} \left(75 + 50 \log \frac{N}{10}\right)}{I_{CBR} + 5}$$

CBR (%)	Qualité du sol	Utilisation typique		
< 3	Très mauvaise	Non utilisable sans amélioration		
3 - 5	Mauvaise	Nécessite couche de forme épaisse		
5 – 10	Moyenne	Utilisable avec couche de fondation		
10 – 20	Bonne	Bonne plate-forme ou couche de fondation		
> 20	Très bonne	Support excellent		

Tableau III.3. Classification des CBR

III.5.3.1. Méthode du Catalogue de Dimensionnement des Chaussées Neuves (CTTP) :

Le Catalogue de Dimensionnement des Chaussées Neuves est une méthode française de dimensionnement empirico-expérimentale, développée par le SETRA (Service d'Études Techniques des Routes et Autoroutes) et le LCPC (Laboratoire Central des Ponts et Chaussées). Elle s'adresse aux routes bitumineuses neuves et constitue une référence en France depuis les années 1990.

La dernière version est le Catalogue CTTP 1994, révisée en 2000 et utilisée encore largement aujourd'hui pour les routes hors autoroutes.

Avantages de la méthode CTTP

- Fiable et validée par de nombreuses observations de terrain
- Adaptée aux contextes français (climat, matériaux locaux)
- ✓ Facile à appliquer (pas de calcul complexe requis)
- Souplesse selon les budgets, matériaux, durée de vie attendue

La démarche du catalogue : Trafic (compagne de Ressources en matériaux Etudes géotechniques comptage, enquête) climat climat Détermination de niveau de réseau principal (Rpi) Détermination de la classe Détermination de la de trafic PL à l'année de classe du sol support de mise en service (TPLi) chaussée (Si) Choix de plusieurs variantes de structures de dimensionnement Détermination de la structure optimale de dimensionnement

Figure III.13: La démarche du catalogue

Cette méthode se base essentiellement sur quatre paramètres :

- ✓ Le trafic
- ✓ La portance de sol support de la chaussée.
- ✓ Zone climatique et l'environnement.
- ✓ Les matériaux utilisés.

Cette méthode est caractérisée par des hypothèses de base sur les paramètres caractéristiques

• Niveau de Réseaux Principaux

Le réseau principal se divise en deux niveaux :

Réseau principal de niveau 1 (RP1) il comporte des :

- ✓ Liaisons supportant un trafic supérieur à 1500 v/j
- ✓ Liaisons reliant deux chefs-lieux de wilaya

Liaisons présentant un intérêt économique ou stratégique « Généralement le RP1 fait patèdes routes nationales (RN) »

> Réseau principal de niveau 2 (RP2):

- ✓ Il en constitué de liaisons supportant un trafic inférieur à 1500 v/j.
- ✓ Il est composé de route nationales (RN), chemin de wilaya (CW).
- ✓ Liaisons reliant l'Algérie aux pays riverains.

• La Classe de Trafic

Les classes de trafic **TPLi** adoptées dans les fiches structures de dimensionnement sont données pour chaque niveau de réseaux principal exprimées en nombre de PL par jour et par sens à l'année de mis en service.

- ✓ Le réseau **RP1** comprend cinq classes à partir TPL3 jusqu'à TPL7.
- ✓ Le réseau **RP2** comprend cinq classes à partir TPL0 jusqu'à TPL3.

	TPL0	TPL1	TPL2	TPL3	TPL4	TPL5	TPL6	TPL7
PL/J/Sens RP1	-	-	-	150 à	300 à	600 à	1500 à	3000 à
				300	600	1500	3000	6000
PL/J/Sens RP2	0 à 50	50 à	100 à	150 à	-	-	-	-
		100	150	300				

Tableau III.4: La classe de trafic.

• La Classe du Sol Support

Portance (Si)	CBR
S4	< 5
S3	5-10
S2	10-25
S1	25-40
S0	> 40

Tableau III.5: Classement de sol support.

• Les Zones Climatiques

Les zones climatiques de l'Algérie sont mentionnées dans le tableau suivant :

Zone climatique	Pluviométrie (mm/an)	Climat	Température Equivalente (C°)	Région
I	> 600	Très humide	20	Nord
II	350-600	Humide	20	Nord, Hauts plateaux
III	100-350	Semi- aride	25	Hauts plateaux
IV	< 100	Aride	30	Sud

Tableau III.6. Les zones climatiques.

III.6 Application Au Projet

II.6.1 Méthode de C.B.R

1. Les données mises à notre disposition sont :

- Chaussée unidirectionnelle à deux voies, donc 90 % du trafic PL sur la voie lente
- Durée de vie 20 ans
- Le taux de croissement est de 4 %
- Pourcentage du poids lourd est Z =12,4
 - TJMA de l'année de mise en service : TJMA2025= 13 373 v/j
 - $TJMA2044 = 29 \ 301v/j$.
- Indice CBR :ICBR=5

$$N_{PL2043} = (TJMA_{2043}/2) \times Z \times 0,9$$

La chaussée étant unidirectionnelle 2x2 voies. La voie la plus chargée supporte 90% du trafic lourd.

$$N_{PL2044}$$
= (TJMA₂₀₄₄/2) ×Z × 0.9 = (29301/2) x 0,124 x 0.9 = 1635 PL/J

$$Eeq = \frac{100 + \sqrt{P} \left(75 + 50 \log \frac{N}{10}\right)}{I_{CRR} + 5} = \frac{100 + \sqrt{6,5} \left(75 + 50 \log \frac{1575}{10}\right)}{3 + 5}$$
 \to Eeq=45,17 cm

On a:

$$E_{\text{éq}} = a_1 \times e_1 + a_2 \times e_2 + a_3 \times e_3$$

Nous proposons les matériaux suivants pour chaque couche :

Pour proposer le dimensionnement de la structure de notre chaussée, il nous faut résolu l'équation suivante.

Pour résoudre l'équation précédente, on fixe 2 épaisseurs et on calcule la 3ème

- e1 : Epaisseur réelle de la <u>Couche de roulement</u> en béton bitumineux (B.B) :
- **e2** : Epaisseur réelle de la <u>Couche de base</u> en grave bitume (G.B) :
- e3 : Epaisseur réelle de la <u>Couche de fondation</u>

Calcule l'épaisseur

e₁ = 6 cm en béton bitumineux (BB) a₁= 2

e2 = 12 cm en béton bitumineux (GB) a2 = 1.5

Donc l'épaisseur équivalente : $(6 \times 2) + (12 \times 1,5) + (x \times 1) = 45 \text{ cm}$

Alors : x = 15cm

Couche	Ep: réelle (cm)	Coefficient d'équivalence (ai)	Ép: équivalente (cm)
BB	6	2	12
GB	12	1,5	18
GNT	15	1	15
Total	33	/	45

Tableau III.7. Tableau représente les épaisseurs calculées.

La chaussée prend la structure suivante :

Ep: réelle (cm):

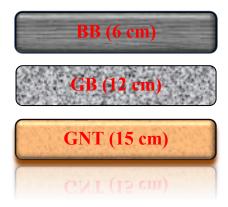


Figure III.14: Les matériaux et l'épaisseur proposer (Méthode de C.B.R)

Donc:

La structure finale de la chaussée selon la méthode de C.B.R est :

6 BB + 12 GB + 15 GNT

III.6.2 Méthode du Catalogue de Dimensionnement des Chaussées Neuves (CTTP)

Détermination du type de réseau (1)

TJMA2025 = $13373 \text{ v/j} > 1500 \text{ v/j} \Rightarrow \text{RP1}$ (réseau principal niveau un)

Classe TPLi pour RP1 (2)

La classe de trafic (TPLi) est donnée en nombre de poids lourds par jour et par sens sur la voie la plus chargée à l'année de mise en service

On a : Route unidirectionnelle à deux voies :

 $TPLi = 0.90 \times 0.124 \times (13373/2) = 747Pl/j/s/voie la plus chargée Donc :$

Chapitre 03 : étude géotechnique

Présentation des classes de portance des sols (3)

Le tableau ci-dessous regroupe les classes de portance des sols par ordre croissant de S4 à S0.

Portance Si	I_{CBR}
<u>S4</u>	< 5
S ₃	5-10
S_2	10-25
S ₁	25-40
S_0	> 40

La classe de portance visée avant la réalisation du corps de chaussée est **S2**. Donc une nécessité d'une **couche de forme de 60 cm** de **tuf / matériau sélectionné.**

Détermination de la zone climatique (4)

La willaya de Guelma est située géographiquement dans la zone climatique I

Durée de vie en RP1 (5)

La durée de vie est de 20 ans

Taux d'accroissement (6)

Le Taux d'accroissement est de 4%

D'après (1), (2), (3), (4), (5), (6) et le catalogue de dimensionnement des chaussées neuves (fascicule 3), il est préconisé la structure suivante :

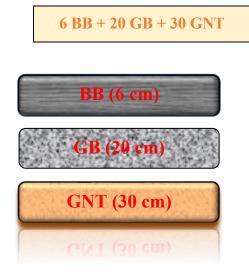


Figure III.15 : Choix de la structure (Méthode CTTP)

Chapitre 04:

Assainissement et dépendances de la route

IV.1 ASSAINISSEMENT

IV. 1.1. Introduction:

L'assainissement routier est une composante essentielle de la conception, de la réalisation et de l'exploitation des infrastructures linéaires.

L'eau est la première ennemie de la route car elle pose des grands problèmes multiples et complexes sur la chaussée, Ce qui met en jeu la sécurité de l'usager (glissance, inondation diminution des conditions de visibilité, projection des gravillons par des enrobage des couches de surface, etc.) et influe sur la pérennité de la chaussée en diminuant la portance des sols de fondation. Les types de dégradation provoqué par les eaux sont engendrés comme suit :

Pour Les Chaussée:

- ✓ Affaissement (présence d'eau dans le corps de chaussées).
- ✓ Dès enrobage.
- ✓ Nid de poule (dégel, forte proportion d'eau dans la chaussée avec un trafic important).
- ✓ Décollement des bords (affouillement des flancs).

Pour Les Talus:

- ✓ Glissement.
- ✓ Erosion.
- ✓ Affouillements du pied de talus.

Les Etudes hydrauliques inventorient l'existence de cours d'eau et d'une manière générale des Ecoulements d'eau en surface. Elles détermineront ensuite l'incidence du projet sur ces Ecoulements et les Equipements à prendre en compte pour maintenir ces Ecoulements.

IV. 1.2. Objectif De L'assainissement :

L'assainissement des routes doit remplir les objectifs suivants :

- Assurer l'évacuation rapide des eaux tombant et s'écoulant directement sur le revêtement de la chaussée (danger d'aquaplaning).
- Le maintien de bonne condition de viabilité.
- Réduction du cout d'entretien.
- Eviter les problèmes d'érosions.
- Assurer l'évacuation des eaux d'infiltration à travers de corps de la chaussée.
 (Danger de ramollissement du terrain sous-jacent et effet de gel).
- Evacuation des eaux s'infiltrant dans le terrain en amant de la plate-forme (danger de diminution de l'importance de celle-ci et l'effet de gel).

IV.1 .3. Étude d'assainissement :

Le drainage routier correspond à la collecte et à l'évacuation des eaux présentes dans le sol support et dans les chaussées. Il constitue l'un des trois volets du domaine de l'assainissement routier avec la collecte et l'évacuation des eaux de surface (assainissement superficiel) et le rétablissement des écoulements naturels. Il participe de façon essentielle au bon comportement mécanique de la chaussée et contribue ainsi largement à la pérennité des ouvrages routiers.

- Des infiltrations au travers de la chaussée, vers les interfaces couches de chaussée et chaussée/sol support;
- ➤ Des infiltrations depuis les accotements, vers les interfaces couches de chaussée et chaussée/sol support, alimentées par la plateforme ;

Des venues d'eau issues de l'environnement latéral, vers les interfaces chaussée/sol support et le sol support, et qui ont pour origines les bassins versants, les déblais et les émergences de nappe phréatique.

Drainage de la plateforme

La configuration d'un réseau d'assainissement de la plateforme se développe principalement tout le long de l'infrastructure suivant une logique hydraulique gravitaire entre un point haut et un point bas par combinaison de dispositifs élémentaires linéaire soient-ils, ponctuels, enterrés ou superficiels.

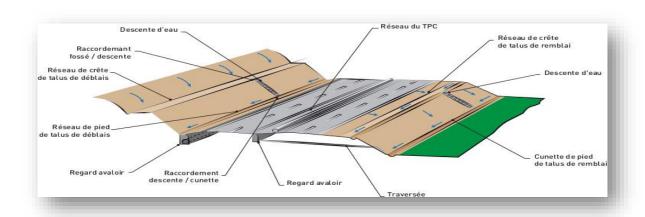


Figure IV.1: les déférents composants de drainage de la route.

Les réseaux d'assainissement de la plateforme sont dans leur majorité des réseaux linéaires parallèles à l'axe de l'autoroute que nous pouvons retrouver hors et/ou à l'intérieur de la

plateforme. Dans ce contexte, le réseau d'assainissement peut être divisé en plusieurs parties, notamment :

- Le réseau d'assainissement longitudinal.
- Les ouvrages d'assainissement transversaux.
- Les ouvrages de raccordement.

Fossé De Pied Du Talus De Déblai :

Ces fosses sont prévues au pied du talus de déblai afin de drainer la plate-forme et les talus vers les exutoires. Ces fosses sont en terre et de section trapézoïdales. Ils seront bétonnés lorsque la pente en profil en long dépasse les 3 %.

• Fossé De Crète De Déblai :

Ce type de fossé est toujours en béton. Il est prévu lorsque le terrain naturel de crête est penché vers l'emprise de la chaussée, afin de protéger les talus de déblais des Erosions dues au ruissellement des eaux de pluie et d'empêcher ces eaux d'atteindre la plate-forme.

• Fossé De Pied De Talus De Remblai :

Le fossé est en terre ou en béton (en fonction de leur vitesse découlement). Ils sont prévus lorsque la pente des terrains adjacents est vers la plate-forme et aussi de collecter les eaux de ruissellement de la chaussée, en remblai, par intermédiaire des descentes d'eau.

Drain

Le drainage du corps de chaussée est assuré par une tranchée drainante longeant l'autoroute. Ce drain est constitué par un matériau graveleux comportant en son centre un tuyau circulaire en plastique perforé a sa génératrice supérieure à 150 mm de diamètre. Ce drain est positionné sous le fossé trapézoïdal et à la limite des accotements. Les eaux collectées par le drain sont rejetées dans des regards de drainage et en dernier lieu dans les points de rejet.

Descentes d'eau :

Dans les sections d'autoroute en remblai, lorsque la hauteur de ces remblais dépasse les 2,50 m, les eaux de ruissellement de la chaussée sont Evacuées par des descentes d'eau. Elles sont espacées généralement tous les 50 m lorsque la pente en profil en long est supérieure à 1%. Lorsque la pente est inférieure à 1 %, leur espacement est varié entre 30 m et 40 m.

IV.1.4. Drainage du corps de la chaussée :

Le drainage du corps de la chaussée a pour but de limiter, en durée et en quantité, la présence d'eau accidentelle pouvant former une nappe suspendue temporaire d'eau à l'intérieur du corps de la chaussée.

La présence de l'eau libre représente un danger pour la structure. Elle entraîne, en effet, une perte de portance due à l'augmentation de la teneur en eau dans la masse, des remontés de fines causant la contamination de couches en contact et le décollement et les dés enrobage des couches liées.

Objectifs à atteindre

- ➤ □Eliminer ou réduire les effets de l'eau accumulée dans la chaussée et dans le sol de fondation ;
- Empêcher la nappe d'atteindre le niveau de la plate-forme ;
- ➤ Intercepter les remontées capillaires ;
- > Eliminer les effets de bord ;
- Capter et collecter les eaux infiltrées dans les terres pleins et aménagements annexes.

Le drainage des eaux internes peut se faire par l'adoption de l'un ou de plusieurs systèmes suivants :

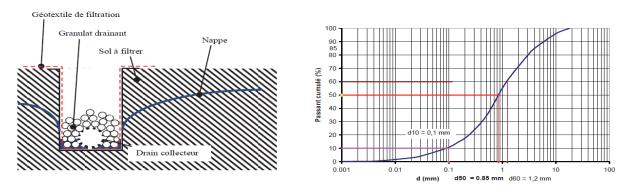
Rappelons qu'il est nécessaire de respecter le principe de perméabilité croissante de haut en bas.

- ✓ Couches drainantes;
- ✓ Tranchées drainantes (longitudinales et transversale);
- ✓ Drains en arête de poisson ;
- ✓ Ecrans drainants de rive de chaussée.

Tous ces systèmes se caractérisent par un point commun qui est l'utilisation des matériaux drainants.

Tranché drainante

Définition:


La tranchée drainante longitudinale est une tranchée exécutée au bord de la chaussée, remplie de matériaux drainant et éventuellement d'un drain servant à la collecte des eaux. Elle est munie d'un système d'évacuation des eaux collectées vers un système d'écoulement naturel.

L'Objectifs et de capter les eaux évacuées latéralement par la couche drainante et les eaux infiltrées à travers les accotements et bermes centrales.

Domaine d'application

Les tranchées drainantes peuvent être prévues dans les cas suivants :

- ✓ Lorsque l'emprise de la route est étroite et on ne peut pas exécuter des fossés latéraux profonds ;
- ✓ Sous les fossés revêtus ;
- ✓ Lorsque la pente du profil en long est faible.

Figure IV.2 : Exemple de géotextile de filtration en tranchée drainante et courbe granulométrique du sol à filtrer

IV1.5. Définition des termes hydrauliques :

Bassin versant:

C'est la surface totale de la zone susceptible d'alimenter en eau pluviale, d'une façon naturelle, une canalisation en une point considérée.

Elle est définie par la topographie et de limitée soit par une crête soit artificiellement par une voie (route), ou encore par une canalisation.

Types de canalisations :

L'évacuation des eaux hors ouvrage s'effectue par le biais de dispositifs adéquat appelés « canalisations », son réseau est partagé en deux catégories :

- Les réseaux de canalisation longitudinaux (fossés, cuvettes, caniveaux).
- Ouvrages transversaux et ouvrages de raccordement (regards, décente d'eau, tête de collecteur).

Collecteur principal (canalisation):

Conduite principale récoltant les eaux des autres conduites, dites collecteurs Secondaires, recueillant directement les eaux superficielles ou souterraines.

Les collecteurs sont constitués par des tuyaux enterrés alignés, entre les regards avec un diamètre et une pente constante.

Chambre de visite (cheminée):

Ouvrages placés sur les canalisations pour permettre le contrôle et le nettoyage.

Les chambres de visites sont à prévoir aux changements de calibre, de direction ou de pente longitudinale de la canalisation, aussi qu'aux endroits où deux collecteurs se rejoignent. Pour faciliter l'entretien des canalisations, la distance entre deux chambres successives ne devrait pas dépasser 80 à 100m.

Sacs:

Ouvrage placé sur les canalisations pour permettre l'introduction des eaux superficielles.

Les sacs sont fréquemment équipés d'un dépotoir, destiné à retenir des déchets solides qui peuvent être entraîné par les eaux superficielles

Gueule de loup, grille d'introduction et gueulard :

Dispositifs constructifs permettant l'écoulement de l'eau superficielle dans les sacs.

Fossés de crêtes :

Outil construit afin de prévenir l'érosion du terrain ou cours des puits.

Descente d'eau:

Draine l'eau collectée sur les fossés de crêtes.

Le regard:

Il est constitué d'un puits vertical, muni d'un tampon en fonte ou en béton armé, dont le rôle est d'assurer pour le réseau des fonctions de raccordement des conduites, de ventilation et d'entretien entre autres et aussi à résister aux charges roulantes et aux poussées des terres.

IV.1.6. Délimitation Des Sous Bassins Versants

La délimitation de la superficie du bassin versant drainée par un cours d'eau a un site particulier est une opération préliminaire essentielle à toute étude pour établir les dimensions minimales d'une structure ou point de vue hydraulique.

Le bassin versant représente le territoire géographique qui alimente le cours d'eau au droit de l'ouvrage projeté. Il est limite par la ligne de partage des eaux, et permet d'avoir sur le champ une idée de l'envergue du projet et de déterminer la méthode de calcul a utilisé pour dimensionner l'ouvrage.

IV.1.7. Contexte climatique ou météorologique

Le territoire de la Wilaya de Guelma se caractérise par un climat subhumide au centre et au Nord et semi-aride vers le Sud. Ce climat est doux et pluvieux en hiver et chaud en été dû au facteur de l'altitude de la wilaya.

La température qui varie de 4° C en hiver à plus de 35° C en été est en moyenne de 17,3° C. La pluviométrie varie de 400 à 500 mm/an au Sud jusqu' 'à près de 1000 mm/an au Nord. Près de 57% de cette pluviométrie est enregistrée pendant la saison humide (Octobre –Mai), qui justifie les données hydrauliques suivantes :

■ Pluie moyenne journalière : Pj = 52,5 mm.

• Exposant climatique : b = 0.63

Le coefficient de variation climatique : Cv = 0,44
 L'eau propre ne doit en aucun cas être perturbé par les eaux de ruissellement, souvent polluées (boues, huiles, végétation, etc.) et ce débit plus conséquent (pour éviter une

mise en charge).

IV.1.8. Dimensionnement des ouvrages d'évacuations :

Le dimensionnement de différents types d'ouvrages d'assainissement résulte de la comparaison du débit d'apport et le débit de saturation de chaque type d'ouvrage.

Estimation du débit d'apport (Qa)

$$Qa = K \times C \times It \times A$$

Où:

K: coefficient qui permet et conversion des unités (mm/h en I/s) K = 0,2778.

C : coefficient de ruissellement.

It : intensité moyenne de la pluie de fréquence déterminée pour une durée égale au temps de concentration (mm/h).

A: aire du bassin versant (m²).

Détermination de l'intensité de la pluie It

$$I_{t} = I \times (\frac{tc}{24})^{b}$$

Où:

I : Intensité de la pluie (mm/h).

tc: temps de concentration (h).

b: Exposant climatique.

- L'intensité horaire

$$I_t = \frac{P_j}{24}$$

P (t): Hauteur de la pluie de durée tc (mm).

Temps de concentration

La durée t de l'averse qui produit le débit maximum **Q** étant prise égale au temps de concentration. Dépendant des caractéristiques du bassin drainé, le temps de concentration est estimé respectivement d'après Ventura, Giandotti, Passini, comme suit :

Lorsque
$$A < 5 \text{ km}^2$$
;
$$tc = 0, 127 \times \sqrt{\frac{A}{P}} \dots$$

Ventura

Lorsque
$$5 \text{ km}^2 \le A \le 25 \text{ km}^2$$
; $tc = 0, 108 \times \sqrt[3]{\frac{A.L}{P}} \dots$

Giandotti

Lorsque 25 km²
$$\leq$$
 A $<$ 200 km² ; tc $=$ $\frac{4\sqrt{A} + 1,5L}{0,8.\sqrt{H}}$

Passini

Ou:

Tc: Temps de concentration (heure).

A: Superficie du bassin versant (km²).

L : Longueur de bassin versant (km).

P: Pente moyenne du bassin versant (m.p.m).

H: La différence entre la cote moyenne et la cote minimale (m).

Pluie journalière maximale annuelle Pj

Pluie journalière maximale annuelle Pj est donné par la formule de GALTON

$$P_{j}(\%) = \frac{Pjmoy}{\sqrt{Cv^{2}+1}} \cdot e^{u} \sqrt{ln\left(C_{V}^{2}+\ 1\right)} \label{eq:pjmoy}$$

Pj moy: pluie moyenne journalier

Cv : coefficient de variation climatique.

u : variation de Gauss, donnée par le tableau suivant :

Fréquence %	50	20	10	5	2	1
Période de retour (ans)	2	5	10	20	50	100
Variable de Gausse	0	0,841	1,282	1,645	2,057	0,327

Tableau IV.1: Variable de Gausse.

Remarque:

Les buses seront dimensionnées pour une période de retour de 10 ans.

Les ponceaux (dalot) seront dimensionnés pour une période de retour 50 ans.

Les ponts dimensionnés pour une période de retour 100 ans.

Caractéristique	Station De Bouche gouf
Minimum (Observé, mm)	24,3
Maximum (Observé, mm)	121
Moyenne (mm)	52,5
Ecart-type (mm)	23.4
Médiane (mm)	45.5
Coefficient de variation (Cv)	0.44
Coefficient d'asymétrie (Cs)	1,31

Tableau IV.2: Estimation des caractéristiques statiques des pluies maximales journalières

Fréquences	Période De Retour	PJmaxf%(mm)
10%	10 ans	80,9
2%	50 ans	110
1%	100 ans	123
0.10%	1000 ans	168

Tableau IV.3: Quantiles des pluies maximales journalières

Coefficient de ruissellement :

C'est le rapport de volume d'eau qui ruisselle sur cette surface au volume d'eau tombe sur elle. Il peut être choisi suivant le tableau ci- après :

Type de chaussée	C	Valeurs prises
Chaussée revêtement en enrobes	0,80 à 0,95	0,90
Accotement (sol légèrement perméable	0,15 à 0,40	0,40
Talus (sol perméable)	0,10 à 0,30	0,30
Terrain naturel	0,05 à 0,20	0,20

Tableau IV.4 : Coefficient de ruissellement.

> Calcul de débit de saturation (Qs)

Le débit de saturation est donné par la formule de Manning-Strickler.

La formule permet de déterminer la vitesse d'écoulement dans un ouvrage hydraulique et le débit capable de l'ouvrage.

$Qs = Sm x Kst x J^{1/2} x Rh^{2/3}$

Kst: coefficient de Manning Strickler

Kst: 30 Paroi en terre

Kst: 70 Paroi en bétons (dalots).

Kst: 80 Paroi en bétons (buses préfabriquées).

Sm: section mouillée.

Rh: rayon hydraulique (m). Rh = S / P

J : La pente moyenne de l'ouvrage.

Dimensionnement des buses

Constituées d'éléments préfabriqués en béton ou en métal, elles peuvent être circulaires ou elliptiques.

Le dimensionnement d'une buse résulte de la comparaison entre le débit d'apport et le débit de saturation de cette buse, c'est-à-dire il faut que Qa soit inférieur à Qs.

Donc le principe consiste à chercher le rayon de la buse qui vérifier cette condition.

$$\mathbf{Qs} = \operatorname{Sm} x \operatorname{Kst} x \operatorname{J}^{1/2} x \operatorname{Rh}^{2/3} \qquad \mathbf{Qa} = \operatorname{K.C.It.A}$$

Sm: section mouillée Sm =
$$\frac{1}{2} \times \pi \times R^2$$

Rh: rayon hydraulique
$$R = 1/2$$

J: la pente de pose égale la pente de profil en travers.

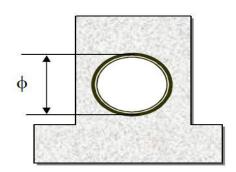
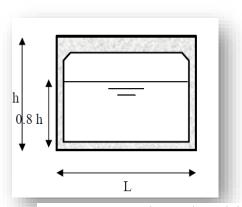


Figure IV.3: Schéma d'une buse.


$$Q_s = Q_a \ \Rightarrow R^{\frac{8}{3}} = \frac{2^{5/3} \, \times \, Q_a}{80 \, \times \, \pi \, \times \, \sqrt{J}} \label{eq:Qs}$$

Une fois le rayon R est déterminé on prend le diamètre de la buse Ø= 2R

Dimensionnement des dalots

Ce sont soit des cadres, soit des portiques en béton armé. Ils peuvent être directement placés sous la chaussée ou sous un remblai.La section de dalot est calculée comme pour le fossé; seulement on change la hauteur de remplissage et la hauteur du dalot.

On fixe la hauteur d'après la configuration du profil en long et on calcule la travée nécessaire et on fixe aussi la hauteur de Remplissage à $\rho = 0.8h$.

F Figure IV.4: Schema d'un dalot.

$$\mathbf{Qs} = \text{Kst. J}^{1/2} \ 0.8h \times L \left[\left(\frac{0.8h \times L}{1.6h + L} \right)^{2/3} \right]$$

Kst = 70 (dalot en béton)

J: pente du dalot.

Le débit rapporté par le bassin versant, doit être inférieur ou égal au débit de saturation du dalot.

Qs = **Qa Qs** = Kst. J^{1/2} 0,8h × L
$$\left[\left(\frac{0.8h \times L}{1.6h + L} \right)^{2/3} \right] \times 0.8h \times L$$

On tire la valeur de h qui vérifie cette inégalité, par itération.

Dimensionnement des fossés

Les fossés récupèrent les eaux de ruissellement venant de la chaussée, de l'accotement et de talus.

Pour mon étude j'adopte des fossés en béton, ceci est fonction des pentes du fossé et la nature des matériaux le sol support.

Le profil en travers hypothétique de fossé est donné dans la figure ci-dessous On fixe la base de la fosse à (b = 50 cm) et la pente du talus à (1/n = 1/1,5) d'où la Possibilité de calcul le rayon hydraulique en fonction de la hauteur h.

Calcul de la surface mouillée

Sm = bh +
$$2\frac{eh}{2}$$
 = bh + n. h2 = h(b + n. h) \Rightarrow Sm
= h(b + n. h)
avec tg $\propto = \frac{h}{e} = \frac{1}{n}$ d'ou e = n. h

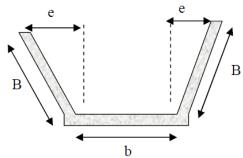


Figure IV.5: Schéma d'un fossé.

Calcul du périmètre mouille

$$\begin{aligned} \text{Pm} &= \text{b} + 2.\,\text{B} \quad \Rightarrow \text{Pm} &= \text{b} + 2\text{h}.\,\sqrt{1 + \,n^2} \\ \text{avec} \quad \text{B} &= \sqrt{\text{h}^2 + \,\text{e}^2} = \sqrt{\text{h}^2 + \,\text{n}^2.\,\text{h}^2} \quad \Rightarrow \text{B} &= \text{h}.\,\sqrt{1 + \,\text{n}^2} \end{aligned}$$

> Calcul le rayon hydraulique

$$Rh = \frac{Sm}{Pm} = \frac{h(b+n.h)}{h+2h\sqrt{1+n^2}}$$

Les dimensions des fossés sont obtenues en écrivant l'égalité du débit d'apport et débit d'écoulement au point de saturation. La hauteur (h) d'eau dans le fossé sera obtenue en faisant l'égalité suivant :

$$Qs = Qa \hspace{1cm} K.I.C.A = Sm \ . \ Kst \ . \ J^{1/2} \ . \ Rh^{2/3}$$

Qs = Qa

Donc:

$$Qs = Kst..h(b+n.h).\left[(\frac{h.(b+n.h)}{b+2h\sqrt{1+n^2}})^{2/3} \right] \times J^{1/2}$$

IV.1.9: Application au projet

Les données pluviométriques nécessaires pour le calcul :

CARACTÉRISTIQUE	STATION DE BOUCHEGOUF
Minimum (Observé, mm)	24.3
Maximum (Observé, mm)	121
Moyenne (mm)	52.5
Ecart-type (mm)	23.4
Médiane (mm)	45.5
Coefficient de variation (Cv)	0.44
Coefficient d'asymétrie (Cs)	1.31
Exposant climatique (b)	0,63

Tableau IV.5: Estimation des caractéristiques statiques des pluies maximales journalières

1. Calcul de la pluie journalière maximale annuelle Pj :

Pour une période de retour égale à 10 ans :

$$\begin{split} P_{j}(\%) &= \frac{P_{jmoy}}{\sqrt{cv^{2}+1}} \cdot e^{u} \sqrt{ln\left(C_{V}^{2}+1\right)} \quad ; \\ P_{j}(\%) &= \frac{52.5}{\sqrt{0.44^{2}+1}} \cdot e^{-1.282} \sqrt{ln\left(0.44^{2}+1\right)} \\ P_{j}(10\%) &= 82,405 \ mm \end{split}$$

2. L'intensité horaire I :

$$I = \frac{P_j(\%)}{24} \; P_j(10\%) = 82,405 mm; \quad I(10\%) = \frac{82,405}{24} \quad I(10\%) = \; 3.433 mm/h$$

Les buses ainsi que les fossés sont dimensionnées pour évacuer le débit apporté par l'ensemble des bassins versants de la chaussée et l'accotement et le talus.

- Surface de la chaussée : $Ac = 7.0 \times 100.10-4 = 0.07$ ha (Chaque 100 mètres)
- Surface de l'accotement : $AA = 2 \times 100.10 4 = 0,02$ ha
- Surface du talus : At = $4 \times 100.10 4 = 0.04$ ha

A total = 0.130 ha

4.Calcul des débits d'apporté

Qa = K.C.I.A

Le débit apporté par la chaussée

C = 0,9, P = 2,5 %, I (10%) = 3,434 mm/h, A= 0,07 ha.
$$tc = 0,127 \times \sqrt{\frac{A}{P}} =$$

$$0,127 imes \sqrt{rac{0,07}{2,5}}$$

tc = 0, 167 ha

$$I_t = I \times \left(\frac{tc}{24}\right)^{b-1} = 3,434 \times \left(\frac{0,167}{24}\right)^{0,63-1}$$
 $I_t = 21,581 \text{ mm/h}$

(Qa) chaussée = $2,778 \times 0.9 \times 21,581 \times 0.07$

Qa) chaussée = $3,777 \text{ m}^3/\text{s}$

Le débit apporté par l'accotement

$$C = 0.4$$
, $P = 4\%$, $I(10\%) = 3.343$ mm/h, $A = 0.020$ ha.

$$tc = 0,127 \times \sqrt{\frac{A}{P}} = 0,127 \times \sqrt{\frac{0,020}{4}}$$

tc = 0,005ha

$$I_t = I \, \times \, \left(\frac{tc}{24}\right)^{b-1} = 3,434 \, \times \left(\frac{0,005}{24}\right)^{0,63-1}$$

It = 79,042 mm/h

(Qa) accotement = $2,778 \times 0.4 \times 79,042 \times 0,020$

(Qa) accotement = $1,757 \text{ m}^3/\text{s}$

Le débit apporté par le talus

$$C = 0.3$$
, $P = 100 \%$, $I(10\%) = 3.434 \text{ mm/h}$, $A = 0.040 \text{ ha}$.

$$tc = 0, 127 \times \sqrt{\frac{A}{P}} = 0, 127 \times \sqrt{\frac{0,040}{100}}$$

tc = 0,0025ha

$$I_t = I \times \left(\frac{tc}{24}\right)^{b-1} = 3,434 \times \left(\frac{0,0025}{24}\right)^{0,63-1}$$

It = 102, 151 mm/h

(Qa) talus = $2,778 \times 0,3 \times 102,151 \times 0,040$

(Qa) talus = $3,405 \text{ m}^3/\text{s}$

Donc: Qa = 3,777+1,757+3,405

 $Qa = 8,939 \text{ m}^3/\text{s}$

5.Dimensionnement des fossés

A partir des résultats obtenus précédemment

Qa = Kst. h(b + n.h).
$$\left[\left(\frac{h.(b+n.h)}{b+2h\sqrt{1+n^2}} \right)^{2/3} \right] \times J^{1/2}$$

Kst: coefficient de Manning Strickler = 70

J : La pente moyenne de l'ouvrage = 50%

J'ai obtenu par calcul itératif

$$H = 0,5 \text{ m}$$

6. Dimensionnement des buses :

$$\mathbf{Qs} = \operatorname{Sm} x \operatorname{Kst} x \operatorname{J}^{1/2} x \operatorname{Rh}^{2/3}$$
 $\mathbf{Qa} = \operatorname{K.C.It.A}$

Sm: section mouillée Sm = $\frac{1}{2} \times \pi \times R^2$

Rh: rayon hydraulique R = 1/2

Kst = 80 pour les buses en béton.

J: la pente de pose égale la pente de profil en travers.

$$Q_s = Q_a \Rightarrow R^{\frac{8}{3}} = \frac{2^{5/3} \times Q_a}{80 \times \pi \times \sqrt{J}}$$

Une fois le rayon R est déterminé on prend le diamètre de la buse Ø= 2R

Exemple

$$Qa=3,2 \text{ m}^3/\text{s}$$

$$R = 0,194 \times \left[\frac{Q_a}{\sqrt{1}}\right]^{3/8} \Rightarrow R = 0,50 \text{ m}$$

Donc : $D = 2 \times R = 2 \times 0,50 = 1,009 \text{m}$

D = 1000 mm

Coefficient de Manning Strickler: 80

Hauteur de remplissage : $0.75\emptyset$ pour $\emptyset \le 1$ m

0,80 Ø pour Ø> 1m

7 .Dimensionnement des dalots

Coefficient de Manning Strickler: 70

Hauteur de remplissage : $0.8 \text{ H si H} \le 2.5 \text{ m}$

H- 0.5 si H > 2.5 m

Tous les résultats sont résumés dans le tableau suivant :

TRACÉ SUR 5.6 KM							
Ouvrage Buse	Ф (1000)	Ф (1200	Ф (1500)	/			
0 411 480 2 400	02	02	01				
Ouvrage Dalot	1X 1	1.5 X 1.5	2.0 X 2.0	2.5 X 2.5			
	03	05	02	03			

Tableau IV.6: Tableau récapitulatif des ouvrages courants

IV.2 Signalisation Routière:

IV.2.1 Introduction:

La signalisation routière regroupe l'ensemble des signes et marquages mis en place pour organiser, sécuriser et réguler la circulation des usagers de la route (automobilistes, cyclistes, piétons, etc.). Elle est essentielle pour prévenir les accidents, fluidifier le trafic et transmettre des informations aux conducteurs.

IV.2.2 Le rôle de la signalisation routière ;

1. Assurer la sécurité des usagers

La signalisation permet:

- D'avertir des dangers (virages dangereux, routes glissantes, passages piétons...),
- De réduire les risques d'accident en imposant des règles claires (limitations de vitesse, stops, interdictions...),

• De protéger les usagers vulnérables (piétons, cyclistes, enfants...).

2. Réguler et fluidifier le trafic

Elle organise les déplacements :

- En répartissant les voies et les priorités (ronds-points, feux tricolores, files réservées...),
- En limitant les embouteillages (ex. : feux synchronisés, panneaux de direction optimisés),
- En orientant les conducteurs vers les itinéraires les plus adaptés.

3. Informer les conducteurs

Elle donne des informations pratiques :

- Directions, distances, noms de lieux,
- Services disponibles (stations-service, parkings, hôpitaux...),
- Conditions de circulation (neige, chantiers, zones à risques...).

4. Imposer le respect du Code de la route

- Grâce à une signalisation normalisée, les règles sont **claires et compréhensibles** par tous, quel que soit le pays (signalisation harmonisée dans l'UE, par exemple).
- Elle facilite aussi le **travail des forces de l'ordre** pour sanctionner les infractions (stationnement interdit, excès de vitesse, etc.).

5. Adapter la conduite aux situations particulières

- Zones de travaux, écoles, zones résidentielles, conditions météo...
- Signalisation **temporaire** ou **spécifique** à certaines zones (ex. : zones 30, voies réservées aux bus ou vélos).

IV.2.3 Règles A respecté pour la signalisation

Il est nécessaire de concevoir une bonne signalisation tout en respectant les critères suivants :

- ✓ Cohérence entre la géométrie de la route et la signalisation (homogénéités).
- ✓ Cohérence avec les règles de circulation.
- ✓ Cohérence entre la signalisation verticale et horizontale.

- ✓ Simplicité : elle s'obtient en évitant une surabondance de signaux qui fatigue l'attention de l'usage.
- ✓ Eviter la publicité irrégulière.

IV.2.4 Catégories de Signalisation :

On distingue:

- ✓ La signalisation par panneaux.
- ✓ La signalisation par feux.
- ✓ La signalisation par marquage des chaussées.
- ✓ La signalisation par balisage.
- ✓ La signalisation par bornage.

IV.2.5 Types de signalisation :

Les grands types de signalisation routière :

1. Signalisation verticale:

Ce sont les **panneaux** installés le long des routes. On les classe en plusieurs catégories :

- Panneaux de danger (triangulaires, à bord rouge): avertissent d'un risque (virage, passage piéton, animal sauvage, etc.).
- Panneaux d'interdiction (cercles à bord rouge) : interdisent certaines actions (stationner, dépasser, tourner, etc.).
- Panneaux d'obligation (cercles bleus): imposent une direction ou une action (tourner à droite, suivre une voie, etc.).
- Panneaux d'indication (carrés ou rectangles bleus) : informent sur des services, directions, routes, etc.
- Panneaux de priorité : indiquent les règles de passage (cédez le passage, stop, priorité à droite, etc.).

2. Signalisation horizontale:

Ce sont les **marquages au sol** : lignes, flèches, symboles, zébrures, passages piétons...

Exemples:

 Lignes continues ou discontinues : marquent les voies de circulation et indiquent s'il est possible ou non de dépasser.

- Zébras : zones à ne pas franchir.
- o Flèches directionnelles : informent sur les directions à suivre.
- Marquage au sol des passages piétons, places de stationnement, pistes cyclables, etc.

3. Signalisation lumineuse:

Les **feux de circulation** (tricolores) régulent le passage aux intersections, passages piétons, et parfois pour les transports en commun ou les voies d'urgence.

4. Signalisation temporaire:

Utilisée lors de travaux, d'accidents, ou d'événements exceptionnels. Elle a souvent un fond **jaune** pour se distinguer.

IV.2.6 Exemple des signalisations verticales :

Figure IV.6: signalisations verticales_

IV.2.6 Exemple des signalisations horizontale :

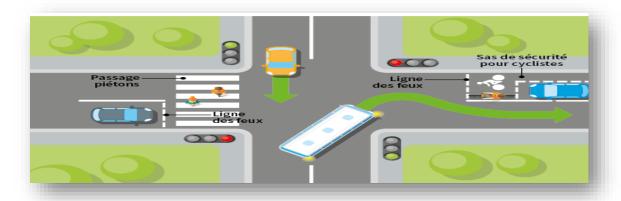


Figure IV.7: signalisations horizontales

IV.3 Eclairage:

IV.3.1 Introduction:

L'éclairage public joue un rôle fondamental dans l'aménagement urbain. Il assure non seulement la visibilité nocturne pour les piétons et les véhicules, mais contribue également à la sécurité, au confort, à la valorisation du patrimoine, ainsi qu'à la qualité de vie des citoyens.

IV.3.2. Objectifs de l'éclairage public :

Les principaux objectifs de l'éclairage public sont :

- Assurer la sécurité routière et piétonne : Une bonne visibilité réduit les risques d'accidents la nuit.
- Renforcer le sentiment de sécurité : Un éclairage adéquat permet de dissuader les comportements délictueux.
- Valoriser les espaces publics : L'éclairage peut souligner les éléments architecturaux, les espaces verts, et mettre en valeur le patrimoine local.
- Favoriser les mobilités douces : Il facilite les déplacements à pied ou à vélo, même en dehors des heures diurnes

IV.3.3. Classe d'éclairage :

- Catégorie A : Eclairage général d'une route ou une autoroute.
- Catégorie B : Eclairage urbain (voirie artérielle et de distribution).
- Catégorie C : Eclairage des voies de cercle.
- Catégorie D : Eclairage d'un point singulier (carrefour, virage...) situé sur un itinéraire non éclairé.

IV.3.4 Eclairage d'un point singulier :

Un **point singulier** dans le contexte de l'éclairage public est un emplacement nécessitant un éclairage **spécifique et renforcé** en raison de ses caractéristiques géométriques, fonctionnelles ou de sécurité. Il ne s'agit pas simplement d'éclairer une voirie continue, mais de traiter un lieu où une attention particulière est nécessaire.

Les caractéristiques de l'éclairage d'un point singulier, situé sur un itinéraire non éclairé doivent être les suivantes :

• A longue distance 800 à 1000m du point singulier, tache lumineuse éveillant

l'attention de l'automobiliste.

- A distance moyenne 300 à 500m, idée de la configuration du point singulier.
- A faible distance, distinguer sans ambiguïté les obstacles.
- A la sortie de la zone éclairée, pas de phénomène de cécité passagère.

IV.3.5 Paramètres de l'implantation des luminaires :

a) Hauteur des points lumineux

La hauteur d'installation influence directement la zone couverte par la lumière et la répartition de l'éclairement au sol.

- Hauteur standard : varie généralement entre 4 et 12 mètres selon le type de voie (piétonne, urbaine, routière).
- Une grande hauteur permet un éclairage plus diffus et moins d'éblouissement, mais peut nécessiter une puissance plus élevée.
- Une petite hauteur offre une lumière plus concentrée, adaptée aux voies piétonnes ou pistes cyclables.

b) Inter distance entre luminaires

L'espacement des luminaires dépend de :

- La hauteur du mât
- Le type de luminaire et sa distribution photométrique
- Les exigences d'uniformité lumineuse
- La classe d'éclairage (M, C, P...)

Typiquement, l'interdistance est comprise entre 2 à 4 fois la hauteur du **mât** pour garantir une bonne uniformité sans sur éclairage.

c) Type de répartition lumineuse

Le type de répartition photométrique du luminaire détermine la forme du flux lumineux :

- Symétrique : pour des zones centrales ou des ronds-points
- Asymétrique : pour des voies de circulation unidirectionnelle

• Bilatérale ou latérale : pour éclairer des routes à plusieurs voies ou des trottoirs

d) Inclinaison et orientation

L'inclinaison du luminaire joue un rôle dans la réduction de l'éblouissement et l'optimisation du flux lumineux. Les luminaires doivent être orientés de manière à :

- Limiter les flux vers le ciel (pollution lumineuse)
- Concentrer la lumière sur la chaussée ou la zone ciblée
- Réduire l'intrusion lumineuse dans les zones résidentielles

<u>e) Implantation physique sur site</u> L'emplacement des luminaires doit aussi prendre en compte :

- Les contraintes physiques (présence d'arbres, mobilier urbain, réseaux aériens)
- La visibilité des intersections ou des passages piétons
- L'esthétique urbaine et l'intégration paysagère

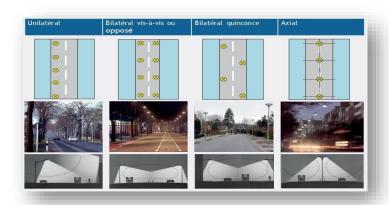
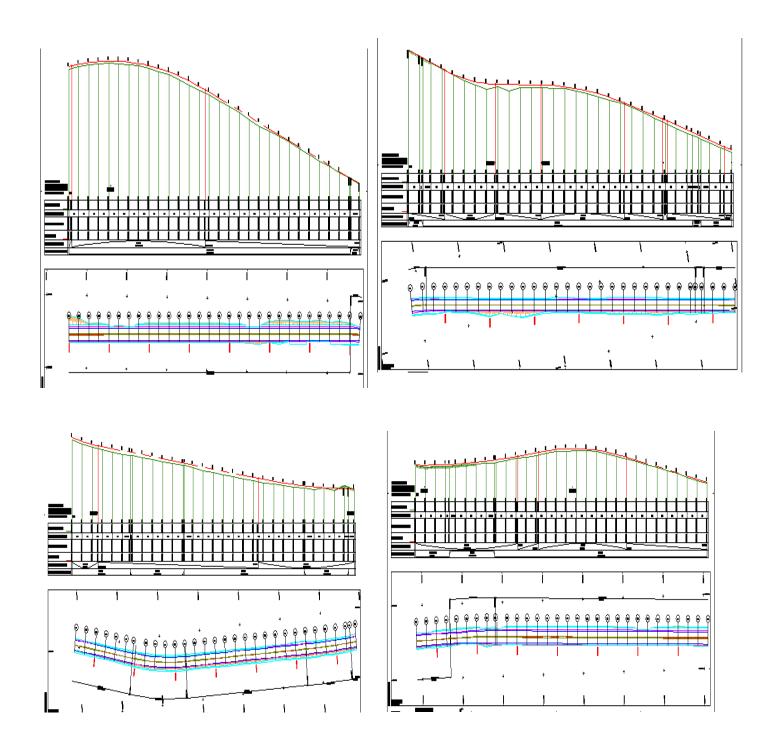
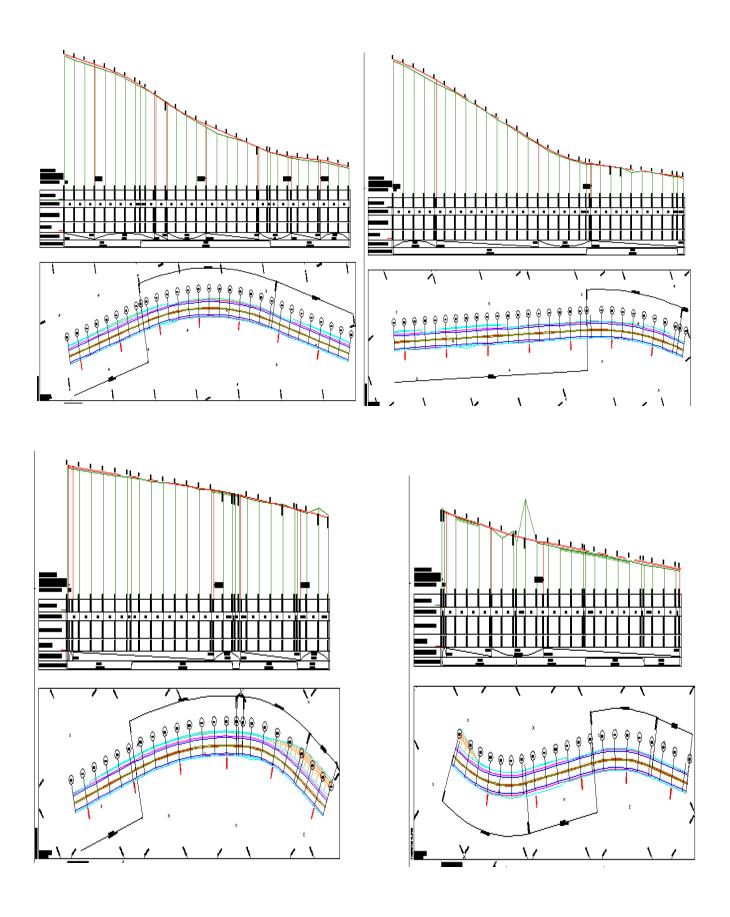
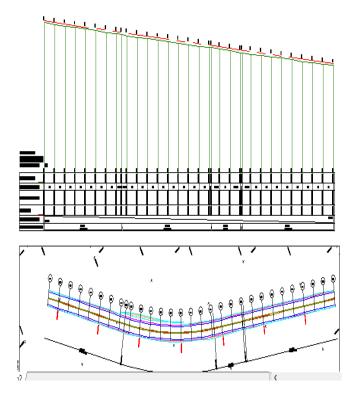


Figure IV.8: les types d'implantation des luminaires

CONCLUSION GENERALE


CONCLUSION GENERALE


Dans notre projet de fin d'étude nous avons essayé de mettre en application les connaissances **técips** qui ont été acquises durant notre cycle de formation tout en profitant de l'expérience des personnes du domaine.


Cette étude de dédoublement nous a permet d'apprendre une méthodologie rationnelle à suivre pour élaborer un projet routier et de cerner les problèmes techniques possibles.

De plus, ce travail été une occasion pour maitriser l'outil informatique en l'occurrence les logiciels AUTO CAD, COVADIS 16.0, et Word Enfin, c'est par le biais de ce projet qu'on a pu immerger dans le milieu professionnel dans lequel nous serons appelés à édifier notre pays et de contribuer à son développement

TRACE EN PLAN ET RPOFIL EN LONG

Annexe

			TABULATION				
N°	ABSCISSE	Х	Υ	DEV	DEV	COTE	COTE
PROF	CURVILIGN	PROFIL	PROFIL	DRO	GAU	PROJET	TN
1	15500.000	383552.951	4052355.530	-2.50	2.50	169.130	168.798
2	15525.000	383552.656	4052380.528	-2.50	2.50	169.102	168.733
3	15550.000	383552.361	4052405.526	-2.50	2.50	168.985	168.620
4	15575.000	383552.067	4052430.524	-2.50	2.50	168.778	168.457
5	15600.000	383551.772	4052455.523	-2.50	2.50	168.483	168.127
6	15625.000	383551.477	4052480.521	-2.50	2.50	168.098	167.672
7	15650.000	383551.182	4052505.519	-2.50	2.50	167.623	167.245
8	15675.000	383550.887	4052530.517	-2.50	2.50	167.060	166.491
9	15700.000	383550.593	4052555.516	-2.50	2.50	166.407	165.833
10	15725.000	383550.298	4052580.514	-2.50	2.50	165.665	165.112
11	15750.000	383550.003	4052605.512	-2.50	2.50	164.840	164.517
12	15775.000	383549.708	4052630.510	-2.50	2.50	163.999	163.621
13	15800.000	383549.413	4052655.509	-2.50	2.50	163.158	162.851
14	15825.000	383549.119	4052680.507	-2.50	2.50	162.317	161.999
15	15850.000	383548.824	4052705.505	-2.50	2.50	161.476	161.046
16	15875.000	383548.529	4052730.504	-2.50	2.50	160.634	160.136
17	15900.000	383548.234	4052755.502	-2.50	2.50	159.793	159.432
18	15925.000	383547.939	4052780.500	-2.50	2.50	158.952	158.712
19	15950.000	383547.645	4052805.498	-2.50	2.50	158.111	157.997
20	15975.000	383547.350	4052830.497	-2.50	2.50	157.270	157.078
21	16000.000	383547.055	4052855.495	-2.50	1.89	156.429	156.237
22	16025.000	383546.760	4052880.493	-2.50	-0.22	155.588	155.389
23	16050.000	383546.466	4052905.491	-2.50	-2.32	154.747	154.571
24	16075.000	383546.171	4052930.490	-4.43	-4.43	153.906	153.770
25	16100.000	383545.876	4052955.488	-6.54	-6.54	153.064	153.079
26	16102.057	383545.852	4052957.544	-6.71	-6.71	152.995	153.020
27	16125.000	383546.634	4052980.466	-6.71	-6.71	152.223	152.317
28	16150.000	383549.873	4053005.245	-6.71	-6.71	151.382	151.478
29	16157.343	383551.293	4053012.449	-6.71	-6.71	151.135	151.197
30	16175.000	383554.963	4053029.721	-5.22	-5.22	150.541	150.520
31	16200.000	383560.158	4053054.175	-3.12	-3.12	149.700	149.609
32	16225.000	383565.354	4053078.629	-2.50	-1.01	148.912	148.848
33	16250.000	383570.550	4053103.083	-2.50	1.10	148.297	148.043
34	16275.000	383575.745	4053127.537	-2.50	2.50	147.861	147.370
35	16300.000	383580.941	4053151.991	-2.50	2.50	147.603	146.854
36	16325.000	383586.137	4053176.445	-2.50	2.50	147.520	147.197
37	16350.000	383591.333	4053200.900	-2.50	2.50	147.492	146.513
38	16375.000	383596.528	4053225.354	-2.50	2.50	147.464	147.017
39	16400.000	383601.724	4053249.808	-2.50	2.50	147.436	147.014
40	16425.000	383606.920	4053274.262	-2.50	2.50	147.407	147.035
41	16450.000	383612.115	4053298.716	-2.50	2.50	147.328	146.954
42	16475.000	383617.311	4053323.170	-2.50	2.50	147.165	146.859

42	16500,000	202622 507	4053247.624	2.50	2.50	146 010	146 554
43	16500.000	383622.507	4053347.624	-2.50	2.50	146.919	146.554
44	16525.000	383627.703	4053372.078	-2.50	2.50	146.590	146.206
45	16550.000	383632.898	4053396.533	-2.50	2.50	146.178	145.688
46	16575.000	383638.094	4053420.987	-2.50	2.50	145.682	145.267
47	16600.000	383643.290	4053445.441	-2.50	2.50	145.102	144.845
48	16625.000	383648.485	4053469.895	-2.50	2.50	144.456	144.292
49	16650.000	383653.681	4053494.349	-2.50	2.50	143.804	143.569
50	16675.000	383658.877	4053518.803	-2.50	2.50	143.152	142.755
51	16700.000	383664.073	4053543.257	-2.50	2.50	142.498	142.050
52	16725.000	383669.268	4053567.712	-2.50	2.50	141.798	141.356
53	16750.000	383674.464	4053592.166	-2.50	2.50	141.097	140.666
54	16760.980	383676.746	4053602.906	-2.50	2.50	140.788	140.367
55	16775.000	383679.679	4053616.616	-2.50	2.50	140.395	139.960
56	16780.876	383680.920	4053622.360	-2.50	2.50	140.230	139.793
57	16800.000	383684.969	4053641.050	-2.50	2.50	139.693	139.266
58	16825.000	383690.262	4053665.483	-2.50	2.50	138.992	138.601
59	16850.000	383695.555	4053689.916	-2.50	2.50	138.318	137.952
60	16875.000	383700.848	4053714.349	-2.50	2.50	137.762	137.345
61	16900.000	383706.141	4053738.783	-2.50	2.50	137.331	136.913
62	16925.000	383711.434	4053763.216	-2.40	2.50	137.014	136.517
63	16950.000	383716.727	4053787.649	-0.62	2.50	136.718	136.237
64	16975.000	383722.019	4053812.083	1.17	2.50	136.422	135.909
65	16993.619	383725.962	4053830.280	2.50	2.50	136.201	135.743
66	17000.000	383727.284	4053836.522	2.50	2.50	136.126	135.722
67	17025.000	383731.916	4053861.088	2.50	2.50	135.829	135.384
68	17050.000	383735.668	4053885.803	2.50	2.50	135.533	135.160
69	17075.000	383738.535	4053910.637	2.50	2.50	135.237	134.844
70	17100.000	383740.513	4053935.557	2.50	2.50	134.941	134.627
71	17125.000	383741.600	4053960.532	2.50	2.50	134.645	134.344
72	17127.076	383741.650	4053962.608	2.50	2.50	134.620	134.321
73	17150.000	383742.170	4053985.526	0.86	2.50	134.349	133.982
74	17175.000	383742.737	4054010.519	-0.92	2.50	134.053	133.562
75	17200.000	383743.304	4054035.513	-2.50	2.50	133.757	133.246
76	17225.000	383743.871	4054060.506	-2.50	2.50	133.461	132.969
77	17250.000	383744.438	4054085.500	-2.50	2.50	133.164	132.676
78	17275.000	383745.005	4054110.494	-2.50	2.50	132.868	132.365
79	17300.000	383745.572	4054135.487	-2.50	2.50	132.572	132.099
80	17325.000	383746.139	4054160.481	-2.50	2.50	132.280	131.817
81	17350.000	383746.706	4054185.474	-2.50	2.50	132.014	131.640
82	17375.000	383747.273	4054210.468	-2.50	2.50	131.776	131.418
83	17400.000	383747.840	4054235.461	-2.50	2.50	131.567	131.233
84	17425.000	383748.407	4054260.455	-2.50	2.50	131.386	131.095
85	17425.517	383748.419	4054260.972	-2.50	2.50	131.382	131.092
86	17450.000	383748.854	4054285.451	-2.50	2.50	131.233	130.876
87	17475.000	383749.051	4054310.450	-2.50	2.50	131.109	131.015
٠,	1, 1, 3.000	303, 43.031	100 1010.700	50	2.50	101.100	101.010

1	İ		l	I	I		Ì
88	17500.000	383748.998	4054335.450	-2.50	2.50	131.013	130.759
89	17525.000	383748.696	4054360.448	-2.50	2.50	130.945	131.452
90	17535.856	383748.486	4054371.302	-2.50	2.50	130.925	131.207
91	17550.000	383748.183	4054385.443	-2.50	2.50	130.906	130.825
92	17575.000	383747.647	4054410.437	-2.50	2.50	130.896	130.631
93	17600.000	383747.110	4054435.431	-2.50	2.50	130.913	130.680
94	17625.000	383746.574	4054460.425	-2.50	2.50	130.960	130.708
95	17634.215	383746.376	4054469.638	-2.50	2.50	130.984	130.735
96	17650.000	383746.087	4054485.421	-2.50	2.50	131.034	130.817
97	17675.000	383745.834	4054510.419	-2.50	2.50	131.137	130.946
98	17700.000	383745.830	4054535.419	-2.50	2.50	131.269	131.061
99	17725.000	383746.077	4054560.418	-2.50	2.50	131.428	131.177
100	17746.072	383746.479	4054581.486	-2.50	2.50	131.585	131.215
101	17750.000	383746.570	4054585.413	-2.50	2.50	131.617	131.249
102	17775.000	383747.153	4054610.406	-2.50	2.50	131.833	131.560
103	17800.000	383747.735	4054635.399	-2.50	2.50	132.078	131.812
104	17825.000	383748.317	4054660.392	-2.50	2.50	132.342	132.021
105	17850.000	383748.899	4054685.386	-2.50	2.50	132.606	132.212
106	17875.000	383749.481	4054710.379	-2.50	2.50	132.848	132.504
107	17900.000	383750.063	4054735.372	-2.50	2.50	133.014	132.704
108	17925.000	383750.645	4054760.365	-2.50	2.50	133.102	132.770
109	17950.000	383751.228	4054785.359	-2.50	2.50	133.111	132.882
110	17975.000	383751.810	4054810.352	-2.50	2.50	133.043	132.920
111	18000.000	383752.392	4054835.345	-2.50	2.50	132.896	132.764
112	18025.000	383752.974	4054860.338	-2.50	2.50	132.672	132.464
113	18050.000	383753.556	4054885.331	-2.50	2.50	132.369	132.117
114	18075.000	383754.138	4054910.325	-2.50	2.50	131.988	131.736
115	18100.000	383754.721	4054935.318	-2.50	2.50	131.569	131.355
116	18125.000	383755.303	4054960.311	-2.50	2.50	131.150	130.997
117	18150.000	383755.885	4054985.304	-2.50	2.50	130.731	130.587
118	18175.000	383756.467	4055010.298	-2.50	2.50	130.312	130.217
119	18200.000	383757.049	4055035.291	-2.50	2.50	129.893	129.778
120	18225.000	383757.631	4055060.284	-2.50	2.50	129.474	129.273
121	18250.000	383758.214	4055085.277	-2.50	2.50	129.055	128.866
122	18275.000	383758.796	4055110.270	-2.50	2.50	128.636	128.478
123	18300.000	383759.378	4055135.264	-2.50	2.50	128.217	127.957
124	18325.000	383759.960	4055160.257	-2.50	2.50	127.798	127.491
125	18350.000	383760.542	4055185.250	-2.50	2.50	127.379	127.084
126	18375.000	383761.124	4055210.243	-2.50	2.50	126.914	126.634
127	18400.000	383761.707	4055235.237	-2.50	1.92	126.366	126.139
128	18425.000	383762.289	4055260.230	-2.50	0.13	125.734	125.499
129	18450.000	383762.871	4055285.223	-2.50	-1.65	125.019	124.806
130	18461.841	383763.147	4055297.061	-2.50	-2.50	124.651	124.487
131	18475.000	383763.577	4055310.213	-2.50	-2.50	124.221	124.118
132	18500.000	383765.074	4055335.166	-2.50	-2.50	123.340	123.304
L					1		

133	18525.000	383767.462	4055360.051	-2.50	-2.50	122.430	122.453
134	18550.000	383770.737	4055384.834	-2.50	-2.50	121.552	121.529
135	18575.000	383770.737	4055409.485	-2.50	-2.50	120.762	120.606
136	18600.000	383774.894	4055433.971	-2.50	-2.50	120.762	119.850
137	18625.000	383779.929	4055458.262	-2.50	-2.50	119.450	119.830
ŀ							
138 139	18650.000 18675.000	383792.605	4055482.326	-2.50	-2.50	118.875	118.385
ŀ		383800.230	4055506.134	-2.50	-2.50	118.300	117.964
140	18700.000	383808.700	4055529.654	-2.50	-2.50	117.725	117.562
141	18725.000	383818.004	4055552.857	-2.50	-2.50	117.150	117.101
142	18750.000	383828.131	4055575.712	-2.50	-2.50	116.575	116.596
143	18775.000	383839.068	4055598.192	-2.50	-2.50	116.048	116.005
144	18781.595	383842.086	4055604.055	-2.50	-2.50	115.930	115.904
145	18800.000	383850.586	4055620.380	-2.50	-1.19	115.646	115.624
146	18825.000	383862.133	4055642.554	-2.50	0.60	115.368	115.244
147	18850.000	383873.679	4055664.728	-2.50	2.39	115.190	115.019
148	18875.000	383885.225	4055686.902	-2.50	2.50	115.020	114.795
149	18900.000	383896.771	4055709.076	-2.50	2.50	114.850	114.623
150	18925.000	383908.317	4055731.250	-2.50	2.50	114.648	114.405
151	18950.000	383919.864	4055753.424	-2.50	2.50	114.352	114.116
152	18975.000	383931.410	4055775.598	-2.50	2.50	113.960	113.753
153	19000.000	383942.956	4055797.772	-2.50	2.50	113.471	113.214
154	19025.000	383954.502	4055819.946	-2.50	2.50	112.887	112.526
155	19050.000	383966.049	4055842.119	-2.50	2.50	112.206	111.753
156	19075.000	383977.595	4055864.293	-2.50	2.50	111.429	110.989
157	19100.000	383989.141	4055886.467	-2.50	2.50	110.590	110.258
158	19125.000	384000.687	4055908.641	-2.50	2.50	109.750	109.598
159	19150.000	384012.234	4055930.815	-2.50	2.50	108.910	108.789
160	19175.000	384023.780	4055952.989	-2.50	2.50	108.070	108.072
161	19200.000	384035.326	4055975.163	-2.50	2.50	107.230	107.135
162	19225.000	384046.872	4055997.337	-2.50	2.50	106.390	106.174
163	19250.000	384058.419	4056019.511	-2.50	2.50	105.550	105.399
164	19275.000	384069.965	4056041.685	-2.50	2.50	104.710	104.571
165	19300.000	384081.511	4056063.859	-2.50	2.50	103.870	103.671
166	19325.000	384093.057	4056086.033	-2.50	2.50	103.030	102.868
167	19350.000	384104.604	4056108.207	-2.50	2.50	102.256	102.081
168	19375.000	384116.150	4056130.381	-2.50	2.17	101.606	101.392
169	19400.000	384127.696	4056152.555	-2.50	0.39	101.082	100.942
170	19425.000	384139.242	4056174.729	-2.50	-1.40	100.682	100.532
171	19440.394	384146.352	4056188.383	-2.50	-2.50	100.498	100.368
172	19450.000	384150.840	4056196.876	-2.50	-2.50	100.408	100.281
173	19475.000	384162.994	4056218.722	-2.50	-2.50	100.210	100.193
174	19500.000	384175.824	4056240.177	-2.50	-2.50	100.013	100.031
175	19525.000	384189.319	4056261.221	-2.50	-2.50	99.817	99.885
176	19550.000	384203.464	4056281.832	-2.50	-2.50	99.620	99.248
177	19575.000	384218.247	4056301.992	-2.50	-2.50	99.423	99.400

178	19600.000	384233.653	4056321.680	-2.50	-2.50	99.227	99.203
179	19625.000	384249.666	4056340.878	-2.50	-2.50	99.030	99.019
180	19650.000	384266.271		-2.50	-2.50	98.833	98.735
			4056359.565				
181	19660.345	384273.312	4056367.145	-2.50	-2.50	98.752	98.632
182	19675.000	384283.354	4056377.817	-2.50	-1.45	98.637	98.492
183	19700.000	384300.487	4056396.024	-2.50	0.33	98.440	98.181
184	19725.000	384317.620	4056414.230	-2.50	2.12	98.243	97.963
185	19750.000	384334.752	4056432.437	-2.50	2.50	98.047	97.797
186	19775.000	384351.885	4056450.643	-2.50	2.50	97.850	97.590
187	19800.000	384369.017	4056468.849	-1.98	2.50	97.653	97.383
188	19825.000	384386.150	4056487.056	-0.19	2.50	97.457	97.155
189	19850.000	384403.282	4056505.262	1.60	2.50	97.260	96.981
190	19862.635	384411.941	4056514.464	2.50	2.50	97.161	96.878
191	19875.000	384420.335	4056523.543	2.50	2.50	97.063	96.723
192	19900.000	384436.809	4056542.346	2.50	2.50	96.867	96.534
193	19925.000	384452.602	4056561.724	2.50	2.50	96.670	96.343
194	19950.000	384467.692	4056581.655	2.50	2.50	96.473	96.128
195	19975.000	384482.061	4056602.111	2.50	2.50	96.277	95.911
196	20000.000	384495.691	4056623.067	2.50	2.50	96.080	95.720
197	20025.000	384508.563	4056644.497	2.50	2.50	95.883	95.572
198	20050.000	384520.662	4056666.373	2.50	2.50	95.687	95.352
199	20075.000	384531.973	4056688.666	2.50	2.50	95.490	95.248
200	20080.526	384534.365	4056693.648	2.50	2.50	95.447	95.208
201	20100.000	384542.726	4056711.236	1.11	2.50	95.293	95.002
202	20125.000	384553.459	4056733.814	-0.68	2.50	95.097	94.839
203	20149.784	384564.099	4056756.198	-2.45	2.50	94.902	94.508
204	20150.000	384564.192	4056756.393	-2.46	2.50	94.900	94.506
205	20153.972	384565.896	4056759.981	-2.50	2.50	94.869	94.470
206	20175.000	384574.907	4056778.980	-2.50	2.50	94.703	94.326
207	20200.000	384585.622	4056801.568	-2.50	2.50	94.507	94.191
208	20225.000	384596.336	4056824.156	-2.50	2.50	94.310	93.983
209	20250.000	384607.050	4056846.743	-2.50	2.50	94.113	93.837
210	20275.000	384617.764	4056869.331	-2.50	2.50	93.917	93.635
211	20300.000	384628.478	4056891.919	-2.50	2.50	93.720	93.378
212	20325.000	384639.193	4056914.507	-2.50	2.50	93.523	93.198
213	20350.000	384649.907	4056937.094	-2.50	2.50	93.327	93.083
214	20375.000	384660.621	4056959.682	-2.50	2.50	93.130	92.883
215	20400.000	384671.335	4056982.270	-2.50	2.50	92.922	92.680
216	20425.000	384682.050	4057004.857	-2.50	2.50	92.710	92.482
217	20450.000	384692.764	4057027.445	-2.50	1.65	92.498	92.265
218	20475.000	384703.478	4057050.033	-2.50	-0.13	92.286	92.080
219	20500.000	384714.192	4057072.621	-2.50	-1.92	92.074	91.969
220	20508.101	384717.664	4057079.940	-2.50	-2.50	92.005	91.902
221	20525.000	384725.090	4057095.120	-2.50	-2.50	91.862	91.752
222	20550.000	384736.743	4057117.236	-2.50	-2.50	91.650	91.501

223	20575.000	384749.177	4057138.923	-2.50	-2.50	91.438	91.364
224	20600.000	384762.379	4057160.152	-2.50	-2.50	91.226	91.207
225	20625.000	384776.329	4057180.896	-2.50	-1.12	91.014	90.992
226	20650.000	384791.012	4057201.128	-2.50	0.67	90.802	90.671
227	20675.000	384806.408	4057220.823	-2.50	2.46	90.590	90.587
228	20700.000	384822.497	4057239.956	-2.50	0.45	90.366	90.383
229	20720.389	384836.118	4057255.128	-2.50	-1.27	90.153	90.172
230	20725.000	384839.248	4057258.513	-2.50	-1.66	90.101	90.120
231	20733.570	384845.065	4057264.806	-2.50	-2.38	90.000	90.025
232	20750.000	384856.607	4057276.495	-3.77	-3.77	89.800	89.665
233	20775.000	384875.576	4057292.763	-5.87	-5.87	89.495	89.426
234	20800.000	384896.074	4057307.057	-5.44	-5.44	89.190	89.169
235	20825.000	384917.897	4057319.232	-3.34	-3.34	88.885	89.027
236	20850.000	384940.827	4057329.168	-2.50	-1.23	88.580	88.579
237	20855.147	384945.664	4057330.926	-2.50	-0.80	88.517	88.497
238	20875.000	384964.392	4057337.515	-2.50	0.88	88.269	88.111
239	20900.000	384987.975	4057345.812	-2.02	2.50	87.920	88.622
240	20920.219	385007.048	4057352.523	-0.31	2.50	87.607	87.965
241	20925.000	385011.542	4057354.153	0.09	2.50	87.529	87.615
242	20950.000	385034.486	4057364.055	2.20	2.50	87.110	86.968
243	20975.000	385056.327	4057376.198	4.30	4.30	86.690	86.589
244	21000.000	385076.846	4057390.461	6.41	6.41	86.270	86.237
245	21025.000	385095.839	4057406.702	6.71	6.71	85.850	85.844
246	21050.000	385113.116	4057424.757	5.21	5.21	85.448	84.764
247	21075.000	385128.504	4057444.447	3.10	3.10	85.087	85.517
248	21081.741	385132.309	4057450.011	2.53	2.53	84.997	84.329
249	21100.000	385142.413	4057465.219	0.99	2.50	84.768	88.844
250	21125.000	385156.247	4057486.043	-1.11	2.50	84.491	84.242
251	21150.000	385170.081	4057506.866	-2.50	1.89	84.251	84.060
252	21175.000	385183.916	4057527.690	-2.50	0.11	84.020	83.806

VOLUMES TERRASSEMENT										
N°	ABSCISSE	DECAPAG E	DEBLAI	REMBLA I	FORME	BASE	CHAUSSE E	T.P.C.	ACCOTE	
PRO F	CURVILIG N	VOLUME	VOLUM E	VOLUM E	VOLUM E	VOLUM E	VOLUME	VOLUM E	VOLUM E	
1	15525.00 0	0.0	192.3	106.5	289.0	50.2	22.8	26.8	123.5	
2	15550.00 0	0.0	262.2	8.3	321.4	50.8	22.8	27.3	118.9	
3	15575.00 0	0.0	525.0	0.0	294.1	51.5	22.8	27.8	108.0	
4	15600.00 0	0.0	648.6	0.0	267.3	52.0	22.8	27.9	107.1	
5	15625.00 0	0.0	608.4	0.0	265.2	52.0	22.8	27.9	107.5	
6	15650.00 0	0.0	655.6	0.0	286.4	51.4	22.8	27.8	105.0	
7	15675.00 0	0.0	543.8	0.0	231.2	52.2	22.8	27.9	110.2	
8	15700.00 0	0.0	577.1	0.0	234.0	52.3	22.8	27.9	106.3	
9	15725.00 0	0.0	611.1	0.0	222.3	52.2	22.8	27.9	102.5	
10	15750.00 0	0.0	762.8	0.0	295.7	52.1	22.8	27.9	102.0	
11	15775.00 0	0.0	716.6	0.0	307.4	52.1	22.8	27.9	93.9	
12	15800.00 0	0.0	600.0	0.0	310.1	51.7	22.8	27.8	98.6	
13	15825.00 0	0.0	468.1	0.0	282.8	51.4	22.8	27.8	115.2	
14	15850.00 0	0.0	160.7	8.3	235.5	51.3	22.8	27.8	102.3	

]		l I		[1 1			
1 5	15875.00	0.0	65.7	66.9	220.2	F1 4	22.0	27.0	122.4
15	0	0.0	65.7	66.8	228.3	51.4	22.8	27.8	122.4
	15900.00								
16	0	0.0	637.0	0.0	282.3	51.0	22.8	27.5	100.3
	15925.00								
17	0	0.0	1011.0	0.0	329.3	49.8	22.8	26.2	115.8
18	15950.00	0.0	1190.4	0.0	342.4	49.2	22.8	24.6	87.4
10	U	0.0	1130.4	0.0	342.4	43.2	22.0	24.0	67.4
	15975.00								
19	0	0.0	1115.7	0.0	352.6	49.0	22.8	21.2	115.8
	16000.00								
20	0	0.0	1160.8	0.0	315.7	48.8	22.8	19.9	92.9
	45005.00								
21	16025.00 0	0.0	1145.5	0.0	277.9	48.8	22.8	19.0	88.5
21	0	0.0	1143.3	0.0	277.5	40.0	22.0	13.0	00.5
	16050.00								
22	0	0.0	750.3	0.0	336.0	48.9	22.8	17.5	83.9
	16075.00								
23	0	0.0	1249.4	0.0	374.3	49.2	22.8	16.1	110.9
	46400.00								
24	16100.00 0	0.0	560.9	0.0	202.6	27.4	12.3	13.8	60.3
- '		0.0	300.3	0.0	202.0	27.1	12.5	13.0	00.5
	16102.05								
25	7	0.0	493.8	0.0	188.9	26.2	11.4	13.9	55.4
	16125.00								
26		0.0	661.5	0.0	357.4	55.2	22.7	12.2	75.3
	16150.00								
27	16150.00 0	0.0	451.0	0.0	237.9	36.2	16.5	1.3	48.3
			10210			00.2			
	16157.34					25.0	10.0		
28	3	0.0	340.2	0.0	183.2	26.9	12.9	0.2	33.9
	16175.00								
29	0	0.0	516.3	0.0	298.2	32.7	22.9	0.1	48.8
	16200 00								
30	16200.00 0	0.0	406.4	0.0	276.8	38.7	28.0	0.1	40.0
24	16225.00	0.0	422.5	0.0	250.6	30.0	20.0	0.4	66.0
31	U	0.0	422.5	0.0	350.6	38.9	28.0	0.1	66.8

	 					1 1			
32	16250.00 0	0.0	373.4	0.0	353.5	39.1	28.0	0.1	69.3
	16275.00								
33	0	0.0	287.7	194.5	353.6	39.1	28.0	0.1	70.3
34	16300.00 0	0.0	254.6	702.5	350.6	39.1	28.0	0.1	70.3
J 1	0	0.0	254.0	702.3	330.0	33.1	20.0	0.1	70.5
35	16325.00 0	0.0	154.3	61.1	264.6	38.8	28.0	0.1	40.8
36	16350.00 0	0.0	25.2	465.1	222.9	39.1	28.0	0.1	43.2
	16275 00								
37	16375.00 0	0.0	65.9	669.4	220.8	39.0	28.0	0.1	42.9
38	16400.00 0	0.0	83.1	222.3	217.0	38.8	28.0	0.1	42.8
39	16425.00 0	0.0	192.5	0.0	265.9	38.8	28.0	0.1	40.7
40	16450.00 0	0.0	288.2	0.0	285.1	38.8	28.0	0.1	56.7
41	16475.00 0	0.0	160.2	0.0	133.6	38.4	28.0	0.1	34.8
42	16500.00 0	0.0	224.4	0.0	270.3	38.8	28.0	0.1	39.1
43	16525.00 0	0.0	174.5	3.9	220.2	38.8	28.0	0.1	42.3
43	U	0.0	174.3	3.3	220.2	30.0	26.0	0.1	42.5
44	16550.00 0	0.0	82.7	43.1	206.6	39.0	28.0	0.1	44.1
45	16575.00 0	0.0	232.0	114.2	301.9	38.8	28.0	0.1	69.4
46	16600.00 0	0.0	324.0	139.3	353.6	39.1	28.0	0.1	70.3
47	16625.00 0	0.0	363.5	124.9	353.6	39.1	28.0	0.1	70.3
48	16650.00 0	0.0	328.1	132.2	353.6	39.1	28.0	0.1	70.3

40	16675.00 0	0.0	227.6	105.0	201.0	20.0	20.0	0.1	70.2
49	U	0.0	227.6	185.0	291.9	38.9	28.0	0.1	70.2
	16700.00								
50	0	0.0	124.3	157.5	248.3	38.8	28.0	0.1	40.9
	16725.00								
51	0	0.0	147.8	0.2	249.8	38.8	28.0	0.1	40.9
	16750.00								
52	0	0.0	79.8	41.8	161.8	27.9	20.1	0.1	30.3
	16760.98								
53	0	0.0	48.4	29.2	105.4	19.4	14.0	0.0	21.4
	16775.00								
54		0.0	35.2	13.3	81.1	15.5	11.1	0.0	17.2
	16700 07								
55	16780.87 6	0.0	44.2	10.6	102.9	19.5	14.0	0.0	21.8
56	16800.00 0	0.0	124.4	0.0	182.8	34.4	24.7	0.1	37.7
		<u> </u>			202.0	3		0.1	0717
57	16825.00 0	0.0	182.8	0.0	218.0	38.8	28.0	0.1	34.3
57	0	0.0	102.0	0.0	218.0	36.6	20.0	0.1	34.3
	16850.00	0.0	222.2	0.0	244.5	20.0	22.0	0.1	27.2
58	0	0.0	232.3	0.0	244.5	38.8	28.0	0.1	27.2
	16875.00								
59	0	0.0	203.1	0.0	248.9	38.8	28.0	0.1	32.7
	16900.00								
60	0	0.0	192.8	0.0	245.5	38.8	28.0	0.1	36.4
	16925.00								
61	0	0.0	157.3	0.0	219.6	39.4	28.0	0.1	36.7
	16950.00								
62		0.0	156.4	0.0	221.8	39.0	28.0	0.1	39.0
	16975.00								
63		0.0	102.4	5.6	190.8	34.0	24.4	0.1	35.5
	16002.61								
64	16993.61 9	0.0	46.1	18.4	108.2	19.5	14.0	0.0	19.9
65	17000.00 0	0.0	68.9	33.0	138.0	24.3	17.6	0.0	24.7
55	-	0.0	55.5	33.0			±7.0	5.5	

									I
66	17025.00 0	0.0	166.1	134.0	287.5	38.6	28.0	0.1	39.0
67	17050.00	0.0	02.0	120.0	214.1	20.2	20.0	0.1	40 F
67	0	0.0	92.9	139.0	214.1	39.2	28.0	0.1	40.5
68	17075.00 0	0.0	106.8	81.1	212.3	37.7	28.0	0.1	40.7
69	17100.00 0	0.0	230.6	143.6	342.4	39.0	28.0	0.1	39.9
70	17125.00 0	0.0	129.3	71.8	185.4	21.1	15.2	0.0	21.1
	17127.07								
71		0.0	117.8	64.5	168.7	19.4	14.0	0.0	19.3
72	17150.00 0	0.0	119.8	95.8	230.6	37.1	26.8	0.1	37.8
73	17175.00 0	0.0	75.1	95.1	213.8	39.1	28.0	0.1	44.7
74	17200.00 0	0.0	72.0	101.7	218.9	39.1	28.0	0.1	46.5
75	17225.00 0	0.0	74.8	99.4	212.4	39.1	28.0	0.1	44.9
76	17250.00 0	0.0	76.3	114.5	213.1	39.1	28.0	0.1	44.3
77	17275.00 0	0.0	79.8	52.3	214.3	39.1	28.0	0.1	43.9
78	17300.00	0.0	75.5	117.0	207.3	39.0	28.0	0.1	43.4
79	17325.00 0	0.0	93.6	98.0	217.0	38.9	28.0	0.1	42.3
80	17350.00	0.0	139.7	22.6	228.8	38.8	28.0	0.1	41.8
81	17375.00	0.0	152.8	154.5	272.5	38.8	28.0	0.1	40.0
82	17400.00	0.0	241.3	212.3	288.8	38.8	28.0	0.1	67.5
	*								

83	17425.00 0	0.0	132.2	116.4	158.2	19.8	14.3	0.0	34.7
63	U	0.0	132.2	110.4	130.2	19.8	14.5	0.0	34.7
84	17425.51 7	0.0	129.4	114.4	155.1	19.4	14.0	0.0	34.0
04	,	0.0	123.4	117.7	133.1	13.4	14.0	0.0	34.0
85	17450.00 0	0.0	246.2	195.5	312.5	38.4	27.7	0.1	64.4
00		0.0	2.0.2	133.3	312.3	30.1	2717	0.1	0
86	17475.00 0	0.0	298.4	27.9	296.4	38.7	28.0	0.1	43.1
87	17500.00 0	0.0	247.3	167.8	282.7	38.2	28.0	0.1	70.3
	47525.00								
88	17525.00 0	0.0	390.3	32.1	253.6	28.1	20.1	0.1	50.4
	17525 05								
89	17535.85 6	0.0	194.4	22.6	174.9	19.6	14.0	0.0	25.4
	17550.00								
90	0	0.0	263.9	4.0	220.5	28.2	21.9	0.1	55.0
	17575.00								
91		0.0	197.9	0.0	185.0	38.3	28.0	0.1	44.1
	17600.00								
92		0.0	320.3	0.0	207.7	38.0	28.0	0.1	67.3
	17625.00								
93	0	0.0	247.3	0.0	134.3	26.1	19.2	0.1	44.9
	17634.21								
94	5	0.0	178.0	0.0	104.9	19.0	14.0	0.0	31.5
	17650.00								
95	0	0.0	372.8	0.0	193.4	30.7	22.8	0.1	42.3
	17675.00								
96	0	0.0	526.4	0.0	298.1	41.1	26.8	0.1	56.5
	17700.00								
97	0	0.0	493.4	0.0	302.8	49.5	25.5	1.9	68.1
00	17725.00	0.0	170 4	FF 0	225.0	F4.3	24.0	44.0	100.4
98	0	0.0	170.1	55.0	235.0	51.2	21.9	11.0	100.1
00	17746.07	0.0	OE 6	0.0	100.0	25.5	11 F	12 5	E2 7
99	4	0.0	95.6	0.0	109.9	25.5	11.5	12.5	53.7

					I				
100	17750.00 0	0.0	117.4	0.0	121.5	29.1	13.2	15.6	59.8
									00.0
101	17775.00 0	0.0	432.8	0.0	266.0	49.7	22.8	26.1	103.2
	17800.00								
102	0	0.0	487.7	0.0	267.9	50.3	22.8	26.9	99.9
103	17825.00 0	0.0	564.0	0.0	281.9	51.0	22.8	27.6	108.4
	17850.00								
104	0	0.0	560.3	0.0	251.9	51.0	22.8	27.7	111.6
	17875.00								
105	0	0.0	609.8	0.0	256.6	51.0	22.8	27.6	109.6
106	17900.00 0	0.0	634.8	0.0	272.8	49.8	22.8	26.4	115.5
	17925.00								
107	0	0.0	667.2	0.0	301.8	49.8	22.8	26.3	104.7
	17950.00								
108	0	0.0	753.7	0.0	333.1	49.9	22.8	26.3	109.7
109	17975.00 0	0.0	821.0	0.0	357.1	50.0	22.8	26.2	105.7
	18000.00								
110		0.0	705.4	0.0	348.0	49.8	22.8	26.1	99.3
	18025.00								
111	0	0.0	654.0	0.0	338.3	49.4	22.8	25.7	104.1
112	18050.00 0	0.0	566.2	0.0	292.5	49.8	22.8	26.3	113.4
	18075.00								
113	0	0.0	557.5	0.0	301.4	50.3	22.8	26.8	109.6
	18100.00	2.2	455.5	2.2	267.5	500	22.5	27.2	
114	0	0.0	466.3	0.0	367.3	50.8	22.8	27.0	86.3
115	18125.00 0	0.0	381.8	0.0	375.9	51.7	22.8	27.6	96.2
	18150.00								
116	0	0.0	696.0	0.0	377.7	52.2	22.8	27.9	96.6

	 		l I		I	l I		1	l I
117	18175.00	0.0	700 C	0.0	277 4	E2 2	22 0	27.0	95.1
11/	0	0.0	788.6	0.0	377.4	52.2	22.8	27.8	95.1
	18200.00								
118	0	0.0	834.8	0.0	378.3	52.3	22.8	27.9	90.9
	18225.00								
119	0	0.0	784.6	0.0	378.3	52.3	22.8	27.9	90.6
	18250.00								
120	0	0.0	742.8	0.0	378.3	52.3	22.8	27.9	103.9
	18275.00								
121		0.0	711.5	0.0	378.3	52.3	22.8	27.9	97.7
	10200 00								
122	18300.00 0	0.0	587.0	0.0	378.3	52.3	22.8	27.9	96.6
123	18325.00 0	0.0	619.5	0.0	274.5	52.1	22.8	27 9	113.6
123	0	0.0	013.3	0.0	274.3	32.1	22.0	27.3	113.0
124	18350.00	0.0	717.7	0.0	272.4	F2.0	22.0	27.0	00.0
124	U	0.0	717.7	0.0	273.1	52.0	22.8	27.9	98.9
	18375.00								
125	0	0.0	822.1	0.0	309.7	52.1	22.8	27.9	94.4
	18400.00								
126	0	0.0	908.7	0.0	352.8	51.6	22.8	27.7	97.5
	18425.00								
127		0.0	940.5	0.0	359.4	50.8	22.8	26.9	104.9
	18450.00								
128		0.0	534.8	0.0	251.5	36.5	16.8	18.7	72.9
129	18461.84 1	0.0	363.0	0.0	187.1	25.1	11.4	12.8	43.8
	_	0.0	000.0						1010
120	18475.00	0.0	E22.4	0.0	205 6	27.7	17.4	10 1	67.7
130	0	0.0	533.4	0.0	285.6	37.7	17.4	18.1	67.7
	18500.00								
131	0	0.0	665.2	0.0	374.3	49.2	22.8	19.3	92.5
	18525.00								
132	0	0.0	574.3	0.0	377.8	52.4	22.8	27.7	88.4
	18550.00								
133		0.0	415.9	0.0	374.3	49.2	22.8	16.1	118.4

12/	18575.00 0	0.0	279.7	6.8	316.5	48.3	22.8	23.7	116.8
154		0.0	273.7	0.0	310.5	40.5	22.0	23.7	110.0
135	18600.00 0	0.0	142.0	29.6	209.2	52.0	22.8	27.7	114.7
136	18625.00 0	0.0	126.0	83.3	226.9	52.4	22.8	27.7	121.4
	18650.00								
137		0.0	83.2	159.0	230.6	52.2	22.8	27.7	121.1
	18675.00								
138		0.0	86.7	206.0	217.6	49.9	22.8	25.7	119.1
	18700.00								
139	0	0.0	318.1	13.5	374.3	49.7	22.8	24.4	121.4
	18725.00								
140	0	0.0	454.7	0.0	374.8	51.4	22.8	26.5	110.8
	18750.00								
141	0	0.0	372.5	33.1	376.0	52.4	22.8	27.7	112.4
142	18775.00 0	0.0	284.8	0.0	238.7	33.1	14.4	17.5	58.5
142	0	0.0	204.0	0.0	230.7	33.1	14.4	17.5	36.3
143	18781.59 5	0.0	238.6	0.0	188.9	26.2	11.4	13.9	47.4
0		0.0	200.0						.,,,
144	18800.00 0	0.0	438.2	0.0	328.1	45.5	19.8	24.1	83.4
	18825.00								
145		0.0	401.0	0.0	301.6	52.0	22.8	27.8	94.0
	18850.00								
146	0	0.0	556.1	0.0	342.4	50.4	22.8	26.9	104.5
	18875.00								
147	0	0.0	522.7	0.0	265.0	50.7	22.8	27.1	97.1
	18900.00								
148	0	0.0	612.4	0.0	316.4	51.0	22.8	27.4	92.1
	18925.00			_					
149	0	0.0	657.0	0.0	335.8	50.9	22.8	27.3	105.4
450	18950.00	0.0	640.0	0.0	224.4	54.0	22.0	27.0	00.4
150	U	0.0	640.0	0.0	321.1	51.9	22.8	27.9	98.1

151	18975.00 0	0.0	609.5	0.0	331.5	51.9	22.8	27.9	99.2
131		0.0	003.3	0.0	331.3	31.3	22.0	27.5	33.2
152	19000.00 0	0.0	505.4	0.0	292.3	51.5	22.8	27.9	101.3
	10035.00								
153	19025.00 0	0.0	338.6	0.0	212.5	51.9	22.8	27.9	110.3
	19050.00								
154	0	0.0	187.9	0.0	228.2	52.0	22.8	27.9	88.1
	19075.00								
155		0.0	206.9	0.0	227.2	51.5	22.8	27.8	99.7
	19100.00								
156	0	0.0	461.7	0.0	284.5	51.4	22.8	27.7	106.0
	19125.00								
157	0	0.0	608.1	0.0	375.0	51.1	22.8	27.0	97.0
150	19150.00	0.0	725.4	0.0	274.0	F0.7	22.0	26.4	115.0
158	U	0.0	725.1	0.0	374.9	50.7	22.8	20.1	115.8
159	19175.00 0	0.0	771.2	0.0	378.3	52.3	22.8	27.9	101.9
133		0.0	771.2	0.0	370.3	32.3	22.0	27.5	101.5
160	19200.00 0	0.0	695.8	0.0	374.9	50.8	22.8	26.1	121.4
	10225 00								
161	19225.00 0	0.0	595.9	0.0	376.8	52.0	22.8	27.8	110.0
	19250.00								
162	0	0.0	429.3	0.0	376.0	51.8	22.8	27.7	85.7
	19275.00								
163	0	0.0	466.3	0.0	377.6	52.2	22.8	27.9	100.7
	19300.00								
164	0	0.0	337.8	6.5	378.3	52.3	22.8	27.9	112.8
	19325.00						.	- -	
165	0	0.0	358.8	0.4	378.3	52.3	22.8	27.9	113.9
100	19350.00	0.0	204.0	0.0	270.2	F2.2	22.0	27.0	07.4
166	0	0.0	394.8	0.0	378.3	52.3	22.8	27.9	97.4
167	19375.00 0	0.0	400.7	0.0	378.3	52.3	22.8	27.9	102.5
107	J	0.0	+00.7	0.0	370.3	ال عر	22.0	21.3	102.5

168	19400.00 0	0.0	388.2	0.0	378.1	52.4	22.8	27.8	101.5
100	0	0.0	300.2	0.0	376.1	32.4	22.0	27.0	101.5
169	19425.00 0	0.0	310.7	0.0	305.3	42.4	18.4	22.4	78.1
		0.0	02017		000.0				70.2
170	19440.39 4	0.0	195.8	0.0	188.9	26.2	11.4	13.9	46.8
	10450.00								
171	19450.00 0	0.0	274.7	0.0	261.5	36.3	15.8	19.2	65.5
	19475.00								
172	0	0.0	457.4	0.0	377.8	52.4	22.8	27.7	80.1
	19500.00								
173	0	0.0	406.1	0.0	377.8	52.4	22.8	27.7	91.8
	19525.00								
174	0	0.0	434.2	0.0	377.8	52.4	22.8	27.7	92.9
	19550.00								
175	0	0.0	282.9	87.4	377.8	52.4	22.8	27.7	105.1
	19575.00								
176	0	0.0	596.1	0.0	377.8	52.4	22.8	27.7	87.4
477	19600.00	0.0	646.0	0.0	277.0	50.4	22.0	27.7	06.4
177	0	0.0	646.3	0.0	377.8	52.4	22.8	27.7	86.4
170	19625.00	0.0	655.1	0.0	277.0	F2.4	22.0	27.7	96.3
178	U	0.0	655.1	0.0	377.8	52.4	22.8	27.7	86.3
179	19650.00 0	0.0	343.5	0.0	267.1	37.1	16.1	19.6	51.3
173		0.0	343.3	0.0	207.1	37.1	10.1	13.0	31.3
180	19660.34 5	0.0	243.2	0.0	188.9	26.2	11.4	13.9	34.5
181	19675.00 0	0.0	397.3	0.0	299.7	41.6	18.1	22.0	54.9
	19700.00							_	
182	0	0.0	474.7	0.0	378.1	52.4	22.8	27.8	73.8
	19725.00								
183	0	0.0	427.8	0.0	361.2	52.1	22.8	27.9	92.1
	19750.00								
184		0.0	355.2	0.0	338.3	52.0	22.8	27.9	93.1

					ĺ				
185	19775.00 0	0.0	286.9	0.0	326.0	50.6	22.8	27.1	98.8
103		0.0	200.5	0.0	320.0	30.0	22.0	27.1	30.0
186	19800.00 0	0.0	338.0	0.0	367.4	52.1	22.8	27.9	104.9
	10925.00								
187	19825.00 0	0.0	148.3	23.9	235.3	51.6	22.8	27.8	118.6
	19850.00								
188	0	0.0	141.6	0.0	164.3	39.5	17.2	20.9	68.8
	19862.63								
189	5	0.0	266.2	0.2	112.2	26.0	11.4	13.8	58.1
	19875.00								
190	0	0.0	615.6	0.0	163.5	38.5	17.0	20.5	85.5
	19900.00								
191	0	0.0	932.9	0.0	206.1	52.0	22.8	27.7	98.1
	19925.00								
192	0	0.0	790.8	0.0	210.4	52.4	22.8	27.7	103.8
102	19950.00	0.0	F62.2	0.1	221.0	F2.4	22.0	27.7	115 7
193	0	0.0	563.2	0.1	221.9	52.4	22.8	27.7	115.7
194	19975.00 0	0.0	366.4	0.1	231.5	52.4	22.8	27.7	116.2
134		0.0	300.4	0.1	231.3	32.4	22.0	27.7	110.2
195	20000.00	0.0	336.7	1.9	244.1	49.9	22.8	26.0	116.2
						10.10			
196	20025.00 0	0.0	203.6	0.0	227.5	51.4	22.8	27.4	113.5
	20050.00								
197	20050.00 0	0.0	168.4	0.0	217.8	52.4	22.8	27.7	119.5
	20075.00								
198	0	0.0	85.8	5.4	138.5	31.9	13.9	16.9	73.2
	20080.52								
199	6	0.0	73.4	3.4	116.8	26.1	11.4	13.9	59.7
	20100.00								
200	0	0.0	173.2	0.0	223.4	46.4	20.3	24.7	106.1
	20125.00								
201	0	0.0	227.5	0.0	280.9	51.8	22.7	27.7	114.6

202	20149.78 4	0.0	149.2	0.0	189.1	26.2	11.4	14.0	52.5
203	20150.00 0	0.0	25.0	0.0	31.7	4.4	1.9	2.3	8.8
	20153.97								
204		0.0	149.3	0.0	189.1	26.2	11.4	14.0	52.7
205	20175.00 0	0.0	290.4	0.0	348.2	48.2	21.0	25.7	109.2
203		0.0	230.4	0.0	340.2	40.2	21.0	23.7	103.2
206	20200.00 0	0.0	306.5	0.0	362.3	52.1	22.8	27.9	100.7
	20225.00								
207	0	0.0	358.9	0.0	342.8	52.0	22.8	27.9	93.4
208	20250.00 0	0.0	354.0	0.0	360.4	52.1	22.8	27.9	100.7
	20275.00								
209	0	0.0	295.4	0.0	316.5	52.0	22.8	27.9	113.8
210	20300.00 0	0.0	225.1	0.0	286.9	52.1	22.8	27.9	101.6
210		0.0	223.1	0.0	200.5	32.1	22.0	27.5	101.0
211	20325.00	0.0	211.0	6.4	297.5	51.3	22.8	27.6	97.7
	20350.00								
212	0	0.0	336.7	0.0	290.7	50.9	22.8	27.4	81.0
213	20375.00 0	0.0	320.6	0.0	302.1	50.9	22.8	27.4	70.0
	20400.00								
214	0	0.0	295.8	0.0	294.1	50.6	22.8	27.3	46.4
	20425.00								
215	0	0.0	483.2	0.0	338.7	50.6	22.8	27.1	87.0
216	20450.00 0	0.0	594.0	0.0	344.3	49.0	22.8	24.2	81.6
-			-	<u>-</u>		_			
217	20475.00 0	0.0	621.4	0.0	372.1	49.9	22.8	25.2	64.0
242	20500.00		450 -	2.2	240.0	22.5	45.4	4	
218	U	0.0	459.7	0.0	248.0	33.9	15.1	17.7	47.1

									1
219	20508.10 1	0.0	328.4	0.0	188.4	26.1	11.4	13.9	37.9
220	20525.00 0	0.0	574.4	0.0	316.6	43.9	19.1	23.2	64.2
	20550.00								
221		0.0	768.2	0.0	376.9	52.4	22.8	27.7	84.4
	20575.00								
222	0	0.0	771.2	0.0	377.8	52.4	22.8	27.7	87.4
223	20600.00	0.0	771.7	0.0	277 0	52.4	22.8	27.7	87.1
223	0	0.0	//1./	0.0	377.8	32.4	22.0	27.7	07.1
224	20625.00 0	0.0	794.8	0.0	377.4	52.4	22.8	27.7	82.7
	20650.00								
225	0	0.0	831.2	0.0	376.6	52.4	22.8	27.8	86.2
	20675.00								
226	0	0.0	790.6	0.0	373.5	48.7	22.8	4.7	87.0
	20700.00								
227	0	0.0	654.1	0.0	336.2	44.7	20.7	19.2	84.7
228	20720.38 9	0.0	360.6	0.0	185.2	25.1	11.4	12.3	33.4
220		0.0	300.0	0.0	103.2	23.1	11.4	12.3	33.4
229	20725.00 0	0.0	186.8	0.0	97.6	13.3	6.0	6.6	16.9
	20733.57								
230	0	0.0	360.0	0.0	186.0	25.8	11.4	13.4	31.7
	20750.00								
231	0	0.0	496.5	4.0	313.1	43.4	18.9	23.0	91.5
	20775.00		500.5		27.4		22.2	25.0	20.0
232	0	0.0	633.6	0.0	374.3	50.0	22.8	25.0	80.9
233	20800.00 0	0.0	923.2	0.0	374.3	49.2	22.8	15.4	85.1
233		0.0	323.2	0.0	37 1.3	13.2	22.0	13.1	03.1
234	20825.00 0	0.0	1900.7	0.0	377.8	52.4	22.8	27.7	90.3
	20850.00								
235		0.0	1976.5	0.0	227.9	31.6	13.7	16.7	54.0

236	20855.14 7	0.0	1657.8	0.0	189.0	26.2	11.4	13.9	43.7
	20875.00								
237	0	0.0	3202.0	0.0	339.2	47.0	20.5	25.0	84.2
	20900.00								
238	0	0.0	3515.1	0.0	342.1	47.3	20.6	25.2	106.8
239	20920.21 9	0.0	1785.7	0.0	188.0	26.0	11.4	13.8	43.6
240	20925.00 0	0.0	2126.1	0.0	223.1	29.3	13.6	13.7	53.0
241	20950.00 0	0.0	2591.5	0.0	368.1	46.0	22.8	5.3	97.5
242	20975.00	0.0	607.4	0.0	370.8	46.0	22.8	3.7	104.8
243	21000.00	0.0	512.8	199.3	370.8	46.0	22.8	1.2	114.5
244	21025.00	0.0	1020.1	0.0	377.8	52.4	22.8		115.1
245	21050.00	0.0	1774.5	145.0	377.8	52.4	22.8		115.4
246	21075.00	0.0	753.7	12.1	239.8	33.3	14.5	17.6	73.6
	21081.74								
247	1	0.0	855.1	0.0	188.9	26.2	11.4	13.9	55.3
248	21100.00 0	0.0	1250.5	0.0	327.0	45.4	19.7	24.0	97.0
249	21125.00 0	0.0	2476.4	0.0	378.2	52.3	22.8	27.9	114.3
250	21150.00 0	0.0	709.4	0.0	358.4	49.2	22.8	23.7	115.1
251	21175.00 0	0.0	366.0	0.0	330.4	46.0	22.8	7.8	97.1
252	21200.00 0	0.0	240.1	0.0	234.1	46.3	22.8	8.1	101.1

		ĺ					ĺ		
	21225.00								
253	0	0.0	169.4	0.0	155.7	26.7	13.2	4.1	57.8
	21229.04								
254	0	0.0	143.9	0.0	136.7	23.0	11.4	3.5	51.2
	21250.00								
255	0	0.0	218.4	0.0	260.2	42.3	21.0	6.3	109.9
	24275 00								
256	21275.00 0	0.0	216.7	0.0	247.0	45.8	22.8	6.5	113.9
	24222								
257	21300.00 0	0.0	139.9	0.1	131.4	45.6	22.8	7.2	107.8
258	21325.00 0	0.0	94.8	0.0	58.5	46.4	22.8	9.5	111.9
230	•	0.0	3	0.0	30.3	1011	22.0	3.3	111.3
259	21350.00 0	0.0	64.2	0.0	54.9	32.3	14.1	17.1	58.3
233	0	0.0	04.2	0.0	34.3	32.3	14.1	17.1	36.3
260	21355.82	0.0	40 C	0.0	45.0	26.2	11.4	12.0	42.6
260	6	0.0	48.6	0.0	45.8	26.2	11.4	13.9	42.6
	21375.00								
261	0	0.0	81.5	0.0	76.0	46.3	20.1	24.5	68.2
	21400.00								
262	0	0.0	91.8	0.0	55.9	52.4	22.8	27.8	65.9
	21425.00								
263		0.0	103.9	0.0	78.0	34.3	15.1	18.5	37.1
	21433.13								
264	1	0.0	52.1	0.0	47.6	8.4	3.7	4.5	10.3
Tota									
		0	547930	69493	257826	41475	19808	17237	81469

DEVIS QUANTITATIF ET ESTIMATIF

DEVIS QUANTITATIF ET ESTIMATIF

Projet : Étude Du Dédoublement De La RN16 Du PK A15+530 u PK 21+175

Sur 5,6km

N°	Désignations	Unité	Quantité	P. U	Montant (DA)
	01 - TERRASSE	EMENT	Γ		
1-1	Décapage de terre végétale sur une épaisseur de 20 cm	M^2	18 630	150	2 694 500,00
1-2	Déblais en terrains meubles mis en dépôt	M^3	183 803	300	63 521 200,00
1-3	Remblais provenant d'une zone d'emprunt	M^3	16 772	600	10 063 200
	Total 01				66235826,00
	02 - CONSTRUCTION DU CO	ORPS E	DE CHAUSS	EE	
2-1	Fourniture et mise en œuvre de la couche de forme en TVC sur 40cm d'épaisseur y compris compactage, arrosage et toutes sujétions de bonne exécution.	M^3	62 588	850	53 179 800,00
2-2	Fourniture et pose d'une couche de fondation en grave concassée 0/31,5 sur 30cm d'épaisseur y compris compactage, arrosage et toutes sujétions de bonne exécution.	M^3	50 804	1.400	71 125 500,00
2-3	Fourniture et pose d'une couche d'Imprégnation en cut-back 0/1 dosé à 1kg/m².	M^2	125 900	90	11 441 000,00
2-4	Fourniture et pose d'une couche de base en grave bitume sur 18cm y compris toutes sujétions de bonne exécution.	M^3	20 435	6 200	126 700 000,0
2-5	Fourniture et pose d'une couche d'accrochage en émulsion cationique dosée à 0,3 Kg/ m ² .	M ²	125 900	70	8 813 240,00
2-6	Fourniture et pose d'une couche de roulement en béton bitumineux (BB) sur 06cm y compris toutes sujétions de bonne exécution.	Т	14 667	6 500	95 335 500,00
2-7	Rechargement des accotements en Matériaux sélectionnés	M^3	7.500	850	6 375 000,00

	Total 02				432 976 900,0
	03 - ASSAINISS	EMEN'	Т		
3-1	Réalisation Fossé trapézoïdale "1,5/0,5/0,5" en béton légèrement armé dosé 350kg/m3.	ML	6 000	2 900	17 400 000,00
3-2	Fourniture et pose de buses Ø600	ML	30	18 000	540 000,00
3-3	Fourniture et pose de buses Ø1000	ML	148	26 000	3 848 000,00
3-4	Fourniture et pose de buses Ø1200	ML	44	40 000	1 760 000,00
3-5	Fourniture et pose de buses Ø1500	ML	129	60 000	7 740 000,00
	Total 03				31 288 000,00
	04 - SIGNALIS	ATION	Ţ		
4-1	Les signaux de danger type A.	U	12	5 000	60 000,00
4-2	Les signaux d'intersection et de priorité type B.	U	12	5 000	60 000,00
4-3	Les signaux d'interdiction type C.	U	12	5 000	60 000,00
4-4	Les signaux d'obligation type D.	U	12	5 000	60 000,00
4-5	Les signaux d'identification des routes type E.	U	12	5 000	60 000,00
4-6	Marquages longitudinaux continue type 3U.	ML	14 900	60	894 000,00
4-7	Marquages longitudinaux discontinue type T1-2U.	ML	14 900	60	894 000,00
4-8	Marquages longitudinaux discontinue type T2-3U.	ML	14 900	60	894 000,00
	Total 04				2 982 000,00
	05 – ECLAIR	AGES			
	Fourniture, installation et mise en service de systèmes d'éclairage extérieur autonome à énergie solaire				
5-1	01 Mat de 6m + Cross en acier galvanise thermolaqué à chaud	U	30	160 000	4 800 000,00
5-2	01 Mat de 8m + Cross en acier galvanise thermolaqué à chaud	U	250	190 000	47 500 000,00

Total 05	52 300 000,00
----------	---------------

06 - DIVERS						
6-1	Installation de chantier y compris amenée et repli du matériel.	F	1	3 000 000	3 000 000,00	
6-2	Réalisation d'un séparateur en béton armé	ML	8 600	4 600	39 560 000,00	
6-3	Fourniture et pose glissières de sécurité.	ML	320	2 500	800.000,00	
6-3	Fourniture et mise en place de bordure de trottoirs	ML	7 100	1 400	9 940 000,00	
6-4	Fourniture et mise en œuvre de terre végétale	M^3	5 020	600	3 012 000,00	
6-5	Plantation des talus par d'arbustes.	U	100	1 400	140.000,00	
Total 06					56 452 000,00	
MONTANT TOTAL EN HT					602 277 800,00	
TVA 19 %					114 432 782,00	
MONTANT TOTAL EN TTC					816 210 322,00	

Références Bibliographiques

1. Règlements

- B40 : Normes technique d'aménagements des routes /octobre1977.
- ARP : Aménagement de routes principales
- SETRA : Service d'études techniques des routes et autoroutes.

2. Documents

- Catalogue de dimensionnement du corps des chausséesneuves (C.T.T.P) (Fasicules1, 2 et 3) /novembre 2015.
- Cours de route de 3^{eme} année licence 2020
- APD de RN 16 sur 42 km (BET : CTTP Alger)
- Rapport géotechnique (BET : société d'études technique de Sétif SETS)
- Rapport hydrologique et hydraulique (Laboratoire LTP/EST Constantine)

3. Outils Informatiques

- Logiciel Covadis (16.0)
- Microsoft EXCEL
- Autocad2008
- Microsoft Word

4. Autres

- Site internet (www.google.com/www.fr.wikipidea.org/
- Anciens mémoires :
- Boukhnef lazhar université de Guelma 2022 2023
- Khoualdia Hassina/ Touati Kaouther/ Chouabbi Sihem université de Biskra 2015.
- Bettahahar Rabie université de Biskra 2019-2020.