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Preface

This course packet is designed as a comprehensive guide with solved exercises covering
the official curriculum of the Mathematical Analysis III module. It is primarily aimed
at second-year engineering students in computer science but may also be beneficial for
second-year mathematics and technical science students.

At the end of each chapter, there is a selection of typical exercises with detailed solu-
tions, crafted progressively to help students familiarize themselves with new concepts
and ensure a solid understanding of key points.

The first chapter introduces parameterized integrals.

The second chapter covers the Laplace and Fourier transforms. The following chapter is
dedicated to elements of topology.

Chapter 4 focuses on functions of several variables and vector-valued functions, empha-
sizing limits and continuity.

Chapter 5 addresses differential calculus and the Jacobian matrix, while the final chapter
deals with optimization, both with and without constraints.
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Chapter

1 Parameterized Integrals

Often, solving a differential equation involves computing an integral of the form:∫ b

a
f (x, t)dt.

In many instances, we do not have an explicit expression for this integral, which necessi-
tates analyzing the function F(x) as it is presented—specifically, as an integral dependent
on the parameter x. This chapter outlines the conditions under which F(x) is continuous
and differentiable. We will apply these methods to the Laplace and Fourier transforms.

1.1 Integrals Depending on a Parameter

1.1.1 Function Defined by an Integral

Let f : (x, t)→ f (x, t) be a function of two variables, x and t. We consider x as a parameter

and t ∈ [a,b] as an integration variable. This allows us to define: F(x) =
∫ b

a
f (x, t)dt.

For a fixed x, for F(x) to exist, it is enough that the partial application t → f (x, t) be
continuous on [a,b]. But this does not guarantee the continuity of the function F. We
provide sufficient conditions for F to be continuous, and then differentiable.

Theorem 1.1.1. Let I be an interval of R and J = [a,b] a bounded closed interval. Let f
be a continuous function on I × J with values in R (or C).

Then the function F defined for all x ∈ I by F(x) =
∫ b

a
f (x, t)dt is continuous on I .

Example 1.1.2. Let F(x) =
∫ π

0 sin(x+ t) · ext2
dt, defined for x ∈ I = R.

The function (x, t) 7→ f (x, t) = sin(x + t) · ext2
is continuous on R × [0,π], so the function

x 7→ F(x) is continuous on R. We have F(0) =
∫ π

0 sin(t) · 1dt = −cos(t)
∣∣∣∣π
0

= 2. Even though

we do not have a formula for F(x) in general, we can deduce from the continuity that F(x)→
F(0) = 2 as x→ 0.

Theorem 1.1.3. Let I be an interval of R and J = [a,b] a bounded closed interval. Assume
that:

6



1.1. INTEGRALS DEPENDING ON A PARAMETER 7

• (x, t) 7→ f (x, t) is a continuous function on I × J (with values in R or C),

• the partial derivative (x, t) 7→ ∂f
∂x (x, t) exists and is continuous on I × J .

Then the function F defined for all x ∈ I by F(x) =
∫ b

a
f (x, t)dt is of class C1 on I and:

F′(x) =
∫ b

a

∂f

∂x
(x, t)dt.

We can remember the mnemonic abbreviation for the interchange of derivative and inte-
gral:

d
dx

∫ b

a
=

∫ b

a

∂
∂x

.

Example 1.1.4. Let us study F(x) =
∫ 1

0
dt

x2+t2 for x ∈ (0,+∞). Let f (x, t) = 1
x2+t2 . Then:

• f is continuous on (0,+∞)× [0,1],

• ∂f
∂x (x, t) = − 2x

(x2+t2)2 is continuous on (0,+∞)× [0,1].

We will have F′(x) =
∫ 1

0 −
2x

(x2+t2)2 dt. For this example, we can explicitly calculate F(x):

F(x) =
1
x

arctan
(1
x

)
=⇒ F′(x) = − 1

x2 arctan
(1
x

)
− 1
x(1 + x2)

.

This proves F′(x) =
∫ 1

0 −
2x

(x2+t2)2 dt = − 1
x2 arctan

(
1
x

)
− 1

x(1+x2) .

Theorem 1.1.5 (Fubini’s Theorem). Let I = [α,β] and J = [a,b] be two bounded closed
intervals. Let f be a continuous function on I × J , with values in R (or C). Then the

function F defined for all x ∈ I by F(x) =
∫ b

a
f (x, t)dt is integrable on I and∫ β

α
F(x)dx =

∫ β

α

(∫ b

a
f (x, t)dt

)
dx =

∫ b

a

(∫ β

α
f (x, t)dx

)
dt.

The order of integration can be interchanged:
∫ β

α

∫ b

a
f (x, t)dt dx =

∫ b

a

∫ β

α
f (x, t)dxdt.

Example 1.1.6. Let’s calculate:

I =
∫ π

0

∫ 1

0
(t sinx+ 2x)dt dx.

First method: We first integrate with respect to t, then with respect to x:

I =
∫ π

x=0
(
∫ 1

t=0
(t sinx+ 2x)dt)dx =

∫ π

0

[
t2

2
sinx+ 2xt

]t=1

t=0
dx =

∫ π

0

(1
2

sinx+ 2x
)
dx =

[
−1

2
cosx+ x2

]x=π

x=0
= π2 + 1.
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Second method: We use Fubini’s theorem, which states that we can first integrate with
respect to x, then with respect to t:

I =
∫ 1

t=0
(
∫ π

x=0
(t sinx+ 2x)dx)dt =

∫ 1

t=0

[
−t cosx+ x2

]x=π

x=0
dt =

∫ 1

t=0
(2t +π2)dt = [t2 +π2t]t=1

t=0 = π2 + 1.

1.1.2 Varying Bounds

Another category of integrals is when the bounds are the parameters of the function:

G(x) =
∫ v(x)
u(x) f (t)dt, where u and v are functions of x.

Theorem 1.1.7. Let f be a continuous function on a closed interval [a,b] with values in
R (or C). Let I be an interval in R and u,v : I → [a,b] be functions of class C1. Then the

function G defined on the interval I by G(x) =
∫ v(x)
u(x) f (t)dt is of class C1 and

G′(x) = v′(x)f (v(x))−u′(x)f (u(x)).

Example 1.1.8. Let’s calculate the derivative of G(x) =
∫ x2

x
1

ln(t) dt for x > 1.
To apply Theorem 4, we restrict to an interval [a,b] such that, for a fixed x, x ∈ [a,b] ⊂
(1,+∞). With f (t) = 1

ln t ,u(x) = x, and v(x) = x2, we have:
G′(x) = v′(x) · f (v(x))−u′(x) · f (u(x)) = 2x · 1

ln(x2) − 1 · 1
ln(x) = x−1

lnx .

1.2 Improper Integrals Depending on a Parameter

Let f : I × [0,+∞) → R be a function, where I is an interval in R. Suppose that the
integral of the partial application t 7→ f (x, t) is convergent on [0,+∞). We want to study
the function that associates to x ∈ I the value F(x) =

∫ +∞
0 f (x, t)dt.

As you know, a convergent integral is defined as the limit of integrals on bounded in-

tervals. Let’s set FA(x) =
∫ A

0 f (x, t)dt, so that F(x) = limA→+∞FA(x). The results of the
previous sections give conditions under which FA(x) is continuous and differentiable for
fixed A. To pass to the limit as A tends to infinity, we will add a condition called the
dominated convergence.

Definition 1.2.1 (Dominated Convergence). Let f : I×[0,+∞)→R (or C) be a continu-
ous function. We say that (x, t) 7→ f (x, t) satisfies the hypothesis of dominated convergence
if there exists g : [0,+∞)→R such that:

1. the integral
∫ +∞

0 g(t)dt is convergent,

2. and such that ∀t ∈ [0,+∞), ∀x ∈ I, |f (x, t)| ⩽ g(t).

Remark 1.2.2. 1. Note that g must necessarily be non-negative, so
∫ +∞

0 g(t)dt is actually
absolutely convergent.
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2. In the case of dominated convergence, for each x ∈ I , F(x) =
∫ +∞

0 f (x, t)dt is absolutely
convergent.

Example 1.2.3. Let f (x, t) = sinx+sin t
1+x2+t2 . Then f satisfies the hypothesis of dominated conver-

gence on I = R because |f (x, t)| =
∣∣∣ sinx+sin t

1+x2+t2

∣∣∣ ⩽ 2
1+t2 = g(t), with

∫ +∞
0 g(t)dt converging.

Theorem 1.2.4. Let I be an interval of R and J = [0,+∞). Let f be a continuous function
on I × J with values in R (or C) and which satisfies the hypothesis of dominated conver-
gence. Then the function F defined for all x ∈ I by F(x) =

∫ +∞
0 f (x, t)dt is continuous on

I .

Theorem 1.2.5. Let I be an interval of R and J = [0,+∞). Assume that:

• (x, t) 7→ f (x, t) is a continuous function on I × J (with values in R or C).

• the partial derivative (x, t) 7→ ∂f
∂x (x, t) exists, is continuous on I × J , and satisfies the

hypothesis of dominated convergence.

Then F, defined for all x ∈ I by F(x) =
∫ +∞

0 f (x, t)dt, is of class C1 on I and: F′(x) =∫ +∞
0

∂f
∂x (x, t)dt.

Example 1.2.6. Let f (x, t) = x
1+(xt)2 . Then f is continuous on R× [0,+∞) and

FA(x) =
∫ A

0
f (x, t)dt =

∫ A

0

x

1 + (xt)2 dt =
∫ xA

0

x

1 +u2 du = [arctan(u)]xA0 = arctan(xA) with u = xt.

Therefore: F(x) =
∫ +∞

0 f (x, t)dt = limA→+∞FA(x) = limA→+∞ arctan(xA) =


+π

2 if x > 0,

−π2 if x < 0,

0 if x = 0.
Thus, F is discontinuous.

Theorem 1.2.7 (Fubini’s Theorem). Let I = [α,β] be a bounded closed interval and J =
[0,+∞). Let f be a continuous function on I × J , with values in R (or C), and which
satisfies the hypothesis of dominated convergence. Then the function F is integrable on I
and ∫ β

α
F(x)dx =

∫ β

α
(
∫ +∞

0
f (x, t)dt)dx =

∫ +∞

0
(
∫ β

α
f (x, t)dx)dt.
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1.3 Chapter 1 Exercises

Exercise 1
Consider the following functions:

F(x) =
∫ 2

1

e−x
2t3

1 + t2dt and G(x) =
∫ 1

0

ex(t+1)

t + 1
dt.

1. Study the continuity and differentiability of F and G on R.

2. Calculate G′.

Correction ▼ [1]

Exercise 2
Consider the function

F(x) =
∫ 1

0

1
(t2 + x2)(t2 + 1)

dt.

1. Show that F is continuous on R
∗.

2. Find the function F(x) (compute the integral).

3. Deduce the value of
∫ 1

0
1

(t2+1)2dt.

Correction ▼ [2]

Exercise 3
Consider the following functions:

F(x) =
(∫ x

0
e−t

2
dt

)2

, G(x) =
∫ 1

0

e−(1+t2)x2

t2 + 1
dt.

1. Show that F and G are differentiable on [0,+∞) and compute F′ and G′.

2. Show that for all x ∈ [0,+∞), F(x) +G(x) = π
4 .

3. Deduce the value of
∫ +∞

0 e−t
2
dt.

Correction ▼ [3]

Exercise 4
Let

F(x) =
∫ +∞

1

e−xt

(1 + t)
√
t
.

1. Show that F is continuous on [0,+∞[.

2. Show that F is differentiable on ]0,+∞[.

Correction ▼ [4]



Chapter

2 Laplace Transform and
Fourier Transform

2.1 Laplace Transform

This section serves as an introduction to the Laplace transform, a mathematical opera-
tion extensively utilized in electronics. It effectively converts a time-dependent function
t into a frequency-dependent function s. Additionally, the Laplace transform is valuable
for solving differential equations, as it transforms analytical operations such as differen-
tiation and integration into algebraic operations like multiplication and division.

Definition 2.1.1. Let f be a continuous function on the interval [0,+∞[, with values in
R (or C). The Laplace transform of f is the function F defined by:

F(s) =
∫ +∞

0
f (t)e−stdt (2.1)

If one wants to emphasize the dependence on the function f (rather than the parameter s),
then one can write this same integral as:

L(f ) =
∫ +∞

0
f (t)e−stdt (2.2)

Remark 2.1.2.

• We will assume that s is a real parameter, and the functions to be continuous.

• When we write F(s), this will conventionally mean that the integral converges.

Example 2.1.3. 1. Let f (t) = 1, the constant function equal to 1. Then, for s > 0,

F(s) =
∫ +∞

0
1 · e−stdt =

[
−e
−st

s

]+∞

0
= lim

t→+∞
(
−e−st

s
)− (
−e0

s
) =

1
s

(2.3)

2. Let f (t) = et. Then, for s > 1,

F(s) =
∫ +∞

0
ete−stdt =

∫ +∞

0
e(1−s)tdt =

[
e(1−s)t

1− s

]+∞

0
=

1
s − 1

(2.4)

3. Let f (t) = t. We perform integration by parts with u(t) = t, v′(t) = e−st. Then, for s > 0:

F(s) =
∫ +∞

0
t · e−stdt =

[
t · −e

−st

s

]+∞

0
−
∫ +∞

0
1.
−e−st

s
dt = 0 +

1
s

[
−e−st

s
]+∞
0 =

1
s2 (2.5)

11
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2.1.1 Properties

Proposition 2.1.4. 1. Linearity: L(λf +µg) = λL(f ) +µL(g).

2. Differentiation: L(f ′) = sL(f )− f (0).

3. Integration: L
(∫

f
)

= 1
sL(f ) where

∫
f is the primitive of f vanishing at t = 0.

4. Delay theorem: L(f (t − τ)) = e−sτL(f (t)).

5. Initial value theorem: lims→+∞ sF(s) = f (0), lims→+∞F(s) = 0.

6. Final value theorem: If the limit of f (t) exists and is finite as t → +∞, then
lims→0 sF(s) = limt→+∞ f (t).

2.1.2 Common Laplace transforms

Here are some classical Laplace transforms:

f (t) L(f (t)) = F(s) Validity
c c

s s > 0

tn n!
sn+1 s > 0

eαt 1
s−α s > α

tneαt n!
(s−α)n+1 s > α

sin(ωt) ω
s2+ω2 s > 0

cos(ωt) s
s2+ω2 s > 0

√
t 1

2

√
π
s3 s > 0

1√
t

√
π
s s > 0

2.1.3 Inverse Laplace Transform

Theorem 2.1.5. Let f ,g : [0,+∞)→ R be two continuous functions, and let F and G be
their Laplace transforms. If for all s > 0, F(s) = G(s), then for all t > 0, f (t) = g(t).

This theorem allows us to talk about the inverse Laplace transform, i.e., going from F(s)
to f (t). There is no explicit formula at our disposal to make this transition. This is why
the tables of Laplace transforms are useful: knowing F(s), we manually search for the
corresponding f (t).

Example 2.1.6. Let’s find the function f (t) corresponding to the Laplace transform:
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F(s) =
2s − 1
s2 + 1

− 3
(s − 2)2 ?

We can decompose F(s) as: F(s) = 2s
s2+1 −

1
s2+1 −

3
(s−2)2 .

Using the linearity of the Laplace transform and the tables of common transforms, the corre-
sponding function f (t) is: f (t) = 2cos t − sin t − 3te2t .

2.1.4 Differential Equations

If F(s) is the Laplace transform of a function f (t), then sF(s)−f (0) is the Laplace transform
of f ′(t). The Laplace transform thus replaces the operation of differentiation on f (t) by a
multiplication by s on F(s). Here is how we can solve differential equations:

Differential equation

Laplace transform

Algebraic equation

Algebraic solution

Inverse Laplace transform

Differential solution

We transform a differential problem into an algebraic problem, solve the algebraic prob-
lem, and then transform the algebraic solution into a differential solution. To respect the
conventions, in the following we will note the functions as y(t) instead of f (t).

Example 2.1.7. What is the solution to the differential equation: y′(t)+y(t) = t with y(0) =
3 ?

1. Laplace transforms: Let’s calculate the Laplace transforms of the objects that appear:
- Let F(s) = L(y),
- Then we know that L(y′) = sF(s)− y(0),
- Finally, L(t) = 1

s2 .

2. From the differential equation to the algebraic equation: Since y′(t) + y(t) = t,
then L(y′) + L(y) = L(t). This gives sF(s) − y(0) + F(s) = 1

s2 . And since y(0) = 3 by
hypothesis, then: (s+ 1)F(s) = 3 + 1

s2 .
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3. Solving the algebraic equation: It is simply a matter of: F(s) = 3
s+1 + 1

s2(s+1) .

But we will need the decomposition into partial fractions: F(s) = −1
s + 1

s2 + 4
s+1 .

4. Back to the differential solution: We need to find the function y(t) corresponding to
our algebraic solution F(s). This is where the tables are useful:

- For F1(s) = 1
s , it is y1(t) = 1,

- For F2(s) = 1
s2 , it is y2(t) = t,

- For F3(s) = 1
s+1 , it is y3(t) = e−t.

So by linearity, the solution is y(t) = −y1(t)+y2(t)+4y3(t), and thus: y(t) = −1+t+4e−t .

We can verify that this function satisfies y′(t) + y(t) = t and y(0) = 3.

Example 2.1.8. Let’s solve the following differential equation:

y′′(t)− 4y(t) = 3e−t with y(0) = 0 and y′(0) = 1.

1. Let’s denote F(s) = L(y). We have L(y′) = sF(s)− y(0), and thus

L(y′′) = sL(y′)− y′(0) = s2F(s)− sy(0)− y′(0).

Given our initial conditions, we have here L(y′′) = s2F(s)− 1. Finally, L(e−t) = 1
s+1 .

2. The equation y′′(t)− 4y(t) = 3e−t becomes (s2 − 4)F(s) = 1 + 3
s+1 .

3. Thus, after decomposition into partial fractions:

F(s) =
1

s2 − 4
+

3
(s+ 1)(s2 − 4)

=
1
2

s+ 2
+

1
2

s − 2
− 1
s+ 1

4. Using the tables, we recognize the solution:

y(t) =
1
2
e−2t +

1
2
e2t − 3e−t .

2.2 Fourier Transform

This section is an introduction to the Fourier transform. Like the Laplace transform, the
Fourier transform changes a function that depends on time into a function that depends
on frequency and is widely used in signal theory. The Fourier transform applies to non-
periodic functions, in contrast to Fourier series.

2.2.1 Definition

Definition 2.2.1. Let f be a piecewise continuous function on R, with values in R (or
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C). The Fourier transform of f is the function F defined by:

F (s) =
∫ +∞

−∞
f (t)e−istdt

We also denote it as F (f ).

Example 2.2.2. 1. Let f be the function defined by f (t) = 1 if t ∈ [−1,+1], and f (t) = 0
otherwise. Then

F (s) =
∫ +∞

−∞
f (t)e−istdt =

∫ 1

−1
e−istdt =

[
e−ist

−is

]1

−1
=

2sin(s)
s

.

2. What is the Fourier transform F(s) of the function defined by
f (t) = e−α|t|, with α > 0?

F (s) =
∫ +∞

−∞
f (t)e−istdt =

∫ 0

−∞
eαte−istdt +

∫ +∞

0
e−αte−istdt

=
[
e(α−is)t

α − is

]0

−∞
+
[
e(−α−is)t

−α − is

]+∞

0

=
1

α − is
+ 0 + 0 +

1
α + is

=
2α

α2 + s2 .

Remark 2.2.3. • Different definitions of the Fourier transform may be found in the liter-
ature, with different constants. So one must be careful about the specific definition being
used.

• The improper integral has two uncertain points at −∞ and +∞. By definition, an im-
proper integral

∫ +∞
−∞ g(t)dt converges if and only if the integral

∫ 0
−∞ g(t)dt converges and

the integral
∫ +∞

0 g(t)dt converges as well.

• Unlike the Laplace transform, the Fourier transform often takes values in C, even if the
original function is defined on R.

2.2.2 Properties

Proposition 2.2.4. 1. Linearity: F (λf +µg) = λF (f ) +µF (g).

2. Parity: If f is an even function, then F(s) = 2
∫ +∞

0 f (t)cos(st)dt. If f is an odd

function, then F(s) = −2i
∫ +∞

0 f (t)sin(st)dt.

3. Differentiation: F (f ′) = isF (f ).

4. Time-delay Theorem: F [f (t − τ)] = e−isτF [f (t)].
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2.2.3 Inverse Fourier Transform

The Fourier transform maps f (t) to F(s). There exists an inverse Fourier transform that
allows us to go back from F(s) to f (t).

Theorem 2.2.5. If F(s) =
∫ +∞
−∞ f (t)e−istdt has an absolutely convergent integral

∫ +∞
−∞ |F(s)|ds,

then

f (t) =
1

2π

∫ +∞

−∞
F(s)e+istds.

One must pay attention to the constant 1
2π and the positive sign in e+ist. We accept this

theorem. In other words, if we denote the inverse Fourier transform as F −1, we have:

F −1(f ) =
1

2π

∫ +∞

−∞
f (t)e+istdt.

Then the inverse Fourier transform F −1 is the operation that allows us to go back from F
to f :

F −1{F (f )} = f and F {F −1(f )} = f .

It is remarkable that the inverse transform has a form very close to the direct transform.

Example 2.2.6. What is the Fourier transform of g(t) = 1
1+t2 ?

In example 13, we saw that the Fourier transform of f (t) = e−|t| is F(s) = 1
1+s2 , which has an

absolutely convergent integral. This means that, according to Theorem 9, the inverse Fourier
transform of g(t) = 1

1+t2 is: G(s) = e−|s|
2 .

We just said that:
1

2π

∫ +∞

−∞
g(t)e+istdt = G(s)

So, evaluating this expression at −s, we get: 1
2π

∫ +∞
−∞ g(t)e−istdt = G(−s). In other words:

1
2π

∫ +∞

−∞

1
1 + t2 e

−istdt =
e−|s|

2

This allows us to conclude that the Fourier transform of g(t) = 1
1+t2 is:

F (g) =
∫ +∞

−∞

e−ist

1 + t2dt = πe−|s|

In particular, when we take the real part of this last equality:
∫ +∞
−∞

cos(st)
1+t2 dt = πe−|s|. which

gives for s = 1:
∫ +∞
−∞

cos t
1+t2dt = π

e . The correspondence is therefore:

e−|t|
F−→ 2

1+s2

e−|t|
2

F −1

←− 1
1+s2
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Relation with the Laplace transform

The Fourier and Laplace transforms, when they are well-defined, are related by the fol-
lowing relationship:

F (f )(s) = L(f+)(+is) +L(f−)(−is)

where f+ and f− are defined on [0,+∞[ by: f+(t) = f (t) and f−(t) = f (−t) for t ⩾ 0.

Example 2.2.7. Let’s calculate the Fourier transform of f (t) = t2e−|t|.
We denote f+(t) and f−(t) as above. Since the function f is even, then f+ = f−.
From the Laplace transform tables, we know that for f+(t) = t2e−t (with t ⩾ 0), which is of
the type tneαt, we have L(f+) = 2

(s+1)3 . We can thus deduce that:

F (f )(s) = L(f+)(+is) +L(f−)(−is) =
2

(is+ 1)3 +
2

(−is+ 1)3 =
4− 12s2

(1 + s2)3 .

2.2.4 Convolution product

The convolution product, denoted by ∗, is a bilinear operator and a commutative product.

Definition 2.2.8. Let (f ,g) be two functions defined on R (or C). If f and g are integrable
on R, we define:

(f ∗ g)(x) =
∫
R

f (x − y)g(y)dy

Basic Properties:
Let f and g be two functions in L1(R).

1. Commutativity: The convolution product is commutative:

(f ∗ g)(x) = (g ∗ f )(x)

2. Translation: Let τh(·) denote the translation of a function f (x): τh(f (x)) = f (x − h).
We then have:

τh(f ) ∗ g = τh(f ∗ g)

3. Derivative: If f and g are C1(R), and if f ′ and g ′ are in L1(R), then we have:

(f ∗ g)′ = f ′ ∗ g = f ∗ g ′

Fourier Transform and Convolution: A key property of the Fourier transform F is that
it transforms the convolution product into multiplication.

Proposition 2.2.9. For f ,g ∈ L1(R), we have:

F ((f ∗ g)(x)) = F (f (x)) · F (g(x)).
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2.3 Chapter 2 Exercises

Exercise 5
Calculate the Laplace transform of the following functions:

a) t→ eat , b) t→ tneat , c) t→ sin(ωt) , d) t→ e−4tsin(5t) , e) t→ t2cost .

Correction ▼ [5]

Exercise 6
Find the original functions of the following Laplace transforms:

1. 1
(s+1)(s−2) 2. −1

(s−2)2 3. 5s+10
s2+3s−4 4. s−7

s2−14s+50

5. s
s2−6s+13 6. e−2s

s+3 7. a
s2−a2 8. s2

(s+3)3

Correction ▼ [6]

Exercise 7
Solve the following differential equations (using the Laplace transform):

a) x′ + 3x = 0 , b) x′ + 3x = cos(3t) with x(0) = 0 ,

c) x′′ + x = t with x(0) = 1 and x′(0) = 0 .

Correction ▼ [7]

Exercise 8
Calculate the Fourier transform of:

1. f (t) = e−α|t| (α > 0).

2. g(t) =

1 if t ∈]− 3,3[

0 otherwise
.

3. g(t) =

e−|t| + 1 if t ∈]− 3,3[

e−|t| otherwise
.

Correction ▼ [8]

Exercise 9
For α > 0, we define f (t) = e−α|t|.

1. Calculate the Fourier transform of f .

2. Using the reciprocity formula, deduce the Fourier transform of t 7→ 1
1+t2 .

3. Calculate f ⋆ f ; deduce the Fourier transform of t 7→ 1
(1+t2)2 .

4. Determine the Fourier transform of t 7→ t
(1+t2)2 .

Correction ▼ [9]



Chapter

3 Elements of Topology

In this chapter, we will examine the key concepts of topological, metric, and normed
spaces, which are essential to modern analysis. These notions provide a framework for
studying continuity and convergence, and are particularly important for the analysis of
functions of several variables.

3.1 Metric Spaces

Definition 3.1.1 (Distance). Let E be a non-empty set. A distance on E is a function
d : E ×E→R

+ that satisfies, for all (x,y,z) ∈ E3:

1. d(x,y) = 0 if and only if x = y;

2. d(x,y) = d(y,x);

3. d(x,z) ⩽ d(x,y) + d(y,z).

If d is a distance on E, the pair (E,d) is called a metric space.

Remark 3.1.2. Property 3 is known as the "triangle inequality." It leads to the following
inequality, called the "second triangle inequality":

|d(x,y)− d(y,z)| ⩽ d(x,z).

Example 3.1.3. Let E be a set. The function d : E ×E→R
+ defined by

d(x,x) = 0 and d(x,y) = 1 if x , y

is called the discrete metric. We verify that d satisfies the properties of a distance (or
metric):

1. For all x,y ∈ E, we have:

• If x = y, then d(x,y) = 0, which is non-negative.

• If x , y, then d(x,y) = 1, which is also non-negative.

Thus, d(x,y) ⩾ 0 for all x,y ∈ E.

2. This property states that d(x,y) = 0 if and only if x = y. We can see that:

19
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• If d(x,y) = 0, then by definition, x must equal y.

• Conversely, if x = y, then d(x,y) = 0.

3. This property states that d(x,y) = d(y,x) for all x,y ∈ E. We have:

• If x = y, then d(x,y) = d(y,x) = 0.

• If x , y, then d(x,y) = d(y,x) = 1.

4. The triangle inequality states that for all x,y,z ∈ E:

d(x,z) ⩽ d(x,y) + d(y,z).

We will check the possible cases:

(a) Case 1: x = y = z

• Here, d(x,z) = d(x,y) + d(y,z) = 0 + 0 = 0, satisfying the inequality.

(b) Case 2: x = y , z

• Then d(x,z) = 1 and d(x,y) + d(y,z) = 0 + 1 = 1, satisfying the inequality.

(c) Case 3: x , y = z

• Then d(x,z) = 1 and d(x,y) + d(y,z) = 1 + 0 = 1, satisfying the inequality.

(d) Case 4: x , y , z

• In this case, we have d(x,y) = 1, d(y,z) = 1, and d(x,z) = 1. Thus:

d(x,z) = 1 ⩽ 1 + 1 = 2,

which also satisfies the inequality.

Example 3.1.4. On R, the usual distance between two real numbers x and y is given by

d|.|(x,y) = |x − y|.

The properties of the metric d|.| can be summarized as follows:

1. For all x,y ∈R, we have d|.|(x,y) ⩾ 0 since the absolute value is always non-negative.

2. d|.|(x,y) = 0 if and only if x = y. This directly follows from the definition of absolute
value.

3. For all x,y ∈ R, we have d|.|(x,y) = d|.|(y,x), which is a property of absolute values:
|x − y| = |y − x|.

4. For all x,y,z ∈R, we have

d|.|(x,z) ⩽ d|.|(x,y) + d|.|(y,z),

which follows from the property of absolute values:

|x − z| ⩽ |x − y|+ |y − z|.

The metric space (R, |.|) is often denoted as (R,d|.|).
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3.2 Normed Vector Spaces

Let K denote R or C.

Definition 3.2.1 (Norm). Let E be a vector space over K. A mapping ∥.∥ from E to R
+ is

a norm if it satisfies for all (x,y) ∈ E and all λ ∈K:

1. ∥x∥ = 0 if and only if x = 0.

2. ∥λx∥ = |λ|∥x∥.

3. ∥x+ y∥ ⩽ ∥x∥+ ∥y∥.
A vector space E equipped with a norm is called a normed vector space. The real
number ∥x∥ is called the norm of the vector x.

Example 3.2.2. The mapping ∥ · ∥1 : Kn→R defined by

∥x∥1 =
n∑
i=1

|xi |

is a norm. We will verify the following properties:

1. For all x ∈Kn,

∥x∥1 =
n∑
i=1

|xi | ⩾ 0.

Since the absolute value |xi | is always non-negative, the sum of non-negative numbers
is also non-negative.

2. We have:
∥x∥1 = 0 ⇐⇒ x = 0.

If ∥x∥1 = 0, then
∑n

i=1 |xi | = 0, which implies that each |xi | = 0 and hence xi = 0 for all
i. Conversely, if x = 0, then clearly ∥x∥1 = 0.

3. For any scalar α ∈R and x ∈Kn,

∥αx∥1 =
n∑
i=1

|αxi | =
n∑
i=1

|α||xi | = |α|
n∑
i=1

|xi | = |α|∥x∥1.

4. For all x,y ∈Kn,

∥x+ y∥1 =
n∑
i=1

|xi + yi | ⩽
n∑
i=1

(|xi |+ |yi |) =
n∑
i=1

|xi |+
n∑
i=1

|yi | = ∥x∥1 + ∥y∥1.

This follows from the triangle inequality of absolute values, which states that |a+ b| ⩽
|a|+ |b| for any real numbers a and b.
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Example 3.2.3. The mapping ∥ · ∥2 : Kn→R defined by

∥x∥2 =

 n∑
i=1

|xi |2


1
2

is a norm. We will verify the following properties:

1. For all x ∈Kn,

∥x∥2 =

 n∑
i=1

|xi |2


1
2

⩾ 0.

Since each |xi |2 is non-negative, their sum is also non-negative, and the square root of
a non-negative number is non-negative.

2. We have:
∥x∥2 = 0 ⇐⇒ x = 0.

If ∥x∥2 = 0, then
∑n

i=1 |xi |2 = 0, which implies that each |xi | = 0 and hence xi = 0 for
all i. Conversely, if x = 0, then clearly ∥x∥2 = 0.

3. For any scalar α ∈R and x ∈Kn,

∥αx∥2 =

 n∑
i=1

|αxi |2


1
2

=

 n∑
i=1

|α|2|xi |2


1
2

= |α|

 n∑
i=1

|xi |2


1
2

= |α|∥x∥2.

This shows that scaling a vector by a scalar scales its norm by the absolute value of
that scalar.

4. For all x,y ∈Kn,

∥x+ y∥2 =

 n∑
i=1

|xi + yi |2


1
2

.

Using the Cauchy-Schwarz inequality, we have:

|xi + yi |2 ⩽ (|xi |+ |yi |)2 = |xi |2 + 2|xi ||yi |+ |yi |2.

Thus,

∥x+ y∥22 ⩽
n∑
i=1

(|xi |2 + 2|xi ||yi |+ |yi |2) =
n∑
i=1

|xi |2 +
n∑
i=1

|yi |2 + 2
n∑
i=1

|xi ||yi | ⩽ ∥x∥22 + ∥y∥22.

Taking the square root gives:

∥x+ y∥2 ⩽ ∥x∥2 + ∥y∥2.
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Example 3.2.4. The mapping ∥ · ∥∞ : Kn→R defined by

∥x∥∞ = max
1⩽i⩽n

|xi |

is a norm. We will verify the following properties:

1. For all x ∈Kn,
∥x∥∞ = max

1⩽i⩽n
|xi | ⩾ 0.

Since the absolute value |xi | is always non-negative, the maximum of a set of non-
negative numbers is also non-negative.

2. We have:
∥x∥∞ = 0 ⇐⇒ x = 0.

If ∥x∥∞ = 0, then max1⩽i⩽n |xi | = 0, which implies that each |xi | = 0 and hence xi = 0
for all i. Conversely, if x = 0, then clearly ∥x∥∞ = 0.

3. For any scalar α ∈R and x ∈Kn,

∥αx∥∞ = max
1⩽i⩽n

|αxi | = |α|max
1⩽i⩽n

|xi | = |α|∥x∥∞.

4. For all x,y ∈Kn,

∥x+ y∥∞ = max
1⩽i⩽n

|xi + yi | ⩽ max
1⩽i⩽n

(|xi |+ |yi |) ⩽ max
1⩽i⩽n

|xi |+ max
1⩽i⩽n

|yi | = ∥x∥∞ + ∥y∥∞.

The first inequality follows from the triangle inequality for absolute values, and the
second inequality holds because the maximum of a sum is less than or equal to the sum
of the maxima.

Every normed space is equipped with a distance.

Theorem 3.2.5. Let (E,∥ · ∥) be a normed space over K. The mapping d : E × E → R

defined by
d(x,y) = ∥x − y∥

is a distance induced by the norm of E. Thus, every normed vector space is a metric space.

Proof. For all x,y ∈ E, we have

d(x,y) = 0 ⇐⇒ ∥x − y∥ = 0 ⇐⇒ x = y.

This shows that d satisfies the separation axiom. The symmetry follows from the fact
that, for all x,y ∈ E,

∥x − y∥ = ∥ − (y − x)∥ = ∥y − x∥.
To verify the triangle inequality, we take x,y,z ∈ E and write

d(x,y) + d(y,z) = ∥x − y∥+ ∥y − z∥ ⩾ ∥(x − y) + (y − z)∥ = ∥x − z∥ = d(x,z).
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Definition 3.2.6. 1. Let E be a set, and let d1 and d2 be two distances on E. We say
that d1 and d2 are equivalent if there exist constants m,M > 0 such that for all
x,y ∈ E:

md1(x,y) ⩽ d2(x,y) ⩽Md1(x,y).

2. Let X be a vector space, and let N1 and N2 be two norms on X. We say that N1 and
N2 are equivalent if there exist strictly positive constants m and M such that for all
x ∈ X, the following inequalities hold:

mN1(x) ⩽N2(x) ⩽MN1(x).

Example 3.2.7. Let (E,dE) and (F,dF) be two metric spaces. The distances d1 and d∞
defined earlier are equivalent.
Indeed, for every (x,y), (x′ , y′) ∈ E ×F, we have the following inequalities:

d∞((x,y), (x′ , y′)) = max(dE(x,x′),dF(y,y′))

By the triangle inequality, this can be bounded as follows:

d∞((x,y), (x′ , y′)) ⩽ dE(x,x′) + dF(y,y′).

Thus, we find:
d∞((x,y), (x′ , y′)) ⩽ d1((x,y), (x′ , y′)),

where
d1((x,y), (x′ , y′)) = dE(x,x′) + dF(y,y′).

On the other hand, we can also establish:

d1((x,y), (x′ , y′)) = dE(x,x′) + dF(y,y′) ⩽ 2max(dE(x,x′),dF(y,y′)) = 2d∞((x,y), (x′ , y′)).

We have thus established the inequalities:

d∞ ⩽ d1 ⩽ 2d∞.

3.3 Balls, Open Sets, Closed Sets, Topology, Neighborhood

Definition 3.3.1. Let (E,∥.∥) be a normed space.

1. The closed ball centered at a ∈ E with radius r for the norm ∥.∥ is defined by

Bf (a, r) = {x ∈ E | d(a,x) ⩽ r} = {x ∈ E | ∥x − a∥ ⩽ r}.

2. The open ball centered at a ∈ E with radius r for the norm ∥.∥ is defined by

B(a, r) = {x ∈ E | d(a,x) < r} = {x ∈ E | ∥x − a∥ < r}.
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Example 3.3.2. In R equipped with the usual distance d(x,y) = |x − y|, we define the open
ball B(x,r) and the closed ball Bf (x,r) as follows:

1. The open ball centered at x with radius r is defined by:

B(x,r) = {y ∈R | |y − x| < r} = (x − r,x+ r).

2. The closed ball centered at x with radius r is defined by:

Bf (x,r) = {y ∈R | |y − x| ⩽ r} = [x − r,x+ r].

Example 3.3.3. In R
2 equipped with the ∥ · ∥∞ norm, defined as

∥(x,y)∥∞ = max{|x|, |y|},

we can describe the associated distance as

d((x1, y1), (x2, y2)) = ∥(x1 − x2, y1 − y2)∥∞ = max{|x1 − x2|, |y1 − y2|}.

1. The open ball centered at the origin 0 = (0,0) with radius 1 is defined by:

B(0,1) = {(x,y) ∈R2 | ∥(x,y)∥∞ < 1}.

This means that the open ball B(0,1) consists of all points (x,y) such that the maximum
of the absolute values of the coordinates is less than 1.

Characterization of the Open Ball: The condition ∥(x,y)∥∞ < 1 can be rewritten as:

max{|x|, |y|} < 1.

This implies that both |x| < 1 and |y| < 1. Therefore, the open ball can be represented
as:

B(0,1) = {(x,y) ∈R2 | −1 < x < 1 and − 1 < y < 1} = (−1,1)2.

2. The closed ball centered at the origin with radius 1 is defined by:

Bf (0,1) = {(x,y) ∈R2 | ∥(x,y)∥∞ ⩽ 1} = [−1,1]2.

This includes all points (x,y) such that max{|x|, |y|} ⩽ 1, which corresponds to the
square with vertices at (−1,−1), (−1,1), (1,−1), and (1,1).

Definition 3.3.4. Let (E,d) be a metric space. A subset A of E is said to be open if for
every point a ∈ A, there exists a radius r > 0 such that the open ball centered at a with
radius r is contained in A:

B(a, r) ⊆ A.
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Example 3.3.5. 1. An open interval ]a,b[, where a < b are two real numbers, is open in
(R, | · |). To see this, let us fix x ∈]a,b[. Then we have x − a > 0 and b − x > 0. We set

r = min(x − a,b − x).

Now, let y be such that |y − x| < r. Since |y − x| < r, it follows that both x − y and y − x
are greater than −r. Therefore, we can show:

y − a = (y − x) + (x − a) > (x − a)− r > 0.

Similarly, we can show:

b − y = (b − x) + (x − y) > (b − x)− r > 0.

Thus, we conclude that y ∈]a,b[, demonstrating that B(x,r) ⊆]a,b[.

2. An interval of the form [a,b[ is not open in (R, | · |). Indeed, for any r > 0, the ball
B(a, r), which corresponds to the open interval ]a − r,a + r[, is not contained in ]a,b[.
Specifically, it includes points y < a, which are not in the interval [a,b[.

Theorem 3.3.6. Let (E,d) be a metric space, r ⩾ 0, and x0 ∈ E. The open ball B(x0, r) is
an open set in (E,d).

Theorem 3.3.7. Let E be a set, and let d1 and d2 be two distances on E. Suppose that d1
and d2 are equivalent. Then, the following equivalence holds for any subset A of E:

(A is open in (E,d1)) ⇐⇒ (A is open in (E,d2)).

Definition 3.3.8. A subset A of a metric space (E,d) is said to be closed if its complement
E \A is open.

Example 3.3.9. Let (E,d) be a metric space. In this context, we will demonstrate that both
the entire set E and the empty set ∅ are considered to be open and closed sets.

• The empty set is open because for every point a ∈ ∅ (which does not exist), the condition
holds vacuously.

• The entire set E is open because for any point x ∈ E, we can find a radius r > 0 such
that the open ball B(x,r) ⊆ E, since E contains all points in the space.

• The complement of the empty set is the entire space E, which is open by definition.
Therefore, ∅ is also closed.

• The complement of E is the empty set ∅, which we established is open. Therefore, E is
also closed.
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Theorem 3.3.10. Let (E,d) be a metric space, r ⩾ 0, and x0 ∈ E. The closed ball Bf (x0, r)
is a closed set in (E,d).

Theorem 3.3.11. Let (E,d) be a metric space. The following properties are verified:

1. If (Oi)i∈I is a family of open sets, then ⋃
i∈I

Oi

is also an open set. (Any union of open sets is an open set.)

2. If O1,O2, . . . ,On are open sets, then

O1 ∩O2 ∩ . . .∩On

is also an open set. (Any finite intersection of open sets is an open set.)

3. If (Fi)i∈I is a family of closed sets, then⋂
i∈I

Fi

is also a closed set. (Any intersection of closed sets is a closed set.)

4. If F1,F2, . . . ,Fn are closed sets, then

F1 ∪F2 ∪ . . .∪Fn

is also a closed set. (Any finite union of closed sets is a closed set.)

Example 3.3.12. In R equipped with the usual distance, we have:

1. An interval of the form
[c,d] = {x ∈R | c ⩽ x ⩽ d}

is a closed set. This is because the complement of the closed interval [c,d] is the set

(−∞, c)∪ (d,+∞).

This complement consists of the union of two open intervals. Thus, the complement is
open.

2. An interval of the form
(−∞, a] = {x ∈R | x ⩽ a}

is a closed set. The complement, (a,+∞), is open, which confirms that (−∞, a] is closed.
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3. For every n > 0, the set

An =
(
−1
n
,
1
n

)
is an open interval. However, the intersection⋂

n⩾1

An = {0}

is not open, since the only point in the intersection is 0, which does not have an open
contained entirely in {0}.
Similarly, for every n ⩾ 1, the set

Bn =
[
0,1− 1

n

]
is a closed interval. However, the union⋃

n⩾1

Bn = [0,1[

is not closed (see Example 3.3.5).

Definition 3.3.13. Let (E,d) be a metric space. The topology of (E,d) is defined as

T = {U ⊆ E |U is open set }.

Definition 3.3.14. Let A and B be subsets of the metric space E. We say that B is a
neighborhood of A if there exists an open ball O in E such that

A ⊆O ⊆ B,

If A = {x}, we simply say that B is a neighborhood of x. We denote by V (x) the set of
neighborhoods of x.

Remark 3.3.15. We note the ambiguity of the terminology: the notion of a neighborhood is
not necessarily related to the concept of proximity.
Indeed, in R, the interval ]0,1] is a neighborhood of every point in ]0,1[ but not of 0. In fact,
a set is considered a neighborhood of a point if that point is contained within the set.
In particular, the entire set E is a neighborhood of each of its points.

3.4 Interior, Closure, Boundary of a Set

Definition 3.4.1. Given a metric space (E,d) and a subset A ⊆ E, the interior of A,



3.4. INTERIOR, CLOSURE, BOUNDARY OF A SET 29

denoted Å, is the union of all open sets contained in A, that is,

Å =
⋃

O open,O⊆A
O .

Remark 3.4.2. • By definition, Å is an open set, contained in A, and it contains all other
open sets contained in A: it is the largest open set contained in A.

• A set A is open if and only if
A = Å.

Example 3.4.3. In (R, | · |), the interior of the interval ]0,1] is equal to ]0,1[. Indeed, ]0,1[
is an open set contained in ]0,1]. Furthermore, for any r > 0, the open ball

B(1, r) = (1− r,1 + r)

is not contained in ]0,1], since it includes points greater than 1. Therefore, 1 does not belong
to the interior of ]0,1].

Definition 3.4.4. Let (E,d) be a metric space, and let A be a subset of E. The closure of
A, denoted A, is defined as the intersection of all closed sets containing A, that is,

A =
⋂

F closed,F⊇A
F.

We say that A is dense in E if
A = E.

Remark 3.4.5. • A is a closed set, contains A, and is contained in all other closed sets that
contain A: it is the smallest closed set containing A.

• A set A is closed if and only if
A = A.

Theorem 3.4.6. Let (E,d) be a metric space, A a subset of E, and x ∈ E. The following
properties are equivalent:

1. x ∈ A.

2. For every open set U such that x ∈U , we have U ∩A , ∅.

Example 3.4.7. In the metric space (R, | · |), the closure of the interval ]0,1] is equal to [0,1].
To demonstrate this, we first observe that [0,1] is a closed set that contains ]0,1]. Therefore,
we have:

]0,1] ⊆ [0,1].
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Next, we need to show that 0 is in the closure ]0,1]. For any ϵ > 0, consider the open ball
B(0,ϵ) = (−ϵ,ϵ). We can choose ϵ to be any positive value, no matter how small. Since there
are points in ]0,1] (for example, any x such that 0 < x < ϵ) that lie within this ball. Thus,

0 ∈ ]0,1].

hence,
]0,1] = [0,1].

Remark 3.4.8. If (E,d) is any metric space, and if a ∈ A and r > 0, it is not necessarily true
that B(a, r) = Bf (a, r) For example, consider the set N equipped with the discrete metric. The
open ball B(0,1) = {0}, so

B(0,1) = {0}

However, by the definition of the discrete metric, we find that

Bf (0,1) = N.

Example 3.4.9. In R equipped with the usual distance, both Q and R \Q are dense.
To show this, let x ∈R and r > 0. The open ball is given by

B(x,r) =]x − r,x+ r[.

It is known that between any two distinct real numbers, there always exists a rational num-
ber and an irrational number. This implies that

B(x,r)∩Q , ∅ and B(x,r)∩ (R \Q) , ∅.

Thus, for any x ∈R, we find that there exist points in both Q and R\Q within any open ball
around x. Hence, Q = R and R \Q = R.

Definition 3.4.10. For a subset A of a metric space E, the boundary ∂A is defined as the
set difference between its closure and its interior:

∂A ≡ A \ Å = {x ∈ E | x ∈ A and x < Å}.

Example 3.4.11. In R,
∂(]0,1]) = {1}.

3.5 Case in the Space R
n

This section highlights key concepts from topology in the vector space R
n.

• The Euclidean norm, denoted ∥x∥, is defined as

∥x∥ =
√
x2

1 + · · ·+ x2
n.
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• The distance between points A = (a1, . . . , an) and M = (x1, . . . ,xn) is expressed as

∥M −A∥ =
√

(x1 − a1)2 + · · ·+ (xn − an)2.

• The open ball centered at A with radius r > 0 is defined by

B(A,r) = Br(A) = {M ∈Rn | ∥M −A∥ < r}.

• A subset U of Rn is a neighborhood of point A ∈ U if it contains an open ball centered
at A. Additionally, U is classified as open if every point A ∈U has an open ball contained
within U .
• In R

2, points are represented as (x,y), leading to:

∥(x,y)∥ =
√
x2 + y2,

Br(x0, y0) = {(x,y) ∈R2 | (x − x0)2 + (y − y0)2 < r2}.
The norm of a vector x = (x1, . . . ,xn) is defined as

∥x∥ =
√
x2

1 + x2
2 + · · ·+ x2

n ∈R.

This establishes Rn as n-dimensional Euclidean space. The norm induces a metric given
by

d(x,y) = ∥x − y∥ for x,y ∈Rn.

Thus, Rn becomes a metric space and serves as an example of a topological space as
follows:

Open Sets in R
n

• For a point x ∈Rn and r > 0, the ball

Br(x) = {y ∈Rn : ∥x − y∥ < r}

is an open set.

• Open balls Br(x) are open sets in R
n.

• A subset O ⊆R
n is open if, for each point x ∈O, there exists ϵ > 0 such that

Bϵ(x) ⊆O.

• A subset U ⊆R
n is closed if its complement Rn \U is open.

Example 3.5.1. 1. Examples of open sets in R include open intervals, such as (0,1).

2. The Cartesian product of n open intervals (an open rectangle) is open in R
n.

3. Closed intervals serve as examples of closed sets in R.

4. The Cartesian product of n closed intervals (a closed rectangle) is closed in R
n.

5. The empty set ∅ and R
n itself are both open and closed sets.

6. However, not every subset of Rn is open or closed. Many subsets are neither open nor
closed. For example, the interval (0,1] in R and the product of an open interval and a
closed interval in R

2.
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3.6 Chapter 3 Exercises

Exercise 10
Let n ∈N∗ and let d1,d2,d∞ : Rn ×Rn→R

+ be defined, for x = (x1, . . . ,xn), y = (y1, . . . , yn) ∈
R
n, by:

d1(x,y) =
∑n

i=1 |xi − yi |, d2(x,y) =
√∑n

i=1(xi − yi)2, d∞(x,y) = max{|xi − yi | , i = 1,n}.

1. Verify that d1,d2, and d∞ are distances on R
n.

2. Assume n = 2. Draw the unit ball for each of these distances.

3. Show that d1,d2, and d∞ are equivalent for n = 2.

Correction ▼ [10]

Exercise 11
We define the following three functions on R

2:

N1((x,y)) = |x|+ |y|, N2((x,y)) =
√
x2 + y2, N∞((x,y)) = max(|x|, |y|).

1. Prove that N1,N2,N∞ define three norms on R
2.

2. Prove that: ∀α ∈R2, N∞(α) ⩽N2(α) ⩽N1(α) ⩽ 2N∞(α).

3. Are N1,N2,N∞ equivalent?

Correction ▼ [11]

Exercise 12
Show that the following sets are open:

1. A = {(x,y) ∈R2 : y > 0}

2. B = {(x,y) ∈R2 : x2 + y2 < 4x and y > 0}

3. C = {x ∈R : x3 > x}

4. D = {x ∈R : 0 < x < 1 and 1
x <Z}

Correction ▼ [12]

Exercise 13
Indicate whether each of the following intervals is or is not a neighborhood of 0 for R

equipped with the usual distance: a) ]− 1
2 ,

1
2 ], b) ]− 1,0], c) [0, 1

2 [, d) ]0,1].
Correction ▼ [13]

Exercise 14
Determine the Interior and Closure of Q, [0,1] ∩Q, and ]0,1[∩Q (in R with its usual
distance)
Correction ▼ [14]



Chapter

4 Functions of several
variables : Limit and
Continuity

In this chapter, we will study functions of multiple variables. These functions will there-
fore be of the form

f : E ⊂R
n→R,

where n ⩾ 1 is a natural integer. In other words, the elements of the domain set E will be
n-tuples of the type (x1, . . . ,xn), which can be considered as vectors, and the elements of
the codomain set will be real numbers. We will examine the properties of these functions,
focusing on their limits and continuity, which are essential for understanding their be-
havior in higher dimensions. Additionally, we will investigate how these concepts extend
to vector-valued functions, enriching our analysis of multivariable phenomena.

4.1 Domain of definition

Definition 4.1.1. Let E be a subset of Rn. A function f : E → R associates with each
(x1, . . . ,xn) ∈ E a single real number f (x1, . . . ,xn).

Definition 4.1.2. If we are first given an expression for f (x1, . . . ,xn), then the domain
of definition of f is the largest subset Df ⊂ R

n such that, for each (x1, . . . ,xn) ∈ Df ,
f (x1, . . . ,xn) is well-defined. The function is then f : Df →R.

Example 4.1.3. 1. Let f (x,y) = ln(1 + x + y). It is necessary for 1 + x + y to be strictly
positive in order to calculate its logarithm. Thus, we have:

Df = {(x,y) ∈R2 | 1 + x+ y > 0}.

To plot this set, we first draw the line defined by the equation 1 + x + y = 0. We then
determine which side of the line corresponds to the set 1 + x + y > 0. Here, it is above
the line.

2. Let f (x,y) = exp
(
x+y
x2−y

)
. The denominator must not be zero:

Df = {(x,y) ∈R2 | x2 − y , 0}.

The points in the domain of definition are all the points in the plane that are not on
the parabola defined by the equation y = x2.

33
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3. Let f (x,y,z) = 1√
x2+y2+z2−2

. The expression under the square root must be positive (to

allow for taking the square root) and must not be zero (to allow for taking the inverse).
Therefore, we have:

Df = {(x,y,z) ∈R3 | x2 + y2 + z2 > 2}.

In other words, these are all the points outside the closed ball centered at (0,0,0) with
radius

√
2.

4.2 Limit of Functions from R
n to R

The concepts of limit and continuity for functions of a single variable generalize to mul-
tiple variables without additional complexity: it suffices to replace the absolute value
with the Euclidean norm.

4.2.1 Definition

Let f be a function f : E ⊂ R
n → R defined in the neighborhood of x0 ∈ R

n, except
possibly at x0.

Definition 4.2.1. The function f has the limit l as x approaches x0 if:

∀ϵ > 0, ∃δ > 0, ∀x ∈ E, (0 < ∥x − x0∥ < δ⇒ |f (x)− l| < ϵ) .

We then write
lim
x→x0

f = l, or lim
x→x0

f (x) = l, or f (x)→ l.

We would similarly define limx→x0
f (x) = +∞ by:

∀A > 0, ∃δ > 0, ∀x ∈ E, (0 < ∥x − x0∥ < δ⇒ |f (x)| > A) .

Remark 4.2.2. • The concept of limit does not depend on the norms used here.
• If it exists, the limit is unique.

4.2.2 Operations on Limits

To calculate limits, we rarely resort to this definition. Instead, we use general theorems:
operations on limits and bounding. These are the same statements as for functions of a
single variable: there is no difficulty or novelty.

Proposition 4.2.3. Let f ,g : Rn→R be defined in the neighborhood of x0 ∈Rn and such
that f and g have limits at x0. Then:

lim
x→x0

(f + g) = lim
x→x0

f + lim
x→x0

g,

lim
x→x0

(f · g) = lim
x→x0

f × lim
x→x0

g.
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And if g does not vanish in a neighborhood of x0:

lim
x→x0

f

g
=

limx→x0
f

limx→x0
g
.

Remark 4.2.4. • The results above also hold for infinite limits with the usual conventions:

ℓ +∞ = +∞, ℓ −∞ = −∞,
1
0

= +∞,
1
∞

= 0, ℓ ×∞ =∞ (ℓ , 0), ∞×∞ =∞.

• The indeterminate forms are: +∞−∞, 0
0 , ∞0 , 0×∞,∞0, 1∞, and 00.

• Let f : Rn→R be a function of several variables such that limx→x0
f (x) = ℓ,

Let g : R→R be a function of a single variable such that limt→ℓ g(t) = ℓ′.
Then the function of several variables g ◦ f : Rn → R defined by (g ◦ f )(x) = g(f (x))
satisfies

lim
x→x0

(g ◦ f )(x) = ℓ′ .

Theorem 4.2.5. (Squeeze Theorem)
Let f ,g,h : Rn→R be three functions defined in a neighborhood U of x0 ∈Rn.

• If, for all x ∈U , we have f (x) ⩽ h(x) ⩽ g(x),

• and if limx→x0
f = limx→x0

g = ℓ, then h has a limit at the point x0 and limx→x0
h =

ℓ.

4.2.3 Limit along a Path

The uniqueness of the limit implies that, regardless of the way we approach the point x0,
the limit value is always the same.

Proposition 4.2.6. Let f : Rn→R be a function defined in the neighborhood of x0 ∈Rn,
except possibly at x0.

1. If f has a limit ℓ at the point x0, then the restriction of f to any curve passing
through x0 has a limit at x0, and this limit is ℓ.

2. By contraposition, if the restrictions of f to two curves passing through x0 have
different limits at the point x0, then f does not have a limit at the point x0.

Let’s elaborate on the case of functions of 2 variables:

• A curve passing through the point (x0, y0) ∈R2 is a continuous function γ : R→R
2,

t 7→ (x(t), y(t)), such that γ(0) = (x0, y0).

• The restriction of f along γ is the function of one variable f ◦γ : t 7→ f (x(t), y(t)).

• If f has limit ℓ at (x0, y0), then the proposition asserts that f (x(t), y(t))→ ℓ.
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Example 4.2.7. Let f : R2→R defined by

f (x,y) =


xy

x2+y2 if (x,y) , (0,0)

0 if (x,y) = (0,0)
.

• If we take the path γ1(t) = (t,0), then (f ◦ γ1)(t) = f (t,0) = 0. Therefore, as t → 0,
(f ◦ γ1)(t)→ 0. If we take the path γ2(t) = (t, t), then (f ◦ γ2)(t) = f (t, t) = t2

2t2 = 1
2 .

Thus, as t→ 0, (f ◦γ2)(t)→ 1
2 .

Below, in the figure on the left, are the two paths in the plane; in the two figures on the
right, two different views of the values taken by f along these paths.

• If f had a limit ℓ, then for any path γ(t) such that γ(t)→ (0,0) as t → 0, we would
have (f ◦ γ)(t)→ ℓ. We would then obtain ℓ = 0 and ℓ = 1

2 , which would contradict
the uniqueness of the limit. Thus, f does not have a limit at (0,0).

4.3 Continuity of Functions from R
n to R

Definition 4.3.1. 1. f : E ⊂R
n→R is continuous at x0 ∈ E if limx→x0

f (x) = f (x0).
2. A function f is continuous on E if it is continuous at every point of E.

By the properties of limits, if f and g are two functions continuous at x0, then:

• The function f + g is continuous at x0,

• Similarly, f · g and f
g (with g(x) , 0 in a neighborhood of x0) are continuous at x0,

• If h : R→R is continuous, then h ◦ f is continuous at x0.

Example 4.3.2. 1. The functions defined by (x,y) 7→ x + y, (x,y) 7→ xy, and all poly-
nomial functions in two variables x and y are continuous on R

2 (for example,
(x,y) 7→ x2 + 3xy). Likewise, all rational functions in two variables are continuous
where they are defined.

2. Since the exponential function is continuous, (x,y) 7→ exy is continuous on R
2.
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3. The function defined by f (x,y) = 2√
x2+y2

is continuous on R
2 \ {(0,0)}.

Definition 4.3.3. (Extension by Continuity).
Let f : E ⊂ R

n → R. Let x0 be a limit point of E not belonging to E. If f (x) has a limit
ℓ as x→ x0, we can extend the domain of definition of f to E ∪ {x0} by setting f (x0) = ℓ.
The extended function is continuous at x0. We say that we have obtained an extension of
f by continuity at the point x0.

Example 4.3.4. Let f : R2 \ {(0,0)} be defined by

f (x,y) =
xy√

x2 + y2
.

• Limit at the origin.

We use the inequalities |x| ⩽
√
x2 + y2 and |y| ⩽

√
x2 + y2. Thus,

|f (x,y)| =
|x| · |y|√
x2 + y2

⩽
√
x2 + y2→ 0 as (x,y)→ (0,0).

• Extension.

To extend f at (0,0), we choose the limit obtained as the value. We set f (0,0) = 0. (We
denote the extended function still by f : R2→R.)

• Continuity.

By our choice of f (0,0), f is continuous at (0,0). Outside the origin, f is continuous
as a sum, product, composition, and inverse of continuous functions.

Conclusion: The extended function is continuous over the entire R2.

4.4 Polar Coordinates

Instead of locating a point in the plane R
2 by its Cartesian coordinates (x,y), we can do

so using its distance from the origin and the angle formed with the horizontal: these are
the polar coordinates.

4.4.1 Definition

Let M be a point in the plane R
2. Let O = (0,0) be the origin. Let (O, i⃗, j⃗) be a direct

orthonormal coordinate system.
• We denote r = ∥OM∥, the distance from M to the origin.
• We denote θ as the angle between i⃗ and OM.
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We denote [r : θ] as the polar coordinates of the point M. In this course, r will always be
positive. The angle is not uniquely determined; several choices are possible. To ensure
uniqueness, we can restrict θ to the interval [0,2π[ or −π < θ < π. Generally, polar
coordinates are not assigned to the origin (the angle would not have meaning).

4.4.2 From Polar Coordinates to Cartesian Coordinates

We recover the Cartesian coordinates (x,y) from the polar coordinates [r : θ] using the
formulas:

x = r cosθ, y = r sinθ.

In other words, we have defined a function:

(0,+∞)× [0,2π[→R
2, (r,θ) 7→ (r cosθ,r sinθ).

4.4.3 From Cartesian Coordinates to Polar Coordinates

We recover r and θ from (x,y) using the following formulas:

r =
√
x2 + y2,

and, in the case where x > 0 and y ⩾ 0, θ = arctan
(
y
x

)
.

For points in other quadrants, we reduce to the principal quadrant where x > 0 and y ⩾ 0.

4.4.4 Limit and Continuity

When considering functions f : E ⊂R
2→R, it is sometimes easier to prove results about

limits, continuity, etc., using polar coordinates.

Proposition 4.4.1. Let f : R2 → R be a function defined in the neighborhood of (0,0) ∈
R

2, except possibly at (0,0). If

lim
r→0

f (r cosθ,r sinθ) = ℓ ∈R

exists independently of θ, meaning there exists a function ϵ(r)→ 0 such that, for all r > 0
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and all θ, we have:
|f (r cosθ,r sinθ)− ℓ| ⩽ ϵ(r),

then
lim

(x,y)→(0,0)
f (x,y) = ℓ.

To clarify this proposition and explain the different practical cases of the limit, here’s
how to proceed. We express f (x,y) in polar coordinates by calculating f (r cosθ,r sinθ).

1. If limr→0 f (r cosθ,r sinθ) exists and does not depend on the variable θ, then this
limit is the limit of f at the point (0,0).

2. If limr→0 f (r cosθ,r sinθ) does not exist (or the limit is not finite), then f does not
have a finite limit at the point (0,0).

3. If limr→0 f (r cosθ,r sinθ) = ℓ(θ) depends on θ, then f does not have a limit at the
point (0,0). To justify this, we provide two values θ1 and θ2 such that ℓ(θ1) , ℓ(θ2).

Example 4.4.2. 1. Let

f (x,y) =
x3

x2 + y2

f (r cosθ,r sinθ) =
r3 cos3θ

r2 = r cos3θ.

As |cos3θ| ⩽ 1, we have r |cos3θ| ⩽ r (for all r and also for all θ), with ϵ(r) := r → 0.
This implies that

f (r cosθ,r sinθ)→ 0 as r→ 0.

The limit exists (independently of the values taken by θ), so the function f does indeed
have a limit at (0,0):

f (x,y)→ 0 as (x,y)→ (0,0).

For those who want to do everything by hand with more details, we can also write
|f (r cosθ,r sinθ)| ⩽ r, in other words |f (x,y)| ⩽

√
x2 + y2. Thus,

f (x,y)→ 0 as (x,y)→ (0,0).

2. Let
f (x,y) =

y

x2 + y3 .

f (r cosθ,r sinθ) =
1
r

sinθ

cos2θ + r sin3θ
.

Fix θ such that sinθ , 0 (i.e., θ = 0(mod π)). Then, as r → 0, f (r cosθ,r sinθ) does
not have a finite limit. In particular, the function (x,y) 7→ f (x,y) does not have a finite
limit at (0,0).
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3. Let
f (x,y) =

xy

x2 + y2 .

We have f (r cosθ,r sinθ) = r2 cosθ sinθ
r2 = cosθ sinθ = sin(2θ)

2 .

For fixed θ, the function r 7→ f (r cosθ,r sinθ) does have a limit ℓ(θ) = 1
2 sin(2θ) as

r → 0. However, this limit depends on the angle θ: if θ = 0, then ℓ(θ) = 0; on the
other hand, if θ = π

4 , then ℓ(θ) = 1
2 . Since the limit depends on the angle, the function

of two variables (x,y) 7→ f (x,y) does not have a limit at (0,0).

4.5 Vector Functions

Definition 4.5.1. A function is said to be a vector function or vector-valued function
when the codomain is Rp, with p ⩾ 2:

F : Rn→R
p, x = (x1, . . . ,xn) 7→ (f1(x), . . . , fp(x))

Each component fj , for j = 1, . . . ,p, is a function of several variables with real values:
fj : Rn→R. We denote x 7→ F(x) or (x1, . . . ,xn) 7→ F(x1, . . . ,xn).

Example 4.5.2. From R to R
2: F(t) = (t2, t).

From R
2 to R

2: F(x,y) = (ex cosy,ex siny).

4.5.1 Limit of Functions from R
n to R

p

Definition 4.5.3. Let F : E ⊆ R
n → R

p defined by x 7→ F(x) = (f1(x), . . . , fp(x)), a =
(a1, a2, . . . , an) ∈ E and l = (l1, l2, . . . , lp) ∈Rp, then:

lim
x→a

F(x) = l ⇐⇒ lim
x→a

fi(x) = li for i = 1, . . . ,p.

4.5.2 Continuity of Functions from R
n to R

p

Definition 4.5.4. The function f is continuous at the point a ∈ E (respectively on E)
if and only if all the components fi (for i = 1, . . . ,p) of f are continuous at the point a
(respectively on E).

• All algebraic operations on continuous functions remain valid for continuous vector-
valued functions.
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4.6 Chapter 4 Exercises

Exercise 15
In each case, determine and represent the domain of definition of the following func-
tions:

1. f1(x,y) =
√
−y+x2
√
y .

2. f2(x,y) = ln(y)√
x−y .

3. f3(x,y) =
√

4−x2−y2
√
x2+y2−1

.

4. f4(x,y) = ln(x − y2) .

Correction ▼ [15]

Exercise 16
Find the limit of the following functions at (0,0) (without using polar coordinates).

1. f1(x,y) = x2+y2+1
y sin(y).

2. f2(x,y) = x4+y4

x2+y2 .

3. f3(x,y) = x2y2

x2+y2 .

4. f4(x,y) = sin(x2)+sin(y2)√
x2+y2

.

5. f5(x,y) = 1−cos(xy)
xy2 .

6. f6(x,y) = exy−1
ex−1 .

Correction ▼ [16]

Exercise 17
Do the following functions have a limit at the origin? (Use the path method)

1. f1(x,y) = xy
x2+y2 . 2. f2(x,y) = xy4

x4+y6 . 3. f3(x,y) = x+y
x2+y2 .

Correction ▼ [17]

Exercise 18
Calculate the limit, if it exists, or show that it does not exist, for the following functions
using polar coordinates.

1. lim(x,y)→(0,0)
xy√
x2+y2

. 2. lim(x,y)→(1,0)
y3

(x−1)2+y2 . 3. lim(x,y)→(0,0)
xy

x2+xy+y2 .

Correction ▼ [18]

Exercise 19
Let

f (x,y) =

xy
(
x2−y2

x2+y2

)
if (x,y) , (0,0)

0 if (x,y) = (0,0)

Show that f is continuous on R
2.

Correction ▼ [19]



Chapter

5 Differential Calculus
and Jacobian Matrix

5.1 Differential Calculus

For a function of several variables, there is a derivative for each of the variables, called
the partial derivative. The set of partial derivatives allows us to reconstruct a linear
approximation of the function: this is the differential.

5.1.1 Partial Derivatives

Definition 5.1.1. Let f : R→R be a function of a single variable. The derivative of f at
x0 ∈R, if it exists, is given by:

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)
h

.

Example 5.1.2. The function f : R→ R defined by f (x) = x2 is differentiable, with deriva-

tive f ′(x0) = 2x0. Indeed, as h approaches 0, we have: (x0+h)2−x2
0

h = 2x0 + h→h→0 2x0.

Definition 5.1.3. Let f : U ⊂ R
n→ R, where U is an open set in R

n. We say that f has
a partial derivative with respect to the variable xi at the point x0 = (a1, . . . , an) ∈ Rn if the
function of one variable

xi 7→ f (a1, . . . , ai−1,xi , ai+1, . . . , an)

is differentiable at the point ai . In other words, we define the partial derivative of f with
respect to xi at the point x0 = (a1, . . . , an) by

lim
h→0

f (a1, . . . , ai−1, ai + h,ai+1, . . . , an)− f (a1, . . . , an)
h

if this limit exists.

Notation. This limit is denoted by ∂f
∂xi

(x0).
This is the partial derivative of f with respect to xi at the point x0. The symbol ∂ is read
as "d round." Another notation is ∂xi f (x0) or f ′xi (x0).

42
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Thus, there are n partial derivatives at the point x0: ∂f
∂x1

(x0), ∂f
∂x2

(x0), . . . , ∂f
∂xn

(x0).
In the case of a function of two variables (x,y) 7→ f (x,y), we have:

∂f

∂x
(x0, y0) = lim

h→0

f (x0 + h,y0)− f (x0, y0)
h

and
∂f

∂y
(x0, y0) = lim

k→0

f (x0, y0 + k)− f (x0, y0)
k

.

Example 5.1.4. For f : R3→R defined by f (x,y,z) = cos(x+ y2)e−z, we have:
∂f
∂x (x,y,z) = −sin(x+ y2)e−z, ∂f

∂y (x,y,z) = −2y sin(x+ y2)e−z, ∂f
∂z (x,y,z) = −cos(x+ y2)e−z.

Example 5.1.5. The function f : R2→R defined as

f (x,y) =


xy

x2+y2 if (x,y) , (0,0)

0 at (0,0)

has partial derivatives at every point but is not continuous at (0,0):

1. Discontinuity at the Origin: Along the path γ(t) = (t, t) for t , 0, we have

f (γ(t)) =
t2

2t2 =
1
2

which does not tend to f (0,0) = 0.

Thus, f is not continuous at (0,0).

2. Partial Derivatives Away from the Origin: Consider the point (x0, y0) , (0,0). In a
neighborhood of this point, f is defined by f (x,y) = xy

x2+y2 . The function x 7→ f (x,y0) is
therefore continuous and differentiable in the neighborhood of x0. The partial deriva-
tive is obtained by differentiating the function of one variable x 7→ f (x,y0). Thus, we
have

∂f

∂x
(x0, y0) =

y3
0 − x

2
0y0

(x2
0 + y2

0 )2
.

Similarly, by differentiating the function y 7→ f (x0, y), we find ∂f
∂y (x0, y0) = x3

0−x0y
2
0

(x2
0+y2

0 )2 .

3. Partial Derivatives at the Origin:

Since the function f is defined at (0,0) by a special formula, we must return to the def-
inition of what partial derivatives are using limits. To calculate ∂f

∂x (0,0), we evaluate
at (x0, y0) = (0,0):

f (0 + h,0)− f (0,0)
h

=
0
h

= 0 → 0 as h→ 0.

Therefore, ∂f
∂x (0,0) = 0.

Similarly: f (0,0+k)−f (0,0)
k = 0

k = 0 → 0 as k→ 0. Thus, ∂f
∂y (0,0) = 0.

Conclusion: For any point (x0, y0) ∈ R
2, the partial derivatives ∂f

∂x (x0, y0) and ∂f
∂y (x0, y0)

exist.
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5.1.2 Directional Derivative

It is possible to generalize the concept of partial derivative.

Definition 5.1.6. Let f : Rn → R. Let v ∈ R
n be a non-zero vector. The directional

derivative of f at x0 ∈Rn in the direction of the vector v is defined, if it exists, by

Dvf (x0) = lim
t→0

f (x0 + tv)− f (x0)
t

.

For a function f : R2→ R, the directional derivative at the point (x0, y0) in the direction
of the vector v = (h,k) is given by

Dvf (x0, y0) = lim
t→0

f (x0 + th,y0 + tk)− f (x0, y0)
t

.

Example 5.1.7. Let f be the function defined on R
2 by

f (x,y) =

x3+y3

x2+y2 if (x,y) , (0,0)

0 if (x,y) = (0,0)

For any non-zero vector v = (h,k), we have:

lim
t→0

f (0 + th,0 + tk)− f (0,0)
t

= lim
t→0

(th)3+(tk)3

(th)2+(tk)2 − 0

t
=
h3 + k3

h2 + k2 .

Thus, f has a directional derivative in the direction of any non-zero vector at the point
(0,0), and when v = (h,k): Dvf (0,0) = h3+k3

h2+k2 . In general, if the vector v is a vector from the
canonical basis, we recover a partial derivative. Let f : R2→R.
1. If v = (1,0), we have Dvf (x,y) = ∂f

∂x (x,y). 2. If v = (0,1), we have Dvf (x,y) = ∂f
∂y (x,y).

5.1.3 Differentiability

For a function f : R→ R of a single variable, another way to express that it is differen-
tiable at x0 is to verify that there exists ℓ ∈R such that

lim
h→0

f (x0 + h)− f (x0)− ℓ · h
h

= 0.

We denote this ℓ by f ′(x0), so that we have f (x0 +h) ≈ f (x0) + f ′(x0) ·h (for small real h).
In other words, we approximate the mapping h 7→ f (x0 + h) − f (x0) by a linear function
h 7→ f ′(x0) · h.
We will perform the same work in higher dimensions.

Definition 5.1.8. Let f : Rn → R. The function f is differentiable at x0 ∈ Rn if there
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exists a linear mapping ℓ : Rn→R such that:

lim
∥h∥→0

f (x0 + h)− f (x0)− ℓ(h)
∥h∥

= 0.

The mapping ℓ is the differential of f at x0 and is denoted by df (x0).

In the case of functions of one variable, we have df (x0) = f ′(x0) (and df (x0)(h) = f ′(x0)·h).
For functions of several variables, we will see shortly how to express the differential
using partial derivatives. Note that df (x0) is a mapping from R

n to R (like f ), and thus
df (x0)(h) is a real number (for each h ∈Rn).
Just as for functions of one variable, if a function is differentiable, then it is continuous.

Proposition 5.1.9. If f is differentiable at x0 ∈Rn, then f is continuous at x0.

5.1.4 Differential

Proposition 5.1.10. If f : Rn→R is differentiable at x0 ∈Rn, then its partial derivatives
exist, and we have:

df (x0)(h) = h1
∂f

∂x1
(x0) + · · ·+ hn

∂f

∂xn
(x0)

where h = (h1, . . . ,hn).

In particular, when it exists, the differential is unique. For f : R2 → R differentiable at
(x0, y0), the formula is:

df (x0, y0)(h,k) = h
∂f

∂x
(x0, y0) + k

∂f

∂y
(x0, y0).

To show that a function is differentiable, one can use the fact that the sum, product,
inverse (of a non-zero function), and composition of differentiable functions are also
differentiable. Otherwise, it is necessary to revert to the definition. For example, for
f : R2→R:

1. First, compute the partial derivatives ∂f
∂x (x0, y0) and ∂f

∂y (x0, y0).

2. Write the candidate for the differential as ℓ(h,k) = h∂f
∂x (x0, y0) + k ∂f

∂y (x0, y0).

3. Finally, prove the limit as ∥(h,k)∥ → 0:

f (x0 + h,y0 + k)− f (x0, y0)− ℓ(h,k)
∥(h,k)∥

→ 0.

Example 5.1.11. Study the differentiability at every point of the function f defined by

f (x,y) =

x − 3y + x4

x2+y2 if (x,y) , (0,0)

0 if (x,y) = (0,0)



46 CHAPTER 5. DIFFERENTIAL CALCULUS AND JACOBIAN MATRIX

• Away from (0,0), the function f is differentiable because f is a sum, product, and
inverse of differentiable functions (since x2 + y2 is only zero at the origin).

• At (0,0), we need to study differentiability manually.

• Partial derivative with respect to x:

∂f

∂x
(0,0) = lim

h→0

f (h,0)− f (0,0)
h

= lim
h→0

h+ h2

h
= 1.

• Partial derivative with respect to y:

∂f

∂y
(0,0) = lim

k→0

f (0, k)− f (0,0)
k

= lim
k→0

−3k
k

= −3.

• The candidate for the differential is therefore:

ℓ(h,k) = h
∂f

∂x
(0,0) + k

∂f

∂y
(0,0) = h− 3k.

• We calculate:

0 ⩽
f (0 + h,0 + k)− f (0,0)− ℓ(h,k)

√
h2 + k2

=
h4

(h2 + k2)
3
2

⩽
h4

|h|3
= |h| → 0 as (h,k)→ (0,0).

Therefore, f is differentiable at the point (0,0) and df (0,0)(h,k) = h− 3k.

5.1.5 Connection with Partial Derivatives

Partial Derivatives. We saw in Proposition 5.1.10 that if f : R2 → R is differentiable at
(x0, y0), then

df (x0, y0)(1,0) =
∂f

∂x
(x0, y0) and df (x0, y0)(0,1) =

∂f

∂y
(x0, y0).

In any dimension, for f : Rn → R differentiable at x0 ∈ Rn, and ei the i-th vector of the
canonical basis:

df (x0)(ei) =
∂f

∂xi
(x0).

Directional Derivative. More generally, if f : Rn → R is differentiable at x0 ∈ Rn, then
df (x0)(v) = Dvf (x0). For f : R2→R, this means that if v = (h,k), then:

D(h,k)f (x0, y0) = h
∂f

∂x
(x0, y0) + k

∂f

∂y
(x0, y0).

If f is not differentiable, this formula may be false.
Gradient.
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The gradient is another way to represent the differential. The gradient of f at x0 is the
vector

grad f (x0) =


∂f
∂x1

(x0)
...

∂f
∂xn

(x0)

 .
If f is differentiable at x0, then

df (x0)(v) = ⟨grad f (x0)|v⟩,

where ⟨u|v⟩ is the inner product of u and v.
Summary.
When f is differentiable, the differential, the directional derivative, and the gradient
encode the same information and are related by the formulas:

Dvf (x0) = df (x0)(v) = ⟨grad f (x0)|v⟩.

Example 5.1.12. Let f be the function defined by f (x,y) = ln(1 + x+ y2).

1. Determine the domain of definition U of f .

2. Calculate the partial derivatives of f .

3. Show that f is differentiable on U .

4. Calculate the gradient of f at (0,1) and express the differential at that point.

5. Calculate the directional derivative of f at (0,1) in the direction of the vector (2,1).

Solution.

1. The domain is U = {(x,y) ∈R2 | 1 + x+ y2 > 0}.

2. The partial derivatives are:

∂f

∂x
(x,y) =

1
1 + x+ y2 ,

∂f

∂y
(x,y) =

2y
1 + x+ y2 .

3. f is differentiable on U as it is the sum, product, and composition of differentiable
functions.

4. The gradient is obtained directly from the partial derivatives:

grad f (0,1) =

∂f∂x (0,1)
∂f
∂y (0,1)

 =
(

1
2
1

)
.

The differential at this point df (0,1) : R2→R is the linear mapping defined by

df (0,1)(h,k) = ⟨grad f (0,1)|(h,k)⟩ = h+
1
2
k.

5. Since f is differentiable, the directional derivative is simply the linear combination of
the partial derivatives: D(2,1)f (0,1) = 2 · ∂f∂x (0,1) + 1 · ∂f∂y (0,1) = 2.

We could also perform the calculation using the formula D(2,1)f (0,1) = df (0,1)(2,1).
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5.1.6 Functions of Class C1

In practice, functions are often of class C1, which implies differentiability and is easier
to verify.

Definition 5.1.13. Let f : Rn→ R. We say that f is of class C1 if the partial derivatives
∂f
∂xi

exist and are continuous (for i = 1, . . . ,n).

Of course, one can limit the definition to an open set. For example, if U is an open set in
R

2, f : U →R will be of class C1 on U if ∂f
∂x and ∂f

∂y exist and are continuous on U .

Theorem 5.1.14. If f is of class C1, then f is differentiable.

5.1.7 Taylor’s Formula of Order 1

Another way to say that f is differentiable is to state that f admits a first-order Taylor
expansion. For f : R2→R, at the point (x0, y0), if f is differentiable, then

f (x0 + h,y0 + k) = f (x0, y0) + h
∂f

∂x
(x0, y0) + k

∂f

∂y
(x0, y0) + o(∥(h,k)∥).

Knowing the values of f , ∂f
∂x , and ∂f

∂y only at (x0, y0), we obtain an approximation of f at
any (x,y) close to (x0, y0).
Notation: Let g : R2 → R be a function defined in the neighborhood of (0,0). We say
that g is negligible with respect to ∥(x,y)∥n in the neighborhood of (0,0) and we denote
g = o(∥(x,y)∥n) if

lim
(x,y)→(0,0)

g(x,y)
∥(x,y)∥n

= 0.

Example 5.1.15. Let f : R2→R defined by f (x,y) = sinx · e2y .

∂f

∂x
(x,y) = cosx · e2y and

∂f

∂y
(x,y) = 2sinx · e2y .

Both partial derivatives exist and are continuous, hence f is of class C1 on all R2.
In particular, f is differentiable at every point (x0, y0) ∈R2 and

df (x0, y0)(h,k) = hcosx0e
2y0 + 2k sinx0e

2y0 .

For example, for (x0, y0) =
(
π
6 ,1

)
, we have the Taylor expansion:

f
(π

6
+ h,1 + k

)
= f

(π
6
,1

)
+ h

∂f

∂x

(π
6
,1

)
+ k

∂f

∂y

(π
6
,1

)
+ o(∥(h,k)∥).

Thus:

f
(π

6
+ h,1 + k

)
=

1
2
e2 +

√
3

2
e2h+ e2k + ϵ(h,k)

√
h2 + k2,

where ϵ(h,k)→ 0 as (h,k)→ (0,0).
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Abstract

f is of class C1 f has continuous partial derivatives

f is differentiablef is continuous

f has partial derivatives (and directional derivative)

f has a first-order Taylor expansion

definition

definition

Counterexamples

If f is differentiable, then f admits partial derivatives and directional derivatives in all
directions. The converse is false, by the following example.

Example 5.1.16. Let f : R2→R be the function defined by

f (x,y) =


y3
√
x2+y4

if (x,y) , (0,0)

0 if (x,y) = (0,0)

Show that f has a directional derivative in every non-zero vector at the point (0,0), but it is
not differentiable there.
Solution.
1. Let v = (h,k) , (0,0).
- If h = 0, we have f (t·v)−f (0,0)

t = f (0,tk)
t = k.

- If h , 0, we have

|
f (t · v)− f (0,0)

t
| = | k3t2
√
h2t2 + h4t4

| ⩽ |k
3

h
||t| →t→0 0.

Thus, Dvf (0,0) = k if h = 0, and 0 if h , 0.
2. With v = (1,0), we have ∂f

∂x (0,0) = 0, and with v = (0,1), we have ∂f
∂y (0,0) = 1. The

candidate for the differential at (0,0) is therefore ℓ(h,k) = k. However, the expression

ϵ(h,k) =
f (h,k)− f (0,0)− ℓ(h,k)

√
h2 + k2

=
k3 − k

√
h2 + k4

√
h2 + k2

√
h2 + k4

does not tend to 0 as (h,k)→ 0, since limt→0+ ϵ(t, t) = − 1√
2

. Thus, f is not differentiable at
the point (0,0).

If f is of class C1, then it is differentiable. The converse is false, as demonstrated by
the following example.
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Example 5.1.17. Let f : R2→ R such that f (x,y) =

y2 sin( 1
x2+y2 ) if (x,y) , (0,0)

0 if (x,y) = (0,0)
Show

that f is differentiable at every point in R
2 but not of class C1 at the origin.

Solution.

• Outside the origin:

The partial derivatives are given by

∂f

∂x
(x,y) = −

2xy2

(x2 + y2)2 cos(
1

x2 + y2 ),
∂f

∂y
(x,y) = 2y sin(

1
x2 + y2 )−

2y3

(x2 + y2)2 cos(
1

x2 + y2 ).

These exist and are continuous on R \ {(0,0)}. Thus, f is of class C1 on R
2 \ {(0,0)}

and, by Theorem 5.1.14, is therefore differentiable on R
2 \ {(0,0)}.

• Differentiability at the point (0,0).

We will calculate the partial derivatives of f at the point (0,0). Since f (x,0) = 0, we
have

∂f

∂x
(0,0) = lim

h→0

f (h,0)− f (0,0)
h

= 0.

And since f (0, y) = y2 sin
(

1
y2

)
, we find

∂f

∂y
(0,0) = lim

k→0

f (0, k)− f (0,0)
k

= lim
k→0

k sin
( 1
k2

)
= 0.

Thus, the candidate for the differential at (0,0) is ℓ(h,k) = 0.

Moreover,

lim
(h,k)→(0,0)

f (h,k)− f (0,0)− ℓ(h,k)
√
h2 + k2

= lim
(h,k)→(0,0)

k2
√
h2 + k2

sin
( 1
h2 + k2

)
⩽ |k| → 0,

therefore f is differentiable at the point (0,0).

Conclusion.

The function f is differentiable on R
2. Furthermore, ∂f

∂x (t, t) = −
cos

(
1

2t2

)
2t does not have a limit

as t→ 0. Thus, the partial derivative ∂f
∂x is not continuous at (0,0). Hence, f is not of class

C1 at the origin.

5.1.8 Second Order Partial Derivatives

Let f : R2 → R be a differentiable function. The two partial derivatives ∂f
∂x and ∂f

∂y are

also functions from R
2 to R; suppose that these are also differentiable functions. Then

we can compute the partial derivatives of ∂f
∂x : ∂

∂x (∂f∂x ), ∂
∂y (∂f∂x ).

We can also compute the partial derivatives of ∂f
∂y : ∂

∂x (∂f∂y ), ∂
∂y (∂f∂y ).
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We denote these partial derivatives as: ∂2f
∂x2 ,

∂2f
∂y∂x ,

∂2f
∂x∂y ,

∂2f
∂y2 .

These are functions from R
2 to R.

More generally, for f : Rn→R, we denote the first order partial derivatives by ∂f
∂xi

: Rn→

R (for 1 ⩽ i ⩽ n) and the second order partial derivatives by ∂2f
∂xj∂xi

(for 1 ⩽ i, j ⩽ n).

5.1.9 Schwarz’s Theorem

For f : R2→R, there are four second order partial derivatives to compute, but generally,
two of them are equal.
Example 1.
Let f : U → R be defined by f (x,y) = x2 cos(y) + ln(x − y2) on U = {(x,y) ∈ R2 | x − y2 > 0}.
Then:

∂f

∂x
(x,y) = 2xcos(y) +

1
x − y2 ,

∂f

∂y
(x,y) = −x2 sin(y)−

2y
x − y2 .

We can now differentiate again to obtain the second order partial derivatives:

∂2f

∂x2 (x,y) = 2cos(y)− 1
(x − y2)2 ,

∂2f

∂y∂x
(x,y) = −2x sin(y) +

2y
(x − y2)2 .

∂2f

∂y∂x
(x,y) =

∂2f

∂x∂y
(x,y) = −2x sin(y) +

2y
(x − y2)2 ,

∂2f

∂y2 (x,y) = −x2 cos(y)−
2x+ 2y2

(x − y2)2 .

We note from the previous example that ∂2f
∂y∂x (x,y) = ∂2f

∂x∂y (x,y). This is a general phe-
nomenon that we will detail.

Definition 5.1.18. A function f : Rn → R is of class C2 if f is of class C1 (that is, its
partial derivatives exist and are continuous) and if its partial derivatives are also of class
C1.

The Schwarz theorem states that the result does not depend on the order in which the
derivatives are taken.

Theorem 5.1.19. (Schwarz’s Theorem) Let f : U ⊂R
n→R be a function of class C2. For

all i, j ∈ {1, . . . ,n}, we have:
∂
∂xi

(
∂f

∂xj

)
=

∂
∂xj

(
∂f

∂xi

)
.

Thus, for f : R2→R of class C2, we have: ∂2f
∂y∂x (x,y) = ∂2f

∂x∂y (x,y).

For f : R3→R of class C2, there are 9 second-order partial derivatives, but only 6 calcu-

lations to perform:
∂2f

∂x2 ,
∂2f

∂y2 ,
∂2f

∂z2 ,
∂2f

∂y∂x
,

∂2f

∂x∂y
,

∂2f

∂z∂x
,

∂2f

∂x∂z
,

∂2f

∂z∂y
,

∂2f

∂y∂z
.
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Example 5.1.20. Let f : R2→R be the function defined by

f (x,y) =

 xy3

x2+y2 if (x,y) , (0,0)

0 if (x,y) = (0,0)

We verify that f is of class C1 on R
2 and that

∂f

∂x
(x,y) =

 y5−x2y3

(x2+y2)2 if (x,y) , (0,0)

0 if (x,y) = (0,0)
,

∂f

∂y
(x,y) =

3x3y2+xy4

(x2+y2)2 if (x,y) , (0,0)

0 if (x,y) = (0,0)

The increment ratio
∂f
∂x (0,y)− ∂f

∂x (0,0)
y−0 = 1→ 1 as y→ 0

shows that ∂2f
∂y∂x (0,0) = 1.

Similarly, the increment ratio
∂f
∂y (x,0)− ∂f

∂y (0,0)
x−0 = 0→ 0 as x→ 0

This shows that ∂2f
∂x∂y (0,0) = 0. The mixed partial derivatives are not equal at (0,0). We

conclude that at least one of the second partial derivatives ∂2f
∂x∂y or ∂2f

∂y∂x is not continuous

at (0,0). In other words, the function f is not of class C2 at (0,0), and the Schwarz theorem
does not apply.

5.1.10 Implicit Function

It involves replacing the study of a function of two variables with that of a function of a
single variable.
Let F : R2 → R. We consider the level curve C : F(x,y) = 0. We say that the function
y = φ(x) is implicitly defined by F(x,y) = 0 if F(x,φ(x)) = 0, meaning that (x,φ(x)) ∈ C. We
then state that y = φ(x) is an implicit function of F(x,y) = 0.

Theorem 5.1.21. (Implicit Function Theorem) Let F : R2 → R be a C1 function and let
(x0, y0) be a point such that F(x0, y0) = 0. If ∂F

∂y (x0, y0) , 0, then:

1. There exists a C1 function φ : I → J defining an implicit function y = φ(x), where
I is an open interval containing x0, J is an open interval containing y0, and y0 =
φ(x0). More precisely, for all (x,y) ∈ I × J , we have:

F(x,y) = 0 ⇐⇒ y = φ(x)

In particular, for all x ∈ I , F(x,φ(x)) = 0.

2. Furthermore, for all x ∈ I , we have ∂F
∂y (x,φ(x)) , 0, and the derivative of φ is given

by:

φ′(x) = −
∂F
∂x (x,φ(x))
∂F
∂y (x,φ(x))

We have a symmetric statement when exchanging x and y if the other partial derivative
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does not vanish. If ∂F
∂x (x0, y0) , 0, there exists a function φ̃ : J → I of the variable y,

defined around y0, which defines the implicit function φ̃(y), such that in a neighborhood
of (x0, y0):

F(x,y) = 0 ⇐⇒ x = φ̃(y)

(this implies F(φ̃(y), y) = 0).
If both partial derivatives ∂F

∂x (x0, y0) and ∂F
∂y (x0, y0) simultaneously vanish, the point (x0, y0)

is called a singular point, and the Implicit Function Theorem does not apply.

Example 5.1.22. Let’s examine what the Implicit Function Theorem signifies for the circle
defined by the equation x2 + y2 − 1 = 0, where ∂F

∂y = 2y.

• At the point (0,1):
∂F
∂y

(0,1) = 2 , 0.

Thus, we can express y as a function of x around the point (0,1). We can give the
formula: y =

√
1− x2.

• At the point (1,0):
∂F
∂y

(1,0) = 0.

We can no longer apply the Implicit Function Theorem, and indeed, y is no longer a
function of x around (1,0). This is because for points (x,y) close to (1,0) with x fixed,
the equation x2 + y2 − 1 = 0 admits two possible solutions for y. However, around
(1,0), we can express x as a function of y.

5.2 Differential Forms and Exterior Differential

5.2.1 Differential Forms

Differential Forms of Degree 0

Let D ⊂R
n, n = 2,3 be a bounded domain.

Definition 5.2.1. A differential form of degree 0 on D is simply a continuous function
f : D→R.

Differential Forms of Degree 1

Definition 5.2.2. A differential form of degree 1 on D is an expression of the form:

α =
n∑

j=1

fj(x)dxj ,
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where the fj are continuous functions from D to R.

It will often be assumed that the functions fj are regular (infinitely differentiable on D).

Example 5.2.3. 1. α = cos(x1x
2
2)dx1 + (x2

1x3 − x2)dx2 + tan(x2x3)dx3 is a differential
form of degree 1 on R

3.

2. α = (x2
1 + sinx2)dx1 + ex1−x2 dx2 is a differential form of degree 1 on R

2.

For now, dxj can be seen as "integration elements," similar to their use in
∫ b

a
f (x)dx.

Differential Forms of Degree 2

Definition 5.2.4. A differential form of degree 2 on D is an expression of the form:

α =
n∑

j=1

n∑
k=1

fjk(x)dxj ∧ dxk ,

where the fjk are continuous functions from D to R.

It will often be assumed that the functions fjk are regular (infinitely differentiable on D).

Example 5.2.5. α = (x2
1 cosx2)dx1 ∧ dx2 + (x3 − 2x1x2)dx2 ∧ dx3 is a differential form of

degree 2 on R
3.

Calculation Rules

The following calculation rules apply to the symbols dxi and ∧, analogous to those of the
vector product of two vectors:

dxi ∧ dxi = 0, 1 ⩽ i ⩽ n,

dxi ∧ dxj = −dxj ∧ dxi , 1 ⩽ i, j ⩽ n.

Example 5.2.6.
dx2 ∧ dx2 = 0, dx2 ∧ dx1 = −dx1 ∧ dx2, etc.

By applying these rules, one can simplify the expressions of a form. For instance, if n = 2
and α is a degree 2 form, we have:

α = f11(x)dx1 ∧ dx1 + f12(x)dx1 ∧ dx2 + f21(x)dx2 ∧ dx1 + f22(x)dx2 ∧ dx2

= (f12(x)− f21(x))dx1 ∧ dx2 = (f21(x)− f12(x))dx2 ∧ dx1

= g12(x)dx1 ∧ dx2,

where g12 = f12 − f21.
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Similarly, if n = 3 and α is a degree 2 form, we have:

α = f11(x)dx1∧dx1 +f12(x)dx1∧dx2 +f13(x)dx1∧dx3 +f21(x)dx2∧dx1 +f22(x)dx2∧dx2+

f23(x)dx2 ∧ dx3 + f31(x)dx3 ∧ dx1 + f32(x)dx3 ∧ dx2 + f33(x)dx3 ∧ dx3

= (f12(x)− f21(x))dx1 ∧ dx2 + (f23(x)− f32(x))dx2 ∧ dx3 + (f31(x)− f13(x))dx3 ∧ dx1

= g12(x)dx1 ∧ dx2 + g23(x)dx2 ∧ dx3 + g31(x)dx1 ∧ dx3,

by applying the rules:

dx1 ∧ dx1 = dx2 ∧ dx2 = dx3 ∧ dx3 = 0,

dx2 ∧ dx1 = −dx1 ∧ dx2, dx3 ∧ dx1 = −dx1 ∧ dx3, dx3 ∧ dx2 = −dx2 ∧ dx3.

Remark 5.2.7. It is useful to adopt the practice of writing degree 2 forms using only the
symbols

dx1 ∧ dx2, dx2 ∧ dx3, and dx3 ∧ dx1 .

Understanding the Notion of Degree

The degree of a differential form corresponds to the power of the "d" symbols present in
its expression: a degree 0 form is a function that has no "d" in its expression. A degree 1
form contains dxj , while a degree 2 form contains dxi ∧ dxj .
Another way to understand degree is through the dimensionality of spaces: a curve in
R

2 or R
3 is a 1-dimensional space (one parameter is sufficient to describe points on the

curve), and a surface in R
3 (a domain in R

2) is a 2-dimensional space (two parameters
are needed to describe points on a surface). Following this perspective, a point in R

2 or
R

3 is a 0-dimensional space.
Now, if I have a function f (a degree 0 form), the simplest thing I can do is evaluate
its value at a point, which can be understood as "integrating the function f over a 0-
dimensional space." Degree 1 forms are likewise objects intended to be integrated over
curves, while degree 2 forms are meant to be integrated over surfaces. In other words, a
differential form of degree d will be integrated over a space of dimension d. A differential
form of degree d is often simply referred to as a d-form.

5.2.2 Integral of a 1-Form Along an Oriented Arc

Definition 5.2.8. Let γ be an oriented arc in R
2 (i.e., a curve in R

2 with a specified
direction of traversal), and let α = f1(x)dx1 + f2(x)dx2 be a 1-form in R

2. We define the
integral of α along γ as follows:
We choose a parameterization of γ :

[a,b] ∋ t 7→ x(t) = (x1(t),x2(t))
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compatible with the orientation of γ . We define:∫
γ
α :=

∫ b

a
(f1(x1(t),x2(t))x′1(t) + f2(x1(t),x2(t))x′2(t))dt.

We can remember the following rules:

1. We write ∫
γ
α =

∫
γ
f1(x)dx1 + f2(x)dx2,

2. Along γ , we replace x = (x1,x2) with x(t) = (x1(t),x2(t)), and dxi with dxi
dt dt, that is,

x′i(t)dt.

3. We integrate the resulting expression from a to b.

Definition 5.2.9. Let γ be an oriented arc in R
3, and let

α = f1(x)dx1 + f2(x)dx2 + f3(x)dx3

be a 1-form in R
3. We define the integral of α along γ as follows:

We choose a parameterization of γ :

[a,b] ∋ t 7→ x(t) = (x1(t),x2(t),x3(t))

that is compatible with the orientation of γ . We then set:∫
γ
α :=

∫ b

a
(f1(x(t))x′1(t) + f2(x(t))x′2(t) + f3(x(t))x′3(t))dt.

Again, the integral is independent of the parameterization as long as it remains compat-
ible with the orientation.

5.2.3 Exterior Differential

We now define an operation denoted by d that transforms a form of degree k into a form
of degree k + 1. This operation, which serves as a type of differentiation, is called the
exterior differential.
A differential form α is said to be of class Ck if the functions appearing in its expression
are of class Ck . We begin with the case of degree 0 forms, which are simply functions.

Definition 5.2.10. Let f : D → R be a function of class C1. We define the exterior
differential df as:

df =
n∑
i=1

∂f

∂xi
(x)dxi .

Thus, the form df is a degree 1 form.
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Example 5.2.11. In dimension 2, if f (x1,x2) = sin(x1x
2
2), then we have:

df = x2
2 cos(x1x

2
2)dx1 + 2x1x2 cos(x1x

2
2)dx2.

Definition 5.2.12. Let

α =
n∑
i=1

fi(x)dxi

be a degree 1 form assumed to be of class C1 (meaning that the functions fi are of class
C1). We then define the exterior differential of α as:

dα =
n∑
i=1

dfi ∧ dxi ,

which is a degree 2 form.

Example 5.2.13. 1. If n = 2 and

α = f1(x)dx1 + f2(x)dx2,

then we have:

dα =
∂f1

∂x1
(x)dx1 ∧ dx1 +

∂f1

∂x2
(x)dx2 ∧ dx1 +

∂f2

∂x1
(x)dx1 ∧ dx2 +

∂f2

∂x2
(x)dx2 ∧ dx2

=
(
∂f2

∂x1
(x)−

∂f1

∂x2
(x)

)
dx1 ∧ dx2,

after applying the calculation rules.

2. If n = 3 and
α = f1(x)dx1 + f2(x)dx2 + f3(x)dx3,

then we have:

dα =
∂f1

∂x1
(x)dx1∧dx1+

∂f1

∂x2
(x)dx2∧dx1+

∂f1

∂x3
(x)dx3∧dx1+

∂f2

∂x1
(x)dx1∧dx2+

∂f2

∂x2
(x)dx2∧dx2+

∂f2

∂x3
(x)dx3 ∧ dx2 +

∂f3

∂x1
(x)dx1 ∧ dx3 +

∂f3

∂x2
(x)dx2 ∧ dx3 +

∂f3

∂x3
(x)dx3 ∧ dx3

=
(
∂f2

∂x1
(x)−

∂f1

∂x2
(x)

)
dx1∧dx2+

(
∂f3

∂x2
(x)−

∂f2

∂x3
(x)

)
dx2∧dx3+

(
∂f1

∂x3
(x)−

∂f3

∂x1
(x)

)
dx3∧dx1.
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5.3 Jacobian Matrix

For a function of several variables, there is not just one derivative but several: one for
each variable. If the function is also vector-valued, then for each component and for each
variable, there is a derivative. All these derivatives are grouped in the Jacobian matrix.

5.3.1 Vector-Valued Functions

A function is said to be a vector-valued function when the target space is not R but Rp,
with p ⩾ 2:

F : Rn→R
p, x = (x1, . . . ,xn) 7→ (f1(x), . . . , fp(x))

Each component fj , for j = 1, . . . ,p, is a function of several variables with real values:
fj : Rn→R. We denote

x 7→ F(x) or (x1, . . . ,xn) 7→ F(x1, . . . ,xn).

5.3.2 Jacobian Matrix

Definition 5.3.1. Let F : Rn→ R
p be a function, whose components are F = (f1, . . . , fp).

Let x ∈ Rn. We assume that the partial derivatives ∂fi
∂xj

exist at x (for all i = 1, . . . ,p and

j = 1, . . . ,n).
The Jacobian matrix of F at x = (x1, . . . ,xn) ∈Rn is

JF(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fp
∂x1

(x) · · · ∂fp
∂xn

(x)


It is a matrix with p rows and n columns. The first row corresponds to the partial deriva-
tives of f1, the second row to the partial derivatives of f2, and so on.
For F : R2→R

2 with F = (f1, f2) at (x,y) ∈R2, it looks like this:

JF(x,y) =


∂f1
∂x (x,y) ∂f1

∂y (x,y)
∂f2
∂x (x,y) ∂f2

∂y (x,y)


Example 5.3.2. 1. Let F : R2 → R

2 defined by F(x,y) = (x2 + y2, ex−y). At the point
(x,y), we have:

JF(x,y) =


∂f1
∂x (x,y) ∂f1

∂y (x,y)
∂f2
∂x (x,y) ∂f2

∂y (x,y)

 =
(

2x 2y
ex−y −ex−y

)

For example, at the point (x0, y0) = (2,1), the Jacobian matrix is:

JF(2,1) =
(
4 2
e −e

)
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2. For F(x,y,z) = (exy , z sinx), we have:

JF(x,y,z) =
(
yexy xexy 0
zcosx 0 sinx

)

5.3.3 Gradient

For a scalar-valued function f : Rn → R whose partial derivatives exist, the gradient
vector is given by:

grad f (x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)


This is a column vector that is the transpose of the Jacobian matrix (which, in this case,
is a row vector):

grad f (x) = Jf (x)T .

We will return to the gradient in detail in the chapter "Gradient – Mean Value Theorem."

Physicists denote the gradient as ∇f (x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

, where ∇ (read as "nabla") corresponds

to the operator:

∇ =


∂
∂x1
...
∂
∂xn

 .
5.3.4 Differential

The theoretical counterpart of the Jacobian matrix is the differential associated with F :
R
n→R

p at a point x. This section is more theoretical: for a first reading, one can simply
remember that the differential dF(x) is a linear map whose matrix (in the canonical basis)
is the Jacobian matrix JF(x).
In other words:

dF(x)(h) = JF(x)× h

where x ∈Rn and h ∈Rn, while the result dF(x)(h) is an element of Rp.
We will examine what this means for the differential of a vector-valued function. Let
F : Rn→R

p whose components are F = (f1, . . . , fp) with each fj : Rn→R.

Definition 5.3.3. • F : Rn → R
p is differentiable at x ∈ R

n if each component fj :
R
n → R (for j = 1, . . . ,p) is differentiable at x. We denote the differential of fj at x

as dfj(x) : Rn→R.

• The differential of a differentiable vector-valued function F : Rn → R
p at x ∈ Rn is
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the linear map dF(x) : Rn→R
p defined by:

dF(x) = (df1(x), . . . ,dfp(x)).

Attention! The differential dF(x) of F at x ∈ Rn is a linear map, so it is indeed a function
(and not a vector). The evaluation of this function yields an expression involving vectors:

∀h ∈Rn, dF(x)(h) = (df1(x)(h), . . . ,dfp(x)(h)).

Proposition 5.3.4. Let F : Rn→R
p be differentiable at x ∈Rn. Then

dF(x)(h) = JF(x)× h

where JF(x) is the Jacobian matrix of F at x, for any h ∈Rn.

In other words, finding the differential at x amounts to calculating the Jacobian matrix
at x. This proposition follows from the expression of each differential dfj(x) using the

partial derivatives ∂f
∂xj

(for j = 1, . . . ,n).

Example 5.3.5. Let F : R2 → R
2 defined by F(x,y) = (yex

2
,x2 − y). We will calculate

dF(x,y)(h,k) for any (x,y), (h,k) ∈R2.
- The Jacobian matrix of F is:

JF(x,y) =


∂f1
∂x (x,y) ∂f1

∂y (x,y)
∂f2
∂x (x,y) ∂f2

∂y (x,y)

 =
(
2xyex

2
ex

2

2x −1

)

- At (x,y) and for (h,k) ∈R2, we have:

dF(x,y)(h,k) = JF(x,y)×
(
h
k

)
=

(
(2xyh+ k)ex

2

2xh− k

)
- For example, at the point (x0, y0) = (1,1), we have: dF(1,1)(h,k) = ((2h+ k)e, 2h− k).

Remarks:
- If F has components of class C1 (i.e., all partial derivatives exist and are continuous),
then they are differentiable, and F is also differentiable. - If F is differentiable at x, then
F is continuous at x. - If L : Rn→R

p is a linear map, then its differential is the map itself
at every point: in other words, dL(x) = L for all x ∈Rn.
Remarks:
There is another equivalent definition of the two concepts encountered:
- F : Rn→R

p is differentiable at x ∈Rn if there exists a linear map L : Rn→R
p such that:

lim
∥h∥→0

F(x+ h)−F(x)−L(h)
∥h∥

= 0.

In this case, L is the differential of F at x and we denote it as dF(x).
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5.3.5 Jacobian Matrix of a Composition

Proposition 5.3.6. Let f ,g : R→R be differentiable functions. Then g◦f is differentiable
and

(g ◦ f )′(x) = g ′(f (x))× f ′(x).

Remark:
It may be interesting to denote x as the variable of the function f and y as the variable of
the function g. The formula can then also be written as:

d(g ◦ f )
dx

=
dg

dy
(f (x))×

df

dx
(x).

By letting y = f (x), we can consider g as a function of the variable y, but also (through
composition) as a function of the variable x. We can then write, as physicists do:

dg

dx
=
dg

dy
×
dy

dx
.

This is a formula that is easily memorized by saying that we simplify the fraction by
eliminating dy in the numerator and the denominator.
Now let’s move on to the case of F : Rn→ R

p and G : Rp → R
q. The composition is then

G ◦F : Rn→R
q, and is defined by (G ◦F)(x) = G(F(x)).

Theorem 5.3.7. If F and G are differentiable, then G◦F is differentiable, and the Jacobian
matrices are related by the following formula:

JG◦F(x) = JG(F(x))× JF(x)

Here, "×" denotes the product of the two Jacobian matrices.
It is particularly noted that if the components of F and G are of class C1 (i.e., the par-
tial derivatives exist and are continuous), then the functions are differentiable and the
formula is valid. Moreover, G ◦F is also of class C1.

Example 5.3.8. Let F : R2→ R
2 be defined by F(x,y) = (x + y,e2x−y) and G : R2→ R

3 be
defined by G(x,y) = (xy,y sinx,x2). The Jacobian matrices of F and G are:

JF(x,y) =
(

1 1
2e2x−y −e2x−y

)
, JG(x,y) =


y x

y cosx sinx
2x − y 0

 .
Note that we need JG(F(x,y)). Thus, in JG(x,y), we replace x with the first component of F
(which is x+ y) and y with the second component of F (which is e2x−y). Therefore,

JG(F(x,y)) =


e2x−y x+ y

e2x−y cos(x+ y) sin(x+ y)
2(x+ y) 0

 .
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To obtain the Jacobian matrix of the composition G ◦ F : R2 → R
3, we apply the formula

given by the product of matrices:

JG◦F(x,y) = JG(F(x,y))× JF(x,y).

We find:

JG◦F(x,y) =


(1 + 2x+ 2y)e2x−y (1− x − y)e2x−y

(cos(x+ y) + 2sin(x+ y))e2x−y (cos(x+ y)− sin(x+ y))e2x−y

2x+ 2y 2x+ 2y

 .

Theorem 5.3.9. If F : Rn→R
p is differentiable at x, and if G : Rp→R

q is differentiable
at F(x), then G ◦F : Rn→R

q is differentiable at x and we have:

d(G ◦F)(x) = dG(F(x)) ◦ dF(x).

We will apply the formula for the Jacobian matrix of a composition to calculate partial
derivatives. The only two things to remember are, first, the formula JG◦F(x) = JG(F(x)) ×
JF(x), and second, how to apply it. Therefore, it is unnecessary to memorize the following
formulas.
Case: F : R→R

2, G : R2→R

Proposition 5.3.10. Let F : R→ R
2 be defined by t 7→ F(t) = (x(t), y(t)), where t 7→ x(t)

and t 7→ y(t) are differentiable functions, and let G : R2→R be defined by (x,y) 7→ G(x,y)
as a differentiable function. Then h = G ◦F : R→R is defined by t 7→ h(t) = G(x(t), y(t)).
is differentiable and

h′(t) =
∂G
∂x

(x(t), y(t)) · x′(t) +
∂G
∂y

(x(t), y(t)) · y′(t).

This is a direct application of the formula Jh(t) = JG(F(t))× JF(t), with:

Jh(t) =
dh
dt

= h′(t), JG(x,y) =
(
∂G
∂x (x,y) ∂G

∂y (x,y)
)
, JF(t) =

(dx
dt (t)
dy
dt (t)

)
=

(
x′(t)
y′(t)

)
.

Example 5.3.11. Let G(x,y) = cos(y)ex. Calculate the derivative of the function h : t 7→
G(t2,sin t).
Solution: One method would be to write h(t) = cos(sin t)et

2
and then differentiate h... But

let’s use the formula Jh(t) = JG(F(t))×JF(t), where we define F(t) = (t2,sin t), so that h = G◦F.

Knowing that: Jh(t) = h′(t), JG(x,y) =
(
cos(y)ex −sin(y)ex

)
, JF(t) =

(
2t

cos t

)
,

we calculate JG(F(t)) and obtain

h′(t) = 2t cos(sin t)et
2

+ cos(t) · (−sin(sin t)et
2
) = 2t cos(sin t)et

2
− cos(t)sin(sin t)et

2
.

Case F : R→R
n, G : Rn→R: More generally, we have the following result.
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Proposition 5.3.12. Let F : R → R
n be a function whose components are all differen-

tiable, and let G : Rn → R be differentiable. Then the function h : R → R defined by
h(t) = G(F(t)) is differentiable and:

h′(t) = ⟨gradG(F(t)) | F′(t)⟩.

Case: F : R2→R
2, G : R2→R

Proposition 5.3.13. Let F : R2→R
2 defined by (x,y) 7→ (f1(x,y), f2(x,y)) and G : R2→

R defined by (u,v) 7→ G(u,v) be differentiable functions. The function H = G◦F : R2→R

defined by (x,y) 7→ G(F(x,y)) is differentiable, and we have:

∂H
∂x

(x,y) =
∂G
∂u

(F(x,y)) ·
∂f1

∂x
(x,y) +

∂G
∂v

(F(x,y)) ·
∂f2

∂x
(x,y),

∂H
∂y

(x,y) =
∂G
∂u

(F(x,y)) ·
∂f1

∂y
(x,y) +

∂G
∂v

(F(x,y)) ·
∂f2

∂y
(x,y).

It is once again the formula JH (x,y) = JG(F(x,y))× JF(x,y), with:

JH (x,y) =
(
∂H
∂x (x,y) ∂H

∂y (x,y)
)
, JG(u,v) =

(
∂G
∂u (u,v) ∂G

∂v (u,v)
)
,

and

JF(x,y) =


∂f1
∂x (x,y) ∂f1

∂y (x,y)
∂f2
∂x (x,y) ∂f2

∂y (x,y)


Example 5.3.14. Calculate the partial derivatives of the function (x,y) 7→ G(x − y,x + y)
where G : R2→R is a differentiable function.
Solution:
Let F(x,y) = (x − y,x + y), and denote (u,v) as the variables of the function G and H(x,y) =
(G ◦F)(x,y) = G(x − y,x+ y).
Thus, we have:

JH (x,y) =
(
∂H
∂x (x,y) ∂H

∂y (x,y)
)
, JG(u,v) =

(
∂G
∂u (u,v) ∂G

∂v (u,v)
)
,

and

JF(x,y) =
(
1 −1
1 1

)
.

Therefore:
∂H
∂x

(x,y) =
∂G
∂u

(x − y,x+ y) · 1 +
∂G
∂v

(x − y,x+ y) · 1,

∂H
∂y

(x,y) =
∂G
∂u

(x − y,x+ y) · (−1) +
∂G
∂v

(x − y,x+ y) · 1.
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5.4 Chapter 5 Exercises

Exercise 20
We define f : R2 \ {(0,0)} →R by

f (x,y) =
x2

(x2 + y2)
3
4

.

Justify that we can extend f to a continuous function on R
2. Study the existence of partial

derivatives at (0,0) for this extension.
Correction ▼ [20]

Exercise 21
Verify, using the definition, that the following functions are differentiable at the points
(x0, y0).

1. f1(x,y) = xy − 3x2, (x0, y0) = (1,2).

2. f2(x,y) = yx, (x0, y0) = (4,1).

Correction ▼ [21]

Exercise 22
Let f : R2→R be the function defined by

f (x,y) =
y3√

x2 + y4
if (x,y) , (0,0) and f (0,0) = 0.

Show that f has a directional derivative in every non-zero direction at the point (0,0),
but that it is not differentiable at that point.
Correction ▼ [22]

Exercise 23
Let the function f : R2→R be defined by

f (x,y) =

x3−y3

x2+y2 , if (x,y) , (0,0),

0, if (x,y) = (0,0).

Show that the partial derivatives ∂f
∂x and ∂f

∂y exist at every point in R
2 and that f is con-

tinuous, but it is not differentiable at (0,0).
Correction ▼ [23]
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Exercise 24
Let the function f : R2→R be defined by

f (x,y) =

(x2 + y2)3 cos
(

1
x2+y2

)
, if (x,y) , (0,0),

0, if (x,y) = (0,0).

1. Study the continuity of f on R
2.

2. Calculate ∇f (x,y).

3. Is the function f of class C1 on R
2?

4. What can we conclude about the differentiability of f on R
2?

Correction ▼ [24]

Exercise 25
Calculate the integral of the differential form α along γ in the following cases:

1. Let
α =

x

x2 + y2 dx+
y

x2 + y2 dy

and let γ be the arc of the parabola given by the equation y2 = 2x + 1, joining the
points (0,−1) and (0,1), traversed once in the direction of increasing y.

2. Let
α = (x − y3)dx+ x3dy

and let γ be the circle centered at the origin O with radius 1, traversed once in the
positive direction.

3. Let
α = xyzdx

and let γ be the arc defined by x = cos t,y = sin t, z = cos t sin t, where t varies from
0 to π

2 .

4. Let
α = y2dx+ x2dy.

and let γ be any circle in the plane, traversed once in the counterclockwise direc-
tion.

Correction ▼ [25]
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Exercise 26
Let F be the function defined by

F(x,y) = (x2 + xcosy, ex−y , y3x).

1. Justify the differentiability of F on R
2.

2. Write the Jacobian matrix JF at every point in R
2.

3. Determine dF(a), the differential of F at the point a ∈R2.

Correction ▼ [26]

Exercise 27
Let f be the real function defined on R

2 by

f (x,y) = sin(x2 − y2)

and let g be a function from R
2 to R

2 defined by

g(x,y) = (x+ y,x − y).

1. Justify that f and g are differentiable at every point (x,y) ∈R2.

2. Calculate the partial derivatives of f ◦ g and the differential of f ◦ g at the point
(x,y).

3. Calculate the Jacobian matrices of f and g at the point (x,y).

4. By applying the theorem on the composition of two differentiable functions, find
the Jacobian matrix of f ◦g at the point (x,y) and the differential of f ◦g at the point
(x,y).

Correction ▼ [27]



Chapter

6 Optimization with and
without constraints

This chapter focuses on identifying the maximum and minimum values of functions.
We will explore the conditions for the existence of local extrema and conclude with the
concept of constrained extrema, where the search for extrema is subject to specific con-
straints. To facilitate understanding of these concepts in multiple variables, we will first
review the case of a single-variable function.

6.1 Optimization without constraints

6.1.1 Case of a Single Variable

Let f : R→R be a function of one variable.

• f has a local maximum at x0 ∈ R if there exists an open interval I containing x0
such that:

∀x ∈ I, f (x) ⩽ f (x0).

• f has a local minimum at x0 ∈R if there exists an open interval I containing x0 such
that:

∀x ∈ I, f (x) ⩾ f (x0).

• f has a local extremum at x0 ∈ R if f has either a local maximum or a local mini-
mum at that point.

• f has a critical point at x0 ∈ R if f ′(x0) = 0. Geometrically, this is a point of hori-
zontal tangent.

Proposition 6.1.1. If f is differentiable and has a local minimum or a local maximum at
x0, then f ′(x0) = 0. In other words, if x0 is a local extremum, then it is a critical point.

The converse is not always true. For example, for f : x 7→ x3, the point x0 = 0 is a critical
point, but it is neither a local maximum nor a local minimum (it is an inflection point).

Example 6.1.2. 1. f : x 7→ x2, local minimum at 0, with f ′(0) = 0 and f ′′(0) > 0.

2. f : x 7→ −x2, local maximum at 0, with f ′(0) = 0 and f ′′(0) < 0.

67
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3. f : x 7→ x3, neither a local minimum nor a local maximum at 0, with f ′(0) = 0 and
f ′′(0) = 0.

Taylor’s Formula of Order 2

Let f : R→R be a function of one variable of class C2.

Theorem 6.1.3. (Taylor’s Formula of Order 2) For any x0 ∈R, we have

f (x0 + h) = f (x0) + hf ′(x0) +
h2

2
f ′′(x0) + h2ε(h)

where ε(h)→ 0 as h→ 0.

The first-order Taylor expansion, f (x0 + h) ≈ f (x0) + hf ′(x0), corresponds to the approxi-
mation of the graph of f by its tangent at x0 (left figure below). The second-order Taylor
expansion, f (x0 + h) ≈ f (x0) + hf ′(x0) + h2

2 f ′′(x0), corresponds to an approximation by a
parabola (right figure).

Let us choose a value for x0 such that f ′(x0) = 0 and f ′′(x0) , 0. Then, for sufficiently
small h, the term h2

2 f ′′(x0) +h2ε(h) has the same sign as f ′′(x0). If, for example, f (x0) > 0,
we can deduce that f (x0 +h) ⩾ f (x0) (for h close to 0), and thus f has a local minimum at
x0.

Characterization of Minima and Maxima

The practical search for local extrema of a function of one variable proceeds as follows:

1. Identify the critical points given by the equation f ′(x) = 0.

2. For each critical point x0, calculate the second derivative:
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• If f ′′(x0) > 0, then f has a local minimum at x0.

• If f ′′(x0) < 0, then f has a local maximum at x0.

• If f ′′(x0) = 0, further investigation is needed.

6.1.2 Case of Two Variables

Let f : U →R be a function of two variables, where U is an open subset of R2.

Definition 6.1.4. We say that f has a local maximum (resp. local minimum) at (x0, y0) ∈
U if there exists an open disk D ⊂U , centered at (x0, y0), such that:

∀(x,y) ∈D, f (x,y) ⩽ f (x0, y0) (resp. f (x,y) ⩾ f (x0, y0)).

We say that f has a local extremum at (x0, y0) if it has a local maximum or a local mini-
mum there.

Critical Point

Let us assume that f is of class C2 on an open set U , meaning that its partial derivatives
up to order 2 exist and are continuous.

Proposition 6.1.5. If f has a local extremum at (x0, y0) in an open set U , then

∂f

∂x
(x0, y0) = 0 and

∂f

∂y
(x0, y0) = 0.

In other words, if f has a local minimum or maximum at a point, then the gradient of
f is the zero vector at that point. The points in U where the gradient of f vanishes are
called critical points of f . The previous result states that the extrema of a function on an
open set can only occur at a critical point. The converse is false.
By definition, a critical point that is neither a local maximum nor a local minimum is
called a saddle point.

Hessian matrix

The Jacobian matrix is the matrix of partial derivatives, while the Hessian matrix is the
matrix of second-order partial derivatives.

Definition 6.1.6. Let f : Rn→ R be a function of n variables. The Hessian matrix of f
at x = (x1, . . . ,xn) is the n×n matrix:

Hf (x) =
(
∂2f (x)
∂xi∂xj

)
1⩽i,j⩽n

.

For a function of class C2, according to Schwarz’s theorem, this matrix is symmetric.
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In the case of a function of two variables:

Hf (x,y) =


∂2f (x,y)

∂x2
∂2f
∂x∂y (x,y)

∂2f
∂y∂x (x,y) ∂2f (x,y)

∂y2

 .
For three variables, the Hessian matrix (evaluated at (x,y,z)) is given by:

Hf =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

 .

Example 6.1.7. Let’s calculate the Hessian matrix of f (x,y) = xy2 + x4 − y4.
First, we compute the partial derivatives:

∂f

∂x
(x,y) = 4x3 + y2,

∂f

∂y
(x,y) = 2xy − 4y3.

Thus, we have:

Hf (x,y) =


∂2f
∂x2 (x,y) ∂2f

∂x∂y (x,y)
∂2f
∂y∂x (x,y) ∂2f

∂y2 (x,y)

 =
(
12x2 2y
2y 2x − 12y2

)
.

Characterization of Minima and Maxima

For a function f : R2→ R, we will use Monge’s notation, which provides a simple crite-
rion for detecting a local minimum or maximum.

Theorem 6.1.8. (Monge’s Criterion).
Let f : R2→R be a function of class C2, and let (x0, y0) be a critical point of f . Define

r =
∂2f

∂x2 (x0, y0), s =
∂2f

∂x∂y
(x0, y0), t =

∂2f

∂y2 (x0, y0).

Then:

• If rt − s2 > 0 and r > 0, then (x0, y0) is a local minimum of f .

• If rt − s2 > 0 and r < 0, then (x0, y0) is a local maximum of f .

• If rt − s2 < 0, then (x0, y0) is neither a local minimum nor a local maximum: it is a
saddle point.

• If rt − s2 = 0, no direct conclusion can be drawn (further analysis is needed).

Remark: rt − s2 is the determinant of the Hessian matrix at (x0, y0):

Hf (x0, y0) =
(
r s
s t

)
.
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Example 6.1.9.

1. Let f (x,y) = x2 + y2. The point (0,0) is the unique critical point of f . We calculate

r =
∂2f

∂x2 (0,0) = 2, s =
∂2f

∂x∂y
(0,0) = 0, t =

∂2f

∂y2 (0,0) = 2.

Thus, rt − s2 = 4 with r > 0, so (0,0) is indeed a local minimum of f .

2. Let f (x,y) = x2 − y2. We find a single critical point: (0,0). We calculate

Hf (0,0) =
(
2 0
0 −2

)
.

This time, r = 2, s = 0, and t = −2. Thus, rt − s2 = −4 < 0, and therefore (0,0)
corresponds to a saddle point.

3. Let f : R2→R defined by f (x,y) = x3 + y3 − 3xy.

Partial Derivatives:

∂f

∂y
(x,y) = 3y2 − 3x,

∂f

∂x
(x,y) = 3x2 − 3y

Critical Points: The critical points are where ∂f
∂x (x,y) = 0 and ∂f

∂y (x,y) = 0 simultane-
ously. This gives us the equations:

x2 = y and y2 = x

which implies x,y ⩾ 0. From this, we have: x4 = y2 = x.

The positive solutions are x = 0 (and then y = 0) and x = 1 (and then y = 1). Thus,
the critical points are (0,0) and (1,1).

Second Partial Derivatives:

∂2f

∂x2 (x,y) = 6x,
∂2f

∂x∂y
(x,y) = −3,

∂2f

∂y2 (x,y) = 6y

• Analysis at (0,0): Hf (0,0) =
(

0 −3
−3 0

)
This means r = 0, s = −3, t = 0, so rt − s2 = −9 < 0, thus (0,0) is a saddle point.

• Analysis at (1,1): Hf (1,1) =
(

6 −3
−3 6

)
This gives r = 6, s = −3, t = 6, so rt − s2 = 27 > 0 with r > 0, hence (1,1) is a
minimum point of f (it is a local minimum and not a global minimum).

This is an example where the criterion does not allow us to conclude definitively. Further
analysis is required to complete the study.
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Example 6.1.10. Let f (x,y) = 2x3 − y4 − 3x2. We find two critical points: (0,0) and (1,0).
Moreover:

Hf (0,0) =
(
−6 0
0 0

)
and Hf (1,0) =

(
6 0
0 0

)
.

We cannot conclude because the determinant rt − s2 is zero. We will analyze each case
manually.

• At (0,0): Let’s write f (x,y) = x2(2x − 3)− y4. For |x| ⩽ 1, we have 2x − 3 ⩽ 0, hence:

f (x,y) = x2(2x − 3)− y4 ⩽ 0.

Since f (0,0) = 0, we conclude that f has a local maximum at the point (0,0).

• At (1,0): First, we restrict ourselves to points of the form (1, y) (around y0 = 0):

f (1, y) = −1− y4 ⩽ −1 = f (1,0).

Next, we consider points of the form (x,0) (around x0 = 1, for example, for |x−1| ⩽ 1):

f (x,0) = (x − 1)2(2x+ 1)− 1 ⩾ −1 = f (1,0).

Thus, at (1,0), it is neither a minimum nor a maximum: it is a saddle point.

6.2 Optimization with constraints

Theorem 6.2.1. Let f ,g : U →R be C1 functions on an open set U ⊂R
2. Let (x0, y0) ∈U

such that f subject to the constraint g(x,y) = 0 has an extremum at the point (x0, y0) and
∇g(x0, y0) , (0,0). Then there exists a real number λ such that ∇f (x0, y0) = λ∇g(x0, y0).
In other words, we have:

g(x0, y0) = 0

∂f

∂g
(x0, y0) = λ

∂g

∂x
(x0, y0)

∂f

∂g
(x0, y0) = λ

∂g

∂y
(x0, y0)

(6.1)

Note that we can also consider the constraint g(x,y) = c (where c is a constant), which
reduces to the case stated in the theorem by considering g(x,y)− c = 0.

6.2.1 Lagrangian Method

Let us form the Lagrangian L(x,y,λ) = f (x,y)−λg(x,y), where λ (the Lagrange multiplier)
is an unknown. For this function to have an extremum, the gradient of L must be zero;
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in other words, we seek the triplets (x,y,λ) such that
∂f
∂x (x,y) = λ∂g

∂x (x,y),
∂f
∂y (x,y) = λ∂g

∂y (x,y),

0 = g(x,y).

Let (x0, y0,λ0) be a solution of this system. If ∇g(x0, y0) , 0, then (x0, y0) is a critical point
of the function f under the constraint g. These critical points satisfy the constraint, but
now we need to classify these candidates.
As in the case of unconstrained extrema, we can formulate second-order conditions re-
lated to the critical points, but these only apply in certain cases. Let

∆(x0, y0,λ0) ≡ ∂2L

∂x2 (x0, y0,λ0)
∂2L

∂y2 (x0, y0,λ0)−
(
∂2L
∂x∂y

(x0, y0,λ0)
)2

,

which is the determinant of the submatrix obtained from the Hessian of L by eliminating
the last row and the last column.

• If ∆(x0, y0,λ0) > 0, ∂2L
∂x2 (x0, y0,λ0) < 0, and ∂2L

∂y2 (x0, y0,λ0) < 0, then there is a local
maximum at (x0, y0).

• If ∆(x0, y0,λ0) > 0, ∂2L
∂x2 (x0, y0,λ0) > 0, and ∂2L

∂y2 (x0, y0,λ0) > 0, then there is a local
minimum at (x0, y0).

• If ∆(x0, y0,λ0) ⩽ 0, we cannot conclude directly. We then study the sign of the
difference

d(h,k) ≡ f (x0 + h,y0 + k)− f (x0, y0),

with h and k being related by the equation g(x0 + h,y0 + k) = 0. If this difference
has a constant sign for (h,k) close to (0,0), then it is a local extremum (a maximum
if d < 0, a minimum if d > 0). Otherwise, f does not present a local extremum at
(x0, y0).

Example 6.2.2. To study the existence of extrema of the function f : R2→R defined by

f (x,y) = xy

under the constraint
g(x,y) = x+ y − 6 = 0

we use the method of Lagrange multipliers.
Let us introduce the Lagrangian L : R2 ×R→R:

L(x,y,λ) = f (x,y)−λg(x,y) = xy −λ(6− x − y)

By applying the necessary condition of Lagrange multipliers, we must calculate the triplets
(x,y,λ) that are solutions to the following system:

∂L
∂x = y +λ = 0
∂L
∂y = x+λ = 0

g(x,y) = x+ y − 6 = 0
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By solving this system of equations, we find the critical point

(x,y,λ) = (3,3,−3).

The only extremum candidate for f under the constraint g is therefore the point (3,3), and
f (3,3) = 9. The Hessian submatrix of L is

HL(x,y,λ) =

 ∂2L
∂x2 (x,y,λ) ∂2L

∂x∂y (x,y,λ)
∂2L
∂y∂x (x,y,λ) ∂2L

∂y2 (x,y,λ)

 =
(
0 1
1 0

)
For all x,y,

|HL(x,y,λ)| = −1 ⩽ 0.

Thus, further investigation is needed. To determine the nature of this critical point, we must
examine the sign of the difference

d(x,y) = f (x,y)− f (3,3) = xy − 9

where x and y are related by the equation 0 = g(x,y) = x+ y − 6, which means y = 6− x.
We have

d(x,6− x) = −(x − 3)2 < 0 for all x ∈R.

This indicates that the difference d is negative for all x, which means that the point (3,3) is
a local maximum of f under the constraint g.
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6.3 Chapter 6 Exercises

Exercise 28
Let f : R2→R defined by

f (x,y) =

 xy2

x+y if (x,y) , (0,0),

0 if (x,y) = (0,0).

Is f of class C2 at (0,0)?
Correction ▼ [28]

Exercise 29
Find the critical points of the following functions and determine their nature.

1.
f (x,y) = (x2 − y)ex−y .

2.
g(x,y) = x3 + 6x2 + 3y2 − 12xy + 9x.

3.
h(x,y) = 3x3 + 3y3 − x − y.

Correction ▼ [29]

Exercise 30
Find the critical points of the following functions and determine their nature.

1.
f (x,y) = x4 + y4 − 4(x − y)2.

2.
g(x,y) = x4 + y3 − 3y − 2.

Correction ▼ [30]

Exercise 31
Determine the minima and maxima in the following cases:

1. f1(x,y) = x+ y under the constraint x2 + y2 = 1.

2. f2(x,y) = 4x2 + y2 under the constraint x2 + y2 = 4.

Correction ▼ [31]



Chapter

7 Solutions

7.1 Solutions to Chapter 1 Exercises

Correction of the exercise 1 ▲

1. • Let f (t,x) = e−x
2t3

1+t2 . The function F(x) =
∫ 2

1
e−x

2t3

1+t2 dt is a proper integral.
We have: f is continuous as the ratio of continuous functions on [1,2]×R with

a non-zero denominator and ∂f
∂x (t,x) = −2xt3e−x

2t3

1+t2 is continuous on [1,2]×R.
Conclusion: We use the theorem of conservation of differentiability under the
integral for the case of a proper parameterized integral. We deduce that F is
differentiable on R, which also implies its continuity on R.

• Let g(t,x) = ex(t+1)

t+1 . The function G(x) =
∫ 1

0
ex(t+1)

t+1 dt is a proper integral.
We have: g is continuous as the ratio of continuous functions on [0,1]×R with
a non-zero denominator and ∂g

∂x (t,x) = ex(t+1) is continuous on [0,1]×R.
Conclusion: We use the theorem of conservation of differentiability under the
integral for the case of a parameterized Riemann integral. We deduce that G
is differentiable on R, which also implies its continuity on R.

2. We have

G′(x) =
∫ 1

0
g ′(t,x)dt =

∫ 1

0
ex(t+1)dt =

 e2x−ex
x , if x , 0,

1, if x = 0.

Correction of the exercise 2 ▲

Let f (t,x) = 1
(t2+x2)(t2+1) . The function F(x) =

∫ 1
0

1
(t2+x2)(t2+1)dt is a proper parameterized

integral.

1. Study the continuity of F on R
∗
+: Since f is continuous as the ratio of continu-

ous functions on [0,1]×R∗+ with a non-zero denominator, by using the theorem of
conservation of continuity under the integral for the case of proper parameterized
integrals, we deduce that F is continuous on R

∗
+.

Moreover, the function F is even, which implies that F is continuous on all of R∗.

2. From the previous question, we have in particular

lim
x→1

F(x) = F(1) =
∫ 1

0

1
(t2 + 1)2dt. (1)

76
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Furthermore,

f (t,x) =
1

(t2 + x2)(t2 + 1)
=

1
x2 − 1

( 1
t2 + 1

− 1
t2 + x2

)
for x , 1 and x , −1.

Thus,

lim
x→1

F(x) = lim
x→1

1
x2 − 1

(∫ 1

0

1
t2 + 1

dt −
∫ 1

0

1
t2 + x2dt

)
= lim

x→1

1
x2 − 1

(
[arctan(t)]1

0 −
1
x

[
arctan

( t
x

)]1

0

)

= lim
x→1

1
x2 − 1

(π
4
− 1
x

arctan
(1
x

))
= lim

x→1

π
4 −

1
x arctan

(
1
x

)
x2 − 1

.

Using L’Hôpital’s rule, we get

lim
x→1

F(x) = lim
x→1

−
(
− 1
x2 arctan

(
1
x

)
+ 1

x ·
− 1

x2

( 1
x )2

+1

)
2x

=
π
8

+
1
4
. (2)

3. From (1) and (2), we deduce that∫ 1

0

1
(t2 + 1)2dt =

π
8

+
1
4
.

Correction of the exercise 3 ▲

1. Let us show that F is differentiable. Let H(x) =
∫ x

0 e−t
2
dt and h(t,x) = e−t

2
. We

apply the theorem of conservation of differentiability for proper parameterized in-
tegrals with variable limits, where u(x) = 0 and v(x) = x. The function h is C1 on
[0,+∞[×[0,+∞[ (since it is the composition of C1 functions), so H is differentiable
and:

H ′(x) = v′(x)h(v(x))−u′(x)h(u(x)) = e−x
2
.

(We can obtain the same result by noting that the function H is just an antideriva-
tive of the function t 7→ e−t

2
).

Thus, F is differentiable since it is the product of differentiable functions, and we
have F′(x) = 2H ′(x)H(x) = 2e−x

2 ∫ x

0 e−t
2
dt.

Let us show that G is differentiable. Let g(t,x) = e−(1+t2)x2

t2+1 . G is also a proper param-
eterized integral. The function g is C1 on [0,1]× [0,+∞[ (since it is the composition
and the ratio of C1 functions). Therefore, G is differentiable and:

G′(x) =
∫ 1

0

∂g

∂x
(t,x)dt = −2

∫ 1

0

x(t2 + 1)e−(1+t2)x2

t2 + 1
dt = −2

∫ 1

0
xe−(1+t2)x2

dt.
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2. To show that ∀x ∈ [0,+∞[,F(x)+G(x) = π
4 , we start by showing that ∀x ∈ [0,+∞[,F′(x)+

G′(x) = 0. We have:

G′(x) = −2
∫ 1

0
xe−(1+t2)x2

dt = −2e−x
2
∫ 1

0
xe−(tx)2

dt.

Let us make the change of variables u = tx, du = xdt. We obtain:

G′(x) = −2e−x
2
∫ x

0
e−u

2
du = −F′(x).

Thus, for all x ∈ [0,+∞[,F(x) +G(x) = C. To find the constant C, we can take x = 0
and get C = F(0) +G(0) = 0 + π

4 = π
4 (easy to verify).

We conclude that ∀x ∈ [0,+∞[,F(x) +G(x) = π
4 .

3. To deduce the value of
∫ +∞

0 e−t
2
dt, we first recall that it is a convergent improper

integral (this can be shown, for example, using the order rule; limt→+∞ tα · e−t2
= 0

for α > 1). Therefore, limx→+∞
∫ x

0 e−t
2
dt exists and is finite. We can then compute

limx→+∞
(∫ x

0 e−t
2
dt

)2
, and then take its square root.

Thus, we need to calculate limx→+∞F(x), and for that we calculate limx→+∞G(x):

We have G(x) ⩽ e−x
2 ∫ 1

0
1

t2+1dt because e−t
2x2
⩽ 1 (we kept e−x

2
to ensure the limit is

zero).

Since limx→+∞ e−x
2

= 0 and
∫ 1

0
1

t2+1dt = [arctan(t)]1
0 = π

4 , we have limx→+∞G(x) = 0.

This gives us limx→+∞F(x) = π
4 . Thus,∫ +∞

0
e−t

2
dt =

√
π
4

=
√
π

2
.

Correction of the exercise 4 ▲

F(x) =
∫ ∞

0

e−xt

(1 + t)
√
t
dt.

Thus,

f (x, t) =
e−xt

(1 + t)
√
t
.

1. Study of the continuity of F:

Dominated Convergence:

For all t ⩾ 1 and ∀x ∈R+,
e−xt

(1 + t)
√
t
⩽

e−xt

t3/2
⩽

1
t3/2

= g(t).

Moreover,
∫ ∞

1

1
t3/2

dt converges (Riemann, α =
3
2
> 1).

Thus,
∫∞

0 f (t,x)dt satisfies the dominated convergence criterion on R
+.

Let us apply the continuity theorem:
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• f is continuous on R
+ × [1,+∞[, as it is a ratio and product of continuous

functions.

•
∫∞

0 f (x, t)dt satisfies the dominated convergence criterion on R
+. Therefore, F

is continuous on R
+.

2. Study of differentiability: we have

∀t ⩾ 1 and ∀x ∈R+,
∂f

∂x
(x, t) = −

√
t
e−xt

1 + t
.

Dominated Convergence:

For all t ∈ [1,+∞[ and ∀x ∈ [α,+∞[,α > 0,
−
√
te−xt

1 + t
⩽

√
te−xt

t
⩽

e−xt
√
t
⩽ e−xt ⩽ e−αt = g(t).

Now,
∫∞

0 e−αt dt converges. Thus,
∫∞

1
∂f
∂x (x, t)dt satisfies the dominated convergence

criterion on any interval of the form [α,+∞[ with α > 0.

Let us apply the differentiability theorem:

• f is of class C1 on R
+ × [1,+∞[, as it is a sum, ratio, and composition of C1

functions.

•
∫∞
α

∂f
∂x (t,x)dt satisfies the dominated convergence criterion on [α,+∞[,α > 0.

Thus, F is differentiable on any interval of the form [α,+∞[⊂ [0,+∞[⇒ F is differ-
entiable on ]0,+∞[.
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7.2 Solutions to Chapter 2 Exercises

Correction of the exercise 5 ▲
a) If F(s) is the Laplace transform of f (t), then we have:

F(s) =
∫ ∞

0
e−stf (t)dt.

In our case, f (t) = eat , s > a, so we can rewrite the integral as follows:∫ ∞
0

e(a−s)t dt =
[
e(a−s)t

a− s

]+∞

0
=

1
s − a

.

b) For f (t) = tneat. We perform integration by parts to find a recurrence formula for n > 1:

Fn(s) =
∫ ∞

0
e−stf (t)dt =

∫ ∞
0

e−sttneat dt =
∫ ∞

0
tne(a−s)t dt =

[
tn
−e(a−s)t

a− s

]∞
0

+
n

a− s

∫ ∞
0

tn−1e(a−s)t dt.

This simplifies to:

=
n

a− s
Fn−1(s).

We calculate F0(s) = 1
s , leading to the recurrence Fn(s) = n!

(s−a)n+1 , s > a.

c) The Laplace transform of sin(ωt) can be calculated using Euler’s formula. We know
that sin(ωt) = eiωt−e−iωt

2i . Thus, using this exponential form, we can calculate the Laplace
transform:

L{sin(ωt)} = L
{
eiωt − e−iωt

2i

}
=

1
2i

(
L{eiωt} −L{e−iωt}

)
=

1
2i

( 1
s − iω

− 1
s+ iω

)
=

1
2i

(
s+ iω − (s − iω)
(s − iω)(s+ iω)

)
=

1
2i

( 2iω
s2 +ω2

)
=

ω

s2 +ω2 .

Therefore, the Laplace transform of sin(ωt) is ω
s2+ω2 .

Here, L{eiωt} =
∫∞

0 eiωte−st dt = 1
s−iω according to part a).

L{eiωt} is the transform F(s) of f (t) such that f (t) = eiωt .
d) For f (t) = e−4t sin(5t):

F(s) =
∫ ∞

0
e−4t sin(5t)e−st dt =

∫ ∞
0

sin(5t)e−(s+4)t dt =
5

(s+ 4)2 + 52 =
5

(s+ 4)2 + 25

according to the previous question.
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e) For f (t) = t2 cos(t):

F(s) =
∫ ∞

0
t2 cos(t)e−st dt =

2s3 − 6s
(s2 + 1)3 .

Correction of the exercise 6 ▲
1) We decompose the fraction into partial fractions, that is, we look for a and b such that

1
(s+ 1)(s − 2)

=
a

s+ 1
+

b
s − 2

.

We find a = −1
3 and b = 1

3 . Thus,

F(s) = −1
3

1
s+ 1

+
1
3

1
s − 2

.

It follows that the original function is

f (t) = −1
3
e−t +

1
3
e2t .

2) Let G(s) = 1
s−2 and F(s) = − 1

(s−2)2 . Then G′(s) = F(s). Now, the original function of G is

g(t) = e2t. Therefore,

F(s) = G′(s) =
∫ +∞

0

∂
∂s

(g(t)e−st)dt =
∫ +∞

0
−te2te−st dt,

which gives f (t) = −te2t.
3) The denominator factors as (s + 4)(s − 1). We decompose the fraction into partial frac-
tions by writing it in the form

a
s+ 4

+
b

s − 1
=

(a+ b)s+ (4b − a)s2 − 3s+ 4
(s+ 4)(s − 1)

.

By identification, we get the system {a+ b = 5,−a+ 4b = 10}, which gives a = 2 and b = 3.
Thus, the function is

2
s+ 4

+
3

s − 1
.

The original function is 2e−4t + 3et.
4) The discriminant of the quadratic in the denominator is negative, so it has no roots.
We rewrite it in canonical form as

s − 7
s2 − 14s+ 50

=
s − 7

(s − 7)2 + 1
.

The original function of s
s2+1 is cos(t), so

s

s2 + 1
= L(cos(t))(s),

which leads to
s − 7

(s − 7)2 + 1
= L(cos(t))(s − 7) = L(e7t cos(t))(s).
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Thus, the original function is f (t) = e7t cos(t).
5) The discriminant of the quadratic in the denominator is negative, so it has no roots.
We rewrite it in canonical form as

s

s2 − 6s+ 13
=

s

(s − 3)2 + 4
=

s − 3
(s − 3)2 + 22 +

3
(s − 3)2 + 22 =

s − 3
(s − 3)2 + 22 +

3
2

2
(s − 3)2 + 22 .

By reasoning similarly as in the previous question, we find that the original function is

cos(2t)e3t +
3
2

sin(2t)e3t .

6) The original of 1
s+3 is f (t) = e−3t. To find the original of the function e−2s/(s+3), we use

the shifting theorem:
L(f (t − τ)) = e−sτL(f (t)).

Thus,

e−2s 1
s+ 3

= e−2sL(e−3t) = L(f (t − 2)),

leading to the original e−3(t−2).
7) The original of a

s2−a2 is
a

s2 − a2 =
1
2

( 1
s − a

− 1
s+ a

)
,

thus the original function is

f (t) =
1
2

(
eat − e−at

)
.

8)
s2

(s+ 3)2 =
9

(s+ 3)3 −
6

(s+ 3)2 +
1

s+ 3
=

1
s+ 3

+ 6
−1

(s+ 3)2 +
9
2

2
(s+ 3)3 .

We have 1
s+3 = L(e−3t) and −1

(s+3)2 =
(

1
s+3

)′
= L′(e−3t) =

∫∞
0

∂
∂s (e−3te−st)dt =

∫∞
0 −te

−3te−st dt.

Using the derivative property, we have − 1
(s+3)2 = L(−te−3t) and 2

(s+3)3 = L(t2e−3t). There-
fore,

s2

(s+ 3)2 = L
(
e−3t(1− 6t +

9
2
t2)

)
.

Thus, the original of s 7→ s2

(s+3)2 is t 7→ e−3t(1− 6t + 9
2 t

2).

Correction of the exercise 7 ▲
Using the Laplace transform:
According to the property of the derivative transform,

L(x(t)) = F(s), L(x′(t)) = sL(x(t))− x(0) = sF(s)− x(0)

We have:
a) sF(s)− x(0) + 3F(s) = 0, or (s + 3)F(s) = x(0), and thus F(s) = x(0)

s+3 , which gives, reverting
to the original function, x(t) = x(0)e−3t.

b) Here, we have x(0) = 0 but L(cos(3t)) = s
s2+9 , thus (s+ 3)F(s) = s

s2+9 and
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F(s) =
1

(s+ 3)(s2 + 9)
=

α
s+ 3

+
β

s+ 3i
+

γ

s − 3i
.

By solving this equation, we obtain α = −1
6 , β = 1+i

12 , and γ = 1−i
12 . Thus,

F(s) = L
(
−1

6
e−3t +

1 + i
12

e−3it +
1− i
12

e3it
)

= L
(
−1

6
e−3t +

1
6

cos(3t) +
1
6

sin(3t)
)
.

Therefore, x(t) = 1
6

(
cos(3t) + sin(3t)− e−3t

)
.

c) Using the Laplace transform:
We have L(t) = 1

s2 and L(x′′) = sL(x′)− x′(0) = s(sL(x)− x(0))− x′(0) = s2F(s)− s.
The equation becomes:

s2F(s)− s+F(s) =
1
s2 =⇒ F(s) =

1
s2 + 1

· 1 + s3

s2 =
1

s2(s2 + 1)
+

s

s2 + 1
=

1
s2 −

1
s2 + 1

+
s

s2 + 1
.

The inverse Laplace transform is: x(t) = t − sin(t) + cos(t).

Correction of the exercise 8 ▲

1.

F (fα)(s) =
∫ ∞
−∞

e−α|t|e−istdt

=
∫ 0

−∞
e−α|t|e−istdt +

∫ ∞
0

e−α|t|e−istdt

=
∫ 0

−∞
e(α−is)tdt +

∫ ∞
0

e(−α−is)tdt

=
[ 1
α − is

e(α−is)t
]−∞

0
+
[ 1
−α − is

e(−α−is)t
]∞

0

=
1

α − is
+

1
−α − is

=
2α

α2 + s2 , ∀s ∈R

The second method: Since fα is even, we have

F (fα)(s) =
∫ ∞
−∞

fα(t)e−istdt = 2
∫ ∞

0
e−αt cos(st)dt

Using the Laplace transform, we have

L(cos(at)) =
∫ ∞

0
e−st cos(at)dt =

s

s2 + a2 , ∀s > 0, a ∈R.

Replacing s with α and a with s in L(cos(at)), we obtain∫ ∞
0

e−αt cos(st)dt =
α

α2 + s2 , s ∈R.

Finally,

F (fα)(s) =
2α

α2 + s2 , ∀s ∈R.
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2. Since g is even,

F (g)(s) =
∫ +∞

−∞
g(t)e−istdt

= 2
∫ 3

0
cos(st)dt

= 2
[

sin(st)
s

]3

0

= 2
sin(3s)

s
, ∀s ∈R∗

Since F (g)(0) = lim
s→0

2sin(3s)
s

= 6

We deduce that

F (g)(s) =

2sin(3s)
s if s , 0,

6 if s = 0.

3. Since h is even,∫ ∞
−∞

h(t)e−istdt = 2
∫ ∞

0
(e−t + 1)cos(st)dt + 2

∫ ∞
3

e−t cos(st)dt

= 2
∫ 3

0
e−t cos(st)dt + 2

∫ 3

0
cos(st)dt + 2

∫ ∞
3

e−t cos(st)dt

= 2
∫ ∞

0
e−t cos(st)dt + 2

∫ 3

0
cos(st)dt

Calculating
∫∞

3 e−t cos(st)dt using the Laplace transform: We have

L(cos(at)) =
∫ ∞

0
e−st cos(at)dt =

s

s2 + a2 , ∀s > 0, a ∈R.

Replacing s with 1 and a with s in L(cos(at)), we obtain∫ ∞
0

e−t cos(st)dt =
1

1 + s2 , ∀s ∈R.

∫ 3

0
cos(st)dt =

[
sin(st)

s

]3

0
=

sin(3s)
s

, ∀s ∈R∗.

Finally, ∫ +∞

−∞
h(t)e−istdt = 2

∫ +∞

0
e−t cos(st)dt + 2

∫ 3

0
cos(st)dt

=
2

1 + s2 +
2sin(3s)

s
, ∀s ∈R∗.

F (h)(s) =

2sin(3s)
s + 2

1+s2 if s , 0,

8 if s = 0.
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Correction of the exercise 9 ▲

1. Since fα is even, we have

F (fα)(s) =
∫ ∞
−∞

fα(t)e−istdt = 2
∫ ∞

0
e−αt cos(st)dt = L(cos(st))(α) =

2α
α2 + s2 , ∀s ∈R.

2. We have F (e−α|t|)(s) = 2α
α2+s2 , so 1

1+s2 = F
(

1
2e
−|t|

)
and F −1

(
1

1+s2

)
= 1

2e
−|t|. On the other

hand,

F −1
( 1

1 + s2

)
=

1
2π

∫ +∞

−∞

1
1 + s2 e

+istds =
1

2π

∫ +∞

−∞

1
1 + S2 e

−iStdS =
1

2π
F

( 1
1 + S2

)
(t).

(by changing variables S = −s). Thus,

F
( 1

1 + S2

)
(t) = 2π · 1

2
e−|t| = πe−|t|.

Therefore, the Fourier transform of the function t 7→ 1
1+t2 is s 7→ π · e−|s|.

3. Let’s start by calculating the convolution product. For x > 0:

f ∗f (x) =
∫
R

e−α(|x−y|+|y|)dy =
∫ 0

−∞
e−α(x−2y)dy+

∫ x

0
e−αx dy+

∫ +∞

x
e−α(2y−x)dy = e−αx

(
x+

1
α

)
.

Since f is even, f ∗ f is also even, and we have

f ∗ f (x) = e−α|x|
(
|x|+ 1

α

)
.

Now, the Fourier transform of t 7→ e−α|t|
(
|t|+ 1

α

)
, for α = 1, is s 7→ 4

(1+s2)2 , since
the Fourier transform transforms the convolution product of two functions into a
regular product:

F (f ⋆ f ) = F (f )×F (f ) =
2

1 + s2 ×
2

1 + s2 =
4

(1 + s2)2 .

Thus, F −1
(

1
(1+s2)2

)
= 1

4e
−|t|(|t| + 1). We apply the Fourier inversion formula once

again. The Fourier transform of t 7→ 1
(1+t2)2 is the function s 7→ π

2 e
−|s|(|s|+ 1).

4. Note that the derivative of the function t 7→ 1
1+t2 is t 7→ − 2t

(1+t2)2 . Using the differen-
tiation formulas, we deduce:

F
(

t

(1 + t2)2

)
= −1

2
F

(
d
dt

( 1
1 + t2

))
= −1

2
· isF

( 1
1 + t2

)
= −i π

2
se−|s|.
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7.3 Solutions to Chapter 3 Exercises

Correction of the exercise 10 ▲

1. For d1:

• Non-negativity: d1(x,y) =
∑n

i=1 |xi −yi | ⩾ 0, and d1(x,y) = 0 ⇐⇒ |xi −yi | = 0 for
all i, which implies x = y.

• Symmetry: d1(x,y) =
∑n

i=1 |xi − yi | =
∑n

i=1 |yi − xi | = d1(y,x).

• Triangle inequality:

d1(x,z) =
n∑
i=1

|xi − zi | ⩽
n∑
i=1

|xi − yi |+
n∑
i=1

|yi − zi | = d1(x,y) + d1(y,z).

For d2:

• d2(x,y) =
√∑n

i=1(xi − yi)2 ⩾ 0, and d2(x,y) = 0 ⇐⇒ x = y.

• d2(x,y) =
√∑n

i=1(xi − yi)2 = d2(y,x).

• By Cauchy-Schwarz,

d2(x,z) =

√√
n∑
i=1

(xi − zi)2 ⩽

√√
n∑
i=1

(xi − yi)2 +

√√
n∑
i=1

(yi − zi)2 = d2(x,y) + d2(y,z).

For d∞:

• d∞(x,y) = max{|xi − yi |} ⩾ 0, and d∞(x,y) = 0 ⇐⇒ x = y.

• d∞(x,y) = max{|xi − yi |} = d∞(y,x).

•
d∞(x,z) ⩽max{|xi − yi |+ |yi − zi |} = d∞(x,y) + d∞(y,z).

Thus, d1,d2, and d∞ are distances on R
n.

2. The unit ball for each distance in R
2 is defined as follows:

- For d1:

B1((0,0),1) = {(x1,x2) ∈R2 : d1((0,0), (x1,x2)) < 1} = {(x1,x2) : |x1|+ |x2| < 1}.

This describes a diamond shape centered at the origin.

- For d2:

B2((0,0),1) = {(x1,x2) ∈R2 : d2((0,0), (x1,x2)) < 1} = {(x1,x2) : x2
1 + x2

2 < 1}.

This describes a circular disk centered at the origin.

- For d∞:

B∞((0,0),1) = {(x1,x2) ∈R2 : d∞((0,0), (x1,x2)) < 1} = {(x1,x2) : max{|x1|, |x2|} < 1}.

This describes a square centered at the origin with vertices at (1,1), (−1,1), (−1,−1), (1,−1).
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3. To show that d1,d2, and d∞ are equivalent for n = 2, we need to demonstrate that
there exist constants C1,C2 > 0 such that for all x,y ∈R2:

C1d2(x,y) ⩽ d1(x,y) ⩽ C2d2(x,y)

and
C1d∞(x,y) ⩽ d1(x,y) ⩽ C2d∞(x,y).

From d2 to d1: Using the Cauchy-Schwarz inequality:

d1(x,y) = |x1 − y1|+ |x2 − y2| ⩽
√

2
√

(x1 − y1)2 + (x2 − y2)2 =
√

2d2(x,y).

From d1 to d2: Using the fact that
√
a+ b ⩽

√
2max{

√
a,
√
b}:

d2(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 ⩽
√

(|x1 − y2|+ |y1 − y2|)2 ⩽ d1(x,y).

From d∞ to d1:
d1(x,y) ⩽ 2d∞(x,y).

From d1 to d∞:
d∞(x,y) ⩽ d1(x,y).

Thus, we have shown that d1,d2, and d∞ are equivalent distances for n = 2.

Correction of the exercise 11 ▲

1. For N1((x,y)) = |x|+ |y|:
- Non-negativity: Clearly, |x| ⩾ 0 and |y| ⩾ 0, so N1((x,y)) ⩾ 0. Moreover, N1((x,y)) =
0 if and only if |x| = 0 and |y| = 0, which implies (x,y) = (0,0).

- Scalar multiplication: For c ∈R,

N1(c(x,y)) = N1((cx,cy)) = |cx|+ |cy| = |c|(|x|+ |y|) = |c|N1((x,y)).

- Triangle inequality: For (x0, y0) and (x1, y1),

N1((x0+x1, y0+y1)) = |x0+x1|+|y0+y1| ⩽ |x0|+|x1|+|y0|+|y1| = N1((x0, y0))+N1((x1, y1)).
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Thus, N1 is a norm.

For N2((x,y)) =
√
x2 + y2:

- Clearly, N2((x,y)) ⩾ 0 and N2((x,y)) = 0 if and only if x = 0 and y = 0.

- For c ∈R,

N2(c(x,y)) = N2((cx,cy)) =
√

(cx)2 + (cy)2 = |c|
√
x2 + y2 = |c|N2((x,y)).

- Using the Cauchy-Schwarz inequality,

N2((x0 + x1, y0 + y1))2 = (x0 + x1)2 + (y0 + y1)2.

Expanding this gives:

= x2
0 + x2

1 + y2
0 + y2

1 + 2(x0x1 + y0y1).

By Cauchy-Schwarz,

2(x0x1 + y0y1) ⩽ 2
√
x2

0 + y2
0

√
x2

1 + y2
1 ⩽N2((x0, y0))2 +N2((x1, y1))2.

Hence,
N2((x0 + x1, y0 + y1)) ⩽N2((x0, y0)) +N2((x1, y1)).

Thus, N2 is a norm.

For N∞((x,y)) = max(|x|, |y|):
- Clearly, N∞((x,y)) ⩾ 0 and N∞((x,y)) = 0 if and only if (x,y) = (0,0).

- For c ∈R,

N∞(c(x,y)) = N∞((cx,cy)) = max(|cx|, |cy|) = |c|max(|x|, |y|) = |c|N∞((x,y)).

- For (x0, y0) and (x1, y1),

N∞((x0+x1, y0+y1)) = max(|x0+x1|, |y0+y1|) ⩽max(|x0|+|x1|, |y0|+|y1|) ⩽N∞((x0, y0))+N∞((x1, y1)).

Thus, N∞ is a norm.

2. We need to show:

∀α ∈R2, N∞(α) ⩽N2(α) ⩽N1(α) ⩽ 2N∞(α).

1. N∞(α) ⩽ N2(α): Since N∞(α) = max(|x|, |y|), We have |x| ⩽
√
x2 + y2 and |y| ⩽√

x2 + y2, hence N∞(α) ⩽N2(α).

2. N2(α) ⩽N1(α): From the identity (|x|+ |y|)2 ⩾ x2 + y2, we find that

N2(α) =
√
x2 + y2 ⩽ |x|+ |y| = N1(α).

3. N1(α) ⩽ 2N∞(α): Since |x| ⩽N∞(α) and |y| ⩽N∞(α), we have

N1(α) = |x|+ |y| ⩽N∞(α) +N∞(α) = 2N∞(α).
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3. The norms N1,N2,N∞ are equivalent if there exist constants C1,C2 > 0 such that:

C1N1(x) ⩽N2(x) ⩽ C2N1(x) and C1N∞(x) ⩽N2(x) ⩽ C2N∞(x).

From the inequalities established, we have:

N∞(α) ⩽N2(α) ⩽N1(α) ⩽ 2N∞(α).

Thus, the norms N1,N2,N∞ are equivalent because they can be bounded relative to
each other.

Correction of the exercise 12 ▲

1. We will use the definition of an open set to show that A is open in R
2.

Let (x,y) ∈ A be given. Since y > 0, we will show that the open ball B((x,y), y) is
entirely contained within A. Specifically, we have:

(a,b) ∈ B((x,y), y) =⇒ (x − a)2 + (y − b)2 < y2.

From this inequality, we can derive:

(y − b)2 < y2 =⇒ |y − b| < y. =⇒ −y < b − y < y.

From b − y < y, we get: b < 2y. From −y < b − y, 0 < b. Combining these results, we
have: 0 < b < 2y. Thus, (a,b) ∈ A. This shows that B((x,y), y) ⊂ A, which demon-
strates that the set A is open in R

2.

2. The given set is the intersection B = B1 ∩B2, where

B1 = {(x,y) ∈R2 : x2 + y2 < 4x} and B2 = {(x,y) ∈R2 : y > 0}.

Note that B2 is open in R
2 as shown in the previous example.

The set B1 can be rewritten as: B1 = {(x,y) ∈R2 : (x−2)2 +y2 < 4} = B((2,0),2), which
describes an open ball in R

2 and is thus open.

Since B is the intersection of two open sets, it follows that the set B is also open.

3. We have, x3 > x ⇐⇒ x3 − x > 0 ⇐⇒ x(x2 − 1) > 0. ⇐⇒ x(x − 1)(x+ 1) > 0.

The product x(x − 1)(x + 1) is positive in the intervals (−1,0) and (1,∞). Therefore,
we conclude that:

C = (−1,0)∪ (1,∞).

Since both intervals are open, the set A is open in R.

4. Consider the set D = {x ∈R : 0 < x < 1 and 1
x <Z}.

This set D can be interpreted as the interval (0,1) from which the points 1
2 ,

1
3 ,

1
4 , . . .

have been excluded. To express this more formally, we can write:

D = (0,1) \
{1
n

: n ∈Z+
}
.
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The set D can be represented as :

D =
∞⋃
n=1

( 1
n+ 1

,
1
n

)
.

Since D is the union of these open intervals, we conclude that D is open in R.

Correction of the exercise 13 ▲

1. We have 0 ∈]− 1
2 ,

1
2 [⊆]− 1

2 ,
1
2 ], and the interval ]− 1

2 ,
1
2 [ is an open set. Thus, ]− 1

2 ,
1
2 ]

is a neighborhood of 0.

Explanation: A neighborhood of a point x is an open set that contains an interval
around x. Here, since 0 is contained in the open interval ]− 1

2 ,
1
2 [, and this interval

is part of the larger set ]− 1
2 ,

1
2 ], we conclude that ]− 1

2 ,
1
2 ] is a neighborhood of 0.

2. 2) and 3) Any open set containing 0 must include points both greater than and less
than 0. Therefore, neither ]− 1,0] nor [0, 1

2 [ can be considered neighborhoods of 0.

Explanation: The definition of an open set requires that for any point within it,
there exists a surrounding interval that also lies within the set. The interval ]−1,0]
includes 0 but does not contain any points greater than 0, while [0, 1

2 [ contains 0
but does not include any points less than 0. Thus, neither of these intervals can
serve as neighborhoods of 0.

3. The interval ]0,1] does not even contain 0 and is therefore not a neighborhood of 0.

Explanation: Since a neighborhood of 0 must include the point 0 itself, the interval
]0,1] clearly cannot be a neighborhood of 0.

Correction of the exercise 14 ▲

1. The interior of Q is empty, that is, Q̊ = ∅. This means there are no open intervals in
R that consist entirely of rational numbers. Since any open interval in R contains
irrational numbers, it cannot be fully contained within Q.

2. The closure of Q in R is Q = R. This is because for any real number and any open
interval around it, there will always be rational numbers present, ensuring that
every point in R is included in the closure.

3. The interior of [0,1]∩Q is empty, that is, Int([0,1]∩Q) = ∅. Similar to Q, there are
no open sets within [0,1] that can be entirely made up of rational numbers. Any
open interval in this range will also contain irrational numbers.

4. The closure of [0,1]∩Q is [0,1]∩Q = [0,1]. This occurs because for any point in
[0,1], there are rational numbers that can get arbitrarily close to it. Hence, all points
in the interval from 0 to 1 are included in the closure.
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5. The interior of ]0,1[∩Q is empty, that is, Int(]0,1[∩Q) = ∅. As with the previous
cases, there are no open sets in the interval ]0,1[ that consist solely of rational num-
bers. Any open interval will also contain irrationals.

6. The closure of ]0,1[∩Q is ]0,1[∩Q = [0,1]. Every point in [0,1] can be reached by
rational numbers that lie within the interval ]0,1[. Therefore, the closure includes
all points in the interval from 0 to 1.
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7.4 Solutions to Chapter 4 Exercises

Correction of the exercise 15 ▲

Domains of Definition :

1. f1(x,y) =
√
−y+x2
√
y

Conditions:

• −y + x2 ⩾ 0 ⇒ y ⩽ x2

• y > 0

Domain: {(x,y) ∈R2 | 0 < y ⩽ x2}

2. f2(x,y) = ln(y)√
x−y

Conditions:

• y > 0

• x − y > 0 ⇒ x > y

Domain: {(x,y) ∈R2 | y > 0 and x > y}

3. f3(x,y) =
√

4−x2−y2
√
x2+y2−1

Conditions:

• 4− x2 − y2 ⩾ 0 ⇒ x2 + y2 ⩽ 4

• x2 + y2 − 1 > 0 ⇒ x2 + y2 > 1

Domain: {(x,y) ∈R2 | 1 < x2 + y2 ⩽ 4}

4. f4(x,y) = ln(x − y2)

Conditions:

• x − y2 > 0 ⇒ x > y2

Domain: {(x,y) ∈R2 | x > y2}

Graphical Representation :

1. For f1: Plot the parabola y = x2

and shade the region above the x-
axis (excluding the curve itself).

2. For f2: Shade the area above the line
y = 0 and to the right of the line x = y.

3. For f3: Draw the circle with ra-
dius 2 (boundary for x2 + y2 = 4)
and the circle with radius 1 (bound-
ary for x2 + y2 = 1). Shade the an-
nular region between these circles.
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4. For f4: Shade the area to the

right of the parabola x = y2.

Correction of the exercise 16 ▲

1. x2 + y2 + 1 approaches 1, and sin(x)
x approaches 1 as (x,y) approaches (0,0). Thus, f1

approaches 1 as (x,y) approaches (0,0).

2. For (x,y) ∈R2, |x4 +y4| = (x2 +y2)2−2x2y2 ⩽ (x2 +y2)2 +2×
(

1
2 (x2 + y2)

)2
= 3

2 (x2 +y2)2,
and thus for (x,y) , (0,0),

|f2(x,y)| =
|x4 + y4|
x2 + y2 ⩽

3
2

(x2 + y2).

Since lim(x,y)→(0,0)
3
2 (x2 + y2) = 0, it follows that lim(x,y)→(0,0) f2(x,y) = 0 (by the

squeeze theorem).

3. For all (x,y) ∈ R2, x2 − 2|xy| + y2 = (|x| − |y|)2 > 0 and thus |xy| ⩽ 1
2 (x2 + y2). Conse-

quently, for (x,y) , (0,0),

|f3(x,y)| =
x2y2

x2 + y2 ⩽
1
4

(x2 + y2).

Since lim(x,y)→(0,0)
1
4 (x2 + y2) = 0, it follows that lim(x,y)→(0,0) f3(x,y) = 0 (by the

squeeze theorem).

4. We have

|f4(x,y)| ⩽ |sin(x2)|
x2 · x2√

x2 + y2
+
|sin(y2)|

y2 ·
y2√

x2 + y2
.

However, sin(x2)
x2 → 1 as (x,y)→ (0,0), and x2√

x2+y2
⩽

(x2+y2)√
x2+y2

⩽
√
x2 + y2. Thus, f4(x,y)

approaches 0 as (x,y) approaches (0,0).

5. We know that 1−cos(t)
t2 → 1

2 as t→ 0. Now, we can write f5(x,y) = x · 1−cos(xy)
(xy)2 . It fol-

lows that 1−cos(xy)
(xy)2 approaches 1

2 as (x,y) approaches (0,0). Thus, f5(x,y) approaches
0 as (x,y) approaches (0,0).
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6. Using the fact that limx→0
ex−1
x = 1, we can simplify the expression:

lim
(x,y)→(0,0)

exy − 1
ex − 1

= lim
(x,y)→(0,0)

xy exy−1
xy

x ex−1
x

= 0.

Therefore, f6(x,y) approaches 0 as (x,y) approaches (0,0).

Correction of the exercise 17 ▲

1. • If we take the path γ1(t) = (t, t) (since γ1(0) = (x0, y0) = (0,0)), then (f ◦γ1)(t) =
f (t, t) = t2

2t2 = 1
2 . Thus, limt→0 f (t, t) = 1

2 .

• If we take the path γ2(t) = (0, t) (since γ2(0) = (x0, y0) = (0,0)), then (f ◦γ2)(t) =
f (0, t) = 0. Thus, limt→0 f (0, t) = 0.

Since limt→0 f (t, t) , limt→0 f (0, t), f does not have a limit at (0,0).

2. • If we take the path γ1(t) = (t, t) (since γ1(0) = (x0, y0) = (0,0)), then (f ◦γ1)(t) =
f (t, t) = t

1+t2 . Thus, limt→0 f (t, t) = 0.

• If we take the path γ2(t) = (t2, t) (since γ2(0) = (x0, y0) = (0,0)), then (f ◦γ2)(t) =
f (t2, t) = 1

t2+1 . Thus, limt→0 f (t2, t) = 1.

Since limt→0 f (t, t) , limt→0 f (t2, t), f does not have a limit at (0,0).

3. If we take the path γ1(t) = (t, t) (since γ1(0) = (x0, y0) = (0,0)), then (f ◦ γ1)(t) =
f (t, t) = 1

t . Thus, limt→0 f (t, t) =∞. Therefore, f does not have a limit at (0,0).

Correction of the exercise 18 ▲

1. By switching to polar coordinates, we have:
x = r cosθ

y = r sinθ

r > 0,θ ∈ [0,2π]

For the function f (x,y) = xy√
x2+y2

, we get:

f (r cosθ,r sinθ) =
r2 cosθ sinθ√

r2(cos2θ + sin2θ)
=
r2 cosθ sinθ

r
= r cosθ sinθ.

The absolute value of f (r cosθ,r sinθ) is:

|f (r cosθ,r sinθ)| = |r cosθ sinθ| ⩽ r.

As r approaches 0, the limit of f (r cosθ,r sinθ) is 0. Thus,

lim
(x,y)→(0,0)

xy√
x2 + y2

= 0.
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2. By switching to polar coordinates, we have:
x = 1 + r cosθ

y = r sinθ

r > 0,θ ∈ [0,2π]

For the function f (x,y) = y3

(x−1)2+y2 , we get:

f (1 + r cosθ,r sinθ) =
(r sinθ)3

((1 + r cosθ)− 1)2 + (r sinθ)2 =
r3 sin3θ

(r cosθ)2 + (r sinθ)2 = r sin3θ.

The absolute value of f (1 + r cosθ,r sinθ) is:

|f (1 + r cosθ,r sinθ)| = |r sin3θ| ⩽ r.

As r approaches 0, the limit of f (1 + r cosθ,r sinθ) is 0. Thus,

lim
(x,y)→(1,0)

y3

(x − 1)2 + y2 = 0.

3. By using polar coordinates, we set x = r cosθ and y = r sinθ with θ ∈ [0,2π] and
r > 0. Then the function f (r cosθ,r sinθ) can be expressed as:

f (r cosθ,r sinθ) =
cosθ sinθ

cosθ sinθ + 1
.

Thus,

lim
r→0

f (r cosθ,r sinθ) =
cosθ sinθ

cosθ sinθ + 1
.

The limit depends on θ, therefore it does not exist.

Correction of the exercise 19 ▲
The function f is continuous on R

2 − {(0,0)} because it is the quotient of continuous
functions whose denominator does not vanish. It is also continuous at (0,0) because by
using polar coordinates x = r cosθ and y = r sinθ with θ ∈ [0,2π] and r > 0, we have:

f (r cosθ,r sinθ) =
r2 cosθ sinθ · r2(cos2θ − sin2θ)

r2(cos2θ + sin2θ)
= r2 cosθ sinθ(cos2θ − sin2θ).

And
|f (r cosθ,r sinθ)| =

∣∣∣r2 cosθ sinθ(cos2θ − sin2θ)
∣∣∣ ⩽ 2r2.

Thus, as r → 0, lim(x,y)→(0,0) f (x,y) = 0, so lim(x,y)→(0,0) xy
x2−y2

x2+y2 = 0 = f (0,0). In conclu-

sion, f is continuous on R
2.
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7.5 Solutions to Chapter 5 Exercises

Correction of the exercise 20 ▲
We define f : R2 \ {(0,0)} →R by

f (x,y) =
x2

(x2 + y2)
3
4

.

To justify the extension of f to a continuous function on R
2, we need to study the limit

of f (x,y) as (x,y) approaches (0,0).
Using polar coordinates, we can rewrite f (x,y) as follows:

f (x,y) =
r2 cos2(θ)

r
3
2

where r =
√
x2 + y2 is the distance from (x,y) to the origin and θ is the angle that the

vector (x,y) makes with the x-axis.

As (x,y) approaches (0,0), we have r→ 0 and thus r2 cos2(θ)

r
3
2
→ 0. Therefore, we can extend

f to a continuous function on R
2 by defining f (0,0) = 0.

Now let us examine the existence of partial derivatives at (0,0) for this extension.
The partial derivative with respect to x at (0,0) is given by:

∂f

∂x
(0,0) = lim

h→0

f (h,0)− f (0,0)
h

.

Using the definition of f :

∂f

∂x
(0,0) = lim

h→0

h2

(h2+02)
3
4
− 0

h
= lim

h→0

h2

h(h2)
3
4

= lim
h→0

h2

h
11
4

= lim
h→0

1

h
3
4

.

This limit does not exist, so the partial derivative with respect to x does not exist at (0,0).
Since f (0,h) = 0 for all real h, f has a partial derivative with respect to the second variable
at (0,0) which equals ∂f

∂y = 0.

In conclusion, the extension of f to a continuous function on R
2 is possible by defin-

ing f (0,0) = 0. However, the partial derivative with respect to x does not exist for this
extension.

Correction of the exercise 21 ▲

1. We have
∂f

∂x
(1,2) = −4,

∂f

∂y
(1,2) = 1.

Thus, f is differentiable at (1,2) if and only if

I = lim
(h,k)→(0,0)

f (1 + h,2 + k)− f (1,2)− h∂f
∂x (1,2)− k ∂f

∂y (1,2)
√
h2 + k2

= 0.
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Therefore,

I = lim
(h,k)→(0,0)

(1 + h)(2 + k)− 3(1 + h)2 + 1 + 4h− k
√
h2 + k2

= lim
(h,k)→(0,0)

kh− 3h2
√
h2 + k2

.

Using polar coordinates, we set h = r cosθ and k = r sinθ with θ ∈ [0,2π[ and r > 0.

f (r sinθ,r cosθ) = r2 sinθ cosθ − 3r2 cos2θ = r(sinθ cosθ − 3cos2θ),

|f (r sinθ,r cosθ)| = |r(sinθ cosθ − 3cos2θ)| ⩽ 4r.

Thus, limr→0 f (r sinθ,r cosθ) = 0. Therefore,

lim
(h,k)→(0,0)

f (1 + h,2 + k)− f (1,2)− h∂f
∂x (1,2)− k ∂f

∂y (1,2)
√
h2 + k2

= 0.

The function f1 is differentiable at (1,2).

2. We have

lim
(h,k)→(0,0)

f (4 + h,1 + k)− f (4,1)− h∂f
∂x (4,1)− k ∂f

∂y (4,1)
√
h2 + k2

= lim
(0,0)

(4 + h)(1 + k)− 4− h− 4k
√
h2 + k2

= lim
(0,0)

hk
√
h2 + k2

= 0.

(Using polar coordinates). Thus, the function f2 is differentiable at (4,1).

Correction of the exercise 22 ▲

1. Let v = (h,k) , (0,0).

lim
t→0

f (t · v)− f (0,0)
t

= lim
t→0

f (0, tk)
t

= k, if h = 0

and lim
t→0

f (t · v)− f (0,0)
t

= 0, if h , 0.

Thus, Dvf (0,0) = k if h = 0, and Dvf (0,0) = 0 if h , 0.

2. With v = (1,0), we have ∂f
∂x (0,0) = 0, and with v = (0,1), we have ∂f

∂y (0,0) = 1. The
candidate for the differential at (0,0) is thus ℓ(h,k) = k. However, the expression

ε(h,k) =
f (h,k)− f (0,0)− ℓ(h,k)

√
h2 + k2

=
k3 − k

√
h2 + k4

√
h2 + k2

√
h2 + k4

does not tend to 0 as (h,k)→ (0,0), because limt→0+ ε(t, t) = − 1√
2

. Therefore, f is not

differentiable at the point (0,0).
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Correction of the exercise 23 ▲

1. The function f has partial derivatives on R
2 − {(0,0)} (since f is the quotient of

functions that have partial derivatives where the denominator does not vanish for
(x,y) ∈R2 − {(0,0)}):

∂f

∂x
(x,y) =

x4 + 3x2y2 + 2xy3

(x2 + y2)2 , (x,y) , (0,0),

∂f

∂y
(x,y) =

−y4 − 3y2x2 − 2yx3

(x2 + y2)2 , (x,y) , (0,0).

For (x,y) = (0,0), we have

∂f

∂x
(0,0) = lim

h→0

f (h,0)− f (0,0)
h

= 1,
∂f

∂y
(0,0) = lim

h→0

f (0,h)− f (0,0)
h

= −1.

Thus, ∂f
∂x and ∂f

∂y exist at every point in R
2.

2. The function f is continuous on R
2 − {(0,0)} (since f is the quotient of continuous

functions). For (x,y) = (0,0), we use polar coordinates by setting x = r cosθ and
y = r sinθ with θ ∈ [0,2π[ and r > 0. Then,

f (r sinθ,r cosθ) =
r3(cos3θ − sin3θ)

r2(cos2θ + sin2θ)2
=

r(cos3θ − sin3θ)

(cos2θ + sin2θ)2
= r(cos3θ − sin3θ).

We have |f (r sinθ,r cosθ)| = |r(cos3θ − sin3θ)| ⩽ 2r, so limr→0 f (r sinθ,r cosθ) = 0.
Thus,

lim(x,y)→(0,0) f (x,y) = 0 = f (0,0), which shows that f is continuous at (0,0).

3. The partial derivatives ∂f
∂x (0,0) and ∂f

∂y (0,0) exist, and f is continuous at (0,0). The
function f is differentiable at (0,0) if and only if

lim
(h,k)→(0,0)

f (h,k)− f (0,0)− h∂f
∂x (0,0)− k ∂f

∂y (0,0)
√
h2 + k2

= 0.

We have

lim
(h,k)→(0,0)

f (h,k)− f (0,0)− h∂f
∂x (0,0)− k ∂f

∂y (0,0)
√
h2 + k2

= lim
(h,k)→(0,0)

h3 − k3

(h2 + k2)
3
2

+
k − k
√
h2 + k2

,

by switching to polar coordinates h = r cosθ and k = r sinθ where θ ∈ [0,2π[ and
r > 0, we then have

f (r sinθ,r cosθ) = cos3θ − sin3θ − cosθ + sinθ.

The limit of f depends on θ, thus f is not differentiable at (0,0).
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Correction of the exercise 24 ▲

1. Study the continuity of f on R
2: The function f is clearly continuous at every point

other than (0,0) because it is defined by a composition of continuous functions. To
check the continuity at (0,0), we need to calculate the limit

lim
(x,y)→(0,0)

f (x,y) = lim
(x,y)→(0,0)

(x2 + y2)3 cos
(

1
x2 + y2

)
Using the property |cosθ| ⩽ 1, we can establish the following upper bound:

|(x2 + y2)3 cos
(

1
x2 + y2

)
| ⩽ |(x2 + y2)3|

This bound approaches zero as (x,y) approaches (0,0). Therefore,

lim
(x,y)→(0,0)

f (x,y) = 0 = f (0,0).

Thus, f is continuous on R
2.

2. For (x,y) , (0,0), we have

∇f (x,y) =

∂f∂x∂f
∂y

 =

6x(x2 + y2)2 cos
(

1
x2+y2

)
+ 2x(x2 + y2)sin

(
1

x2+y2

)
6y(x2 + y2)2 cos

(
1

x2+y2

)
+ 2y(x2 + y2)sin

(
1

x2+y2

)
 .

For (x,y) = (0,0), we have

∇f (0,0) = grad f (0,0) =

∂f∂x (0,0)
∂f
∂y (0,0)

 =

limh→0
f (h,0)−f (0,0)

h

limh→0
f (0,h)−f (0,0)

h

 =
(
0
0

)
.

3. Let’s check the continuity of the partial derivatives of f on R
2. We have

∂f

∂x
(x,y) =

6x(x2 + y2)2 cos
(

1
x2+y2

)
+ 2x(x2 + y2)sin

(
1

x2+y2

)
if (x,y) , (0,0),

0 if (x,y) = (0,0),

So, lim(0,0)
∂f
∂x = 0 = ∂f

∂x (0,0) (Using polar coordinates), and

∂f

∂y
(x,y) =

6y(x2 + y2)2 cos
(

1
x2+y2

)
+ 2y(x2 + y2)sin

(
1

x2+y2

)
if (x,y) , (0,0),

0 if (x,y) = (0,0).

Thus, lim(0,0)
∂f
∂y (x,y) = 0 = ∂f

∂y (0,0). The function f is therefore of class C1(R2).

4. Since the function f is of class C1 on R
2, it is differentiable on R

2.
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Correction of the exercise 25 ▲

1. Let γ be the parametrized arc given by

t 7→
(
t2 − 1

2
, t

)
, t varying from − 1 to 1.

Then, we compute the integral:

∫
γ
α =

∫ 1

−1

 t2−1
2(

t2−1
2

)2
+ t2

t +
t(

t2−1
2

)2
+ t2

dt = 0 (odd function).

Thus, ∫
γ
α = 2ln2.

2. For the second case, we have:∫
γ
α =

∫ 2π

0

(
(cos t − sin3 t)(−sin t) + cos3 t(cos t)

)
dt.

This simplifies to:∫ 2π

0

(
cos4 t + sin4 t − cos t sin t

)
dt =

∫ 2π

0

(
(cos2 t + sin2 t)2 − 2cos2 t sin2 t − cos t sin t

)
dt.

Further simplifying, we find:∫ 2π

0

(
1− 1

2
sin(2t)− 1

4
(1− cos(4t))

)
dt = 2π

(
1− 1

4

)
=

3π
2
.

Thus, ∫
γ
α =

3π
2
.

3. In the third case, we have:∫
γ
α =

∫ π
2

0
(cos t sin t cos t sin t) (−sin t)dt = −

∫ π
2

0
cos2 t sin3 t dt.

This can be rewritten as:

−
∫ π

2

0
(−cos2 t sin t + cos4 t sin t)dt =

[
cos3 t

3
− cos5 t

5

] π
2

0
= −1

3
+

1
5

= − 2
15

.

Thus, ∫
γ
α = − 2

15
.
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4. Consider the circle γ centered at (a,b) with radius R > 0, traversed once in the
counterclockwise direction. Alternatively, we can consider the parametrized arc γ
given by

t 7→ (a+Rcos t,b+Rsin t), t varying from 0 to 2π.

We compute the integral:∫
γ
α =

∫ 2π

0

(
(b+Rsin t)2(−Rsin t) + (a+Rcos t)2(Rcos t)

)
dt.

= R

∫ 2π

0

(
(b+Rsin t)2(−sin t) + (a+Rcos t)2 cos t

)
dt.

= R

∫ 2π

0

(
acos t − b sin t + 2aRcos2 t − 2bRsin2 t +R2(cos3 t − sin3 t)

)
dt

= R2
∫ 2π

0

(
2acos2 t − 2b sin2 t +R(cos3 t − sin3 t)

)
dt.

= R2
∫ 2π

0

(
a(1 + cos t)− b(1− cos t) +R(cos t − sin t)(cos2 t + cos t sin t + sin2 t)

)
dt

= R2
∫ 2π

0
(a− b+R(cos t − sin t)(1 + cos t sin t))dt

= R2
(
2π(b − a) +

∫ 2π

0
R(cos t − sin t + cos2 t sin t − sin2 t cos t)dt

)
= 2πR2(b − a).

Correction of the exercise 26 ▲

1. Since the components f1(x,y) = x2 + xcos(y), f2(x,y) = ex−y , and f3 = y3x are differ-
entiable at every point (x,y) in R

2, it follows that F is differentiable at every point
(x,y) in R

2.

2. Let’s write the Jacobian matrix JF at every point in R
2:

JF(x,y) =


∂f1
∂x (x,y) ∂f1

∂y (x,y)
∂f2
∂x (x,y) ∂f2

∂y (x,y)
∂f3
∂x (x,y) ∂f3

∂y (x,y)

 =


2x+ cos(y) −x sin(y)

ex−y −ex−y
y3 3y2x


3. Since F is differentiable, the differential of F is given by:

DF(x,y)(h) = JF(x,y)× h =


2x+ cos(y) −x sin(y)

ex−y −ex−y
y3 3y2x


(
h1
h2

)

DF(x,y)(h) = (Df1(x,y)(h),Df2(x,y)(h),Df3(x,y)(h))
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where

Df1(x,y)(h) =
∂f1

∂x
(x,y) · h1 +

∂f1

∂y
(x,y) · h2 = (2x+ cos(y)) · h1 − x sin(y) · h2

Df2(x,y)(h) =
∂f2

∂x
(x,y) · h1 +

∂f2

∂y
(x,y) · h2 = ex−y · h1 − ex−y · h2

Df3(x,y)(h) =
∂f3

∂x
(x,y) · h1 +

∂f3

∂y
(x,y) · h2 = y3 · h1 + 3y2x · h2

Correction of the exercise 27 ▲

1. Since f (x,y) = sin(x2−y2) and the components g1(x,y) = x+y and g2(x,y) = x−y are
C1 functions at every point (x,y) in R

2, it follows that f and g are differentiable at
every point (x,y) in R

2.

2. Let’s compute the partial derivatives of f ◦g and the differential of f ◦g at the point
(x,y). First, we find f ◦ g, where f (x,y) = sin(x2 − y2) and g(x,y) = (x+ y,x − y):

f ◦ g(x,y) = f (g(x,y)) = f (x+ y,x − y) = sin((x+ y)2 − (x − y)2) = sin(4xy).

It follows that the differential of f ◦ g at the point (x,y) is given by:

D(f ◦g)(x,y)(h1,h2) =
∂
∂x

(f ◦g)(x,y)·h1+
∂
∂y

(f ◦g)(x,y)·h2 = 4y cos(4xy)·h1+4xcos(4xy)·h2.

3. Let’s compute the Jacobian matrices of f and g at the point (x,y):

Jf (x,y) =
(
∂f

∂x
(x,y)

∂f

∂y
(x,y)

)
=

(
2xcos(x2 − y2) − 2y cos(x2 − y2)

)
.

Setting g(x,y) = (g1(x,y), g2(x,y)), we find:

Jg(x,y) =

∂g1
∂x (x,y) ∂g1

∂y (x,y)
∂g2
∂x (x,y) ∂g2

∂y (x,y)

 =
[
1 1
1 −1

]
.

4. Now let’s find the Jacobian matrix of f ◦ g at the point (x,y) by applying the chain
rule:

Jf ◦g(x,y) = Jf (g(x,y)) · Jg(x,y) =
[
2(x+ y)cos(4xy) −2(x − y)cos(4xy)

]
·
[
1 1
1 −1

]
.

This simplifies to:
=

[
4y cos(4xy) 4xcos(4xy)

]
.

Thus,

D(f ◦ g)(x,y)(h1,h2) = Jf ◦g(x,y)
(
h1
h2

)
= 4y cos(4xy) · h1 + 4xcos(4xy) · h2.
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7.6 Solutions to Chapter 6 Exercises

Correction of the exercise 28 ▲
We have

f (x,y) =

 xy2

x+y if (x,y) , (0,0),

0 if (x,y) = (0,0).

To show that f is of class C2 at (0,0), we need to demonstrate that f is of class C1 at
(0,0) (its partial derivatives exist and are continuous) and that its partial derivatives are
of class C1 (its second derivatives exist and are continuous).
Existence of first partial derivatives at (0,0):

lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0− 0
h

= 0 =
∂f

∂x
(0,0).

lim
h→0

f (0,h)− f (0,0)
h

= lim
h→0

0− 0
h

= 0 =
∂f

∂y
(0,0).

For (x,y) , (0,0):
∂f

∂x
(x,y) =

y2(x+ y)− xy2

(x+ y)2 =
y3

(x+ y)2 .

∂f

∂y
(x,y) =

y2(x+ y)− xy2

(x+ y)2 =
2x2y + xy2

(x+ y)2 .

Existence of second derivatives at (0,0):

lim
h→0

∂f
∂x (0,h)− ∂f

∂x (0,0)

h
= lim

h→0

h− 0
h

= 1 =
∂2f

∂y∂x
(0,0).

lim
h→0

∂f
∂y (h,0)− ∂f

∂y (0,0)

h
= lim

h→0

0− 0
h

= 0 =
∂2f

∂x∂y
(0,0).

Since ∂2f
∂y∂x (0,0) = 1 , 0 = ∂2f

∂x∂y (0,0), f is not of class C2, according to Schwarz’s theorem.

Correction of the exercise 29 ▲

1. The critical points of f :
∂f
∂x (x,y) = 0
∂f
∂y (x,y) = 0

⇐⇒

(x2 + 2x − y)ex−y = 0

(y − x2 − 1)ex−y = 0
⇐⇒

x2 + 2x − y = 0

y − x2 − 1 = 0.

Thus, the only critical point of f is x0 = 1
2 ,

y0 = 5
4 .

The Hessian matrix of f is

Hf (x,y) =


∂2f
∂x2 (x,y) ∂2f

∂x∂y (x,y)
∂2f
∂y∂x (x,y) ∂2f

∂y2 (x,y)

 =
(

(x2 + 4x − y + 2)ex−y (−x2 − 2x+ y − 1)ex−y

(−x2 − 2x+ y − 1)ex−y (x2 − y + 2)ex−y

)
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Hf

(1
2
,
5
4

)
=

3e−
3
4 −e−

3
4

−e−
3
4 e−

3
4

 =
(
r s
s t

)
= rt − s2 = 2e−

3
2 > 0

Thus,
(

1
2 ,

5
4

)
is a local extremum of f . Since r = ∂2f

∂x2

(
1
2 ,

5
4

)
= 3e−

3
4 > 0,

(
1
2 ,

5
4

)
is a local

minimum for f .

2. The critical points of g:
∂g
∂x (x,y) = 0
∂g
∂y (x,y) = 0

⇐⇒

3x2 + 12x − 12y + 9 = 0

6y − 12x = 0

⇒

y = 2x

x2 − 4x+ 3 = 0
⇒ (x,y) ∈ {(1,2), (3,6)}.

To study the nature of the critical points (1,2) and (3,6), we calculate the second
derivatives: 

∂2g
∂x2 = 6x+ 12
∂2g
∂y2 = 6
∂2g
∂x∂y = −12

Thus, for the point (1,2), we have
∂2g
∂x2 (1,2) = 18
∂2g
∂y2 (1,2) = 6
∂2g
∂x∂y (1,2) = −12

⇒Hf (1,2) =
(

18 −12
−12 6

)
=

(
r s
s t

)
.

|Hf (1,2)| = rt − s2 = −36 < 0

we conclude that the point (1,2) is a saddle point for f ; it is neither a local maxi-
mum nor a local minimum.
For the critical point (3,6), |Hf (3,6)| = rt − s2 = 216 > 0 and r = ∂2f

∂x2 (3,6) = 30 > 0.
Thus, (3,6) is a local minimum for f .

3. h is of class C2 on R
2.

The critical points of h: ∂h
∂x (x,y) = 9x2 − 1 = 0
∂h
∂y (x,y) = 9y2 − 1 = 0

The system thus has 4 solutions which are the critical points of f :
a1 =

(
1
3 ,

1
3

)
a2 =

(
1
3 ,−

1
3

)
a3 =

(
−1

3 ,
1
3

)
a4 =

(
−1

3 ,−
1
3

)
To determine the nature of the critical points, we calculate the second derivatives:

∂2f

∂x2 (x,y) = 18x,
∂2f

∂y2 (x,y) = 18y,
∂2f

∂x∂y
(x,y) = 0
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• At a1 =
(

1
3 ,

1
3

)
, we have rt − s2 = 36 > 0 and r = 6 > 0, so f has a local minimum

at a1.

• At a2 and a3, we have rt− s2 = −36 < 0, so f has no extremum at either of these
two points.

• At a4, we have rt − s2 = 36 > 0 and r = −6 < 0, so f has a local maximum at a4.

Correction of the exercise 30 ▲

1. The first-order partial derivatives of f are ∂f
∂x (x,y) = 4x3 − 8(x − y) and ∂f

∂y (x,y) =

4y3 + 8(x − y). The critical points are solutions to the system4x3 = 8(x − y)

−4y3 = 8(x − y)

From this, we deduce that x3 = −y3 = (−y)3. Since the cube function is injective, this
gives us x = −y. Substituting this back into the first equation, we find 4x3 = 16x, or
x3 − 4x = 0 ⇐⇒ x(x2 − 4) = 0 ⇐⇒ x(x − 2)(x + 2) = 0. Thus, the critical points of f
are (0,0), (2,−2), and (−2,2).

Now, let’s analyze the nature of these critical points. The second-order partial

derivatives are ∂2f
∂x2 (x,y) = 12x2 − 8, ∂2f

∂y2 (x,y) = 12y2 − 8, and ∂2f
∂x∂y (x,y) = 8.

• At (2,−2), using standard notation, we have r = 40, t = 40, and s = −8. This
time, rt − s2 > 0 and r > 0, so the point (2,−2) is a local minimum for f . The
conclusion is the same for (−2,2).

• At (0,0), we have r = −8, t = −8, and s = 8, which gives rt−s2 = 0. Therefore, we
cannot conclude directly. However, we notice that f (x,0) = x4−4x2 is negative
when x is small, while f (x,x) = 2x4 is always positive. Thus, (0,0) is neither a
maximum nor a minimum since, as close as we want to (0,0), we have points
(x,y) with f (x,y) > f (0,0) and other points (x,y) with f (x,y) < f (0,0).

2. Let’s start by calculating the first and second-order partial derivatives of f :
∂f
∂x (x,y) = 4x3, ∂f

∂y (x,y) = 3y2 − 3, ∂2f
∂x2 (x,y) = 12x2, ∂2f

∂x∂y (x,y) = 0, ∂2f
∂y2 (x,y) = 6y.

A point (x,y) is critical if and only if x = 0 and y2 = 1. The two critical points of f are
therefore (0,1) and (0,−1). At these two points, using standard notation, rt− s2 = 0.
Thus, we cannot conclude directly. Instead of studying the sign of f (x,y)− f (x0, y0)
in the neighborhood of (x0, y0), we will study the sign of f (x0 + h,y0 + k) − f (x0, y0)
in the neighborhood of (0,0).

• At (0,1). We set y = 1 + h, with h close to 0. We then have f (x,1 + h) = x4 +
(1 + h)3 − 3(1 + h) − 2 = x4 + h3 + 3h2 − 4. For x and h close to 0, x4 ⩾ 0 and
3h2 + h3 ⩾ 0 (in the neighborhood of 0, the h2 term predominates). Thus, if x
and h are close to 0, we have f (x,1+h) ⩾ −4 = f (0,1). Therefore, (0,1) is a local
minimum for f .
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• At (0,−1) is similar, but this time we set y = −1 +h. We then have f (x,−1 +h) =
x4−3h2+h3. Here, we notice that f (x,−1) = x4 ⩾ 0 = f (0,−1) while f (0,−1+h) =
−3h2 + h3 < 0 if h is small enough. Thus, (0,−1) is a saddle point.

Correction of the exercise 31 ▲

1. Let us introduce the Lagrangian:

L(x,y,λ) = x+ y −λ(x2 + y2 − 1)

We seek the critical points of L: 
1− 2λx = 0

1− 2λy = 0

1− x2 − y2 = 0

∇L(x,y,λ) =


0
0
0

 ⇐⇒ (x,y,λ) ∈
{(
± 1
√

2
,± 1
√

2
,±1

2

)}
Now, let’s analyze the nature of these critical points:

∂2L

∂x2 (x,y,λ) = −2λ =⇒ ∂2L

∂x2

(
− 1
√

2
,− 1
√

2
,−1

2

)
= 2 > 0

∂2L

∂y2 (x,y,λ) = −2λ =⇒ ∂2L

∂y2

(
−∂

2L

∂y2
1
√

2
,− 1
√

2
,−1

2

)
= 2

∂2L
∂x∂y

(x,y,λ) = 0 =⇒ ∂2L
∂x∂y

(
− 1
√

2
,− 1
√

2
,−1

2

)
= 0

∆(x,y,λ) = 4λ2 =⇒ ∆

(
− 1
√

2
,− 1
√

2
,−1

2

)
= 2 > 0

Thus,
(
− 1√

2
,− 1√

2

)
is a minimum and

(
1√
2
, 1√

2

)
is a maximum for f under the con-

straint x2 + y2 = 1.

2. Let g(x,y) = x2 + y2 − 4 and L(x,y,λ) = f (x,y)−λg(x,y) = 4x2 + y2 −λ(x2 + y2 − 4).

Search for the critical points of L:

∇L(x,y,λ) =


8x − 2λx
2y − 2λy

4− x2 − y2


Thus, 

2x(4−λ) = 0

2y(1−λ) = 0

x2 + y2 = 4
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The critical points of L are: (x1, y1,λ1) = (2,0,4) , (x2, y2,λ2) = (−2,0,4) , (x3, y3,λ3) =
(0,2,1) , (x4, y4,λ4) = (0,−2,1).

Study of the Nature of Critical Points:

We have:
∂2L

∂x2 (x,y,λ) = 8− 2λ

∂2L

∂y2 (x,y,λ) = 2− 2λ

∂2L
∂x∂y

(x,y,λ) = 0

Therefore,

∂2L

∂x2 (x1, y1,λ1)× ∂2L

∂y2 (x1, y1,λ1)−
(
∂2L
∂x∂y

(x1, y1,λ1)
)2

= 0,

∂2L

∂x2 (x2, y2,λ2)× ∂2L

∂y2 (x2, y2,λ2)−
(
∂2L
∂x∂y

(x2, y2,λ2)
)2

= 0,

∂2L

∂x2 (x3, y3,λ3)× ∂2L

∂y2 (x3, y3,λ3)−
(
∂2L
∂x∂y

(x3, y3,λ3)
)2

= 0,

∂2L

∂x2 (x4, y4,λ4)× ∂2L

∂y2 (x4, y4,λ4)−
(
∂2L
∂x∂y

(x4, y4,λ4)
)2

= 0.

Conclusion: The Lagrange method only allows us to find candidate extrema of f
under the constraint g but does not allow us to conclude whether they are indeed
extrema.

Direct Study of the Nature of Critical Points:

We are not required to use the Hessian submatrix of L to establish the nature of the
critical points. In fact, it is sufficient to study the sign of the distance function:

di(h,k) ≡ f (xi + h,yi + k)− f (xi , yi),

for i = 1,2,3,4 and (h,k) ≈ (0,0) with g(xi + h,yi + k) = 0:

di(h,k) = 4(xi + h)2 + (yi + k)2 − 4x2
i − y

2
i ,

gi(xi + h,yi + k) = (xi + h)2 + (yi + k)2 − 4.

If ∂yg(xi , yi) , 0, then the equation g(xi + h,yi + k) = 0 implicitly defines k as a
function of h near h = 0: solving g(xi + h,yi + k) = 0 gives

(yi + k)2 = 4− (xi + h)2.

Substituting this expression into di(h,k), we obtain the function of a single variable:

d̃i(h) = 3(xi + h)2 + 4− 4x2
i − y

2
i .
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If ∂xg(xi , yi) , 0, then the equation g(xi + h,yi + k) = 0 implicitly defines h as a
function of k near k = 0: solving g(xi + h,yi + k) = 0 gives

(xi + h)2 = 4− (yi + k)2.

Substituting this expression into di(h,k), we find the function of a single variable:

d̃i(k) = 16− 3(yi + k)2 − 4x2
i − y

2
i .

Conclusion:

• d̃1(k) = −3k2 ⩽ 0 therefore the point (x1, y1) is a local minimum of f under the
constraint g.

• d̃2(k) = −3k2 ⩽ 0 therefore the point (x2, y2) is a local minimum of f under the
constraint g.

• d̃3(h) = 3h2 ⩾ 0 therefore the point (x3, y3) is a local maximum of f under the
constraint g.

• d̃4(h) = 3h2 ⩾ 0 therefore the point (x4, y4) is a local maximum of f under the
constraint g.
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