République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Mémoire De Master

Présenté à l'Université 8 Mai 1945 de Guelma Faculté des Sciences et de la Technologie

Département de : Génie Civil & Hydraulique

Spécialité : Travaux Publics

Option: VOIES ET OUVRAGES D'ART

Présenté par : MEDJELDI HOUSSEYN

THEME: ÉTUDE EN APD DU DEDOUBLEMENT DE LA RN81A ENTRE M'DAOUROUCH – RAGUOUBA SUR 5.00 KM.

Sous la direction de : Dr. BOURAS FAOUZI

Juin 2025

Remerciements

Tout d'abord nous tenons à remercier Allah de nous avoir donné la volonté, le courage et la passion de bien mener ce travail.

Je remercie mes parents et ma femme pour leur aide et leur soutien.

Nous tenons aussi à remercier tous ceux et celles qui de loin ou de près ont contribué à finaliser ce travail que nous espérons sera à la hauteur de leurs engagements.

Et tous les remerciements infinis à mon superviseur F. BOURAS pour son aide, ses conseils et ses observations qui m'ont aidé à faire ce travail de la meilleure façon possible.

Nous tenons également à remercier l'ensemble de personnel de la subdivision des travaux public de M'daourouch (Wilaya de Souk Ahras) et le personnelle la DTP de la wilaya de Guelma plus particulièrement l'ingénieurs BOUKHENAF Lazhar.

Nous remercions les membres de jury qui nous font l'honneur de présider et d'examiner ce modeste travail.

Tous ceux qui m'aiment et que j'aime

MEDJELDI HOUSSEYN

Dédicaces

Tout d'abord je tiens à remercier le bon DIEU qui m'a donné le courage et la patience pour arriver à ce stade de fin d'études.

Je dédie ce modeste travail à :

A ma tendre mère Khemissa et mon très cher père Ali et à mon beau père Amor pour leurs encouragements

A ma chère femme

A mes meilleurs amis Nabil, Mohamed amine et amine

A tous mes frères et mes sœurs et à tous mes amis.

Sans oublier tous mes amis avec qui j'ai passé des moments inoubliables durant tout mon cursus à l'université

Tous ceux qui m'aiment et que j'aime

Résumé
Abstract
ملخص
Sommaire
Liste des figures
Liste des tableaux
Introduction generale

Chapitre I	: Présen	tation du	projet	et cald	cul des	trafic
Chapterer	· I I Cocii	tution au	DI OLCC	et emi	cui ucs	ti till

I.1	Présentation du projet	01
I.1.1	Introduction	01
I .1.2	La situation geographies	02
I.1.3	Localisation du projet	03
I .1.4	Justification du projet	
I .1.5	Caractéristique de la route existante	04
I .1.6	Objectif et utilité de l'etude	05
I .1.7	Données de projet	
I.2.1	Etude du trafic	07
I.2.1	Introduction	07
I.2.2	Analyse du traffic existant	07
I.2.3	Différent Types du Trafic.	
	a. Trafic normal	
	b. Trafic dévié	
	c. Trafic induit.	
	d. Trafic total	00
I.2.4	L'Analyse du Trafic	
I.2.4.1	Les Comptages.	
	a. Les comptages manuels	
	b. Les comptages automatiques.	08
	Les comptages permanents	08
	Les comptages temporaires.	09
I.2.4.2	Les Enquêtes Origine Destination	09
	a.Les Enquêtes papillons ou distributions	
	Les avantages de la méthode	
	Les inconvénients de la méthode	
	b. Relevé des plaques minéralogiques	09
	c. Interview des conducteurs	09
	d. Les enquêteurs à domicile – Enquête ménage	
I.2.5	Modèles de Présentation de Trafic	
	a. Prolongation de l'évolution passee	10
	b. Corrélation entre le trafic et les paramètres économiques	
	c. Modèle Gravitaire	11
	d. Modèle Des Facteurs De Croissance	11
I.2.6	Calcul de la capacite	11
I.2.6.1	Definition de la capacite	11
I.2.6.2	La procedure de détermination du Nombre de Voies	11
	1. Calcul de TJMA Horizon	12
	2. Calcul du Trafic Effectif	12
	3. Débit de Point Horaire Normal	11
	4. Débit Horaire Admissible	13

I.2.7	Application au projet			
I.2.8	conclusion. 16			
	CHAPITRE II : CARACTERISTIQUE GEOMETRIQUES ROUTIERS			
II.1	Tracé en plan	17		
II.1.1	Introduction	17		
II.1.2	Vitesse de base du projet	17		
II.1.3	Les Règles à Respecter pour le Tracé en Plan	18		
II.1.4				
II.1.4.1	Droit (les alignements)	19		
	a. La longueur Minimale	20		
	b. La Longeur maximale	20		
II.1.4.2	Arcs de cercle.	20		
	1- Stabilité des véhicules en courbe	20		
	a. Rayon horizontal minimal absolu (RHm)	21		
	b. Rayon minimal normal (RHN)	21		
	c. Rayon au dévers minimal (RHd)	21		
	d. Rayon minimal non déversé (RHnd)	22		
	2- Règles pour l'utilisation des rayons en plan	22		
	3- Application au projet	22		
II.1.4.3	Raccordements progressifs			
	1.Types de courbe de raccordement			
	a. Parabole cubique			
	b. Lemniscate	24		
	c. Clothoïde	24		
	2. Clothoïde	24		
	3. Les conditions de raccordement	24		
	a. Condition de confort optique			
	b. Condition de confort dynamique			
	c. Condition de gauchissement			
II.1.5	Combinaison des Eléments du Tracé en Plan.			
	a. Courbe en S	26		
	b Courbe à sommet	26		
	d. Courbe en Ove			
II.1.6	Devers	27		
II.1.7	Application au Projet			
	La visibilité			
	8.1. Objectif et méthode			
	8.2. La distance d'arrêt			
	8.3. La distance de freinage.			
	8.4. La visibilité sur un virage			
II.1.9	Calcul d'axe			
	Paramètres fondamentaux.	31		
II.II.	Profil en Long.			
II.II.1	Définition			
	Les éléments de composition du profil en long			
	Les éléments géométriques du profil en long			
11.11.5	a. Les rayons en angles rentrants (concaves)			
	b. Les rayons en angles saillants (convexes)			
II.II.4	Règles à respecter dans le tracé du profil en long.			
	regies a respector dans to date an profit on long	51		

II.II.5	Procédure du tracé	
II.II.6	Coordination de la trace en plan et du Profil en long	38
II.II.7	Déclivité du profil en long	39
	a. Déclivité minimum	39
	b. Déclivité maximum	39
II.II.8	Raccordements en profil en long	40
	1. Raccordements convexes (Angle Saillan	40
	a. condition de visibilité	41
	b. condition de confort	42
	2. Raccordements concaves (Angle Rentrant)	42
II.II.9	Détermination pratique du profil en long	
II.III	Profil en profil en travers	46
	Définition.	46
	Les éléments constitutifs du profil en travers.	
	Différents types de profil en travers	
11.111.5	a. profil en travers type.	
	b. profil en travers courants	
II III 1		
II.IV	Application au projet.	50
	Cubature Définition	50
11.1 V .Z	Méthode de Calcul Des Cubatures.	
	a. Description de la méthode	
II.V	b. Application de projet	<i>52</i>
II. V II.V.1	Conception de Carrefour	
	Définition	53
II.V.2	Types de carrefour	
	1. Carrefour à trois branches	
	a. Carrefour à trois branches (en T)	
	b. Carrefour à trois branches (en Y)	54
	2. Carrefour à quatre branches (en croix)	54
		54
II.V.3	3. Carrefour type giratoire ou carrefour giratoire	55
_	Données utiles à l'aménagement d'un carrefour	
II.V.4	Principes généraux d'aménagement d'un carrefour	
II.V.5	Choix de type de carrefour	
II.V.6	Application au projet	57
	CHAPITRE III: GEOTECHNIQUE ROUTIERS ET DEPENDANCES	
III.1	ETUDE GEOTECHNIQUE	59
III.1.1	Introduction.	59
III.1.2	Règlementation algérienne en géotechnique	59
	Les moyens de la reconnaissance	59
	4.1 Les essais d'identification	60
	1. Teneur en eau et masse volumique (W%)	60
	2. Analyse granulométrique	60
	3. Limites d'Atterberg	
	4. Equivalent de sable	
	5. Essai au bleu de méthylène	
	4.2 Les essais mécaniques	
	··	US

2. Essai CBR. 3. Essai Los Angeles. 4. Essai Micro Deval. III.1.5 Condition d'Utilisation des Sols en Remblais. III.1.6 Programme de reconnaissance géotechnique. 6-1 Reconnaissance du site. 6-2 Reconnaissance des gîtes d'emprunts. III.1.7 CONCLUSION. III.II. DIMENSSIONEMENT DU CORPS DE CHAUSSEE. III.II.1 Introduction. III.II.2 La Chaussée. III.II.3 Les Différentes types de Chaussée. a. Les Chaussées souples. b. Les Chaussées semi rigides. c. Les Chaussées rigides. III.II.4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4. Couche de forme III.II.5 méthodes de de dimensionnement du corp de chaussée.	65 68 69 69 70 71 71 71 71 71 73 73
4. Essai Micro Deval. III.1.5 Condition d'Utilisation des Sols en Remblais. III.1.6 Programme de reconnaissance géotechnique. 6-1 Reconnaissance du site. 6-2 Reconnaissance des gîtes d'emprunts. III.1.7 CONCLUSION. III.II. DIMENSSIONEMENT DU CORPS DE CHAUSSEE. III.II.1 Introduction. III.II.2 La Chaussée. III.III.3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées semi rigides. c. Les Chaussées rigides. III.II.4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4.Couche de forme III.II.5 méthodes de de dimensionnement du corp de chaussée.	66 68 69 70 71 71 71 71 71 73 73
4. Essai Micro Deval. III.1.5 Condition d'Utilisation des Sols en Remblais. III.1.6 Programme de reconnaissance géotechnique. 6-1 Reconnaissance du site. 6-2 Reconnaissance des gîtes d'emprunts. III.1.7 CONCLUSION. III.II. DIMENSSIONEMENT DU CORPS DE CHAUSSEE. III.II.1 Introduction. III.II.2 La Chaussée. III.III.3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées semi rigides. c. Les Chaussées rigides. III.II.4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4.Couche de forme III.II.5 méthodes de de dimensionnement du corp de chaussée.	66 68 69 70 71 71 71 71 71 73 73
III.1.6 Programme de reconnaissance géotechnique. 6-1 Reconnaissance du site 6-2 Reconnaissance des gîtes d'emprunts. III.1.7 CONCLUSION. III.II. DIMENSSIONEMENT DU CORPS DE CHAUSSEE. III.II.1 Introduction. III.II.2 La Chaussée. III.II.3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées semi rigides. c. Les Chaussées rigides. III.II.4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4. Couche de forme. III.II.5 méthodes de de dimensionnement du corp de chaussée.	69 69 70 71 71 71 71 72 73 73
III.1.6 Programme de reconnaissance géotechnique. 6-1 Reconnaissance du site 6-2 Reconnaissance des gîtes d'emprunts. III.1.7 CONCLUSION. III.II. DIMENSSIONEMENT DU CORPS DE CHAUSSEE. III.II.1 Introduction. III.II.2 La Chaussée. III.II.3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées semi rigides. c. Les Chaussées rigides. III.II.4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4. Couche de forme. III.II.5 méthodes de de dimensionnement du corp de chaussée.	69 69 70 71 71 71 71 72 73 73
6-1 Reconnaissance du site. 6-2 Reconnaissance des gîtes d'emprunts. III.1.7 CONCLUSION. III.II. DIMENSSIONEMENT DU CORPS DE CHAUSSEE. III.II.1 Introduction. III.II.2 La Chaussée. III.III.3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées semi rigides c. Les Chaussées rigides. III.II.4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4.Couche de forme III.II.5 méthodes de de dimensionnement du corp de chaussée.	69 70 71 71 71 71 72 73 73
6-2 Reconnaissance des gîtes d'emprunts. III.1.7 CONCLUSION. III.II. DIMENSSIONEMENT DU CORPS DE CHAUSSEE. III.II.1 Introduction. III.II.2 La Chaussée. III.II.3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées semi rigides c. Les Chaussées rigides. III.II.4 Les Différentes couches de chaussée 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4. Couche de forme III.II.5 méthodes de de dimensionnement du corp de chaussée.	70 70 71 71 71 71 72 73 73
III.1.7 CONCLUSION. III.II. DIMENSSIONEMENT DU CORPS DE CHAUSSEE. III.II.1 Introduction. III.II.2 La Chaussée. III.II.3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées semi rigides. c. Les Chaussées rigides. III.II.4 Les Différentes couches de chaussée. 1. Couche de surface (roulement). 2. Couche de base	70 71 71 71 71 71 72 73 73
III.II. DIMENSSIONEMENT DU CORPS DE CHAUSSEE. III.II.1 Introduction. III.II.2 La Chaussée. III.II.3 Les Différentes types de Chaussée. a. Les Chaussées souples. b. Les Chaussées semi rigides. c. Les Chaussées rigides. III.II.4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base. 3. Couche de fondation 4. Couche de forme. III.II.5 méthodes de de dimensionnement du corp de chaussée.	71 71 71 71 71 72 73 73
III.II .1 Introduction. III.II .2 La Chaussée. III.II .3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées semi rigides. c. Les Chaussées rigides. III.II .4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base. 3. Couche de fondation 4. Couche de forme. III.II .5 méthodes de de dimensionnement du corp de chaussée.	71 71 71 71 72 73 73
III.II .2 La Chaussée. III.II .3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées rigides. c. Les Chaussées rigides. III.II .4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base. 3. Couche de fondation 4. Couche de forme. III.II .5 méthodes de de dimensionnement du corp de chaussée.	71 71 71 72 73 73
III.II .3 Les Différentes types de Chaussée. a. Les Chaussées souples b. Les Chaussées semi rigides. c. Les Chaussées rigides. III.II .4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4.Couche de forme III.II .5 méthodes de de dimensionnement du corp de chaussée.	71 71 72 73 73 73
a. Les Chaussées souples b. Les Chaussées semi rigides c. Les Chaussées rigides III.II .4 Les Différentes couches de chaussée 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4.Couche de forme III.II .5 méthodes de de dimensionnement du corp de chaussée.	71 72 73 73 73
b. Les Chaussées semi rigides c. Les Chaussées rigides. III.II .4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4.Couche de forme III.II .5 méthodes de de dimensionnement du corp de chaussée.	72 73 73 73
c. Les Chaussées rigides. III.II .4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4.Couche de forme III.II .5 méthodes de de dimensionnement du corp de chaussée.	73 73 73
III.II .4 Les Différentes couches de chaussée. 1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4. Couche de forme III.II .5 méthodes de de dimensionnement du corp de chaussée.	73 73
1. Couche de surface (roulement) 2. Couche de base 3. Couche de fondation 4. Couche de forme III.II .5 méthodes de de dimensionnement du corp de chaussée.	73
2. Couche de base	
3. Couche de fondation	
4.Couche de forme	74
III.II .5 méthodes de de dimensionnement du corp de chaussée	74
III.II .5 méthodes de de dimensionnement du corp de chaussée	74
III.II .6 Principe de la constitution des chaussées	
III.II. 7 Les principales méthodes de dimensionnement	
1. Méthode C.B.R (Californie – Bearing – Ratio)	
2. Méthode du catalogue de dimensionnement des chaussées neuves	
3. Méthode du catalogue des structures	
III.II. 8 Application au projet	
CHAPITRE IV : ASSAINISSEMENT ET DEPENDANCES DE LA ROUT	E
IV 1 ASSAINISSEMENT	84
IV 1.1 Introduction.	84
IV 1.2 Quelques définitions des termes hydraulique	84
IV 1.3 Objectif de l'assainissement	86
IV 1. 4 Assainissement de la chaussée	
IV 1.5 Type de degradation	87
IV 1.6 Nature et rôle des réseaux d'assainissement routier	87
IV 1.7 Drainage des eaux souterraines	
7.1 Nécessité du drainage des eaux souterraines	
7.2 Protection contre la nappe phréatique	
IV 1.8 Dimensionnement de réseau d'assainissement a projeté	
8.1. Contexte climatique ou météorologique	
X / Surface des hassins versants (A)	
8.2. Surface des bassins versants (A)	
IV 1. 9 Application au projet	92
IV 1.9 Application au projet	92 93
IV 1. 9 Application au projet	92 93 93
IV 1. 9 Application au projet	92 93 93
IV 1. 9 Application au projet	92 93 93 94

	Signalisation routière	98
IV.II. 1	Introduction	
	L'objet de la signalisation routière	
IV.II. 3	Catégories de Signalisation	98
IV.II.	Règles A respecté pour la signalisation	98
IV.II. 5	Types de signalisation	99
	5.1 Signalisation horizontale	99
	5.2 Signalisation vertical	
	Catégories de panneaux	
	Application au projet	
	ECLAIRAGE	
	Introduction	
	Classe d'éclairage	
	Paramètres de l'implantation des luminaires	
IV.III.	Eclairage d'un point singulier	105
IV.III.:	Application au projet	105
	CHAPITRE V: IMPACT SUR L'ENVIRENEMENT	
V.1	Introduction	107
Ŷ.2	Objet de l'étude	
Ŷ.3	Cadre juridique	107
		/
V.4		
V .4	Les différents impacts	107
Ÿ.4	Les différents impacts	107 108
V.4 V.5	Les différents impacts 1. L'impact sur les habitants 2. L'impact sur la nature	107 108 108
^	Les différents impacts	
^	Les différents impacts 1. L'impact sur les habitants. 2. L'impact sur la nature. Les impacts que peut provoquer un projet routier sur le milieu naturel. 5.1 Des impacts positifs.	
^	Les différents impacts	
y.5 y.6	Les différents impacts 1. L'impact sur les habitants. 2. L'impact sur la nature. Les impacts que peut provoquer un projet routier sur le milieu naturel. 5.1 Des impacts positifs. 5.2 Des impacts négatifs.	
V.5 V.6 DETAI	Les différents impacts 1. L'impact sur les habitants. 2. L'impact sur la nature. Les impacts que peut provoquer un projet routier sur le milieu naturel. 5.1 Des impacts positifs. 5.2 Des impacts négatifs. Conclusion.	
y.5 y.6 detail	Les différents impacts 1. L'impact sur les habitants. 2. L'impact sur la nature. Les impacts que peut provoquer un projet routier sur le milieu naturel. 5.1 Des impacts positifs. 5.2 Des impacts négatifs. Conclusion. L QUANTITATIF ET ESTIMATIF	

BIBLOGRAPHIE

Résumé:

Notre projet consiste en la duplication d'un tronçon de la route nationale (RN81A) reliant la ville de Md'aourouch à celle de Sédrata dans la wilaya de souk Ahras.

L'étude proprement dite cible un tronçon de 5 km en partant de Md'aourouch (PK0+000) et en allant vers Ragouba.

Il s'agit d'un dédoublement de la route existante avec un profil en travers type de $2 \times 7,60$ m et 2×2 m d'accotements, ainsi qu'un terre-plein central de 2 m,

Nous avons débuté notre projet final d'étude en analysant le trafic sur la RN81-A et en prévoyant son évolution sur les 20 prochaines années, afin de déterminer les dimensions de la structure du corps de chaussée de la route projetée.

L'analyse du trafic et l'étude géotechnique nécessaire pour identifier et classer le sol de notre projet ont conduit au dimensionnement des différentes couche du corps de chaussée.

Nous avons ensuite conçu l'itinéraire de notre route à l'aide du logiciel COVADIS, tout en respectant les normes de tracé qui dépendent de la vitesse de base et de l'environnement.

Suite à cela, nous avons suivi ce tracé par le biais des profils longitudinal et transversal.

Pour conclure notre étude, nous avons procédé à la signalisation ainsi qu'à l'établissement du devis estimatif et quantitatif.

Enfin, l'objectif principal de projet est de présenter une étude en avant-projet détaillé (APD) sur un tronçon de 5 KM situé sur la RN81A1 entre M'daourouch – Raguouba dans la wilaya de Souk-Ahras.

Mots clés APD, trafic, TPC, corps de chaussée, profil en travers

Abstract:

Our project consists in the duplication of a section of the national road RN81A connecting the city of Md'aourouch to the city of Sedrata, in the wilaya of Souk Ahras

The actual study focuses on a 5 km section starting from Md'aourouch (PK0+000) and heading towards Ragouba.

This involves the duplication of the existing road with a typical cross-section profile of 2×7.60 meters for the carriageways, 2×2 meters for the shoulders, and a 2-meter-wide central median.

We began our final study project by analyzing traffic on the RN81-A and forecasting its evolution over the next 20 years, in order to determine the pavement structure dimensions of the proposed road.

The traffic analysis and the geotechnical study required to identify and classify the soil of our project led to the design of the different layers of the pavement structure

We then designed the alignment of our road using COVADIS software, while adhering to the design standards based on the design speed and the surrounding environment.

Following this, we developed the alignment through longitudinal and cross-sectional profiles. To conclude our study, we proceeded with the signage design as well as the preparation of the estimated and quantified bill of quantities

Finally, the main objective of the project is to present a detailed preliminary design study (DPS) for a 5 km section located on the RN81A1 between M'daourouch and Raguoba in the wilaya of Souk Ahras

Keywords:

- DPS (Detailed Preliminary Design) / APD (Advanced Preliminary Design)
- Traffic
- Public Works and Construction (PWC)
- Pavement structure
- Cross-section profil

ملخص:

مشروعنا يتمثل في مضاعفة جزء من الطريق الوطني RN81A الذي يربط بين مدينة مداوروش ومدينة سدراتة في ولاية سوق أهراس.

الدراسة الفعلية تستهدف مقطعاً بطول 5 كيلومترات(PKO+000) انطلاقاً من مداوروش باتجاه رقوبة.

يتعلق الأمر بازدواجية الطريق الحالية، مع مقطع عرضي نموذجي يتكون من 2×7.60 متر للطرقات، و 2×2 متر للأكتاف، بالإضافة إلى جزيرة وسطية بعرض 2 متر

بدأنا مشروع التخرج الخاص بنا بتحليل حركة المرور على الطريق الوطني RN81-A وتوقع تطورها خلال العشرين سنة القادمة بهدف تحديد أبعاد هيكل الرصف للطريق المقترح

أدى تحليل حركة المرور والدراسة الجيوتقنية اللازمة لتحديد وتصنيف تربة المشروع إلى تحديد أبعاد الطبقات المختلفة لهيكل الرصف

قمنا بعد ذلك بتصميم مسار الطريق باستخدام برنامج COVADIS مع احترام معايير التصميم التي تعتمد على السرعة التصميمية والبيئة المحيطة

بعد ذلك، قمنا بمتابعة هذا المسار عبر ملفات العرض والطول. ولختام دراستنا، قمنا بتنفيذ أعمال الإشارات وكذلك إعداد الكميات والتكلفة التقديرية.

أخيراً، الهدف الرئيسي من المشروع هو تقديم دراسة تفصيلية في مرحلة ما قبل المشروع (APD) لمقطع بطول 5 كيلومترات يقع على الطريق الوطني RN81A1 بين مداوروش ورقوبة في ولاية سوق أهراس

الكلمات المفتاحية

- دراسة ما قبل المشروع التفصيلية (APD)
 - حركة المرور
 - الأشغال العامة والبناء (TPC)
 - هيكل الرصف
 - الملف العرضي (القطاع العرضي)

LISTE DES FIGURES

Chapitres	Numéros des	Titres
	Figures	
Chapitre I : Paramètres de	Figure 01	L'emplacement de la wilaya de SOUK- AHRAS.
projet	Figure 02	Le réseau routier de SOUK- AHRAS.
	Figure 03	Localisation du projet. (Vue en google)
	Figure 01	Les éléments de l'axe en plan.
	Figure 02	Les éléments de clothoïde.
	Figure 03	Courbe en S.
	Figure 04	Courbe a sommet.
	Figure 05	Courbe en C.
Chapitre II : Caractéristiques Géométriques du	Figure 06	Courbe en ove.
	Figure 07	Profil en long.
	Figure 08	Angle Saillant
	Figure 09	Schématisation de la condition de visibilité
	Figure 10	Schéma de calcul des rayons en angle Saillant
	Figure 11	Détermination pratique du profil en long.
	Figure 12	Profil en travers type
	Figure 13	Les différents éléments du Profil en travers
tracé	Figure 14	Type de Profil en travers
	Figure 15	Profil en travers type en courbe mixte
	Figure 16	Surface remblai et surface deblai
	Figure 17	Les sections des Profil en travers d'un tracé donnée
	Figure 18	Première carrefour en T
	Figure 19	Deuxième carrefour en T
	Figure 20	Les éléments d'un carrefour ont sens giratoire
	Figure 21	Type de carrefour
	Figure 22	Carrefour en fore T (03 branches)

LISTE DES FIGURES

	Figure 23	Plan de Carrefour giratoire a 3 branches
-	Figure 23	Paramètres fondamentaux d'un carrefour en T
	Figure 01	Analyse granulométrique
	Figure 02	Classification des soles selon Leur Équivalent de sable
	Figure 03	Essai bleu méthylène
Chapitre III :	Figure 04	Essai de Proctor
Géotechniques	Figure 05	Essai de C.B.R
Routiers Et	Figure 06	Essai Los Angeles
Dépendances	Figure 07	Essai Micro Deval
	Figure 08	Machine Micro Deval
	Figure 09	Structure type d'une chaussée souple
	Figure 10	Structure type d'une chaussée semi-rigide
	Figure 11	Structure type d'une chaussée rigide
	Figure 12	La classe du trafic
	Figure 13	Les matériaux et l'épaisseur proposer (méthode C.B.R)
	Figure 01	L'emplacement des ouvrages d'assainissement
	Figure 02	Assainissement de la chaussée
Chapitre IV :	Figure 03	Section transversale d'un ouvrage d'assainissement
Assainissement et	Figure 04	Schéma d'une buse
dépendances de la	Figure 05	Schéma d'un fossé
route	Figure 06	Schéma d'un dalot
	Figure 07	Ligne continue
Ī	Figure 08	Ligne discontinue
Ī	Figure 09	Type des lignes transversal
	Figure 10	Signalisation verticale type A
	Figure 11	Signalisation verticale type B

LISTE DES FIGURES

Figure 12	Signalisation verticale type E
Figure 13	Les panneaux de signalisation de type D
Figure 14	Les paramètres de l'implantation des luminaires
Figure 15	Modèle d'éclairage.

LISTE DES TABLEAUX

Chapitres	Numéros des	Titres
	Tableau	
	Tableau 01	Densité de population dans la zone d'étude.
	Tableau 02	Caractéristique de la route étudie
	Tableau 03	Valeurs de Coefficient d'équivalence P
Chapitre I : Paramètres de	Tableau 04	Valeurs de Coefficient k1
projet	Tableau 05	Valeurs de Coefficient k2
	Tableau 06	Valeurs de Coefficient Cth
	Tableau 07	Récapitulatif des résultats obtenus
	Tableau 01	Rayon en plan selon B40
	Tableau 02	Résulta du calcul
Chapitre II : Caractéristiques Géométriques du tracé	Tableau 03	La distance d'Arrêt
	Tableau 04	Paramètres fondamentaux
	Tableau 05	Donnes de projet
	Tableau 06	La déclivité du projet maximal selon B40
	Tableau 07	Rayon de raccordement convexe
	Tableau 08	Rayon de raccordement concave
	Tableau 01	Récapitulatif de l'essai Proctor
	Tableau 02	Classe de portance de l'indice C.B. R
	Tableau 03	Interprétation de L. A
	Tableau 04	Caractéristique de granulats par M.D.E
Chapitre III :	Tableau 05	Tableau Récapitulatif de la classificationR.T.R
Géotechniques	Tableau 06	Tableau Récapitulatif des sondages
Routiers Et	Tableau 07	Coefficient d'équivalence des matériaux
Dépendances	Tableau 08	Classe du sol selon les valeurs des C.B. R
	Tableau 09	Les zones climatiques
	Tableau 10	Structure disponible dans le catalogue
	Tableau 11	Classe du trafic suivant le catalogue
	Tableau 12	Classe des sols

LISTE DES TABLEAUX

	Tableau 13	Tableau des classes de portance de sol
Chapitre IV : Assainissement et	Tableau 01	Variable de Gausse
dépendances de la route	Tableau 02	Coefficient de ruissellement

INTRODUCTION GENERALE

Introduction générale

L'infrastructure routière est fondamentale pour le progrès d'un pays, car elle constitue un socle pour divers domaines comme le transport de marchandises et de passagers. Par conséquent, elle est cruciale pour l'économie et l'évolution sociale d'une nation. Spécialement pour notre pays l'infrastructure routière constitue la part du lion. De ce fait, la croissance socioéconomique du pays est intimement liée à l'expansion du réseau routier dans le domaine des travaux publics.

Pour atteindre cet objectif notre étude s'inscrit parfaitement dans le projet national de modernisation des infrastructures de transport.

La problématique qui est à la base des projets d'infrastructure routière est souvent liée à l'insuffisance de réseau existant, soit par défaut, soit par saturation.

Il est donc crucial, pour examiner cette question en profondeur, de délimiter ses contours, puis d'imaginer les solutions et d'identifier avec exactitude ses composants. Cela encourage la mise en œuvre d'études de dédoublement.

Tout comme le reste de l'Algérie, la wilaya de Souk Ahras a mis en place un programme grandement prometteur axé principalement sur la réhabilitation de son réseau routier actuel. Notre étude portera également sur le projet de dédoublement de la RN81A, qui s'inscrit dans ce même contexte.

Le sujet du projet de fin d'études consiste à faire l'étude en APD du dédoublement de la route RN81A sur 05 km, reliant M'DAOROUCHE et RAGOUBA du PK 00+000 au PK 05+000.

Ce projet de dédoublement étant nécessaire, compte tenu de :

- L'importance de la route existante qui doit supporter l'intensité du trafic actuel.
- •Les différentes activités économiques, commerciales et sociales de la région et la demande croissante en matière de transport de marchandises qui traverse cet axe.

Notre travail consiste en une présentation générale du projet ainsi que les données de base, une étude de trafic et des tracées en plan avec les différents profils. Aussi le dimensionnement du corps de chaussée à partir de l'étude géotechnique, et par la suite, l'assainissement, la signalisation et l'impact sur l'environnement, On a clôturé notre travail par une estimation du devis et une conclusion générale.

Chapitre I:

Présentation du projet et calcul du trafic

I.I. Présentation du projet :

I.1. Introduction:

L'étude que nous avons menée ayant pour objectif de concevoir en phase Avant-Projet Détaillé (APD) un tronçon routier conclu ce qui suit :

Le tronçon sera réalisé en deux fois deux voies avec un terre-plein central ce sur un linéaire de 5000m.

I.2. La situation géographique :

La Wilaya de Souk-Ahras qui s'étend sur une superficie de 4.359,65 km², est située à l'extrême Nord-Est du pays, et elle est limitée :

- Au Nord par les Wilayas d'El-Taraf et Guelma.
- A l'Ouest par la Wilaya d'Oum-El-Bouaghi.
- Au Sud par la Wilaya de Tébessa.
- A l'Est par la Tunisie sur une bande frontalière s'étalant sur 88km.

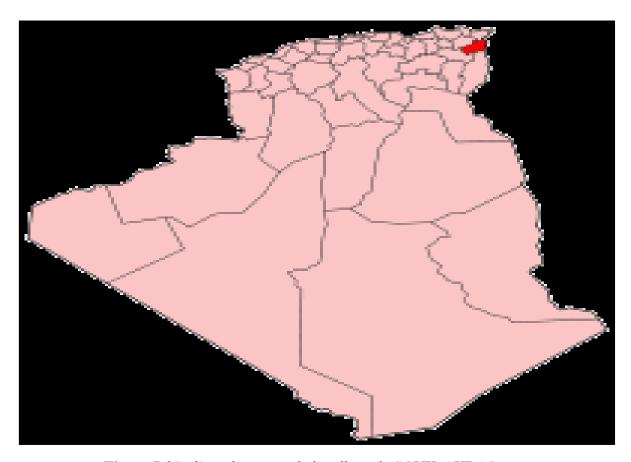


Figure I-01: l'emplacement de la wilaya de SOUK-AHRAS.

La superficie, le nombre de communes ainsi que le nombre d'habitant par kilomètre carré de la wilaya de Souk Ahras sont résumés dans le tableau suivant :

Nb Daïra	Nb communes	Superficie	Population	Densité	
10	26 4630 k		438117 hab	95 hab/km²	

Tableau I-01 : Densité de population dans la zone d'étude.

Le réseau routier de la wilaya concernée set présenté dans la carte qui suit :

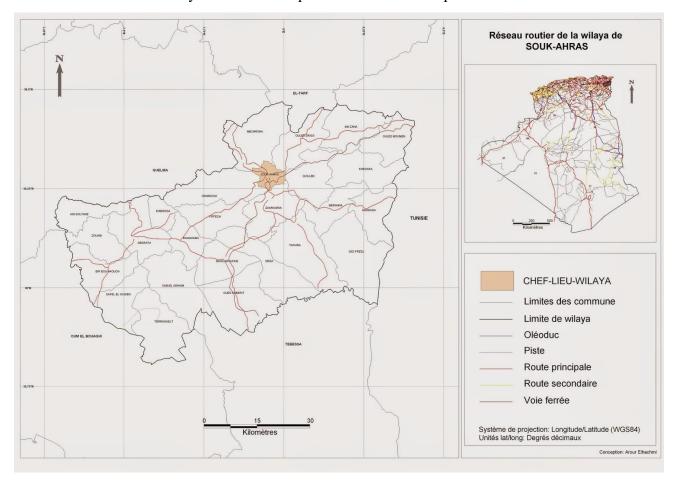


Figure I-02: réseau routier de la wilaya de SOUK-AHRAS.

I.3. Localisation du projet :

Notre projet concerne le dédoublement de la RN81A sur 5 km, reliant M'DAOUROUCHE et RAGOUBA du PK 00+000 au PK 05+000 s'inscrit parfaitement dans cette stratégie de développement et de modernisation du réseau routier d'Algérie surtout qu'il se trouve au niveau des frontières Algerotunisienne constituant ainsi une vitrine de notre pays

La section étudiée commence à partir de la ville M'DAOUROUCHE s'étale sur une longueur de 05 km en allant vers RAGOUBA .

FigureI-03: localisation du projet. (vu en google).

I.4. Justification du projet :

En vue de gagner du temps et d'assurer une conduite agréable et dans un confort maximum pour les usagers, les autorités concernés de l'état algérien ont jugé utile de moderniser le réseau routier existant entre les villes de SEDRATA et M'DAOUROUCHE. Le tronçon entre RAGOUBA et SEDRATA étant réalisé et mis en service, il a été décidé de finaliser le projet en reliant l'étude et dans le futur la réalisation du tronçon M'DAOUROUCHE RAGOUBA en dédoublant la route existante.

I.5. Caractéristique de la route existante :

Les différentes caractéristiques de la route projetée sont résumées dans ce tableau :

PK du début de la section.	0.00		
PK de fin de la section.	18.00		
Longueur de la section en Kms.	18		
Largeur moyenne de la chaussée en m.	7.60		
Nombre de voies.	02		
Sinuosité de la section.	Faible Moyenne		
Environnement de la section.	E2		
Catégorie de la route.	C1		
Vitesse de base en Km/h	80 km/h		
Etat de la chaussée.	Moyenne à Bonne		

Tableau. I 2 : caractéristique de la route étudiée

I.6. Objectif et utilité de l'étude :

Notre projet consiste à étudier un dédoublement d'un tronçon de la route entre M'daourouche et Ragouba sur 05 KM, et consiste à augmenter le niveau de service de la route existante par dédoublement (2×2voies) avec un séparateur (TPC)

Cette étude se traduit par :

- ✓ Améliorer les conditions de circulations.
- ✓ Améliorer la sécurité.
- ✓ Résoudre les problèmes de congestion du trafic routier
- ✓ À réaliser un traitement architectural et environnement
- ✓ Réduire le temps de parcours
- ✓ Améliorer la capacité de Transport

I.7. Données des projets :

Les données ont été récoltées lors de notre visite de la STP de Sédrata et celle de M'daourouch

• Levé topographique :

Toute étude est conçue sur un fond topographique définissant l'état du relief.

Pour notre étude on dispose d'un levé topographique numérique établi à l'échelle

1/1000 comportant le détail planimétrique et altimétrique du terrain naturel

- Le trafic moyen journalier annuel TMJA 2024 = 6460 veh / j
- La vitesse de référence Vr = 80 Km / h
- Etudes géotechnique
- Le CBR est égale à CBR = 4 (voir chapitre géotechnique)
- Le niveau de service : Catégorie 1 ; Environnement 2
- Le type de relief : pratiquement plat
- La route existante à une largeur entre 7.5 et 8.5m

I.II. Étude du trafic :

II.1. Introduction:

L'étude de trafic est une donnée nécessaire aux réflexions sur le développement des infrastructures de transport. Elle Impactera directement sur les caractéristiques des voies à créer ainsi que les caractéristiques des chaussées.

On peut citer des choix possibles :

- Nécessité ou non d'une déviation d'agglomération.
- Choix du tracé par rapport aux zones bâties.
- Position des échangeurs (cas des autoroutes et ouvrages importants).
- Géométrie des carrefours.
- Dimensionnement des chaussées en fonction des trafics poids lourds cumulés.

II.2. Analyse du trafic existant :

Diverse méthode permettant de recueillir des informations de nature et d'intérêt variable en ce qui concerne les trafics, on veille cependant à adopter le niveau de connaissance aux besoins.

Le cout des investigations conduit à limiter celle-ci à ce qui est nécessaire, mais on s'attache de disposer aussi de l'ensemble des éléments permettant de décider en toute connaissance de cause.

Enfin, on peut être amené à procéder en plusieurs étapes et à affiner l'étude du trafic au fur et à mesure de l'ensemble du projet.

Les éléments de ces analyses sont multiples :

- Statistiques générales.
- Comptages sur routes (manuels, automatique).
- Enquêtes de circulation (origine, destination).

II.3. Diffèrent type de trafic :

- a. Trafic normal : il s'agit du trafic existant de l'ancien aménagement sans prendre compte du nouveau projet.
- b. Trafic dévié :_désigne le trafic attiré vers la nouvelle route aménagée et empruntant, sans investissement, d'autres routes ayant la même destination, la dérivation de trafic n'est qu'un transfert entre les différents moyens d'atteindre la même destination.

- c. Trafic induit : c'est le trafic qui résulte :
- Le nouveau mouvement de personnes qui a lieu en raison de la mauvaise qualité de l'ancien aménagement routier n'a pas été réalisé auparavant ou a été réalisé vers d'autres destinations.
- Une augmentation de production et de vente grâce à l'abaissement des coûts de production, et de vente due une facilité apportée par le nouvel aménagement routier.
- d. Trafic total : est le trafic du nouveau projet d'aménagement, c'est-à-dire la somme du trafic induit et du trafic dévié.

II.4. L'Analyse du Trafic :

Afin de déterminer en un point et en un instant donné le volume et la nature du trafic, il est nécessaire de procéder à un comptage qui nécessite une logistique et une organisation approprié.

Pour obtenir le trafic, on peut recourir à divers procédés qui sont :

- La statistique générale.
- Les comptages sur route (manuel et automatique).
- Les enquêtes

La Mesure des Trafics : Cette mesure est réalisée par différents procédés complémentaires :

- Les comptages : permettent de quantifier le trafic.
- Les enquêtes : permettent d'obtenir des renseignements qualificatifs.

4.1. Les Comptages :

C'est l'élément essentiel de l'étude de trafic, On distingue deux types de comptages : Les comptages manuels et Les comptages automatiques.

a. Les comptages manuels : Ils sont réalisés par les agents qui relèvent la composition du trafic pour compléter les indicateurs fournis par les comptages automatiques. Les comptages manuels permettent de connaître le pourcentage de poids lourds et les transports communs.

Les trafics sont exprimés en moyenne journalière annuelle (T.J.M.A)

b. Les comptages automatiques : Ils sont effectués à l'aide d'appareil enregistreur comportant une détection pneumatique réalisée par un tube en caoutchouc tendu en travers de la chaussée.

On distingue ceux qui sont permanents et ceux qui sont temporaires :

Les comptages permanents : sont réalisés en certains points choisis pour leur représentativité sur les routes les plus importantes : réseau autoroutier, réseau routier national et le chemin de Wilaya les plus circulés.

Les comptages temporaires : s'effectuent une fois par an durant un mois pendant la période ou le trafic est intense sur les restes des réseaux routiers à l'aide de postes de comptages tournant. L'inconvénient de cette méthode est que tous les matériels de comptage actuellement utilisés ne détectent pas la différence entre les véhicules légers et les poids lourds.

4.2 Les Enquêtes Origine Destination :

Il est plus souvent opportun de compléter les informations recueillies à travers des comptages par des données relatives à la nature du trafic et à l'orientation des flux, on peut recourir en fonction du besoin, à diverse méthodes, lorsque l'enquête est effectuée sur tous les accès à une zone prédéterminée (une agglomération entière, une ville ou seulement un quartier) on parle d'enquête cordon.

Cette méthode permet en particulier de recenser les flux de trafic inter zonaux, en définissant leur origine et destination. Il existe plusieurs types d'enquêtes :

a. Les Enquêtes papillons ou distributions :

Le principe consiste à délimiter le secteur d'enquête et à définir les différentes entrées et sorties, un agent colle un papillon sur le pare-brise de chaque véhicule (ou on distribue une carte automobiliste), sachant que ces papillons et sont différents à chaque entrée, un autre agent identifie l'origine des véhicules en repérant les papillons ou en récupérant les cartes.

- Les avantages de la méthode : sont la rapidité de l'exploitation et la possibilité de pouvoir se faire de jour comme de nuit.
- Les inconvénients de la méthode : c'est que l'enquête ne permet pas de connaître l'origine et la destination exacte des véhicules, mais seulement les points d'entrées et de sortie du secteur étudié.

b. Relevé des plaques minéralogiques :

On relève, par enregistrement sur un magnétophone, en différents points (à choisir avec soin du réseau, les numéros minéralogiques des véhicules ou au moins une (de l'ordre de quatre chiffres ou lettres), la comparaison de l'ensemble des relevés permet d'avoir une idée des flux.

Cette méthode permet d'avoir des résultats sans aucune gêne de la circulation, par contre, le relevé des numéros est sujet à un risque d'erreur non négligeable.

c. Interview des conducteurs :

Cette méthode est lourde et onéreuse mais donne des renseignements précis, on arrête (avec l'aide des forces de gendarmerie pour assurer la sécurité) un échantillon de véhicules en différents points du réseau et on questionne (pendant un temps très court qui ne doit pas dépasser quelques minutes sous

peines d'irriter l'usager) l'automobiliste pour recueillir les données souhaitées :(origine, motif, fréquence et durée, trajet utilisé).

Ces informations s'ajoutent à celles que l'enquêteur peut relever directement tels que le type de véhicule.

d. Les enquêteurs à domicile – Enquête ménage :

Un échantillon de ménages sélectionné à partir d'un fichier fait l'objet d'un interview à son domicile par une personne qualifiée, le temps n'étant plus limité comme dans le cas des interviews le long des routes, on peut poser un grand nombre de questions et obtenir de nombreux renseignements, en général, ce type d'enquête n'est pas limité à l'étude d'un projet particulier, mais porte sur l'ensemble des déplacements des ménages dans une agglomération.

II.5. Modèle de présentation du trafic :

Dans l'étude des projections des trafics, la première opération consiste à définir un Certain nombre de flux de trafic qui constitue des ensembles homogènes, en matière D'évolution ou d'affectation.

Les diverses méthodes utilisées pour estimer le trafic dans le futur sont :

• Prolongation de l'évolution passée. :

La méthode consiste à extrapoler globalement au cours des années à venir, l'évolution des trafics observés dans le passé. On établit en général un modèle de croissance du type exponentiel

Le trafic Tn à l'année "n" sera :

$$T_n = T_0 (1 + \tau)^n$$

Où:

T₀ : est le trafic à l'arrivée pour l'origine.

T : est le taux de croissance

• Corrélation entre le trafic et les paramètres économiques.

Elle consiste à rechercher dans le passé une corrélation entre le niveau de trafic d'une part et certains indicateurs macro-économiques :

Produit national brut (PNB).

Produits des carburants, d'autres part, si on pense que cette corrélation restera à vérifier dans le taux de croissance du trafic, mais cette méthode nécessite l'utilisation d'un modèle de simulation. ce qui sort de cadre de notre étude.

• Modèle gravitaire :

Il est nécessaire pour la résolution des problèmes concernant les trafics actuels au futur proche, mais il se prête mal à la projection.

Modèle de facteur de croissance :

Ce type de modèle nous permet de projeter une matrice origine - destination. La méthode la plus utilisée est celle de Fratar qui prend en considération les facteurs suivants

Le taux de motorisation des véhicules légers

Le nombre d'emploi.

La population de la zone

II.6. Calcul de la Capacités :

6.1 Définition de la capacité :

La capacité est le nombre de véhicules qui peuvent raisonnablement passer sur une direction de la route « ou deux directions » avec des caractéristiques géométriques de circulation qui lui sont propres durant une période bien déterminée, la capacité s'exprime sous forme d'un débit horaire.

La capacité dépend :

- Des conditions de trafic.
- Des conditions météorologiques.
- Le type d'usagers habitués ou non à l'itinéraire.
- Des distances de sécurité (ce qui intègre le temps de réaction des conducteurs variables d'une route à l'autre)
- Des caractéristiques géométriques de la section considérée (nombre et largeur des voies)

6.2 La procédure de détermination du nombre de voies :

Le choix du nombre de voies résulte de la comparaison entre l'offre et la demande, c'est à dire, le débit admissible et le trafic prévisible à l'année d'exploitation.

Pour cela il est donc nécessaire d'évaluer le trafic journalier moyen annuel (TJMA) à l'année horizon'n'

6.2.1 Calcul de TJMA horizon:

La formule qui donne le trafic journalier moyen annuel à l'année horizon est :

TJMA horizon = TJMA service
$$(1 + \tau)^{N}$$

TJMA service : trafic journalier moyen à l'année de mise en service.

τ : taux d'accroissement annuel.

n : nombre d'année à partir de l'année de mise en service.

6.2.2 Calcul de trafic effectif 'Teff':

C'est le trafic traduit en unité de véhicules particulier (UVP), en fonction de type de route et de l'environnement.

Pour cela on utilise des coefficients d'équivalence(P) pour convertir les poids lourds (PL)en (UVP).

Le trafic effectif est donné par la relation suivante :

Teff =
$$[(1 - Z) + (P \times Z)] \times TJMA$$
 horizon

T eff: trafic effectif à l'horizon en (U.V.P/j)

Z: pourcentage de poids lourds (%).

P: coefficient d'équivalence pour les poids lourds, il dépend de la nature de la route.

Environnement	E1	E2	E3
	(Plaine)	(Vallonne)	(Montagneux)
Route à bonne Caractéristique (C3, C4, C5)	2-3	4-6	8-12
Route étroite, ou à visibilité réduite (C2, C1)	3-6	6-12	16-24

Tableau I.3: Valeurs du coefficient d'équivalence P

6.2.3 Débit de pointe horaire normale :

Le débit de pointe horaire normal est une traction du trafic effectif à l'horizon, il est donné par la formule :

$$Q = (1/n) \times T_{eff}$$

Q : Débit de pointe horaire, exprimé en UVP/h

n: Nombre d'heure, (en général n=8 heures).

1/n: Coefficient de pointe pris égale 0,12. d'après le B40

Teff: trafic effectif

6.2.4 Débit horaire admissible :

Le débit horaire maximal accepté par voie est déterminé par application de la formule :

$Qadm = K1 \times K2 \times Cth$

K₁: coefficient lié à l'environnement.

K₂: coefficient de réduction de capacité.

Cth: capacité théorique par voie, qu'un profil en travers peut écouler en régime stable, (en UVP/h).

Environnement	E1	E2	E3
K_1	0.78	0.85	0.90à0.95

Tableau I.4: Valeurs du coefficient K1

	Catégorie de la route					
Environnement	Vitesse de	Vitesse de	Vitesse de base	Vitesse de	Vitesse de	
	base= 40km/h	base=60	=80km/h	base=100km/h	base=120km/h	
	C1	km/h	С3	C4	C5	
		C2				
E1	1.00	1.00	1.00	1.00	1.00	
E2	0.99	0.99	0.99	0.98	0.98	
E3	0.91	0.95	0.97	0.96	0.96	

Tableau I.5: Valeurs du coefficient K2

	Capacité théorique		
Route à 2 voies de 3,5 m	1500 à 2000 uvp/h		
Route à 3 voies de 3,5 m	2400 à 3200 uvp/h		
Route à chaussées séparées	1500 à 1800 uvp/h		

Tableau I.6 : valeurs de Cth

Calcul le nombre de voies :

- Cas d'une chaussée bidirectionnelle :

On compare Q à Qadm et on prend le profil permettant d'avoir : Qadm > Q

- Cas d'une chaussée unidirectionnelle :

Le nombre de voie par chaussée est le nombre le plus proche du rapport

N = S. Q / Qadm

Avec : S : coefficient dissymétrie en général = 2/3

Q_{adm}: débit admissible par voie

II.7. Application au projet :

7.1 Données de trafics :

Hypothèses de calcul:

- * Année de comptage 2024
- * Année de mise en service 2029
- * Durée de vie 20 ans
- *Le taux de croissement est de 3.5 %
- *Environnement E2
- *Catégorie C1

Les données :

En se basant sur les données de trafic qui nous ont été fournis par la STP de M'DAOUROUCH qui sont les suivants :

- Le trafic à l'année 2024 TJMA2024= 6460 (v/j).
- Le taux d'accroissement annuel du trafic $\tau = 3.5\%$.
- La vitesse de base sur le tracé VB= 80 (Km/h).
- Le pourcentage de poids lourds PL= 21 %.
- L'année de mise en service sera en 2029
- La durée de vie estimée est de 20 ans.
- Environnement E2 et la catégorie C1

7.2 Calcul de TJMA de l'année de service :

$$TJMA2029 = (1 + \tau)^5 \times TMJA 2024$$

$$TJMA2029 = (1+0.035)^5 \times 6460 = 7672.45 \text{ (v/j)}$$

Donc:
$$TJMA2029 = 7673 (v/j)$$

7.3 Calcul de TJMA de l'année horizon 2049 :

$$TJMA2049 = (1+\tau)^{20} \times TMJA 2029$$

$$TJMA2049 = (1+0.035)^{20} \times 7673 = 15267,65 \text{ (v/j)}$$

Donc TJMA2049 =
$$15268 \text{ (v/j)}$$

7.4 Calcul des trafics effectifs:

$$T_{\text{eff }2049} = [(1 - Z) + PZ] \text{ TMJA} 2049$$

Avec:

T_{eff}: trafic effectif à l'horizon.

Z : pourcentage de poids lourds (21%)

P: coefficient d'équivalence

$$P = 6$$
 (Route étroite, E2)

$$T_{\text{eff }2049} = [(1-0.21) + (6 \times 0.21)] \times 15268 = 31299.40$$

Donc
$$T_{eff} = 31300 \text{ uvp/j}$$

7.5 Débit de pointe horaire normal :

Le débit de pointe normale est une fraction du trafic effectif à l'horizon h, il est exprimé en uvp/h

$$Q_{2049} = T_{eff} (1/n)$$

Avec:

(1/n) coefficient de pointe prise égale 0.12 (n = 8 heures)

$$Q_{2049} = (1/n) T_{eff} = 0.12 \times T_{eff}$$

$$\mathbf{Q}_{2049} = 0.12 \times 31300 = 3756 \text{ uvp/h}$$

7.6 Calcul du Débit admissible :

Il est déterminé par application .de formule suivante :

$$Qadm = K_1 \times K_2 \times Cth$$

Avec :
$$K1 = 0.85$$
 pour Catégorie C1

$$K2 = 0.99$$
 pour Environnement E2

D'après B40 on adopte pour l'évitement un profil à 2 voies

On prend :
$$Cth = 1600 (uvp/h)$$
.

Donc:

$$Qadm = 0.85 \times 0.99 \times 1600$$

7.7 Détermination de nombre de voies :

$$N = S \times (Q/Q_{adm})$$

Avec : S : Coefficient de dissymétrie, en général égal à (2/3)

$$Q = 3756 (uvp/h)$$

$$N = (2/3) \times (Q/Qadm)$$

$$N = (2/3) \times 3756/1346 = 1.86$$

Donc: n = 2 voies par sens

7.8 Calcul de l'année de saturation :

On a:

$$T_{\text{eff }2029} = [(1-0, 21) + (6\times0, 21)] \times 7673 = 15729.65 \text{ (uvp/j)}.$$

$$T_{\text{eff }2029} = 15730 \text{ (uvp/j)}.$$

$$T_{2029}$$
= 0,12 × 15730= 1887.60 (uvp/h).
= 1888 (uvp/h).

Donc : Qsaturation = $4 \times Q_{adm}$

Q Saturation= $4 \times 1346 = 5384$ (uvp/h).

Q Saturation= 5 384 (uvp/h).

Q Saturation= $(1+\tau)$ n× Q 2029

 $n = log (Q Saturation / Q_{2029}) / log (1+\tau)$

 $n = log (5384/1888) / log (1+0,035) = 30.46 \approx 31ans$ n=31ans

Donc: l'année de saturation = 2024+31=2055

Les calculs sont représentés dans le tableau suivant :

TJMA2024 (v/j)	TJMA2029 (v/j)	TJMA2049 (v/j)	Teff ₂₀₂₉ (uvp/j)	Teff2049 (uvp/j)	Q ₂₀₂₉ (uvp/j)	Q ₂₀₄₉ (uvp/j)	N
6460	7673	15268	1888	31300	1888	3756	02

Tableau I.7: Récapitulatif des résultats obtenus

CONCLUSION:

D'après le calcul de capacité de la pénétrante, on constate que son profil en travers est de :

Chaussée de 02 voies (2 x 3.8 m).

Chapitre II: Caractéristiques géométriques du tracé

II.I. Tracé en plan:

I.1. Introduction:

Par définition le tracé en plan est une succession de droites reliées par des liaisons. Il représente la projection de l'axe routier sur un plan horizontal qui est soit une carte topographique ou un relief schématise par des courbes de niveau.

Les caractéristiques des éléments constituant le tracé en plan faut les conditions de confort et de stabilité et qui sont données directement dans les codes routiers en fonction de la vitesse de base et le frottement de la surface assuré par la couche de roulement.

Le tracé en plan est une pièce topographique qui résulte théoriquement par la projection à une échelle réduite de la route sur un plan horizontale.

L'axe en plan est choisi généralement au milieu de la piste existante, il est constitué des éléments géométriques suivants :

- Droites ou alignements;
- Arcs de cercle;
- Courbes de raccordement de courbure progressive.

I.2. Vitesse de base du projet :

Lors de l'étude d'un tracé, la vitesse intervient de façon déterminante dans le choix des différents éléments géotechniques qui le composent. C'est le critère de base de tout un projet routier.

Ce paramètre a une influence primordiale sur l'économie globale de l'investissement, son taux d'utilisation, la sécurité et le confort des usagers et les nuisances pour les riverains.

La normalisation des conditions techniques d'aménagement, s'appuie essentiellement sur la vitesse de référence.

La vitesse de référence c'est la vitesse d'un véhicule isolé permettant de définir les caractéristiques minimales d'aménagement des points particuliers d'une section de route pour lesquels les contraintes géométriques sont les plus astreignantes pour l'usager.

Cette vitesse choisie en tenant compte des critères suivants :

- Caractéristiques topographiques
- Importance de la route dans le réseau
- Condition économique
- Volume et structuration du trafic.

I.3. Règles à respecter dans le tracé en plan :

Les normes exigées et utilisées dans notre projet sont résumées dans le B40, il faut respecter ces normes dans la conception ou dans la réalisation. Dans ce qui suit, on va citer certaines exigences qu'elles nous semblent pertinentes.

- Eviter de passer sur les terrains agricoles et zones forestières si possibles.
- L'adaptation de tracé en plan au terrain naturel afin d'éviter les terrassements importants.
- Se raccorder au réseau routier existant
- Eviter toutes sortes les réseaux divers (réseaux AEP, d'éclairage public, gaz...)
- Appliquer les normes du **B40** si possible.
- Chercher le meilleur tracé possible en évitant au maximum les propriétés privées.
- Eviter les sites qui sont sujets à des problèmes géologiques (présence de failles ou des matériaux présentant des caractéristiques très médiocres)
- Eviter la démolition du bâti (maisons, constructions et habitats)
- Lorsqu'il y a une ligne électrique aérienne, une hauteur d'au moins 10m doit être prévue
- Eviter les courbes de cercles-cercles dans un sens inverse pour s'échapper de chevauchement et des changements des dévers sur ces courbes
- Respecter la longueur minimale des alignements droits si c'est possible.
- Utiliser des grands rayons si l'état du terrain le permet.
- Eviter le franchissement des oueds, afin de minimiser le nombre de l'ouvrage d'art couteux.
- Utiliser des grands rayons si l'état du terrain le permet.
- Eviter de détruire les ouvrages, principalement les ouvrages hydrauliques tout en les gardant dans la limite possible.
- Respecter la pente maximum, et s'inscrire au maximum dans une même courbe de niveau.
- Respecter les points de départ et d'arriver.
- Respecter les normes de l'ARP (l'aménagement des routes principales)
- Le pourcentage d'alignements droits d'une section de route est limité de 40 à 60%.

VOA 2025

I.4. Les éléments du tracé en plan :

En première approximation, le tracé de l'axe des routes est composé de lignes droites raccordées par des cercles. Mais la pratiques des grandes vitesses a imposé l'emploi d'un élément supplémentaire pour le tracé.

Un tracé en plan moderne est constitué de trois éléments :

- Des alignements droits.
- Des arcs de cercle.
- Des courbes de raccordement progressives.

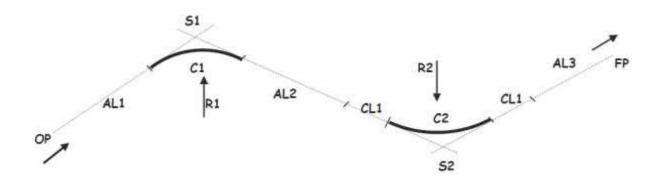


Figure II.01: Eléments de l'axe en plan.

Avec:

- **OP**: origine du projet.
- **FP**: Fin projet.
- **AL**: Alignement droit;
- C: Courbe circulaire.
- **CL**: Clothoïde.
- **R**: Rayon de courbure.
- S : Sommet des alignements.

4.1 Droits (les alignements):

Initialement, le tracé d'une route est composé d'une série de segments de droites comme une ligne brisée dénommé ligne polygonale. Bien sûr que la circulation ne peut se développer sur un tel tracé et les alignements seront raccordés avec des courbes.

Actuellement, les itinéraires légèrement infléchis sont généralement préférés pour deux raison: les alignements longs permettent aux conducteurs de trop se détendre, leur attention ne sera pas

VOA 2025

maintenue en éveil par les virages, et en même temps c'est gênant la nuit du fait de l'éblouissement causé par les phares à longue distance.

On a donc tendance à remplacer les grandes lignes droites par une succession d'alignements courts et courbes de très grands rayons. En revanche, un rayon trop faible doit être spécifié, car la force centrifuge est d'une importance dangereuse. Le pourcentage de longueur des alignements devrait être compris entre 40% et 60% sans descendre au-dessus de 20%.

Les longueurs des alignements ou des droites sont calculées par les relations ci-après.

a - Longueur minimale:

Celle qui correspond à un chemin parcouru durant un temps t d'adaptation.

$$L(m) = v.t = 5. V/3.6 = 2. Lmin = 111m$$

Avec V=80Km/h: vitesse de base en km/h

t = 5 secondes.

v : vitesse du véhicule m/s.

V : vitesse du véhicule en Km/h.

b - Longueur maximale:

Celle qui correspond au chemin parcouru pendant 1 minute à la vitesse V.

$$L(m) = v.t = 60. V/3.6 = \sum Lmax = 1333m$$

Avec V=80Km/h: vitesse de base en km/h

t = 60 secondes.

v : vitesse du véhicule m/s.

V : vitesse du véhicule en Km/h

4.2 Arc de cercle:

Pour calculer les valeurs des courbes, il faut respecter les trois conditions ci-après :

- Assurer la stabilité des véhicules en courbe.
- Garantir la visibilité en courbe.
- Elaborer les surlargeurs dans les courbes de faible rayon pour permettre la déviation des véhicules longs.

On essaye de choisir les plus grands rayons possibles en évitant de descendre en dessous du rayon minimum préconisé

4.2.1 Stabilité en courbe :

Le véhicule subit en courbe une instabilité à l'effet de la force centrifuge, afin de réduire de cet effet on incline la chaussée transversalement vers l'intérieur, pour éviter le glissement des véhicules en temps plusieurs, en fait de fortes inclinaisons d'où are cours à augmenter le rayon.

Dans la nécessité de fixer les valeurs de l'inclinaisons (dévers) ce qui implique un rayon minimal.

a) Rayon horizontal minimal absolu :(RHm)

C'est le plus faible rayon admissible dans une courbe, il est défini pour un dévers Maximal de 7%

$$RHm = \frac{V_r^2}{127(f_t + d_{\max})}$$

Avec : ft : Coefficient de frottement transversal

dmax = 7% en catégorie 1 - 2

dmax = 8% en catégorie 3 - 4

dmin = 9% en catégorie 5

<u>NB</u>: Il est bien de rappeler que pour une route de catégorie donnée, il n'y a aucun rayon inferieur à RHm(rayon minimum absolue), on utilise alors autant que possible des valeurs supérieures ou égale à RHm.

b) Rayon minimal normal :(RHN)

C'est le rayon normal qui correspond au rayon minimal calculé pour une vitesse Vr, augmenté de **20Km/h**, pour plus de sécurité et de confort.

$$RHN = \frac{(V_r + 20)^2}{127(f_t + d_{\text{max}})}$$

Avec :
$$d = (dmax - 2\%)$$
 en catégorie $1 - 2 - 3 - 4$
 $d = (dmax - 3\%)$ en catégorie 5.

c) Rayon au dévers minimal (RHd)

C'est le rayon auquel la chaussée est déversée vers l'intérieur de la courbe, et rend l'accélération centrifuge résiduelle à la vitesse Vr égale à l'accélération centrifuge subie par le véhicule lorsqu'il circule à la même vitesse en alignement droit.

$$\mathbf{RHd} = \frac{V_r^2}{127 \times 2 \times d_{min}}$$

Dévers associé
$$dmin = 2,5 \%$$
 en cat $1-2$
 $dmin = 3 \%$ en cat $3-4-5$

d) Rayon minimal non déversé (RHnd)

C'est un rayon tel que l'accélération centrifuge résiduelle acceptée pour un véhicule parcourant à la vitesse Vr une courbe de dévers égal à dmin vers l'extérieur, reste inférieur à une valeur limite f''. Ce rayon est calculé par la formule ci-après :

RHnd =
$$\frac{{v_r}^2}{{127 \times 0.035}}$$
 catég 1-2

RHnd = $\frac{{v_r}^2}{{127(f'-d_{\min})}}$ catég 3-4-5

Avec:

- Pour les catégories 1 et 2 : f'' = 0.06.
- Pour la catégorie 3 : f'' = 0.07.
- Pour les catégories 4 et 5 : f'' = 0.075.

4-2-2 : Règles pour l'utilisation des rayons en plan :

- Ne jamais utiliser des rayons en plan inférieurs à RHm. On utilise autant que possible des rayons supérieurs ou égaux à RHN.
- Les rayons compris entre RHd et RHnd sont déversés avec un dévers minimum.
- Tous les rayons compris entre RHm et RHnd sont munis de courbes de raccordement
- Ne pas placer de virage isolé de faible rayon rompant l'homogénéité de l'itinéraire ;
- Un rayon RHm doit être encadré par RHN.
- Ne pas placer de virage isolé de faible rayon rompant l'homogénéité de l'itinéraire
- Les rayons compris entre RHd et RHnd sont déversés avec un dévers minimum.
- Les rayons compris entre RHm et RHd sont déversés avec un dévers interpolé linéairement en 1/R arrondi à 0,5% prés.

4-2-3: APPLICATION AU PROJET:

Notre projet, est situé dans un environnement E2 et Classé en catégorie Cat 1 avec une vitesse de base 80km/h, on utilise comme référence les rayons normalisés (**B40**) ainsi que les devers qui leurs sont associés.

Paramètre	Symbole	Devers	Valeur R
Rayon minimal absolu	RHm	7%	250
Rayon minimal normal	RHN	5%	450
Rayon au devers minimal	RHd	2,5%	1000
Rayon non déversé	RHnd	-2,5%	1400

Tableau II.1: rayons en plan selon (B40)

4-3 Raccordements progressifs:

Le raccordement d'un alignement droit à une courbe circulaire doit être fait par des courbures progressives permettant l'introduction du devers et la condition du confort et de sécurité.

La courbe de raccordement la plus utilisée est la **Clothoïde** grâce à ses particularités, c'est-àdire pour son accroissement linéaire des courbures.

Elle assure à la voie un aspect satisfaisant en particulier dans les zones de variation du devers (condition de gauchissement) et assure l'introduction de devers et de la courbure de façon à respecter les conditions de stabilité et de confort dynamique qui sont limitées par unité de temps de variation de la sollicitation transversale des véhicules.

Rôle Et Nécessité Des Courbes De Raccordement :

L'emploi des courbes de raccordement se justifie par les quatre conditions suivantes :

- > Stabilité transversale du véhicule.
- Confort des passagers du véhicule.
- > Transition de la forme de la chaussée.
- Tracé élégant, souple, fluide, optiquement et esthétiquement satisfaisant.

4-3-1 Types de courbe de raccordement :

Parmi les courbes mathématiques connues qui satisfont à la condition désirée d'une variation continue de la courbure, nous avons retenu les trois courbes suivantes :

- ➤ Parabole cubique ;
- ➤ Lemniscate;
- ➤ Clothoïde.

a) - Parabole cubique :

Cette courbe est d'un emploi très limité vu le maximum de sa courbure vite atteint (utilisée dans les tracés de chemin de fer).

b) - Lemniscate:

Cette courbe utilisée pour certains problèmes de tracés de routes « trèfle d'autoroute » sa courbure est proportionnelle à la longueur de rayon vecteur mesuré à partir du point d'inflexion.

c) - Clothoïde:

La Clothoïde est une spirale, dont le rayon de courbure décroît d'une façon continue dès l'origine où il est infini jusqu'au point asymptotique où il est nul. La courbure de la Clothoïde, est linéaire par rapport à la longueur de l'arc. Parcourue à vitesse constante, la Clothoïde maintient constante la variation de l'accélération transversale, ce qui avantageux pour le confort des usagers.

4-3-2 Clothoïde:

La courbe est proportionnelle à l'abscisse curviligne (ou longueur de l'arc).

$A=\sqrt{RL}$

C'est -à- dire que pour le paramètre A choisi, le produit de la longueur L et du rayon R est constant.

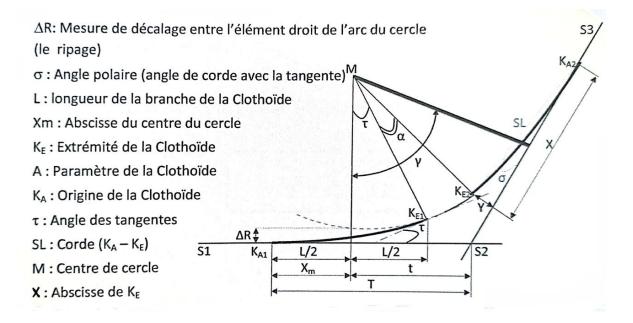


Figure II.2: Elément De La Clothoïde

4-3-3 Les conditions de raccordement :

La longueur de raccordement progressif doit être suffisante pour assurer les conditions suivantes :

a. Condition de confort optique :

C'est une condition qui permet d'assurer à l'usager une vue satisfaisante de la route et de ses obstacles éventuels.

L'orientation de la tangente doit être supérieure à 3° pour être perceptible à l'œil.

 $\tau \geq 3^{\circ} \text{ soit} \geq \tau 1/18 \text{ rad.}$

 $\tau = L/2R > 1/18 \text{ rad} \Rightarrow L \ge R/9 \text{ soit } A \ge R/3.$

 $R/3 \le A \le R$

Règle générale (B40):

Pour : R< 1500 m $\Rightarrow \Delta$ R = 1m (éventuellement 0.5m) d'où L = $\sqrt{24.R.\Delta R}$

Pour : 1500 < R < 5000 m $\tau = 3^{\circ}$ c'est-à-dire L= R/9

Pour : R > 5000m $\Rightarrow \Delta$ R limité à 2,5m soit $L = 7.75\sqrt{R}$

b. Condition de confort dynamique:

Cette condition consiste à limiter le temps de parcours d'un raccordement et la variation par unité de temps de l'accélération transversale d'un véhicule. La variation de l'accélération transversale est :

 $((V^2/R)-g^*\Delta d)$ Ce dernier est limité à une fraction de l'accélération de pesanteur

$$Kg = g/0.2VB$$
.

Avec une gravitation g = 9.8 m/s.

VB: vitesse de base (Km/h).

R: le rayon (m).

 Δd : la variation de divers ($\Box d = dfinal-dinit$) (%).

$$L \ge \frac{Vr^2}{18} \cdot \left(\frac{Vr^2}{127.R} - \Delta d\right)$$

c. Condition de gauchissement :

Cette condition a pour but de s'assurer que la voie à un aspect satisfaisant, notamment dans les zones de variation de dévers (Δd en%), ce qui limite la pente relative du profil en long du bord de la chaussé déversées par rapport à celle de son axe. Cette pente est limitée à:

$$\Delta p = \frac{0.5}{Vr}$$

$$L \ge \frac{l \times Vr \times \Delta d}{50}$$

Cependant $\Delta P \ge 0.5\%$ afin d'assurer un écoulement satisfaisant des eaux.

La vérification des deux conditions de gauchissement et au confort dynamique, peut ce faire à l'aide d'une seule condition qui sert à limiter pendant le temps de parcours du raccordement, la variation par unité de temps, du dévers de la demi-chaussée extérieure au virage. Cette variation est limitée à 2%.

$$L \ge \frac{5}{36}$$
. Δd . Vr

∆d : exprimé en valeur réelle.

I.5. Combinaison des éléments de tracé en plan :

La combinaison des éléments du tracé en plan donne plusieurs types de courbes, on cite :

Courbe en S (ou à inflexion) :

Une courbe constituée de deux arcs de Clothoïde, de concavité opposée tangente en leur point de courbure nulle et raccordant deux arcs de cercle.

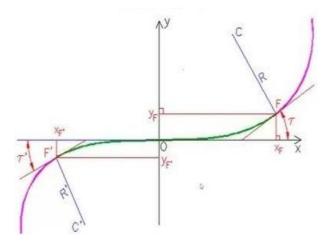


Figure II.3 : courbe en S

Courbe à sommet :

Une courbe constituée de deux arcs de Clothoïde, de même concavité, tangents en un point de même courbure et raccordant deux alignements.

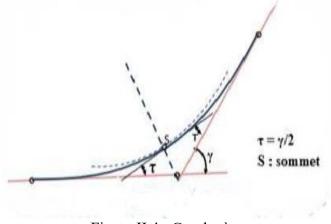


Figure II.4: Courbe à sommet.

Courbe en Ove :

Un arc de Clothoïde raccordant deux arcs de cercles dont l'un est intérieur à l'autre, sans lui être concentrique.

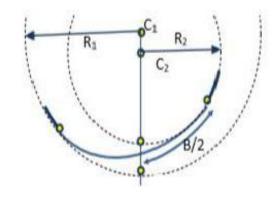


Figure II.6 : Courbe en Ove

Courbe en C:

Une courbe constituée de deux arcs de Clothoïde, de même concavité, tangents en un point de même courbure et raccordant deux arcs de cercles sécants ou extérieurs l'un à l'autre.

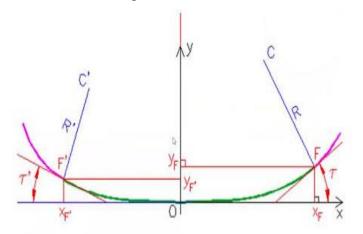


Figure II.5: Courbe en C

I.6. Devers:

Le dévers de la route est par définition la pente transversale de la chaussée il permet l'évaluation des eaux pluviales et il assure la stabilité des véhicules en courbe.

- ✓ Pour tout rayons supérieurs à RHnd : $d = 2.5 \, \text{e/s}$.
- ✓ Pour RHN \leq R \leq RHnd : le dévers d est vers l'intérieur du virage et égale à 2,5%
- ✓ Pour $\mathbf{RHm} \leq \mathbf{R} \leq \mathbf{RHN}$, le dévers est donné par la formule :

$$d = d_{max} + (\frac{1}{R} - \frac{1}{RHm}) \frac{d_{max} - d_{RHN}}{\frac{1}{RHm} - \frac{1}{RHN}}$$

Pour RHN < R < RHd:

$$d=d_{min}+(\frac{1}{R}-\frac{1}{RHd})\frac{d_{min}-d_{RHN}}{\frac{1}{RHd}-\frac{1}{RHN}}$$

Pour le cas de l'élément clothoïde où le rayon est variable le long de raccordement le dévers suit cette variation, en passent de 2,5% pour R >RHnd progressivement, jusqu'à dR qui représente le dévers correspondant au rayon R de l'élément raccordé.

Remarque:

On essaye de choisir les plus grands rayons possibles en évitant de descendre en dessous du rayon minimum préconise.

Notre étude si porte sur une route de catégorie C1, dans un environnement E2 et sera circulé avec vitesse de base VB = 80 km/h.

Donc, d'après le tableau des normes **B40** on aura :

- Coefficient de frottement longitudinal fl= 0,39
- Coefficient de frottement transversal ft = 0.13
- Temps de perception réaction (s) Tpr = 2 (s)
- Distance de freinage d0= 65m
- Distance d'arrêt d1= 109 m

I.7. Application au Projet :

Longueur minimale:

$$L_{min} = t \times \frac{V_r}{3.6} = 5 \times \frac{80}{3.6} = 111,11m$$

Longueur maximale:

$$L_{\text{max}} = t \times \frac{V_{\text{r}}}{3.6} = 60 \times \frac{80}{3.6} = 1333,33 \text{m}$$

Rayon horizontal minimal absolu (RHm):

$$RHm = \frac{V_r^2}{127(f_t + d_{max})} \, = \, \frac{80^2}{127(0,13+0,07)} \, = 252m$$

Rayon minimal normal (RHn):

$$RHn = \frac{(V_r + 20)^2}{127(f_t + d_{max})} = \frac{(80 + 20)^2}{127(0.13 + 0.07)} = 394m$$

Rayon au dévers minimal (RHd):

$$RHd = \frac{V_r^2}{127 \, \times 2 \, \times \, d_{min}} \, = \, \frac{80^2}{127 \, \times 2 \, \times 0,025} \, = 1008m$$

Rayon minimal non déversé (RHnd):

RHnd =
$$\frac{V_r^2}{127 \times 0,035} = \frac{80^2}{127 \times 0,035} = 1440m$$

Le tableau ci-dessous donne les différentes valeurs des rayons calculés.

Vitesse de base VB(km/h)	80
Longueur minimale d'alignement Lmin (m)	111,11
Longueur maximale d'alignement Lmax (m)	1333,33
Rayon minimale absolu RHm (m)	252
Rayon minimale normal RHN (m)	394
Rayon aux dévers minimal RHd (m)	1008
Rayon non déverse RHnd (m)	1440

Tableau II-02: résultat de calcul.

I.8. La visibilité:

8.1. Objectif et méthode:

Les règles de comportement du conducteur dans les cas où les conditions de visibilité ne sont pas satisfaisantes. Il peut s'agir soit de conditions météorologiques défavorables (pluie, Brouillard) soit de configurations physiques particulières (sommets de côte, intersections, Virages).

Dans un souci de sécurité mais également de confort, la conception géométrique des routes doit permettre d'assurer des conditions de visibilité satisfaisantes tant au droit des points singuliers qu'en section courante.

Une des tâches du concepteur routier est de rechercher un juste équilibre entre les besoins en visibilité et les contraintes spécifiques au projet.

Ces exigences dépendent de la vitesse pratiquée, du temps de réaction et de la distance nécessaire à la manœuvre visée.

8.2 La distance d'arrêt :

C'est la distance conventionnelle théorique nécessaire à un véhicule pour s'arrêter compte tenu de sa vitesse, calculée comme la somme de la distance de freinage et de la distance parcourue pendant le temps de perception réaction. En courbe, si R est inférieur à 5V (km/s), la distance

VOA 2025

de freinage augmentée est majorée de 25%.

Vitesse de véhicule	40	60	80	100	120	140
Distance de freinage	15	35	60	105	170	250
Distance d'arrêt alignement droit	40	70	105	160	230	320
Distance d'arrêt en courbe	45	80	120	180	280	385

Tableau II.3: La distance d'arrêt

8.3 La distance de freinage:

C'est la distance conventionnelle nécessaire à un véhicule pour passer de sa vitesse initiale à 0 Elle ne correspond pas aux données des constructeurs automobiles et est Fonction de la vitesse initiale, de la déclivité et du coefficient de frottement longitudinal (valeur comprise entre 0 et 1). Ce dernier, de par ses hypothèses de calcul, offre des marges de sécurité importantes pour la majeure partie des situations.

8.4 La visibilité sur un virage :

La distance nécessaire peut être estimée à la distance parcourue en 3 secondes à la vitesse V85 (m/s) et mesurée entre le point d'observation : l'œil du conducteur (hauteur Im, 2 m du bord droit de la chaussée) et le point observé (Hauteur 0 m sur l'axe de la chaussée au début de la partie circulaire du virage).

I.9. Calcul d'axe:

Le calcul d'axe est l'opération de base par laquelle toute étude d'un projet routier doit commencer, elle consiste au calcul d'axe point par point du début du tronçon à sa fin.

On a le tableau des coordonnées (x, y) des sommets qui sont déterminés par simple lecture à partir de la carte topographique et les rayons choisis pour les différentes directions.

Le calcul d'axe se faire à partir d'un point x dont on connait ses coordonnées, et il doit suivre les étapes suivantes :

- ✓ Détermination longueur de clothoïde L.
- ✓ Calcul le paramètre A
- ✓ Calcul des gisements,
- ✓ Calcul de l'angle de comprime entre les alignements.
- ✓ Calcul de la tangente T.
- ✓ Vérification de non- chevauchement.
- ✓ Calcul de l'arc dans le cercle.
- Calcul de des coordonnées de points particuliers

I.10. Paramètres fondamentaux :

Suivant le règlement des normes Algérienne B40 et pour un environnement E2 catégorie C1 et une vitesse 80km/h on définit les paramètres suivants :

Paramètres	Symboles	Valeurs
Vitesse (km/h)	V	80
Longueur minimal (m)	L min	111,11
Longueur maximal (m)	L max	1333,33
Devers minime (%)	d min	2.5
Devers maximum (%)	d max	7
Temps de perception réaction (s)	T 1	2
Frottement transversal	F 1	0.13
Distance de freinage (m)	d_0	60
Distance d'arrêt (m)	d_1	105
Distance de visibilité de dépassement Minimal (m)	Dm	320
Distance de visibilité de dépassement Normal (m)	Dn	480
Distance de visibilité de manœuvre de dépassement (m)	Dmd	200

Tableau II.4: Paramètres fondamentaux

Exemple de calcul d'axe manuellement :

Vr = 80 km/h	X(m)	Y(m)	R(m)
S0	390490.60	3992700.86	
SI	391119.53	3992492.20	700
S2	391440.99	3992524.46	

Tableau II-5 : donnée de projet

Condition de confort optique :

Calcul du paramètre A:

On sait que : $A^2 = L \times R$

Détermination de L :

$$\frac{R}{3} \le A_{min} \le 100$$
 d'ou 233.33 $\le A_{min} \le 700$

$$L \ge \sqrt{24 \times R \times \Delta R}$$
 comme $R = 700 \le 1500$

$$\Delta R = 1$$
 (éventuellement 0,5m) Donc $L \ge \sqrt{24 \times 700 \times 1} = 129.61$ m

 $Donc \ L \ge 130m$

Condition de confort dynamique :

$$(RHn = 450) \le (R = 350) \le (RHd = 1000)$$
 Donc:

$$d = d_{min} + \left(\frac{1}{R} - \frac{1}{RHd}\right) \frac{d_{min} - d_{RHn}}{\frac{1}{RHd} - \frac{1}{RHn}} = 0.0328 = (3.28\%)$$

$$\Delta d = 3.28 - (-2.5) = 5.78 \%$$
; $V_r = 80 \text{ Km/h}$; $R = 300 \text{ m}$

$$L \ge \frac{Vr^2}{18} \cdot \left(\frac{Vr^2}{127.R} - \Delta d\right) = \frac{80^2}{18} \cdot \left(\frac{80^2}{127.700} - 0.0578\right) = 5.04 \text{ m}$$

Condition de gauchissement:

$$L \ge \frac{5}{36}$$
. Δd . Vr

$$L \ge \frac{5}{36} \times (5.78 \% - (-2.5 \%) \times 80$$
 $\Rightarrow L = 92 \text{ m}$

$$L = max (130; 5.04; 92)$$
 Donc on prend: $L = 130 \text{ m}$

$$A = \sqrt{L \times R}$$

$$A = \sqrt{130 \times 700} = 301.66$$
 on prend: $A = 302$ m

Calcul des Gisements:

$$S_0S_1 \qquad \left\{ \begin{array}{l} \mid \Delta \mid X \mid = \mid X_{S1} \text{ --} X_{S0} \mid = 628.93 \text{ m} \\ \\ \mid \Delta \mid Y \mid = \mid Y_{S1} \text{ --} Y_{S0} \mid = \text{--} \ 208.66 \text{ m} \end{array} \right.$$

$$S_1S_2 \qquad \left\{ \begin{array}{l} |\Delta X| = |X_{S2} - X_{S1}| = 321.46 \text{ m} \\ \\ |\Delta Y| = |Y_{S2} - Y_{S1}| = 32.26 \text{ m} \end{array} \right.$$

D'où:

$$G_{S0}^{S1} = 200 - \text{arc tg } \frac{|\Delta X|}{|\Delta Y|} = 120.3936 \text{ grades}$$
 Donc: $G_{S0}^{S1} = 120.3936 \text{ grades}$

$$G_{S1}^{S2} = arc tg \frac{|\Delta X|}{|\Delta Y|} = 93.6325 grades$$
 Donc: $G_{S1}^{S2} = 93.6325 grades$

1- Calcul de l'angle γ:

$$\gamma = \left| G_{S1}^{S2} - G_{S0}^{S1} \right| = 26.7611 \text{ grades}$$
 Donc : $\gamma = 26.7611 \text{ grades}$

2- Calcul de l'angle τ :

$$\tau = \frac{L}{2R} \times \frac{200}{\pi} = \frac{130}{2 \times 700} \times \frac{200}{\pi} = 5.9145 \text{ grades}$$
 Donc: $\tau = 5.9145 \text{ grades}$

3- Vérification de non chevauchement :

$\tau = 5.9145$ grades

$$\frac{\gamma}{2} = \frac{26.7611}{2} = 13.3806 \text{ grades}$$
 Donc: $\tau < \frac{\gamma}{2} \Rightarrow \text{pas de chevauchement}$

4- Calcul des distances :

$$\overline{S_1S_0} = \sqrt{\Delta X^2 + \Delta Y^2} = \sqrt{628.93^2 + (-208.66)^2} = 662.64 \text{ m}$$

$$\overline{S_2S_1} = \sqrt{\Delta X_1^2 + \Delta Y_1^2} = \sqrt{321.46^2 + 32.26^2} = 323.07 \text{ m}$$

5- Calcul de la tangente T :

On a:

$$\frac{L}{R} = \frac{130}{700} = 0.19$$

$$\Delta R = \frac{L^2}{24R} = \frac{130^2}{24 \times 700} = 1,006 \text{ m}$$

$$X = L\left(1 - \frac{L^2}{40R^2}\right) = 130\left(1 - \frac{130^2}{40 \times 700^2}\right) = 129.89 \text{ m}$$

$$Y = \frac{L^2}{6R} = \frac{130^2}{6 \times 700} = 4,02 \text{ m}$$

$$X_m = X - R.\sin\tau = 129.89 - 700(\sin 5.9145) = 65 \text{ m}$$

VOA 2025

33

$$T = X_m + (R + \Delta R) \tan(\frac{\gamma}{2}) = 65 + (700 + 1,006) \times \tan(\frac{12.1247}{2}) = 131.96m$$

Donc : T = 131.96m

Calcul de des coordonnées SL:

$$SL = \sqrt{X^2 + Y^2} = \sqrt{129.89^2 + 4,02^2} = 129.95 \text{ m}$$

Calcul de o:

$$\sigma = arc \, tan \left(\frac{Y}{X}\right) = arc \, tan \left(\frac{4,02}{129.89}\right) = 1.9697 \; grades$$

Calcul de l'arc:

$$K_{E1}K_{E2} = \frac{[\pi R(\gamma - 2\tau)]}{200} = \frac{[\pi 700(26.7611 - 2 \times 5.91)]}{200} = 164.20 \text{ m}$$

Calcul des coordonnées des points singuliers

$$K_{A1} = X_{S0} + (d X(S0 S1) - T) \sin(G_{S0}^{S1})$$

$$Y_{KA1} = Y_{S0} + (d Y(S0 S1) - T) \cos(G_{S0}^{S1})$$

$$\begin{cases} X_{KA1} = 390490.60 + (628.93 - 131.96) - \sin 120.3936 = 390986.62m \\ Y_{KA1} = 3992700.86 + (-16.22 - 131.96) - \cos 120.3936 = 3992552.99 m \end{cases}$$

$$K_{E1} \quad \begin{cases} X_{KE1} = X_{KA1} + SL \times sin(G_{S0}^{S1} - \delta) \\ \\ Y_{KE1} = Y_{KA1} + SL \times cos(G_{S0}^{S1} - \delta) \end{cases}$$

$$\begin{cases} X_{KE1} = Y_{KA1} + SL \times \cos(G_{S0}^{2} - \delta) \\ X_{KE1} = 390986.62 + 129.95 \times \sin(120.3936 - 1.9697) = 391111.17 \text{ m} \\ Y_{KE1} = 3992552.99 + 129.95 \times \cos(120.3936 - 1.9697) = 3992515.90 \text{ m} \end{cases}$$

$$K_{A2} \begin{cases} X_{KA2} = X_{S1} + T \times sin(G_{S1}^{S2}) \\ Y_{KA2} = Y_{S1} + T \times cos(G_{S1}^{S2}) \end{cases}$$

$$\begin{cases} X_{KA2} = 391119.53 + 131.96 \times \sin 93.6325 = 391250.83m \\ Y_{KA2} = 3992492.20 + 131.96 \times \cos 93.6325 = 3992505.38 m \end{cases}$$

$$K_{E2} \begin{cases} X_{KE2} = X_{KA2} - SL \times sin(G_{S1}^{S2} + \delta) \\ Y_{KE2} = Y_{KA2} - SL \times cos(G_{S1}^{S2} + \delta) \end{cases}$$

$$\begin{cases} X_{KE2} = 391250.83m - 129.95 \times sin(93.6325 + 1.9697) = 391121.19 m \\ Y_{KE2} = 3992505.38 - 129.95 \times cos(93.6325 + 1.9697) = 3992496.41 m \end{cases}$$

II.II. Profil en long:

II.1. Définition:

Le profil en long d'une route est une ligne continue obtenue par l'exécution d'une coupe longitudinale fictive. Donc il exprime la variation de l'altitude de l'axe routier en fonction de l'abscisse curviligne.

Il se compose de segments de droite de déclivité en rampe et en pente et des raccordements circulaires, ou parabolique.

Ces pentes et rampes peuvent être raccordées entre elles soit par des angles saillants ou par des angles rentrants. La courbe de raccordement.

Le but principal du profil en long est d'assurer pour le conducteur une continuité dans l'espace de la route afin de lui permettre de prévoir l'évolution du trace et une bonne perception des points singuliers.

Deux types de profil en long existent :

Le profil en long du terrain naturel

C'est la représentation sur un plan vertical des différents points (en X et Z) du terrain naturel suivant l'axe du tracé en plan choisi.

Le profil en long du projet

C'est la représentation des éléments définissant en altitude de la route suivant le cheminement du tracé en plan. Cette représentation est appelée ligne rouge.

Le profil en long est constitué de succession de rampes (montées) et de pentes (descentes) raccordées par des éléments circulaires ou paraboliques.

Les raccordements convexes en point haut sont appeles raccordements en angle saillant; et les raccordements concaves en point bas sont les raccordements en angle rentrant.

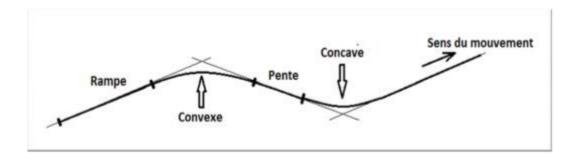


Figure II.7: Profil en long

II.2. Les éléments de composition du profil en long :

Le profil en long est constitué d'une succession de segments de droites (rampes et pentes) raccordés par des courbes circulaires, pour chaque point du profil en long on doit déterminer :

- L'altitude du terrain naturel.
- L'altitude du projet
- La déclivité du projet..... etc.

II.3. Les éléments géométriques du profil en long :

Le profil en long est composé d'éléments rectilignes par leur déclivité (pente ou rampe), et des raccordements paraboliques caractérisés par leur rayon.

a. Les rayons en angles rentrants (concaves):

Ces rayons ne posent pas de problèmes de sécurité majeurs mais leur dimensionnement est essentiellement conditionné par des contraintes de confort dynamiques, les conditions de visibilité nocturnes et l'évacuation des eaux de ruissellement.

b. Les rayons en angles saillants (convexes):

Les rayons correspondants doivent être dimensionnés au regard des contraintes de sécurité et de visibilité. En fonction des caractéristiques du tracé en plan, on s'attachera à garantir la visibilité sur obstacle ou pour dépassement. Les rayons en angles rentrants (concaves)

II.4. Règle à respecter dans le tracé du profil en long :

- ✓ Éviter, si possible, de situer les points particuliers dans les fortes déclivités et les quelques centaines de mètres leur succédant.
- ✓ Ne jamais séparer l'étude du profil en long de celle du tracé en plan.
- ✓ Exclure les courbes accentuées en plan au voisinage des points sensibles du profil en long.
- ✓ Respecter les valeurs des paramètres géométriques préconisés par les règlements en vigueur.
- ✓ Choisir de préférence (sauf difficulté d'insertion dans le site) un profil en long légèrement au-dessus du terrain naturel plutôt qu'a un niveau ou en dessous pour des raisons liées l'assainissement ;
 - ✓ Eviter les angles rentrants en déblai, car il faut éviter la stagnation des eaux et assurer leur écoulement.
 - ✓ Utiliser des rayons adapte à l'approche des points particuliers
 - ✓ Un profil en long en léger remblai est préférable à un profil en long en léger déblai, qui complique l'évacuation des eaux et isole la route du paysage

- ✓ Eviter que les déclivités maximales se maintiennent sur les distances supérieures a 1000m.
- ✓ Pour assurer un bon écoulement des eaux. On placera les zones des dévers nul dans une pente du profil en long.
- ✓ Recherche un équilibre entre le volume des remblais et les volumes des déblais.
- ✓ Eviter une hauteur excessive en remblai.
- ✓ Assurer une bonne coordination entre le tracé en plan et le profil en long, la combinaison des alignements et des courbes en profil en long doit obéir à des certaines règles notamment.
- ✓ Eviter les lignes brisées constituées par de nombreux segments de pentes voisines, les remplacer par un cercle unique, ou une combinaison de cercles et arcs à courbures progressives de très grand rayon.
- ✓ Remplacer deux cercles voisins de même sens par un cercle unique.
- ✓ Adapter le profil en long aux grandes lignes du paysage

II.5. Procédure du tracé :

- Choix du plan horizontal de référence (plan de comparaison).
- Définir le terrain naturel tracé + cotes.
- Définir de projet : tracé + cotes.
- Numéroté la position des profils en travers.
- Indiquer les distances (partielles et cumulées).
- Indiquer la déclivité du projet.
- Indiquer les caractéristiques géométriques du projet : alignement et courbe.

II.6. Coordination de la trace en plan et du Profil en long :

La coordination du tracé en plan et du profil en long doit faire l'objet d'une étude d'ensemble qui incitent à :

- ✓ Associer un profil en long concave, même légèrement, à un rayon en plan impliquant un dégagement latéral important.
- ✓ Faire coïncider les courbes horizontales et verticales, puis respecter la condition : R vertical > 6 R horizontal, pour éviter un défaut d'inflexion.
- ✓ Supprimer les pertes de tracé dans la mesure où une telle disposition n'entraine pas du surcoût sensible, lorsqu'elles ne peuvent être évitées, on fait réapparaitre la chaussée à une distance de 500m au moins, créant une perte de tracé suffisamment franche pour prévenir les perceptions trompeuses.

- ✓ Amorcer la courbe en plan avant un point haut, lorsque le tracé en plan et le profil en long sont simultanément en courbe.
- ✓ Augmenter le ripage du raccordement introduisant une courbe en plan si le profil en long est convexe.
- ✓ Éviter qu'un début de courbe faible (< 300m) se situe en point haut de profil en long car cela entraîne une dégradation de la perception du virage.
- ✓ Éviter de positionner des carrefours ou accès en point haut, courbes ou zone de visibilité réduite (éventuellement côté externe des courbes non déversées après vérification des conditions de visibilité).

Avantages de la coordination du tracé en plan et du profil en long :

- ✓ Assurer de bonnes conditions générales de visibilité.
- ✓ Eviter de donner au tracé un aspect trop brisé ou discontinu.

II.7. Déclivité du profil en long :

On appel déclivité d'une route la tangente de l'angle qui fait le profil en long avec l'horizontal. Elle prend le nombre de pente pour les descentes et rampe pour montées.

a- Déclivité minimale :

- Il est recommandable d'évité les pentes inférieures à 1%, et surtout à 0.5% et ceci dans le but d'éviter la stagnation des eaux.
- Dans les longues sections en déblais on prend Imine= 0.5% pour que les ouvrages de canalisation ne soient pas profonds.

On adopte en général les pentes longitudinales minimales suivantes :

- ✓ Au moins 0,5% et de préférences 1 %, si possible.
- ✓ I_{min}= 0,5 % dans les longues sections en déblai : pour que l'ouvrage d'évacuation des eaux ne soit pas trop profond.
- \checkmark I_{min}= 0,5 % dans les sections en remblai prévues avec des descentes d'eau.

b - Déclivité Maximum:

La déclivité maximale est acceptée particulièrement dans les courtes distances inférieures à **1500m**, à cause de :

- La réduction de la vitesse des poids lourds qui engendre une augmentation des dépenses à cause d'une forte consommation de carburant (cas de rampe Max).
- L'effort de freinage des poids lourds est très important qui provoque l'usure de pneumatique (cas de pente max.).

Vr Km/h	40	60	80	100	120	140
I max %	8	7	6	5	4	4

Tableau II.7: La déclivité du projet maximum. Selon B40.

Pour notre cas la vitesse Vr = 80 Km/h donc on choisit du tableau précédent une pente maximale Imax = 6%.

la déclivité maximale dépend de :

- Condition d'adhérence
- Vitesse minimum de PL
- Condition économique

Remarque: l'augmentation excessive des rampes provoque ce qui suit:

- Consommation excessive de carburant.
- Faible vitesse.
- Gène des véhicules

II.8. Raccordement en profil en long :

Le changement des déclivités constitue des points particuliers au niveau du profil en long.

A cet effet, le passage d'une déclivité à une autre doit être adouci par l'aménagement de raccordement circulaire, où leur conception est subordonnée à la prise en considération de la visibilité et du confort. On distingue donc deux types de raccordement :

8.1. Raccordements convexes (saillants): (Franchissement d'un sommet)

Le rayon minimum en raccordement des angles saillants (sommets) noté Rv est déterminé en fonction des conditions de visibilité et de confort.

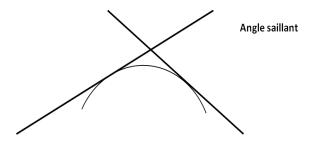


Figure II.8: Angle Saillant

a. Condition de visibilité:

La visibilité doit être suffisante. Un conducteur dont le rayon visuel rase le sommet doit voir de l'autre côté de la courbe soit un obstacle, soit un véhicule suffisamment tôt pour s'arrêter, soit pour dépasser.

Le conducteur du véhicule doit s'apercevoir de l'obstacle suffisamment tôt.

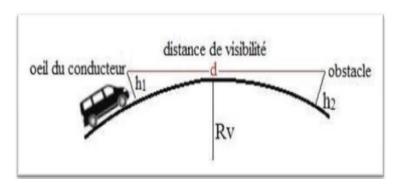


Figure II.9 : schématisation de la condition de visibilité

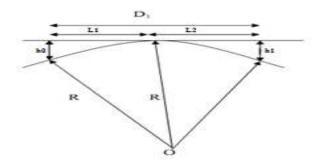


Figure. II.10: Schéma de calcul des rayons en angle saillant

Le rayon de raccordement est donné par la formule suivante :

$$Rv \ge \frac{d^2}{2(h_0 + h_1 + 2\sqrt{(h_0 + h_1)})} \approx 0.27D$$

d : Distance d'arrêt (m).

• h0: Hauteur de l'œil (m).

h1: Hauteur de l'obstacle (m)

Dans le cas d'une route unidirectionnelle :

 $h1 = 1,1 \text{ m}, \qquad h2 = 0,15 \text{ m}$

On trouve : Rv = a. d_1^2 a = 0,24 Rv = 0,24. d_1^2 pour cat 1-2

Les rayons assurant ces deux conditions sont donnés par les normes de **B40** en fonction de la vitesse de base et la catégorie, pour choix unidirectionnelle et pour une vitesse de base Vb=80 (Km/h) et pour la catégorie 1 on a :

Catégorie		C ₁
Environnement		E2
Vitesses de base (Km/h)		80
	Route unidirectionne	elle : (2x2 voies)
Rayon en angle	Rvm (minimal absolu) en m	2500
Saillant Rv Rvn (minimal normal) en m		6000
	Rvd (Rayon de dépassement)	11000

Tableau II.07: Rayons de Raccordements convexes.

b. Condition de confort:

Lorsque le profil en long comporte une forte courbure de raccordement, le véhicule subit une accélération verticale importante qui modifie sa stabilité et gène les usagers. La condition de confort consiste à limiter l'accélération verticale est représentée par la formule suivante :

$$\begin{split} \frac{Vr^2}{Rv} < \frac{g}{40} & \Rightarrow & R_V \geq \, 0{,}30 \, \times \, V_r^2 \quad \text{ pour (Cat 1 et 2)} \\ \frac{Vr^2}{Rv} < \frac{g}{30} & \Rightarrow & R_V \geq \, 0{,}23 \, \times \, V_r^2 \quad \text{ pour (Cat 3,4 et 5)} \end{split}$$

$$\frac{\mathrm{Vr}^2}{\mathrm{Rv}} < \frac{\mathrm{g}}{30} \Rightarrow \mathrm{R_V} \ge 0.23 \times \mathrm{V_r}^2 \quad \text{pour}(\mathrm{Cat} \, 3.4 \, \mathrm{et} \, 5)$$

Dans notre cas Rv min = 0.3 Vr^2

Avec:

Rv: rayon vertical (m).

Vr: vitesse de référence (km /h).

g: accélération de la pesanteur = 10 m/s

8.2. Raccordements concaves (angles rentrants):

Dans le cas de raccordement dans les points bas, la visibilité du jour n'est pas déterminante, plutôt. C'est pendant la nuit qu'on doit s'assurer que les phares du véhicule devront éclairer un tronçon suffisamment long pour que le conducteur puisse percevoir un obstacle, la visibilité est assurée pour un rayon noté R'v est déterminé en fonction de la condition de phare.

Condition de phare:

Le faisceau des phares d'axe horizontal, doit pouvoir éclairer au moins la distance d'arrêt d1.

VOA 2025 42

$$\mathbf{Rv'} = \frac{d_1^2}{(1,5+0,035.d_1)}$$

Avec:

Rv': rayon minimum du cercle de raccordement.

d₁: distance d'arrêt.

D'ou : $Rv \ge 0.3 \text{ V}^2$ (cat. 1-2).

 $Rv \ge 0.23 \text{ V}^2 \text{ (cat 3-4-5)}.$

Pour une chaussée bi directionnels avec une vitesse Vr = 80 Km/h et catégorie C1 on le tableau Suivant :

	Route unidirectionnelle : (2x2 voies)		
Rayon en angle rentrant R _V ,	$\mathbf{R}_{\mathbf{v'm}}$ (minimal absolu) en m	2400	
	R _{v'n} (minimal normal) en m	3000	

Tableau II.8: Rayons de Raccordements concaves.

Avec:

R'v : c'est le rayon vertical (m).

V : vitesse de référence (km/h).

II.9. Détermination pratique du profil en long :

Dans les études des projets, on assimile l'équation du cercle :

$$X2 + Y2 - 2RY = 0$$

À l'équation de la parabole X^2 -2 RY= 0 $Y = \frac{x^2}{2R}$

Pratiquement, le calcul des raccordements se fait de la façon suivante :

- Donnée les coordonnées (abscisse, altitude) des points A et D.
- Donnée La pente P1 de la droite (AS).
- Donnée la pente P2 de la droite (DS).
- Donnée le rayon R.

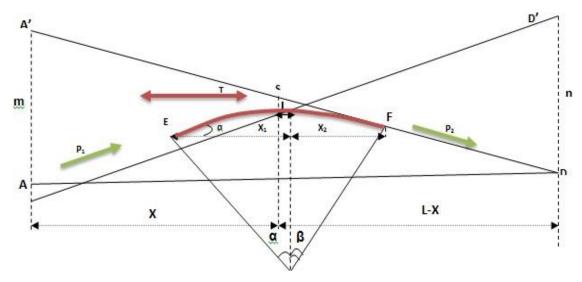


Figure II.11: Détermination pratique du profil en long

9.1. Détermination de la position du point de rencontre (s) :

On a:

$$ZA = ZD' + L p2$$
 , $m = ZA' - ZA$
 $ZD = ZA' + Lp1$, $n = ZD - ZD'$

Les deux triangles A'SA et SDD' sont semblables donc :

$$m/n = x \ / \ (L\text{-}x) \ \square \ x = m.3. \ L \ / \ (n + m)$$

$$\begin{cases} X_S = X + \ X_A \\ \\ Z_S = p_1 X + Z_A \end{cases}$$

9.2. Calculs de la tangente :

$$T = R/2 (p_1 \pm p_2)$$

On prend (+) lorsque les deux pentes sont de sens contraires, on prend (-) lorsque les deux pentes sont de même sens.

La tangente (T) permet de positionner les pentes de tangentes B et C.

$$B \begin{cases} XB = XS - T \\ ZB = ZS - T p1 \end{cases} C \begin{cases} Xc = XS + T \\ Zc = ZS + T p2 \end{cases}$$

9.3. Projection horizontale de la longueur de raccordement :

$$LR=2T$$

9.4. Calcul de la flèche:

$$H=T^2/2R$$

9.5. Calcul de la flèche et l'altitude d'un point courant M sur la courbe :

$$M \quad \begin{cases} H_X = x^2/2R \\ \\ Z_M = Z_B + X p_1 - X^2/2R \end{cases}$$

Calcul des cordonnées du sommet de la courbe (T)

Le point J correspond au point le plus haut de la tangente horizontale.

$$X_{1} = Rp_{1}$$

$$X_{2} = Rp_{2}$$

$$J = \begin{cases} X_{J} = X_{B} - R.p_{1} \\ Z_{J} = Z_{B} + X_{1}.p_{1} \end{cases}$$

Dans le cas des pentes de même sens le point J est en dehors de la ligne de projet et ne présente aucun intérêt par contre dans le cas des pentes de sens contraire, la connaissance du point (J) est intéressante en particulier pour l'assainissement en zone de déblai, Le partage des eaux de ruissellement se fait a partir du point du J, c'est-à-dire les pentes des fossés descendants dans les sens J(A) et J(D).

II.III. Profil en travers :

III.1. Définition:

Le profil en travers est une coupe transversale menée selon un plan vertical perpendiculaire à l'axe de la route projetée.

Un projet routier comportele dessin d'un grand nombre de profils en travers, pour éviter de rapporter sur chacun de leurs dimensions, on établit tout d'abord un profil unique appel « profil en travers » contenant toutes les dimensions et tous les détails constructifs (largeurs des voies, chaussées et autres bandes, pentes des surfaces et talus, dimensions des couches de la Superstructure, système d'évacuation des eauxetc.).

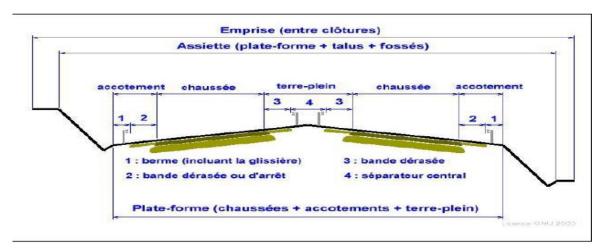


Figure II.12: Profil en travers type.

III.2. Les éléments constitutifs du profil en travers type :

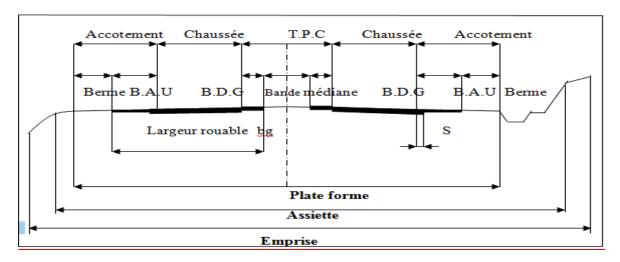


Figure II.13 : les différents éléments du profil en travers

Le profil en travers est constitué de (figure) :

- L'emprise : C'est la surface du terrain naturel affectée à la route et à ses dépendances
- L'assiette : C'est la surface de la route délimitée par les terrassements.
- La plateforme : C'est la surface de la route située entre les fossés ou les crêtes des talus de remblais, comprenant la chaussée et les accotements, éventuellement les terre-pleins et les bandes d'arrêts. (Talus, chemins de désenclavement, exutoires, ...ect) limitée par le domaine public.
- Le talus : Le talus est l'inclinaison de terrain qui dépend de la cohésion des sols qui le constitue. Cette Inclinaison exprimé par une fraction (A/B) telle que :
 - A: la distance sur la base du talus.
 - **B**: la hauteur du talus

En terre de moyenne cohésion, l'inclinaison de talus est de (3/2) pour les remblais et (1/1) Pour les déblais.

- La chaussée : C'est la partie affectée à la circulation des véhicules.
- -Les accotements : En dehors des agglomérations, les accotements sont dérasés. Ils comportent généralement les éléments suivants :
- -Une bande de guidage
- Une bande d'arrêt
- -Une berme extérieure.
- La largeur roulable : Elle comprend les sur largeurs de chaussée, la chaussée et bande d'arrêt.
- Le terre-plein central T.P.C:

Il assure la séparation matérielle des deux sens de circulation, sa largeur est de celle de ses constituants : les deux bandes dérasées de gauche et la bande médiane.

- ✓ Bande dérasée de gauche (B.D.G): Elle est destinée à éviter un effet de paroi lié aux barrières de sécurité, Elle est dégagée de tous obstacles, revêtu et se raccorde à la chaussée.
- ✓ Bande médiane : Elle sert à séparer physiquement les deux sens de circulation, et à implanter certains équipements (barrière, support de signalisation... etc.), sa largeur dépend, pour le minimum des éléments qui sont implanter.
- Le fossé : C'est un ouvrage hydraulique destiné à recevoir les eaux de ruissellement provenant de la route et talus et les eaux de pluie.
- Bande médiane : Partie non rouable du terre-plein central comprise entre les deux bandes dérasées de gauche.

- Bande d'arrêt d'urgence : Elle facilite l'arrêt d'urgence hors chaussé d'un véhicule, elle est constituée à partir du bord géométrique de la chaussée et elle est revêtue.

III.3. Différent type de profil en travers :

La détermination du profil en travers constitue à définir la largeur de la chaussée et ses annexes, On distingue trois types de profils en travers :

- ✓ Profil en travers en déblai.
- ✓ Profil en travers en remblai.
- ✓ Profil en travers mixte (remblai et déblai).

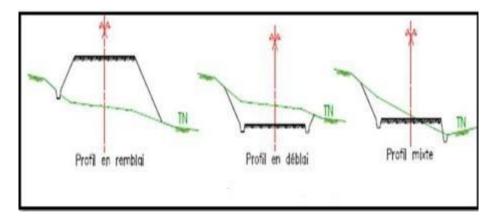


Figure. II.14: types de profil en travers

Dans une étude d'un projet de route l'ingénieur doit dessiner deux types de profil en travers

a. Profil en travers type:

Est une représentation graphique, contenant et détaillant d'une Manière précise tous les éléments constituant la route notamment les dimensions de la route, ses dépendances la structure de chaussée, sa composante ainsi que les épaisseurs.

b. Profil en travers courants :

S'applique au PK indiqué, il reprend et mentionne toutes les données caractérisant la section transversale de la route au PK considéré, notamment cote terrain naturel (TN), cote de projet devers de la chaussée.

III.4. Application au projet :

Après l'étude de trafic, le profile en travers type retenu pour le dédoublement sera composé d'une route de 2 voies : (2×3,8 m)

Les éléments du profil en travers type sont comme suit :

• Chaussée : $2 \times (2 \times 3.8) = 15.20 \text{ m}$

• Accotement : $2 \times 2 = 4m$

• Terre-plein central (TPC): 2 m

• Plateforme 21,20 m

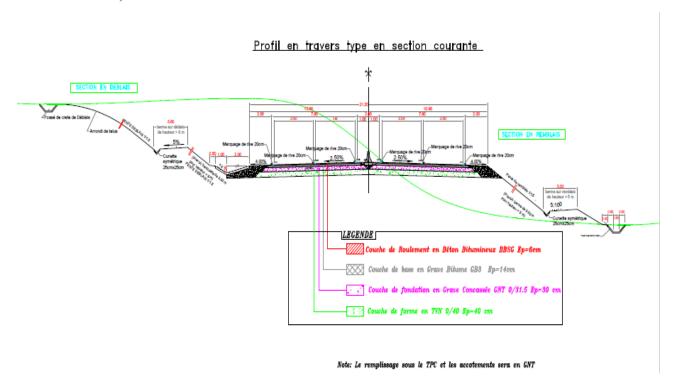


Figure. II.15: profil en travers en courbe mixte

II.IV. LES CUBATURES:

IV.1. Définition:

La cubature des terrassements consiste à calculer les volumes des terres soit à enlever (Debals) ou à ajouter (remblais) pour assurer l'exécution d'un projet.

Les volumes sont calculés à l'aide des éléments suivant :

- Surfaces de remblai ou de déblai obtenues par le profil en travers
- Distances entre profil en travers indiquées sur le profil en long

Le calcul des cubatures a pour objectif la détermination des quantités de différents matériaux à mettre en œuvre :

Il est réalisé par superposition :

- ✓ Du plan topographique et des plans du projet
- ✓ De profils du terrain naturel et de coupes du projet

IV.2. Méthode de Calcul Des Cubatures :

Pour calculer un volume, Il existe plusieurs méthodes de calcul des volumes remblais déblais, parmi lesquelles en citerons :

- ❖ Méthode de la moyenne des aires (méthode par excès.)
- ❖ Méthode de l'air moyenne : (méthode par défaut.)
- ❖ Méthode de la longueur applicable.
- Méthode de GULDEN.

La méthode qui nous allons utiliser sont celle de la moyenne des aires, c'est une méthode simple mais elle présente un inconvénient de donnés des résultats avec une marge d'erreurs, pour être en sécurité on prévoit une majoration des résultats de 10%.

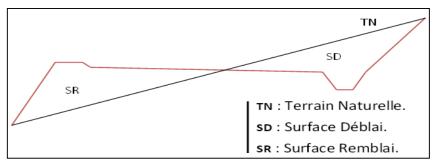
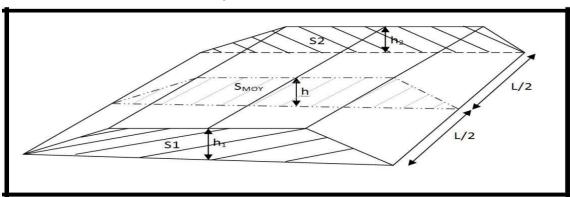



Figure II.16 : surface remblai et surface déblais

2-1 Description de la méthode :

Le principe de la méthode de la moyenne des aires et de calculer le volume compris entre deux profils successifs par la formule suivant :

$$\mathbf{V} = \frac{L}{6} \left(S_1 + S_2 + 4 \times S_{Moy} \right)$$

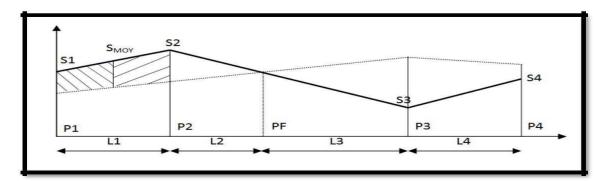


Figure II.17: Les sections des profils en travers d'un tracé donné.

Tel que:

PF: profil fictive, surface nulle.

Si : surface de profil en travers Pi.

Li: distance entre ces deux profils.

Smoy: surface intermédiaire (surface parallèle et à mi-distance Li).

Pour éviter des calculs très long, on simplifie cette formule en considérant comme très voisines les deux expressions S_{MOY} et (S1+S2)/2 ceci donne :

$$\mathbf{V_1} = \frac{L_i}{2} \times (S_i + S_{i+1})$$

Avec:

 \mathbf{V} : Volume (\mathbf{m}^3).

Si et Si+1: Surface de deux profils en travers successifs (m²).

Li: Distance entre ces deux profils (m)

Donc les volumes seront :

$$\mathbf{V_1} = \frac{\mathbf{L_1}}{2} \times (\mathbf{S_1} + \mathbf{S_2})$$
 Entre P1 et P2

$$\mathbf{V_2} = \frac{\mathbf{L_2}}{2} \times (\mathbf{S} + 0)$$
 Entre P2 et PF

$$\mathbf{V_3} = \frac{\mathbf{L_3}}{2} \times (0 + \mathbf{S_3})$$
 Entre PF et P3

$$\mathbf{V_4} = \frac{\mathbf{L_4}}{2} \times (\mathbf{S_3} + \mathbf{S_4})$$
 Entre PF et P3

En additionnant membres à membre ces expressions on a le volume total des terrassements

$$V = \left(\frac{L1}{2}\right) \times S1 + \left(\frac{L1 + L2}{2}\right) \times S2 + \left(\frac{L2 + L3}{2}\right) \times 0 + \left(\frac{L3 + L4}{2}\right) \times S3 + \left(\frac{L4}{2}\right) \times S4$$

2.2. Application de projet :

Le calcul s'effectue à l'aide de logiciel (Autopiste).

Le volume de terrassement de notre projet est présenté en annexe.

II.V. CONCEPTION DE CARREFOUR:

V.1. Définition:

Un carrefour est un lieu d'intersection deux ou plusieurs routes au même niveau.

Le bon fonctionnement d'un réseau de voirie, dépend essentiellement de la performance des carrefours car ceux-ci présentent des lieux d'échanges et de conflits où la fluidité de la circulation et la sécurité du trafic sont indispensables.

L'analyse des carrefours sera basée sur les données recueillies lors des enquêtes directionnelles, qui doivent fournir les éléments permettant de faire le diagnostic de leur fonctionnement.

V.2. Types de carrefours :

2.1 Carrefour à trois branches :

a. Carrefour à trois branches (en T):

Il s'agit d'un carrefour à trois branches dont l'une de ces branches est à peu près dans le prolongement d'une autre branche et dont la troisième coupe ce prolongement sous un angle compris entre 75 et 105°.

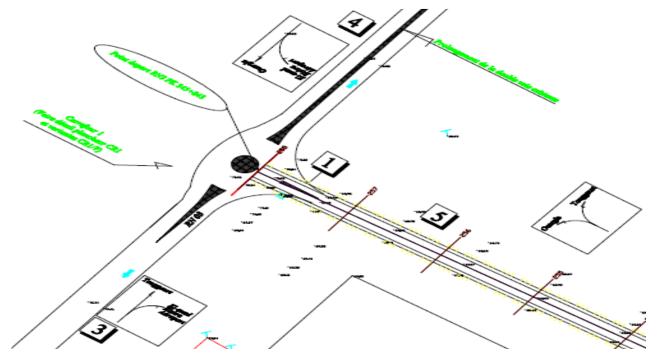


Figure. II.18: Le premier carrefour « carrefour en T »

b. Carrefour à trois branches (en Y):

Il s'agit d'un carrefour à trois branches dont l'une de ces branches est dans le prolongement d'une autre et dont la troisième branche coupe ce prolongement sous un angle inférieur à 75° ou supérieur à 105°.

2.2 Carrefour à quatre branches (en croix)

C'est un carrefour plan à quatre branches deux à deux alignées (ou quasi).

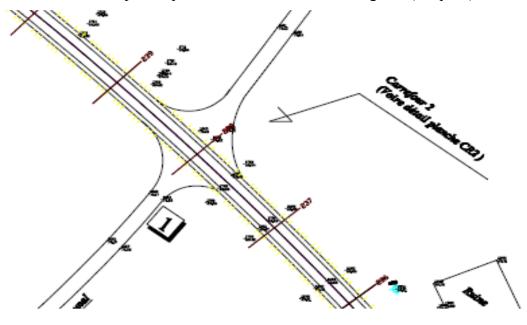


Figure. II.19: Le deuxième carrefour « carrefour croix »

2.3 Carrefour type giratoire ou carrefour giratoire :

Le carrefour à sens giratoire est un carrefour plan qui comprend un terre-plein central (en forme de cercle ou ovale généralement), ceinturé par une chaussée mise à sens unique. L'îlot central a un rayant souvent supérieure à douze mètres, une courbe de petit rayant à l'entrée freine les véhicules et permet la convergence sous un angle favorable (30°à 40°), la sortie doit de plus grand rayant pur rendre le dégagement plus facile.

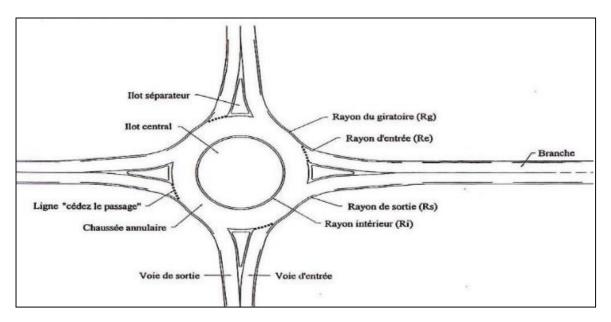


Figure II.20: Les éléments d'un carrefour à sens giratoire

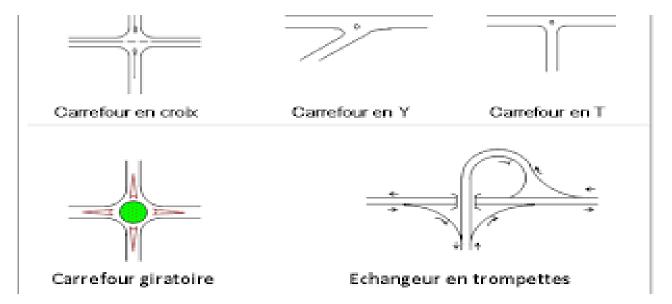


Figure. II. 21 : différents types de carrefours

V.3. Donnée pour l'alignement d'un carrefour :

Les choix d'un aménagement d'un carrefour doivent s'appuyer sur un certain nombre des données essentielles concernant :

- La valeur de débit de circulation sur les différentes branches et l'intensité des mouvements tournant leur évolution prévisible dans le futur.
- Les types et les causes des accidents constatés dans les cas de l'aménagement d'un carrefour existant.
- Les vitesses d'approche à vide pratique.

- Des caractéristiques sections adjacentes et des carrefours voisins.
- Respect de l'homogénéité de tracé.
- De la surface neutralisée par l'aménagement.
- Condition topographique, notamment la visibilité en plan et en profil en long.

V.4. Principes généraux d'aménagement d'un carrefour :

- ✓ Eviter si possible les carrefours à feux bicolores.
- ✓ Assurer une bonne visibilité de carrefour
- ✓ Soigner tout particulièrement les signalisations horizontales et verticales
- ✓ Les cisaillements doivent se produire sous un angle de 90 ± 20 à in d'obtenir de meilleure condition de visibilité et la prédication des vitesses sur l'axe transversal, aussi avoir une largeur traversée minimale.
- ✓ Ralentir à l'aide des caractéristiques géométriques les courants non prioritaires.
- ✓ Regrouper les points d'accès à la route principale.

➤ La visibilité :

Dans l'aménagement d'un carrefour il faut lui assurer les meilleures conditions de visibilité possibles, la vitesse d'approche à vide remplace la vitesse de base à l'approche des carrefours. En cas de visibilité insuffisante il faut prévoir :

- ✓ Une signalisation appropriée dont le but est soit d'imposer une réduction de vitesse soit de changer les régimes de priorité.
- ✓ Renforcer par des dispositions géométriques convenables (inflexion des tracés en plan, îlot séparateur ou débouché des voies non prioritaires.

> Triangle de visibilité :

Un triangle de visibilité peut être associé à un con lit entre deux courants. Il a pour sommets :

- ✓ Le point de conflit.
- ✓ Les points limites à partir desquels les conducteurs doivent apercevoir un véhicule adverse.

Les ilots:

Les îlots sont aménagés sur les bras secondaires du carrefour pour séparer les directions de la circulation, ou aussi de limiter les vois de circulation.

> Ilot séparateur :

Les éléments principaux de dimensionnement sont :

- ✓ Décalage entre la tête d'îlot séparateur de la route secondaire et la limite de la chaussée de la route principale : 1m.
- ✓ Décalage d'îlot séparateur à gauche de l'axe de la route secondaire : 1m.

- ✓ Rayon en tête d'îlot séparateur : 0.5m à 1m.
- ✓ Longueur de l'îlot : 15m à 30m.

> Ilot directionnel:

Les îlots directionnels sont nécessaires pour délimiter les couloirs d'entrées Et de sortie. Leur nez est en saillie et ils doivent être arrondis avec des rayons de 0.5 à 1 m.

> Les couloirs d'entrée et de sortie :

Longueur de couloirs

Entrée 4m (accotement dérasé 1.5m).

Sortie 5m (accotement dérasé 0.5m).

V.5. Choix de type de carrefour :

Pour notre cas, on a choisi deux carrefours en forme de T (3 branches) pour les raisons suivantes :

- ✓ Le trafic sur la route secondaire est peu important.
- ✓ Notre carrefour sera implanté dans une zone urbaine.
- ✓ L'avantage de sécurité.

V.6. Application au projet :

Carrefour giratoire au début de projet Pk=0+0.00

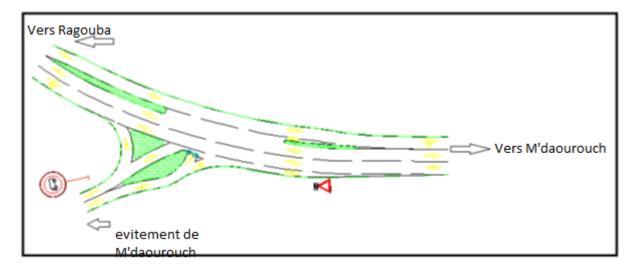


Figure II-22 : carrefour en forme de T (3 branches).

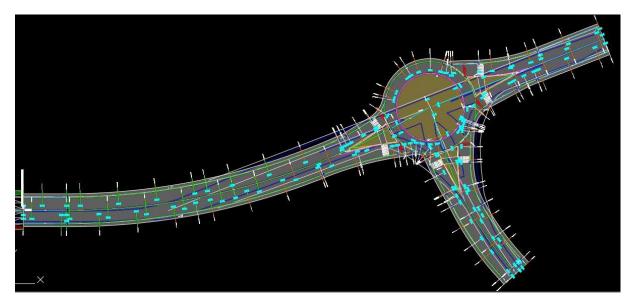


Figure II.23: Plan de carrefour giratoire à trois branches

Paramètres fondamentaux :

Notre carrefour à trois branches se trouve au début de projet au niveau de l'intersection de la RN 81 A avec l'entrée et l'évitement de M'daourouche au PK0+000

- Contient 03 ilots séparateurs
- ❖ Ce carrefour point contient 2 voies de 3.80 m
- ❖ Le rayon de raccordement pour les véhicules entrant est Re =22.40 m.
- ❖ Le rayon de raccordement pour les véhicules sortant est Rs =30 m.
- ❖ Chaussée annulaire La =7,6m.
- ❖ Voie d'entrée Le = 8.6 m.
- Voie sortie Ls = 8.6 m

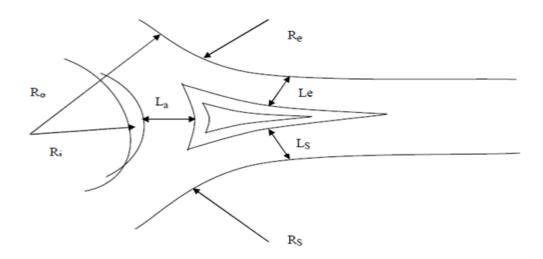


Figure II-24: Paramètres fondamentaux d'un carrefour en forme de T (3 branches).

Chapitre III: Géotechnique routière et dépendances

III.I. Géotechnique routière :

I.1. Introduction:

La géotechnique routière est une science qui étudie les propriétés physiques et mécaniques des roches et des sols qui vont servir d'assise pour la structure de chaussée.

L'étude géotechnique doit d'abord permettre de localiser les différentes couches et donner les renseignements de chaque couche et les caractéristiques mécaniques et physiques de ce sol. Sur la base de l'étude du tracé, notamment la ligne rouge.

L'étude géotechnique c'est tracé comme objectif :

- ✓ La détermination des caractéristiques géotechniques aux moyens d'essai in situ (plessimètre) et en laboratoire.
- ✓ L'étude géotechnique permet de dimensionner la couche de chaussée ainsi que de fixer les pentes de remblai et de déblai.
- ✓ La mise en relief des formations géologiques aux moyens de puits de reconnaissance et des sondages carottés.
- ✓ Le bénéfice apporté sur les travaux de terrassement.
- ✓ L'interprétation des caractéristiques lithologiques et physico- mécaniques.
- ✓ L'identification des sources d'emprunt des matériaux et la capacité de ses glissements.
- ✓ La sécurité en indiquant la stabilité des talus et des remblais.

I.2. Règlementation algérienne en géotechnique :

La géotechnique couvre un grand champ d'activité qui va de la reconnaissance des sols au calcul et à l'exécution des ouvrages en passant par les essais de sols en laboratoire ou en place.

Les normes algériennes adoptées dans le domaine de la géotechnique sont relatives aux modes opératoires et des essais de sols couramment réalisées en laboratoire dans le cadre des études géotechniques.

I.3. Les moyens de la reconnaissance :

Les moyens de la reconnaissance d'un tracé routier sont essentiellement :

- ✓ L'étude des archives et documents existants.
- ✓ Les visites de site et les essais in-situ.
- ✓ Les essais de laboratoire.

I.4. Les différents essais en laboratoire :

Les essais réalisés en laboratoire pour les échantillons prélevés de notre projet sont :

4.1 Les essais d'identification

4.1.1 Teneur en eau et masse volumique (W%)

a. Teneur en eau (W%): La teneur en eau d'un granulat ou d'un sol est le pourcentage d'eau (en masse) par rapport au matériau sec :

$$\omega \% = \frac{\text{masse de l'eau contenue (Ww)}}{\text{masse de matériau sec (Ws)}} \times 100$$

Ww: Poids de l'eau.

Ws: Poids du sol sec.

b. Masse volumique : la masse d'un volume unité de sol :

$$\mathbf{\gamma} = \frac{W}{V}$$

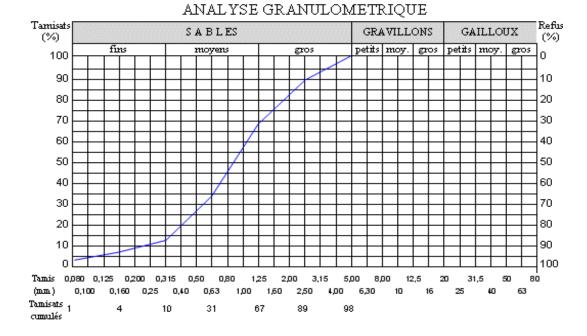
On calcule aussi la masse volumique sèche :

$$\mathbf{\gamma_d} = \frac{W_s}{V}$$

But de l'essai et Domaine d'utilisation :

Le but c'est la détermination de certaines caractéristique physique des au laboratoire.

Cet essai est utilisé dans les travaux du terrassement et de compactage.


4.1.2 Analyse granulométrique

C'est un essai qui a pour objet de déterminer la répartition des grains suivant leur dimension ou grosseur.

Cette analyse se fait en générale par un tamisage.

L'analyse granulométrique sert à déterminer la distribution en poids des particules d'un matériau suivant leur dimension.

Les résultats de l'analyse granulométrique sont donnés sous la forme d'une courbe dite courbe granulométrique et construite sur un graphique.

Figure III.1: Analyse granulométrique.

4.1.3 Limites d'Atterberg:

Le comportement d'un sol fin est avant tout, fonction de sa composition minéralogique, de sa teneur en eau et de sa structure.

L'eau joue un rôle très important par son influence sur les forces qui s'exercent entre les Particules à cause de :

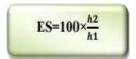
- La quantité d'eau interstitielle que contiennent ses pores.
- L'épaisseur des couches d'eau absorbe qui enrobent ses grains-

Selon la valeur de la teneur en eau, les propriétés mécaniques d'un sol fin variant on cite les cas suivants :

- Le passage d'un sol de l'état liquide à l'état plastique (limite de liquidité Wl).
- Le passage d'un sol de l'état plastique à l'état solide (limite de liquidité Wp).
- L'indice de plasticité Ip est la différence entre la limite de liquidité et la limite de plasticité
 (Ip=Wl-Wp); cet indice défini l'étendue du domaine plastique, En effet le sol est capable de
 se déformer rapidement sans se casser et sans présenter assez simplement la couche absorbée
 comme un film visqueux

4.1.4 Equivalent de sable

C'est un essai qui nous permet de mesurer la propreté d'un sable c'est-à-dire de déterminer la quantité d'impureté soit des éléments argileux ultra fins ou des limons.


Cet essai permet d'obtenir des informations de base sur le sol utilisé pour estimer la caractéristique de résistance.

On place un volume donné de l'échantillon dans une éprouvette graduée dans laquelle on verse un mélange d'eau et de solution floculant destinée à mettre en suspension et à faire gonfler les particules argileuses. Après agitation normalisée, on laisse reposer, puis on mesure la hauteur h2 du sable et la hauteur h1 du sommet du floculant.

L'essai est effectué sur la fraction 0/5 mm du sable à étudier. On lave l'échantillon, selon un processus normalisé, et on laisse reposer le tout. Au bout de 20 minutes, on mesure les éléments suivants :

- ✓ Hauteur h1 : sable propre + éléments fins,
- ✓ Hauteur h2 : sable propre seulement.

On en déduit l'équivalent de sable par la relation ci-dessous :

ES	Qualité de sable
ES = 100	Sable parfaitement propre (pur)
ES > 90	Sable très propre
69 < ES < 90	Sable propre
10 < ES < 69	Sable mauvais
ES < 10	Sable très mauvais
ES = 0	Argile pure (pas de sable

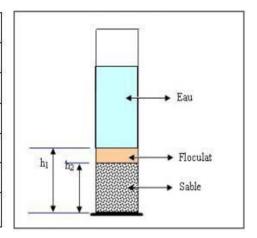


Figure III.2: Classification des soles selon Leur Équivalent de sable

4.1.5 Essai au bleu de méthylène

L'essai au bleu de méthylène est un test de laboratoire utilisé en géotechnique pour évaluer la teneur en argiles actives des sols. Cette analyse permet de mesurer la capacité d'absorption des particules fines, en particulier des argiles, lorsqu'elles sont en contact avec du bleu de méthylène

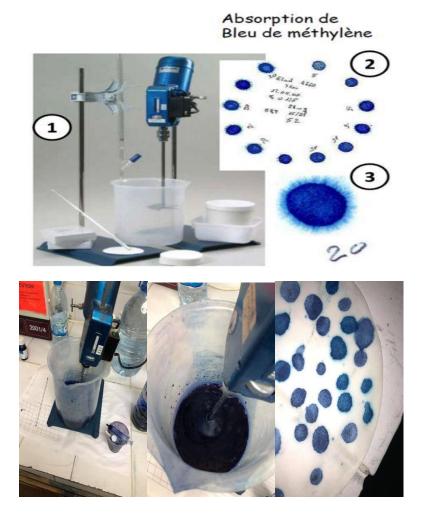


Figure III.3: Essai bleu méthylène.

4.2 Les essais mécaniques :

4.2.1 Essai PROCTOR:

L'essai PROCTOR est un essai routier, il consiste à étudier le comportement d'un sol sous l'influence de compactage et une teneur en eau, il a donc pour but de déterminer une teneur eneau optimale Les remblais pose à l'ingénieur routier un certain nombre de problèmes

A -Principe de l'essai : l'essai consiste à mesurer le poids volumique sec d'un sol disposer en trois couches dans un moule Proctor de volume connu, dans chaque couche étant compacter avec la dame Proctor, l'essai est répété plusieurs fois et on varie à chaque fois la teneur en eau de l'échantillon et on fixe l'énergie de compactage.

Les grains passants par le tamis de 5 mm sont compactés dans le moule Proctor.

B -Domaine d'utilisation : cet essai est utilisé pour les études de remblai en terre, en particulier pour les sols de fondations (route, piste d'aérodromes).

L'essai Proctor s'effectue généralement pour deux compactages d'intensités différentes :

- L'essai Proctor normal rend assez bien compte des énergies de compactage pratiquées pour les remblais.
- L'essai Proctor modifié, le compactage est beaucoup plus poussé et correspond aux énergies mises en œuvre pour les couches de forme et les couches de chaussée

Figure III.4: Essai Proctor.

Localisation des puits		Pk +000	PK 3+000	PK 5+00	
Profondeur (m)		1,20-2,00	1,20-2,20	1,40-2,00	
Essais scaniques	Proctor modifié	Wop	7,9	8,3	8,7
Essais mécaniqu	Promo	γopm	1,92	1,89	1,95

Tableaux III. 1 : Résultats de l'essai (Proctor).

Remarque : les essais de sondage les plus récents réalisés sur site sont des puits aux niveaux PK 6+000(S 6), 9+000 (S 9) et 11+0000 (S 11) correspondent pour notre projet au profils PK 0+000+, 3+000 et 5+0000

4.2.2 Essai C.B.R: (CALIFORNIA BEARING RATIO)

C'est un essai qui a pour but d'évaluer la portance du sol en estimant sa résistance au poinçonnement, afin de pouvoir dimensionner le corps de chaussée et orienter les travaux deterrassements

On réalise en général trois essais :

« CBR standard », « CBR immédiat », « CBR imbibé ».On s'intéresse actuellement au « CBR imbibé ».

On jugera ainsi la portance du sol à l'aide de l'indice de CBR en se reformant

Une fourchette telle que le tableau suivant :

ICBR	Portance du sol		
< 3	Mauvaises		
3 à 8	Mediocre		
8 à 30	Bonne		
>30	Très bonne		

Tableau III-02 : classe de portance de l'indice de CBR

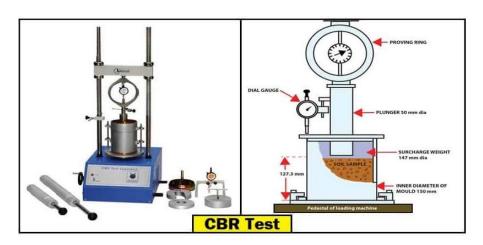


Figure III.5: l'essai CBR

4.2.3 Essai Los Angeles:

L'essai Los Angeles est utilisé pour déterminer la résistance à la fragmentation d'un échantillon de granulat.

Le coefficient Los Angeles obtenu est le pourcentage de l'échantillon initial passant au tamis de 1.6 mm après fragmentation dans un cylindre en présence de boulets d'acier.

Plus le pourcentage Los Angeles (noté LA) est petit, plus l'échantillon est résistant à la fragmentation.

$$LA = \frac{P1 - P2}{P1}x\ 100$$

P1: la prise d'essai.

P2 : le refus sur le tamis 1.6mm.

LA	Appreciation
<15	Très bon à bon
15 à 25	Bon à moyen
25 à 30	Moyen à faible
>30	Mediocre

Tableau III.3: Interprétation du LA

Figure III.6: Essai Los Angeles.

4.2.4 Essai Micro Deval:

L'essai micro-Deval permet de déterminer la résistance à l'usure d'un échantillon de granulat.

Le coefficient micro-Deval obtenu est le pourcentage de l'échantillon initial passant au tamis de 1.6 mm après usure par rotation dans un cylindre en présence de bille d'acier inox et d'eau.

Plus le pourcentage d'usure est bas, plus l'échantillon est résistant à l'usure

Il est effectué dans deux états :

MDS: Coefficient Micro-Deval sèche

M DE: Coefficient Micro-Deval à la présence de l'eau.

Figure III.7: Essai Micro Deval.

Valeur MDE	Appreciation
≤ 13	Très bon à bon
13 à 20	Bon à Moyen
20 à 25	Moyen à faible
>25	Mediocre

Figure III.8: Machine Micro-Deval

Tableau III.4 : caractéristique des granulats par

le MDE

Matériau de remblai :

Le calcul des volumes des remblais et des déblais montre qu'on a un déficit de matériaux de remblais.

Ce dernier peut bénéficier d'une éventuelle réutilisation pour déblais Cela est possible dans des conditions normales d'utilisation dont il convient de respecter pour obtenir des remblais répandant au besoin courant de qualité.

Pour obtenir des sols rencontres en remblais, on doit se baser sur les spécifications et les recommandations établies par le laboratoire central des ponts et chaussées (L.C.P.C) qui sont

Décrites dans les manuels dits « Recommandation pour les terrassements Routiers » R.T.R.

		$I_{p} < 10$			A _l
Sols fins	D > 50 mm tamisât à	10 < I _p < 20			
SOIS IIIIS	$80 \mu m > 35\%$	$20 < I_p < 50$			A ₃
		$I_{p} > 50$			A_4
			Refus à2 mm	ES > 35	B_1
Sols sableux et	D < 50 mm tamisât à	$Tamis \hat{a} \hat{a} 80 \mu m$	< 30 %	ES < 35	B_2
	80µm entre	entre 5 % et 12 %	Refus à	ES > 25	B_3
graveleux avec fines	5 % et 35 %		2 mm > 30 %	ES < 25	B_4
inics	3 70 Ct 33 70	tamisâtà 80µm de	I _p <10 %		B_5
		15 % et 35%	I _p > 10 %		\mathbf{B}_{6}
Sols comportant	D > 50		tamisât à 80µm élevé		C_1
des fins et des gros	tamisât à	tamisât à	D > 250 mm		C_2
éléments	$80 \mu m > 5 \%$	80 μm faible	D < 250 mm		C ₃
Sols et roches	tamisât à	D < 50 mm	Refus à 2 mm < 30 %		\mathbf{D}_1
insensibles à l'eau		D < 50 mm	Refus à 2 mm > 30 %		D_2
inscrisibles a reau	80 μm < 5 %	50 < D < 250 mm			D_3
Matériaux à structure fins					E_1
Roches évolutives	Matériaux à structure grossière				E_2
	Matériaux à structure	évolutive			E ₃
Matériaux soluble	s ou polluants				F

Tableau III-05: Tableau récapitulatif de la classification "R.T.R"

I.5. Condition d'Utilisation des Sols en Remblais :

Les remblais doivent être constitués de matériaux provenant de déblais ou d'empruntséventuels. Les matériaux de remblais seront exempts de :

- Pierre de dimension > 80mm.
- Matériaux plastique I_P > 20 % ou organique.
- Matériaux gélifs.
- On évite les sols à forte teneur en argile.

Les remblais seront réglés et soigneusement compactés sur la surface pour laquelle seront exécutés. Les matériaux des remblais seront établis par couche de 30cm d'épaisseur en moyenne avant le compactage. Une couche ne devra pas être mise en place et compactée avant que la couche précédente n'ait été réceptionnée après vérification de son compactage.

NB: À défaut du manque du rapport géotechnique du projet nous n'avons pas traité convenablement la partie géotechnique pour l'application à notre projet.

I.6. Programme de reconnaissance géotechnique :

6-1 Reconnaissance du site :

Corps de chaussée existant :

Deux sondages de reconnaissance de 1 mètre de profondeur pour le corps de chaussée existant. Les sondages de reconnaissance à la pelle mécanique de 1,4 à 2 mètres de profondeur, seront réalisés selon le tableau ci-dessous

Tableau récapitulatif des sondages :

Sondage n°SC06PK06+000G (vers Sedrata) correspond au PK 0+000 (pour notre étude)

Faciès01 : Argile sableuse a graveleuse brunâtre

Sondage n°SC08PK08+000G (vers Sedrata) correspond au PK 2+000 G pour notre (étude)

Faciès01 : Argile marneuse brunâtre a blanchâtre

Sondage n°SC09PK09+000D (vers Sedrata) correspond au **PK3+000D** (pour notre étude)

Faciès01 : Argile marneuse brunâtre a noirâtre

Sondage n°SC10 PK10+000G (vers Sedrata) correspond au PK 4+000 G (pour notre étude)

Faciès01 : Argile limoneuse a graveleuse brunâtre

Sondage n°SC11 PK11+000D (vers Sedrata) correspond au PK 5+000 D pour notre (étude)

Faciès01 : Argile limoneuse a graveleuses brunâtre

Sondage –puits	S06	S08	S09	S10	S11
Profondeur de Prélèvement (m)	1.6-2m	1.65- 2.10m	1.60- 2.20m	1.5-2m	1.40-2m
Nature apparente des Échantillonnés	Argile Sableuse Graveleuse Brunâtre	Argile marneuse Brunâtre	Argile Marneuse Brunâtre a Noirâtre	Argile Limoneuse Graveleuse Brunâtre	Argile limoneuse Graveleuse Brunâtre
Densité sèche γd :(t/m3)	1.71	1.72	1.63	1.72	1.73
Teneur en eau Naturelle : w (%)	11.8	137	16.7	12.2	11.9
Degré de saturation Sr (%)	54.0	66.0	67.0	58.0	48.0
Poids Spécifique : γh(t/m3)	1.91	1.96	1.90	1.93	1.94

Granulométrie (%) de	2mm	79.37	89.18	95.88	93.78	92.51
passant	0.08 mm	56.47	66.55	76.12	62.67	63.15
Limite	WL	32.0	34.0	45.0	4.0	33.0
D'Atterberg	IP	15.0	23.0	23.0	16.0	18.0
Indic Consista		>1	>1	>1	>1	>1
Indice	VBS	03	02	01	02	05
Indice	CBR	3.55	4.61	3.80	4.44	4.32
Proctor	Wopt(%)	7.9	8.9	8.3	8.5	8.7
	γdopt (g/cm3)	1.92	1.95	1.89	1.91	1.95

Tableau III-6: Tableau récapitulatif des sondages

6-2 Reconnaissance des gîtes d'emprunts

La prospection des gîtes d'emprunts se fera dans les environs immédiats du projet, et aura pour objectif la localisation par rapport à l'axe de la route (PK et distance), capacité et identification des matériaux pour remblais de couche de fondation et de base.

Les indications suivantes seront consignées dans le rapport :

- Tieu.
- Coordonnées du site.
- Description lithologique (Visuelle).
- Plan de situation.
- Capacité.

Prélèvements d'échantillons en quantités suffisantes pour exécuter les essais suivants :

- Teneur en eau, Granulométrie, Limite d'Atterberg, Analyse chimique, Essai au bleu de méthylène (VBs).

I.7. CONCLUSION:

Un examen des valeurs des essais géotechniques montre une certaine homogénéité, ce qui dénote qu'on a à faire à une même nature du matériau, il s'agit bien d'une grave argileuse.

Il s'agit d'un sol argileux et marneux, peu plastique d'après la classification RTR classe A2 et selon la classification LCPC ce sont des sols (argileuse, marneux plastique à très plastiques) À 95% de l'O.P.M Proctor ce sol présente un indice C.B.R proche de 4.

La nature du matériau en déblai s'apparente au tout venant de carrière et sable graveleux que les essais géotechniques les attestent bien, il s'agit essentiellement d'une grave argileuse

III.II. Dimensionnement du corps de chaussé :

II.1. Introduction:

La qualité d'un projet routier ne se limite pas seulement à l'obtention de bon tracé en plan et d'un bon profil en long, en effet une fois réalisée, la route devra résister aux agressions des agents extérieurs et aux surcharges d'exploitation action des essieux des véhicules et notamment les poids lourds.

En effet des gradients thermiques, pluie, neige, verglas etc..., pour cela il faudra on seulement assurer à la route de bonnes caractéristiques géométriques mais aussi de bonnes caractéristiques mécaniques qui lui permettra de résister à toutes les charges pendant toute sa durée de vie.

La qualité de la construction des chaussées joue un rôle primordial. Celle-ci passe d'abord par une bonne connaissance du sol support et un choix judicieux des matériaux à réaliser. Le dimensionnement des structures de chaussée constitue une étape importante de l'étude. Il s'agit en même temps de choisir les matériaux nécessaires ayant des caractéristiques requises et de déterminer les épaisseurs des différentes couches de la structure de la chaussée. Tout cela en fonction de paramètres fondamentaux suivants :

- ✓ Le trafic
- ✓ L'environnement de la route (le climat essentiellement)
- ✓ Le sol support

II.2. La chaussée :

Au sens géométrique : C'est la surface aménagée de la route sur laquelle circulent les véhicules.

Au sens structurel : C'est l'ensemble des couches de matériaux superposées de façon à permettre la reprise des charges.

Les chaussées se présentent comme des structures multicouches mises en œuvre sur un ensemble appelé plate-forme support de chaussée, constituée du sol terrassé, dit sol support, le plus souvent surmonté d'une couche de forme.

II.3. Différents types de chaussé :

Il existe trois types de chaussée :

- ✓ Chaussée souple.
- ✓ Chaussée semi rigide.
- ✓ Chaussée rigide.
- 3.1. Chaussées souples : La chaussée souple est constituée de deux éléments constructifs :
- Les sols et matériaux pierreux granulométrie étalée ou serrée.

• Les liants hydrocarbonés qui donnent de la cohésion en établissant des liaisons souples entre les grains de matériaux pierreux.

La chaussée souple se compose généralement de quatre couches différentes :

- Couche de roulement (surface).
- Couche de base.
- Couche de fondation.
- Couche de forme.

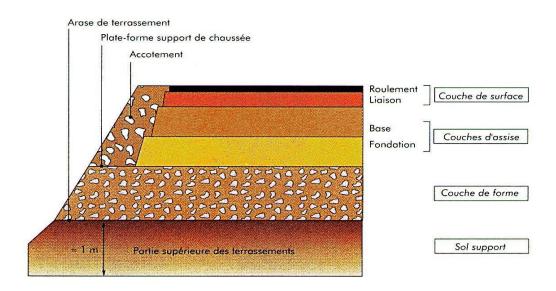


Figure III 09 : Structure type d'une Chaussée souple

3.2. Chaussée semi – rigide :

On distingue:

- Les chaussées comportant une couche de base (et quelquefois une couche de fondation) traitée au liant hydraulique (ciment, laitier granulé...).
- La couche de roulement est en enrobé hydrocarboné et repose quelquefois par l'intermédiaire d'une couche de liaison également en enrobé hydrocarboné sur la couche de base traitée dont l'épaisseur strictement minimale doit être de 15 cm, ce type de chaussée, actuellement n'existe pas en Algérie.

• Les chaussées comportant une couche de base et/ou une couche de fondation en sable gypseux, on les rencontre fréquemment dans les zones arides.

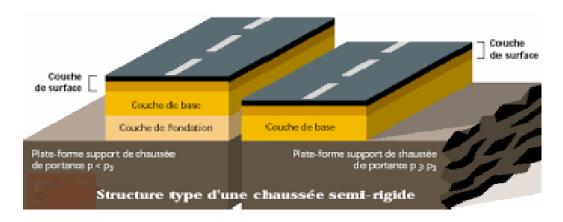


Figure III.10: Structure type d'une chaussée semi-rigide.

3.3. Chaussée rigide:

Comportant des dalles en béton (correspondant à la couche de surface de la chaussée souple) qui, en fléchissant élastiquement sous les charges, transmettent les efforts à distance et les répartissent ainsi sur une couche de fondation qui peut être une grave stabilisée mécaniquement, elle peut être traitée aux liants hydrocarbonés ou aux liants hydrauliques.

Ce type de chaussée est pratiquement inexistant en Algérie (sauf pour les chaussées aéronautiques).

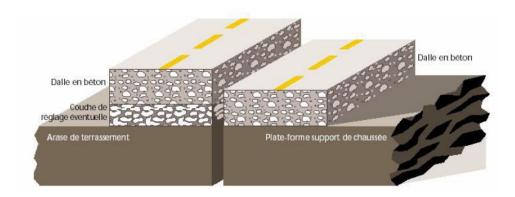


Figure III.11 : Structure type d'une chaussée rigide.

II.4. Les Différentes couches de chaussée

4.1 Couche de roulement (surface) :

La couche de surface est constituée d'un matériau traité au liant hydrocarboné, qui Est en contact direct avec les pneumatiques des véhicules et les charges extérieures.

Elle a pour rôle essentiel:

✓ D'encaisser les efforts de cisaillement provoqués par la circulation,

✓ D'assurer une transition avec les couches inférieures les plus rigides,

✓ D'imperméabiliser la surface de chaussée.

✓ D'assurer la sécurité (par l'adhérence) et le confort des usages (diminution de bruit, bon uni).

4.2 La couche de base :

Cette couche est constituée d'un matériau non traité (ou traité) de bonne caractéristique mécanique. Elle est conçue pour répartir, transmettre les charges sur la couche de fondation et le passage progressif entre la couche de roulement et la couche de fondation. L'épaisseur de la couche de base est entre 10 et 25 cm.

4.3 Couche de fondation:

La couche de fondation Assure un bon uni et bonne portance de la chaussée finie, et aussi, elle a le même rôle que celui de la couche de base.

4.4 Couche de forme:

La couche de forme est la surface de terrain préparée sur laquelle est édifiée la chaussée. Elle est constituée d'un matériau non traité. Son rôle est d'améliorer la portance du sol support en permettant l'homogénéisation des contraintes transmises par le trafic et la circulation d'engins de chantier.

II.5. Méthodes de de dimensionnement du corp de chaussée :

Toutes les méthodes de dimensionnement basées sur la connaissance de certains paramètres Fondamentaux liés au :

5.1. Trafic:

Le trafic de dimensionnement est essentiellement le poids lourds (véhicules supérieurs à 3.5t). Il intervient comme paramètre d'entrée dans le dimensionnement des structures de chaussées et le choix des caractéristiques intrinsèques des matériaux pour la fabrication des matériaux de chaussée. Il est apparu nécessaire de caractériser le trafic à partir de deux paramètres :

• De trafic poids lourds « T » à la mise en service, résultat d'une étude de trafic et de comptages sur les voies existantes ;

• De trafic cumulé sur la période considérée qui est donnée par :

 $N = T \times A \times C$

N: Trafic cumulé.

A : Facteur d'agressivité globale du trafic.

C: Facteur de cumul: $C = [(1+\tau)^p - 1]/\tau$

- T: Taux de croissance du trafic.
- P: Nombre d'années de service de la chaussée.

5.2. Environnement:

Le climat et l'environnement influent considérablement sur la bonne tenue de la chaussée en termes de résistance aux contraintes et aux déformations, ainsi La variation de la température intervient dans le choix du liant hydrocarboné, et aussi les précipitations liées aux conditions de drainage conditionnent la teneur en eau du sol support. Donc, l'un des paramètres d'importance essentielle dans le dimensionnement la teneur en eau des sols détermine leurs propriétés, propriétés des matériaux bitumineux et conditionne.

5.3. Matériaux:

Les matériaux utilisés doivent résister à des sollicitations répétées un très grand nombre de fois (le passage répété des véhicules lourds)

5.4. Le sol support :

Les structures de chaussées reposent sur un ensemble dénommé plate-forme support de chaussée constitue du sol naturel terrassé, éventuellement traité, surmonté en cas de besoin d'une couche de forme.

Les plates-formes sont définies à partir :

- ❖ De la nature et de l'état du sol.
- ❖ De la nature et de l'épaisseur de la couche de forme,

II.6. Principe de la constitution des chaussées :

La chaussée est essentiellement un ouvrage de répartition des charges roulantes sur le terrain de fondation.

Pour que le roulage s'effectue rapidement, sûrement et sans usure exagérée du matériel, il faut que la surface de roulement ne se déforme pas sous l'effet :

- ❖ De la charge des véhicules.
- ❖ Des chocs.
- Des intempéries.
- ♦ Des efforts tangentiels dus à l'accélération, au freinage et au dérapage

II.7. Les principales méthodes de dimensionnement :

On distingue deux familles des méthodes :

Les méthodes empiriques dérivées des études expérimentales sur les performances des Chaussées.

Les méthodes dites « rationnelles » basées sur l'étude théorique du comportement des Chaussées.

Les méthodes du dimensionnement de corps de chaussée les plus utilisée sont :

- La méthode de C.B.R (California -Bearing Ratio)
- Méthode du catalogue de dimensionnement des chaussées neuves. (CTTP)
- Méthode du catalogue des structures.
- La méthode L.C.P.C (Laboratoire Central des Ponts et Chaussées).

Vu de la : - Rapidité du dimensionnement.

- Simplicité de la méthode.

L'obtention d'une structure standard permettant une bonne maitrise de la technique etune capitalisation de l'expérience

7.1. Méthode C.B.R (Californie – Bearing – Ratio):

C'est une méthode semi empirique qui se base sur un essai de poinçonnement sur un échantillon du sol support en compactant les éprouvettes de (90° à 100°) de l'optimum Proctor modifié sur une épaisseur d'eau moins de 15cm.

La détermination de l'épaisseur totale du corps de chaussée à mettre en œuvre s'obtient par l'application de la formule présentée ci-après

Eeq =
$$\frac{100 + \sqrt{P} \left(75 + 50 \log \frac{N}{10}\right)}{I_{CBR} + 5}$$

Eeq: épaisseur équivalent en cm

I_{CBR}: indice CBR

P: charge par roue P = 6.5 t (essieu 13 t).

Log: logarithme décimal.

N : désigne le nombre moyen de camion de plus 1500 kg à vide.

Et pour tenir compte des qualités mécaniques différentes des couches mises en œuvre, on fait intervenir le coefficient équivalence (a).

♣ Notion de l'épaisseur équivalente :

La notion de l'épaisseur équivalente est introduite pour tenir compte des qualités mécaniques des différentes couches et l'épaisseur équivalente d'une couche est égale à son épaisseur réelle multipliée

par un coefficient numérique a appelé coefficient d'équivalence. L'épaisseur équivalente de la chaussée est égale à la somme des épaisseurs.

L'épaisseur équivalente est donnée par la relation suivante

E = a1 X e1 + a2 X e2 + a3 X e3

a1 X e1 : couche de roulement.

a2 X e2: couche de base.

a3 x e3 : couche de fondation.

a3 X e3: épaisseurs réelles des couches.

a1, a2, a3 : coefficients d'équivalence, et e1, e2, e3 : épaisseur réelle des couches

Et variée en fonction de qualité de matériaux et le tableau suivent indique les déférentes valeurs pour chaque matériau :

Matériaux utilises	Coefficient d'équivalence	
Béton bitumineux ou enrobe dense.	2.00	
Grave ciment-grave laitier	1.50	
Grave Bitume	1.20 à 1.70	
Grave concassée ou gravier	1.00	
Grave roulée-grave sableuse T.V.O	0.75	
Sable ciment	1.00 à 1.20	
Sable	0.50	
Tuf	0.60	

Tableau III.7: Coefficients d'équivalence des matériaux

Pour le calcul de l'épaisseur réelle, on fixe «e l» et «e 2» et on calcule «e 3», généralement les épaisseurs adoptées sont :

BB=6-8 cm; **GB**=10-20 cm: **GC**=15-25 cm; **TVO**=25cm et plus.

7.2. Méthode du catalogue de dimensionnement des chaussées neuves :

Cette méthode se base essentiellement sur quatre paramètres :

- ✓ Le trafic
- ✓ La portance de sol support de la chaussée.
- ✓ Zone climatique et l'environnement.

✓ Les matériaux utilisés.

Cette méthode est caractérisée par des hypothèses de base sur les paramètres caractéristiques :

7.2.1 Niveau de Réseaux Principaux :

Le réseau principal se divise en deux niveaux :

- Réseau principal de niveau 1 (RP1) il comporte des :
 - ✓ Liaisons supportant un trafic supérieur à 1500 v/j
 - ✓ Liaisons reliant deux chefs-lieux de wilaya
 - ✓ Liaisons présentant un intérêt économique ou stratégique « Généralement le RP1 fait partie des routes nationales (RN) »
- Réseau principal de niveau 2 (RP2):
- ✓ Il en constitué de liaisons supportant un trafic inférieur à 1500 v/j.
- ✓ Il est composé de route nationale (RN), chemin de wilaya (CW).
- ✓ Liaisons reliant l'Algérie aux pays riverains.

7.2.2 Détermination de la Classe de Trafic :

Les classes de trafic **TPLi** adoptées dans les fiches structures de dimensionnement sont données pour chaque niveau de réseaux principal exprimées en nombre de PL par jour et par sens à l'année de mis en service.

- ✓ Le réseau **RP1** comprend cinq classes à partir TPL3 jusqu'à TPL7.
- ✓ Le réseau **RP2** comprend cinq classes à partir TPL0 jusqu'à TPL3.

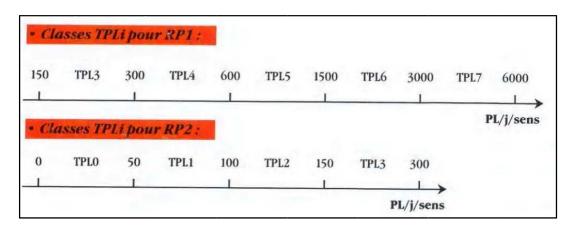


Figure III.12: La classe de trafic.

7.2.3 Présentation des classes de portance des sols :

Le sol doit être classée selon la valeur de CBR de densité Proctor modifier maximal les différentes catégories sont données par le tableau indique les classes de sols :

Portance Si	ICBR
S4	< 5
S3	5-10
S2	10-25
S1	25-40

Tableau III.8: les classes de sols selon la valeur de CBR

IL Existe diffèrent type de couches de forme suivant le cas de portance du sol terrassé (Si) et la classe du sol support visée (Sj).

7.2.4 Les Zones Climatiques :

Les zones climatiques de l'Algérie sont mentionnées dans le tableau suivant :

Zone Climatique	Pluviométrie (mm/an)	Climat	Température Equivalente (C°)	Région
I	> 600	Très Humide	20	Nord
II	350-600	Humide	20	Nord, Hauts Plateaux
III	100-350	Semi-aride	25	Hauts Plateaux
IV	< 100	Aride	30	Sud

TableauIII.9: Les zones climatiques.

7.2.5 Types des structures :

Le choix est fait en relation avec le niveau de réseau principal retenu.

Niveau de réseau Matériaux types		Structures
	MTB (traités au bitume)	GB/GB, GB/GNT. GB/TUF
RP1	MTLH (traités aux liants hydrauliques)	GL/GL. Bcg/GC
DD1	MNT (non traités)	GNT/GNT. TUF/TUF
RP2	MTB (traités au bitume)	SB/SG

Tableau III.10: Structures disponibles dans le catalogue

7.3. Méthode du catalogue des structures

Cette méthode découle du règlement algérien B60-B61 et elle consiste à déterminer la classe du trafic des poids lourds à la 20eme année et la classification du sol support. Une grille combinant les deux données oriente le projecteur sur le type de chaussée qui lui correspond.

7.3.1 Détermination de la classe du trafic

La classe de trafic (TPLi) est donnée en nombre de poids lourds par jour et par sens sur la voie la plus

Classe de trafic Trafic	Poids lourds cumulé sur 20 ans	
T1	T< 7.3×105	
T2	3.7 × 105 < T < 2 × 106	
Т3	2 × 106 < T < 7.3 × 106	
T4	7.3 × 106 < T < 4 × 107	
T5	T > 4 × 107	

chargée à l'année de mise en service. Les classes de trafics adoptées sont dans le tableau suivant :

Tableau III.11: Classement du trafic suivant le catalogue.

On commence par la détermination du trafic poids lourds cumulé sur 20 ans et définir à partir du tableau ci-dessus la classe de trafic correspondant. Le trafic cumulé est donné par la formule ci-après .

TC = TPL
$$\left[1 + \frac{(1+\tau)^{n+1} - 1}{\tau}\right] * 365$$

Avec:

TPL : Trafic poids lourds à l'année de mise en service.

n : durée de vie

T : taux de croissance du trafic.

7.3.2 Détermination de la classe du sol :

Le sol doit être classé selon la valeur du CBR du sol support.

Les différentes catégories de sol sont données par le tableau suivant :

Classe du sol	Indice CBR		
S1	25-40		
S2	10-25		
S3	5-10		
S4	< 5		

Tableau III.12: Classe de sols.

II.8. Application au projet :

Nous utilisons pour le calcul les deux méthodes explicitées plus haut et les comparer afin d'obtenir le corps de chaussée le plus adéquat.

8.1 Méthode de C.B.R

- Trafic de l'année de comptage 2024, TJMA 2024 = 6460v/j
 Année de mise en service :2029, TJMA 2029 = 7673 v/j
- Durée de vie 20 ans
- Le taux de croissement est de 3.5 %
- Pourcentage du poids lourd est 21%
- TJMA2049 = 15268 v/j

Sondage –puits	Pk(propjet)	Indice CBR	Portance S
S06	00+000G	3.55	S4
S08	02+000G	4.61	S4
S09	03+000D	3.80	S4
S10	04+000G	4.44	S4
S11	5+000D	4.32	S4

Tableau III.13: Tableau des classes de portance des sols

• Indice CBR : ICBR ≈ 4

$$NPL_{2049} = (TJMA_{2049}/2) \times Z \times 0.9$$

$$N_{PL2049} = (TJMA_{2049}/2) \times Z \times 0.9 = (15268/2) \times 0.21 \times 0.9 \longrightarrow N_{PL2049} = 1443 \text{ PL/J}$$

$$Eeq = \frac{100 + \sqrt{P} \left(75 + 50 \log \frac{N}{10}\right)}{I_{CBR} + 5} = \frac{100 + \sqrt{6.5} \left(75 + 50 \log \frac{1443}{10}\right)}{4 + 5} \longrightarrow Eeq = 63cm$$

On a:

$$E = a1 * e1 + a2 * e2 + a3 * e3$$

On a proposé les matériaux suivants de chaque couche

e1 : Epaisseur réelle de la Couche de roulement en béton bitumineux (B.B)

e2 : Epaisseur réelle de la Couche de base en grave bitume (G.B)

e3 : Epaisseur réelle de la Couche de fondation

Calcule l'épaisseur

e1 = 6 cm en béton bitumineux (BB) a1 = 2

e2 = 14 cm en béton bitumineux (GB) a2= 1,5

Donc l'épaisseur équivalente : (6 * 2) + (14 * 1,5) + (x * 1) = 63 cm

Alors: x = 30 cm

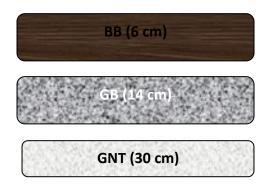


Figure III-13 : Les matériaux et l'épaisseur proposer (Méthode de C.B.R)

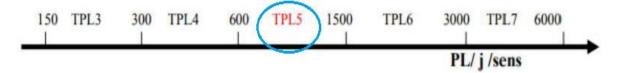
8.2 Méthode du Catalogue de Dimensionnement des Chaussées Neuves (CTTP) :

On les données suivants :

 $TJMA_{2029} = 7673 \text{ (v/j) et } TJMA2024 = 6460 \text{ v/j}$

Route à deux voies :

PLi=: TJMA₂₀₂₉ \times Z \times 0.9 \times 0.5


TPLi = (7673) x0.21 x 0.90 x 0.5 = 725 Pl/j/voie la plus chargée

2.1 Types de réseau :

 $TJMA2024 = 6460v/j > 1500 v/j \Rightarrow RP1$ (réseau principal niveau un)

2.2 Classe TPLi pour RP1

On a : TPL2029 = 725 PL/j/voie la plus chargée donc :

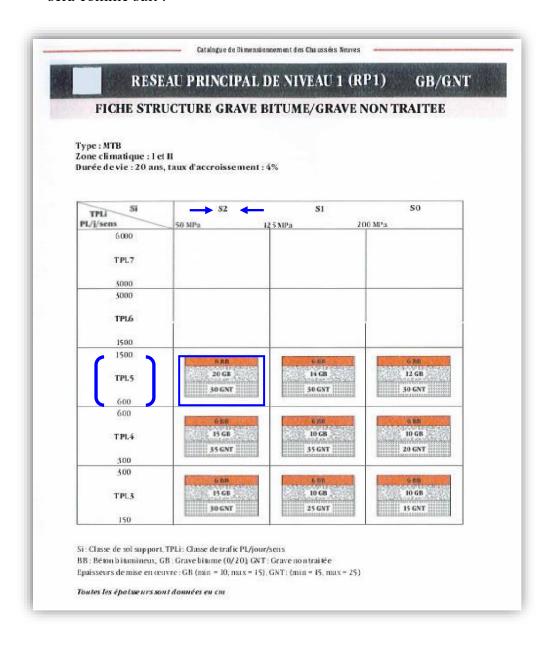
2.3 Présentation des classes de portance des sols

D'après le rapport géotechnique, nous avons un indice de CBR= 4, et d'après le tableau des classes de portance de sols donc la portance de sol support est de S3, on doit préconiser une couche de forme en Matériau non traité 40 cm (en deux couches) de bonnes caractéristiques géotechniques de classe S2, donc la classe de portance visé avant la réalisation du corps de chaussée est S2 (CBR= 10 - 25).

2.4 Détermination de la zone climatique

La willaya de souk ahras (sederata) est située géographiquement dans la zone climatique I Durée de vie en RP1 est de 20 ans

2.5 Taux d'accroissement :


Le Taux d'accroissement est de 3.5 %

2.6 Choix de la structure :

D'après tous ces étapes,

Avec une couche **d'accrochage** entre la couche de roulement en BB et la couche de base en GB, et une couche **d'imprégnation** entre la couche de fondation en GB et la couche de fondation en GNT

D'après le fascicule 3 de C.T.T.P on aura notre dimensionnement ducorps de chaussée qui sera comme suit :

La structure par la méthode de dimensionnement de la chaussée neuve sera donc :

 \triangleright Couche de roulement : **BB** = **06cm**.

 \triangleright Couche de base : **GB** = **20cm**

Couche de fondation : **GNT=30cm**.

Chapitre IV:

Assainissement et

dépendances de la route

IV.I Assainissement

I.1. Introduction:

L'assainissement a pour objet de veiller à l'évacuation des eaux usées et des eaux pluviales dans de bonnes conditions de manière à prévenir les risques sanitaires, les problèmes de contamination, les inondations et les pollutions des nappes phréatiques, puis de les traiter avant leur évacuation vers le milieu naturel dans des conditions qui répondent aux prescriptions de la réglementation en vigueur relatives à la sécurité sanitaire et au respect de l'environnement.

Un système d'assainissement comprend toutes les phases de récupération, à savoir le transport et le processus d'épuration des eaux usées et des eaux pluviales provenant à la fois des agglomérations, des industries et des propriétés de particuliers, et ce, en amont de leur évacuation vers le milieu récepteur.

L'assainissement routier est une composante essentielle de la conception, de la réalisation et de l'exploitation des infrastructures linéaires, elle concerne les volets suivants :

- le rétablissement des écoulements naturels.
- la collecte et l'évacuation des eaux superficielles dans l'emprise de la route.
- la collecte et l'évacuation des eaux internes c'est-à dire le drainage.
- la lutte contre la pollution routière.

I.2. Quelques définitions des termes hydraulique

a. Le bassin versant:

Est un territoire géographique bien défini : il correspond à l'ensemble de la surface recevant les eaux qui circulent naturellement vers un même cours d'eau ou vers une même nappe d'eau souterraine. Un bassin versant se délimite par des lignes de partage des eaux entre les différents bassins

b. Les collecteurs:

Les collecteurs sont considérés comme des tuyaux à écoulements libre et à joints étanches. On distingue :

- ♣ Collecteurs principaux.
- A Collecteurs secondaires.

♣ Les canalisations de branchements.

c. Descentes d'eau:

Dans les sections de route en remblai, lorsque la hauteur de ces remblais dépasse les 2,50 m, les eaux de ruissellement de la chaussée sont évacuées par des descentes d'eau. Elles sont espacées généralement tous les 50 m lorsque la pente en profil en long est supérieure à 1%. Lorsque la pente est inférieure à 1 %, leur espacement est varié entre 30 m et 40 m.

d. Sacs:

Ouvrage placé sur les canalisations pour permettre l'introduction des eaux superficielles. Les sacs sont fréquemment équipés d'un dépotoir, destiné à retenir des déchets solides qui peuvent être entraîné par les eaux superficielles

e. Chambre de visite (cheminée):

C'est un ouvrage placé sur les canalisations pour permettre leur contrôle et le nettoyage. Les chambres de visites sont à prévoir aux changements de calibre, de direction ou de pente longitudinale de la canalisation, aussi qu'aux endroits où deux collecteurs se rejoignent. Pour faciliter l'entretien des canalisations, la distance entre deux chambres consécutives ne devrait pas dépasser 80 à 100m.

f. Le regard:

Il est constitué d'un puits vertical, muni d'un tampon en fonte ou en béton armé, dont le rôle est d'assurer pour le réseau des fonctions de raccordement des conduites, de ventilation et d'entretien entre autres et aussi à résister aux charges roulantes et aux poussées des terres

g. Buses et dalots:

En général, il est nécessaire de faire passer l'eau sous les routes ou moyen de buses ou dalot. Ceux-ci doivent être construits en béton ou en maçonnerie et conduisent les eaux dans un bassin d'amortissement.

h. Fossés de crêtes:

Ce type de fossé est toujours en béton. Il est prévu lorsque le terrain naturel de crête est penché vers l'emprise de la chaussée, afin de protéger les talus de déblais des érosions dues au ruissellement des eaux de pluie et d'empêcher ces eaux d'atteindre la plate-forme.

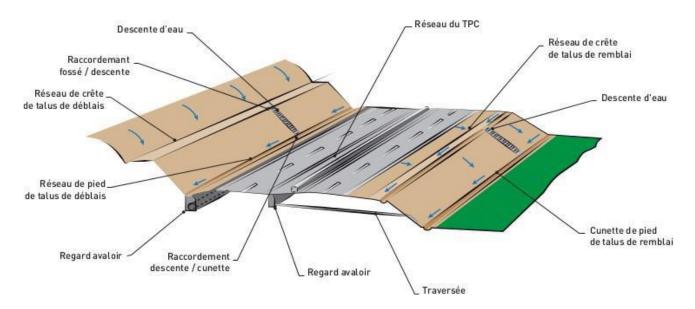


Figure IV .1 : L'emplacement des ouvrages d'assainissement

I.3. Objectif de l'assainissement :

- ✓ Evacuation des eaux s'infiltrant dans le terrain en amant de la plate-forme
- ✓ Assurer l'évacuation rapide des eaux de ruissellement de surface de chaussée.
- ✓ Le maintien de bonne condition de viabilité.
- ✓ Eviter les problèmes d'érosions.
- ✓ Garantir la stabilité de l'ouvrage pour toute se durée de vie.
- ✓ La sauvegarde de l'ouvrage routier (car l'eau accélère la dégradation de la surface, augmente la teneur en eau du sol support, entraînant par la suite des variations de portance et diminue la qualité mécanique de la chaussée).
 - ✓ Réduction du coût d'entretien.
- ✓ Un réseau est constitué d'un assemblage d'ouvrages élémentaires, linéaires ou ponctuels superficiels ou enterrés.
- ✓ Son rôle est de collecter les eaux superficielles ou internes et d²e les canaliser vers un exutoire, point de rejet hors de l'emprise routière ; il peut également contribuer au rétablissement d'un écoulement naturel de faible importance, coupé par la route.

I.4. Assainissement de la chaussée :

La détermination du débouché a donné aux ouvrages tels que dalots, ponceaux, ponts, etc. dépend du débit de crue qui est calculé d'après les mêmes considérations. Les ouvrages sous chaussée les plus courants utilisés pour l'évacuation des petits débits sont les dalots et buses à section circulaire.

Parmi les ouvrages destinés à l'écoulement des eaux, on peut citer ces deux catégories :

- Les réseaux de canalisation longitudinaux (fossés, cuvettes, caniveaux).
- Ouvrages transversaux et ouvrages de raccordement (regards, décente d'eau, tête de collecteur et dalot)

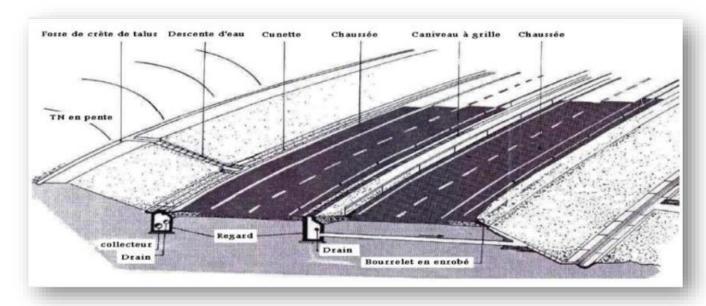


Figure IV.2: Assainissement de la chaussée.

I.5. Type de dégradation :

Les ruissellements des eaux en surfaces de la route engendre de grave dégât a couse de mauvais drainage et entretien.

Ces dégradations présentent sous forme de :

- Pour les chaussées :
- Affaissement (présence d'eau dans le corps de chaussées).
- Dés enrobage.
- Nid de poule (dégel, forte proportion d'eau dans la chaussée avec un important trafic).
- Décollement des bords (affouillement des lancs).
- **♣** Pour le talus :
- Glissement.
- Érosion
- Affouillements du pied de talus.

I.6. Nature et rôle des réseaux d'assainissement routier :

Un réseau est constitué d'un assemblage d'ouvrages élémentaires, linéaires ou ponctuels superficiels ou enterrés. Son rôle est de collecter les eaux superficielles ou internes et de les

canaliser vers un exutoire, point de rejet hors de l'emprise routière ; il peut également contribuer au rétablissement d'un écoulement naturel de faible importance, coupé par la route.

Les ouvrages d'assainissement doivent être conçus dans le but d'assainir la chaussée et l'emprise de la route dans les meilleures conditions possibles et avec un moindre coût.

I.7. Drainage des eaux souterraines :

7.1 Nécessité du drainage des eaux souterraines :

Les eaux souterraines comprennent d'une part, les eaux de la nappe phréatique et d'autre part, les eaux d'infiltrations. Leurs effets sont nocifs si ces eaux détrempent la plate-forme, ce qui peut entraîner une baisse considérable de la portance du sol.

Il faut donc veiller à éviter :

- La stagnation sur le fond de forme des eaux d'infiltration à travers la chaussée.
- La remontée des eaux de la nappe phréatique ou de sa frange capillaire jusqu'au niveau de la fondation.

7.2 Protection contre la nappe phréatique :

La construction d'une chaussée modifie la teneur en eau du sol sous-jacent, car le revêtement diminue l'infiltration et l'évaporation.

Si le niveau de la nappe phréatique est proche de la surface, la teneur en eau du sol tend ver un État d'équilibre dont dépend la portance finale.

Lorsque cette dernière est faible, on pourra :

- **♣** Soit dimensionner la chaussée en conséquence.
- ♣ Soit augmenter les caractéristiques de portance du sol en abaissant le niveau de la nappe phréatique ou en mettant la chaussée en remblai.
- Le choix de l'une ou l'autre de ces trois solutions dépend :
 - ✓ Des possibilités de drainage du sol (coefficient de perméabilité).
 - ✓ De l'importance des problèmes de gel.
 - ✓ De leurs coûts respectifs.

Il n'est pas nécessaire, en général, d'assurer le drainage profond d'une grande surface car un bon nivellement et un réseau de drainage superficiel convenablement conçu suffisent à garantir un comportement acceptable des accotements.

I.8. Dimensionnement de réseau d'assainissement a projeté :

8.1. Contexte climatique ou météorologique :

Les données hydrauliques sont tirées de l'étude effectuée dans la région de (SOUK AHRAS).

Les données nécessaires aux calculs concernent :

- ✓ Les précipitations moyennes de 24h : P₂₄=P₃=36.68mm
- ✓ Le coefficient de variation de la région considérée C_v=0.39
- ✓ L'exposant climatique de la région b=0.21.

Les précipitations maximales journalières de fréquence donnée P (%).

Le calcul de la précipitation pj (%) est obtenu par la formule suivante :

Pluie journalière maximale annuelle Pj est donné par la formule de GALTON

$$P_{j}(\%) = \frac{P_{j}max}{\sqrt{Cv^{2}+1}} \cdot e_{v}^{u} \sqrt{\ln\left(C_{v}^{2}+1\right)}$$

Pj moy: pluie moyenne journalier

Cv : coefficient de variation climatique.

u : variation de Gauss, donnée par le tableau suivant :

Fréquence %	50	20	10	5	2	1
Période de retour (ans)	2	5	10	20	50	100
Variable de Gausse	0	0,841	1,282	1,645	2,057	0,327

Tableau IV.1: Variable de Gausse.

Remarque:

Les buses seront dimensionnées pour une période de retour de 10 ans.

Les ponceaux (dalot) seront dimensionnés pour une période de retour 50 ans.

Les ponts dimensionnés pour une période de retour 100 ans.

a) Calcul de précipitation :

$$P_{j}(\%) = \frac{P_{j}moy}{\sqrt{Cv^{2} + 1}} \cdot e^{u} \sqrt{\ln(C_{V}^{2} + 1)}$$

Pendant 10 ans

$$u = 1.28$$
 $Cv = 0.39$ $Pj = 36.68mm$

donc: Pj(10%) = 55.29 mm.

Pendant 50 ans

$$u = 2.05$$
 $Cv = 0.39$ $Pj = 36.68mm$ donc : $Pj(02\%) = 73.90 mm$

Pendant 100 ans

$$u = 2.327$$
 $Cv = 0.39$ $Pj = 36.68mm$

donc:
$$Pi(01\%) = 81.96 \text{ mm}$$

b) Calcul de l'intensité de l'averse :

L'intensité à l'averse est donnée par la relation suivante :

$$I_t = I \times (\frac{tc}{24})^b$$

Ou:

I : Intensité de la pluie (mm/h).

tc: temps de concentration (h).

b : Exposant climatique.

- L'intensité horaire

$$I = \frac{P_j(\%)}{24}$$

Temps de concentration tc

La durée t de l'averse qui produit le débit maximum Q étant prise égale au temps de concentration. Dépendant des caractéristiques du bassin drainé, le temps de concentration est estimé respectivement d'après Ventura, Giandotti, Passini, comme suit :

Lorsque A < 5 km²;
$$tc = 0,127 \times \sqrt{\frac{A}{P}} \dots Ventura$$

Lorsque 5 km² £ A < 25 km² ;
$$tc = 0, 108 \times \sqrt[3]{\frac{A.L}{P}} \dots Giandotti$$

Lorsque 25 km² £ A < 200 km²;
$$tc = \frac{4\sqrt{A} + 1.5L}{0.8.\sqrt{H}}$$
 Passini

Où:

Tc: Temps de concentration (heure).

A : Superficie du bassin versant (km²).

L : Longueur de bassin versant (km).

P : Pente moyenne du bassin versant (m.p.m).

H : La différence entre la cote moyenne et la cote minimale (m).

L'intensité de l'averse pour une durée de 1h :

L'intensité à l'averse est donnée par la relation suivante :

$$I = \frac{P_j \ (\%)}{24}$$

Pour:

• Pj(01%) = 81,96 mm
$$I = \frac{81.96}{24} = 3.415$$
mm/h

•
$$Pi(10\%) = 55,29 \text{ mm}$$
 $I = 2.30 \text{ mm/h}.$

•
$$Pj(02\%) = 73.90 \text{ mm}$$
 $I = 3.079 \text{ mm}/$

8.2. Surface des bassins versants (A):

Les bassins des différents écoulements présentent des surfaces peu importantes.

Les principales caractéristiques des bassins peuvent être déterminées :

☐ Les surfaces A sont mesurées au planimètre en Km2.

☐ Les longueurs de talweg principal L sont mesurées au curvimètre en Km

☐ La pente P est calculée en faisant le rapport de la dénivelée du talweg par longueur L en m/m.

Coefficient de ruissellement (C) :

Le coefficient de ruissellement a été estimé à partir :

☐ De la pente du bassin versant.

☐ De l'intensité de pluie.

☐ De la couverture du bassin versant. et la perméabilité du terrain.

Type de chaussée	С	Valeurs prises
Chaussée revetement en enrobés	0.80 à 0.95	0.95
Accotement (sol légèrement perméable)	0.15 à 0.40	0.35
Talus	0.10 à 0.30	0.25
Terrain naturel	0.05 à 0.20	0.20

Tableau IV-2: coefficient de ruissellement

calcul des débits :

a. Le débit d'apport :

Le débit d'apport est évalué à l'aide de la formule rationnelle suivant : $Qa = K.C.I. A (m^3/s)$

Avec:

K : coefficient de conversion des unités : K = 0.2778

It : l'intensité de l'averse exprimée en mm/h

A : superficie du bassin versant exprimée en (ha).

b. Calcul du débit de saturation (Qs) :

Le débit de saturation est donné par la formule de MANNING-STRICKLER :

$$Q_S = S \times K_{st} \times J^{\frac{1}{2}} \times R_h^{\frac{2}{3}}$$

Où :

Kst: coefficient de MANNING STRIKLER.

Kst: 40 en buses métalliques.

Kst: 50 maçonneries.

Kst: 70 bétons (dalots).

Kst: 80 bétons (buses préfabriquées)

Rh: rayon hydraulique (m).
J: la pente moyenne de l'ouvrage.

I.9. Application au projet :

Rappel des données pluviométriques

Les données pluviométriques nécessaires pour le calcul :

Les précipitations moyennes de 24h : P24 =PJ=36.68mm

Exposant climatique b = 0.21

Coefficient de variation Cv = 0.39

Calcul hydraulique

a. Calcul de la pluie journalière maximale annuelle "Pj"

$$P_{j}(\%) = \frac{Pjmoy}{\sqrt{Cv^{2}+1}} \; . \; e^{u} \sqrt{ln\left(C_{V}^{2} + \; 1\right)} \label{eq:pjmoy}$$

Pour une période de retour égale à 10 ans :

$$u = 1,28$$
, $Cv = 0,39$, $Pjmoy = 36.68mm$

$$P_{j}(\%) = \frac{_{36.68}}{_{\sqrt{0,39^2+1}}} \cdot e^{\frac{_{1,28}}{\sqrt{ln}}} \sqrt{ln \ (0,39^2+\ 1)}$$

$$P_i(10\%) = 55.29 \text{ mm}$$

b. L'intensité horaire "I"

$$I=\frac{P_j(\%)}{24}$$

$$P_{j}(10\%) = 55.29 mm; \quad I(10\%) = \frac{55.29}{24} \ \, \Rightarrow \qquad I(10\%) = \ \, 2.30 \; mm/h$$

c. Calcul de la surface du bassin versant

Les buses ainsi que les fossés sont dimensionnés pour évacuer le débit apporté par l'ensemble des bassins versants de la chaussée et l'accotement et le talus.

VOA 2025 92

- Surface de la chaussée : $Ac = 7.6 \times 100.10^{-4} = 0.076$ ha (Chaque 100 mètre)
- Surface de l'accotement : $A_A = 2 \times 100.10^{-4} = 0.02 \text{ ha}$
- Surface du talus : $A_t = 6 \times 100.10^{-4} = 0.06$ ha

$$A_{total} = 0.156 \text{ ha}$$

d. Calcul des débits d'apporté

$$Qa = K.C.I.A$$

✓ Le débit apporté par la chaussée

$$\begin{split} &C = 0.95 \quad p = 2.5 \,\%, \qquad I\,(10\%) = 2.30 \text{ mm/h}, \quad A = 0.076 \text{ ha}. \\ &\textbf{tc} = \textbf{0}, \textbf{127} \times \sqrt{\frac{A}{P}} = \textbf{0}, \textbf{127} \times \sqrt{\frac{0.076}{2.5}} \Rightarrow \textbf{tc} = \textbf{0}, \textbf{022 ha} \\ &\textbf{I}_t = \textbf{I} \times \left(\frac{\textbf{tc}}{24}\right)^{\textbf{b}-1} = \textbf{2}.30 \times \left(\frac{0.022}{24}\right)^{0.21-1} \quad \Rightarrow \qquad \textbf{It} = \textbf{577}.54 \, \textbf{mm/h} \\ &\textbf{Qa} = \textbf{K.C.I.A} \end{split}$$

(Qa) chaussée = $2,778 \times 0.95 \times 577.54 \times 0.076 \times 10^{-3}$ (Qa) chaussée = $0.12 \text{ m}^3/\text{s}$

✓ Le débit apporté par l'accotement

$$C = 0,35, \quad p = 4 \%, \qquad I (10\%) = 2.30 \text{ mm/h}, \quad A = 0,020 \text{ ha}.$$

$$tc = 0,127 \times \sqrt{\frac{A}{P}} = 0,127 \times \sqrt{\frac{0,020}{4}} \Rightarrow tc = 0,009 \text{ha}$$

$$I_t = I \times \left(\frac{tc}{24}\right)^{b-1} = 2.30 \times \left(\frac{0,009}{24}\right)^{0,21-1} \Rightarrow \qquad It = 1170.15 \text{ mm/h}$$

$$(Qa) \ accotement = 2,778 \times 0,35 \times 1170.15 \times 0,020 \times 10^{-3}$$

$$(Qa) \ accotement = 0.023 \text{m}^3/\text{s}$$

✓ Le débit apporté par le talus

$$C = 0.25, \quad p = 100 \%, \qquad I (10\%) = 2.30 \text{ mm/h}, \quad A = 0.060 \text{ ha}.$$

$$tc = 0.127 \times \sqrt{\frac{A}{P}} = 0.127 \times \sqrt{\frac{0.060}{100}} \Rightarrow tc = 0.003 \text{ ha}$$

$$I_t = I \times \left(\frac{tc}{24}\right)^{b-1} = 2.30 \times \left(\frac{0.003}{24}\right)^{0.21-1} \Rightarrow \qquad It = 2787.20 \text{ mm/h}$$

$$(Qa) \text{ talus} = 2.778 \times 0.25 \times 2787.20 \times 0.060 \times 10^{-3} \implies \qquad (Qa) \text{ talus} = 0.12 \text{m}^3/\text{s}$$

 $Qa = 0.12 + 0.02 + 0.12 = 0.26 \text{ m}^3/\text{s}$

I.10. Calcul des ouvrages hydraulique :

10.1 Dimensionnement des buses

Le dimensionnement d'une buse résulte de la comparaison entre le débit d'apport et le débit de saturation de cette buse

Donc le principe consiste à chercher le rayon de la buse qui vérifier cette condition.

$$Qs = Sm x Kst x J^{1/2} x Rh^{2/3}$$
 $Qa = K.C.It.A$

Sm: section mouillée, $Sm = \frac{1}{2} \times \pi \times R^2$

Pm: Périmètre mouillé

Rh: rayon hydraulique, R = 1/2

Kst = 80 pour les buses en béton.

J: la pente de pose égale la pente de profil en travers.

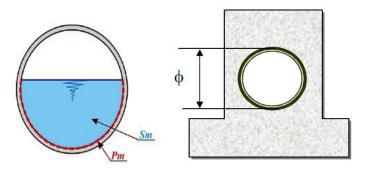


Figure IV. 3: Section transversale.

Figure IV. 4: Schéma d'une buse

d'un ouvrage d'assainissement

$$Q_s = Q_a \Rightarrow R^{\frac{8}{3}} = \frac{2^{5/3} \times Q_a}{80 \times \pi \times \sqrt{J}}$$

Une fois le rayon R est déterminé on prend le diamètre de la buse $\emptyset = 2R$

10.2 Dimensionnement des fossés

Les fossés récupèrent les eaux de ruissellement venant de la chaussée, de l'accotement et de talus.

Pour mon étude j'adopte des fossés en béton, ceci est fonction des pentes du fossé et la nature des matériaux le sol support.

Le profil en travers hypothétique de fossé est donné dans la figure ci-dessous On fixe la base de la fosse à (b = 50 cm) et la pente du talus à (1/n = 1/1,5) d'où la Possibilité de calcul le rayon hydraulique en fonction de la hauteur h.

Calcul de la surface mouillée

$$Sm = bh + 2\frac{eh}{2} = bh + n. h2 = h(b + n. h) \qquad \Rightarrow Sm = h(b + n. h)$$

$$avec tg \propto = \frac{h}{e} = \frac{1}{n} \quad d'ou e = n. h$$

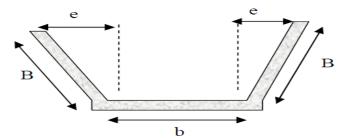


Figure IV.5: Schéma d'un fossé.

Calcul du périmètre mouille

$$\begin{array}{ll} Pm=b+2.\,B & \Rightarrow \textbf{Pm}=\textbf{b}+\textbf{2h}.\sqrt{\textbf{1}+\textbf{n}^2} \\ \\ avec \ B=\sqrt{h^2+\,e^2}=\sqrt{h^2+\,n^2.\,h^2} & \Rightarrow B=h.\sqrt{1+\,n^2} \end{array}$$

Calcul le rayon hydraulique

$$Rh = \frac{Sm}{Pm} = \frac{h(b+n.h)}{b+2h\sqrt{1+n^2}}$$

Les dimensions des fossés sont obtenues en écrivant l'égalité du débit d'apport et débit d'écoulement au point de saturation. La hauteur (h) d'eau dans le fossé sera obtenue en faisant l'égalité suivant :

$$\label{eq:Qs} \begin{aligned} Qs &= Qa & K.I.C.A &= Sm \;.\; Kst \;.\; J^{1/2} \;.\; Rh^{2/3} \\ Qs &= Qa & \end{aligned}$$

Donc:

$$Qs = Kst. . h(b+n.h). \left[(\frac{h. (b+n.h)}{b+2h\sqrt{1+n^2}})^{2/3} \right] \times J^{1/2}$$

10.3 Dimensionnement des dalots :

La section de dalot est calculée comme pour le fossé, seulement on change la hauteur de remplissage et la hauteur du dalot.

On fixe la hauteur tenant compte du profil en long et on calcule l'ouverture l'nécessaire et on fixe aussi la hauteur de remplissage à hr = 0.8h.

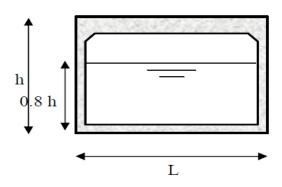


Figure IV.:6 Schema d'un dalot.

On à:
$$Qa = qs = K .Sm. I1/2 .Rh2/3$$

✓ Section mouillée:

$$Sm = 1 \times (0.8 h)$$

✓ Périmètre mouillé :

$$Pm = 1 + 2(0.8 h)$$

✓ Rayon mouillé:

$$Rh = sm / pm$$

Avec : I = 4 % et k = 70

Pour dimensionne un dalot il faut $Qa \ge 10 \text{ m}3/\text{ s}$

I.11. Application au projet :

Dimensionnement des buses

Pour dimensionner les buses on prend Qa=Qs

$$\mathbf{Qs} = \operatorname{Sm} x \operatorname{Kst} x \operatorname{J}^{1/2} x \operatorname{Rh}^{2/3}$$

$$Qa = K.C.It.A$$

Nous avons:

$$A=26.3 \text{ ha}$$
. $P=4\%$.

$$I(10\%) = 2.30 \text{ mm/h}.$$

$$b=0.21.$$

$$I_{t} = I \times \left(\frac{tc}{24}\right)^{b-1}$$

$$tc = 0, 127 \times \sqrt{\frac{A}{P}}$$

(Le temps de concentration pour les bassins versant inférieur à 5 Km2)

$$P=4\%$$

$$Qa = K.C.I.A$$

On a:
$$k=0.2278$$
 et $C=0,2$

Donc:

$$Qa=1.63m3/s$$

$$Qs = Sm \ x \ Kst \ x \ J^{1/2} \ x \ Rh^{2/3}$$

On a : Sm : surface mouillée. Sm =
$$\frac{1}{2} \times \pi \times R^2$$

(Pour une hauteur de remplissage égale à 0.5Φ)

Rh: rayon hydraulique = R/2

Kst =80 (pour les buses préfabriquées)

I : la pente de pose qui vérifié la condition de limitation de la vitesse maximale d'écoulement à 4m/s. pour notre cas ; On a I=0.96%

AN:

Qs = Sm x Kst x J^{1/2} x Rh^{2/3}
Qs =
$$\frac{1}{2}$$
 × π × R² x 80 x (0.0096)^{1/2} x (R/2)^{2/3}
Qs = Qa \implies Rh = 600 mm
 \implies \emptyset = Rh*2=1200 mm

Dimensionnement des fossés

A partir des résultats obtenus précédemment

$$Qa = Kst..h(b+n.h). \left[(\frac{h.(b+n.h)}{b+2h\sqrt{1+\ n^2}})^{2/3} \right] \times J^{1/2}$$

Kst: coefficient de Manning Strickler = 70

J: La pente moyenne de l'ouvrage = 5%

Apres plusieurs itérations on obtient :

$$h = 0.5 m$$

IV.III. Signalisation routière:

III.1. Introduction:

La signalisation fait une partie intégrante du paysage routier. Elle est un outil de communication essentielle pour l'usager de la route. Elle doit, par conséquent être conçue et installée de manière à aider l'usager de la route le long de son parcours en lui permettant d'adapter sa conduite aux diverses situations qui se présentent, et ce, en évitant l'hésitation et la fausse manœuvre.

III.2. L'objet de la signalisation routière :

La signalisation routière a pour objet :

Assurer la sécurité de l'usager de la route.

- ✓ De rendre plus sure la circulation routière.
- ✓ De faciliter cette circulation.
- ✓ D'indiquer ou de rappeler diverses prescriptions particulières de police.
- ✓ De donner des informations relatives à l'usage de la route.
- ✓ Limiter les causes d'accident de la route.

III.3. Catégories de Signalisation :

On distingue:

- ✓ La signalisation par panneaux.
- ✓ La signalisation par feux.
- ✓ La signalisation par marquage des chaussées.
- ✓ La signalisation par balisage.
- ✓ La signalisation par bornage.

III.4. Règles A respecté pour la signalisation :

Il est nécessaire de concevoir une bonne signalisation tout en respectant les critères suivants :

- ✓ Cohérence entre la géométrie de la route et la signalisation (homogénéités).
- ✓ Cohérence avec les règles de circulation.
- ✓ Cohérence entre la signalisation verticale et horizontale.
- ✓ Simplicité : elle s'obtient en évitant une surabondance de signaux qui fatigue l'attention de l'usage.
- ✓ Eviter la publicité irrégulière.

III.5. Types de signalisation :

On distingue deux types de signalisation :

✓ Signalisation verticale

Signalisation horizontale

5.1 Signalisation horizontale:

Le marquage des chaussées doit indiquer sans ambiguïté les parties de la chaussée réservées aux différents sens de circulation.

Les marquages horizontaux se divisent en trois types :

5.1.1 Marque longitudinale :

a. Lignes continues:

Ces lignes sont utilisées pour indiquer les sections de route où ledépassement est interdit, notamment parce que la visibilité est insuffisante.

Figure IV. 7: Ligne continue.

b. Lignes discontinues:

- Les lignes discontinues sont destinées à guider et à faciliter la libre circulation et on peut les franchir, elles se différent par leur module, qui est le rapport de la
- Longueur des traits sur celle de leur intervalle.
- Les lignes axiales ou lignes de délimitation de voies pour lesquelles la longueur des traits est égale au tiers de leurs intervalles.
- Les lignes de rive, les lignes de délimitation des voies d'accélération, de décélération ou d'entrecroisement pour lesquelles la longueur des traits est sensiblement égale à celle de leursintervalles.
- Les lignes d'avertissement de lignes continues, les lignes délimitant les bandes d'arrêt d'urgence, par les quelles la longueur des traits est sensiblement triple de celle de leurs intervalles.

Figure IV.8: Lignes discontinue

5.1.2 Marquage transversal:

- Lignes transversales continue : éventuellement tracées à la limite ou les conducteurs devraient marquer un temps d'arrêt.
- Lignes transversales discontinue : éventuellement tracées à la limite ou les conducteurs devaient céder le passage aux intersections

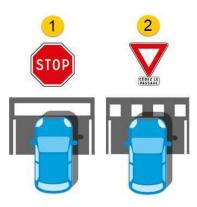


Figure IV. 9: Types des lignes transversales

5.1.3 Autre marquage:

- ✓ Flèche de rabattement : une flèche légèrement incurvée signalant aux usagers qu'ils devaient emprunter la voie située du côté qu'elle indique.
- ✓ Flèches de sélection : flèches situées au milieu d'une voie signalant aux usagers, notamment à proximité des intersections, qu'ils doivent suivre la direction indiquée.
- ✓ Marquage par hachures : On les retrouve au droit des îlots séparateurs.

5.2 Signalisation verticale:

La signalisation verticale est désignée par des panneaux, elle sert à transmettre des renseignements sur le trajet emprunté par usagers grâce à son emplacement se forme, sa couleur ou son type.

Elles peuvent être classées dans quatre classes :

a. Signaux de danger:

Panneaux de forme triangulaire, ils doivent être Placés à 150m en avant de l'obstacle à signaler (Signalisation avancée).

Toujours implantés en pré signalisation, ils sont d'un emploi peu fréquent en milieu urbain.

- **b.** Signaux comportant une prescription absolue : Panneaux de forme circulaire, on trouve
 - L'interdiction.
 - L'obligation.
 - La fin de prescription.
- **c. Signaux à simple indication :** Panneaux en général de forme rectangulaire, des fois terminés en pointe de flèche :
 - Signaux d'indication.
 - Signaux de direction.
 - Signaux de localisation.
 - Signaux divers.

III.6. Catégories de panneaux :

- ✓ Panneaux de danger ; (type A) triangle équilatéral, pointe en haut.
- ✓ 2. Signaux de réglementation, se subdivisons-en :

Signaux de priorités (type B).

Signaux d'intersection ou de restriction (type C).

Signaux d'obligation (type D).

✓ Signaux d'indication

III.7. APPLICATION AU PROJET:

Dans le cadre de notre étude, tout en respectant les critères énoncés précédemment ainsi que la réglementation Signalisation et marquages routière Algérienne.

La signalisation de notre projet est basée sur les points suivants :

- Marquage peint.
- Signalisation verticale.

Les différents types de panneaux de signalisation utilisés pour notre étude sont les suivants :

- Panneaux de signalisation d'avertissement de danger (type A).
- Panneaux de signalisation d'interdiction de priorité (type B).
- Panneaux de signalisation d'interdiction ou de restriction (type C).

- Panneaux de signalisation d'obligation (type D).
- Panneaux de pré signalisation (type G1).
- Panneaux de signalisation type (E3 ,E4).
- Panneaux donnant les indications utiles pour les conduites de véhicules (Type E14, E15).
- Panneaux de signalisation d'identification des routes (Type E)

TYPE A:

2

Figure IV.10: Signalisation verticale type A.

TYPE B:

Figure IV.11: Signalisation verticale type B

VOA 2025

TYPE E:

Pour les giratoires.

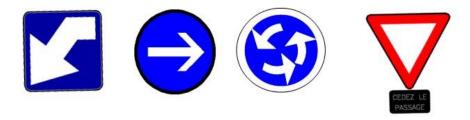


Figure IV.12: Signalisation verticale type E

TYPE D:

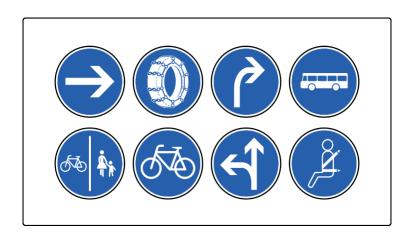


Figure IV.13: Les panneaux de signalisation de type D

VOA 2025

IV.III. Eclairage:

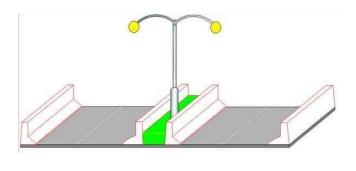
III.1. Introduction:

L'éclairage public est généralement un éclairage de chaussée offrant une amélioration de la visibilité. Il est utilisé lorsqu'il y a fréquemment coexistence de piétons et de véhicules, c'est-à-dire à l'intérieur des localités en zones bâties. Il s'agit principalement de créer dans ces espaces, des conditions permettant aux usagers de la circulation de s'identifier mutuellement rapidement.

En outre, l'éclairage des rues doit donner un sentiment de sécurité et contribuer à la prévention des accidents.

L'éclairage est l'ensemble des moyens qui permettent aux humains de doter leur environnement des conditions de luminosité qu'ils estiment nécessaires à leur activité ou leur agrément. L'éclairage associe une source lumineuse (naturelle ou artificielle, fixe ou mobile) et d'éventuels dispositifs de type batteries, luminaires ou miroir/puits de Lumière. L'objectif principal de l'éclairage public est d'assurer une visibilité suffisante pour garantir la sécurité des citoyens et faciliter leurs déplacements durant la nuit.

III.2. Classe d'éclairage :


On distingue quatre catégories d'éclairages publics :

- Catégorie A : Eclairage général d'une route ou une autoroute.
- Catégorie B : Eclairage urbain (voirie artérielle et de distribution).
- Catégorie C : Eclairage des voies de cercle.
- Catégorie D : Eclairage d'un point singulier (carrefour, virage...) situé sur un itinéraire non éclairé.

III.3. Paramètres de l'implantation des luminaires :

- ✓ L'espacement (e) entre luminaires : qui varie en fonction du type de voie.
- ✓ La hauteur (h) du luminaire : elle est généralement de l'ordre de 8 à 10 m et par fois 12 m pour les grandes largeurs de chaussées.
- ✓ La largeur (1) de la chaussée.
- ✓ La porte à faux (p) du foyer par rapport au support.

✓ L'inclinaison, ou non, du foyer lumineux, et son surplomb (s) par rapport au bord de la Chaussée

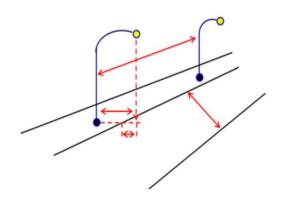


Figure IV.14: implantation des luminaires

III.4. Eclairage d'un point singulier :

Les caractéristiques de l'éclairage d'un point singulier, situé sur un itinéraire non éclairé doivent être les suivantes :

- A longue distance 800 à 1000m du point singulier, tache lumineuse éveillant
 l'attention de l'automobiliste.
- A distance moyenne 300 à 500m, idée de la configuration du point singulier.
- A faible distance, distinguer sans ambiguïté les obstacles.
- A la sortie de la zone éclairée, pas de phénomène de cécité passagère.

III.5. Application au projet

Pour l'éclairage de la voie (le long de la RN81 A) des lampadaires avec deux foyers portés par le même support éclairant chacun un demi chaussé, sont implantés dans le terre plein central au niveau des points singuliers notamment au niveau de carrefour projeté, d'intersection des routes secondaires, au niveau des pistes ; etc.

Chapitre: V

Impact sur l'environnement

V.1. Introduction:

La réalisation d'une route est une tâche délicate à accomplir et elle est perçue aujourd'hui comme étant une action susceptible de porter atteinte à l'environnement.

En effet l'extraction de matériaux, les déboisements, l'utilisation des ressources en eau et l'émission de bruits engendrés par ce type de projets sont des actions qui peuvent altérer la qualité des paysages ainsi que les ressources naturelles.

L'effort technologique vise à maîtriser, contrôler et minimiser les différents impacts dus à ce type d'aménagement, qu'il s'agisse de la protection des eaux, de la protection contre le bruit, ou de la conservation de la faune et de la flore.

V.2. Objet de l'étude :

L'étude d'impact est indispensable pour avaler les avantages et les inconvenants résultant de chacun des traces possibles d'un aménagement routier surtout lorsque ces inconvénients sont difficilement quantifiables monétairement.

Les préoccupations relatives à l'environnement peuvent être en grande partie regroupées autour de quelques objectifs généraux :

- ♣ De mettre en valeur et d'améliorer les impacts positifs du projet sur l'environnement.
- ♣ Rechercher la meilleure intégration de la route dans l'environnement, et favoriser la valorisation mutuelle de la route et de l'environnement.
- ♣ Ne pas dégrader l'environnement, ou du moins limiter ou corriger ce qui peut conduire à des dégradations.
- ♣ D'informer la population concernée sur les impacts négatifs du projet sur l'environnement.
- Gérer et entretenir les abords de la route.

V.3. Cadre juridique:

D'après le décret n°90-78 du 27février 1990, une telle étude d'impact d'un projet d'infrastructure en Algérie doit comprendre :

Une analyse détaillée du projet, de l'état initial du site et de son environnement, ainsi que pour des conséquences prévisibles directes et indirectes à court, moyen et long terme du projet sur l'environnement.

Les raisons et les justifications techniques et environnementales du choix du projet sur l'environnement, ainsi que l'estimation des coûts correspondants.

V.4. Les différents impacts :

La réalisation ou la modernisation d'une infrastructure doit faire l'objet d'une étude d'impact. Pour réaliser cette étude d'impact, il faut aborder l'ensemble des thématiques directement liées à l'environnement (eau, air, faune, flore...), mais aussi sur l'environnement de l'être humain.

4.1 L'impact sur les habitants :

Les principaux impacts d'une infra structure autoroutière sur les habitants sont :

- a. La destruction : Les projets d'aménagement routier nécessitent parfois, la destruction de certaines habitations et le déplacement des populations du lieu de leur vie ou de travail, et leur réinstallation par la suite ailleurs, ce qui peut provoquer un bouleversement sur le plan économique et culturel de la vie des individus affectés.
- b. La pollution : La pollution de l'aire est temporaire due essentiellement aux différents polluants des engins de chantier et des émissions de poussière.

Une partie importante de la pollution de l'aire est imputable à la circulation routière. Le trafic routier entraîne en général la libération de quantité importante de polluants atmosphériques tels que : Co, Pb.., il s'agit d'un impact permanent.

c. Le bruit. Plusieurs options sont possibles pour respecter les niveaux sonores (60 décibels la journée et 55 la nuit). Premièrement, l'étude du tracé lui-même prend en compte la distance des habitations. Si le tracé est malheureusement proche de zones sensibles, une protection acoustique s'impose. La série de dispositif commence par la mise en place de merlons de terre en remblai puis de murs acoustiques si cette première protection n'est pas suffisante. Il faut envisager une isolation acoustique du bâtiment lui-même. Dans les cas extrêmes, c'est l'indemnisation des propriétaires. En outre à ces impacts qui sont difficile, voir impossibles à évaluer, il existe d'autre effets qui leurs sont liés :

- L'effet de bornage d'une ville par projet.
- L'effet de barrière entre deux centres urbains
- L'effet de destruction au sein des agglomérations.

4-1 L'impact sur la nature :

a. La faune et la flore :

La faune et la flore sont variées, mais, l'accélération du développement socio-économique a engendré la précarisation des milieux et habitats naturels.

En vue de protéger les différentes espèces. L'étude du tracé doit prend ainsi en compte cet état des lieux de façon à limiter son impact. Des nombreux aménagements devront être réalisés tout le long de l'autoroute pour faciliter l'insertion de l'ouvrage dans les milieux traversés et perturber le moins possible la vie des animaux.

La réalisation d'un tronçon routier peut provoquer la pollution et la perturbation des eaux souterraines et de surfaces pendant la phase de réalisation du projet, ainsi que pendant la phase d'exploitation

b. L'eau:

Les phases de travaux donnent lieu à la mise en œuvre de toutes les dispositions adaptées pour pallier les inconvénients mis en évidence lors des études de conception.

Les ouvrages d'assainissement sont ainsi largement dimensionnés par rapport aux crues les plus importantes et des aménagements spéciaux sont réalisés pour relever aux effets démolisseurs des écoulements torrentiels.

V.5. Les impacts que peut provoquer un projet routier sur le milieu naturel :

- ➤ Des impacts positifs :
- L'amélioration de la sécurité routière : le ➤ Des impacts positifs transfert de trafic des routes nationales vers des autoroutes qui présentent de meilleures caractéristiques géométriques moins accidentelles implique sûrement l'amélioration de la sécurité routière.
- L'amélioration des conditions de circulation : surtout la réduction des nuisances (pollution de l'air et bruit) du fait du report d'une partie du trafic des routes nationales vers l'autoroute et la mise en fonctionnement de ses voies de contournement des principales villes.
- La création de nouveaux emplois : L'augmentation d'activités par la création d'emplois temporaires (du fait de la construction du projet autoroutier au profit de la main d'œuvre locale) et permanents (pour les besoins d'exploitation de l'autoroute).
- ➤ Des impacts négatifs :

Les principaux impacts négatifs potentiels d'un projet autoroutière les plus significatifs concernent :

- L'expropriation des propriétés bâties ainsi que des terres, situées dans l'emprise du projet.
- Le déplacement des populations.
- Les risques de pollution des oueds et points d'eau situés à proximité du projet.
- Les coupures temporaires des réseaux (routes, eau, électricité, voie ferrée...).
- Les impacts négatifs sur l'agriculture.
- De même, l'attractivité de la région augmente pour les gens à la recherche d'emplois, ce qui pourrait perturber les structures socioculturelles existantes.
- Manque à gagner pour les agriculteurs dont les terrains sont concernés par les travaux.
- Impact visuel des chantiers et des bases vie

V.6. Conclusion:

Le réseau routier connaît et connaîtra un développement de ces infrastructures dont l'impact de ces dernières sur le paysage et surtout sur l'environnement s'accentuera sans cesse.

On note que ces impacts peuvent être positifs ou négatifs tout dépend le milieu, urbain ou naturel, et par rapport aux phases du projet, réalisation ou exploitation, donc la prise en charge de cette préoccupation passe obligatoirement par la maîtrise des nuisances et des impacts de ces infrastructures sur les milieux et ses composants pour permettre l'identification des variants sources d'impacts, afin de trouver les solutions et mettre les mesures réductrice et compensatoires des impacts négatifs, il faut donc étudier les impacts que peut provoquer le projet sur le milieu naturel avant de passer à l'étape de réalisation.

DEVIS QUANTITATIF ET ESTIMATIF

Projet: Étude Du Dédoublement De La RN 81 A Du PK 0+000 Au PK 5+00

Sur 5 km

N°	Désignations	Unité	Quantité	P. U	Montant (DA)						
	1. TERRASS	EMEN	T								
1-1	Décapage de terre végétale sur une épaisseur de 20 cm	M^2	140927.31	120	16 911 277.20						
1-2	Déblais en terrains meubles mis en dépôt	M^3	26785.00	400	10 714 000.00						
1-3	Remblais provenant d'une zone d'emprunt	M^3	105749,5	600	63 449 700.00						
	Total 01				81 432 377.20						
	2. CONSTRUCTION DU CORPS DE CHAUSSEE										
2-1	Fourniture et pose d'une couche de fondation en grave concassée 0/31,5 sur 30cm d'épaisseur y compris compactage, arrosage et toutes sujétions de bonne exécution.	M^3	11950,8	1800	21 511 440.00						
2-2	Fourniture et pose d'une couche d'Imprégnation en cut-back 0/1 dosé à 1kg/m².	M^2	77212	150	11 581 800.00						
2-3	Fourniture et pose d'une couche de base en grave bitume sur 15 cm y compris toutes sujétions de bonne exécution.	Т	11659,2	7500	87 444 000.00						
2-5	Fourniture et pose d'une couche d'accrochage en émulsion cationique dosée à 0,3 Kg/ m ² .	M ²	83280	100	8 328 000.00						
2-5	Fourniture et pose d'une couche de roulement en béton bitumineux (BB) sur 06cm y compris toutes sujétions de bonne exécution.	Т	4632,7	8300	38 451 410.00						
2-6	Rechargement des accotements et le T.P.C en GNT 0.315	M^3	27521,0	1300	35 777 300.00						
	Total 02				124 393 950.00						

	3. ASSAINIS	SEMEN	JT					
3-1	Réalisation Fossé trapézoïdale "1,5/0,5/0,5"	ML	10000	3000	3 000 000.00			
3-2	Fourniture et pose de buses Ø1000	ML	30	24000	720 000.00			
3-3	Fourniture et pose de buses Ø800	ML	300	20000	6 000 000.00			
3-4	Fourniture et pose de buses Ø600	ML	60	17000	1 020 000.00			
	Descente d'eau	U	400	900	360 000.00			
	Total 03				10 182 000.00			
	4. SIGNALIS	SATIO	N					
4-1	Les signaux de danger type A.	U	16	5500	7 7000.00			
4-2	Les signaux d'intersection et de priorité type B.	U	8	5500	55 000.00			
4-3	Les signaux d'interdiction type C.	U	4	5500	5 5000.00			
4-4	Les signaux d'obligation type D.	U	2	5500	77 000.00			
4-5	Marquages longitudinaux continue type 3U.	ML	10000	80	8 0000.00			
4-6	Marquages longitudinaux discontinue type T1-2U.	ML	10000	80	80 000.00			
4-7	Marquages longitudinaux discontinue type T2-3U.	ML	1000	80	80 000.00			
	Total 04				559 000.00			
5-1	Fourniture, installation et mise en service un Mat de 8m + Cross en acier galvanise thermolaqué à chaud	U	200	150000	3 000 000.00			
Total 05 3 000 000.0								

	6. DIVERS										
6-1	Installation de chantier y compris amenée et repli du matériel.	F	1	2500000	2 500 000.00						
6-2	Réalisation d'un séparateur en béton armé	ML	4500	7000	31 500 000.00						
6-3	Fourniture et pose glissières de sécurité.	ML	300	2600	780 000.00						
6-3	Fourniture et mise en place de bordure de trottoirs	ML	4500	1200	5 400 000.00						
	Total 06				40 180 000.00						
	MONTANT TOTAL EN	HT			178 314 950.00						
	TVA 19 %										
MON	MONTANT TOTAL EN TTC										

<u>Arrêté le présent devis en toutes taxes comprises à la somme de</u> : Deux Cent Douze Million. Cent Quatre-Vingt Quatorze mille. Sept Cent Quatre Vingt Dix Dinars Algériens et Cinquante centimes.

Conclusion générale

Un programme national d'aménagement et réalisation de divers projets, notamment dans le domaine des travaux publics sont lancés par l'état algérien. Cet effort se traduit au niveau régional par l'étude et la réalisation de la modernisation du réseau routier spécialement des régions frontalières. A ce titre, le projet de dédoublement de la RN81 reliant M'daourouch à Sédrata rentre dans cette optique car cette route est considérée comme un facteur contribuant au développement de l'économie de la région.

Notre projet de fin d'étude porte sur l'étude d'un tronçon de cinq kilomètres du dédoublement sus-cité en partant de M'daourouch vers Ragouba.

Dans étude nous avons veillé à respecter et pris en considération toutes les normes existantes en plus du confort et la sécurité des usagers puis l'économie.

Ce projet de fin d'étude (APD) a été une occasion pour mettre en application les connaissances théoriques acquises pendant le cycle de notre formation et de cerner tous les problèmes techniques qui peuvent se présenter dans un projet routier.

L'étude et surtout le stage de PFE ont été pour nous, l'occasion de tirer profit de l'expérience de personnes du domaine, et d'autre part d'apprendre une méthodologie rationnelle à suivre pour l'élaboration d'un projet de travaux publics.

De plus, ce travail été une occasion pour se familiariser de l'outil informatique en l'occurrence les logiciels AUTO CAD, COVADIS 16.0, et Word

Récapitulatif d'axe en plan :

Axe En Plan

	Elts Cara	ctéristiques			Points de Contacts	
Nom	Pa	ramètres	Longueur	Abscisse	X	Υ
Droite 1	Gisement	300.00gr	225,697	0,000	392341,083	3992420,512
Clothoïde 1	Paramètre	-231,517	67,000	225,697	392115,386	3992420,502
Arc 1	Rayon	-800.000 m	77,788	292,697	392048,398	3992421,434
	Centre X	392081.853 m				
	Centre Y	3993220.734 m				
Clothoïde 2	Paramètre	231,517	67,000	370,485	391970,958	3992428,458
Droite 2	Gisement	311.52gr	367,355	437,485	391904,895	3992439,593
Clothoïde 3	Paramètre	183,030	67,000	804,841	391543,537	3992505,701
Arc 2	Rayon	500.000 m	73,478	871,841	391477,391	3992516,281
	Centre X	391420.544 m				
	Centre Y	3992019.523 m				
Clothoïde 4	Paramètre	-183,030	67,000	945,319	391404,039	3992519,250
Droite 3	Gisement	293.63gr	112,821	1012,319	391337,254	3992514,052
Clothoïde 5	Paramètre	-147,885	62,485	1125,140	391224,997	3992502,787
Arc 3	Rayon	-350.000 m	84,636	1187,625	391162,688	3992498,402
	Centre X	391158.926 m				
	Centre Y	3992848.381 m				
Clothoïde 6	Paramètre	147,885	62,485	1272,261	391078,770	3992507,684
Droite 4	Gisement	320.39gr	457,494	1334,747	391018,925	3992525,580
Clothoïde 7	Paramètre	183,030	67,000	1792,241	390584,703	3992669,636
Arc 4	Rayon	500.000 m	63,469	1859,241	390520,669	3992689,304
	Centre X	390395.354 m				
	Centre Y	3992205.263 m				
Clothoïde 8	Paramètre	-183,030	67,000	1922,709	390458,383	3992701,274
Droite 5	Gisement	303.78gr	236,544	1989,709	390391,620	3992706,742
Clothoïde 9	Paramètre	-216,564	67,000	2226,254	390155,492	3992720,784
Arc 5	Rayon	-700.000 m	171,218	2293,254	390088,689	3992725,827
	Centre X	390163.621 m				
	Centre Y	3993421.804 m				
Clothoïde 10	Paramètre	216,564	67,000	2464,472	389922,378	3992764,688
Droite 6	Gisement	325.45gr	246,286	2531,472	389860,257	3992789,771
Clothoïde 11	Paramètre	132,758	58,749	2777,758	389633,385	3992885,612
Arc 6	Rayon	300.000 m	76,556	2836,507	389578,573	3992906,687
	Centre X	389489.403 m				
	Centre Y	3992620.246 m				
Clothoïde 12	Paramètre	-132,758	58,749	2913,063	389503,380	3992919,920
Droite 7	Gisement	296.73gr	970,264	2971,812	389444,666	3992918,823
Clothoïde 13	Paramètre	-231,517	67,000	3942,076	388475,679	3992869,062
Arc 7	Rayon	-800.000 m	166,151	4009,076	388408,731	3992866,560
	Centre X	388401.184 m				
- · · ·	Centre Y	3993666.524 m				
Clothoïde 14	Paramètre	231,517	67,000	4175,227	388243,617	3992882,195
Droite 8	Gisement	315.29gr	257,752	4242,227	388178,329	3992897,218
Clothoïde 15	Paramètre	200,499	67,000	4499,979	387927,972	3992958,519
Arc 8	Rayon	600.000 m	32,069	4566,979	387862,618	3992973,237

Clothoïde 18	Centre Y Paramètre	3993463.433 m 178,816	67,000	4745,682	2	3992992,982
	Centre X	387765.327 m				
Arc 9	Rayon	480 m	11,309	4734,373	387696,270	3992991,213
Clothoïde 17	Paramètre	-178,816	67,000	4667,373	387762,931	3992984,631
Droite 9	Gisement	304.78gr	1,326	4666,048	387764,253	3992984,532
Clothoïde 16	Paramètre	-200,499	67,000	4599,048	387830,951	3992978,269
	Centre Y	3992383.398 m				
	Centre X	387752.666 m				

Récapitulatif de profile en long :

Profil En Long Projet

	Elts Ca	ractéristiques		Points de Contacts		
Nom	Pente / Ray	on on	Longueur	Abscisse	Altitude	
Pente 1	Pente	-3.00 %	491,628	0,000	790,707	
Cercle 1	Rayon	40000	1701,004	491,628	775,942	
	Sommet Absc.	1590.324 m				
	Sommet Alt.	759.446 m				
Pente 2	Pente	1.65 %	1195,914	2192,632	764,402	
Cercle 2	Rayon	29000	346,961	3388,546	784,087	
	Sommet Absc.	2917.985 m				
	Sommet Alt.	780.215 m				
Pente 3	Pente	2.86 %	416,478	3735,507	791,905	
Cercle 3	Rayon	50000	365,250	4151,985	803,818	
	Sommet Absc.	5559.853 m				
	Sommet Alt.	823.949 m				
Pente 4	Pente	2.12 %	522,678	4517,235	812,909	
				5039,913	823,979	
	L	ongueur totale de l'	axe 5039.913 mètre(s)			
	Longue	eur développée total	e de l'axe 5040.980 mètre(s)			

Récapitulatif de profile en travers :

Profils En Travers

Num.	Abscisse	Axe Plan	Axe Long	Z Tn	Z Projet	Gisement	Х	Y	Déve	ers	Pente
									Gauche	Droite	long.
PT01	PK0+000	Droite 1	Pente 1	790,,707	790,707	400,00	392341,083	3992420,512	-2,5	2,5	-3,00
PT02	PK0+025	Droite 1	Pente 1	790,004	789,957	400,00	392316,083	3992420,511	-2,5	-2,5	-3,00
PT03	PK0+050	Droite 1	Pente 1	789,457	789,206	400,00	392291,083	3992420,510	-2,5	-2,5	-3,00
PT04	PK0+075	Droite 1	Pente 1	788,311	788,455	400,00	392266,083	3992420,509	-2,5	-2,5	-3,00
PT05	PK0+100	Droite 1	Pente 1	787,789	787,704	400,00	392241,083	3992420,508	-2,5	-2,5	-3,00
PT06	PK0+125	Droite 1	Pente 1	787,825	786,953	400,00	392216,083	3992420,507	-2,5	-2,5	-3,00
PT07	PK0+150	Droite 1	Pente 1	787,136	786,202	400,00	392191,083	3992420,505	-2,5	-2,5	-3,00
PT08	PK0+175	Droite 1	Pente 1	786,395	785,451	400,00	392166,083	3992420,504	-2,5	-2,5	-3,00
PT09	PK0+200	Droite 1	Pente 1	785,545	784,701	400,00	392141,083	3992420,503	-2,5	-2,5	-3,00
PT10	PK0+225	Droite 1	Pente 1	784,646	783,950	400,00	392116,083	3992420,502	-2,5	-2,5	-3,00
PT11	PK0+226	Clothoïde 1	Pente 1	784,621	783,929	400,00	392115,386	3992420,502	-2,5	-2,5	-3,00
PT12	PK0+250	Clothoïde 1	Pente 1	783,749	783,199	0,35	392091,083	3992420,546	-2,5	-2,5	-3,00
PT13	PK0+275	Clothoïde 1	Pente 1	782,909	782,448	1,44	392066,086	3992420,873	-2,5	-2,5	-3,00
PT14	PK0+293	Arc 1	Pente 1	782,320	781,916	2,66	392048,398	3992421,434	-2,5	-2,5	-3,00
PT15	PK0+300	Arc 1	Pente 1	782,074	781,697	3,24	392041,103	3992421,773	-2,5	-2,5	-3,00
PT16	PK0+325	Arc 1	Pente 1	781,023	780,946	5,23	392016,159	3992423,436	-2,5	-2,5	-3,00
PT17	PK0+332	Arc 1	Pente 1	780,801	780,748	5,76	392009,593	3992424,005	-2,5	-2,5	-3,00
PT18	PK0+350	Arc 1	Pente 1	780,342	780,195	7,22	391991,280	3992425,878	-2,5	-2,5	-3,00
PT19	PK0+370	Arc 1	Pente 1	779,836	779,580	8,85	391970,958	3992428,458	-2,5	-2,5	-3,00
PT20	PK0+375	Clothoïde 2	Pente 1	779,494	779,444	9,20	391966,489	3992429,096	-2,16	-2,5	-3,00
PT21	PK0+400	Clothoïde 2	Pente 1	778,754	778,694	10,68	391941,797	3992433,008	-0,30	-2,5	-3,00
PT22	PK0+425	Clothoïde 2	Pente 1	778,099	777,943	11,43	391917,178	3992437,352	1,57	-2,5	-3,00
PT23	PK0+437	Clothoïde 2	Pente 1	777,728	777,568	11,52	391904,895	3992439,593	2,5	-2,5	-3,00
PT24	PK0+450	Droite 2	Pente 1	777,411	777,192	11,52	391892,585	3992441,845	2,5	-2,5	-3,00
PT25	PK0+475	Droite 2	Pente 1	776,737	776,441	11,52	391867,993	3992446,344	2,5	-2,5	-3,00
PT26	PK0+500	Droite 2	Cercle 1	776,283	775,691	11,52	391843,401	3992450,843	2,5	-2,5	-2,98
PT27	PK0+525	Droite 2	Cercle 1	775,623	774,954	11,52	391818,809	3992455,342	2,5	-2,5	-2,91
PT28	PK0+550	Droite 2	Cercle 1	774,765	774,235	11,52	391794,217	3992459,841	2,5	-2,5	-2,84
PT29	PK0+575	Droite 2	Cercle 1	773,750	773,533	11,52	391769,625	3992464,339	2,5	-2,5	-2,78
PT30	PK0+600	Droite 2	Cercle 1	772,654	772,847	11,52	391745,034	3992468,838	2,5	-2,5	-2,71
PT31	PK0+625	Droite 2	Cercle 1	771,945	772,179	11,52	391720,442	3992473,337	2,5	-2,5	-2,64
PT32	PK0+638	Droite 2	Cercle 1	771,187	771,851	11,52	391708,146	3992475,587	2,5	-2,5	-2,60
PT33	PK0+650	Droite 2	Cercle 1	771,217	771,528	11,52	391695,850	3992477,836	2,5	-2,5	-2,57
PT34	PK0+675	Droite 2	Cercle 1	770,353	770,894	11,52	391671,258	3992482,335	2,5	-2,5	-2,50
PT35	PK0+700	Droite 2	Cercle 1	769,561	770,277	11,52	391646,666	3992486,834	2,5	-2,5	-2,43
PT36	PK0+725	Droite 2	Cercle 1	768,800	769,677	11,52	391622,074	3992491,333	2,5	-2,5	-2,37
PT37	PK0+750	Droite 2	Cercle 1	768,055	769,094	11,52	391597,482	3992495,832	2,5	-2,5	-2,30
PT38	PK0+775	Droite 2	Cercle 1	767,185	768,529	11,52	391572,890	3992500,331	2,5	-2,5	-2,23
PT39	PK0+800	Droite 2	Cercle 1	766,513	767,980	11,52	391548,299	3992504,829	2,5	-2,5	-2,16
PT40	PK0+805	Clothoïde 3	Cercle 1	766,431	767,876	11,52	391543,537	3992505,701	2,5	-2,5	-2,15
PT41	PK0+825	Clothoïde 3	Cercle 1	765,627	767,449	11,13	391523,699	3992509,288	2,5	-0,76	-2,09
PT42	PK0+850	Clothoïde 3	Cercle 1	764,102	766,934	9,58	391499,036	3992513,376	2,5	1,40	-2,02
PT43	PK0+872	Arc 2	Cercle 1	764,585	766,499	7,25	391477,391	3992516,281	3,29	3,29	-1,96

PT44	PK0+900	Arc 2	Cercle 1	764,213	765,957	3,67	391449,339	3992518,693	3,29	3,29	-1,89
PT45	PK0+909	Arc 2	Cercle 1	764,069	765,796	2,58	391440,770	3992519,114	3,29	3,29	-1,86
PT46	PK0+925	Arc 2	Cercle 1	763,827	765,494	0,49	391424,355	3992519,508	3,29	3,29	-1,82
PT47	PK0+945	Arc 2	Cercle 1	763,449	765,130	397,90	391404,039	3992519,250	3,29	3,29	-1,76
PT48	PK0+950	Clothoïde 4	Cercle 1	763,368	765,048	397,32	391399,361	3992519,074	2,89	2,89	-1,75
PT49	PK0+975	Clothoïde 4	Cercle 1	762,928	764,619	394,96	391374,411	3992517,521	2,5	0,73	-1,68
PT50	PK1+000	Clothoïde 4	Cercle 1	762,766	764,207	393,78	391349,513	3992515,273	2,5	-1,44	-1,61
PT51	PK1+012	Clothoïde 4	Cercle 1	762,731	764,010	393,63	391337,254	3992514,052	2,5	-2,5	-1,58
PT52	PK1+025	Droite 3	Cercle 1	762,691	763,812	393,63	391324,637	3992512,786	2,5	-2,5	-1,54
PT53	PK1+050	Droite 3	Cercle 1	762,578	763,435	393,63	391299,762	3992510,290	2,5	-2,5	-1,48
PT54	PK1+075	Droite 3	Cercle 1	762,063	763,074	393,63	391274,887	3992507,793	2,5	-2,5	-1,41
PT55	PK1+100	Droite 3	Cercle 1	761,474	762,730	393,63	391250,012	3992505,297	2,5	-2,5	-1,34
PT56	PK1+125	Droite 3	Cercle 1	761,419	762,404	393,63	391225,136	3992502,801	2,5	-2,5	-1,27
PT57	PK1+125	Clothoïde 5	Cercle 1	761,419	762,402	393,63	391224,997	3992502,787	2,5	-2,5	-1,27
PT58	PK1+150	Clothoïde 5	Cercle 1	760,889	762,095	394,53	391200,250	3992500,421	-0,39	-2,5	-1,20
PT59	PK1+175	Clothoïde 5	Cercle 1	761,664	761,802	397,25	391175,308	3992498,750	-3,29	-3,29	-1,13
PT60	PK1+188	Arc 3	Cercle 1	761,711	761,661	399,32	391162,688	3992498,402	-4,76	-4,76	-1,10
PT61				761,711		1,57		,	-4,76	-4,76	-1,10
PT62	PK1+200 PK1+225	Arc 3	Cercle 1	,	761,527 761,269	6,11	391150,314	3992498,487	-4,76 -4,76	-4,76	-1,07
PT63		Arc 3	Cercle 1	761,726 761,724	,		391125,365	3992499,994 3992500,503			
	PK1+230	Arc 3	Cercle 1	,	761,220	7,01	391120,448	,	-4,76	-4,76	-0,98
PT64	PK1+250	Arc 3	Cercle 1	761,691	761,028	10,66	391100,587	3992503,278	-4,76	-4,76	-0,93
PT65	PK1+272	Arc 3	Cercle 1	761,489	760,828	14,71	391078,770	3992507,684	-4,76	-4,76	-0,87
PT66	PK1+275	Clothoïde 6	Cercle 1	761,473	760,804	15,20	391076,106	3992508,321	-4,44	-4,44	-0,86
PT67	PK1+300	Clothoïde 6	Cercle 1	760,990	760,597	18,64	391052,003	3992514,943	-1,54	-2,5	-0,79
PT68	PK1+325	Clothoïde 6	Cercle 1	760,496	760,407	20,25	391028,178	3992522,517	1,37	-2,5	-0,73
PT69	PK1+335	Clothoïde 6	Cercle 1	760,356	760,338	20,39	391018,925	3992525,580	2,5	-2,5	-0,70
PT70	PK1+350	Droite 4	Cercle 1	760,216	760,235	20,39	391004,448	3992530,383	2,5	-2,5	-0,66
PT71	PK1+375	Droite 4	Cercle 1	759,618	760,079	20,39	390980,720	3992538,255	2,5	-2,5	-0,59
PT72	PK1+387	Droite 4	Cercle 1	759,554	760,012	20,39	390969,528	3992541,968	2,5	-2,5	-0,56
PT73	PK1+400 PK1+425	Droite 4	Cercle 1	758,849	759,941	20,39	390956,991	3992546,127	2,5	-2,5	-0,52
PT74		Droite 4	Cercle 1	759,100	759,819	20,39	390933,263	3992553,999	2,5	-2,5	-0,45
PT75	PK1+450	Droite 4	Cercle 1	758,879	759,715	20,39	390909,535	3992561,871	2,5	-2,5	-0,38
PT76	PK1+475	Droite 4	Cercle 1	759,132	759,627	20,39	390885,806	3992569,743	2,5	-2,5	-0,32
	PK1+500	Droite 4	Cercle 1	759,062	759,557	20,39	390862,078		2,5	-2,5	-0,25
PT78	PK1+525	Droite 4	Cercle 1	758,965	759,504	20,39	390838,350	3992585,487	2,5	-2,5	-0,18
PT79	PK1+550	Droite 4	Cercle 1	758,830	759,468	20,39	390814,622	3992593,359	2,5	-2,5	-0,11
PT80	PK1+575	Droite 4	Cercle 1	758,808	759,449	20,39	390790,893	3992601,231	2,5	-2,5	-0,04
PT81	PK1+600	Droite 4	Cercle 1	758,804	759,447	20,39	390767,165	3992609,103	2,5	-2,5	0,03
PT82	PK1+625	Droite 4	Cercle 1	758,830	759,462	20,39	390743,437	3992616,975	2,5	-2,5	0,09
PT83	PK1+650	Droite 4	Cercle 1	758,947	759,494	20,39	390719,709	3992624,847	2,5	-2,5	0,16
PT84	PK1+675	Droite 4	Cercle 1	759,026	759,544	20,39	390695,980	3992632,719	2,5	-2,5	0,23
PT85	PK1+700	Droite 4	Cercle 1	759,041	759,610	20,39	390672,252	3992640,591	2,5	-2,5	0,30
PT86	PK1+725	Droite 4	Cercle 1	758,668	759,693	20,39	390648,524	3992648,463	2,5	-2,5	0,37
PT87	PK1+738	Droite 4	Cercle 1	758,121	759,742	20,39	390636,660	3992652,399	2,5	-2,5	0,40
PT88	PK1+750	Droite 4	Cercle 1	759,336	759,794	20,39	390624,795	3992656,335	2,5	-2,5	0,44
PT89	PK1+763	Droite 4	Cercle 1	759,196	759,851	20,39	390612,931	3992660,271	2,5	-2,5	0,47
PT90	PK1+775	Droite 4	Cercle 1	759,650	759,912	20,39	390601,067	3992664,207	2,5	-2,5	0,50
PT91	PK1+792	Clothoïde 7	Cercle 1	760,179	760,003	20,39	390584,703	3992669,636	2,5	-2,5	0,55
PT92	PK1+800	Clothoïde 7	Cercle 1	760,120	760,046	20,34	390577,338	3992672,077	2,5	-1,83	0,57
PT93	PK1+825	Clothoïde 7	Cercle 1	760,870	760,198	19,37	390553,556	3992679,785	2,5	0,33	0,64
PT94	PK1+850	Clothoïde 7	Cercle 1	761,424	760,367	17,22	390529,594	3992686,909	2,5	2,49	0,71
PT95	PK1+859	Arc 4	Cercle 1	761,659	760,434	16,13	390520,669	3992689,304	3,29	3,29	0,73

PT96	PK1+875	Arc 4	Cercle 1	762,022	760,553	14,12	390505,353	3992693,013	3,29	3,29	0.78
PT97	PK1+891	Arc 4	Cercle 1	762,196	760,681	12,09	390489,716	3992696,278	3,29	3,29	0.82
PT98	PK1+900	Arc 4	Cercle 1	762,306	760,756	10,94	390480,838	3992697,901	3,29	3,29	0,85
PT99	PK1+923	Arc 4	Cercle 1	762,422	760,955	8,05	390458,383	3992701,274	3,29	3,29	0,91
PT100	PK1+937	Clothoïde 8	Cercle 1	762,435	761,092	6,37	390443,715	3992702,934	2,5	2,01	0,95
PT101	PK1+950	Clothoïde 8	Cercle 1	762,252	761,213	5,28	390431,239	3992704,075	2,5	0,93	0,98
PT102	PK1+975	Clothoïde 8	Cercle 1	761,679	761,467	3,99	390406,302	3992705,854	2,5	-1,23	1,05
PT103		Clothoïde 8	Cercle 1	761,078	761,625	3,78	390391,620	3992706,742	2,5	-2,5	1,09
PT104	PK2+000	Droite 5	Cercle 1	761,203	761,739	3,78	390381,347	3992707,353	2,5	-2,5	1,12
PT105		Droite 5	Cercle 1	761,564	762,027	3,78	390356,391	3992708,837	2,5	-2,5	1,19
PT106		Droite 5	Cercle 1	762,061	762,333	3,78	390331,436	3992710,321	2,5	-2,5	1,26
PT107	PK2+075	Droite 5	Cercle 1	762,499	762,655	3,78	390306,480	3992711,805	2,5	-2,5	1,32
PT108	PK2+100	Droite 5	Cercle 1	762,867	762,995	3,78	390281,524	3992713,289	2,5	-2,5	1,39
PT109	PK2+125	Droite 5	Cercle 1	763,010	763,352	3,78	390256,568	3992714,773	2,5	-2,5	1,46
PT110	PK2+150	Droite 5	Cercle 1	763,201	763,725	3,78	390231,612	3992716,257	2,5	-2,5	1,53
PT111	PK2+175	Droite 5	Cercle 1	763,615	764,116	3,78	390206,656	3992717,741	2,5	-2,5	1,60
PT112	PK2+200	Droite 5	Pente 2	764,101	764,524	3,78	390181,700	3992719,225	2,5	-2,5	1,65
PT113	PK2+225	Droite 5	Pente 2	764,558	764,935	3,78	390156,744	3992720,709	2,5	-2,5	1,65
PT114	PK2+226	Clothoïde 9	Pente 2	764,572	764,956	3,78	390155,492	3992720,784	0,73	-2,5	1,65
PT115	PK2+250	Clothoïde 9	Pente 2	764,902	765,347	4,16	390131,791	3992722,241	-1,14	-2,5	1,65
PT116	PK2+275	Clothoïde 9	Pente 2	765,737	765,758	5,39	390106,860	3992724,088	-2,5	-2,5	1,65
PT117	PK2+293	Arc 5	Pente 2	765,985	766,059	6,83	390088,689	3992725,827	-2,5	-2,5	1,65
PT118	PK2+300	Arc 5	Pente 2	766,156	766,170	7,44	390081,986	3992726,581	-2,5	-2,5	1,65
PT119	PK2+325	Arc 5	Pente 2	767,058	766,581	9,72	390057,213	3992729,939	-2,5	-2,5	1,65
PT120	PK2+350	Arc 5	Pente 2	767,536	766,993	11,99	390032,577	3992734,180	-2,5	-2,5	1,65
PT121	PK2+375	Arc 5	Pente 2	768,058	767,404	14,26	390008,108	3992739,298	-2,5	-2,5	1,65
PT122	PK2+379	Arc 5	Pente 2	768,137	767,468	14,61	390004,344	3992740,166	-2,5	-2,5	1,65
PT123	PK2+400	Arc 5	Pente 2	768,559	767,816	16,54	389983,837	3992745,286	-2,5	-2,5	1,65
PT124	PK2+425	Arc 5	Pente 2	768,877	768,227	18,81	389959,795	3992752,137	-2,5	-2,5	1,65
PT125	PK2+450	Arc 5	Pente 2	769,161	768,639	21,08	389936,014	3992759,842	-2,5	-2,5	1,65
PT126	PK2+464	Arc 5	Pente 2	769,044	768,877	22,40	389922,378	3992764,688	-2,5	-2,5	1,65
PT127	PK2+475	Clothoïde 10	Pente 2	768,976	769,050	23,28	389912,521	3992768,387	-1,71	-2,5	1,65
PT128	PK2+500	Clothoïde 10	Pente 2	769,153	769,462	24,77	389889,291	3992777,626	0,15	-2,5	1,65
PT129	PK2+525	Clothoïde 10	Pente 2	769,538	769,873	25,42	389866,220	3992787,253	2,02	-2,5	1,65
PT130	PK2+531	Clothoïde 10	Pente 2	769,644	769,980	25,45	389860,257	3992789,771	2,5	-2,5	1,65
PT131	PK2+550	Droite 6	Pente 2	769,961	770,285	25,45	389843,190	3992796,981	2,5	-2,5	1,65
PT132	PK2+575	Droite 6	Pente 2	770,443	770,696	25,45	389820,160	3992806,710	2,5	-2,5	1,65
PT133	PK2+600	Droite 6	Pente 2	770,992	771,108	25,45	389797,131	3992816,438	2,5	-2,5	1,65
PT134	PK2+625	Droite 6	Pente 2	771,459	771,519	25,45	389774,102	3992826,167	2,5	-2,5	1,65
PT135	PK2+650	Droite 6	Pente 2	771,980	771,931	25,45	389751,072	3992835,896	2,5	-2,5	1,65
PT136	PK2+675	Droite 6	Pente 2	771,971	772,342	25,45	389728,043	3992845,624	2,5	-2,5	1,65
PT137	PK2+700	Droite 6	Pente 2	772,373	772,754	25,45	389705,013	3992855,353	2,5	-2,5	1,65
PT138	PK2+725	Droite 6	Pente 2	772,998	773,165	25,45	389681,984	3992865,082	2,5	-2,5	1,65
PT139	PK2+750	Droite 6	Pente 2	773,613	773,577	25,45	389658,955	3992874,810	2,5	-2,5	1,65
PT140	PK2+775	Droite 6	Pente 2	774,033	773,988	25,45	389635,925	3992884,539	2,5	-2,5	1,65
PT141	PK2+778	Clothoïde 11	Pente 2	774,079	774,033	25,45	389633,385	3992885,612	2,5	-2,5	1,65
	PK2+800	Clothoïde 11	Pente 2	774,372	774,400	24,55	389612,856	3992894,172	2,5	0,56	1,65
PT143	PK2+825	Clothoïde 11	Pente 2	774,827	774,811	21,42	389589,496	3992903,071	3,93	3,93	1,65
PT144		Arc 6	Pente 2	775,118	775,000	19,21	389578,573	3992906,687	5,57	5,57	1,65
PT145		Arc 6	Pente 2	775,208	775,223	16,35	389565,604	3992910,407	5,57	5,57	1,65
	PK2+875	Arc 6	Pente 2	775,783	775,631	11,09	389541,399	3992915,706	5,57	5,57	1,65
PT147	PK2+875	Arc 6	Pente 2	775,787	775,634	11,04	389541,187	3992915,743	5,57	5,57	1,65

Pittag Pick-1950 Arc 6	PT148	PK2+900	Arc 6	Pente 2	776,457	776,046	5,74	389516,411	3992919,028	5,57	5,57	1,65
PT150 PK2-925 Colomoid 12 Pente 2 777.964 776.857 0.69 380491.448 399290.255 3.03 3.03 3.65 6.55 PT151 PK2-950 Colomoid 12 Pente 2 777.964 776.869 397.59 388446.466 3992918.244 2.5 0.5 6.56 PT152 PK2-972 Colomoid 2 Pente 2 776.463 777.292 396.73 388446.666 3992918.224 2.5 2.5 1.65 PT153 PK3-900 Drolte 7 Pente 2 776.463 777.692 396.73 388446.666 3992918.224 2.5 2.5 1.65 PT154 PK3-900 Drolte 7 Pente 2 779.467 776.924 396.73 388446.661 3992914.813 2.5 2.5 1.65 PT155 PK3-900 Drolte 7 Pente 2 779.960 778.926 396.73 388346.614 3992914.813 2.5 2.5 1.65 PT156 PK3-9100 Drolte 7 Pente 2 799.804 779.926 396.73 388346.614 3992914.813 2.5 2.5 1.65 PT158 PK3-9150 Drolte 7 Pente 2 780.467 779.49 396.73 388346.614 3992919.607 2.5 2.5 1.65 PT158 PK3-9150 Drolte 7 Pente 2 780.472 780.136 396.73 389296.607 399290.865 2.5 2.5 1.65 PT158 PK3-9150 Drolte 7 Pente 2 780.472 780.136 396.73 389296.607 399290.865 2.5 2.5 1.65 PT158 PK3-9150 Drolte 7 Pente 2 781.479 780.984 396.73 389296.73 399290.808 2.5 2.5 1.65 PT158 PK3-925 Drolte 7 Pente 2 781.495 780.984 396.73 389296.73 399290.709 2.5 2.5 1.65 PT158 PK3-925 Drolte 7 Pente 2 781.985 782.803 396.73 38918.844 399290.992 2.5 2.5 1.65 PT158 PK3-930 Drolte 7 Pente 2 783.985 782.803 396.73 38918.844 399290.992 2.5 2.5 1.65 PT158 PK3-930 Drolte 7 Pente 2 783.985 782.803 396.73 38918.844 399290.992 2.5 2.5 1.65 PT158 PK3-930 Drolte 7 Pente 2 783.985 782.803 396.73 38918.844 399290.992 2.5 2.5 1.65 PT158 PK3-930 Drolte 7 Pente 2 783.985 782.803 396.73 38918.844 399290.992 2.5 2.5 1.65 PT158 PK3-930 Drolte 7 Pente 2 783.985 782.803 396.73 38					,	,	,	,	,	,		<i>'</i>
First PK2-990 Cotholoid 12 Pento 2 777.964 776.880 397.59 389464.686 3992019.844 2.5 0.5 1.65 First PK3-900 Droite 7 Pento 2 778.685 777.692 396.73 38944.686 3992018.623 2.5 2.5 1.65 First PK3-900 Droite 7 Pento 2 778.625 778.03 396.73 389316.81 399214.813 2.5 2.5 1.65 First PK3-900 Droite 7 Pento 2 778.626 778.03 396.73 389316.81 399214.813 2.5 2.5 1.65 First PK3-905 Droite 7 Pento 2 779.980 778.926 396.73 389341.614 3992313.531 2.5 2.5 1.65 First PK3-905 Droite 7 Pento 2 799.980 779.938 396.73 389341.614 3992313.531 2.5 2.5 1.65 First PK3-195 Droite 7 Pento 2 789.242 779.338 396.73 389341.614 3992313.531 2.5 2.5 1.65 First PK3-195 Droite 7 Pento 2 789.424 779.338 396.73 389341.647 399290.865 2.5 2.5 1.65 First PK3-195 Droite 7 Pento 2 789.742 780.161 396.73 389241.745 399290.865 2.5 2.5 1.65 First PK3-195 Droite 7 Pento 2 781.427 780.984 396.73 389241.745 399290.835 2.5 2.5 1.65 First PK3-200 Droite 7 Pento 2 781.427 780.984 396.73 389216.778 399290.835 2.5 2.5 1.65 First PK3-200 Droite 7 Pento 2 781.427 780.984 396.73 389216.778 399290.835 2.5 2.5 1.65 First PK3-200 Droite 7 Pento 2 781.428 782.218 396.73 38911.811 399290.835 2.5 2.5 1.65 First PK3-200 Droite 7 Pento 2 782.488 782.218 396.73 38911.811 399290.835 2.5 2.5 1.65 First PK3-200 Droite 7 Pento 2 782.488 782.218 396.73 38911.817 399290.927 2.5 2.5 1.65 First PK3-300 Droite 7 Pento 2 783.684 783.474 396.73 38911.817 399290.927 2.5 2.5 1.65 First PK3-305 Droite 7 Pento 2 783.848 782.43 396.73 38911.817 399290.930.82 2.5 2.5 1.65 First PK3-305 Droite 7 Pento 2 783.722 783.648 783.473 38904.939 399290.			-					,		,	,	ŕ
FT152 PK3-902 Clothoide 12 Pente 2 778,463 777,228 396,73 389446,866 3992918,823 2,5 2,5 1,65 FT153 PK3-905 Droile 7 Pente 2 778,515 777,922 396,73 389416,515 3992913,376 2,5 2,5 1,65 FT155 PK3-905 Droile 7 Pente 2 779,410 778,515 396,73 389391,548 3992916,996 2,5 2,5 1,65 FT156 PK3-905 Droile 7 Pente 2 779,490 778,926 396,73 389391,641 3992914,813 2,5 2,5 1,65 FT157 PK3-100 Droile 7 Pente 2 780,242 779,383 396,73 389391,641 3992912,349 2,5 2,5 1,65 FT158 PK3-1155 Droile 7 Pente 2 780,242 779,749 396,73 389391,680 3992910,967 2,5 2,5 1,65 FT159 PK3-1150 Droile 7 Pente 2 781,472 780,572 396,73 389291,680 399290,868 2,5 2,5 1,65 FT159 PK3-1150 Droile 7 Pente 2 781,479 780,984 396,73 389291,680 399290,868 2,5 2,5 1,65 FT160 PK3-175 Droile 7 Pente 2 781,479 780,984 396,73 389241,745 3992904,03 2,5 2,5 1,65 FT161 PK3-200 Droile 7 Pente 2 781,483 781,380 386,73 389296,73 389290,83 2,5 2,5 1,65 FT162 PK3-225 Droile 7 Pente 2 781,483 781,380 781,380 386,73 389116,911 399290,383 2,5 2,5 1,65 FT163 PK3-225 Droile 7 Pente 2 781,483 781,807 396,73 389116,911 399290,383 2,5 2,5 1,65 FT164 PK3-225 Droile 7 Pente 2 783,648 783,041 396,73 389916,910 399290,709 2,5 2,5 1,65 FT165 PK3-330 Droite 7 Pente 2 783,648 783,041 396,73 389916,910 399290,909 2,5 2,5 1,65 FT166 PK3-325 Droile 7 Pente 2 783,648 783,041 396,73 389916,910 399290,909 2,5 2,5 1,65 FT168 PK3-330 Droite 7 Pente 2 783,648 783,041 396,73 389916,910 399290,909 2,5 2,5 1,65 FT169 PK3-335 Droite 7 Pente 2 783,648 783,041 396,73 389916,910 399290,9199 2,5 2,5 1,65 FT169 PK3-350 Droite 7 Pente 2 783,648 783,041 396,73							·					
PT153 PK3+000 Droile 7 Pente 2 778,513 777,802 398,73 389915,163 3992012,078 2,5 -2,5 1,65 PT154 PK3+025 Droile 7 Pente 2 779,417 778,105 396,73 389315,647 3992012,041,813 2,5 -2,5 1,65 PT156 PK3+075 Droile 7 Pente 2 779,980 778,926 396,73 389316,647 3992012,491 2,5 -2,5 1,65 PT158 PK3+100 Droile 7 Pente 2 780,427 779,380 396,73 389316,647 3992012,497 2,5 -2,5 1,65 PT159 PK3+125 Droile 7 Pente 2 780,427 779,383 396,73 389316,647 3992201,667 2,5 -2,5 1,65 PT159 PK3+150 Droile 7 Pente 2 780,742 780,161 396,73 389261,739 3992200,667 2,5 -2,5 1,65 PT159 PK3+150 Droile 7 Pente 2 780,742 780,161 396,73 389261,739 3992200,685 2,5 -2,5 1,65 PT159 PK3+150 Droile 7 Pente 2 781,479 780,184 396,73 389261,745 3992200,685 2,5 -2,5 1,65 PT161 PK3+200 Droile 7 Pente 2 781,479 780,884 396,73 38921,475 3992200,680 3 2,5 -2,5 1,65 PT162 PK3+225 Droile 7 Pente 2 781,479 780,884 396,73 3891,816 3992200,680 3 2,5 -2,5 1,65 PT164 PK3+225 Droile 7 Pente 2 782,164 781,807 396,73 3891,816 3992200,565 2,5 -2,5 1,65 PT164 PK3+225 Droile 7 Pente 2 782,486 782,248 396,73 3891,416,74 3992200,566 2,5 -2,5 1,65 PT166 PK3+325 Droile 7 Pente 2 783,648 782,348 396,73 38991,43 3992200,596 2,5 -2,5 1,65 PT166 PK3+325 Droile 7 Pente 2 783,764 783,444 396,73 38991,43 3992200,099 2,5 -2,5 1,65 PT166 PK3+325 Droile 7 Pente 2 783,764 783,444 396,73 38991,44 3992200,099 2,5 -2,5 1,65 PT169 PK3+325 Droile 7 Pente 2 783,764 783,444 396,73 38991,44 3992200,099 2,5 -2,5 1,65 PT169 PK3+325 Droile 7 Pente 2 783,764 783,444 396,73 38991,44 3992200,099 2,5 -2,5 1,65 PT169 PK3+325 Droile 7 Pente 2 783,764 783,744 396,73 38991,44 3992200,099									, , , , , , , , , , , , , , , , , , , ,	,		
PT154 PK3+025 Droite 7 Pente 2 778.526 778.103 396.73 389301.648 3902016.096 2.5 2.5 2.5 1.65									i			
PT155 PK3+050 Droite 7 Pente 2 779.417 778.515 398.73 389366.581 3992914.813 2.5 -2.5 1.65												
PT156 PK3+075 Droite 7 Pente 2 779,980 778,926 398,73 389341,614 3992913,531 2,6 -2,5 1,68 PT157 PK3+105 Droite 7 Pente 2 780,242 779,338 396,73 389316,647 3992912,249 2,6 -2,5 1,68 PT158 PK3+150 Droite 7 Pente 2 780,472 780,161 396,73 389291,880 399290,685 2,5 -2,5 1,65 PT159 PK3+150 Droite 7 Pente 2 780,742 780,161 396,73 389261,713 399299,685 2,5 -2,5 1,65 PT161 PK3+275 Droite 7 Pente 2 781,122 780,572 396,73 389241,743 399299,685 2,5 -2,5 1,65 PT162 PK3+225 Droite 7 Pente 2 781,479 780,984 396,73 389241,773 3992905,803 2,5 -2,5 1,65 PT162 PK3+225 Droite 7 Pente 2 782,154 781,807 396,73 38916,783 3992905,838 2,5 -2,5 1,65 PT163 PK3+255 Droite 7 Pente 2 782,184 781,807 396,73 38916,844 3992905,838 2,5 -2,5 1,65 PT165 PK3+325 Droite 7 Pente 2 783,095 782,830 396,73 38916,844 3992905,893 2,5 -2,5 1,65 PT166 PK3+325 Droite 7 Pente 2 783,648 783,041 396,73 38911,877 3992903,274 2,5 -2,5 1,65 PT167 PK3+330 Droite 7 Pente 2 783,648 783,041 396,73 389014,873 3992900,079 2,5 -2,5 1,65 PT168 PK3+350 Droite 7 Pente 2 783,648 783,041 396,73 389097,459 3992900,088 2,5 -2,5 1,65 PT169 PK3+375 Droite 7 Pente 2 783,648 783,447 396,73 389097,459 3992900,088 2,5 -2,5 1,65 PT169 PK3+375 Droite 7 Pente 2 783,648 784,749 396,73 389907,409 399299,499 2,5 -2,5 1,65 PT170 PK3+425 Droite 7 Pente 2 783,648 784,749 396,73 389907,049 399299,868 3 2,5 -2,5 1,65 PT1717 PK3+425 Droite 7 Cercle 2 784,887 784,710 396,73 388997,107 3992899,497 2,5 -2,5 1,65 PT1717 PK3+550 Droite 7 Cercle 2 784,887 784,710 396,73 388997,107 3992899,889 3,5 -2,5 2,5 2,5 2,5 PT1717 PK3+575 Droite 7 Cercle 2 785,								,	,			
PT157 PK3+100 Droite 7 Pente 2 780,242 779,338 396,73 389316,647 3992912,249 2,5 2,5 1,65 PT159 PK3+150 Droite 7 Pente 2 780,467 779,749 386,73 3892916,860 3992910,867 2,5 2,5 1,65 PT160 PK3+175 Droite 7 Pente 2 781,122 780,762 396,73 389241,745 399290,868 2,5 2,5 1,65 PT161 PK3+200 Droite 7 Pente 2 781,322 780,762 396,73 389241,745 399290,840 2,5 2,5 1,65 PT162 PK3+225 Droite 7 Pente 2 781,336 781,395 396,73 389241,745 3992905,838 2,5 2,5 1,65 PT163 PK3+225 Droite 7 Pente 2 781,367 781,395 396,73 389141,817 3992905,838 2,5 2,5 1,65 PT164 PK3+275 Droite 7 Pente 2 782,154 781,807 396,73 389146,814 3992905,838 2,5 2,5 1,65 PT165 PK3+230 Droite 7 Pente 2 782,468 782,218 396,73 389146,817 3992903,274 2,5 2,5 1,65 PT166 PK3+230 Droite 7 Pente 2 783,648 783,451 396,73 389146,910 3992901,992 2,5 2,5 1,65 PT166 PK3+325 Droite 7 Pente 2 783,764 783,457 396,73 389146,910 3992901,992 2,5 2,5 1,65 PT167 PK3+333 Droite 7 Pente 2 783,764 783,453 396,73 389096,976 3992990,006 2,5 2,5 1,65 PT168 PK3+350 Droite 7 Pente 2 783,764 783,453 396,73 389096,976 3992899,427 2,5 2,5 1,65 PT170 PK3+400 Droite 7 Pente 2 783,764 783,453 396,73 389091,409 399289,427 2,5 2,5 1,65 PT171 PK3+425 Droite 7 Cercle 2 784,868 785,165 396,73 389017,042 399289,427 2,5 2,5 1,65 PT171 PK3+425 Droite 7 Cercle 2 784,868 785,165 396,73 389017,042 3992896,581 2,5 2,5 1,65 PT171 PK3+425 Droite 7 Cercle 2 784,868 785,165 396,73 388917,173 399288,140 2,5 2,5 2,5 2,5 PT171 PK3+350 Droite 7 Cercle 2 784,868 785,165 396,73 388917,174 3992889,174 2,5 2,5 2,5 2,5 PT171 PK3+350 Droite 7 Cercle 2 785,850 786,839 39												
PT158 PK3+125 Droite 7 Pente 2 780,467 779,749 396,73 380291,680 3902910,967 2,5 -2,5 1,65 PT159 PK3+150 Droite 7 Pente 2 780,742 780,161 396,73 380266,713 3902906,865 2,5 -2,5 1,65 PT160 PK3+175 Droite 7 Pente 2 781,127 780,672 396,73 380216,778 3902906,965 2,5 -2,5 1,65 PT161 PK3+200 Droite 7 Pente 2 781,4379 780,984 396,73 380216,778 3902907,120 2,5 -2,5 1,65 PT162 PK3+225 Droite 7 Pente 2 781,836 781,935 386,73 380191,811 3902905,338 2,5 -2,5 1,65 PT163 PK3+250 Droite 7 Pente 2 782,154 781,807 396,73 380114,877 3902903,274 2,5 -2,5 1,65 PT164 PK3+275 Droite 7 Pente 2 782,154 781,807 396,73 380114,877 3902903,274 2,5 -2,5 1,65 PT165 PK3+300 Droite 7 Pente 2 783,067 782,031 380,73 380114,877 3902903,274 2,5 -2,5 1,65 PT166 PK3+225 Droite 7 Pente 2 783,047 783,										,		
PT159 PK3+150 Droite 7 Pente 2 780,742 780,161 396,73 389266,713 3992909,685 2.5 -2.5 1.65 PT161 PK3+275 Droite 7 Pente 2 781,122 780,672 396,73 389261,743 3992909,040 2.5 -2.5 1.65 PT162 PK3+225 Droite 7 Pente 2 781,836 781,395 396,73 38916,781 3992907,120 2.5 -2.5 1.65 PT162 PK3+225 Droite 7 Pente 2 782,154 781,807 396,73 38916,841 3992905,838 2.5 -2.5 1.65 PT163 PK3+250 Droite 7 Pente 2 782,488 782,218 396,73 38916,841 3992901,922 -2.5 -2.5 1.65 PT164 PK3+275 Droite 7 Pente 2 782,488 782,248 396,73 38916,841 3992901,924 -2.5 -2.5 1.65 PT165 PK3+230 Droite 7 Pente 2 783,648 783,041 396,73 38916,910 3992901,992 -2.5 -2.5 1.65 PT166 PK3+325 Droite 7 Pente 2 783,648 783,041 396,73 389016,910 3992900,068 -2.5 -2.5 1.65 PT167 PK3+338 Droite 7 Pente 2 783,764 783,457 396,73 389066,976 3992899,927 -2.5 -2.5 1.65 PT169 PK3+375 Droite 7 Pente 2 783,764 783,457 396,73 389066,976 3992899,927 -2.5 -2.5 1.65 PT170 PK3+400 Droite 7 Pente 2 783,722 783,864 396,73 389042,009 3992899,427 -2.5 -2.5 1.65 PT171 PK3+420 Droite 7 Droite 7 Pente 2 783,722 783,864 396,73 389042,009 3992896,842 -2.5 -2.5 1.65 PT171 PK3+420 Droite 7 Cercle 2 784,868 785,165 396,73 389967,104 3992896,863 -2.5 -2.5 1.65 PT171 PK3+425 Droite 7 Cercle 2 786,877 787,101 396,73 389967,104 3992896,863 -2.5 -2.5 1.65 PT171 PK3+450 Droite 7 Cercle 2 786,877 787,101 396,73 388967,107 3992896,980 -2.5 -2.5 1.65 PT171 PK3+450 Droite 7 Cercle 2 786,870 785,165 396,73 388967,107 3992896,980 -2.5 -2.5 1.65 PT171 PK3+550 Droite 7 Cercle 2 786,827 786,143 396,73 388967,107 3992896,980 -2.5 -2.5 1.65 PT178 PK3+555 Droite 7 Ce												
PT160 PK3+176 Droite 7 Pente 2 781,122 780,572 398,73 389241,745 3992908,403 2,5 2,5 1,65 PT161 PK3+200 Droite 7 Pente 2 781,367 780,984 386,73 389216,778 3992907,120 2,5 2,5 1,65 PT162 PK3+225 Droite 7 Pente 2 781,367 781,395 396,73 38916,814 3992904,566 2,5 2,5 1,65 PT163 PK3+250 Droite 7 Pente 2 782,486 782,218 386,73 38914,817 3992903,274 2,5 2,5 1,65 PT166 PK3+275 Droite 7 Pente 2 783,085 782,630 396,73 38914,877 3992903,274 2,5 2,5 1,65 PT166 PK3+325 Droite 7 Pente 2 783,085 782,630 396,73 38914,817 3992900,709 2,5 2,5 1,65 PT166 PK3+325 Droite 7 Pente 2 783,644 783,453 396,73 38906,976 3992900,068 2,5 2,5 1,65 PT168 PK3+336 Droite 7 Pente 2 783,644 783,453 396,73 389062,976 3992999,427 2,5 2,5 1,65 PT169 PK3+375 Droite 7 Pente 2 783,614 783,453 396,73 389042,009 3992899,427 2,5 2,5 1,65 PT170 PK3+430 Droite 7 Droite 7 Pente 2 783,640 783,640 396,73 389042,009 3992899,427 2,5 2,5 1,65 PT171 PK3+450 Droite 7 Droite 7 Derte 2 783,640 784,780 396,73 389042,009 3992899,427 2,5 2,5 1,65 PT171 PK3+450 Droite 7 Derte 2 784,887 784,710 396,73 389942,004 3992896,863 2,5 2,5 1,65 PT171 PK3+450 Droite 7 Derte 2 784,887 784,710 396,73 389942,004 3992895,881 2,5 2,5 1,95 PT171 PK3+450 Droite 7 Derte 2 784,887 784,710 396,73 389892,017 3992894,299 2,5 2,5 1,95 PT171 PK3+575 Droite 7 Derte 2 786,580 786,690 396,73 388917,173 3992894,290 2,5 2,5 2,5 1,95 PT171 PK3+575 Droite 7 Derte 2 786,885 786,690 396,73 388917,173 3992891,740 2,5 2,5 2,5 2,1 PT179 PK3+650 Droite 7 Derte 2 786,885 786,690 396,73 388917,173 3992881,475 2,5 2,5 2,5 2,5 2,1 PT179 PK3+650 Droite 7 Dert												
PT161 PK3+200 Droite 7 Pente 2 781,479 780,984 396,73 389216,778 3992907,120 2,5 2,5 1,65 PT162 PK3+225 Droite 7 Pente 2 781,836 781,995 396,73 389191,811 3992905,838 2,5 2,5 1,65 PT164 PK3+275 Droite 7 Pente 2 782,488 782,218 396,73 389116,911 3992903,274 2,5 2,5 1,65 PT166 PK3+325 Droite 7 Pente 2 782,488 782,218 396,73 389116,910 3992901,992 2,5 2,5 1,65 PT166 PK3+330 Droite 7 Pente 2 783,648 783,041 396,73 3890116,910 3992901,992 2,5 2,5 1,65 PT166 PK3+335 Droite 7 Pente 2 783,764 783,247 396,73 389014,877 3992903,992 2,5 2,5 1,65 PT168 PK3+338 Droite 7 Pente 2 783,764 783,247 396,73 389044,995 3992900,098 2,5 2,5 1,65 PT168 PK3+335 Droite 7 Pente 2 783,722 783,664 396,73 389042,009 3992890,088 2,5 2,5 1,65 PT168 PK3+375 Droite 7 Pente 2 783,722 783,643 396,73 389042,009 3992890,088 2,5 2,5 1,65 PT169 PK3+475 Droite 7 Cercle 2 783,320 784,278 396,73 389042,009 3992895,145 2,5 2,5 1,65 PT1717 PK3+425 Droite 7 Cercle 2 784,687 784,710 396,73 388992,074 3992895,581 2,5 2,5 1,69 PT1717 PK3+450 Droite 7 Cercle 2 784,687 784,710 396,73 388992,074 3992895,581 2,5 2,5 1,95 PT173 PK3+475 Droite 7 Cercle 2 786,828 786,593 396,73 388917,107 3992894,299 2,5 2,5 1,95 PT174 PK3+500 Droite 7 Cercle 2 786,828 786,659 396,73 388917,107 3992894,299 2,5 2,5 2,5 1,95 PT174 PK3+650 Droite 7 Cercle 2 786,865 786,659 396,73 388917,303 3992895,333 62,5 2,5												
PT162 PK3+225									,			<i>'</i>
PT163 PK3+250 Droite 7 Pentle 2 782,154 781,807 396,73 389168,844 3992904,556 2,5 -2,5 1,65 PT164 PK3+275 Droite 7 Pentle 2 782,488 782,218 396,73 389114,877 3992903,274 2,5 -2,5 1,65 PT166 PK3+325 Droite 7 Pentle 2 783,648 783,041 396,73 389116,910 3992901,992 2,5 -2,5 1,65 PT166 PK3+325 Droite 7 Pentle 2 783,648 783,041 396,73 389019,943 3992900,068 2,5 -2,5 1,65 PT167 PK3+338 Droite 7 Pentle 2 783,764 783,247 396,73 389079,459 3992900,068 2,5 -2,5 1,65 PT168 PK3+350 Droite 7 Pentle 2 783,764 783,247 396,73 389079,459 39922900,068 2,5 -2,5 1,65 PT169 PK3+375 Droite 7 Pentle 2 783,722 783,864 396,73 389079,459 3992299,427 2,5 -2,5 1,65 PT170 PK3+400 Droite 7 Cercle 2 784,868 784,710 396,73 389017,042 3992896,863 2,5 -2,5 1,65 PT170 PK3+450 Droite 7 Cercle 2 784,868 785,165 396,73 38992,074 3992896,861 2,5 -2,5 1,65 PT173 PK3+450 Droite 7 Cercle 2 784,868 785,165 396,73 388947,107 3992894,299 2,5 -2,5 1,95 PT174 PK3+450 Droite 7 Cercle 2 786,585 786,659 396,73 388947,107 3992894,299 2,5 -2,5 1,95 PT174 PK3+550 Droite 7 Cercle 2 786,585 786,659 396,73 388947,107 3992894,299 2,5 -2,5 2,04 PT175 PK3+555 Droite 7 Cercle 2 786,585 786,659 396,73 388947,304 2,5 -2,5 2									i	,		
PT164 PK3+275 Droite 7 Pente 2 782,488 782,218 396,73 389141,877 3992903,274 2,5 -2,5 1,65 PT165 PK3+330 Droite 7 Pente 2 783,648 783,041 396,73 389019,43 3992901,992 2,5 -2,5 1,65 PT167 PK3+338 Droite 7 Pente 2 783,648 783,041 396,73 389091,943 3992900,068 2,5 -2,5 1,65 PT167 PK3+338 Droite 7 Pente 2 783,764 783,247 396,73 389091,943 3992900,068 2,5 -2,5 1,65 PT168 PK3+350 Droite 7 Pente 2 783,722 783,864 396,73 389094,093 3992990,068 2,5 -2,5 1,65 PT168 PK3+375 Droite 7 Pente 2 783,722 783,864 396,73 389042,009 3992898,445 2,5 -2,5 1,65 PT167 PK3+400 Droite 7 Cercle 2 784,867 784,710 396,73 389904,009 3992898,685 2,5 -2,5 1,65 PT177 PK3+425 Droite 7 Cercle 2 784,868 784,710 396,73 389904,074 3992895,681 2,5 -2,5 1,65 PT177 PK3+425 Droite 7 Cercle 2 784,868 785,65 396,73 388994,074 3992895,681 2,5 -2,5 1,86 PT173 PK3+450 Droite 7 Cercle 2 785,828 785,641 396,73 388942,140 3992893,016 2,5 -2,5 1,95 PT174 PK3+500 Droite 7 Cercle 2 786,585 786,659 396,73 388942,140 3992893,016 2,5 -2,5 1,95 PT175 PK3+555 Droite 7 Cercle 2 786,585 786,659 396,73 388894,739 399289,749 2,5 -2,5 2,1 PT176 PK3+655 Droite 7 Cercle 2 786,385 786,659 396,73 388817,305 3992889,895 2,5 -2,5 2,1 PT177 PK3+675 Droite 7 Cercle 2 786,385 786,659 396,73 388817,305 3992889,895 2,5 -2,5 2,2 PT178 PK3+656 Droite 7 Cercle 2 786,385 786,659 396,73 388817,305 3992889,895 2,5 -2,5 2,2 PT178 PK3+655 Droite 7 Cercle 2 789,281 788,355 396,73 388842,273 3992889,895 2,5 -2,5 2,5						-	•	*	,			
PT166 PK3+300 Droite 7 Pente 2 783,095 782,630 396,73 389116,910 3992901,992 2,5 -2,5 1,65 PT166 PK3+325 Droite 7 Pente 2 783,648 783,041 396,73 389091,943 3992900,006 2,5 -2,5 1,65 PT169 PK3+330 Droite 7 Pente 2 783,764 783,247 396,73 389091,945 3992900,006 2,5 -2,5 1,65 PT169 PK3+350 Droite 7 Pente 2 783,724 783,464 783,453 396,73 389006,976 3992899,427 2,5 -2,5 1,65 PT169 PK3+375 Droite 7 Pente 2 783,722 783,864 396,73 389042,009 399289,8145 2,5 -2,5 1,65 PT170 PK3+400 Droite 7 Cercle 2 784,867 784,710 396,73 389042,009 399289,8145 2,5 -2,5 1,65 PT170 PK3+450 Droite 7 Cercle 2 784,868 785,165 396,73 389042,009 399289,863 2,5 -2,5 1,65 PT172 PK3+450 Droite 7 Cercle 2 784,868 785,165 396,73 388967,107 3992894,299 2,5 -2,5 1,95 PT173 PK3+450 Droite 7 Cercle 2 785,828 786,139 396,73 388942,140 3992893,3016 2,5 -2,5 1,95 PT174 PK3+500 Droite 7 Cercle 2 785,828 786,139 396,73 388892,206 3992891,734 2,5 -2,5 2,12 PT176 PK3+550 Droite 7 Cercle 2 785,828 786,569 396,73 388892,206 399289,459 2,5 -2,5 2,12 PT177 PK3+675 Droite 7 Cercle 2 785,828 786,769 396,73 388842,272 3992887,888 2,5 -2,5 2,21 PT178 PK3+600 Droite 7 Cercle 2 789,261 788,557 396,73 388842,272 3992886,602 2,5 -2,5 2,39 PT179 PK3+650 Droite 7 Cercle 2 789,261 788,557 396,73 388842,273 3992886,532 2,5 -2,5 2,39 PT179 PK3+655 Droite 7 Cercle 2 789,261 788,557 396,73 388842,273 3992886,532 2,5 -2,5 2,5 2,5 2,7 PT179 PK3+675 Droite 7 Cercle 2 790,187 789,567 396,73 388742,403 3992886,502 2,5 -2,5 2,5 2,5 2,7 PT189 PK3+600 Droite 7 Cercle 2 790,187 789,567 396,73 388650,502 3992886,503 2,5 -2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5					,		, ,			,		
PT166 PK3+325 Droite 7 Pente 2 783,648 783,041 396,73 389091,943 399200,0709 2,5 -2,5 1,65 PT167 PK3+338 Droite 7 Pente 2 783,641 783,243 396,73 389079,459 3992809,028 2,5 -2,5 1,65 PT169 PK3+375 Droite 7 Pente 2 783,722 783,864 396,73 389042,009 3992899,485 2,5 -2,5 1,65 PT170 PK3+400 Droite 7 Cercle 2 784,687 784,710 396,73 389017,042 3992896,863 2,5 -2,5 1,65 PT171 PK3+400 Droite 7 Cercle 2 784,687 784,710 396,73 389917,042 3992899,968 42,5 -2,5 1,77 PT172 PK3+450 Droite 7 Cercle 2 784,687 784,110 396,73 388917,173 3992899,968 2,5 -2,5 1,78 PT173 PK3+455 Droite 7 Cercle 2 785,828 786,139 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td>								,				
PT167 PK3+338 Droite 7 Pente 2 783,614 783,614 783,631 389079,459 3992900,068 2,5 -2,5 1,65 PT168 PK3+350 Droite 7 Pente 2 783,614 783,644 396,73 389042,009 3992898,145 2,5 -2,5 1,65 PT170 PK3+400 Droite 7 Cercle 2 783,864 396,73 389017,042 3992896,863 2,5 -2,5 -1,65 PT171 PK3+425 Droite 7 Cercle 2 784,687 784,710 396,73 389917,042 3992896,863 2,5 -2,5 1,65 PT173 PK3+425 Droite 7 Cercle 2 785,320 785,681 396,73 388942,107 3992893,916 2,5 -2,5 1,95 PT173 PK3+475 Droite 7 Cercle 2 785,320 785,681 396,73 388942,107 3992893,916 2,5 -2,5 1,95 PT174 PK3+550 Droite 7 Cercle 2 786,585 786,655 786,655<									,	,		
PT168 PK3+350 Droite 7 Pente 2 783,614 783,453 396,73 389066,976 3992899,427 2.5 -2.5 1,65 PT169 PK3+375 Droite 7 Pente 2 783,722 783,864 396,73 389042,009 3992896,145 2.5 -2.5 1,65 PT170 PK3+400 Droite 7 Cercle 2 784,868 786,73 389017,042 3992896,985 2.5 -2.5 1,66 PT171 PK3+425 Droite 7 Cercle 2 784,868 786,158 396,73 388967,107 3992894,299 2.5 -2.5 1,76 PT173 PK3+450 Droite 7 Cercle 2 785,828 786,139 396,73 388917,173 3992894,299 2.5 -2.5 1,95 PT174 PK3+550 Droite 7 Cercle 2 785,828 786,139 396,73 388917,173 3992894,299 2.5 -2.5 1,25 -2.5 2,12 PT175 PK3+550 Droite 7 Cercle 2 786,828								,		,		<i>'</i>
PT169 PK3+375 Droite 7 Pente 2 783,722 783,864 396,73 389042,009 3992898,145 2,5 -2,5 1,65 PT170 PK3+400 Droite 7 Cercle 2 784,867 784,710 396,73 38991,704 3992896,863 2,5 -2,5 1,69 PT171 PK3+425 Droite 7 Cercle 2 784,867 784,710 396,73 388992,074 3992894,299 2,5 -2,5 1,86 PT173 PK3+475 Droite 7 Cercle 2 785,828 785,165 396,73 388942,140 3992893,016 2,5 -2,5 1,95 PT174 PK3+500 Droite 7 Cercle 2 785,828 786,139 396,73 388942,140 3992893,016 2,5 -2,5 1,95 PT175 PK3+525 Droite 7 Cercle 2 786,585 786,659 396,73 388917,173 3992891,734 2,5 -2,5 2,04 PT175 PK3+525 Droite 7 Cercle 2 786,585 786,659 396,73 388892,206 3992890,452 2,5 -2,5 2,12 PT176 PK3+550 Droite 7 Cercle 2 787,487 787,201 396,73 388892,206 3992899,459 2,5 -2,5 2,12 PT177 PK3+575 Droite 7 Cercle 2 789,261 788,355 396,73 388892,333 3992889,488 2,5 -2,5 2,39 PT179 PK3+626 Droite 7 Cercle 2 789,261 788,350 396,73 388891,305 3992886,606 2,5 -2,5 2,39 PT180 PK3+650 Droite 7 Cercle 2 790,187 788,957 396,73 388917,305 3992886,606 2,5 -2,5 2,39 PT181 PK3+675 Droite 7 Cercle 2 791,150 789,587 396,73 388917,305 3992884,041 2,5 -2,5 2,56 PT181 PK3+750 Droite 7 Cercle 2 792,065 790,238 396,73 388917,373 3992881,477 2,5 -2,5 2,65 PT181 PK3+750 Droite 7 Cercle 2 793,593 791,606 396,73 388917,343 3992881,477 2,5 -2,5 2,65 PT182 PK3+700 Droite 7 Cercle 2 793,593 791,606 396,73 388917,343 3992881,477 2,5 -2,5 2,65 PT184 PK3+750 Droite 7 Pente 3 794,397 792,319 396,73 388617,563 3992878,913 2,5 -2,5 2,86 PT185 PK3+750 Droite 7 Pente 3 794,397 792,319 396,73 388617,563 3992878,913 2,5 -2,5 2,86 PT186 PK3+800 Droite 7 Pente 3 794								,				
PT170							,					
PT171									i			
PT172 PK3+450 Droite 7 Cercle 2 784,868 785,165 396,73 388967,107 3992894,299 2.5 -2.5 1,86 PT173 PK3+475 Droite 7 Cercle 2 785,320 785,641 396,73 388942,140 3992893,016 2,5 -2,5 1,95 PT175 PK3+525 Droite 7 Cercle 2 786,858 786,659 396,73 388942,206 3992891,734 2,5 -2,5 2,12 PT176 PK3+525 Droite 7 Cercle 2 786,858 786,659 396,73 388892,206 3992891,770 2,5 -2,5 -2,5 2,12 PT177 PK3+575 Droite 7 Cercle 2 787,487 787,201 396,73 388842,723 3992887,888 2,5 -2,5 2,21 PT178 PK3+600 Droite 7 Cercle 2 789,261 788,350 396,73 388814,7305 3992886,606 2,5 -2,5 2,39 PT179 PK3+625 Droite 7 Cercle 2 790,187 <td></td>												
PT173 PK3+475 Droite 7 Cercle 2 785,320 785,641 396,73 388942,140 3992893,016 2.5 -2.5 1,95 PT174 PK3+500 Droite 7 Cercle 2 785,828 786,139 396,73 388917,173 3992891,734 2.5 -2.5 2,04 PT175 PK3+525 Droite 7 Cercle 2 786,685 786,659 396,73 388892,206 3992899,482 2.5 -2.5 2,12 PT176 PK3+550 Droite 7 Cercle 2 787,487 787,201 396,73 388867,239 3992889,7888 2.5 -2.5 2,21 PT177 PK3+675 Droite 7 Cercle 2 788,335 787,764 396,73 388812,272 3992888,7888 2.5 -2.5 2,30 PT178 PK3+600 Droite 7 Cercle 2 799,187 788,957 396,73 38872,338 3992885,323 2.5 -2.5 2,23 PT180 PK3+650 Droite 7 Cercle 2 799,165 790,23<												
PT1774 PK3+500 Droite 7 Cercle 2 785,828 786,139 396,73 388917,173 3992891,734 2,5 -2,5 2,04 PT175 PK3+525 Droite 7 Cercle 2 786,585 786,659 396,73 388892,206 3992890,452 2,5 -2,5 2,12 PT176 PK3+550 Droite 7 Cercle 2 787,487 787,201 396,73 388867,239 3992887,888 2,5 -2,5 2,21 PT177 PK3+575 Droite 7 Cercle 2 788,335 787,764 396,73 388817,305 3992886,606 2,5 -2,5 2,30 PT178 PK3+600 Droite 7 Cercle 2 789,261 788,350 396,73 388873,338 3992886,606 2,5 -2,5 2,25 2,25 2,25 2,25 2,25 2,25 2,25 2,25 2,25 2,27 2,27 2,21 2,27 2,21 2,25 2,24 2,25 2,25 2,25 2,25 2,25 2,25 2,25												
PT175 PK3+525 Droite 7 Cercle 2 786,658 786,659 396,73 388892,206 3992890,452 2,5 -2,5 2,12 PT176 PK3+550 Droite 7 Cercle 2 787,487 787,201 396,73 388867,239 3992889,170 2,5 -2,5 2,21 PT177 PK3+575 Droite 7 Cercle 2 788,335 787,764 396,73 388842,272 3992886,606 2,5 -2,5 2,30 PT179 PK3+600 Droite 7 Cercle 2 790,187 788,957 396,73 388817,305 3992886,606 2,5 -2,5 2,5 <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					,	,						
PT176 PK3+550 Droite 7 Cercle 2 787,487 787,201 396,73 388867,239 3992889,170 2,5 -2,5 2,21 PT177 PK3+575 Droite 7 Cercle 2 788,335 787,764 396,73 388842,272 3992887,888 2,5 -2,5 2,30 PT178 PK3+600 Droite 7 Cercle 2 789,261 788,350 396,73 388817,305 3992886,606 2,5 -2,5 2,39 PT179 PK3+625 Droite 7 Cercle 2 791,150 789,587 396,73 388792,338 3992885,323 2,5 -2,5 2,6 <td></td>												
PT1777 PK3+575 Droite 7 Cercle 2 788,335 787,764 396,73 388842,272 3992887,888 2,5 -2,5 2,30 PT178 PK3+600 Droite 7 Cercle 2 789,261 788,350 396,73 388817,305 3992886,606 2,5 -2,5 2,39 PT179 PK3+625 Droite 7 Cercle 2 790,187 788,957 396,73 388792,338 3992885,323 2,5 -2,5 2,47 PT180 PK3+650 Droite 7 Cercle 2 791,150 789,587 396,73 388767,371 3992884,041 2,5 -2,5 2,5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>										,		
PT178 PK3+600 Droite 7 Cercle 2 789,261 788,350 396,73 388817,305 3992886,606 2,5 -2,5 2,39 PT179 PK3+625 Droite 7 Cercle 2 790,187 788,957 396,73 388792,338 3992885,323 2,5 -2,5 2,47 PT180 PK3+650 Droite 7 Cercle 2 791,150 789,587 396,73 388767,371 3992884,041 2,5 -2,5 2,56 PT181 PK3+675 Droite 7 Cercle 2 792,065 790,238 396,73 38871,403 3992881,477 2,5 -2,5 2,65 PT182 PK3+700 Droite 7 Cercle 2 792,908 790,911 396,73 388692,469 3992881,477 2,5 -2,5 2,5 -2,5 2,5 -2,5 2,6 2,5 -2,5 2,5 -2,5 2,5 -2,5 2,6 2,5 -2,5 2,5 -2,5 2,6 2,5 -2,5 2,6 2,5 -2,5 2,6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></t<>							•					
PT179 PK3+625 Droite 7 Cercle 2 790,187 788,957 396,73 388792,338 3992885,323 2,5 -2,5 2,47 PT180 PK3+650 Droite 7 Cercle 2 791,150 789,587 396,73 388767,371 3992884,041 2,5 -2,5 2,56 PT181 PK3+675 Droite 7 Cercle 2 792,065 790,238 396,73 388742,403 3992882,759 2,5 -2,5 2,56 PT182 PK3+700 Droite 7 Cercle 2 792,908 790,911 396,73 388692,469 3992881,477 2,5 -2,5 2,74 PT183 PK3+725 Droite 7 Cercle 2 793,593 791,606 396,73 388667,502 3992878,913 2,5 -2,5 2,25 2,25 2,5 -2,5 2,62 PT184 PK3+750 Droite 7 Pente 3 794,886 793,034 396,73 388667,502 3992877,630 2,5 -2,5 2,86 PT185 PK3+800 <td< td=""><td></td><td></td><td></td><td></td><td>,</td><td></td><td> ,</td><td></td><td></td><td></td><td></td><td></td></td<>					,		,					
PT180 PK3+650 Droite 7 Cercle 2 791,150 789,587 396,73 388767,371 3992884,041 2,5 -2,5 2,56 PT181 PK3+675 Droite 7 Cercle 2 792,065 790,238 396,73 388742,403 3992882,759 2,5 -2,5 2,65 PT182 PK3+700 Droite 7 Cercle 2 792,908 790,911 396,73 388717,436 3992881,477 2,5 -2,5 2,74 PT183 PK3+725 Droite 7 Cercle 2 793,593 791,606 396,73 388692,469 3992880,195 2,5 -2,5 2,82 PT184 PK3+750 Droite 7 Pente 3 794,397 792,319 396,73 388692,469 3992878,913 2,5 -2,5 2,86 PT186 PK3+775 Droite 7 Pente 3 794,886 793,034 396,73 388642,535 3992876,348 2,5 -2,5 2,86 PT187 PK3+825 Droite 7 Pente 3 795,617 793,749 <td></td>												
PT181 PK3+675 Droite 7 Cercle 2 792,065 790,238 396,73 388742,403 3992882,759 2,5 -2,5 2,65 PT182 PK3+700 Droite 7 Cercle 2 792,908 790,911 396,73 388717,436 3992881,477 2,5 -2,5 2,74 PT183 PK3+725 Droite 7 Pente 3 794,397 792,319 396,73 388692,469 3992880,195 2,5 -2,5 2,82 PT184 PK3+750 Droite 7 Pente 3 794,886 793,034 396,73 388642,535 3992876,348 2,5 -2,5 2,86 PT185 PK3+800 Droite 7 Pente 3 795,617 793,749 396,73 388617,568 3992876,348 2,5 -2,5 2,86 PT187 PK3+825 Droite 7 Pente 3 795,617 793,749 396,73 388592,601 3992875,066 2,5 -2,5 2,86 PT188 PK3+850 Droite 7 Pente 3 797,097 795,180					, -				,			
PT182 PK3+700 Droite 7 Cercle 2 792,908 790,911 396,73 388717,436 3992881,477 2,5 -2,5 2,74 PT183 PK3+725 Droite 7 Cercle 2 793,593 791,606 396,73 388692,469 3992878,913 2,5 -2,5 2,82 PT184 PK3+750 Droite 7 Pente 3 794,886 793,034 396,73 388667,502 3992878,913 2,5 -2,5 2,86 PT185 PK3+775 Droite 7 Pente 3 794,886 793,034 396,73 388617,568 3992876,348 2,5 -2,5 2,86 PT186 PK3+800 Droite 7 Pente 3 795,617 793,749 396,73 388617,568 3992876,348 2,5 -2,5 2,86 PT187 PK3+825 Droite 7 Pente 3 796,518 794,464 396,73 388592,601 3992875,066 2,5 -2,5 2,86 PT189 PK3+875 Droite 7 Pente 3 797,097 795,180												
PT183 PK3+725 Droite 7 Cercle 2 793,593 791,606 396,73 388692,469 3992880,195 2,5 -2,5 2,82 PT184 PK3+750 Droite 7 Pente 3 794,397 792,319 396,73 388667,502 3992878,913 2,5 -2,5 2,86 PT185 PK3+775 Droite 7 Pente 3 794,886 793,034 396,73 388642,535 3992877,630 2,5 -2,5 2,86 PT186 PK3+800 Droite 7 Pente 3 795,617 793,749 396,73 388592,601 3992875,348 2,5 -2,5 2,86 PT187 PK3+825 Droite 7 Pente 3 796,518 794,464 396,73 388592,601 3992875,066 2,5 -2,5 2,86 PT188 PK3+850 Droite 7 Pente 3 797,097 795,180 396,73 388592,601 3992872,506 2,5 -2,5 2,86 PT189 PK3+875 Droite 7 Pente 3 797,575 795,895												
PT184 PK3+750 Droite 7 Pente 3 794,397 792,319 396,73 388667,502 3992878,913 2,5 -2,5 2,86 PT185 PK3+775 Droite 7 Pente 3 794,886 793,034 396,73 388642,535 3992877,630 2,5 -2,5 2,86 PT186 PK3+800 Droite 7 Pente 3 795,617 793,749 396,73 388617,568 3992875,048 2,5 -2,5 2,86 PT187 PK3+825 Droite 7 Pente 3 796,518 794,464 396,73 388592,601 3992875,066 2,5 -2,5 2,86 PT188 PK3+825 Droite 7 Pente 3 797,097 795,180 396,73 388592,601 3992873,784 2,5 -2,5 2,86 PT189 PK3+875 Droite 7 Pente 3 797,575 795,895 396,73 388592,601 3992872,502 2,5 -2,5 2,86 PT190 PK3+900 Droite 7 Pente 3 798,136 796,610												
PT185 PK3+775 Droite 7 Pente 3 794,886 793,034 396,73 388642,535 3992877,630 2,5 -2,5 2,86 PT186 PK3+800 Droite 7 Pente 3 795,617 793,749 396,73 388617,568 3992876,348 2,5 -2,5 2,86 PT187 PK3+825 Droite 7 Pente 3 796,518 794,464 396,73 388592,601 3992875,066 2,5 -2,5 2,86 PT188 PK3+850 Droite 7 Pente 3 797,097 795,180 396,73 388592,601 3992873,784 2,5 -2,5 2,86 PT189 PK3+875 Droite 7 Pente 3 797,575 795,895 396,73 3885942,667 3992872,502 2,5 -2,5 2,86 PT190 PK3+900 Droite 7 Pente 3 798,136 796,610 396,73 388492,732 3992869,937 2,5 -2,5 2,86 PT191 PK3+925 Droite 7 Pente 3 798,946 797,813												
PT186 PK3+800 Droite 7 Pente 3 795,617 793,749 396,73 388617,568 3992876,348 2,5 -2,5 2,86 PT187 PK3+825 Droite 7 Pente 3 796,518 794,464 396,73 388592,601 3992875,066 2,5 -2,5 2,86 PT188 PK3+850 Droite 7 Pente 3 797,097 795,180 396,73 388567,634 3992872,502 2,5 -2,5 2,86 PT189 PK3+875 Droite 7 Pente 3 797,575 795,895 396,73 388542,667 3992872,502 2,5 -2,5 2,86 PT190 PK3+900 Droite 7 Pente 3 798,136 796,610 396,73 388517,700 3992871,219 2,5 -2,5 2,86 PT191 PK3+925 Droite 7 Pente 3 798,908 797,325 396,73 388492,732 3992869,037 2,5 -2,5 2,86 PT192 PK3+942 Clothoïde 13 Pente 3 799,468 797,813 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td>									,			
PT187 PK3+825 Droite 7 Pente 3 796,518 794,464 396,73 388592,601 3992875,066 2,5 -2,5 2,86 PT188 PK3+850 Droite 7 Pente 3 797,097 795,180 396,73 388567,634 3992873,784 2,5 -2,5 2,86 PT189 PK3+875 Droite 7 Pente 3 797,575 795,895 396,73 388542,667 3992872,502 2,5 -2,5 2,86 PT190 PK3+900 Droite 7 Pente 3 798,136 796,610 396,73 388517,700 3992871,219 2,5 -2,5 2,86 PT191 PK3+925 Droite 7 Pente 3 798,908 797,325 396,73 388492,732 3992869,937 2,5 -2,5 2,86 PT192 PK3+942 Clothoïde 13 Pente 3 799,468 797,813 396,73 388467,667 3992869,062 2,5 -2,5 2,86 PT193 PK3+950 Clothoïde 13 Pente 3 799,739 798,040												
PT188 PK3+850 Droite 7 Pente 3 797,097 795,180 396,73 388567,634 3992873,784 2,5 -2,5 2,86 PT189 PK3+875 Droite 7 Pente 3 797,575 795,895 396,73 388542,667 3992872,502 2,5 -2,5 2,86 PT190 PK3+900 Droite 7 Pente 3 798,136 796,610 396,73 388517,700 3992871,219 2,5 -2,5 2,86 PT191 PK3+925 Droite 7 Pente 3 798,908 797,325 396,73 388492,732 3992869,937 2,5 -2,5 2,86 PT192 PK3+942 Clothoïde 13 Pente 3 799,468 797,813 396,73 388475,679 3992869,062 2,5 -2,5 2,86 PT193 PK3+950 Clothoïde 13 Pente 3 799,739 798,040 396,77 388467,765 3992866,657 1,91 -2,5 2,86 PT194 PK3+975 Clothoïde 13 Pente 3 800,586 79							,					
PT189 PK3+875 Droite 7 Pente 3 797,575 795,895 396,73 388542,667 3992872,502 2,5 -2,5 2,86 PT190 PK3+900 Droite 7 Pente 3 798,136 796,610 396,73 388517,700 3992871,219 2,5 -2,5 2,86 PT191 PK3+925 Droite 7 Pente 3 798,908 797,325 396,73 388492,732 3992869,937 2,5 -2,5 2,86 PT192 PK3+942 Clothoïde 13 Pente 3 799,468 797,813 396,73 388475,679 3992869,062 2,5 -2,5 2,86 PT193 PK3+950 Clothoïde 13 Pente 3 799,739 798,040 396,77 388467,765 3992868,657 1,91 -2,5 2,86 PT194 PK3+975 Clothoïde 13 Pente 3 800,586 798,755 397,38 388442,793 3992867,484 0,04 -2,5 2,86 PT195 PK4+000 Clothoïde 13 Pente 3 801,420 <												
PT190 PK3+900 Droite 7 Pente 3 798,136 796,610 396,73 388517,700 3992871,219 2,5 -2,5 2,86 PT191 PK3+925 Droite 7 Pente 3 798,908 797,325 396,73 388492,732 3992869,937 2,5 -2,5 2,86 PT192 PK3+942 Clothoïde 13 Pente 3 799,468 797,813 396,73 388475,679 3992869,062 2,5 -2,5 2,86 PT193 PK3+950 Clothoïde 13 Pente 3 799,739 798,040 396,77 388467,765 3992868,657 1,91 -2,5 2,86 PT194 PK3+975 Clothoïde 13 Pente 3 800,586 798,755 397,38 388442,793 3992867,484 0,04 -2,5 2,86 PT195 PK4+000 Clothoïde 13 Pente 3 801,420 799,470 398,73 388417,806 3992866,695 -1,89 -2,5 2,86 PT196 PK4+009 Arc 7 Pente 3 801,707 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td>i</td><td></td><td></td><td></td></t<>						,			i			
PT191 PK3+925 Droite 7 Pente 3 798,908 797,325 396,73 388492,732 3992869,937 2,5 -2,5 2,86 PT192 PK3+942 Clothoïde 13 Pente 3 799,468 797,813 396,73 388475,679 3992869,062 2,5 -2,5 2,86 PT193 PK3+950 Clothoïde 13 Pente 3 799,739 798,040 396,77 388467,765 3992868,657 1,91 -2,5 2,86 PT194 PK3+975 Clothoïde 13 Pente 3 800,586 798,755 397,38 388442,793 3992867,484 0,04 -2,5 2,86 PT195 PK4+000 Clothoïde 13 Pente 3 801,420 799,470 398,73 388417,806 3992866,695 -1,89 -2,5 2,86 PT196 PK4+009 Arc 7 Pente 3 801,707 799,730 399,40 388408,731 3992866,560 -2,5 -2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5					i e							
PT192 PK3+942 Clothoïde 13 Pente 3 799,468 797,813 396,73 388475,679 3992869,062 2,5 -2,5 2,86 PT193 PK3+950 Clothoïde 13 Pente 3 799,739 798,040 396,77 388467,765 3992868,657 1,91 -2,5 2,86 PT194 PK3+975 Clothoïde 13 Pente 3 800,586 798,755 397,38 388442,793 3992867,484 0,04 -2,5 2,86 PT195 PK4+000 Clothoïde 13 Pente 3 801,420 799,470 398,73 388417,806 3992866,695 -1,89 -2,5 2,86 PT196 PK4+009 Arc 7 Pente 3 801,707 799,730 399,40 388408,731 3992866,560 -2,5 -2,5 2,86 PT197 PK4+025 Arc 7 Pente 3 802,226 800,185 0,67 388392,807 3992866,568 -2,5 -2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>·</td><td></td><td></td><td></td><td></td></t<>						-		·				
PT193 PK3+950 Clothoïde 13 Pente 3 799,739 798,040 396,77 388467,765 3992868,657 1,91 -2,5 2,86 PT194 PK3+975 Clothoïde 13 Pente 3 800,586 798,755 397,38 388442,793 3992867,484 0,04 -2,5 2,86 PT195 PK4+000 Clothoïde 13 Pente 3 801,420 799,470 398,73 388417,806 3992866,695 -1,89 -2,5 2,86 PT196 PK4+009 Arc 7 Pente 3 801,707 799,730 399,40 388408,731 3992866,560 -2,5 -2,5 2,86 PT197 PK4+025 Arc 7 Pente 3 802,226 800,185 0,67 388392,807 3992866,568 -2,5 -2,5 2,5 2,86 PT198 PK4+050 Arc 7 Pente 3 803,514 800,900 2,66 388367,817 3992867,220 -2,5 -2,5 -2,5 2,5 2,5 2,5 2,5 2,86												
PT194 PK3+975 Clothoïde 13 Pente 3 800,586 798,755 397,38 388442,793 3992867,484 0,04 -2,5 2,86 PT195 PK4+000 Clothoïde 13 Pente 3 801,420 799,470 398,73 388417,806 3992866,695 -1,89 -2,5 2,86 PT196 PK4+009 Arc 7 Pente 3 801,707 799,730 399,40 388408,731 3992866,560 -2,5 -2,5 2,86 PT197 PK4+025 Arc 7 Pente 3 802,226 800,185 0,67 388392,807 3992866,568 -2,5 -2,5 2,86 PT198 PK4+050 Arc 7 Pente 3 803,514 800,900 2,66 388367,817 3992867,220 -2,5 -2,5 -2,5 2,86												
PT195 PK4+000 Clothoïde 13 Pente 3 801,420 799,470 398,73 388417,806 3992866,695 -1,89 -2,5 2,86 PT196 PK4+009 Arc 7 Pente 3 801,707 799,730 399,40 388408,731 3992866,560 -2,5 -2,5 2,86 PT197 PK4+025 Arc 7 Pente 3 802,226 800,185 0,67 388392,807 3992866,568 -2,5 -2,5 2,86 PT198 PK4+050 Arc 7 Pente 3 803,514 800,900 2,66 388367,817 3992867,220 -2,5 -2,5 -2,5 2,86												
PT196 PK4+009 Arc 7 Pente 3 801,707 799,730 399,40 388408,731 3992866,560 -2,5 -2,5 2,86 PT197 PK4+025 Arc 7 Pente 3 802,226 800,185 0,67 388392,807 3992866,568 -2,5 -2,5 -2,5 2,86 PT198 PK4+050 Arc 7 Pente 3 803,514 800,900 2,66 388367,817 3992867,220 -2,5 -2,5 2,86									i			
PT197 PK4+025 Arc 7 Pente 3 802,226 800,185 0,67 388392,807 3992866,568 -2,5 -2,5 2,86 PT198 PK4+050 Arc 7 Pente 3 803,514 800,900 2,66 388367,817 3992867,220 -2,5 -2,5 2,86												
PT198 PK4+050 Arc 7 Pente 3 803,514 800,900 2,66 388367,817 3992867,220 -2,5 -2,5 2,86					,		•					
									i			

PT200	PK4+092	Arc 7	Pente 3	805,042	802,106	6,01	388325,768	3992870,087	-2,5	-2,5	2,86
PT201	PK4+100	Arc 7	Pente 3	805,203	802,331	6,63	388317,958	3992870,865	-2,5	-2,5	2,86
PT202	PK4+125	Arc 7	Pente 3	805,570	803,046	8,62	388293,138	3992873,854	-2,5	-2,5	2,86
PT203		Arc 7	Pente 3	805.779	803,761	10,61	388268,424	3992877,617	-2,5	-2,5	2,86
PT204		Arc 7	Cercle 3	805,474	804,471	12,60	388243,839	3992877,017	-2,5	-2,5	2,81
PT205		Arc 7	Cercle 3	805,475	804,477	12,62	388243,617	3992882,195	-2,5	-2,5	2,81
PT206	PK4+200			804,927	,	14,23	388219,398	3992887,403	-0,65	-2,5	2,76
		Clothoïde 14	Cercle 3	,	805,168	,		,			
PT207		Clothoïde 14	Cercle 3	806,163	805,852	15,11	388195,065	3992893,136	1,21	-2,5	2,71
PT208	PK4+242	Clothoïde 14	Cercle 3	806,302	806,316	15,29	388178,329	3992897,218	2,5	-2,5	2,68
PT209	PK4+250	Droite 8	Cercle 3	806,408	806,524	15,29	388170,778	3992899,067	2,5	-2,5	2,66
PT210		Droite 8	Cercle 3	807,037	807,183	15,29	388146,496	3992905,012	2,5	-2,5	2,61
PT211	PK4+300	Droite 8	Cercle 3	807,896	807,829	15,29	388122,213	3992910,958	2,5	-2,5	2,56
PT212		Droite 8	Cercle 3	808,795	808,462	15,29	388097,930	3992916,904	2,5	-2,5	2,51
PT213		Droite 8	Cercle 3	809,400	809,083	15,29	388073,648	3992922,850	2,5	-2,5	2,46
PT214		Droite 8	Cercle 3	809,813	809,691	15,29	388049,365	3992928,795	2,5	-2,5	2,41
PT215		Droite 8	Cercle 3	809,843	810,287	15,29	388025,082	3992934,741	2,5	-2,5	2,36
PT216		Droite 8	Cercle 3	811,401	810,869	15,29	388000,800	3992940,687	2,5	-2,5	2,31
PT217	PK4+450	Droite 8	Cercle 3	811,551	811,439	15,29	387976,517	3992946,632	2,5	-2,5	2,25
PT218	PK4+475	Droite 8	Cercle 3	812,456	811,997	15,29	387952,234	3992952,578	2,5	-2,5	2,20
PT219		Clothoïde 15	Cercle 3	813,169	812,541	15,29	387927,972	3992958,519	2,5	-2,5	2,15
PT220	PK4+500	Clothoïde 15	Cercle 3	813,170	812,541	15,29	387927,952	3992958,524	2,5	-2,5	2,15
PT221	PK4+525	Clothoïde 15	Pente 4	813,612	813,074	14,79	387903,654	3992964,406	2,5	-0,55	2,12
PT222	PK4+550	Clothoïde 15	Pente 4	814,451	813,603	13,31	387879,268	3992969,910	2,5	1,4	2,12
PT223	PK4+567	Arc 8	Pente 4	814,684	813,963	11,73	387862,618	3992973,237	2,72	2,72	2,12
PT224	PK4+575	Arc 8	Pente 4	814,866	814,133	10,88	387854,723	3992974,655	2,72	2,72	2,12
PT225	PK4+583	Arc 8	Pente 4	815,059	814,302	10,03	387846,818	3992975,965	2,72	2,72	2,12
PT226	PK4+599	Arc 8	Pente 4	815,363	814,642	8,33	387830,951	3992978,269	2,72	2,72	2,12
PT227	PK4+600	Clothoïde 16	Pente 4	815,378	814,662	8,23	387830,006	3992978,393	2,72	2,72	2,12
PT228	PK4+625	Clothoïde 16	Pente 4	815,994	815,192	6,11	387805,162	3992981,170	2,5	0,70	2,12
PT229	PK4+650	Clothoïde 16	Pente 4	816,622	815,721	4,98	387780,254	3992983,312	2,5	-1,25	2,12
PT230	PK4+659	Clothoïde 16	Pente 4	816,875	815,919	4,81	387770,945	3992984,028	2,5	-1,98	2,12
PT231	PK4+667	Clothoïde 17	Pente 4	817,076	816,089	4,78	387762,931	3992984,631	2,5	-2,5	2,12
PT232	PK4+675	Clothoïde 17	Pente 4	817,243	816,251	4,83	387755,326	3992985,205	1,82	-2,5	2,12
PT233	PK4+700	Clothoïde 17	Pente 4	817,829	816,780	5,84	387730,411	3992987,257	-0,4	-2,5	2,12
PT234	PK4+725	Clothoïde 17	Pente 4	818,542	817,310	8,08	387705,557	3992989,943	-2,62	-2,62	2,12
PT235	PK4+734	Arc 9	Pente 4	818,848	817,508	9,24	387696,270	3992991,213	-3,45	-3,45	2,12
PT236	PK4+746	Arc 9	Pente 4	819,159	817,748	10,75	387685,101	3992992,982	-3,45	-3,45	2,12
PT237	PK4+750	Clothoïde 18	Pente 4	819,275	817,839	11,31	387680,848	3992993,726	-3,07	-3,07	2,12
PT238	PK4+775	Clothoïde 18	Pente 4	819,888	818,369	13,81	387656,342	3992998,666	-0,85	-2,5	2,12
PT239	PK4+800	Clothoïde 18	Pente 4	820,297	818,898	15,06	387631,992	3993004,326	1,37	-2,5	2,12
PT240	PK4+813	Clothoïde 18	Pente 4	820,510	819,167	15,22	387619,668	3993007,319	2,5	-2,5	2,12
PT241	PK4+825	Droite 10	Pente 4	820,756	819,428	15,22	387607,700	3993010,236	2,5	-2,5	2,12
PT242	PK4+850	Droite 10	Pente 4	821,254	819,957	15,22	387583,412	3993016,157	2,5	-2,5	2,12
PT243	PK4+875	Droite 10	Pente 4	821,682	820,487	15,22	387559,123	3993022,077	2,5	-2,5	2,12
PT244	PK4+900	Droite 10	Pente 4	822,109	821,016	15,22	387534,834	3993027,998	2,5	-2,5	2,12
PT245	PK4+925	Droite 10	Pente 4	822,537	821,546	15,22	387510,545	3993033,919	2,5	-2,5	2,12
PT246	PK4+950	Droite 10	Pente 4	822,928	822,075	15,22	387486,256	3993039,839	2,5	-2,5	2,12
PT247	PK4+975	Droite 10	Pente 4	823,063	822,605	15,22	387461,968	3993045,760	2,5	-2,5	2,12
PT248	PK5+000	Droite 10	Pente 4	823,405	823,134	15,22	387437,679	3993051,681	2,5	-2,5	2,12
PT249	PK5+025	Droite 10	Pente 4	823,834	823,664	15,22	387413,390	3993057,602	2,5	-2,5	2,12
PT250	PK5+040	Droite 10	Pente 4	823,979	823,979	15,22	387398,902	3993061,133	2,5	-2,5	2,12

Cubatures Déblai Remblai :

Cubatures Déblai Remblai (Gulden)

Num.	Abscisse	Longueur	Surfaces		Volumes I	Partiels	Volumes Cumulés		
			Déblai	Remblai	Déblai	Remblai	Déblai	Remblai	
PT01	PK0+000	12,500	6,86	0,25	85,8	3,2	85,8	3,2	
PT02	PK0+025	25,000	10,31	0,21	257,7	5,1	343,4	8,3	
PT03	PK0+050	25,000	17,12	0.04	428,1	1,0	771,5	9,3	
PT04	PK0+075	25,000	17,89	0,04	447,2	1,0	1218,7	10,3	
PT05	PK0+100	25,000	25,01	0,04	625,3	0,9	1844,0	11,2	
PT06	PK0+125	25,000	34,64	0,04	866,0	0,9	2710,0	12,1	
PT07	PK0+150	25,000	33,56	0,04	839,1	0,9	3549,1	13,0	
PT08	PK0+175	25,000	33,77	0,04	844,4	0,9	4393,4	13,8	
PT09	PK0+200	25.000	30,86	0,04	771,6	0,9	5165,0	14,7	
PT10	PK0+225	12,848	24,69	0.04	317,3	0,5	5482.3	15,2	
PT11	PK0+226	12,500	24,57	0,04	307,1	0,5	5789,4	15,6	
PT12	PK0+250	24,652	20,18	0,04	497,2	1,0	6286,6	16,6	
PT13	PK0+275	21,348	19,82	0,04	422,9	0,9	6709,4	17,5	
PT14	PK0+293	12.500	21,27	0,04	265,6	0,5	6975,0	18,0	
PT15	PK0+300	16,152	21,32	0.04	343,7	0,7	7318,7	18,7	
PT16	PK0+325	15,796	29,89	0,04	469,5	0,7	7788,2	19,4	
PT17	PK0+332	12,500	32,04	0,04	398,0	0,7	8186,2	19,9	
PT18	PK0+350	19,447	30,83	0.04	595,9	0,8	8782,1	20,7	
PT19	PK0+370	12,500	24,49	0,04	304,9	0,5	9087,0	21,2	
PT20	PK0+375	14,757	21,34	0,04	313,8	0,6	9400.8	21,8	
PT21	PK0+400	25,000	7,95	0,56	198,7	13,8	9599,5	35.6	
PT22	PK0+425	18,743	7,60	0.04	142,4	0,7	9741,9	36,4	
PT23	PK0+437	12,500	9,71	0,04	121,4	1,8	9863,3	38,2	
PT24	PK0+450	18,757	8,23	0,15	154,5	1,1	10017,8	39,3	
PT25	PK0+475	25,000	10,42	2,75	260,6	68,9	10017,0	108,2	
PT26	PK0+500	25,000	17,58	0,08	439,4	2,1	10270,4	110,3	
PT27	PK0+525	25,000	18,87	0,04	471,6	1,1	11189,4	111,4	
PT28	PK0+550	25,000	12,52	0,04	313,0	4,5	11502,4	115,9	
PT29	PK0+575	25,000	8,91	0,10	222,6	22,6	11725,1	138,4	
PT30	PK0+600	25,000	2,92	3,25	73,1	81,3	11723,1	219,7	
PT31	PK0+625	18,750	2,46	2,67	46,2	50,0	11844,3	269,7	
PT32	PK0+638	12,500	0,71	4,18	8,9	52,3	11853,3	322,0	
PT33	PK0+650	18,750	0,73	7,37	13,7	138,2	11866,9	460,2	
PT34	PK0+675	25,000	0,66	13,40	16,5	335,0	11883,4	795,3	
PT35	PK0+700	25,000	0,61	18,85	15,4	471,3	11898,8	1266,6	
PT36	PK0+725	25,000	0,67	23,46	16,8	586,5	11915,6	1853,0	
PT37	PK0+750	25,000	0,67	24,84	11,7	620,9	11913,0	2473,9	
PT38	PK0+750	25,000	0,47	27,34	15,7	683,4	11927,3	3157,3	
PT39	PK0+773	14,920	0,00	32,34	0,0	482,6	11943,1	3639,9	
PT40	PK0+805	12,500	0,64	29,46	8,0	368,3	11943,1	4008,2	
PT41	PK0+805	22,580	0,62	34,77	13,9	785,2	11965,0	4793,4	
PT42	PK0+850	23,420	0,62	52,90	15,9	1240,6	11980,0	6034,1	
PT43	PK0+650 PK0+872	25,000	0,84	41,94	20,9	1048,2	12001,1	7082,3	
			· · · · · · · · · · · · · · · · · · ·					•	
PT44	PK0+900	18,370	0,75	39,47	13,9	725,0	12015,0	7807,3	

PT45	PK0+909	12,500	0,74	40,32	9,4	503,5	12024,4	8310,8
PT46	PK0+925	18,370	1,17	34,31	22,0	622,2	12046,4	8933,0
PT47	PK0+945	12,500	7,48	21,98	95,3	272,2	12141,7	9205,2
PT48	PK0+950	14.841	8,22	21,20	123,9	312,1	12265,7	9517,3
PT49	PK0+975	25,000	11,10	16,37	280,3	406,9	12545,9	9924,2
PT50	PK1+000	18,659	14,90	12,23	279,1	227,6	12825,0	10151,8
PT51	PK1+012	12,500	15,10	10,82	188,8	135,2	13013,9	10287,0
PT52	PK1+025	18,841	11,74	9,65	221,1	181,7	13235,0	10468,7
PT53	PK1+050	25.000	16,41	8,23	410,2	205,7	13645,2	10674,4
PT54	PK1+075	25,000	5,77	8,90	144,4	222,5	13789,6	10896,9
PT55	PK1+100	25,000	0,00	16,55	0,0	413,8	13789,6	11310,7
PT56	PK1+125	12,570	0,00	22,65	0,0	284,7	13789,6	11595,4
PT57	PK1+125	12,500	0,00	22,69	0,0	283,6	13789,6	11879,0
PT58	PK1+150	24,930	0,00	22,25	0,0	553,8	13789,6	12432,8
PT59	PK1+175	18,813	3,20	1,99	60,2	37,8	13849,7	12470,6
PT60	PK1+188	12,500	11,32	0,97	139,7	12,5	13989,4	12483,1
PT61	PK1+200	18,687	18,57	0,25	341,7	4,8	14331,1	12487,9
PT62	PK1+225	14,972	35,33	0,04	521,6	0,6	14852,7	12488,5
PT63	PK1+230	12,500	38,83	0,04	478,5	0,5	15331,3	12489,1
PT64	PK1+250	21,159	47,52	0,04	991,8	0,9	16323,1	12490,0
PT65	PK1+272	12,500	42,06	0,04	520,6	0,5	16843,7	12490,5
PT66	PK1+275	13,869	40,52	0,04	557,7	0,6	17401,3	12491,1
PT67	PK1+300	25,000	24,17	0,04	602,8	1,0	18004,2	12492,1
PT68	PK1+325	17,373	25,65	0,04	444,8	0,7	18448,9	12492,7
PT69	PK1+335	12,500	23,37	0,04	292,1	0,5	18741,0	12493,2
PT70	PK1+350	20,127	16,89	0,07	339,9	1,5	19081,0	12494,7
PT71	PK1+375	18,396	2,19	2,29	40,2	42,0	19121,2	12536,7
PT72	PK1+387	12,500	0,00	8,10	0,0	101,3	19121,2	12638,0
PT73	PK1+400	19,104	0,00	20,82	0,0	397,7	19121,2	13035,7
PT74	PK1+425	25,000	0,00	23,66	0,0	591,5	19121,2	13627,2
PT75	PK1+450	25,000	0,00	28,71	0,0	717,8	19121,2	14345,0
PT76	PK1+475	25,000	0,00	19,92	0,0	497,9	19121,2	14842,9
PT77	PK1+500	25,000	0,00	19,39	0,0	484,7	19121,2	15327,6
PT78	PK1+525	25,000	0,00	19,30	0,0	482,4	19121,2	15810,0
PT79	PK1+550	25,000	0,00	20,08	0,0	502,0	19121,2	16311,9
PT80	PK1+575	25,000	0,00	19,50	0,0	487,4	19121,2	16799,4
PT81	PK1+600	25,000	0,00	18,49	0,0	462,3	19121,2	17261,7
PT82	PK1+625	25,000	0,00	19,95	0,0	498,7	19121,2	17760,4
PT83	PK1+650	25,000	0,00	15,55	0,0	388,8	19121,2	18149,2
PT84	PK1+675	25,000	0,00	20,07	0,0	501,7	19121,2	18650,9
PT85	PK1+700	25,000	0,00	28,02	0,0	700,4	19121,2	19351,3
PT86	PK1+725	18,750	0,00	28,77	0,0	539,4	19121,2	19890,7
PT87	PK1+738	12,500	0,00	34,98	0,0	437,3	19121,2	20328,0
PT88	PK1+750	12,500	0,00	40,32	0,0	504,1	19121,2	20832,1
PT89	PK1+763	12,500	0,00	40,73	0,0	509,1	19121,2	21341,1
PT90	PK1+775	14,870	0,04	25,48	0,6	378,9	19121,8	21720,0
PT91	PK1+792	12,500	5,59	17,01	69,9	212,7	19191,7	21932,7
PT92	PK1+800	16,380	7,04	13,33	115,1	219,0	19306,8	22151,7
PT93	PK1+825	25,000	16,39	3,41	407,6	86,1	19714,4	22237,8
PT94	PK1+850	17,120	27,35	0,04	466,1	0,7	20180,5	22238,5
PT95	PK1+859	12,500	33,66	0,04	419,5	0,5	20600,0	22239,1
PT96	PK1+875	15,867	46,24	0,04	733,5	0,6	21333,5	22239,7

PT97	PK1+891	12,500	50,06	0.04	626,9	0,5	21960,3	22240,1
PT98	PK1+900	15,867	50,54	0,04	804,4	0,6	22764,7	22240,7
PT99	PK1+923	18,736	43,70	0,04	823,4	0,7	23588,1	22241,4
PT100	PK1+937	13,645	36,44	0,04	500,3	0,5	24088,3	22242,0
PT101	PK1+950	18,764	27,64	0,87	521,3	16,2	24609,7	22258,1
PT102	PK1+975	19,855	11,91	11,51	237,4	227,5	24847,1	22485,6
PT103	PK1+990	12,500	10,12	15,04	126,5	187,9	24973,6	22673,5
PT104	PK2+000	17,645	5,52	10,51	97,4	185,5	25071,0	22858,9
PT105	PK2+025	25,000	10,05	0,58	251,3	14,6	25322,4	22873,5
PT106	PK2+050	25,000	14,76	0,03	368,9	0,9	25691,2	22874,3
PT107	PK2+075	25,000	15,80	0,03	395,0	0,9	26086,3	22875,2
PT108	PK2+100	25,000	17,91	0,03	447,8	1,0	26534,1	22876,2
PT109	PK2+125	25,000	11,47	0,04	286,8	6,1	26820,9	22882,3
PT110	PK2+150	25,000	7,37	1,46	184,3	36,5	27005,2	22918,8
PT111	PK2+175	25,000	6,12	1,41	153,0	35,2	27158,3	22954,0
PT112	PK2+200	25,000	5,68	3,30	141,9	82,5	27300.2	23036,5
PT113	PK2+225	13,127	5,78	2,82	75,9	37,0	27376,1	23073,5
PT114	PK2+226		5,79	2,82	72,4	36,4		23110,0
PT115	PK2+250	12,500 24,373	6,80	4,51	165,1	110,2	27448,5 27613,6	23220,2
PT116	PK2+275	21,627	5,00	4,07	103,1	88,7	27721,1	23220,2
	PK2+273		-		94,8		27721,1	· · · · · · · · · · · · · · · · · · ·
PT117		12,500	7,64	2,30	ĺ í	29,1		23338,0
PT118	PK2+300	15,873	8,26	1,70	130,3	27,3	27946,2	23365,3
PT119	PK2+325	25,000	12,10	0,15	301,7	3,7	28247,9	23369,0
PT120	PK2+350	25,000	16,44	0,04	409,9	0,9	28657,8	23369,9
PT121	PK2+375	14,431	18,26	0,04	262,4	0,5	28920,2	23370,5
PT122	PK2+379	12,500	18,30	0,04	227,8	0,5	29147,9	23370,9
PT123 PT124	PK2+400	23,069	20,60	0,74	472,7	17,4	29620,6	23388,3
PT124	PK2+425 PK2+450	25,000 19,736	16,68 11,07	1,83	413,9 217,0	46,4 102,9	30034,5 30251,5	23434,7 23537,6
	PK2+450 PK2+464	·		5,14		·		•
PT126 PT127		12,500 17,764	10,02 8,27	5,91 6,36	124,2	74,8 114,2	30375,7 30521,6	23612,5 23726,7
	PK2+475		-		145,9			
PT128 PT129	PK2+500	25,000	5,99	6,69	149,1	168,3	30670,6	23895,0
PT130	PK2+525	15,736	4,65 4,51	5,59 5,22	73,1	88,2 65,2	30743,7	23983,2 24048,4
PT130	PK2+531 PK2+550	12,500 21,764	4,57	4,14	56,3 99,4	90,1	30800,1 30899,5	24048,4
PT132	PK2+575	25,000	5,65	2,78	141,3	69,6	31040,7	24208,2
PT133	PK2+600	25,000	6,45	2,76	161,3	61,5	31202,0	24269,7
PT134	PK2+625	25,000		2,81	158,5	70,2	31360,6	24339,9
PT134	PK2+625 PK2+650	25,000	6,34 6,15	3,05	150,5	76,2	31514,3	24339,9 24416,1
PT135	PK2+650 PK2+675	25,000	5,06	6,60	126,6	165,0	31640,9	24416,1
PT130	PK2+700	25,000	5,84	7,98	146,0	199,6	31786,9	24361,0
PT137	PK2+700	25,000	6,25	7,98	156,3	198,5	31760,9	24979,1
PT139	PK2+750	25,000	7,09	2,77	177,2	69,2	32120,4	25048,3
PT140	PK2+775	13,879	7,52	6,67	104,4	92,6	32120,4	25140,9
PT141	PK2+778	12,500	7,37	8,58	92,3	107,0	32317,1	25247,9
PT141	PK2+776	23,621	8,45	9,50	201,1	221,6	32517,1	25469,6
PT142	PK2+825	18,254	8,90	9,68	164,8	172,5	32683,0	25469,6
PT143	PK2+837	12,500	9,71	7,28	123,8	88,3	32806,8	25730,4
PT144 PT145			•		123,8			
-	PK2+850	19,139	10,18	3,68		68,4	33006,2 33157.5	25798,8
PT146 PT147	PK2+875 PK2+875	12,500 12,608	11,85 11,86	2,38 2,37	151,3 152,7	28,9 29,1	33157,5	25827,7 25856,8
			-				33310,3	
PT148	PK2+900	19,031	16,36	2,01	317,1	37,2	33627,4	25894,0

PT149	PK2+913	12.500	18,65	0.08	237,3	1,0	33864,7	25895,0
PT150	PK2+925	18,469	23,28	0,04	434,6	0,7	34299.3	25895,6
PT151	PK2+950	23,406	31,62	0,04	743,0	0,8	35042,2	25896,5
PT152	PK2+972	25,000	35,63	0,04	891,0	0,9	35933.2	25897,4
PT153	PK3+000	26,594	31.24	0,04	830,8	1,1	36764,0	25898,4
PT154	PK3+025	25,000	22,32	0,04	558,1	1,0	37322,1	25899,4
PT155	PK3+050	25,000	32,28	0,04	807,0	1,0	38129,1	25900,4
PT156	PK3+075	25,000	37,18	0,04	929,5	1,0	39058,7	25901,4
PT157	PK3+100	25,000	32,98	0,04	824,6	1,0	39883,3	25902,4
PT158	PK3+125	25,000	28,21	0,04	705,3	1,0	40588,6	25903,4
PT159	PK3+150	25,000	24,78	0,04	619,4	1,0	41208,0	25904,4
PT160	PK3+175	25,000	23,40	0,04	585,1	1,0	41793,1	25905,4
PT161	PK3+200	25,000	22,20	0,04	555,1	1,0	42348,2	25906,4
PT162	PK3+225	25,000	21,08	0,04	527,0	1,0	42875,2	25907,4
PT163	PK3+250	25,000	18,33	0,04	458,2	1,0	43333,5	25908.4
PT164	PK3+275	25,000	16,30	0,04	407,5	1,0	43740,9	25909,4
PT165	PK3+300	25,000	21,05	0,04	526,3	1,0	44267,3	25910,4
PT166	PK3+300		25,64	0,04	480,7	0,8		25910,4
PT167	PK3+325	18,750 12,500	23,29	0,04	291,2	0,8	44748,0 45039,2	25911,6
PT168	PK3+350	18,750	15,43	0,04	289,3	0,8	45039,2 45328,5	25912,4
		,	•	,			,	
PT169	PK3+375	25,000	6,85	0,04	171,1	1,0	45499,7	25913,4
PT170	PK3+400	25,000	1,27	10,10	31,8	252,4	45531,5	26165,8
PT171	PK3+425	25,000	7,88	0,04	197,0	1,0	45728,5	26166,8
PT172	PK3+450	25,000	1,92	0,12	48,1	2,9	45776,6	26169,7
PT173	PK3+475	25,000 25,000	2,96	3,33	73,9	83,2	45850,4	26252,9
PT174	PK3+500		5,61	2,23	140,4	55,7	45990,8	26308,6
PT175 PT176	PK3+525	25,000 25,000	10,01 16,51	0,78	250,3 412,7	19,5 0,9	46241,1	26328,1 26329,0
PT177	PK3+550 PK3+575	25,000	24,15	0,04	603,7		46653,8 47257,5	26330,0
		·		•		1,0	48074.2	
PT178 PT179	PK3+600 PK3+625	25,000 25,000	32,67 41,76	0,04	816,7 1043,9	1,0	,	26331,0 26331,9
PT180			•		İ	1,0	49118,1	
	PK3+650 PK3+675	25,000 25.000	51,83	0,04	1295,8	1,0	50413,9	26332,9
PT181		-,	60,09	0,04	1502,2	1,0	51916,1	26333,9
PT182 PT183	PK3+700 PK3+725	25,000 25,000	63,95 63,09	0,03	1598,9	0,8	53514,9 55092,2	26334,7 26335,9
PT184				•	1577,3	1,1	,	
PT185	PK3+750 PK3+775	25,000 25,000	64,66 50,75	0,04	1616,4 1268,7	1,0	56708,6 57977,3	26336,9 26337,9
						1,1	59467,3	
PT186	PK3+800 PK3+825	25,000	59,60	0,04	1490,0	1,0	· ·	26338,9 26339,9
PT187		25,000	65,69	0,04	1642,2	1,0	61109,5	26340,9
PT188	PK3+850	25,000	59,71	0,04	1492,8	1,0	62602,3	
PT189	PK3+875	25,000	55,17	0,04	1379,4	1,0	63981,6	26341,9
PT190	PK3+900	25,000	51,10	0,04	1277,4	1,0	65259,0	26342,9
PT191	PK3+925	21,038	51,97	0,04	1093,2	0,8	66352,2	26343,7
PT192	PK3+942	12,500	53,64	0,04	670,5	0,5	67022,7	26344,2
PT193	PK3+950	16,462	55,16	0,04	908,0	0,7	67930,7	26344,9
PT194	PK3+975	25,000	60,11	0,04	1502,3	1,0	69433,0	26345,9
PT195	PK4+000	17,038	61,75	0,04	1051,4	0,7	70484,4	26346,5
PT196	PK4+009	12,500	62,22	0,04	777,3	0,5	71261,7	26347,1
PT197	PK4+025	20,462	66,30	0,04	1355,4	0,8	72617,1	26347,9
PT198	PK4+050	25,000	77,01	0,04	1924,3	1,0	74541,4	26348,9
PT199	PK4+075	21,076	90,34	0,04	1904,4	0,8	76445,8	26349,7
PT200	PK4+092	12,500	93,77	0,04	1172,5	0,5	77618,3	26350,1

PT201	PK4+100	16,424	92,99	0.04	1527,5	0,6	79145,8	26350,7
PT202	PK4+125	25,000	78,54	0,04	1961,9	1,0	81107,8	26351.7
PT203	PK4+150	25,000	58,60	0,04	1462,9	1,0	82570,7	26352,7
PT204	PK4+175	12,613	38,03	0,04	478,5	0,5	83049,1	26353,2
PT205	PK4+175	12,500	37,88	0,04	470,3	0,5	83521,5	26353,7
PT205	PK4+173	24,887	14,68	1,93	363,2	48,4	83884,7	26402,1
PT207								•
	PK4+225	21,113	14,90	0,73	314,0	15,5	84198,7	26417,6
PT208	PK4+242	12,500	11,79	2,37	147,4	29,7	84346,1	26447,3
PT209	PK4+250	16,387	9,90	3,40	162,2	55,7	84508,2	26503,0
PT210	PK4+275	25,000	8,91	3,45	222,7	86,3	84730,9	26589,2
PT211	PK4+300	25,000	10,61	2,40	265,1	60,0	84996,1	26649,2
PT212	PK4+325	25,000	13,51	0,20	337,7	5,1	85333,8	26654,3
PT213	PK4+350	25,000	14,31	0,12	357,8	3,0	85691,6	26657,3
PT214	PK4+375	25,000	10,78	2,95	269,4	73,7	85961,0	26731,0
PT215	PK4+400	25,000	14,11	0,21	352,8	5,4	86313,8	26736,4
PT216	PK4+425	25,000	23,80	0,04	595,0	1,0	86908,8	26737,4
PT217	PK4+450	25,000	13,42	0,04	335,5	1,0	87244,4	26738,5
PT218	PK4+475	24,989	15,61	0,46	390,0	11,5	87634,4	26750,0
PT219	PK4+500	12,500	20,00	0,25	250,0	3,1	87884,5	26753,1
PT220	PK4+500	12,511	20,00	0,25	250,4	3,1	88134,9	26756,2
PT221	PK4+525	25,000	20,27	0,97	508,5	24,0	88643,4	26780,2
PT222	PK4+550	20,989	26,74	0,03	562,8	0,7	89206,2	26780,9
PT223	PK4+567	12,500	27,76	0,04	347,7	0,5	89553,9	26781,4
PT224	PK4+575	8,017	28,83	0,04	231,6	0,3	89785,5	26781,7
PT225	PK4+583	12,024	27,92	0,04	336,1	0,4	90121,6	26782,2
PT226	PK4+599	8,493	26,26	0,04	223,3	0,3	90344,9	26782,5
PT227	PK4+600	12,976	26,22	0,04	340,7	0,5	90685,6	26783,0
PT228	PK4+625	25,000	30,04	0,04	751,5	1,0	91437,1	26784,0
PT229	PK4+650	17,168	32,24	0,03	553,5	0,6	91990,6	26784,6
PT230	PK4+659	8,687	32,27	0,04	280,3	0,4	92271,0	26785,0
PT231	PK4+667	7,832	37,45	0,00	293,3	0,0	92564,3	26785,0
PT232	PK4+675	16,313	34,85	0,00	568,0	0,0	93132,3	26785,0
PT233	PK4+700	25,000	39,46	0,00	985,1	0,0	94117,4	26785,0
PT234	PK4+725	17,187	46,89	0,00	802,9	0,0	94920,3	26785,0
PT235	PK4+734	10,341	49,42	0,00	508,6	0,0	95428,9	26785,0
PT236	PK4+746	7,813	49,44	0,00	384,6	0,0	95813,4	26785,0
PT237	PK4+750	14,659	49,21	0,00	718,7	0,0	96532,2	26785,0
PT238	PK4+775	25,000	49,91	0,00	1246,3	0,0	97778,5	26785,0
PT239	PK4+800	18,841	46,72	0,00	879,9	0,0	98658,4	26785,0
PT240	PK4+813	12,500	44,31	0,00	553,8	0,0	99212,3	26785,0
PT241	PK4+825	18,659	42,56	0,00	794,0	0,0	100006,3	26785,0
PT242	PK4+850	25,000	39,81	0,00	995,2	0,0	101001,5	26785,0
PT243	PK4+875	25,000	37,31	0,00	932,7	0,0	101934,2	26785,0
PT244	PK4+900	25,000	34,64	0,00	865,9	0,0	102800,1	26785,0
PT245	PK4+925	25,000	32,52	0,00	813,1	0,0	103613,2	26785,0
PT246	PK4+950	25,000	28,79	0,00	719,8	0,0	104333,0	26785,0
				•			·	•
								•
			·	•				•
PT247 PT248 PT249 PT250	PK4+975 PK5+000 PK5+025 PK5+040	25,000 25,000 19,956 7,456	24,35 19,70 12,71 8,26	0,00 0,00 0,00 0,00	608,8 492,5 253,6 61,6	0,0 0,0 0,0 0,0	104941,8 105434,3 105687,9 105749,5	26785,0 26785,0 26785,0 26785,0

Cubatures Décapage:

Cubatures Décapage (Gulden)

Num.	Abscisse	Lg Ap.	Déca	page	Surface	Volu	ımes	Surfaces en plan	
	, 1,500,000	_g , .p.	Gauche	Droite	En	Partiels	Cumulés	Partielles	Cumulées
			0	2.0.10	Coupe		0 411141100		G 44555
PT01	0+000.000	12.500	0.200	0.200	5.07	63.4	63.4	316.78	316.78
PT02	0+025.000	25.000	0.200	0.200	5.17	129.2	192.6	646.09	962.87
PT03	0+050.000	25.000	0.200	0.200	5.32	132.9	325.5	664.63	1627.50
PT04	0+075.000	25.000	0.200	0.200	5.40	134.9	460.4	674.42	2301.91
PT05	0+100.000	25.000	0.200	0.200	5.39	134.8	595.2	674.14	2976.06
PT06	0+125.000	25.000	0.200	0.200	5.47	136.7	732.0	683.71	3659.77
PT07	0+150.000	25.000	0.200	0.200	5.54	138.4	870.3	691.95	4351.71
PT08	0+175.000	25.000	0.200	0.200	5.58	139.4	1009.8	697.11	5048.82
PT09	0+200.000	25.000	0.200	0.200	5.52	138.1	1147.8	690.26	5739.08
PT10	0+225.000	12.848	0.200	0.200	5.41	69.6	1217.4	347.75	6086.83
PT11	0+225.697	12.500	0.200	0.200	5.41	67.6	1285.0	337.97	6424.80
PT12	0+250.000	24.652	0.200	0.200	5.33	131.4	1416.4	657.17	7081.97
PT13	0+275.000	21.348	0.200	0.200	5.39	115.0	1531.4	575.02	7656.99
PT14	0+292.697	12.500	0.200	0.200	5.46	68.2	1599.6	340.96	7997.94
PT15	0+300.000	16.152	0.200	0.200	5.49	88.6	1688.2	442.97	8440.91
PT16	0+325.000	15.796	0.200	0.200	5.72	90.1	1778.3	450.62	8891.53
PT17	0+331.591	12.500	0.200	0.200	5.74	71.7	1850.0	358.35	9249.89
PT18	0+350.000	19.447	0.200	0.200	5.68	110.2	1960.2	551.13	9801.02
PT19	0+370.485	12.500	0.200	0.200	5.52	68.9	2029.1	344.54	10145.56
PT20	0+375.000	14.757	0.200	0.200	5.45	80.4	2109.5	401.83	10547.38
PT21	0+400.000	25.000	0.200	0.200	5.21	130.2	2239.7	651.11	11198.49
PT22	0+425.000	18.743	0.200	0.200	5.11	95.9	2335.5	479.25	11677.74
PT23	0+437.485	12.500	0.200	0.200	5.09	63.6	2399.2	318.11	11995.85
PT24	0+450.000	18.757	0.200	0.200	5.16	96.7	2495.9	483.53	12479.38
PT25	0+475.000	25.000	0.200	0.200	5.33	133.2	2629.1	666.08	13145.46
PT26	0+500.000	25.000	0.200	0.200	5.62	140.5	2769.6	702.72	13848.18
PT27	0+525.000	25.000	0.200	0.200	5.37	134.3	2904.0	671.57	14519.75
PT28	0+550.000	25.000	0.200	0.200	5.43	135.8	3039.8	679.15	15198.90
PT29	0+575.000	25.000	0.200	0.200	5.34	133.6	3173.4	668.11	15867.01
PT30	0+600.000	25.000	0.200	0.200	5.22	130.5	3303.9	652.49	16519.51
PT31	0+625.000	18.750	0.200	0.200	5.42	101.6	3405.5	508.12	17027.63
PT32	0+637.500	12.500	0.200	0.200	5.37	67.1	3472.7	335.62	17363.25
PT33	0+650.000	18.750	0.200	0.200	5.59	104.8	3577.4	523.75	17887.00
PT34	0+675.000	25.000	0.200	0.200	5.74	143.6	3721.0	717.98	18604.98
PT35	0+700.000	25.000	0.200	0.200	5.90	147.5	3868.5	737.51	19342.48
PT36	0+725.000	25.000	0.200	0.200	6.03	150.9	4019.4	754.29	20096.78
PT37	0+750.000	25.000	0.200	0.200	6.07	151.8	4171.2	759.07	20855.85
PT38	0+775.000	25.000	0.200	0.200	6.09	152.2	4323.3	760.80	21616.64
PT39	0+800.000	14.920	0.200	0.200	5.63	84.0	4407.3	419.90	22036.54
PT40	0+804.841	12.500	0.200	0.200	5.94	74.3	4481.6	371.41	22407.96
PT41	0+825.000	22.580	0.200	0.200	6.08	137.3	4618.9	686.66	23094.62
PT42	0+850.000	23.420	0.200	0.200	6.24	146.3	4765.2	731.50	23826.12
PT43	0+871.841	25.000	0.200	0.200	6.45	160.9	4926.1	804.59	24630.70
PT44	0+900.000	18.370	0.200	0.200	6.20	113.8	5040.0	569.07	25199.77
PT45	0+908.580	12.500	0.200	0.200	6.19	77.3	5117.3	386.54	25586.31
PT46	0+925.000	18.370	0.200	0.200	6.68	122.2	5239.4	610.78	26197.08
PT47	0+945.319	12.500	0.200	0.200	6.16	77.0	5316.4	385.10	26582.18
PT48	0+950.000	14.841	0.200	0.200	6.21	92.1	5408.5	460.52	27042.70
PT49	0+975.000	25.000	0.200	0.200	6.20	155.2	5563.7	775.76	27818.46
PT50	0+1000.000	18.659	0.200	0.200	6.17	115.2	5678.9	575.96	28394.42

Num.	Abscisse	Lg Ap.	Ap. Décapage Surface Vo		Volur	umes Surfaces en plan			
ivuiii.	Absolsse	Lg Ap.	Gauche	Droite	En Coupe	Partiels	Cumulés	Partielles	Cumulées
PT51	1+012.319	12.500	0.200	0.200	6.08	75.9	5754.8	379.72	28774.14
PT52	1+025.000	18.841	0.200	0.200	5.69	107.3	5862.1	536.46	29310.60
PT53	1+050.000	25.000	0.200	0.200	5.75	143.7	6005.9	718.71	30029.31
PT54	1+075.000	25.000	0.200	0.200	5.92	148.1	6153.9	740.38	30769.69
PT55	1+100.000	25.000	0.200	0.200	5.61	140.2	6294.1	700.95	31470.64
PT56	1+125.000	12.570	0.200	0.200	5.71	71.8	6365.9	358.90	31829.54
PT57	1+125.140	12.500	0.200	0.200	5.71	71.4	6437.3	356.97	32186.51
PT58	1+150.000	24.930	0.200	0.200	5.61	139.9	6577.2	699.26	32885.77
PT59	1+175.000	18.813	0.200	0.200	5.29	99.5	6676.6	497.27	33383.04
PT60	1+187.625	12.500	0.200	0.200	5.39	67.3	6743.9	336.57	33719.61
PT61	1+200.000	18.687	0.200	0.200	5.49	102.4	6846.3	511.84	34231.45
PT62	1+225.000	14.972	0.200	0.200	5.94	88.6	6934.9	443.13	34674.58
PT63	1+229.943	12.500	0.200	0.200	6.01	74.8	7009.8	374.22	35048.81
PT64	1+250.000	21.159	0.200	0.200	6.13	129.2	7138.9	645.85	35694.66
PT65	1+272.261	12.500	0.200	0.200	5.87	73.2	7212.1	365.94	36060.60
PT66	1+275.000	13.869	0.200	0.200	5.83	80.7	7292.8	403.42	36464.02
PT67	1+300.000	25.000	0.200	0.200	5.55	138.5	7431.3	692.64	37156.66
PT68	1+325.000	17.373	0.200	0.200	5.60	97.2	7528.6	486.13	37642.79
PT69	1+334.747	12.500	0.200	0.200	5.51	68.9	7597.4	344.36	37987.15
PT70	1+350.000	20.127	0.200	0.200	5.41	108.8	7706.3	544.20	38531.35
PT71	1+375.000	18.396	0.200	0.200	5.29	97.3	7803.5	486.29	39017.64
PT72	1+386.791	12.500	0.200	0.200	5.24	65.5	7869.0	327.52	39345.16
PT73	1+400.000	19.104	0.200	0.200	5.62	107.5	7976.5	537.31	39882.47
PT74	1+425.000	25.000	0.200	0.200	5.70	142.4	8118.9	712.01	40594.48
PT75	1+450.000	25.000	0.200	0.200	5.69	142.4	8261.3	711.78	41306.26
PT76	1+475.000	25.000	0.200	0.200	5.64	141.0	8402.3	705.02	42011.29
PT77	1+500.000	25.000	0.200	0.200	5.62	140.6	8542.9	702.97	42714.26
PT78	1+525.000	25.000	0.200	0.200	5.59	139.8	8682.6	698.99	43413.25
PT79	1+550.000	25.000	0.200	0.200	5.53	138.2	8820.8	690.79	44104.04
PT80	1+575.000	25.000	0.200	0.200	5.50	137.4	8958.2	687.20	44791.24
PT81	1+600.000	25.000	0.200	0.200	5.43	135.8	9094.1	679.13	45470.37
PT82	1+625.000	25.000	0.200	0.200	5.52	138.0	9232.0	689.85	46160.22
PT83	1+650.000	25.000	0.200	0.200	5.47	136.7	9368.8	683.61	46843.83
PT84	1+675.000	25.000	0.200	0.200	5.62	140.4	9509.2	702.02	47545.86
PT85	1+700.000	25.000	0.200	0.200	5.97	149.3	9658.4	746.28	48292.14
PT86	1+725.000	18.750	0.200	0.200	6.12	114.8	9773.2	574.00	48866.14
PT87	1+737.500	12.500	0.200	0.200	6.16	77.0	9850.2	384.76	49250.90
PT88	1+750.000	12.500 12.500	0.200	0.200	6.47	80.9	9931.1	404.62	49655.52
PT89	1+762.500	14.870	0.200	0.200	6.00	75.0	10006.1	375.21	50030.72 50454.77
PT90 PT91	1+775.000	12.500	0.200	0.200	5.70 5.53	84.8 69.2	10091.0	424.05	
PT92	1+792.241 1+800.000	16.380	0.200 0.200	0.200 0.200	5.50	90.1	10160.1 10250.2	345.78 450.64	50800.56 51251.20
PT93	1+825.000	25.000	0.200	0.200	5.36	133.9	10230.2	669.39	51920.59
PT94	1+850.000	17.120	0.200	0.200	5.51	94.2	10478.3	471.06	52391.65
PT95	1+859.241	12.500	0.200	0.200	5.63	70.3	10548.7	351.63	52743.29
PT96	1+875.000	15.867	0.200	0.200	5.79	91.9	10640.5	459.38	53202.67
PT97	1+890.975	12.500	0.200	0.200	5.81	72.6	10713.2	363.13	53565.80
PT98	1+900.000	15.867	0.200	0.200	5.81	92.3	10805.5	461.71	54027.51
PT99	1+922.709	18.736	0.200	0.200	5.73	107.5	10913.0	537.35	54564.86
PT100	1+937.472	13.645	0.200	0.200	5.63	77.0	10990.0	384.97	54949.83
PT101	1+950.000	18.764	0.200	0.200	5.47	102.8	11092.7	513.81	55463.64
PT102	1+975.000	19.855	0.200	0.200	5.50	109.2	11201.9	545.75	56009.39
PT103	1+989.709	12.500	0.200	0.200	5.38	67.3	11269.2	336.43	56345.82
PT104	2+000.000	17.645	0.200	0.200	5.32	93.9	11363.1	469.67	56815.50
PT105	2+025.000	25.000	0.200	0.200	5.23	130.8	11493.9	654.17	57469.67
PT106	2+050.000	25.000	0.200	0.200	5.39	134.8	11628.8	674.14	58143.80
PT107	2+075.000	25.000	0.200	0.200	5.45	136.2	11765.0	681.22	58825.03
PT108	2+100.000	25.000	0.200	0.200	5.52	137.9	11902.9	689.49	59514.52
PT109	2+125.000	25.000	0.200	0.200	5.44	135.9	12038.8	679.54	60194.05
PT110	2+150.000	25.000	0.200	0.200	5.28	132.1	12170.9	660.62	60854.67
PT111	2+175.000	25.000	0.200	0.200	5.30	132.4	12303.3	661.89	61516.56

Num.	Num. Abscisse		Décapa	age	Surface	Volur	nes	Surface	es en plan
		Lg Ap.	Gauche	Droite	En Coupe	Partiels	Cumulés	Partielles	Cumulées
PT112	2+200.000	25.000	0.200	0.200	5.20	130.0	12433.4	650.20	62166.76
PT113	2+225.000	13.127	0.200	0.200	5.21	68.3	12501.7	341.69	62508.45
PT114	2+226.254	12.500	0.200	0.200	5.21	65.1	12566.8	325.50	62833.95
PT115	2+250.000	24.373	0.200	0.200	5.25	128.0	12694.8	640.00	63473.95
PT116	2+275.000	21.627	0.200	0.200	5.24	113.3	12808.0	566.27	64040.23
PT117	2+293.254	12.500	0.200	0.200	5.15	64.4	12872.4	321.95	64362.17
PT118	2+300.000	15.873	0.200	0.200	5.17	82.0	12954.5	410.20	64772.37
PT119	2+325.000	25.000	0.200	0.200	5.32	132.8	13087.3	664.20	65436.58
PT120	2+350.000	25.000	0.200	0.200	5.64	140.8	13228.1	704.13	66140.71
PT121	2+375.000	14.431	0.200	0.200	5.57	80.3	13308.4	401.32	66542.02
PT122	2+378.863	12.500	0.200	0.200	5.56	69.4	13377.8	346.92	66888.94
PT123	2+400.000	23.069	0.200	0.200	5.67	130.7	13508.5	653.38	67542.33
PT124	2+425.000	25.000	0.200	0.200	5.61	140.2	13648.6	700.84	68243.17
PT125	2+450.000	19.736	0.200	0.200	5.50	108.5	13757.2	542.73	68785.90
PT126	2+464.472	12.500	0.200	0.200	5.39	67.4	13824.6	337.09	69122.98
PT127	2+475.000	17.764	0.200	0.200	5.39	95.8	13920.4	478.81	69601.79
PT128	2+500.000	25.000	0.200	0.200	5.40	135.1	14055.5	675.53	70277.33
PT129	2+525.000	15.736	0.200	0.200	5.34	84.0	14139.4	419.91	70697.23
PT130	2+531.472	12.500	0.200	0.200	5.31	66.4	14205.9	332.16	71029.39
PT131	2+550.000	21.764	0.200	0.200	5.31	115.5	14321.3	577.32	71606.71
PT132	2+575.000	25.000	0.200	0.200	5.16	129.0	14450.3	644.94	72251.66
PT133	2+600.000	25.000	0.200	0.200	5.14	128.4	14578.7	641.88	72893.54
PT134	2+625.000	25.000	0.200	0.200	5.16	129.1	14707.8	645.38	73538.92
PT135	2+650.000	25.000	0.200	0.200	5.17	129.1	14836.9	645.73	74184.65
PT136	2+675.000	25.000	0.200	0.200	5.32	132.9	14969.9	664.66	74849.31
PT137	2+700.000	25.000	0.200	0.200	5.33	133.3	15103.2	666.73	75516.04
PT138	2+725.000	25.000	0.200	0.200	5.36	134.1	15237.3	670.59	76186.63
PT139	2+750.000	25.000	0.200	0.200	5.26	131.5	15368.8	657.28	76843.91
PT140	2+775.000	13.879	0.200	0.200	5.44	75.5	15444.3	377.48	77221.39
PT141	2+777.758	12.500	0.200	0.200	5.42	67.8	15512.1	338.99	77560.39
PT142	2+800.000	23.621	0.200	0.200	5.54	130.9	15643.0	654.38	78214.77
PT143	2+825.000	18.254	0.200	0.200	5.48	99.9	15742.9	499.56	78714.33
PT144	2+836.507	12.500	0.200	0.200	5.39	67.4	15810.2	336.82	79051.15
PT145	2+850.000	19.139	0.200	0.200	5.28	101.2	15911.5	506.12	79557.27
PT146	2+874.785	12.500	0.200	0.200	5.29	66.2	15977.7	331.20	79888.47
PT147	2+875.000	12.608	0.200	0.200	5.29	66.8	16044.5	334.04	80222.51
PT148	2+900.000	19.031	0.200	0.200	5.33	101.7	16146.3	508.75	80731.26
PT149	2+913.063	12.500	0.200	0.200	5.38	67.3	16213.6	336.57	81067.83
PT150	2+925.000	18.469	0.200	0.200	5.46	101.0	16314.6	505.20	81573.03
PT151	2+950.000	23.406	0.200	0.200	5.53	129.6	16444.2	647.94	82220.96
PT152	2+971.812	25.000	0.200	0.200	5.62	140.4	16584.6	702.10	82923.06
PT153	2+1000.00	26.594	0.200	0.200	5.61	149.3	16733.9	746.26	83669.32
PT154	3+025.000	25.000	0.200	0.200	5.58	139.5	16873.3	697.36	84366.67
PT155	3+050.000	25.000	0.200	0.200	5.67	141.7	17015.0	708.28	85074.95
PT156	3+075.000	25.000	0.200	0.200	5.70	142.4	17157.4	711.98	85786.93
PT157	3+100.000	25.000	0.200	0.200	5.65	141.1	17298.5	705.74	86492.67
PT158	3+125.000	25.000	0.200	0.200	5.58	139.6	17438.1	697.99	87190.66
PT159	3+150.000	25.000	0.200	0.200	5.55	138.6	17576.8	693.24	87883.90
PT160	3+175.000	25.000	0.200	0.200	5.52	138.0	17714.8	690.17	88574.07
PT161	3+200.000	25.000	0.200	0.200	5.51	137.8	17852.6	688.87	89262.94
PT162	3+225.000	25.000	0.200	0.200	5.51	137.8	17990.4	689.03	89951.97
PT163	3+250.000	25.000	0.200	0.200	5.48	137.0	18127.3	684.75	90636.72
PT164	3+275.000	25.000	0.200	0.200	5.45	136.3	18263.7	681.54	91318.26
PT165	3+300.000	25.000	0.200	0.200	5.53	138.1	18401.8	690.69	92008.95
PT166	3+325.000	18.750	0.200	0.200	5.64	105.7	18507.5	528.35	92537.30
PT167	3+337.500	12.500	0.200	0.200	5.61	70.1	18577.6	350.72	92888.02
PT168	3+350.000	18.750	0.200	0.200	5.52	103.5	18681.2	517.74	93405.75
PT169	3+375.000	25.000	0.200	0.200	5.37	134.3	18815.4	671.49	94077.24
PT170	3+400.000	25.000	0.200	0.200	5.25	131.2	18946.7	656.14	94733.38
PT171	3+425.000	25.000	0.200	0.200	5.35	133.8	19080.5	669.05	95402.42
PT172	3+450.000	25.000	0.200	0.200	5.28	131.9	19212.4	659.46	96061.88

Num.	Abscisse	Lg Ap.	Décapa	age	Surface	Volu	ımes	Surfac	es en plan
			Gauche	Droite	En Coupe	Partiels	Cumulés	Partielles	Cumulées
PT173	3+475.000	25.000	0.200	0.200	5.31	132.9	19345.2	664.26	96726.14
PT174	3+500.000	25.000	0.200	0.200	5.32	133.0	19478.2	664.83	97390.97
PT175	3+525.000	25.000	0.200	0.200	5.33	133.1	19611.3	665.64	98056.60
PT176	3+550.000	25.000	0.200	0.200	5.42	135.4	19746.7	676.93	98733.53
PT177	3+575.000	25.000	0.200	0.200	5.52	137.9	19884.6	689.59	99423.12
PT178	3+600.000	25.000	0.200	0.200	5.61	140.2	20024.8	700.97	100124.10
PT179	3+625.000	25.000	0.200	0.200	5.73	143.3	20168.1	716.52	100840.62
PT180	3+650.000	25.000	0.200	0.200	5.86	146.4	20314.5	732.13	101572.75
PT181	3+675.000	25.000	0.200	0.200	6.03	150.8	20465.3	753.87	102326.62
PT182	3+700.000	25.000	0.200	0.200	5.93	148.4	20613.7	741.82	103068.44
PT183	3+725.000	25.000	0.200	0.200	5.96	148.9	20762.6	744.73	103813.17
PT184	3+750.000	25.000	0.200	0.200	5.97	149.3	20911.9	746.33	104559.50
PT185	3+775.000	25.000	0.200 0.200	0.200	5.79	144.8	21056.7 21205.8	724.15	105283.65
PT186 PT187	3+800.000 3+825.000	25.000 25.000	0.200	0.200	5.96 6.06	149.1 151.6	21205.6	745.33 757.81	106028.98 106786.79
PT188	3+850.000	25.000	0.200	0.200	6.02	150.6	21508.0	753.10	107539.90
PT189	3+875.000	25.000	0.200	0.200	5.92	148.1	21656.1	740.48	108280.38
PT190	3+900.000	25.000	0.200	0.200	5.86	146.1	21802.5	732.36	109200.36
PT191	3+925.000	21.038	0.200	0.200	5.88	123.7	21926.3	618.72	109631.46
PT192	3+942.076	12.500	0.200	0.200	5.89	73.6	21920.3	368.00	109999.46
PT193	3+950.000	16.462	0.200	0.200	5.90	97.2	22097.1	485.83	110485.29
PT194	3+975.000	25.000	0.200	0.200	5.95	148.8	22245.8	743.77	111229.06
PT195	4+000.000	17.038	0.200	0.200	6.04	102.9	22348.7	514.65	111743.71
PT196	4+009.076	12.500	0.200	0.200	6.03	75.4	22424.1	376.93	112120.64
PT197	4+025.000	20.462	0.200	0.200	6.13	125.4	22549.5	627.04	112747.68
PT198	4+050.000	25.000	0.200	0.200	6.32	158.0	22707.5	789.97	113537.65
PT199	4+075.000	21.076	0.200	0.200	6.50	136.9	22844.5	684.72	114222.37
PT200	4+092.151	12.500	0.200	0.200	6.58	82.3	22926.7	411.28	114633.65
PT201	4+100.000	16.424	0.200	0.200	6.57	107.9	23034.6	539.37	115173.02
PT202	4+125.000	25.000	0.200	0.200	6.44	160.9	23195.5	804.27	115977.28
PT203	4+150.000	25.000	0.200	0.200	6.01	150.2	23345.7	751.20	116728.49
PT204	4+175.000	12.613	0.200	0.200	5.62	70.9	23416.6	354.29	117082.78
PT205	4+175.227	12.500	0.200	0.200	5.62	70.2	23486.7	350.95	117433.72
PT206	4+200.000	24.887	0.200	0.200	5.37	133.5	23620.2	667.41	118101.13
PT207	4+225.000	21.113	0.200	0.200	5.30	111.8	23732.0	558.95	118660.08
PT208	4+242.227	12.500	0.200	0.200	5.35	66.8	23798.9	334.21	118994.29
PT209 PT210	4+250.000 4+275.000	16.387 25.000	0.200 0.200	0.200	5.32 5.26	87.1	23886.0	435.63	119429.92
PT210	4+275.000	25.000	0.200	0.200	5.20	131.6 132.5	24017.5 24150.0	657.83 662.31	120087.75 120750.05
PT211	4+300.000	25.000	0.200	0.200	5.39	134.8	24130.0	674.18	121424.23
PT212	4+350.000	25.000	0.200	0.200	5.46	134.6	24421.3	682.36	121424.23
PT213	4+375.000	25.000	0.200	0.200	5.36	134.1	24555.4	670.53	122777.11
PT214	4+400.000	25.000	0.200	0.200	5.52	134.1	24693.4	689.89	123467.00
PT216	4+425.000	25.000	0.200	0.200	5.57	139.3	24832.7	696.41	124163.41
PT217	4+450.000	25.000	0.200	0.200	5.47	136.8	24969.5	683.84	124847.25
PT218	4+475.000	24.989	0.200	0.200	5.43	135.6	25105.1	678.12	125525.38
PT219	4+499.979	12.500	0.200	0.200	5.46	68.2	25173.3	341.17	125866.55
PT220	4+500.000	12.511	0.200	0.200	5.46	68.3	25241.6	341.49	126208.04
PT221	4+525.000	25.000	0.200	0.200	5.42	135.6	25377.2	678.02	126886.06
PT222	4+550.000	20.989	0.200	0.200	5.48	115.0	25492.2	575.03	127461.09
PT223	4+566.979	12.500	0.200	0.200	5.59	69.9	25562.1	349.59	127810.68
PT224	4+575.000	8.017	0.200	0.200	5.63	45.1	25607.3	225.75	128036.43
PT225	4+583.013	12.024	0.200	0.200	5.48	65.9	25673.2	329.48	128365.91
PT226	4+599.048	8.493	0.200	0.200	5.60	47.6	25720.8	238.09	128604.00
PT227	4+600.000	12.976	0.200	0.200	5.61	72.8	25793.6	363.86	128967.86
PT228	4+625.000	25.000	0.200	0.200	5.68	142.1	25935.7	710.46	129678.32
PT229	4+650.000	17.168	0.200	0.200	5.61	96.3	26032.0	481.69	130160.01
PT230	4+659.337	8.687	0.200	0.200	5.54	48.1	26080.1	240.70	130400.71
PT231	4+667.373	7.832	0.200	0.200	5.53	43.3	26123.4	216.50	130617.21
PT232	4+675.000	16.313	0.200	0.200	5.52	90.1	26213.5	450.34	131067.54
PT233	4+700.000	25.000	0.200	0.200	5.57	139.1	26352.6	695.38	131762.92

Num.	Abscisse	Lg Ap.	Décapage		Surface	Volu	imes	Surfac	es en plan
			Gauche	Droite	En Coupe	Partiels	Cumulés	Partielles	Cumulées
PT234	4+725.000	17.187	0.200	0.200	5.79	99.3	26451.9	496.67	132259.60
PT235	4+734.373	10.341	0.200	0.200	5.82	60.1	26512.0	300.35	132559.95
PT236	4+745.682	7.813	0.200	0.200	5.86	45.7	26557.7	228.63	132788.58
PT237	4+750.000	14.659	0.200	0.200	5.87	85.8	26643.6	429.22	133217.80
PT238	4+775.000	25.000	0.200	0.200	5.83	145.6	26789.2	727.99	133945.79
PT239	4+800.000	18.841	0.200	0.200	5.77	108.8	26897.9	543.83	134489.62
PT240	4+812.682	12.500	0.200	0.200	5.73	71.6	26969.5	357.96	134847.59
PT241	4+825.000	18.659	0.200	0.200	5.70	106.3	27075.8	531.39	135378.98
PT242	4+850.000	25.000	0.200	0.200	5.65	141.3	27217.1	706.39	136085.36
PT243	4+875.000	25.000	0.200	0.200	5.62	140.6	27357.7	702.94	136788.30
PT244	4+900.000	25.000	0.200	0.200	5.56	138.9	27496.6	694.49	137482.79
PT245	4+925.000	25.000	0.200	0.200	5.50	137.6	27634.1	687.79	138170.58
PT246	4+950.000	25.000	0.200	0.200	5.47	136.9	27771.0	684.35	138854.93
PT247	4+975.000	25.000	0.200	0.200	5.44	135.9	27906.9	679.68	139534.61
PT248	4+1000.000	25.000	0.200	0.200	5.36	134.1	28041.0	670.57	140205.18
PT249	5+025.000	19.956	0.200	0.200	5.28	105.4	28146.4	526.79	140731.97
PT250	5+039.913	7.456	0.200	0.200	5.24	39.1	28185.5	195.34	140927.31

Cubatures Matériaux:

Cubatures Matériaux : Utilisation (Gulden)

Couche de Fondation en grave concassée GNT 0.315

Num.	Abscisse	Lg Ap.	Ga	iuche	Droi	te	Total
			Surface partielle	Volume partiel	Surface partielle	Volume partiel	Volume cumulé
PT01	0,000	12,500	1,01	12,6	1,01	12,6	25,2
PT02	25,000	25,000	1,01	25,2	1,01	25,2	75,5
PT03	50,000	25,000	1,01	25,2	1,01	25,2	125,8
PT04	75,000	25,000	1,01	25,2	1,01	25,2	176,1
PT05	100,000	25,000	1,01	25,2	1,01	25,2	226,5
PT06	125,000	25,000	1,01	25,2	1,01	25,2	276,8
PT07	150,000	25,000	1,01	25,2	1,01	25,2	327,1
PT08	175,000	25,000	1,01	25,2	1,01	25,2	377,4
PT09	200,000	25,000	1,01	25,2	1,01	25,2	427,8
PT10	225,000	12,848	1,01	12,9	1,01	12,9	453,6
PT11	225,697	12,500	1,01	12,6	1,01	12,6	478,8
PT12	250,000	24,652	1,01	24,9	1,01	24,7	528,4
PT13	275,000	21,348	1,01	21,6	1,01	21,3	571,4
PT14	292,697	12,500	1,01	12,7	1,01	12,5	596,5
PT15	300,000	16,152	1,01	16,4	1,01	16,1	629,0
PT16	325,000	15,796	1,01	16,0	1,01	15,7	660,8
PT17	331,591	12,500	1,01	12,7	1,01	12,5	686,0
PT18	350,000	19,447	1,01	19,8	1,01	19,4	725,1
PT19	370,485	12,500	1,01	12,7	1,01	12,5	750,3
PT20	375,000	14,757	1,01	15,0	1,01	14,7	780,0
PT21	400,000	25,000	1,01	25,3	1,01	25,0	830,3
PT22	425,000	18,743	1,01	18,9	1,01	18,8	868,0
PT23	437,485	12,500	1,01	12,6	1,01	12,6	893,2
PT24	450,000	18,757	1,01	18,9	1,01	18,9	931,0
PT25	475,000	25,000	1,01	25,2	1,01	25,2	981,3

PT26	500,000	25,000	1,01	25,2	1,01	25,2	1031,6
PT27	525,000	25,000	1,01	25,2	1,01	25,2	1081,9
PT28	550,000	25,000	1,23	30,7	1,01	25,2	1137,8
PT29	575,000	25,000	1,23	30,7	1,01	25,2	1193,7
PT30	600,000	25,000	1,01	25,2	1,01	25,2	1244,0
PT31	625,000	18,750	1,01	18,9	1,01	18,9	1281,7
PT32	637,500	12,500	1,01	12,6	1,01	12,6	1306,9
PT33	650,000	18,750	1,01	18,9	1,01	18,9	1344,6
PT34	675,000	25,000	1,01	25,2	1,01	25,2	1395,0
PT35	700,000	25,000	1,01	25,2	1,01	25,2	1445,3
PT36	725,000	25,000	1,01	25,2	1,01	25,2	1495,6
PT37	750,000	25,000	1,01	25,2	1,01	25,2	1545,9
PT38	775,000	25,000	1,01	25,2	1,01	25,2	1596,2
PT39	800,000	14,920	1,23	18,3	1,23	18,3	1632,9
PT40	804,841	12,500	1,01	12,6	1,01	12,6	1658,1
PT41	825,000	22,580	1,01	22,6	1,01	22,8	1703,5
PT42	850,000	23,420	1,01	23,3	1,01	23,8	1750,6
PT43	871,841	25,000	1,01	24,8	1,01	25,5	1801,0
PT44	900,000	18,370	1,01	18,2	1,01	18,8	1837,9
PT45	908,580	12,500	1,01	12,4	1,01	12,8	1863,1
PT46	925,000	18,370	1,05	19,0	1,23	22,9	1905,0
PT47	945,319	12,500	1,01	12,4	1,23	15,6	1932,9
PT48	950,000	14,841	1,01	14,7	1,23	18,4	1966,1
PT49	975,000	25,000	1,01	24,9	1,23	31,0	2022,0
PT50	1000,000	18,659	1,01	18,7	1,23	23,0	2063,7
PT51	1012,319	12,500	1,01	12,6	1,23	15,4	2091,6
PT52	1025,000	18,841	1,01	19,0	1,23	23,1	2133,7
PT53	1050,000	25,000	1,01	25,2	1,23	30,7	2189,6
PT54	1075,000	25,000	1,05	26,3	1,23	30,7	2246,6
PT55	1100,000	25,000	1,23	30,7	1,23	30,7	2308,0
PT56	1125,000	12,570	1,23	15,4	1,23	15,4	2338,8
PT57	1125,140	12,500	1,23	15,4	1,23	15,3	2369,5
PT58	1150,000	24,930	1,23	30,9	1,23	30,3	2430,7
PT59	1175,000	18,813	1,23	23,5	1,23	22,7	2476,9
PT60	1187,625	12,500	1,22	15,7	1,23	15,0	2507,6
PT61	1200,000	18,687	1,22	23,4	1,23	22,4	2553,4
PT62	1225,000	14,972	1,22	18,8	1,23	18,0	2590,1
PT63	1229,943	12,500	1,22	15,7	1,23	15,0	2620,8
PT64	1250,000	21,159	1,22	26,5	1,23	25,4	2672,7
PT65	1272,261	12,500	1,22	15,7	1,23	15,0	2703,4
PT66	1275,000	13,869	1,22	17,3	1,23	16,7	2737,4
PT67	1300,000	25,000	1,23	31,1	1,23	30,3	2798,8
PT68	1325,000	17,373	1,23	21,4	1,23	21,2	2841,4
PT69	1334,747	12,500	1,23	15,4	1,23	15,3	2872,1
PT70	1350,000	20,127	1,23	24,7	1,23	24,7	2921,6
PT71	1375,000	18,396	1,23	22,6	1,23	22,6	2966,7
PT72	1386,791	12,500	1,23	15,3	1,23	15,3	2997,4
PT73	1400,000	19,104	1,23	23,5	1,23	23,5	3044,4
PT74	1425,000	25,000	1,23	30,7	1,23	30,7	3105,8
PT75	1450,000	25,000	1,23	30,7	1,23	30,7	3167,2
PT76	1475,000	25,000	1,23	30,7	1,23	30,7	3228,6
PT77	1500,000	25,000	1,23	30,7	1,23	30,7	3290,0

PT78	1525,000	25,000	1.22	20.7	1.00	20.7	2254.4
PT79	1550,000	25,000	1,23 1,23	30,7 30,7	1,23 1,23	30,7 30,7	3351,4 3412,7
PT80	1575,000	25,000	1,23	30,7	1,23	30,7	3474,1
PT81	1600,000	25,000	1,23	30,7	1,23	30,7	3535,5
PT82		25,000		30,7	1,23	30,7	
PT83	1625,000 1650,000	25,000	1,23 1,23	30,7	1,23	30,7	3596,9
PT84		•					3658,3
	1675,000	25,000	1,23	30,7	1,23	30,7	3719,7
PT85	1700,000	25,000	1,23	30,7	1,23	30,7	3781,1
PT86	1725,000	18,750	1,23	23,0	1,23	23,0	3827,2
PT87	1737,500	12,500	1,23	15,3	1,23	15,3	3857,9
PT88	1750,000	12,500	1,23	15,3	1,23	15,3	3888,6
PT89 PT90	1762,500	12,500	1,23	15,3	1,23	15,3	3919,3
	1775,000	14,870	1,23	18,3	1,23	18,3	3955,8
PT91	1792,241	12,500	1,23	15,3	1,23	15,4	3986,5
PT92 PT93	1800,000	16,380	1,23	20,1	1,23	20,2	4026,7
PT93	1825,000	25,000	1,23	30,4	1,23	30,9	4088,1
	1850,000	17,120	1,23	20,7	1,23	21,3	4130,1
PT95	1859,241	12,500	1,23	15,1	1,23	15,6	4160,8
PT96	1875,000	15,867	1,23	19,2	1,23	19,8	4199,7
PT97	1890,975	12,500	1,23	15,1	1,23	15,6	4230,4
PT98	1900,000	15,867	1,23	19,2	1,23	19,8	4269,3
PT99	1922,709	18,736	1,23	22,6	1,23	23,3	4315,3
PT100	1937,472	13,645	1,23	16,5	1,23	16,9	4348,8
PT101	1950,000	18,764	1,23	22,8	1,23	23,2	4394,8
PT102	1975,000	19,855	1,23	24,3	1,23	24,5	4443,6
PT103	1989,709	12,500	1,23	15,3	1,23	15,4	4474,3
PT104	2000,000	17,645	1,23	21,7	1,23	21,7	4517,6
PT105	2025,000	25,000	1,23	30,7	1,23	30,7	4579,0
PT106	2050,000	25,000	1,23	30,7	1,23	30,7	4640,4
PT107	2075,000	25,000	1,23	30,7	1,23	30,7	4701,8
PT108	2100,000	25,000	1,23	30,7	1,23	30,7	4763,2
PT109	2125,000	25,000	1,23	30,7	1,23	30,7	4824,6
PT110	2150,000	25,000	1,23	30,7	1,23	30,7	4886,0
PT111	2175,000	25,000	1,23	30,7	1,23	30,7	4947,4
PT112	2200,000	25,000	1,23	30,7	1,23	30,7	5008,8
PT113	2225,000	13,127	1,23	16,1	1,23	16,1	5041,0
PT114	2226,254	12,500	1,23	15,4	1,23	15,3	5071,7
PT115	2250,000	24,373	1,23	30,0	1,23	29,8	5131,6
PT116	2275,000	21,627	1,23	26,7	1,23	26,3	5184,6
PT117	2293,254	12,500	1,23	15,5	1,23	15,2	5215,3
PT118	2300,000	15,873	1,23	19,7	1,23	19,3	5254,3
PT119	2325,000	25,000	1,23	31,0	1,23	30,3	5315,6
PT120	2350,000	25,000	1,23	31,0	1,23	30,3	5376,9
PT121	2375,000	14,431	1,23	17,9	1,23	17,5	5412,3
PT122	2378,863	12,500	1,23	15,5	1,23	15,2	5443,0
PT123	2400,000	23,069	1,23	28,6	1,23	28,0	5499,6
PT124	2425,000	25,000	1,23	31,0	1,23	30,3	5561,0
PT125	2450,000	19,736	1,23	24,5	1,23	23,9	5609,4
PT126	2464,472	12,500	1,23	15,5	1,23	15,2	5640,0
PT127	2475,000	17,764	1,23	22,0	1,23	21,6	5683,6
PT128	2500,000	25,000	1,23	30,8	1,23	30,5	5745,0
PT129	2525,000	15,736	1,23	19,4	1,23	19,3	5783,7

DT120	2521 472	12,500	1 22	15.4	1 22	15.2	5014.4
PT130 PT131	2531,472		1,23	15,4 26,7	1,23	15,3 26,7	5814,4
PT131	2550,000 2575,000	21,764 25,000	1,23 1,23	30,7	1,23 1,23	30,7	5867,8 5929,2
	2600,000	•		30,7			
PT133	2625,000	25,000	1,23	,	1,23	30,7	5990,6
PT134		25,000	1,23	30,7	1,23	30,7	6052,0
PT135	2650,000	25,000	1,23	30,7	1,23	30,7	6113,4
PT136	2675,000	25,000	1,23	30,7	1,23	30,7	6174,8
PT137	2700,000	25,000	1,23	30,7	1,23	30,7	6236,2
PT138	2725,000	25,000	1,23	30,7	1,23	30,7	6297,6
PT139	2750,000	25,000	1,23	30,7	1,23	30,7	6359,0
PT140	2775,000	13,879	1,23	17,0	1,23	17,0	6393,1
PT141	2777,758	12,500	1,23	15,3	1,23	15,4	6423,8
PT142	2800,000	23,621	1,23	28,7	1,23	29,3	6481,8
PT143	2825,000	18,254	1,23	22,0	1,22	22,8	6526,5
PT144	2836,507	12,500	1,23	14,9	1,22	15,7	6557,2
PT145	2850,000	19,139	1,23	22,9	1,22	24,1	6604,2
PT146	2874,785	12,500	1,23	14,9	1,22	15,7	6634,8
PT147	2875,000	12,608	1,23	15,1	1,22	15,9	6665,8
PT148	2900,000	19,031	1,23	22,7	1,22	24,0	6712,5
PT149	2913,063	12,500	1,23	14,9	1,22	15,7	6743,1
PT150	2925,000	18,469	1,23	22,2	1,22	23,1	6788,4
PT151	2950,000	23,406	1,23	28,4	1,23	29,0	6845,9
PT152	2971,812	25,000	1,23	30,7	1,23	30,7	6907,3
PT153	3000,000	26,594	1,23	32,7	1,23	32,7	6972,6
PT154	3025,000	25,000	1,23	30,7	1,23	30,7	7034,0
PT155	3050,000	25,000	1,23	30,7	1,23	30,7	7095,4
PT156	3075,000	25,000	1,23	30,7	1,23	30,7	7156,8
PT157	3100,000	25,000	1,23	30,7	1,23	30,7	7218,2
PT158	3125,000	25,000	1,23	30,7	1,23	30,7	7279,6
PT159	3150,000	25,000	1,23	30,7	1,23	30,7	7341,0
PT160	3175,000	25,000	1,23	30,7	1,23	30,7	7402,4
PT161	3200,000	25,000	1,23	30,7	1,23	30,7	7463,8
PT162	3225,000	25,000	1,23	30,7	1,23	30,7	7525,2
PT163	3250,000	25,000	1,23	30,7	1,23	30,7	7586,6
PT164	3275,000	25,000	1,23	30,7	1,23	30,7	7648,0
PT165	3300,000	25,000	1,23	30,7	1,23	30,7	7709,4
PT166	3325,000	18,750	1,23	23,0	1,23	23,0	7755,4
PT167	3337,500	12,500	1,23	15,3	1,23	15,3	7786,1
PT168	3350,000	18,750	1,23	23,0	1,23	23,0	7832,2
PT169	3375,000	25,000	1,23	30,7	1,23	30,7	7893,6
PT170	3400,000	25,000	1,23	30,7	1,23	30,7	7955,0
PT171	3425,000	25,000	1,23	30,7	1,23	30,7	8016,4
PT172	3450,000	25,000	1,23	30,7	1,23	30,7	8077,8
PT173	3475,000	25,000	1,23	30,7	1,23	30,7	8139,2
PT174	3500,000	25,000	1,23	30,7	1,23	30,7	8200,6
PT175	3525,000	25,000	1,23	30,7	1,23	30,7	8262,0
PT176	3550,000	25,000	1,23	30,7	1,23	30,7	8323,4
PT177	3575,000	25,000	1,23	30,7	1,23	30,7	8384,8
PT178	3600,000	25,000	1,23	30,7	1,23	30,7	8446,2
PT179	3625,000	25,000	1,23	30,7	1,23	30,7	8507,6
PT180	3650,000	25,000	1,23	30,7	1,23	30,7	8569,0
PT181	3675,000	25,000	1,23	30,7	1,23	30,7	8630,4

DT100	3700,000	25,000	1.00	20.7	1.22	20.7	9604.9
PT182 PT183	3700,000	25,000	1,23 1,23	30,7 30,7	1,23 1,23	30,7 30,7	8691,8 8753,2
PT184	3750,000	25,000	1,23	30,7	1,23	30,7	8814,6
	3775,000	•		30,7			
PT185		25,000	1,23	,	1,23	30,7	8876,0
PT186	3800,000	25,000	1,23	30,7	1,23	30,7	8937,4
PT187	3825,000	25,000	1,23	30,7	1,23	30,7	8998,8
PT188	3850,000	25,000	1,23	30,7	1,23	30,7	9060,2
PT189	3875,000	25,000	1,23	30,7	1,23	30,7	9121,6
PT190	3900,000	25,000	1,23	30,7	1,23	30,7	9183,0
PT191	3925,000	21,038	1,23	25,8	1,23	25,8	9234,6
PT192	3942,076	12,500	1,23	15,4	1,23	15,3	9265,3
PT193	3950,000	16,462	1,23	20,2	1,23	20,2	9305,8
PT194	3975,000	25,000	1,23	30,8	1,23	30,5	9367,1
PT195	4000,000	17,038	1,23	21,1	1,23	20,7	9408,9
PT196	4009,076	12,500	1,23	15,5	1,23	15,2	9439,6
PT197	4025,000	20,462	1,23	25,3	1,23	24,9	9489,8
PT198	4050,000	25,000	1,23	31,0	1,23	30,4	9551,2
PT199	4075,000	21,076	1,23	26,1	1,23	25,6	9602,9
PT200	4092,151	12,500	1,23	15,5	1,23	15,2	9633,5
PT201	4100,000	16,424	1,23	20,3	1,23	20,0	9673,8
PT202	4125,000	25,000	1,23	31,0	1,23	30,4	9735,2
PT203	4150,000	25,000	1,23	31,0	1,23	30,4	9796,5
PT204	4175,000	12,613	1,23	15,6	1,23	15,3	9827,5
PT205	4175,227	12,500	1,23	15,5	1,23	15,2	9858,1
PT206	4200,000	24,887	1,23	30,7	1,23	30,4	9919,2
PT207	4225,000	21,113	1,23	26,0	1,23	25,8	9971,1
PT208	4242,227	12,500	1,23	15,4	1,23	15,3	10001,7
PT209	4250,000	16,387	1,23	20,1	1,23	20,1	10042,0
PT210	4275,000	25,000	1,23	30,7	1,23	30,7	10103,4
PT211	4300,000	25,000	1,23	30,7	1,23	30,7	10164,8
PT212	4325,000	25,000	1,23	30,7	1,23	30,7	10226,2
PT213	4350,000	25,000	1,23	30,7	1,23	30,7	10287,6
PT214	4375,000	25,000	1,23	30,7	1,23	30,7	10349,0
PT215	4400,000	25,000	1,23	30,7	1,23	30,7	10410,4
PT216	4425,000	25,000	1,23	30,7	1,23	30,7	10471,8
PT217	4450,000	25,000	1,23	30,7	1,23	30,7	10533,2
PT218	4475,000	24,989	1,23	30,7	1,23	30,7	10594,6
PT219	4499,979	12,500	1,23	15,3	1,23	15,3	10625,3
PT220	4500,000	12,511	1,23	15,3	1,23	15,4	10656,0
PT221	4525,000	25,000	1,23	30,5	1,23	30,8	10717,4
PT222	4550,000	20,989	1,23	25,5	1,23	26,0	10768,9
PT223	4566,979	12,500	1,23	15,1	1,23	15,5	10799,5
PT224	4575,000	8,017	1,23	9,7	1,23	10,0	10819,2
PT225	4583,013	12,024	1,23	14,6	1,23	14,9	10848,7
PT226	4599,048	8,493	1,23	10,3	1,23	10,6	10869,6
PT227	4600,000	12,976	1,23	15,7	1,23	16,1	10901,4
PT228	4625,000	25,000	1,23	30,4	1,23	30,9	10962,7
PT229	4650,000	17,168	1,23	21,0	1,23	21,2	11004,9
PT230	4659,337	8,687	1,23	10,7	1,23	10,7	11026,2
PT231	4667,373	7,832	1,23	9,6	1,23	9,6	11045,5
PT232	4675,000	16,313	1,23	20,1	1,23	20,0	11085,5
PT233	4700,000	25,000	1,23	30,9	1,23	30,4	11146,9

PT234	4725,000	17,187	1,23	21,4	1,23	20,8	11189,1
PT235	4734,373	10,341	1,23	12,9	1,23	12,5	11214,4
PT236	4745,682	7,813	1,23	9,7	1,23	9,4	11233,6
PT237	4750,000	14,659	1,23	18,2	1,23	17,7	11269,6
PT238	4775,000	25,000	1,23	31,0	1,23	30,4	11330,9
PT239	4800,000	18,841	1,23	23,2	1,23	23,0	11377,2
PT240	4812,682	12,500	1,23	15,4	1,23	15,3	11407,9
PT241	4825,000	18,659	1,23	22,9	1,23	22,9	11453,7
PT242	4850,000	25,000	1,23	30,7	1,23	30,7	11515,1
PT243	4875,000	25,000	1,23	30,7	1,23	30,7	11576,5
PT244	4900,000	25,000	1,23	30,7	1,23	30,7	11637,9
PT245	4925,000	25,000	1,23	30,7	1,23	30,7	11699,3
PT246	4950,000	25,000	1,23	30,7	1,23	30,7	11760,7
PT247	4975,000	25,000	1,23	30,7	1,23	30,7	11822,1
PT248	5000,000	25,000	1,23	30,7	1,23	30,7	11883,5
PT249	5025,000	19,956	1,23	24,5	1,23	24,5	11932,5
PT250	5039,913	7,456	1,23	9,2	1,23	9,2	11950,8

Chargement de T.P.C et d'Accotement en GNT 0/31.5

Num.	Abscisse	Lg Ap.	Gauche Droite		te	Total	
			Surface partielle	Volume partiel	Surface partielle	Volume partiel	Volume cumulé
PT01	0.000	12.500	2,73	34,1	2,73	34,1	68,3
PT02	25,000	25,000	2,73	68,3	2,73	68,3	204,8
PT03	50,000	25,000	2,73	68,3	2,73	68,3	341,3
PT04	75,000	25,000	2,73	68,3	2,73	68,3	477,8
PT05	100,000	25,000	2,73	68,3	2,73	68,3	614,3
PT06	125,000	25,000	2,73	68,3	2,73	68,3	750,9
PT07	150,000	25,000	2,73	68,3	2,73	68,3	887.4
PT08	175,000	25,000	2,73	68,3	2,73	68,3	1023,9
PT09	200,000	25,000	2,73	68,3	2,73	68,3	1160,4
PT10	225,000	12,848	2,73	35,1	2,73	35,1	1230,6
PT11	225,697	12,500	2,73	34,1	2,73	34,1	1298,9
PT12	250,000	24,652	2,73	67,4	2,73	67,2	1433,5
PT13	275,000	21,348	2,73	58,5	2,73	58,0	1550,0
PT14	292,697	12,500	2,73	34,3	2,73	33,9	1618,3
PT15	300,000	16,152	2,73	44,4	2,73	43,8	1706,5
PT16	325,000	15,796	2,73	43,4	2,73	42,9	1792,7
PT17	331,591	12,500	2,73	34,3	2,73	33,9	1861,0
PT18	350,000	19,447	2,73	53,4	2,73	52,8	1967,1
PT19	370,485	12,500	2,73	34,3	2,73	33,9	2035,4
PT20	375,000	14,757	2,73	40,5	2,73	40,1	2116,0
PT21	400,000	25,000	2,73	68,5	2,73	68,0	2252,5
PT22	425,000	18,743	2,73	51,2	2,73	51,1	2354,8
PT23	437,485	12,500	2,73	34,1	2,73	34,1	2423,1
PT24	450,000	18,757	2,73	51,2	2,73	51,2	2525,5
PT25	475,000	25,000	2,73	68,3	2,73	68,3	2662,0
PT26	500,000	25,000	2,73	68,3	2,73	68,3	2798,6
PT27	525,000	25,000	2,73	68,3	2,73	68,3	2935,1
PT28	550,000	25,000	2,73	68,3	2,73	68,3	3071,6

PT29	F75 000	25,000	0.72	69.3	0.72	60.2	2200.4
PT30	575,000 600,000	25,000	2,73 2,73	68,3 68,3	2,73 2,73	68,3 68,3	3208,1 3344,7
PT31	625,000	18,750	2,73	51,2	2,73	51,2	3447,0
PT32		•					3515,3
	637,500	12,500	2,73	34,1	2,73	34,1	,
PT33	650,000 675,000	18,750	2,73	51,2	2,73	51,2	3617,7
PT34		25,000	2,73	68,3	2,73	68,3	3754,2
PT35	700,000	25,000	2,73	68,3	2,73	68,3	3890,7
PT36	725,000	25,000	2,73	68,3	2,73	68,3	4027,3
PT37	750,000	25,000	2,73	68,3	2,73	68,3	4163,8
PT38	775,000	25,000 14,920	2,73	68,3	2,73	68,3	4300,3
PT39 PT40	800,000	,	2,73	40,7	2,73	40,7 34,2	4381,8
PT41	804,841	12,500	2,73	34,1	2,73		4450,0
PT42	825,000	22,580	2,73	61,5	2,73	61,8	4573,3
	850,000	23,420	2,73	63,5	2,73	64,3	4701,2
PT43	871,841	25,000	2,73	67,6	2,73	68,9	4837,7
PT44	900,000	18,370	2,73	49,7	2,73	50,6	4938,0
PT45	908,580	12,500	2,73	33,8	2,73	34,4	5006,3
PT46	925,000	18,370	2,73	49,7	2,73	50,6	5106,6
PT47	945,319	12,500	2,73	33,8	2,73	34,4	5174,8
PT48	950,000	14,841	2,73	40,2	2,73	40,8	5255,8
PT49	975,000	25,000	2,73	67,9	2,73	68,6	5392,4
PT50	1000,000	18,659	2,73	50,8	2,73	51,1	5494,2
PT51	1012,319	12,500	2,73	34,1	2,73	34,1	5562,5
PT52	1025,000	18,841	2,73	51,4	2,73	51,4	5665,4
PT53	1050,000	25,000	2,73	68,3	2,73	68,3	5801,9
PT54	1075,000	25,000	2,73	68,3	2,73	68,3	5938,4
PT55	1100,000	25,000	2,73	68,3	2,73	68,3	6075,0
PT56	1125,000	12,570	2,73	34,3	2,73	34,3	6143,6
PT57	1125,140	12,500	2,73	34,2	2,73	34,1	6211,9
PT58	1150,000	24,930	2,73	68,4	2,73	67,7	6348,0
PT59	1175,000	18,813	2,73	51,9	2,73	50,8	6450,7
PT60	1187,625	12,500	2,73	34,6	2,73	33,7	6519,0
PT61	1200,000	18,687	2,73	51,7	2,73	50,3	6621,0
PT62	1225,000	14,972	2,73	41,4	2,73	40,3	6702,7
PT63	1229,943	12,500	2,73	34,6	2,73	33,7	6771,0
PT64	1250,000	21,159	2,73	58,5	2,73	57,0	6886,5
PT65	1272,261	12,500	2,73	34,6	2,73	33,7	6954,8
PT66	1275,000	13,869	2,73	38,3	2,73	37,4	7030,5
PT67	1300,000	25,000	2,73	68,8	2,73	67,7	7167,0
PT68	1325,000	17,373	2,73	47,6	2,73	47,3	7261,9
PT69	1334,747	12,500	2,73	34,1	2,73	34,1	7330,1
PT70	1350,000	20,127	2,73	55,0	2,73	55,0	7440,0
PT71	1375,000	18,396	2,73	50,2	2,73	50,2	7540,5
PT72	1386,791	12,500	2,73	34,1	2,73	34,1	7608,7
PT73	1400,000	19,104	2,73	52,2	2,73	52,2	7713,1
PT74	1425,000	25,000	2,73	68,3	2,73	68,3	7849,6
PT75	1450,000	25,000	2,73	68,3	2,73	68,3	7986,1
PT76	1475,000	25,000	2,73	68,3	2,73	68,3	8122,6
PT77	1500,000	25,000	2,73	68,3	2,73	68,3	8259,2
PT78	1525,000	25,000	2,73	68,3	2,73	68,3	8395,7
PT79	1550,000	25,000	2,73	68,3	2,73	68,3	8532,2
PT80	1575,000	25,000	2,73	68,3	2,73	68,3	8668,7

PT81	1600,000	25,000	2,73	68,3	2,73	68,3	8805,2
PT82	1625,000	25,000	2,73	68,3	2,73	68,3	8941,8
PT83	1650,000	25,000	2,73	68,3	2,73	68,3	9078,3
	1675,000						
PT84	,	25,000	2,73	68,3	2,73	68,3	9214,8
PT85	1700,000	25,000	2,73	68,3	2,73	68,3	9351,3
PT86	1725,000	18,750	2,73	51,2	2,73	51,2	9453,7
PT87	1737,500	12,500	2,73	34,1	2,73	34,1	9522,0
PT88	1750,000	12,500	2,73	34,1	2,73	34,1	9590,2
PT89	1762,500	12,500	2,73	34,1	2,73	34,1	9658,5
PT90	1775,000	14,870	2,73	40,6	2,73	40,6	9739,7
PT91	1792,241	12,500	2,73	34,1	2,73	34,1	9808,0
PT92	1800,000	16,380	2,73	44,6	2,73	44,8	9897,4
PT93	1825,000	25,000	2,73	67,9	2,73	68,6	10033,9
PT94	1850,000	17,120	2,73	46,4	2,73	47,1	10127,4
PT95	1859,241	12,500	2,73	33,8	2,73	34,4	10195,6
PT96	1875,000	15,867	2,73	42,9	2,73	43,7	10282,3
PT97	1890,975	12,500	2,73	33,8	2,73	34,4	10350,5
PT98	1900,000	15,867	2,73	42,9	2,73	43,7	10437,2
PT99	1922,709	18,736	2,73	50,7	2,73	51,6	10539,5
PT100	1937,472	13,645	2,73	37,0	2,73	37,5	10614,0
PT101	1950,000	18,764	2,73	51,0	2,73	51,5	10716,4
PT102	1975,000	19,855	2,73	54,1	2,73	54,3	10824,8
PT103	1989,709	12,500	2,73	34,1	2,73	34,1	10893,1
PT104	2000,000	17,645	2,73	48,2	2,73	48,2	10989,5
PT105	2025,000	25,000	2,73	68,3	2,73	68,3	11126,0
PT106	2050,000	25,000	2,73	68,3	2,73	68,3	11262,5
PT107	2075,000	25,000	2,73	68,3	2,73	68,3	11399,0
PT108	2100,000	25,000	2,73	68,3	2,73	68,3	11535,6
PT109	2125,000	25,000	2,73	68,3	2,73	68,3	11672,1
PT110	2150,000	25,000	2,73	68,3	2,73	68,3	11808,6
PT111	2175,000	25,000	2,73	68,3	2,73	68,3	11945,1
PT112	2200,000	25,000	2,73	68,3	2,73	68,3	12081,6
PT113	2225,000	13,127	2,73	35,8	2,73	35,8	12153,3
PT114	2226,254	12,500	2,73	34,2	2,73	34,1	12221,6
PT115	2250,000	24,373	2,73	66,7	2,73	66,4	12354,7
PT116	2275,000	21,627	2,73	59,3	2,73	58,8	12472,8
PT117	2293,254	12,500	2,73	34,3	2,73	33,9	12541,0
PT118	2300,000	15,873	2,73	43,6	2,73	43,0	12627,7
PT119	2325,000	25,000	2,73	68,7	2,73	67,8	12764,2
PT120	2350,000	25,000	2,73	68,7	2,73	67,8	12900,7
PT121	2375,000	14,431	2,73	39,7	2,73	39,1	12979,5
PT122	2378,863	12,500	2,73	34,4	2,73	33,9	13047,7
PT123	2400,000	23,069	2,73	63,4	2,73	62,6	13173,7
PT124	2425,000	25,000	2,73	68,7	2,73	67,8	13310,2
PT125	2450,000	19,736	2,73	54,2	2,73	53,5	13417,9
PT126	2464,472	12,500	2,73	34,3	2,73	33,9	13486,2
PT127	2475,000	17,764	2,73	48,8	2,73	48,2	13583,2
PT128	2500,000	25,000	2,73	68,5	2,73	68,0	13719,7
PT129	2525,000	15,736	2,73	43,0	2,73	42,9	13805,6
PT130	2531,472	12,500	2,73	34,1	2,73	34,1	13873,9
PT131	2550,000	21,764	2,73	59,4	2,73	59,4	13992,7
						T .	T .

DT122	2600,000	25,000	2.72	69.3	2.72	60.2	14265.0
PT133			2,73	68,3	2,73	68,3	14265,8
PT134 PT135	2625,000 2650,000	25,000 25,000	2,73 2,73	68,3 68,3	2,73 2,73	68,3 68,3	14402,3 14538,8
	2675,000	•					
PT136		25,000 25,000	2,73	68,3	2,73	68,3	14675,3
PT137	2700,000	,	2,73	68,3	2,73	68,3	14811,9
PT138	2725,000	25,000	2,73	68,3	2,73	68,3	14948,4
PT139	2750,000	25,000	2,73	68,3	2,73	68,3	15084,9
PT140	2775,000	13,879	2,73	37,9	2,73	37,9	15160,7
PT141	2777,758	12,500	2,73	34,1	2,73	34,2	15229,0
PT142	2800,000	23,621	2,73	64,1	2,73	64,9	15357,9
PT143	2825,000	18,254	2,73	49,2	2,73	50,4	15457,6
PT144	2836,507	12,500	2,73	33,6	2,73	34,6	15525,9
PT145	2850,000	19,139	2,73	51,4	2,73	53,1	15630,3
PT146	2874,785	12,500	2,73	33,6	2,73	34,7	15698,6
PT147	2875,000	12,608	2,73	33,9	2,73	35,0	15767,4
PT148	2900,000	19,031	2,73	51,1	2,73	52,8	15871,3
PT149	2913,063	12,500	2,73	33,6	2,73	34,6	15939,6
PT150	2925,000	18,469	2,73	49,8	2,73	51,0	16040,4
PT151	2950,000	23,406	2,73	63,5	2,73	64,3	16168,2
PT152	2971,812	25,000	2,73	68,2	2,73	68,3	16304,8
PT153	3000,000	26,594	2,73	72,6	2,73	72,6	16450,0
PT154	3025,000	25,000	2,73	68,3	2,73	68,3	16586,5
PT155	3050,000	25,000	2,73	68,3	2,73	68,3	16723,0
PT156	3075,000	25,000	2,73	68,3	2,73	68,3	16859,6
PT157	3100,000	25,000	2,73	68,3	2,73	68,3	16996,1
PT158	3125,000	25,000	2,73	68,3	2,73	68,3	17132,6
PT159	3150,000	25,000	2,73	68,3	2,73	68,3	17269,1
PT160	3175,000	25,000	2,73	68,3	2,73	68,3	17405,6
PT161	3200,000	25,000	2,73	68,3	2,73	68,3	17542,2
PT162	3225,000	25,000	2,73	68,3	2,73	68,3	17678,7
PT163	3250,000	25,000	2,73	68,3	2,73	68,3	17815,2
PT164	3275,000	25,000	2,73	68,3	2,73	68,3	17951,7
PT165	3300,000	25,000	2,73	68,3	2,73	68,3	18088,2
PT166	3325,000	18,750	2,73	51,2	2,73	51,2	18190,6
PT167	3337,500	12,500	2,73	34,1	2,73	34,1	18258,9
PT168	3350,000	18,750	2,73	51,2	2,73	51,2	18361,3
PT169	3375,000	25,000	2,73	68,3	2,73	68,3	18497,8
PT170	3400,000	25,000	2,73	68,3	2,73	68,3	18634,3
PT171	3425,000	25,000	2,73	68,3	2,73	68,3	18770,9
PT172	3450,000	25,000	2,73	68,3	2,73	68,3	18907,4
PT173	3475,000	25,000	2,73	68,3	2,73	68,3	19043,9
PT174	3500,000	25,000	2,73	68,3	2,73	68,3	19180,4
PT175	3525,000	25,000	2,73	68,3	2,73	68,3	19316,9
PT176	3550,000	25,000	2,73	68,3	2,73	68,3	19453,5
PT177	3575,000	25,000	2,73	68,3	2,73	68,3	19590,0
PT178	3600,000	25,000	2,73	68,3	2,73	68,3	19726,5
PT179	3625,000	25,000	2,73	68,3	2,73	68,3	19863,0
PT180	3650,000	25,000	2,73	68,3	2,73	68,3	19999,5
PT181	3675,000	25,000	2,73	68,3	2,73	68,3	20136,1
PT182	3700,000	25,000	2,73	68,3	2,73	68,3	20272,6
PT183	3725,000	25,000	2,73	68,3	2,73	68,3	20409,1
PT184	3750,000	25,000	2,73	68,3	2,73	68,3	20545,6

PT185	3775,000	25,000	2,73	68,3	2,73	68,3	20682,2
PT186	3800,000	25,000	2,73	68,3	2,73	68,3	20818,7
PT187	3825,000	25,000	2,73	68,3	2,73	68,3	20955,2
PT188	3850,000	25,000	2,73	68,3	2,73	68,3	21091,7
PT189	3875,000	25,000	2,73	68,3	2,73	68,3	21228,2
PT190	3900,000	25,000	2,73	68,3	2,73	68,3	21364,8
PT191	3925,000	21,038	2,73	57,4	2,73	57,4	21479,6
PT192	3942,076	12,500	2,73	34,1	2,73	34,1	21547,9
PT193	3950,000	16,462	2,73	45,0	2,73	44,9	21637,8
PT194	3975,000	25,000	2,73	68,5	2,73	68,1	21774,3
PT195	4000,000	17,038	2,73	46,7	2,73	46,3	21867,3
PT196	4009,076	12,500	2,73	34,3	2,73	33,9	21935,6
PT197	4025,000	20,462	2,73	56,2	2,73	55,5	22047,3
PT198	4050,000	25,000	2,73	68,6	2,73	67,9	22183,8
PT199	4075,000	21,076	2,73	57,9	2,73	57,2	22103,0
		12,500					
PT200 PT201	4092,151	16,424	2,73	34,3 45,1	2,73	33,9 44,6	22367,1
PT201	4100,000 4125,000		2,73	68,6	2,73 2,73	67,9	22456,8
		25,000	2,73				22593,3
PT203	4150,000	25,000	2,73	68,6	2,73	67,9	22729,8
PT204	4175,000	12,613	2,73	34,6	2,73	34,2	22798,7
PT205	4175,227	12,500	2,73	34,3	2,73	33,9	22866,9
PT206	4200,000	24,887	2,73	68,2	2,73	67,7	23002,8
PT207	4225,000	21,113	2,73	57,7	2,73	57,5	23118,1
PT208	4242,227	12,500	2,73	34,1	2,73	34,1	23186,4
PT209	4250,000	16,387	2,73	44,7	2,73	44,7	23275,9
PT210	4275,000	25,000	2,73	68,3	2,73	68,3	23412,4
PT211	4300,000	25,000	2,73	68,3	2,73	68,3	23548,9
PT212	4325,000	25,000	2,73	68,3	2,73	68,3	23685,4
PT213	4350,000	25,000	2,73	68,3	2,73	68,3	23821,9
PT214	4375,000	25,000	2,73	68,3	2,73	68,3	23958,5
PT215	4400,000	25,000	2,73	68,3	2,73	68,3	24095,0
PT216	4425,000	25,000	2,73	68,3	2,73	68,3	24231,5
PT217	4450,000	25,000	2,73	68,3	2,73	68,3	24368,0
PT218	4475,000	24,989	2,73	68,2	2,73	68,2	24504,5
PT219	4499,979	12,500	2,73	34,1	2,73	34,1	24572,8
PT220	4500,000	12,511	2,73	34,1	2,73	34,2	24641,1
PT221	4525,000	25,000	2,73	68,1	2,73	68,5	24777,6
PT222	4550,000	20,989	2,73	57,0	2,73	57,6	24892,2
PT223	4566,979	12,500	2,73	33,9	2,73	34,4	24960,4
PT224	4575,000	8,017	2,73	21,7	2,73	22,1	25004,2
PT225	4583,013	12,024	2,73	32,6	2,73	33,1	25069,9
PT226	4599,048	8,493	2,73	23,0	2,73	23,4	25116,2
PT227	4600,000	12,976	2,73	35,2	2,73	35,7	25187,1
PT228	4625,000	25,000	2,73	67,9	2,73	68,6	25323,6
PT229	4650,000	17,168	2,73	46,8	2,73	47,0	25417,4
PT230	4659,337	8,687	2,73	23,7	2,73	23,7	25464,8
PT231	4667,373	7,832	2,73	21,4	2,73	21,4	25507,6
PT232	4675,000	16,313	2,73	44,6	2,73	44,5	25596,6
PT233	4700,000	25,000	2,73	68,6	2,73	67,9	25733,1
PT234	4725,000	17,187	2,73	47,3	2,73	46,5	25827,0
PT235	4734,373	10,341	2,73	28,5	2,73	28,0	25883,4
PT236	4745,682	7,813	2,73	21,5	2,73	21,1	25926,1

PT237	4750,000	14,659	2,73	40,4	2,73	39,7	26006,1
PT238	4775,000	25,000	2,73	68,6	2,73	67,9	26142,7
PT239	4800,000	18,841	2,73	51,6	2,73	51,3	26245,5
PT240	4812,682	12,500	2,73	34,1	2,73	34,1	26313,8
PT241	4825,000	18,659	2,73	50,9	2,73	50,9	26415,7
PT242	4850,000	25,000	2,73	68,3	2,73	68,3	26552,2
PT243	4875,000	25,000	2,73	68,3	2,73	68,3	26688,7
PT244	4900,000	25,000	2,73	68,3	2,73	68,3	26825,3
PT245	4925,000	25,000	2,73	68,3	2,73	68,3	26961,8
PT246	4950,000	25,000	2,73	68,3	2,73	68,3	27098,3
PT247	4975,000	25,000	2,73	68,3	2,73	68,3	27234,8
PT248	5000,000	25,000	2,73	68,3	2,73	68,3	27371,3
PT249	5025,000	19,956	2,73	54,5	2,73	54,5	27480,3
PT250	5039,913	7,456	2,73	20,4	2,73	20,4	27521,0

Couche Roulement BB

Num.	Abscisse	Lg Ap.	Ga	ıuche	Droi	te	Total
			Surface partielle	Volume partiel	Surface partielle	Volume partiel	Volume cumulé
PT01	0,000	12,500	0,46	5,7	0,46	5,7	11,5
PT02	25,000	25,000	0,46	11,5	0,46	11,5	34,5
PT03	50,000	25,000	0,46	11,5	0,46	11,5	57,4
PT04	75,000	25,000	0,46	11,5	0,46	11,5	80,4
PT05	100,000	25,000	0,46	11,5	0,46	11,5	103,4
PT06	125,000	25,000	0,46	11,5	0,46	11,5	126,4
PT07	150,000	25,000	0,46	11,5	0,46	11,5	149,4
PT08	175,000	25,000	0,46	11,5	0,46	11,5	172,4
PT09	200,000	25,000	0,46	11,5	0,46	11,5	195,3
PT10	225,000	12,848	0,46	5,9	0,46	5,9	207,1
PT11	225,697	12,500	0,46	5,7	0,46	5,7	218,6
PT12	250,000	24,652	0,46	11,4	0,46	11,3	241,3
PT13	275,000	21,348	0,46	9,9	0,46	9,8	260,9
PT14	292,697	12,500	0,46	5,8	0,46	5,7	272,4
PT15	300,000	16,152	0,46	7,5	0,46	7,4	287,3
PT16	325,000	15,796	0,46	7,3	0,46	7,2	301,8
PT17	331,591	12,500	0,46	5,8	0,46	5,7	313,3
PT18	350,000	19,447	0,46	9,0	0,46	8,9	331,1
PT19	370,485	12,500	0,46	5,8	0,46	5,7	342,6
PT20	375,000	14,757	0,46	6,8	0,46	6,7	356,2
PT21	400,000	25,000	0,46	11,5	0,46	11,5	379,2
PT22	425,000	18,743	0,46	8,6	0,46	8,6	396,4
PT23	437,485	12,500	0,46	5,7	0,46	5,7	407,9
PT24	450,000	18,757	0,46	8,6	0,46	8,6	425,1
PT25	475,000	25,000	0,46	11,5	0,46	11,5	448,1
PT26	500,000	25,000	0,46	11,5	0,46	11,5	471,1
PT27	525,000	25,000	0,46	11,5	0,46	11,5	494,1
PT28	550,000	25,000	0,46	11,5	0,46	11,5	517,1
PT29	575,000	25,000	0,46	11,5	0,46	11,5	540,0
PT30	600,000	25,000	0,46	11,5	0,46	11,5	563,0
PT31	625,000	18,750	0,46	8,6	0,46	8,6	580,2
PT32	637,500	12,500	0,46	5,7	0,46	5,7	591,7

l _{DT00}	cco ooo	40.750	0.40	0.0	0.40	0.0	600.0
PT33	650,000	18,750	0,46	8,6	0,46	8,6	609,0
PT34	675,000	25,000	0,46	11,5	0,46	11,5	632,0
PT35	700,000	25,000	0,46	11,5	0,46	11,5	654,9
PT36	725,000	25,000	0,46	11,5	0,46	11,5	677,9
PT37	750,000	25,000	0,46	11,5	0,46	11,5	700,9
PT38	775,000	25,000	0,46	11,5	0,46	11,5	723,9
PT39	800,000	14,920	0,46	6,9	0,46	6,9	737,6
PT40	804,841	12,500	0,46	5,7	0,46	5,7	749,1
PT41	825,000	22,580	0,46	10,3	0,46	10,4	769,8
PT42	850,000	23,420	0,46	10,7	0,46	10,8	791,4
PT43 PT44	871,841	25,000	0,46	11,4	0,46	11,6	814,3
	900,000	18,370	0,46	8,4 5.7	0,46 0,46	8,5	831,2
PT45		12,500	0,46	5,7		5,8	842,7
PT46 PT47	925,000	18,370	0,46	8,4	0,46	8,5	859,6
	945,319	12,500	0,46	5,7	0,46	5,8	871,1
PT48 PT49	950,000	14,841	0,46	6,8	0,46	6,9	884,7
	975,000	25,000	0,46	11,4	0,46	11,6	907,7
PT50	1000,000	18,659	0,46	8,6	0,46	8,6	924,9
PT51	1012,319	12,500	0,46	5,7	0,46	5,7	936,4
PT52	1025,000	18,841	0,46	8,7	0,46	8,7	953,7
PT53	1050,000	25,000	0,46	11,5	0,46	11,5	976,7
PT54	1075,000	25,000	0,46	11,5	0,46	11,5	999,6
PT55	1100,000	25,000	0,46	11,5	0,46	11,5	1022,6
PT56	1125,000	12,570	0,46	5,8	0,46	5,8	1034,2
PT57	1125,140	12,500	0,46	5,8	0,46	5,7	1045,7
PT58	1150,000	24,930	0,46	11,5	0,46	11,4	1068,6
PT59	1175,000	18,813	0,46	8,7	0,46	8,6	1085,9
PT60	1187,625	12,500	0,46	5,8	0,46	5,7	1097,4
PT61	1200,000	18,687	0,46	8,7	0,46	8,5	1114,5
PT62	1225,000	14,972	0,46	7,0	0,46	6,8	1128,3
PT63	1229,943	12,500	0,46	5,8	0,46	5,7	1139,8
PT64	1250,000	21,159	0,46	9,9	0,46	9,6	1159,2
PT65	1272,261	12,500	0,46	5,8	0,46	5,7	1170,7
PT66	1275,000	13,869	0,46	6,5	0,46	6,3	1183,5
PT67	1300,000	25,000	0,46	11,6	0,46	11,4	1206,5
PT68	1325,000	17,373	0,46	8,0	0,46	8,0	1222,4
PT69	1334,747	12,500	0,46	5,7	0,46	5,7	1233,9
PT70	1350,000	20,127	0,46	9,3	0,46	9,3	1252,4
PT71	1375,000	18,396	0,46	8,5	0,46	8,5	1269,3
PT72	1386,791	12,500	0,46	5,7	0,46	5,7	1280,8
PT73	1400,000	19,104	0,46	8,8	0,46	8,8	1298,4
PT74	1425,000	25,000	0,46	11,5	0,46	11,5	1321,4
PT75	1450,000	25,000	0,46	11,5	0,46	11,5	1344,3
PT76	1475,000	25,000	0,46	11,5	0,46	11,5	1367,3
PT77	1500,000	25,000	0,46	11,5	0,46	11,5	1390,3
PT78	1525,000	25,000	0,46	11,5	0,46	11,5	1413,3
PT79	1550,000	25,000	0,46	11,5	0,46	11,5	1436,3
PT80	1575,000	25,000	0,46	11,5	0,46	11,5	1459,2
PT81	1600,000	25,000	0,46	11,5	0,46	11,5	1482,2
PT82	1625,000	25,000	0,46	11,5	0,46	11,5	1505,2
PT83	1650,000	25,000	0,46	11,5	0,46	11,5	1528,2
PT84	1675,000	25,000	0,46	11,5	0,46	11,5	1551,2

DTOE	1700 000	25 000	0.46	11.5	0.46	11 5	1574.1
PT85 PT86	1700,000 1725,000	25,000 18,750	0,46 0,46	11,5 8,6	0,46 0,46	11,5 8,6	1574,1 1591,4
PT87	1737,500	12,500	0,46	5,7	0,46	5,7	1602,9
PT88	1750,000	12,500	0,46	5,7	0,46	5,7	
PT89	1762,500	12,500	0,46	5,7	0,46	5,7	1614,3 1625,8
PT90	1775,000	14,870	0,46	6,8	0,46	6,8	1639,5
PT91	1792,241	12,500	0,46	5,7	0,46	5,7	1651,0
PT92	1800,000	16,380	0,46	7,5	0,46	7,5	1666,1
PT93	1825,000	25,000	0,46	11,4	0,46	11,5	1689,0
PT94	1850,000	17,120	0,46		0,46	i i	1704,8
PT95	1859,241	12,500	0,46	7,8 5,7	0,46	7,9 5,8	1716,3
PT96	1875,000	15,867	0,46	7,2	0,46	7,4	1710,3
PT97	1890,975	12,500	0,46	5,7	0,46	5,8	1730,8
PT98	1900,000	15,867	0,46	7,2	0,46	7,4	1742,3
PT99	1922,709	18,736	0,46	8,5	0,46	8,7	1774,1
PT100	1937,472	13,645	0,46	6,2	0,46		1786,7
PT100	1950,000		,		0,46	6,3 8,7	1803,9
PT101		18,764	0,46 0,46	8,6 9,1	0,46	9,1	1803,9
PT102	1975,000 1989,709	19,855 12,500	0,46	·	·		i i
	2000,000			5,7	0,46	5,7	1833,7
PT104	<u> </u>	17,645	0,46	8,1	0,46	8,1	1849,9
PT105	2025,000	25,000	0,46	11,5	0,46	11,5	1872,9
PT106	2050,000	25,000	0,46	11,5	0,46	11,5	1895,9
PT107	2075,000	25,000	0,46	11,5	0,46	11,5	1918,8
PT108	2100,000	25,000	0,46	11,5	0,46	11,5	1941,8
PT109	2125,000	25,000	0,46	11,5	0,46	11,5	1964,8
PT110	2150,000	25,000	0,46	11,5	0,46	11,5	1987,8
PT111	2175,000	25,000	0,46	11,5	0,46	11,5	2010,8
PT112	2200,000	25,000	0,46	11,5	0,46	11,5	2033,7
PT113	2225,000	13,127	0,46	6,0	0,46	6,0	2045,8
PT114 PT115	2226,254	12,500	0,46	5,7 11,2	0,46	5,7	2057,3
	2250,000	24,373	0,46	,	0,46 0,46	11,2	2079,7
PT116 PT117	2275,000 2293,254	21,627	0,46 0,46	10,0	0,46	9,9	2099,6
		12,500		5,8		5,7	2111,1
PT118 PT119	2300,000	15,873 25,000	0,46 0,46	7,3 11,6	0,46 0,46	7,2 11,4	2125,7 2148,6
PT120		25,000	0,46	11,6	0,46	11,4	2171,6
PT121	2350,000	14,431	0,46	6,7	0,46	6,6	2184,9
PT121	2378,863	12,500	0,46	5,8	0,46	5,7	2196,4
PT122	2400,000	23,069	0,46	10,7	0,46	10,5	2196,4
PT123	2425,000	25,009	0,46	11,6	0,46	11,4	2240,6
PT124	2450,000	19,736	0,46	9,1	0,46	9,0	2258,7
PT126	2464,472	12,500	0,46	5,8	0,46	5,7	2270,2
PT127	2475,000	17,764	0,46	8,2	0,46	8,1	2286,5
PT128	2500,000	25,000	0,46	11,5	0,46	11,5	2309,5
PT129	2525,000	15,736	0,46	7,2	0,46	7,2	2324,0
PT130	2531,472	12,500	0,46	5,7	0,46	5,7	2324,0
PT131	2550,000	21,764	0,46	10,0	0,46	10,0	2355,5
PT132	2575,000	25,000	0,46	11,5	0,46	11,5	2378,4
PT133	2600,000	25,000	0,46	11,5	0,46	11,5	2401,4
PT134	2625,000	25,000	0,46	11,5	0,46	11,5	2424,4
PT135	2650,000	25,000	0,46	11,5	0,46	11,5	2447,4
PT136	2675,000	25,000	0,46	11,5	0,46	11,5	2477,4
F1130	2013,000	20,000	0,40	11,0	0,40	ا II,ن ا	2410,4

DT407	0700 000	05.000	0.40	44.5	0.40	44.5	0400.0
PT137	2700,000	25,000	0,46	11,5	0,46	11,5	2493,3
PT138	2725,000	25,000	0,46	11,5	0,46	11,5	2516,3
PT139	2750,000	25,000	0,46	11,5	0,46	11,5	2539,3
PT140	2775,000	13,879	0,46	6,4	0,46	6,4	2552,0
PT141	2777,758	12,500	0,46	5,7	0,46	5,8	2563,5
PT142	2800,000	23,621	0,46	10,8	0,46	10,9	2585,3
PT143	2825,000	18,254	0,46	8,3	0,46	8,5	2602,0
PT144	2836,507	12,500	0,46	5,7	0,46	5,8	2613,5
PT145	2850,000	19,139	0,46	8,7	0,46	8,9	2631,1
PT146	2874,785	12,500	0,46	5,7	0,46	5,8	2642,6
PT147	2875,000	12,608	0,46	5,7	0,46	5,9	2654,2
PT148	2900,000	19,031	0,46	8,6	0,46	8,9	2671,7
PT149	2913,063	12,500	0,46	5,7	0,46	5,8	2683,2
PT150	2925,000	18,469	0,46	8,4	0,46	8,6	2700,2
PT151	2950,000	23,406	0,46	10,7	0,46	10,8	2721,7
PT152	2971,812	25,000	0,46	11,5	0,46	11,5	2744,6
PT153	3000,000	26,594	0,46	12,2	0,46	12,2	2769,1
PT154	3025,000	25,000	0,46	11,5	0,46	11,5	2792,1
PT155	3050,000	25,000	0,46	11,5	0,46	11,5	2815,1
PT156	3075,000	25,000	0,46	11,5	0,46	11,5	2838,0
PT157	3100,000	25,000	0,46	11,5	0,46	11,5	2861,0
PT158	3125,000	25,000	0,46	11,5	0,46	11,5	2884,0
PT159	3150,000	25,000	0,46	11,5	0,46	11,5	2907,0
PT160	3175,000	25,000	0,46	11,5	0,46	11,5	2930,0
PT161	3200,000	25,000	0,46	11,5	0,46	11,5	2952,9
PT162	3225,000	25,000	0,46	11,5	0,46	11,5	2975,9
PT163	3250,000	25,000	0,46	11,5	0,46	11,5	2998,9
PT164	3275,000	25,000	0,46	11,5	0,46	11,5	3021,9
PT165	3300,000	25,000	0,46	11,5	0,46	11,5	3044,9
PT166	3325,000	18,750	0,46	8,6	0,46	8,6	3062,1
PT167	3337,500	12,500	0,46	5,7	0,46	5,7	3073,6
PT168	3350,000	18,750	0,46	8,6	0,46	8,6	3090,8
PT169	3375,000	25,000	0,46	11,5	0,46	11,5	3113,8
PT170	3400,000	25,000	0,46	11,5	0,46	11,5	3136,8
PT171	3425,000	25,000	0,46	11,5	0,46	11,5	3159,8
PT172	3450,000	25,000	0,46	11,5	0,46	11,5	3182,7
PT173	3475,000	25,000	0,46	11,5	0,46	11,5	3205,7
PT174	3500,000	25,000	0,46	11,5	0,46	11,5	3228,7
PT175	3525,000	25,000	0,46	11,5	0,46	11,5	3251,7
PT176	3550,000	25,000	0,46	11,5	0,46	11,5	3274,7
PT177	3575,000	25,000	0,46	11,5	0,46	11,5	3297,6
PT178	3600,000	25,000	0,46	11,5	0,46	11,5	3320,6
PT179	3625,000	25,000	0,46	11,5	0,46	11,5	3343,6
PT180	3650,000	25,000	0,46	11,5	0,46	11,5	3366,6
PT181	3675,000	25,000	0,46	11,5	0,46	11,5	3389,6
PT182	3700,000	25,000	0,46	11,5	0,46	11,5	3412,5
PT183	3725,000	25,000	0,46	11,5	0,46	11,5	3435,5
PT184	3750,000	25,000	0,46	11,5	0,46	11,5	3458,5
PT185	3775,000	25,000	0,46	11,5	0,46	11,5	3481,5
PT186	3800,000	25,000	0,46	11,5	0,46	11,5	3504,5
PT187	3825,000	25,000	0,46	11,5	0,46	11,5	3527,4
PT188	3850,000	25,000	0,46	11,5	0,46	11,5	3550,4

DT100	3875,000	25 000	0.46	11 5	0.46	11 5	2572.4
PT189 PT190	3900,000	25,000 25,000	0,46 0,46	11,5 11,5	0,46 0,46	11,5 11,5	3573,4 3596,4
PT190	3925,000	21,038	0,46	9,7	0,46	9,7	3615,7
			,		-		
PT192	3942,076	12,500	0,46	5,7	0,46	5,7	3627,2
PT193 PT194	3950,000	16,462	0,46	7,6	0,46	7,6	3642,3
	3975,000	25,000	0,46	11,5	0,46	11,5	3665,3
PT195	4000,000	17,038	0,46	7,9	0,46	7,8	3681,0
PT196	4009,076	12,500	0,46	5,8	0,46	5,7	3692,5
PT197	4025,000	20,462	0,46	9,5	0,46	9,3	3711,3
PT198	4050,000	25,000	0,46	11,6	0,46	11,4	3734,3
PT199	4075,000	21,076	0,46	9,7	0,46	9,6	3753,6
PT200	4092,151	12,500	0,46	5,8	0,46	5,7	3765,1
PT201	4100,000	16,424	0,46	7,6	0,46	7,5	3780,2
PT202	4125,000	25,000	0,46	11,6	0,46	11,4	3803,2
PT203	4150,000	25,000	0,46	11,6	0,46	11,4	3826,2
PT204	4175,000	12,613	0,46	5,8	0,46	5,8	3837,8
PT205	4175,227	12,500	0,46	5,8	0,46	5,7	3849,3
PT206	4200,000	24,887	0,46	11,5	0,46	11,4	3872,1
PT207	4225,000	21,113	0,46	9,7	0,46	9,7	3891,5
PT208	4242,227	12,500	0,46	5,7	0,46	5,7	3903,0
PT209	4250,000	16,387	0,46	7,5	0,46	7,5	3918,1
PT210	4275,000	25,000	0,46	11,5	0,46	11,5	3941,1
PT211	4300,000	25,000	0,46	11,5	0,46	11,5	3964,1
PT212	4325,000	25,000	0,46	11,5	0,46	11,5	3987,0
PT213	4350,000	25,000	0,46	11,5	0,46	11,5	4010,0
PT214	4375,000	25,000	0,46	11,5	0,46	11,5	4033,0
PT215	4400,000	25,000	0,46	11,5	0,46	11,5	4056,0
PT216	4425,000	25,000	0,46	11,5	0,46	11,5	4079,0
PT217	4450,000	25,000	0,46	11,5	0,46	11,5	4101,9
PT218	4475,000	24,989	0,46	11,5	0,46	11,5	4124,9
PT219	4499,979	12,500	0,46	5,7	0,46	5,7	4136,4
PT220	4500,000	12,511	0,46	5,7	0,46	5,8	4147,9
PT221	4525,000	25,000	0,46	11,5	0,46	11,5	4170,9
PT222	4550,000	20,989	0,46	9,6	0,46	9,7	4190,2
PT223	4566,979	12,500	0,46	5,7	0,46	5,8	4201,7
PT224	4575,000	8,017	0,46	3,7	0,46	3,7	4209,0
PT225	4583,013	12,024	0,46	5,5	0,46	5,6	4220,1
PT226	4599,048	8,493	0,46	3,9	0,46	3,9	4227,9
PT227	4600,000	12,976	0,46	5,9	0,46	6,0	4239,8
PT228	4625,000	25,000	0,46	11,4	0,46	11,5	4262,8
PT229	4650,000	17,168	0,46	7,9	0,46	7,9	4278,6
PT230	4659,337	8,687	0,46	4,0	0,46	4,0	4286,6
PT231	4667,373	7,832	0,46	3,6	0,46	3,6	4293,8
PT232	4675,000	16,313	0,46	7,5	0,46	7,5	4308,8
PT233	4700,000	25,000	0,46	11,5	0,46	11,4	4331,7
PT234	4725,000	17,187	0,46	8,0	0,46	7,8	4347,5
PT235	4734,373	10,341	0,46	4,8	0,46	4,7	4357,0
PT236	4745,682	7,813	0,46	3,6	0,46	3,6	4364,2
PT237	4750,000	14,659	0,46	6,8	0,46	6,7	4377,7
PT238	4775,000	25,000	0,46	11,6	0,46	11,4	4400,7
PT239	4800,000	18,841	0,46	8,7	0,46	8,6	4418,0
PT240	4812,682	12,500	0,46	5,7	0,46	5,7	4429,5

PT241	4825,000	18,659	0,46	8,6	0,46	8,6	4446,6
PT242	4850,000	25,000	0,46	11,5	0,46	11,5	4469,6
PT243	4875,000	25,000	0,46	11,5	0,46	11,5	4492,6
PT244	4900,000	25,000	0,46	11,5	0,46	11,5	4515,6
PT245	4925,000	25,000	0,46	11,5	0,46	11,5	4538,6
PT246	4950,000	25,000	0,46	11,5	0,46	11,5	4561,5
PT247	4975,000	25,000	0,46	11,5	0,46	11,5	4584,5
PT248	5000,000	25,000	0,46	11,5	0,46	11,5	4607,5
PT249	5025,000	19,956	0,46	9,2	0,46	9,2	4625,8
PT250	5039,913	7,456	0,46	3,4	0,46	3,4	4632,7

Couche de Base GB

Num.	Abscisse	Lg Ap.	Ga	uche	Droi	te	Total
		5 1	Surface				
D=0.4	0.000	10.500	partielle	Volume partiel	Surface partielle	Volume partiel	Volume cumulé
PT01	0,000	12,500	1,16	14,5	1,16	14,5	28,9
PT02	25,000	25,000	1,16	28,9	1,16	28,9	86,8
PT03	50,000	25,000	1,16	28,9	1,16	28,9	144,6
PT04	75,000	25,000	1,16	28,9	1,16	28,9	202,4
PT05	100,000	25,000	1,16	28,9	1,16	28,9	260,3
PT06	125,000	25,000	1,16	28,9	1,16	28,9	318,1
PT07	150,000	25,000	1,16	28,9	1,16	28,9	376,0
PT08	175,000	25,000	1,16	28,9	1,16	28,9	433,8
PT09	200,000	25,000	1,16	28,9	1,16	28,9	491,6
PT10	225,000	12,848	1,16	14,9	1,16	14,9	521,4
PT11	225,697	12,500	1,16	14,5	1,16	14,5	550,3
PT12	250,000	24,652	1,16	28,6	1,16	28,5	607,3
PT13	275,000	21,348	1,16	24,8	1,16	24,6	656,7
PT14	292,697	12,500	1,16	14,5	1,16	14,4	685,6
PT15	300,000	16,152	1,16	18,8	1,16	18,6	723,0
PT16	325,000	15,796	1,16	18,4	1,16	18,2	759,5
PT17	331,591	12,500	1,16	14,5	1,16	14,4	788,4
PT18	350,000	19,447	1,16	22,6	1,16	22,4	833,4
PT19	370,485	12,500	1,16	14,5	1,16	14,4	862,3
PT20	375,000	14,757	1,16	17,1	1,16	17,0	896,4
PT21	400,000	25,000	1,16	29,0	1,16	28,8	954,2
PT22	425,000	18,743	1,16	21,7	1,16	21,7	997,6
PT23	437,485	12,500	1,16	14,5	1,16	14,5	1026,5
PT24	450,000	18,757	1,16	21,7	1,16	21,7	1069,9
PT25	475,000	25,000	1,16	28,9	1,16	28,9	1127,8
PT26	500,000	25,000	1,16	28,9	1,16	28,9	1185,6
PT27	525,000	25,000	1,16	28,9	1,16	28,9	1243,4
PT28	550,000	25,000	1,16	28,9	1,16	28,9	1301,3
PT29	575,000	25,000	1,16	28,9	1,16	28,9	1359,1
PT30	600,000	25,000	1,16	28,9	1,16	28,9	1417,0
PT31	625,000	18,750	1,16	21,7	1,16	21,7	1460,3
PT32	637,500	12,500	1,16	14,5	1,16	14,5	1489,3
PT33	650,000	18,750	1,16	21,7	1,16	21,7	1532,6
PT34	675,000	25,000	1,16	28,9	1,16	28,9	1590,5
PT35	700,000	25,000	1,16	28,9	1,16	28,9	1648,3
PT36	725,000	25,000	1,16	28,9	1,16	28,9	1706,2

PT37	750,000	25,000	1,16	28,9	1,16	28,9	1764,0
PT38	775,000	25,000	1,16	28,9	1,16	28,9	1821,8
PT39	800,000	14,920	1,16	17,3	1,16	17,3	1856,4
PT40	804,841	12,500	1,16	14,5	1,16	14,5	1885,3
PT41	825,000	22,580	1,16	26,0	1,16	26,2	1937,5
PT42	850,000	23,420	1,16	26,9	1,16	27,3	1991,7
PT43	871,841	25,000	1,16	28,7	1,16	29,2	2049,5
PT44	900,000	18,370	1,16	21,0	1,16	21,4	2092,0
PT45	908,580	12,500	1,16	14,3	1,16	14,6	2120,9
PT46	925,000	18,370	1,16	21,0	1,16	21,4	2163,4
PT47	945,319	12,500	1,16	14,3	1,16	14,6	2192,3
PT48	950,000	14,841	1,16	17,0	1,16	17,3	2226,6
PT49	975,000	25,000	1,16	28,8	1,16	29,1	2284,4
PT50	1000,000	18,659	1,16	21,5	1,16	21,6	2327,6
PT51	1012,319	12,500	1,16	14,5	1,16	14,5	2356,5
PT52	1025,000	18,841	1,16	21,8	1,16	21,8	2400,1
PT53	1050,000	25,000	1,16	28,9	1,16	28,9	2458,0
PT54	1075,000	25,000	1,16	28,9	1,16	28,9	2515,8
PT55	1100,000	25,000	1,16	28,9	1,16	28,9	2573,6
PT56	1125,000	12,570	1,16	14,5	1,16	14,5	2602,7
PT57	1125,140	12,500	1,16	14,5	1,16	14,4	2631,6
PT58	1150,000	24,930	1,16	29,0	1,16	28,7	2689,3
PT59	1175,000	18,813	1,16	22,0	1,16	21,5	2732,8
PT60	1187,625	12,500	1,16	14,6	1,16	14,3	2761,7
PT61	1200,000	18,687	1,16	21,9	1,16	21,3	2804,9
PT62	1225,000	14,972	1,16	17,5	1,16	17,1	2839,6
PT63	1229,943	12,500	1,16	14,6	1,16	14,3	2868,5
PT64	1250,000	21,159	1,16	24,8	1,16	24,1	2917,4
PT65	1272,261	12,500	1,16	14,6	1,16	14,3	2946,3
PT66	1275,000	13,869	1,16	16,2	1,16	15,9	2978,4
PT67	1300,000	25,000	1,16	29,1	1,16	28,7	3036,2
PT68	1325,000	17,373	1,16	20,2	1,16	20,0	3076,4
PT69	1334,747	12,500	1,16	14,5	1,16	14,5	3105,3
PT70	1350,000	20,127	1,16	23,3	1,16	23,3	3151,9
PT71	1375,000	18,396	1,16	21,3	1,16	21,3	3194,5
PT72	1386,791	12,500	1,16	14,5	1,16	14,5	3223,4
PT73	1400,000	19,104	1,16	22,1	1,16	22,1	3267,6
PT74	1425,000	25,000	1,16	28,9	1,16	28,9	3325,4
PT75	1450,000	25,000	1,16	28,9	1,16	28,9	3383,3
PT76	1475,000	25,000	1,16	28,9	1,16	28,9	3441,1
PT77	1500,000	25,000	1,16	28,9	1,16	28,9	3498,9
PT78	1525,000	25,000	1,16	28,9	1,16	28,9	3556,8
PT79	1550,000	25,000	1,16	28,9	1,16	28,9	3614,6
PT80	1575,000	25,000	1,16	28,9	1,16	28,9	3672,5
PT81	1600,000	25,000	1,16	28,9	1,16	28,9	3730,3
PT82	1625,000	25,000	1,16	28,9	1,16	28,9	3788,1
PT83	1650,000	25,000	1,16	28,9	1,16	28,9	3846,0
PT84	1675,000	25,000	1,16	28,9	1,16	28,9	3903,8
PT85	1700,000	25,000	1,16	28,9	1,16	28,9	3961,7
PT86	1725,000	18,750	1,16	21,7	1,16	21,7	4005,0
PT87	1737,500	12,500	1,16	14,5	1,16	14,5	4034,0
PT88	1750,000	12,500	1,16	14,5	1,16	14,5	4062,9

РТОО	4700 500	40.500	4.40	44.5	1.40	44.5	4004.0
PT89	1762,500	12,500	1,16	14,5	1,16	14,5	4091,8
PT90	1775,000	14,870	1,16	17,2	1,16	17,2	4126,2
PT91	1792,241	12,500	1,16	14,5	1,16	14,5	4155,1
PT92	1800,000	16,380	1,16	18,9	1,16	19,0	4193,0
PT93	1825,000	25,000	1,16	28,8	1,16	29,0	4250,8
PT94	1850,000	17,120	1,16	19,7	1,16	19,9	4290,4
PT95	1859,241	12,500	1,16	14,3	1,16	14,6	4319,4
PT96	1875,000	15,867	1,16	18,2	1,16	18,5	4356,1
PT97	1890,975	12,500	1,16	14,3	1,16	14,6	4385,0
PT98	1900,000	15,867	1,16	18,2	1,16	18,5	4421,7
PT99	1922,709	18,736	1,16	21,5	1,16	21,9	4465,0
PT100	1937,472	13,645	1,16	15,7	1,16	15,9	4496,6
PT101	1950,000	18,764	1,16	21,6	1,16	21,8	4540,0
PT102	1975,000	19,855	1,16	22,9	1,16	23,0	4585,9
PT103	1989,709	12,500	1,16	14,5	1,16	14,5	4614,8
PT104	2000,000	17,645	1,16	20,4	1,16	20,4	4655,6
PT105	2025,000	25,000	1,16	28,9	1,16	28,9	4713,5
PT106	2050,000	25,000	1,16	28,9	1,16	28,9	4771,3
PT107	2075,000	25,000	1,16	28,9	1,16	28,9	4829,1
PT108	2100,000	25,000	1,16	28,9	1,16	28,9	4887,0
PT109	2125,000	25,000	1,16	28,9	1,16	28,9	4944,8
PT110	2150,000	25,000	1,16	28,9	1,16	28,9	5002,7
PT111	2175,000	25,000	1,16	28,9	1,16	28,9	5060,5
PT112	2200,000	25,000	1,16	28,9	1,16	28,9	5118,3
PT113	2225,000	13,127	1,16	15,2	1,16	15,2	5148,7
PT114	2226,254	12,500	1,16	14,5	1,16	14,5	5177,6
PT115	2250,000	24,373	1,16	28,3	1,16	28,1	5234,0
PT116	2275,000	21,627	1,16	25,1	1,16	24,9	5284,0
PT117	2293,254	12,500	1,16	14,5	1,16	14,4	5313,0
PT118	2300,000	15,873	1,16	18,5	1,16	18,2	5349,7
PT119	2325,000	25,000	1,16	29,1	1,16	28,7	5407,5
PT120	2350,000	25,000	1,16	29,1	1,16	28,7	5465,3
PT121	2375,000	14,431	1,16	16,8	1,16	16,6	5498,7
PT122	2378,863	12,500	1,16	14,5	1,16	14,4	5527,6
PT123	2400,000	23,069	1,16	26,9	1,16	26,5	5580,9
PT124	2425,000	25,000	1,16	29,1	1,16	28,7	5638,8
PT125	2450,000	19,736	1,16	23,0	1,16	22,7	5684,4
PT126	2464,472	12,500	1,16	14,5	1,16	14,4	5713,3
PT127	2475,000	17,764	1,16	20,6	1,16	20,4	5754,4
PT128	2500,000	25,000	1,16	29,0	1,16	28,8	5812,2
PT129	2525,000	15,736	1,16	18,2	1,16	18,2	5848,6
PT130	2531,472	12,500	1,16	14,5	1,16	14,5	5877,6
PT131	2550,000	21,764	1,16	25,2	1,16	25,2	5927,9
PT132	2575,000	25,000	1,16	28,9	1,16	28,9	5985,8
PT133	2600,000	25,000	1,16	28,9	1,16	28,9	6043,6
PT134	2625,000	25,000	1,16	28,9	1,16	28,9	6101,4
PT135	2650,000	25,000	1,16	28,9	1,16	28,9	6159,3
PT136	2675,000	25,000	1,16	28,9	1,16	28,9	6217,1
PT137	2700,000	25,000	1,16	28,9	1,16	28,9	6275,0
PT138	2725,000	25,000	1,16	28,9	1,16	28,9	6332,8
PT139	2750,000	25,000	1,16	28,9	1,16	28,9	6390,6
PT140	2775,000	13,879	1,16	16,1	1,16	16,1	6422,7

DT444	0777 750	40.500	1.40	1 444	1.40	44.5	0454.7
PT141	2777,758	12,500 23,621	1,16	14,4	1,16	14,5	6451,7
PT142 PT143	2800,000	· · · · · · · · · · · · · · · · · · ·	1,16	27,2	1,16	27,5	6506,3
	2825,000	18,254	1,16	20,9	1,16	21,3	6548,5
PT144	2836,507	12,500 19,139	1,16	14,2	1,16	14,7	6577,4
PT145	2850,000	· · · · · · · · · · · · · · · · · · ·	1,16	21,8	1,16	22,5	6621,7
PT146	2874,785	12,500	1,16	14,2	1,16	14,7	6650,6
PT147	2875,000	12,608	1,16	14,4	1,16	14,8	6679,8
PT148	2900,000	19,031	1,16	21,7	1,16	22,3	6723,8
PT149	2913,063	12,500	1,16	14,2	1,16	14,7	6752,7
PT150	2925,000	18,469	1,16	21,1	1,16	21,6	6795,4
PT151	2950,000	23,406	1,16	26,9	1,16	27,2	6849,5
PT152	2971,812	25,000	1,16	28,9	1,16	28,9	6907,4
PT153	3000,000	26,594	1,16	30,8	1,16	30,8	6968,9
PT154	3025,000	25,000	1,16	28,9	1,16	28,9	7026,7
PT155	3050,000	25,000	1,16	28,9	1,16	28,9	7084,6
PT156	3075,000	25,000	1,16	28,9	1,16	28,9	7142,4
PT157	3100,000	25,000	1,16	28,9	1,16	28,9	7200,3
PT158	3125,000	25,000	1,16	28,9	1,16	28,9	7258,1
PT159	3150,000	25,000	1,16	28,9	1,16	28,9	7315,9
PT160	3175,000	25,000	1,16	28,9	1,16	28,9	7373,8
PT161	3200,000	25,000	1,16	28,9	1,16	28,9	7431,6
PT162	3225,000	25,000	1,16	28,9	1,16	28,9	7489,5
PT163	3250,000	25,000	1,16	28,9	1,16	28,9	7547,3
PT164	3275,000	25,000	1,16	28,9	1,16	28,9	7605,1
PT165	3300,000	25,000	1,16	28,9	1,16	28,9	7663,0
PT166	3325,000	18,750	1,16	21,7	1,16	21,7	7706,4
PT167	3337,500	12,500	1,16	14,5	1,16	14,5	7735,3
PT168	3350,000	18,750	1,16	21,7	1,16	21,7	7778,7
PT169	3375,000	25,000	1,16	28,9	1,16	28,9	7836,5
PT170	3400,000	25,000	1,16	28,9	1,16	28,9	7894,3
PT171	3425,000	25,000	1,16	28,9	1,16	28,9	7952,2
PT172	3450,000	25,000	1,16	28,9	1,16	28,9	8010,0
PT173	3475,000	25,000	1,16	28,9	1,16	28,9	8067,9
PT174	3500,000	25,000	1,16	28,9	1,16	28,9	8125,7
PT175	3525,000	25,000	1,16	28,9	1,16	28,9	8183,5
PT176	3550,000	25,000	1,16	28,9	1,16	28,9	8241,4
PT177	3575,000	25,000	1,16	28,9	1,16	28,9	8299,2
PT178	3600,000	25,000	1,16	28,9	1,16	28,9	8357,1
PT179	3625,000	25,000	1,16	28,9	1,16	28,9	8414,9
PT180	3650,000	25,000	1,16	28,9	1,16	28,9	8472,7
PT181	3675,000	25,000	1,16	28,9	1,16	28,9	8530,6
PT182	3700,000	25,000	1,16	28,9	1,16	28,9	8588,4
PT183	3725,000	25,000	1,16	28,9	1,16	28,9	8646,3
PT184	3750,000	25,000	1,16	28,9	1,16	28,9	8704,1
PT185	3775,000	25,000	1,16	28,9	1,16	28,9	8761,9
PT186	3800,000	25,000	1,16	28,9	1,16	28,9	8819,8
PT187	3825,000	25,000	1,16	28,9	1,16	28,9	8877,6
PT188	3850,000	25,000	1,16	28,9	1,16	28,9	8935,5
PT189	3875,000	25,000	1,16	28,9	1,16	28,9	8993,3
PT190	3900,000	25,000	1,16	28,9	1,16	28,9	9051,1
PT191	3925,000	21,038	1,16	24,3	1,16	24,3	9099,8
PT192	3942,076	12,500	1,16	14,5	1,16	14,5	9128,7

PT193	3950,000	16,462	1,16	19,1	1,16	19,0	9166,8
PT193 PT194	3975,000	25.000	1,16	29,0	1,16	28,8	9224,6
PT195	4000,000	17,038	1,16	19,8	1,16	19,6	9264,1
PT196	4009,000	12,500	1,16		1,16	14,4	9293,0
PT190	4025,000	20,462		14,5	1,16		9340,3
PT198	· ·		1,16	23,8	1,16	23,5 28,7	9340,3
	4050,000	25,000	1,16	29,1			
PT199	4075,000	21,076	1,16	24,5	1,16	24,2	9446,9
PT200	4092,151	12,500	1,16	14,5	1,16	14,4	9475,8
PT201	4100,000	16,424	1,16	19,1	1,16	18,9	9513,8
PT202	4125,000	25,000	1,16	29,1	1,16	28,7	9571,6
PT203	4150,000	25,000	1,16	29,1	1,16	28,7	9629,4
PT204	4175,000	12,613	1,16	14,7	1,16	14,5	9658,6
PT205	4175,227	12,500	1,16	14,5	1,16	14,4	9687,5
PT206	4200,000	24,887	1,16	28,9	1,16	28,7	9745,0
PT207	4225,000	21,113	1,16	24,5	1,16	24,4	9793,9
PT208	4242,227	12,500	1,16	14,5	1,16	14,5	9822,8
PT209	4250,000	16,387	1,16	19,0	1,16	19,0	9860,7
PT210	4275,000	25,000	1,16	28,9	1,16	28,9	9918,6
PT211	4300,000	25,000	1,16	28,9	1,16	28,9	9976,4
PT212	4325,000	25,000	1,16	28,9	1,16	28,9	10034,2
PT213	4350,000	25,000	1,16	28,9	1,16	28,9	10092,1
PT214	4375,000	25,000	1,16	28,9	1,16	28,9	10149,9
PT215	4400,000	25,000	1,16	28,9	1,16	28,9	10207,8
PT216	4425,000	25,000	1,16	28,9	1,16	28,9	10265,6
PT217	4450,000	25,000	1,16	28,9	1,16	28,9	10323,4
PT218	4475,000	24,989	1,16	28,9	1,16	28,9	10381,2
PT219	4499,979	12,500	1,16	14,5	1,16	14,5	10410,2
PT220	4500,000	12,511	1,16	14,5	1,16	14,5	10439,1
PT221	4525,000	25,000	1,16	28,8	1,16	29,0	10496,9
PT222	4550,000	20,989	1,16	24,1	1,16	24,4	10545,5
PT223	4566,979	12,500	1,16	14,3	1,16	14,6	10574,4
PT224	4575,000	8,017	1,16	9,2	1,16	9,3	10592,9
PT225	4583,013	12,024	1,16	13,8	1,16	14,0	10620,8
PT226	4599,048	8,493	1,16	9,7	1,16	9,9	10640,4
PT227	4600,000	12,976	1,16	14,9	1,16	15,1	10670,4
PT228	4625,000	25,000	1,16	28,8	1,16	29,0	10728,2
PT229	4650,000	17,168	1,16	19,8	1,16	19,9	10768,0
PT230	4659,337	8,687	1,16	10,0	1,16	10,1	10788,0
PT231	4667,373	7,832	1,16	9,1	1,16	9,1	10806,2
PT232	4675,000	16,313	1,16	18,9	1,16	18,8	10843,9
PT233	4700,000	25,000	1,16	29,1	1,16	28,8	10901,7
PT234	4725,000	17,187	1,16	20,0	1,16	19,7	10941,5
PT235	4734,373	10,341	1,16	12,1	1,16	11,8	10965,4
PT236	4745,682	7,813	1,16	9,1	1,16	8,9	10983,5
PT237	4750,000	14,659	1,16	17,1	1,16	16,8	11017,4
PT238	4775,000	25,000	1,16	29,1	1,16	28,8	11075,2
PT239	4800,000	18,841	1,16	21,8	1,16	21,7	11118,8
PT240	4812,682	12,500	1,16	14,5	1,16	14,5	11147,7
PT241	4825,000	18,659	1,16	21,6	1,16	21,6	11190,9
PT242	4850,000	25,000	1,16	28,9	1,16	28,9	11248,7
PT243	4875,000	25,000	1,16	28,9	1,16	28,9	11306,6
PT244	4900,000	25,000	1,16	28,9	1,16	28,9	11364,4

PT245	4925,000	25,000	1,16	28,9	1,16	28,9	11422,2
PT246	4950,000	25,000	1,16	28,9	1,16	28,9	11480,1
PT247	4975,000	25,000	1,16	28,9	1,16	28,9	11537,9
PT248	5000,000	25,000	1,16	28,9	1,16	28,9	11595,8
PT249	5025,000	19,956	1,16	23,1	1,16	23,1	11641,9
PT250	5039,913	7,456	1,16	8,6	1,16	8,6	11659,2

Références Bibliographiques

1. Règlements

- ✓ B40 : Normes technique d'aménagements des routes /octobre1977.
- ✓ SETRA : Service d'études techniques des routes et autoroutes.

2. Documents

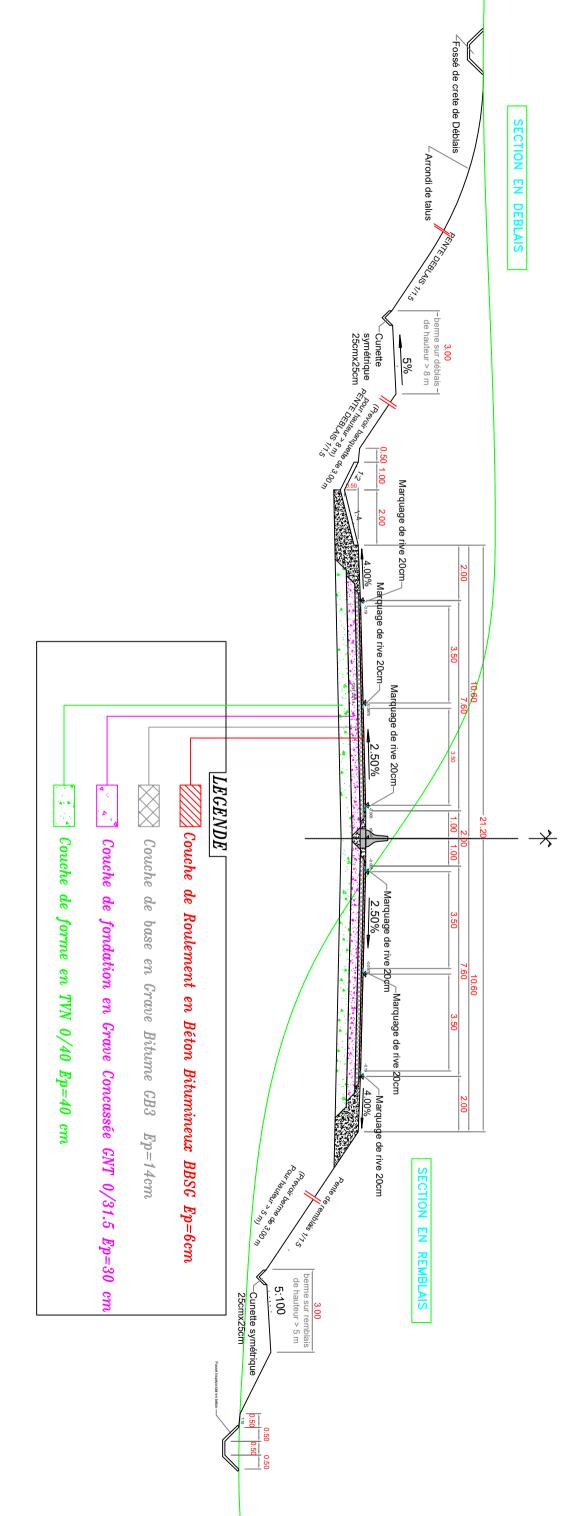
✓ Catalogue de dimensionnement du corps des chausséesneuves (C.T.T.P)

(fasicules1, 2 et 3) /novembre 2015.

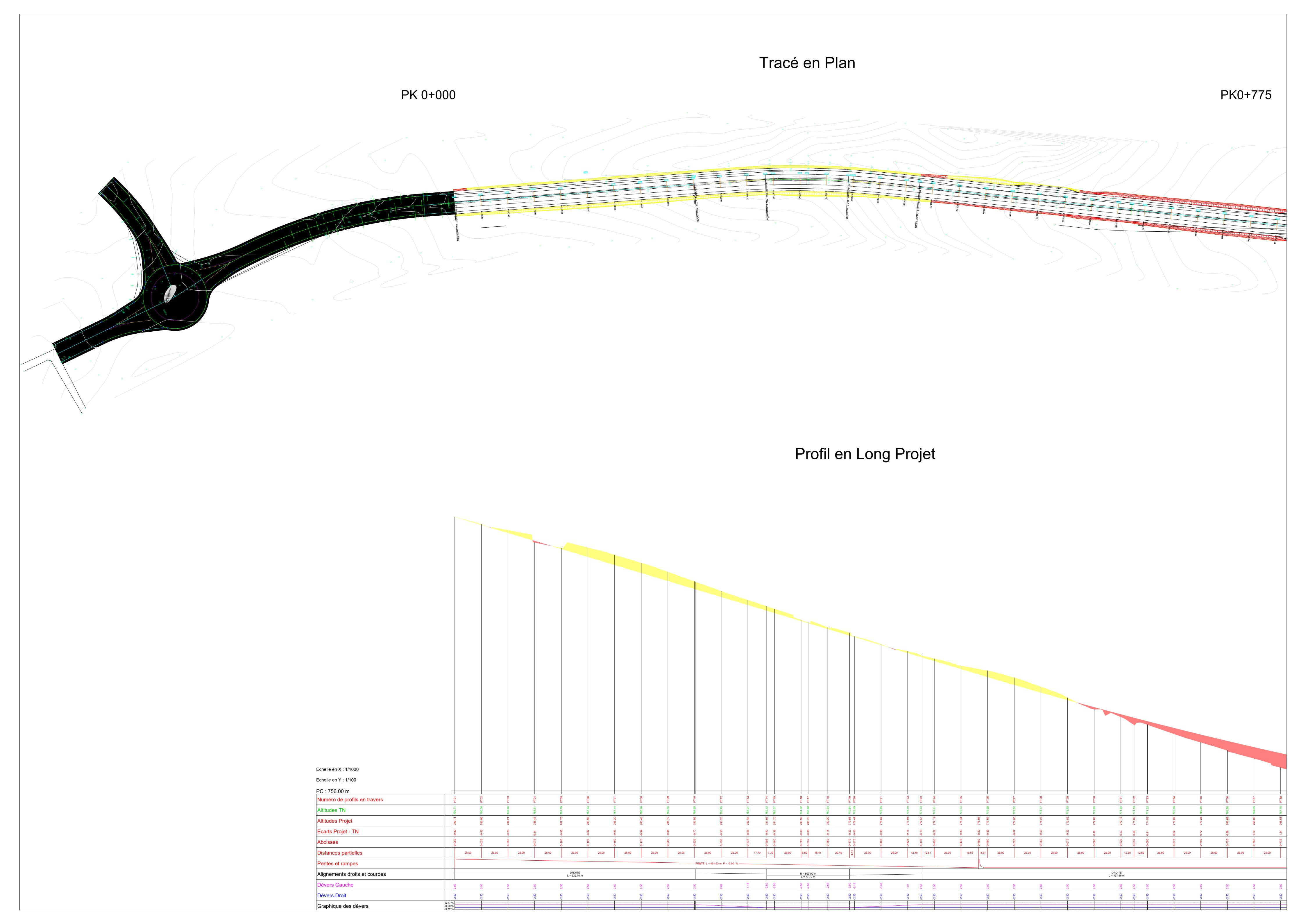
- ✓ Cours de route de 3^{eme} année licence.
- ✓ APD de RN 81A sur 05 km (BET : SETS Setif)
- ✓ Rapport géotechnique (BET : Sarl : TAGHAST ENNGINEERING)

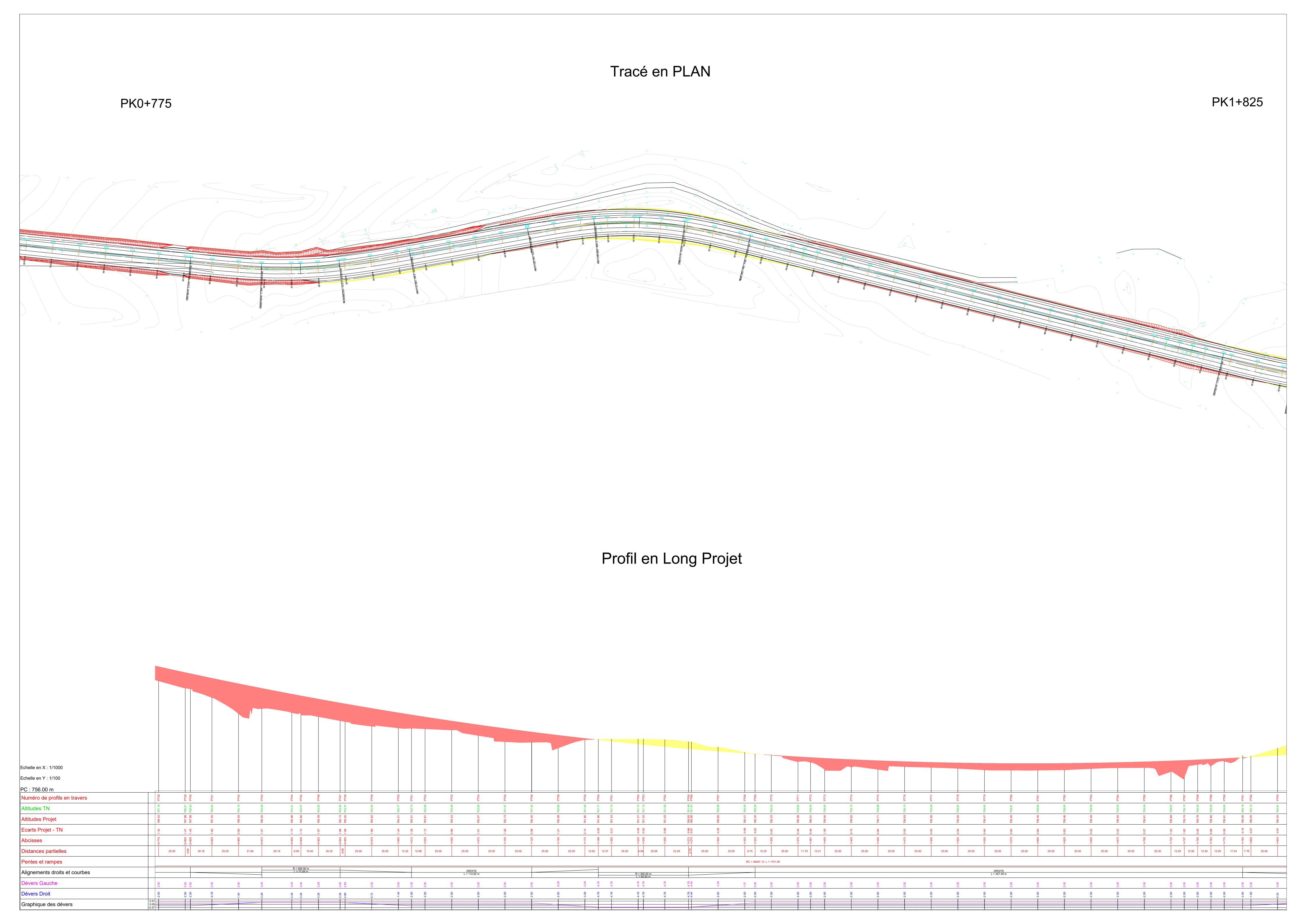
3. Outils Informatiques

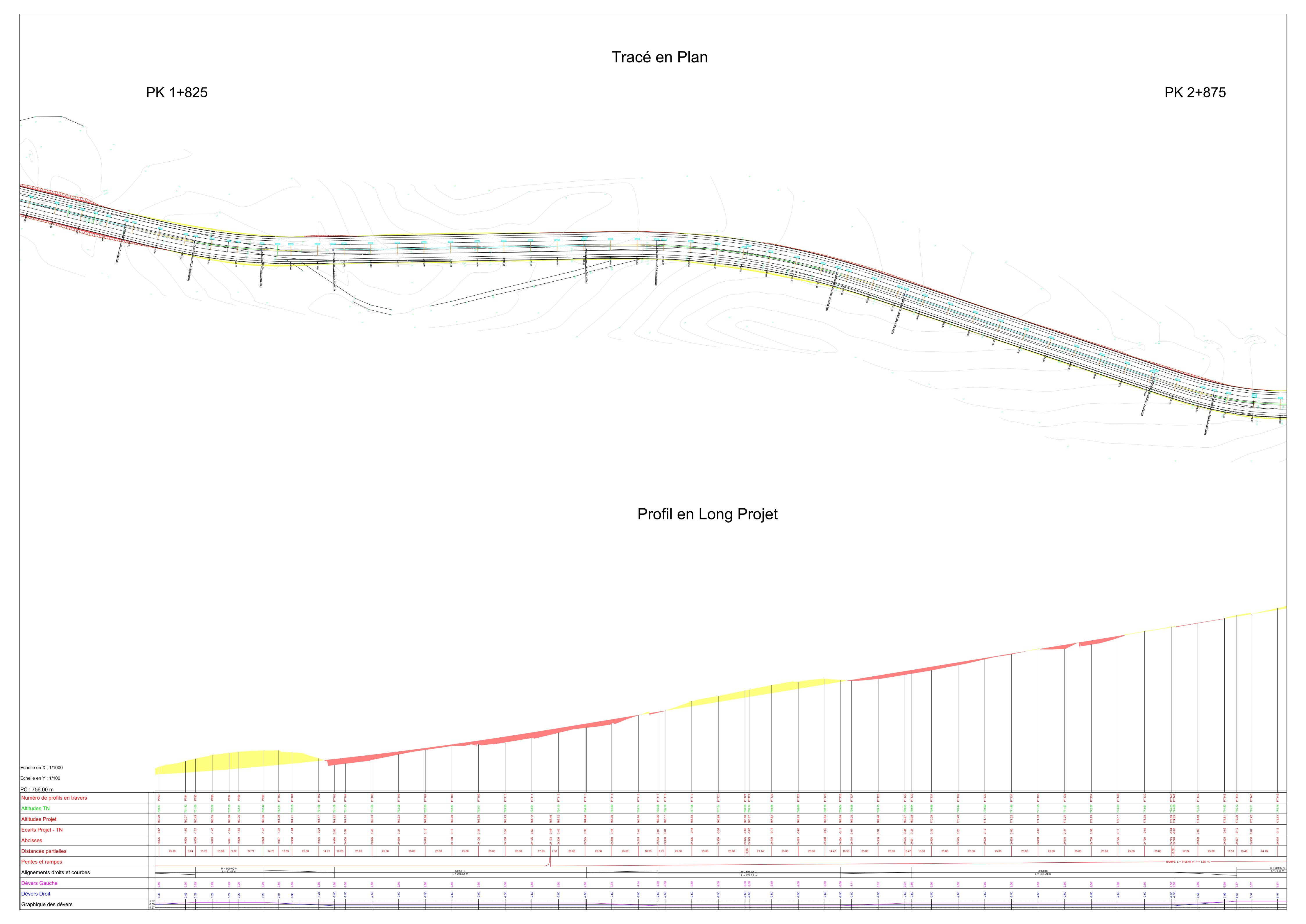
- ✓ Logiciel Covadis (16.0)
- ✓ Microsoft EXCEL
- ✓ Autocad 2016
- ✓ Microsoft Word

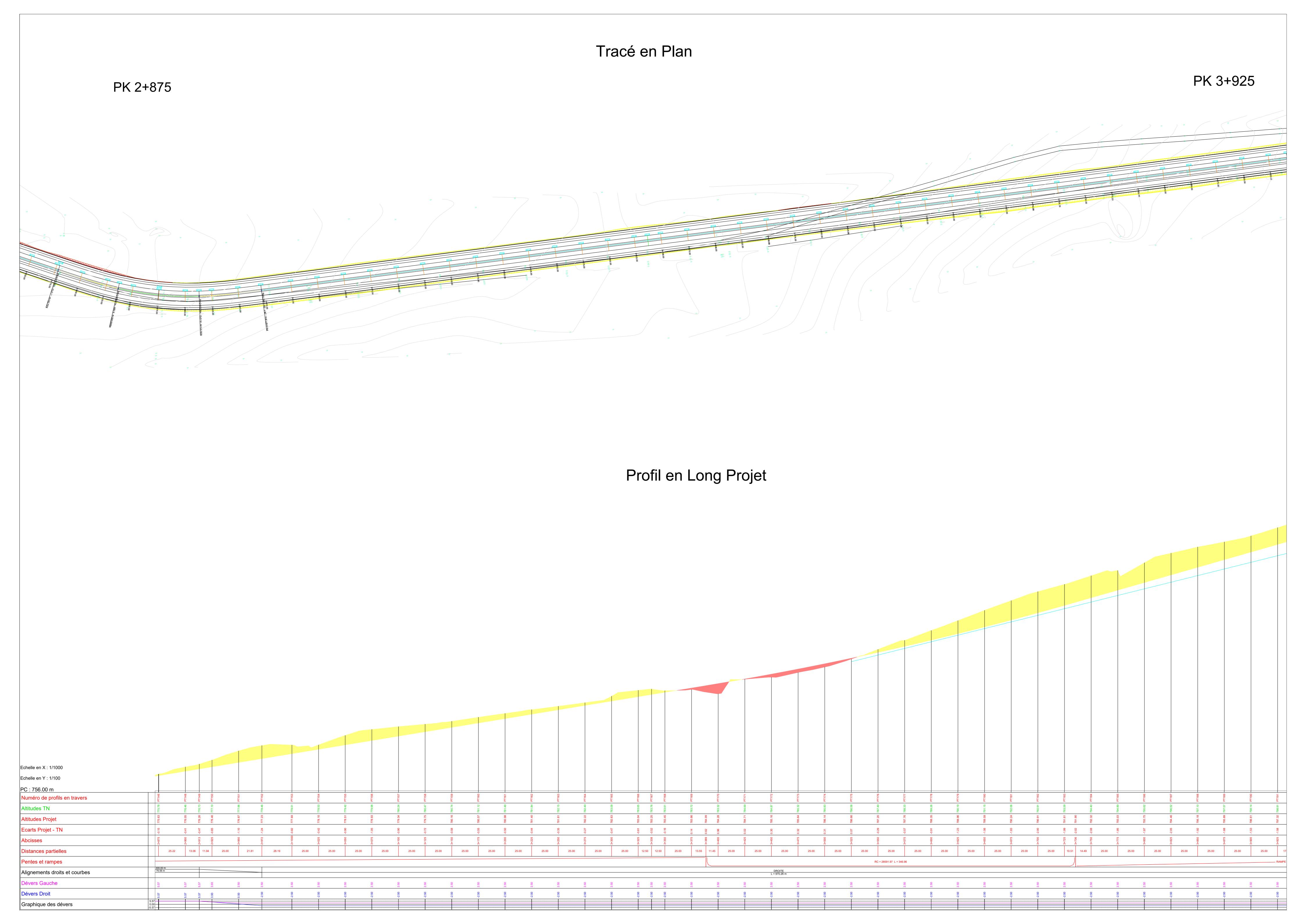

4. Autres

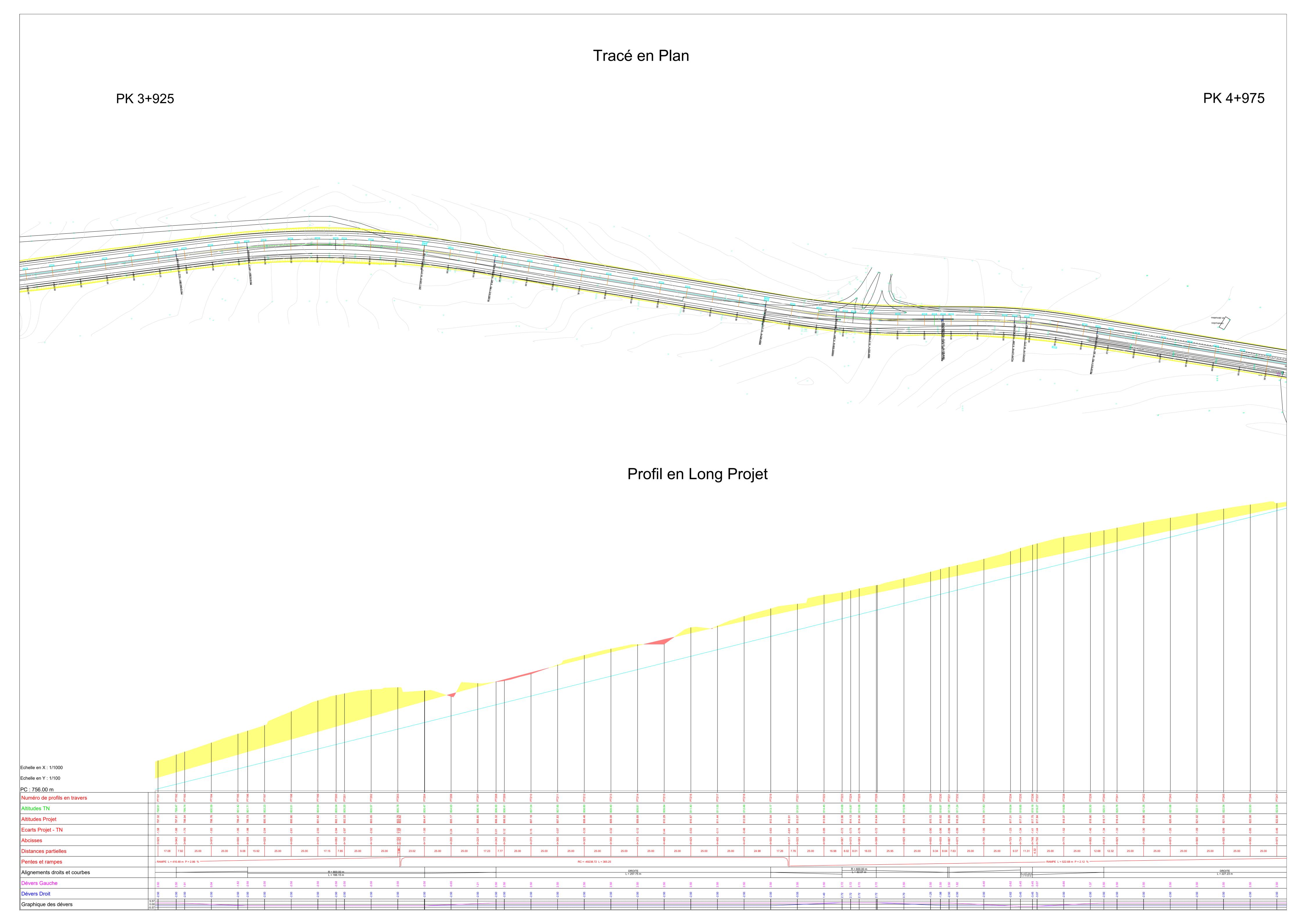
Site internet (www.google.com/www.fr.wikipidea.org/


Anciens mémoires:


Profil en Travers Type et Tracé en Plan et Profil en long


Profil en travers type en section courante




Note: Le remplissage sous le TPC et les accotements sera en GNT

