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Résumé 
 

Cette thèse propose une approche innovante pour le diagnostic des défauts dans les machines 

tournantes, en exploitant la Décomposition en Mode Variationnelle (VMD) pour améliorer la 

précision et la robustesse de la détection dans des environnements complexes. Elle débute par 

une revue des stratégies de maintenance conditionnelle, mettant en avant les limites des 

méthodes traditionnelles et l'intérêt des techniques avancées de traitement du signal. 

La VMD est comparée à la Décomposition en Mode Empirique (EMD) pour démontrer sa 

supériorité dans l'isolement des signatures de défauts issues de signaux bruités. Un critère basé 

sur l'entropie de Shannon est proposé pour optimiser le nombre de fonctions de mode 

intrinsèque (IMF). En complément, des méthodes avancées, comme l'Analyse Multi-Résolution 

par Ondelettes (WMRA) est intégrée à la VMD pour affiner la détection des défauts subtils. 

Une contribution majeure de cette recherche réside dans le développement d'un cadre 

hybride combinant la VMD et les réseaux LSTM (Mémoire Longue et Court Terme) pour la 

classification des défauts et l'évaluation de leur gravité. Cette combinaison exploite 

efficacement la décomposition de signal et l'apprentissage séquentiel, démontrant une grande 

précision, même avec des données limitées, et un fort potentiel pour les applications 

industrielles. 

En conclusion, la méthode VMD se révèle particulièrement efficace pour diagnostiquer les 

défauts des machines tournantes dans des conditions de fonctionnement difficiles, ouvrant de 

nouvelles perspectives pour la maintenance conditionnelle. 

Mots-clés : Décomposition en Mode Variationnelle (VMD), Détection de défauts, Machines 

tournantes, Analyse vibratoire, Traitement du signal, Maintenance conditionnelle, 

Décomposition du signal, Signaux vibratoires. 
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Abstract 
 

This thesis proposes an innovative approach for diagnosing faults in rotating machinery by 

utilizing Variational Mode Decomposition (VMD) to enhance detection accuracy and 

robustness in complex environments. It begins with a review of condition-based maintenance 

strategies, highlighting the limitations of traditional methods and the potential of advanced 

signal processing techniques. 

VMD is compared to Empirical Mode Decomposition (EMD) to demonstrate its superiority 

in isolating fault signatures from noisy signals. A criterion based on Shannon entropy is 

proposed to optimize the number of Intrinsic Mode Functions (IMFs). Additionally, advanced 

methods such as Wavelet Multi-Resolution Analysis (WMRA) is integrated with VMD to refine 

the detection of subtle faults. 

A major contribution of this research lies in developing a hybrid framework combining VMD 

and Long Short-Term Memory (LSTM) networks for fault classification and severity 

assessment. This combination effectively leverages signal decomposition and sequential 

learning, achieving high accuracy even with limited data and demonstrating strong potential for 

industrial applications. 

In conclusion, the VMD method proves particularly effective for diagnosing faults in 

rotating machinery under challenging operating conditions, opening new avenues for condition-

based maintenance.  

Keywords: Variational Mode Decomposition (VMD), Fault detection, Rotating machinery, 

Vibration analysis, Signal processing, Condition-based maintenance, Signal decomposition, 

Vibration signals. 
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 ملخص
 

باستخدام طریقة   التحلیل  الدوارة من خلال استخدام  لتشخیص الأعطال في الآلات  نھجًا مبتكرًا  تقترح ھذه الأطروحة 

لتحسین دقة وموثوقیة الكشف عن الأعطال في البیئات المعقدة. تبدأ الدراسة بمراجعة  (VMD) التفكیك في الوضع التبایني

استراتیجیات الصیانة القائمة على الحالة، مع تسلیط الضوء على حدود الأسالیب التقلیدیة وأھمیة تقنیات معالجة الإشارات 

 .المتقدمة

في عزل  VMD لإثبات تفوق (EMD) مع التحلیل باستخدام طریقة التفكیك في الوضع التجریبي VMD تمت مقارنة

عدد   لتحسین  شانون  إنتروبیا  على  یعتمد  معیار  اقتراح  وتم  بالضوضاء.  الملوثة  الإشارات  عن  الناتجة  الأعطال  إشارات 

الجوھریة الوضعیة  باستخدام  .(IMFs) الوظائف  الدقة  متعدد  التحلیل  مثل  متقدمة  أسالیب  دمج  تم  ذلك،  إلى  بالإضافة 

 .لتحسین اكتشاف الأعطال الدقیقة VMD مع (WMRA)  المویجات

بین البحث في تطویر إطار عمل ھجین یجمع  لھذا  الرئیسیة  المساھمات  الذاكرة طویلة   VMD تتمثل إحدى  وشبكات 

بفعالیة من تحلیل الإشارات والتعلم التسلسلي،  لتصنیف الأعطال وتقییم حدتھا. ھذا الدمج یستفید   (LSTM) وقصیرة المدى

 .مما یحقق دقة عالیة حتى مع البیانات المحدودة، ویظھر إمكانیات قویة للتطبیقات الصناعیة

فعالیتھا بشكل خاص في تشخیص أعطال الآلات الدوارة تحت ظروف تشغیل صعبة،   VMDفي الختام، أثبتت طریقة  

 مما یفتح آفاقاً جدیدة للصیانة القائمة على الحالة 

)، كشف العیوب، الآلات الدوارة، تحلیل الاھتزازات، معالجة VMDالتفكیك في الوضع التبایني (  الكلمات المفتاحیة:

 المستندة إلى الحالة، تفكیك الإشارة، الإشارات الاھتزازیة.  الإشارات، الصیانة
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General Introduction  

In an industrial context where global competition imposes increasing demands on 

performance, reliability, and cost reduction, companies must optimize the operation of their 

production equipment. Rotating machinery, which plays a central role in various industrial 

sectors such as energy, transportation, and manufacturing, is subjected to intensive operating 

conditions, both in terms of running time and rotational speed. These operating conditions, 

while necessary to meet production requirements, increase the risk of failures and equipment 

degradation. The resulting unplanned production shutdowns often generate costs that far exceed 

those of direct repairs. 

To address these challenges, industrial maintenance plays a crucial role in preventing 

failures, extending equipment lifespan, and reducing operating costs. Among modern strategies, 

condition-based maintenance has emerged as a key approach. Unlike corrective maintenance, 

which intervenes after failures occur, or systematic preventive maintenance, which follows 

fixed schedules, condition-based maintenance relies on real-time monitoring of equipment. This 

strategy allows for the early detection of potential failures, enabling timely interventions before 

critical defects develop. As a result, resources are optimized, equipment availability is 

improved, and industrial operations benefit from a proactive maintenance approach. 

Among the tools used in condition-based maintenance, vibration analysis is one of the most 

effective for monitoring the health of rotating machinery [1]. This technique relies on capturing 

vibration signals generated by machines in operation, followed by their analysis to detect the 

onset and progression of mechanical faults. Although vibration signals contain valuable 

information, they are often complex, nonlinear, and non-stationary, making their processing 

particularly challenging. Traditional approaches, such as spectral analysis or simple indicators 

(kurtosis, RMS, crest factor), quickly reach their limitations when dealing with subtle defects 

or noisy environments. 

These limitations have led to the emergence of advanced signal processing techniques that 

leverage the adaptive and multi-scale properties of vibration signals. Among these techniques, 

Empirical Mode Decomposition (EMD) [2] marked a significant advancement by decomposing 

signals into intrinsic mode functions that reflect local dynamic phenomena. However, EMD 

presents drawbacks such as mode mixing and increased sensitivity to noise.  

 



 

 2 

To overcome these challenges, Variational Mode Decomposition (VMD) [3] offers a robust 

and precise alternative. VMD enables optimal separation of signal components while 

minimizing mode interference. This method has proven particularly effective in isolating fault 

signatures in complex vibration signals, even in the presence of noise. 

Beyond these decomposition techniques, integrating complementary methods provides 

additional tools for processing the complex signals of rotating machinery. These approaches 

exploit the time-frequency characteristics of signals, facilitating the detection of subtle 

modulations associated with mechanical defects. Moreover, the rise of artificial intelligence, 

particularly deep learning models such as Long Short-Term Memory (LSTM) networks, opens 

new perspectives. These algorithms, capable of modeling sequential relationships in signals, 

enable automatic fault classification and precise severity assessment. 

This thesis is positioned within this framework by exploring and developing hybrid 

approaches that combine VMD with advanced signal processing techniques and artificial 

intelligence methods. The primary objective is to enhance the sensitivity and robustness of fault 

diagnosis in rotating machinery, with a particular focus on gears and bearings, which are critical 

components in many industrial systems. More specifically, the contributions of this research 

include: 

• The development of optimization criteria to improve the selection of intrinsic mode 

functions in VMD. 

• The integration of VMD with complementary techniques, such as Wavelet Multi-

Resolution Analysis (WMRA) to enhance diagnostic accuracy, particularly in noisy 

environments. 

• The implementation of LSTM networks for automatic fault classification and severity 

assessment, even with limited datasets. 

To achieve these objectives, this thesis follows a structured and progressive approach, organized 

as follows: 

- Chapter 1 presents a literature review on maintenance strategies and fault detection 

techniques in rotating machinery, with a particular focus on condition-based methods and 

vibration analysis. 

- Chapter 2 provides an in-depth comparison between EMD and VMD in the context of 

vibration-based fault diagnosis, highlighting their respective advantages in identifying gear 

defects. 
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- Chapter 3 introduces an innovative approach that combines VMD with WMRA, optimized 

by an entropy-based criterion, to overcome the challenges posed by noisy signals and ensure 

robust fault detection. 

- Chapter 4 presents the development of an automated diagnostic framework that integrates 

VMD and LSTM networks to autonomously and accurately classify and detect faults, relying 

on experimental datasets covering various fault scenarios. 

By leveraging the capabilities of VMD and integrating it with modern artificial intelligence 

tools, this research makes a significant contribution to the field of condition-based maintenance. 

It aims to provide robust solutions tailored to the increasing demands of modern industrial 

environments while improving the reliability and availability of critical equipment. 

The work presented in this thesis aligns with a research initiative aimed at strengthening 

Algeria's expertise in condition-based maintenance and industrial diagnostics. By proposing 

robust and efficient approaches, this research contributes to the development of predictive 

maintenance systems, enhancing the reliability of rotating machinery while addressing the 

challenges of modern industrial operations. 
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In this chapter, we provide an overview of industrial maintenance with a particular focus on 

current methods for detecting faults in rotating machinery. Through a comprehensive literature 

review, we highlight vibration analysis as a key method for fault detection. We examine its 

practices, the techniques for processing vibrational signals, and its specific applications in 

condition-based preventive maintenance. Emphasis is placed on the utilization of signals 

associated with common failures in industrial machines. This work illustrates the growing 

importance of vibration analysis, underscoring the need for a detailed understanding of the 

dynamic behavior of structures to enable early fault diagnosis and better anticipation of machine 

malfunctions. 
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1. Introduction 

In modern industry, machine monitoring and diagnostics play a crucial role in ensuring 

operational reliability. Among the various available methods, vibration analysis stands out as a 

particularly effective technique, capable of identifying anomalies at an early stage before they 

lead to major failures. 

This introductory chapter presents the fundamentals of industrial maintenance, with a focus 

on condition-based monitoring. It then explores the main methodologies of vibration analysis, 

covering time-domain, frequency-domain, and time-frequency approaches. These techniques 

enable the identification of common faults in rotating machinery, including defective bearings, 

shaft misalignment, gear anomalies, and belt issues. Recent advancements in artificial 

intelligence have further enhanced these traditional methods, providing increased fault 

detection capabilities. 

This overview synthesizes major theoretical developments and their practical applications 

in predictive maintenance. By integrating these vibration analysis tools, industries can detect 

early signs of failure and optimally plan maintenance interventions. This proactive approach, 

which underpins the research presented in this thesis, represents a major challenge for modern 

industry. 

2. Generalities on maintenance  

Maintenance is a comprehensive discipline that encompasses proactive and reactive 

measures to ensure the optimal functionality, reliability, and longevity of equipment and 

systems [4]. It involves a systematic approach that includes preventive actions to avoid failures, 

corrective interventions to quickly resolve defects, predictive methodologies that use data 

analysis for preventive maintenance, and condition-based strategies tailored to the equipment’s 

state. 

Fundamentally, maintenance refers to the processes and activities performed on machines to 

ensure their continuous operation, enhance their durability, and maximize their efficiency. Its 

primary objectives are to minimize downtime, extend equipment lifespan, optimize 

performance, and maintain profitability. 
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2.1 Importance of maintenance 

The significance of maintenance lies in ensuring the operational reliability, longevity, and 

cost-effectiveness of machinery [5]. It serves to guarantee the uninterrupted functionality and 

durability of equipment, machines, and assets. By systematically implementing maintenance 

strategies, industries can minimize unplanned downtime, mitigate failure risks, and extend the 

operational lifespan of critical systems. Its central role in performance optimization, 

maximizing uptime, and controlling operational costs highlights its importance in improving 

productivity, ensuring safety, and meeting production requirements. Furthermore, effective 

maintenance practices contribute to a safer work environment, increased asset value, and 

sustainable operations. 

2.2 Types of maintenance 

Maintenance encompasses a variety of methods, each designed to align with specific 

conceptual frameworks. As illustrated in Figure 1.1, the choice of a maintenance method 

depends on the presence or absence of a failure. Maintenance strategies are classified into three 

main categories: corrective maintenance, preventive maintenance, and predictive maintenance 

[6]. 

 
Figure 1.1. Different types of maintenance. 

Corrective maintenance takes place after a failure to restore the functionality of machines, 

either in a palliative manner (temporary restoration to an acceptable performance level) or a 

curative manner (restoration to optimal performance levels). 

Preventive maintenance, on the other hand, acts proactively to prevent failures and follows 

two approaches: systematic maintenance, which involves planned interventions based on fixed 

schedules, and condition-based maintenance, which relies on real-time performance monitoring 

to trigger actions when anomalies are detected. 



Chapter 01 Fundamental Notions and Bibliography 

 7 

Finally, predictive maintenance leverages advanced data analysis, including artificial 

intelligence and machine learning, to anticipate failures by identifying early warning signs. 

3. Conditional preventive maintenance techniques 

Condition-based preventive maintenance is the most widely used maintenance method 

globally. It relies on various techniques that utilize the measurement of physical parameters 

such as vibration analysis, oil analysis, and others (Figure 1.2) to continuously monitor the 

condition and performance of operating equipment in real time. 

 

Figure 1.2. Different analysis methods used in conditional preventive maintenance [7]. 

Its objective is to diagnose anomalies and plan maintenance interventions in advance based 

on collected data, allowing for proactive maintenance planning. 

Vibration analysis is a fundamental diagnostic method in industrial maintenance, focusing 

on the study of vibrations generated by operating machines. This technique enables the 

detection of anomalies such as turbulence, shocks, and instability, providing real-time 

monitoring and precise diagnostics to identify the root causes of faults. Additionally, other 

diagnostic techniques are sometimes used as complementary tools: 

• Lubricant analysis: Evaluates fluid quality to detect signs of component wear. 

• Acoustic analysis: Detects anomalies based on the sounds emitted by machines. 

• Ultrasonic analysis: Identifies internal defects and leaks using ultrasonic waves. 

• Thermography: Visualizes temperature variations to detect friction points or mechanical 

defects. 

Among the various condition-based preventive maintenance methods, vibration analysis 

stands out as a key tool due to its sensitivity and versatility. It enables the detection of early 

signs of machine degradation, providing accurate fault diagnostics before failures occur.  

Vibratory 
analysis

75%

Lubricants 
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12%

Thermal 
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8%
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While other methods remain valuable, vibration signals often provide the most revealing 

indicators of impending issues. The following discussion delves deeper into the principles, 

methodologies, and applications of vibration analysis. 

4. Vibration analysis practices 

Fault diagnosis in the industrial sector is crucial for productivity gains and competitiveness, 

as it depends on the essential control of equipment availability and the quality of manufactured 

goods or services. Vibration analysis (Figure 1.3) plays a key role in achieving this objective 

by ensuring efficient fault detection and predictive maintenance. 

 

Figure 1.3. Practice of vibration analysis for monitoring rotating machines.  

There are two essential tasks in vibration analysis practice [4]: observing failure symptoms, 

known as "monitoring," and identifying the root cause of the failure using logical reasoning 

based on observations, referred to as "diagnosis." These two tasks are explained in detail in the 

following sections.  

4.1. Monitoring by vibration analysis 

Vibration-based monitoring is a key approach in industrial machine maintenance. This 

technique involves the collection and analysis of vibration signals emitted by operating 

equipment. Its primary objective is to detect anomalies, imbalances, or potential mechanical 

faults in machinery. Monitoring relies on scalar indicators to track changes in a derived quantity 

related to the power or maximum amplitude of the signal (Figure 1.4). 
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Figure 1.4. The evolution of monitoring indicators over time [8]. 

Although their absolute values may lack intrinsic significance, the temporal evolution of 

these quantities is crucial for fault detection. Table 1.1 presents the most commonly used scalar 

indicators in vibration-based monitoring [9]. 

Table 1.1. Main scalar indicators. 

Indicator Mathematical expression Advantages Disadvantages 

Kurtosis (K): indicates 

whether the data 

distribution is more or less 

peaked than a normal 

distribution. 

( )( )

( )( )

4
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2
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−
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∑

∑





 

Useful for detecting 

non-Gaussian signals and 

defects such as bearing 

faults 

Sensitive to non-

stationary signals 

Crest Factor (CF): The 

ratio of a signal's peak 

value to its RMS value, 

indicating the peak or 

spikes of the signal. 

( )2

1

1 e

K

N
Kk

e

Sup S
FC

S
N =

=

∑
 

Indicates vibration 

peaks relative to RMS 

value, useful for detecting 

high amplitude peaks. 

 Does not provide a 

complete indication of 

overall vibration 

behavior, sensitive to 

background noise. 
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Spectral Center of 

Gravity (CGS): The 

weighted average of the 

frequency spectrum; 

represents the "center" or 

predominant frequency 

components of the signal. 

( )
( )

f L f df
CGS

L f df

×
= ∫  

Provides a measure of 

frequency distribution, 

useful for identifying 

changes in the frequency 

signature. 

Require expertise to 

correctly interpret 

spectral variations. 

Root Mean Square 

(RMS): The square root of 

the mean of the squares of 

a set of values; represents 

the effective or average 

amplitude of the signal. 

( )2

1

1 eN
Kk

e

RMS S
N =

= ∑  

Provides an overall 

measure of vibrational 

energy, commonly used as 

a general indicator of 

vibration. 

Not effectively 

detecting sudden 

vibration spikes or 

abrupt changes. 

Peak-to-Peak (P2P): 

The difference between 

the maximum positive and 

maximum negative 

amplitudes of a signal; 

shows the total variation of 

the signal. 

( )( ) ( )( )max minCàC S t S t= −  

Indicates the total 

amplitude of the signal, 

useful for assessing 

extreme variations. 

Does not provide 

details on frequency 

distribution. 

Peak Value (PV): The 

maximum amplitude of the 

signal. 
KVC Sup S=  

Gives the maximum 

value of the vibration 

amplitude. 

Does not take into 

account the average of 

vibrations, does not 

provide an overview 

of vibrational energy. 
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K-factor (KF): A 

parameter used to assess 

the deviation of actual 

vibration from a normal 

distribution; particularly 

relevant for detecting 

defects in rolling element 

bearings. 

( )
2

1

1* eN
K Kk

e

FK Sup S S
N =

= ∑  
Used to assess bearing 

faults and frequency 

anomalies. 

May require 

calibration and 

adjustments for 

specific applications, 

does not always 

provide complete 

information on overall 

machine condition. 
 

4.2. Diagnosis by vibration analysis 

In the field of vibration-based diagnostics, several well-established classical methods 

continue to play a central role due to their proven effectiveness. These techniques enable the 

analysis of vibration signals to detect faults and anomalies, including but not limited to: 

- Spectral Analysis: This method relies on the Fourier Transform, which represents a 

time-domain signal x(t) in the frequency domain X(f). It is particularly useful for 

identifying dominant frequencies and harmonics in vibrations, although it is limited by 

its time resolution [10]: 

( ) ( ) 2. i ftX f x t e dtπ+∞ −

−∞
= ∫           (1.1) 

- Cepstral Analysis: This technique applies a double Fourier Transform to the logarithm 

of the Fourier Transform of a signal x(t) to obtain the cepstral representation C(τ). It is 

highly effective in identifying periodicities in frequency spectra, enabling the detection 

of intermittent or hidden faults [11]: 

( ) ( ){ }( ){ }1 logC F F x tτ −=          (1.2) 

- High-Frequency Resonance Technique (HFRT) Envelope Analysis: This method 

focuses on extracting the envelope of a signal, often using the Hilbert Transform. It is 

particularly suitable for detecting subtle defects, such as those related to bearings or 

lubrication issues [12]: 

[ ] ( )1( )
x t

H x t d
t

τ
π τ

+∞

−∞
=

−∫           (1.3) 
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- Short-Time Fourier Transform (STFT): This technique enables localized time-

frequency analysis by applying a windowing function w(t). It is effective for studying 

non-stationary signals, although the window size affects both time and frequency 

resolution [13]: 

( ) ( ) ( ) 2, j ftX f x t w t e dtπτ τ
∞ −

−∞
= −∫         (1.4) 

These traditional methods form a solid foundation for vibration analysis and are still widely 

used in various industrial applications. However, the increasing demands for predictive 

maintenance and high-precision diagnostics have led to the development of more advanced 

techniques. 

4.2.1. Wavelet Multi-Resolution Analysis 

Wavelet Multi-Resolution Analysis (WMRA) involves decomposing a signal into multiple 

components at different spatial and frequency resolutions using wavelet filters (Figure 1.5). 

This decomposition allows the analysis of a signal at different scales of resolution. WMRA 

decomposes a signal into a series of details Di(t) and an approximation Aj(t) at different scales 

(j) and resolution levels (i) [5]. 

 

Figure 1.5. WMRA decomposition scheme [14]. 
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WMRA is widely used in various fields, including signal processing and vibration analysis 

in machinery. It enables the identification of important signal features at different scales, 

making it particularly useful for detecting faults in machines. 

This method offers better temporal localization of transient events and higher frequency 

resolution than traditional techniques such as the Fourier Transform. However, WMRA requires 

an appropriate selection of wavelet functions and decomposition parameters, which can be a 

complex process. 

4.2.2. Cyclostationary Analysis 

Cyclostationary analysis is a signal processing method used to study signals whose statistical 

characteristics vary periodically over time, a property known as cyclostationarity [15]. Unlike 

stationary signals, which have constant statistical properties, cyclostationary signals exhibit 

periodic variations in their spectral structure. 

This technique is particularly useful for detecting intermittent or periodic faults in machine 

vibration signals. It helps identify cyclic variations in vibrations caused by bearing defects, 

faulty gear teeth, or other periodic anomalies. Cyclostationary analysis is highly effective in 

detecting periodic faults in vibration signals, making it easier to identify specific mechanical 

issues. However, it can be sensitive to variations in cyclostationarity and requires precisely 

tuned parameters for an accurate analysis. 

The mathematical foundations of cyclostationarity are characterized by its power spectral 

density (PSD) or second-order statistics, such as autocorrelation or dual-lag autocorrelation. A 

cyclostationary signal presents peaks at specific cyclic frequencies, indicating periodic 

variations and the presence of faults. 

4.2.3. EMD analysis 

EMD is a technique for decomposing nonlinear and non-stationary signals into components 

known as Intrinsic Mode Functions (IMFs). EMD is adaptive and data-driven, enabling the 

processing of complex and time-varying signals without requiring prior assumptions about their 

structure [7]. It facilitates the decomposition of complex signals into different characteristic 

frequency components, thereby enhancing the detection of mechanical faults. 
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Mathematically, EMD follows an iterative decomposition process. At each step, IMFs are 

extracted by identifying the oscillatory components present in the original signal. This is 

achieved by subtracting the mean of the upper and lower envelopes of the signal until reaching 

a non-decomposable residue. The sum of the IMFs and the residue reconstructs the original 

signal. 

The main advantage of EMD is its ability to handle nonlinear and non-stationary signals. It 

is adaptive and can be applied in scenarios where traditional methods may fail. However, EMD 

is known to be sensitive to noise. 

The EMD approach has evolved into a broad family of techniques [9], including: Ensemble 

Empirical Mode Decomposition (EEMD), Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN), Improved Complete Ensemble Empirical 

Mode Decomposition with Adaptive Noise (ICEEMDAN). These advanced EMD-based 

techniques are designed to handle noisy data and trends in vibration signals, improving the 

accuracy of fault diagnosis. 

4.2.4. VMD analysis 

To overcome the mode-mixing issues in EMD, Variational Mode Decomposition (VMD) [3] 

was introduced. VMD is an advanced signal processing technique designed to extract intrinsic 

modal components from a signal by decomposing it into a sum of modes. This method provides 

a precise separation of different frequency components within a signal, facilitating the 

identification of vibration phenomena and fault sources in rotating machinery. 

Initially, the decomposition modes are initialized and then iteratively adjusted to minimize 

their correlation while preserving the total signal energy. At each iteration, the modes undergo 

spectral filtering to eliminate unwanted components. This process repeats until convergence is 

achieved, producing the intrinsic modal components of the signal. By combining weighted 

modes, the modal components of the signal are obtained, allowing for a precise separation of 

different frequency components. 

VMD offers several significant advantages including accurate separation of frequency 

components, making it easier to identify vibration sources in rotating machinery, adaptability 

to non-stationary signals, making it a versatile tool for condition monitoring of mechanical 

systems and higher robustness than traditional techniques, as VMD is less sensitive to 

distortions and noise, making it suitable for complex industrial environments. By providing 

greater precision in modal decomposition, VMD enhances fault detection in rotating machines, 

enabling preventive and proactive maintenance strategies. 
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It is important to emphasize that all these different techniques converge toward the spectral 

or envelope spectrum analysis to extract specific frequency characteristics. These approaches 

aim to analyze the vibrational characteristics of machines, with vibration and envelope spectra 

being essential tools for identifying fault-related frequencies. 

5. Major faults in rotating machines 

Rotating machinery is susceptible to various types of faults that can compromise its proper 

functioning and longevity. The main categories of faults encountered include shaft-related 

faults, bearing faults, gear faults, and belt faults.   

The detection and monitoring of these faults are crucial in the field of preventive 

maintenance for rotating machinery to prevent costly failures and ensure operational efficiency. 

Each type of fault has a distinct vibration signature, which allows for detection by analyzing 

the frequency spectrum of the measured signal.   

Figure 1.6 illustrates a typical signal from a healthy machine. The time-domain signal 

(Figure 1.6.a) exhibits no noticeable periodicities, and its corresponding frequency spectrum 

(Figure 1.6.b) displays only a peak at the system's rotational frequency, indicating a normal 

operating condition. 

  
a. b. 

Figure 1.6. Vibrational signature of the simulated system:  

a. acceleration signal, b. corresponding spectrum.  

 
5.1. Shaft defects 

Shaft faults can result from structural issues or excessive stresses, leading to abnormal 

vibrations and shaft deformation. Here, we explore some of the main faults that can occur in 

shafts.  
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5.1.1. Unbalance 

Unbalance refers to an uneven distribution of mass around the axis of rotation, which induces 

non-zero centrifugal forces during rotation. This can lead to undesirable vibrations and 

premature wear of components. 

We can distinguish two types of unbalances: static and dynamic, as shown in Figure 1.7. 

Static unbalance (Figure 1.7.a) results from an uneven mass distribution relative to the axis of 

rotation, even when the machine is at rest. On the other hand, dynamic unbalance (Figure 1.7.b) 

occurs when the mass distribution varies during machine operation, generating variable 

centrifugal forces. 

  
a. b. 

Figure 1.7. Unbalance defects: a. static unbalance, b. dynamic unbalance. 

To illustrate the vibration signature of an unbalance fault, we examine the spectrum in Figure 

1.8. The spectrum exhibits a dominant peak at the rotational frequency of the shaft carrying the 

unbalance, denoted as Fr, along with its harmonics (×2, ×3) of lower amplitude. 

Unbalance thus induces a vibration whose spectrum features a component with a base frequency 

corresponding to the rotational frequency Fr. This frequency represents the highest peak, 

accompanied by smaller amplitude peaks at the harmonics of Fr. 
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Figure 1.8. Typological spectrum of an unbalance defect. 

5.1.2. Misalignment  

Misalignment is a condition where the rotational axes of two components are not perfectly 

aligned. This can occur between two shafts or between a shaft and a coupling. Misalignment 

can lead to excessive lateral forces, premature wear, and reduced system efficiency. There are 

two main types of misalignments: radial misalignment, where the rotational axes are not 

perfectly parallel (Figure 1.9.a), and angular misalignment, where the axes form an angle other 

than 180° (Figure 1.9.b). 

  
a. b. 

Figure 1.9. Misalignment defects: a. radial misalignment, b. angular misalignment. 

Let’s consider the vibration spectrum of a radial misalignment in a coupling, as illustrated in 

Figure 1.10. The presence of a misalignment fault is characterized by the emergence of a 

significant amplitude peak, typically at a frequency equivalent to twice the rotational frequency, 

2×Fr (sometimes at three or four times this frequency). 

This anomaly generates a characteristic vibration in the radial direction, primarily consisting 

of a second-order component relative to the rotational frequency (sometimes third-order, or 

exceptionally fourth-order), with amplitudes exceeding those of the first-order components. 
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Figure 1.10. Typological spectrum of a misalignment defect. 

The diagnosis of an angular misalignment fault requires measurements in two axes (radial 

and axial). It is characterized by axial vibration with second-, third-, or fourth-order components 

of the rotational frequency, exhibiting amplitudes higher than those of the corresponding radial 

components. 

5.1.3. Clearance and wear 

Clearance and wear represent a common fault in rotating machinery, resulting from the 

constant interaction of mechanical components over time. This fault can manifest as increased 

gaps between moving parts, leading to undesirable vibrations and reduced system efficiency. 

The primary causes of clearance and wear include harsh operating conditions, inadequate 

maintenance, or the use of low-quality materials. 

Mechanical clearance/wear typically manifests in mounts or bearing caps and often produces 

a large number of harmonics in the vibration spectrum. The spectrum of a clearance/wear fault, 

as shown in Figure 1.11, reveals the presence of a series of harmonics of the rotational frequency 

(Fr, ×2, ×3) along with sub- and inter-harmonics (with intervals equal to 0.5×Fr). 
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Figure 1.11. Typological spectrum of a shaft clearance/wear defect. 

5.2. Bearing defects 

Bearing faults are a major concern in the field of rotating machinery, causing significant 

disruptions. The primary cause of these faults often lies in harsh operating conditions, such as 

excessive loads, high speeds, or unfavorable operating environments. These faults generally 

manifest in four main categories [9]: the inner ring, the outer ring, the rolling element, and the 

cage, as illustrated in Figure 1.12. 

 

Figure 1.12. Defects present in bearings [9]. 
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Each category of fault exhibits a characteristic natural frequency, which can be identified 

and analyzed to diagnose the nature and severity of the malfunction. Table 1.2 summarizes these 

natural frequencies associated with each type of fault. 

Table 1.2. Characteristic frequencies of bearing defects. 

Frequency of the defect Mathematical expression 

Inner Ring Fault Frequency (BPFI) 1 cos
2bi

nN dF
D

α = + 
 

 

Outer Ring Fault Frequency (BPFO) 1 cos
2be

nN dF
D

α = − 
 

 

Rolling Element Fault Frequency (BPF) 
2

2
21 coser

DN dF
d D

α
 

= − 
 

 

Frequency of Cage Defect 

(CF) 
1 cos

2c
N dF

D
α = − 

 
 

While: N is the rotation frequency in Hz 

 D is the average diameter of the bearing in mm 

 n is the number of rolling elements 

 d is the diameter of the rolling elements 

 α is the contact angle in degrees. 

5.2.1. Inner ring 

The inner race fault in bearings is associated with specific anomalies on the inner raceway 

of the bearing. This can result from mechanical stresses, excessive loads, or inappropriate 

operating conditions. This type of fault evolves rapidly and can compromise the stability of the 

bearing, leading to undesirable vibrations and a decline in the overall performance of the 

machine. 

The characteristic frequency BPFI occurs when a rolling element passes over a defect on the 

inner raceway. This fault is subject to modulations due to the shaft speed, resulting in a large 

number of sidebands [16]. Figure 1.13 shows the typical vibration response of an inner race 

fault in the frequency domain. We can observe the BPFI and its second harmonic (×2), as well 

as sidebands of the rotational frequency Fr around the BPFI and its harmonics. 
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Figure 1.13. Typological spectrum of an inner ring defect. 

5.2.2. Outer ring 

The outer race is one of the main components of a ball or roller bearing, providing external 

support for the rolling elements and enabling the rotation of the assembly. Outer race faults 

evolve over months and manifest as anomalies on its outer surface, typically caused by wear, 

fatigue, cracks, spalling, pitting, or manufacturing defects. 

The typological spectrum of an outer race fault, shown in Figure 1.14, highlights the 

characteristic frequency peak BPFO and its second harmonic (×2), which are indicative of the 

presence and severity of outer race faults. Sometimes, there may be multiple harmonics of the 

BPFO, even exceeding it. 

 

Figure 1.14. Typological spectrum of an outer ring defect. 
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5.2.3. Rolling element 

In the context of bearings, the rolling element refers to the moving part of the bearing that 

rolls between the inner and outer races. This element can take the form of balls, cylindrical 

rollers, or tapered cones, depending on the type of bearing. Its primary role is to reduce friction 

between moving surfaces and facilitate the rotation of the entire mechanism. Faults affecting 

rolling elements can include shape defects, surface defects, or material defects. 

These faults result in distinct characteristics in the typological vibration spectrum, as shown 

in Figure 1.15. The frequency peaks associated with rolling element faults, BPF and its second 

harmonic (×2), dominate the spectrum and provide valuable insights for diagnosing bearing 

problems, thereby contributing to improved predictive maintenance of rotating machinery. 

  

Figure 1.15. Typological spectrum of a rolling element defect. 

5.2.4. Cage 

The cage fault in bearings refers to a failure or deterioration of the cage structure, the 

component that maintains the rolling elements (balls or rollers) at regular intervals and prevents 

them from touching each other. Cage faults are rapidly destructive and are often detected too 

late. They are rarely energetic, hence the need for high resolution. 

The vibrations from a cage fault generate distinct characteristics. In the typological spectrum 

shown in Figure 1.16, we observe the manifestation of the characteristic frequency CF and its 

harmonics (×2, ×3). The CF appears between 35% and 46% of the rotational frequency Fr, and 

the cage fault is sometimes accompanied by another fault, such as a ball fault, appearing as 

sidebands. 
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Figure 1.16. Typological spectrum of a cage defect. 

5.3. Gear defects  

Gear Faults refer to any anomaly or deterioration that affects the proper functioning of gears. 

These faults can be caused by various factors such as wear, corrosion, fatigue, poor assembly, 

overload, and manufacturing defects. 

Among the major gear faults, as shown in Figure 1.17, are tooth breakage, pitting, complete 

tooth removal, root cracking, and wear: Tooth Breakage occurs when one of the gear teeth 

breaks or detaches, while pitting is characterized by the formation of small depressions on the 

tooth surface, generally caused by high contact stresses. Missing Tooth refers to the complete 

absence of a gear tooth, which disrupts the gear’s motion and root crack refers to a crack or 

fracture developing from the base of a gear tooth. Finally, wear occurs when the contact surfaces 

of the teeth gradually deteriorate over time due to continuous use. 
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Figure 1.17. Major defects present in gears [8]. 

Each gear pair has a characteristic frequency, known as the meshing frequency Fm, which 

can be calculated using the following equation: 

1 1 2 2Fm Z Fr Z Fr= × = ×            (1.7) 

Where: Z₁ and Z₂ are the number of teeth on the two gears. 

Fr₁ and Fr₂ are the rotational frequencies of the two gears. 

In a measured signal from a gearbox, the presence of the meshing frequency is normal and 

results from the natural meshing of the gears. Low-amplitude sidebands around Fm are also 

common, reflecting slight differences between the teeth. However, gear faults amplify this 

modulation, resulting in symmetrical sidebands (with equal spacing) on either side of Fm and 

its harmonics. 

As shown in Figure 1.18, the vibration signature characteristic of a gear fault consists of a 

comb-like pattern of lines at Fm and its harmonics (×2, ×3), modulated by Fr of the shaft 

connected to the defective gear. To observe these families of spectral lines, it is necessary to 

analyze a frequency range covering multiple times Fm. 
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Figure 1.18. Typological spectrum of a gear defect. 

In some cases, the spectral pattern may exhibit changes in its shape, such as: 

- Wear: Diagnosed by an increase in the 2nd and 3rd harmonics of Fm. A significantly 

higher amplitude of these harmonics compared to Fm indicates the severity of the 

damage. 

- Insufficient Center Distance: Between the two gears, this manifests as the appearance 

of a dominant spectral line at 2×Fm and a partial or complete disappearance of Fm’s 

amplitude. 

- Deterioration of Both Gears: Can cause strong impacts when both defects align, a 

phenomenon known as “coincidence.” This alignment generates a coincidence 

frequency Fco: ( )1, 2coF Fm PPCM Z Z= . The spectrum not only displays the two comb-

like patterns corresponding to the rotational frequencies of each gear but also an 

additional comb of spectral lines corresponding to Fco. 

5.4. Belt defect 

Belt faults typically manifest as signs of slipping, cracking, or breaking, leading to a 

disruption in the transmission of motion between components. The predominant fault observed 

in this type of transmission results from localized deterioration of the belt (Figure 1.19.a), 

causing a specific force or impact at the belt defect frequency Fc, which can be calculated using 

Equation 1.8. 
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Vibration analysis of this fault reveals significant amplitudes at the belt pass frequency and 

its harmonics (Figure 1.19.b). 

  
a. b. 

Figure 1.19. Belt defect: a. Defect image, b. Typological vibration signature of the defect. 

Despite the faults already mentioned, it is important to recognize the existence of other 

potential anomalies in the mechanical components of rotating machinery, such as turbines, fans, 

cavitation faults, and faults due to lubrication issues, among others. Vibration analysis, by 

monitoring the vibrations emitted by these machines, remains a valuable tool for detecting the 

characteristic signatures of a multitude of faults, thereby enabling effective predictive 

maintenance and proactive management of industrial equipment. 

6. Bibliography  

Numerous investigations have been conducted in the field of condition-based maintenance 

through vibration analysis, aiming to identify characteristic vibration signatures of specific 

faults in rotating machinery based on acceleration signals. These studies have played a crucial 

role in the development and determination of suitable diagnostic tools, thereby facilitating the 

monitoring of rotating machinery behavior. 

This section provides a synthesis of various research efforts, highlighting the methods 

employed and the results obtained in the vibration-based diagnosis of faults. These methods can 

be grouped into four major categories: time-domain methods, frequency-domain methods, 

time-frequency methods, and advanced diagnostic methods [17]. 

In the field of machinery diagnostics through vibration analysis, early work focused on the 

time-domain analysis of raw vibration signals [18, 19]. This direct approach generates a wealth 

of information, revealing aspects such as amplitude modulation, transitions, and higher-

frequency components [20]. However, the simplicity of evaluating these vibration signals is 

offset by the inherent noise in the data. To address this challenge, signal processing methods 

become imperative to extract essential information from time-domain signals. This involves 

transforming raw signals into relevant statistical parameters [17]. The calculation of scalar 
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indicators sensitive to the signal's shape provides an indication of the presence of a fault [21–

24]. Several statistical parameters are typically extracted from the time-domain signal, such as 

RMS, crest factor, kurtosis, energy, and others [25]. These parameters enable the differentiated 

characterization of healthy and faulty machine vibration signals [26]. 

To diagnose bearing faults, Shrivastava and Wadhwani [27] acquired vibration signals from 

both healthy and artificially damaged motor bearings, followed by feature extraction and 

analysis. The main findings indicate that features such as RMS, skewness, and crest factor 

clearly distinguish healthy conditions from faulty ones. The sensitivity of different features to 

various types of faults highlights the need to combine these features for robust diagnostics. The 

study concludes that time-domain features derived from vibration signals can effectively detect 

faults in rotating electrical machines but cannot determine the type of fault. 

Benchaabane et al. [28] present an in-depth study on the detection and monitoring of gear 

tooth pitting faults through vibration analysis. Their methodology combines numerical 

simulation of gear faults with experimental testing on a gear test bench, using scalar indicators 

such as kurtosis, crest factor, and RMS. Key results indicate that while kurtosis is highly 

effective for detecting impact-type faults, its sensitivity decreases as the number of faults 

increases. The crest factor shows lower sensitivity, and RMS and energy indicators are more 

responsive to amplitude variations. Additionally, the study highlights the significant impact of 

lubrication and applied torque on vibration levels, with non-lubricated gears exhibiting higher 

vibrations. 

Subsequently, frequency-domain vibration analysis emerges as a fundamental tool for 

uncovering crucial information from machine signals. The Fast Fourier Transform (FFT) is 

widely used [29, 30] and yields good results. Other studies have introduced FFT-based 

algorithms such as power spectra [31] and bicoherence [32]. Cepstral analysis has also been 

introduced and has proven advantageous for rapid fault detection [33, 34]. 

Ameid et al. [35] used FFT analysis to diagnose broken rotor bar faults in induction motors. 

By applying FFT to the stator current, the authors were able to identify faulty components, 

confirming the effectiveness of this method through simulations and experimental tests, 

particularly with Field-Oriented Control (FOC). 

Complementarily, Vernekar et al. [36] explored fault detection in internal combustion engine 

gearboxes. Their approach, based on vibration and cepstral analysis, demonstrated the 

effectiveness of these methods for predicting faults, primarily influenced by the Gear Mesh 

Frequency (GMF) and its harmonics. 
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El Morsy and Achtenová [37] also emphasized cepstral analysis for diagnosing vehicle 

gearbox faults. By introducing an artificial pitting fault on a gear tooth, they showed that this 

method clearly identifies anomalies even under high-load conditions, confirming its utility. 

Furthermore, Randall [33] proposed an empirical approach for diagnosing gearbox faults by 

analyzing vibration signals without resorting to complex dynamic models. By combining 

spectral and cepstral analysis, the study demonstrated that specific changes in the vibration 

spectrum can be correlated with gear faults, offering a practical method for condition 

monitoring. 

Nacib et al. [34] used vibration and cepstral analysis to detect gear faults in helicopter 

gearboxes. Based on in-flight vibration data, they proved that cepstral analysis effectively 

identifies gear tooth cracks from sidebands, demonstrating its early detection capability. 

Time-frequency analysis represents an advanced approach in the evaluation of rotating 

machinery vibration signals. Unlike classical frequency analysis, this method tracks the 

evolution of a signal's vibration characteristics over time. It provides a dynamic perspective, 

particularly relevant for detecting transient variations, intermittent anomalies, or progressive 

behavioral changes. Several methods have been developed in this domain, including the Short-

Time Fourier Transform (STFT) [38], Power Spectral Density (PSD) [39], Cyclostationarity 

[40], Wavelet Transform (WT) [41], Empirical Mode Decomposition (EMD) [2], and more 

recently, Variational Mode Decomposition (VMD) [3], which was proposed to overcome the 

limitations of EMD. 

Xuan and Ge [42] investigated the Hilbert-Huang Transform (HHT) for diagnosing faults in 

rotating machinery from vibration signals, showing that HHT detects rotor eccentricity fault 

frequencies better than the Fourier Transform. 

Cusidó et al. [43] developed an improved method using wavelet analysis and Power Spectral 

Density (PSD) to detect faults in induction motors under variable load conditions, 

outperforming traditional Motor Current Signature Analysis (MCSA) techniques. 

To demonstrate the superiority of time-frequency methods, Bendjama et al. [44] explored 

various vibration signal processing techniques for the monitoring and diagnosis of faults in 

rotating machinery. Their study demonstrates that time-frequency analysis methods outperform 

traditional methods in terms of effectiveness for detecting faults, particularly gear and 

unbalance faults, from vibration signals collected on experimental systems. 

Wavelet analysis, widely addressed in recent works in both its continuous [45, 46] and 

discrete [47] forms, has yielded promising results. Early work using wavelets was initiated by 

Wang and McFadden [48], who processed vibration signals from a helicopter gearbox, enabling 
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the localization of gear faults. Nikolaou and Antoniadis [49] proposed the use of the wavelet 

transform as an alternative to traditional time-frequency analysis methods for detecting bearing 

faults using data collected from a test platform, with results showing promise for monitoring 

the condition of rotating machinery. Other studies have used continuous wavelets as diagnostic 

tools for detecting gear faults, such as those by Sung et al. [50], Yoshida et al. [51], and Meltzer 

and Dien [52]. In the article by Djebala et al. [53], the authors optimized the Wavelet Multi-

Resolution Analysis (WMRA) using kurtosis as an optimization criterion to determine the 

number of decomposition levels, the relevant detail, and other parameters. This technique was 

used in [54] to detect bearing faults, where optimization yielded excellent results in fault 

detection. Other works have combined wavelet analysis with other analysis methods, achieving 

good results in the field [55–58]. 

Furthermore, Huang et al. [2] proposed a new method called Empirical Mode Decomposition 

(EMD), where the signal is decomposed adaptively. EMD has been widely used for detecting 

bearing and gear faults [59–61]. Despite its reliability in fault detection, this method 

encountered the problem of mode mixing, where different scales can be contained in a single 

Intrinsic Mode Function (IMF), potentially leading to erroneous diagnostics. To address this 

issue, a new version of EMD, called Ensemble EMD (EEMD), was proposed [62]. EEMD is a 

noise-assisted data analysis method, involving the addition of white noise to the signal and 

computing an ensemble of trials using the original EMD. The average of the results from each 

trial represents the true IMF. Unfortunately, this solution requires more computational time. 

Despite this, EEMD has been used for detecting bearing [63, 64] and gear faults [65, 66]. EEMD 

also has another limitation related to the residual white noise that remains in the reconstructed 

components from the IMFs, even after the averaging process. To overcome this limitation, a 

new algorithm called Complete EEMD with Adaptive Noise (CEEMDAN) was introduced by 

Torres et al. [67]. It offers a complete decomposition with numerically negligible error. Many 

authors have found that CEEMDAN can be successfully implemented in the monitoring and 

diagnosis of machine faults [68–70]. To improve CEEMDAN and address its shortcomings, 

Colominas et al. [71] proposed an improved version called Improved CEEMDAN 

(ICEEMDAN). Several real biomedical signals were processed, and the results show that the 

obtained components have less noise and more physical significance. However, ICEEMDAN 

is still in its early stages of application in the field of fault detection in rotating machinery [72]. 

However, cyclostationary analysis has proven to be a highly effective method for diagnosing 

faults in rotating machinery, often surpassing traditional techniques in terms of accuracy and 

reliability [73]. Urbanek et al. [74, 75] demonstrated that the Modulation Intensity Distribution 
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(MID) provides information similar to the Spectral Correlation Density. They established that 

the Integrated MID (IMID) is optimal for detecting secondary cyclostationary components in 

vibration signals. Kebabsa et al. [76, 77] applied cyclostationarity to diagnose faults in 

turboalternators and turbofans in industrial settings, effectively identifying issues such as 

rubbing, oil whirl, blade faults, and gear wear. Their work highlighted the utility of MID and 

IMID for detecting modulations at different frequencies. Babouri et al. [78] compared 

cyclostationarity to other signal processing methods, such as FFT, envelope analysis, and 

Wavelet Multi-Resolution Analysis (WMRA). The study confirmed the superiority of 

cyclostationarity for diagnosing real mechanical faults, particularly in non-stationary and non-

linear signals. Assad et al. [79] processed cyclostationary signals from a multi-stage planetary 

gearbox, using first-order cyclostationarity to synchronize and average vibration signals, 

thereby improving fault localization. The combination of cyclostationarity with autoregressive 

modeling further enhanced detection and diagnostic capabilities. 

In the literature, there are two research directions on VMD: the use of the method for fault 

diagnosis and the optimization of its parameters [80]. In the first direction, the work of Mohanty 

et al. [81] used VMD to decompose measured signals from a ball bearing. The FFT analysis of 

the resulting Intrinsic Mode Functions (IMFs) proved the superiority of VMD in analyzing 

bearing health conditions compared to EMD, even in the presence of noise. An et al. [82] 

performed envelope demodulation on the IMFs obtained from the VMD of a gear fault signal, 

where the results from processing simulated and real signals demonstrated the method's 

effectiveness in detecting gear faults. Mahgoun et al. [83] studied the effectiveness of VMD for 

diagnosing gear faults under variable speed conditions. Wang et al. [84] applied VMD 

combined with envelope spectrum analysis for gear fault detection. Chen et al. [85] proposed a 

scheme for gearbox fault detection using VMD for feature extraction from acoustic emissions, 

successfully diagnosing a failure. Lin et al. [86] took a further step by combining VMD with a 

probabilistic neural network for gear fault detection, achieving excellent results that confirmed 

the advantages of VMD. 

In the second direction, focusing on VMD optimization, the work of Li et al. [87] proposed 

an independent-oriented VMD using the Locally Weighted Scatterplot Smoothing (LOWESS) 

method, providing a more reliable and stable strategy for selecting the number of intrinsic 

modes. Additionally, Feng et al. [88] suggested choosing an appropriate value for the number 

of IMFs (K) based on spectral characteristics. Zhang et al. [89] used correlation and energy 

ratio in an iterative process to select the value of K. Jiang et al. [90] published a paper in which 

they used initial center frequencies as an optimization strategy to obtain effective intrinsic 
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modes. Jiang et al. [91] proposed a coarse-to-fine decomposition technique where VMD is used 

to evaluate different types of signals for detecting incipient faults in rotating machinery. Many 

other studies have been conducted on this topic using various techniques [92–96], opening new 

avenues in the field of vibration analysis. 

Recent advances in fault detection have seen the integration of artificial intelligence (AI) 

techniques to enhance signal analysis, feature extraction, and fault classification. Unsupervised 

techniques [97] include Principal Component Analysis (PCA) [98], Competitive Learning [99], 

and Self-Organizing Maps (SOM) [100]. 

For supervised approaches [101], the literature reports studies on methods such as Support 

Vector Machines (SVM) [102], Convolutional Neural Networks (CNN) [103], and k-Nearest 

Neighbors (k-NN) algorithms [104]. One of the most effective AI techniques is Long Short-

Term Memory (LSTM) [105], a type of Recurrent Neural Network (RNN) architecture. LSTM 

was specifically designed to address the limitations of traditional RNNs in capturing and 

retaining long-term dependencies in sequential data. 

Xie and Zhang [106] demonstrated the superiority of the LSTM approach over other methods 

for the prognosis of complex bearing systems. Anwarsha and Narendiranath [107] found that 

LSTM networks are capable of detecting faults in various components of rotating machinery. 

To evaluate the performance of LSTM in real-world scenarios, Cao et al. [108] used LSTM 

networks to diagnose wind turbine gearbox faults, with results confirming the effectiveness of 

this technique. Masri and Al-Jabi [109] applied LSTM neural networks to develop predictive 

models for wind speed, direction, and mechanical power, achieving an average error of less 

than 3% and an R² value of 0.95. 

In recent years, the combination of advanced signal processing techniques with AI has 

emerged as a promising pathway to enhance fault detection capabilities. Damou et al. [110] 

proposed a new hybrid method for the automatic classification and identification of defective 

bearings in gearbox systems with identical rotational frequencies. This approach combines 

signal processing techniques like Ensemble Empirical Mode Decomposition (EEMD), Wavelet 

Packet Transform (WPT), and Empirical Wavelet Transform (EWT) with machine learning 

algorithms such as Random Forests for effective fault diagnosis. Moumene and Ouelaa [111] 

combined Wavelet Transform and Pattern Recognition to detect faults in gears and bearings, 

achieving perfect results for detecting combined fault types. Gu et al. [112] integrated 

Variational Mode Decomposition (VMD) and Continuous Wavelet Transform (CWT) to 

enhance CNN performance in fault diagnosis of rotating machinery. Almutairi and Sinha [113] 

conducted an experimental study on Vibration-based Machine Learning (VML) for fault 
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diagnosis in rotating machinery, focusing on the classification of rotor and bearing faults. Their 

VML approach was tested at two different rotational speeds. Tong et al. [114] proposed a novel 

fault diagnosis approach for rolling element bearings by combining Dual-Tree Complex 

Wavelet Packet Transform, Improved Intrinsic Time-Scale Decomposition, Singular Value 

Decomposition, and Online Sequential Extreme Learning Machine. This method extracts 

meaningful fault features and accurately identifies fault patterns from vibration signals. 
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7. Conclusions 

This introductory chapter addressed the fundamental concepts, common methodologies, and 

research advances in the field of vibration analysis for machine condition monitoring. The use 

of predictive maintenance techniques to maximize equipment reliability and uptime has 

established the critical role of maintenance in modern industry. 

An overview of the fundamental vibration analysis techniques demonstrated their capability 

to extract sensitive information about machine health from vibration data. By revealing 

characteristic vibration patterns, time-domain, frequency-domain, and time-frequency analysis 

methods have been shown to facilitate the detection of common faults in rotating machinery. 

The chapter also discussed recent advancements in fault diagnosis through the integration of 

machine learning and artificial intelligence, which have significantly improved the accuracy of 

fault detection. Key research contributions applying various vibration analysis methodologies 

for diagnosing faults were summarized. 

A literature review highlighted the crucial importance of vibration monitoring for effective 

condition-based maintenance. The collective studies emphasize the efficacy of vibration 

analysis for preventive maintenance and early fault detection, making it an indispensable tool 

for improving the reliability and operational efficiency of industrial equipment. 
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Chapter 02 
Comparative study between VMD 

and EMD for the diagnosis of 
rotating machine faults    

 

In this chapter, we compare EMD and VMD in the context of gear fault diagnosis. After 

presenting the theoretical principles of each method, we apply these techniques to real 

vibrational signals obtained from a test bench simulating various fault conditions. Our study 

shows that VMD achieves better isolation of significant signal components with fewer modes, 

whereas EMD generates a larger number of Intrinsic Mode Functions (IMFs) with less effective 

separation. VMD demonstrates superior accuracy, particularly for detecting subtle faults. 

However, determining the optimal number of modes for VMD remains a major challenge. This 

comparison highlights the importance of selecting the most appropriate decomposition method 

based on the specific characteristics of the signal and the type of fault being analyzed. 
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1. Introduction 

In the field of industrial maintenance, vibration signal analysis has established itself as a 

particularly relevant diagnostic approach. This non-invasive technique allows for the 

anticipation of mechanical failures by detecting anomalies as soon as they appear, thereby 

promoting a predictive rather than reactive approach. However, the complexity of modern 

machinery generates non-linear and non-stationary signals that require sophisticated analysis 

tools. In response to these challenges, the scientific community has developed various signal 

processing methods, each with distinct characteristics. 

Among these methods, the EMD and VMD have emerged as promising techniques for the 

diagnosis of rotating machinery. This chapter provides an in-depth comparative analysis of 

these two approaches, evaluating their relevance and effectiveness in the specific context of 

gear faults. Our study is based on experimental data from a test bench replicating different fault 

conditions, enabling a pragmatic assessment of the performance of each method. 

This investigation aims to provide practitioners and researchers with insights into the choice 

of the most suitable method for their specific needs, while opening new perspectives for 

improving rotating machinery diagnostic techniques. The results of this analysis will contribute 

to optimizing predictive maintenance strategies in the modern industrial context. 

2. Principle of the EMD method 

EMD is an adaptive signal processing method that decomposes a signal into a series of basic 

functions called Intrinsic Mode Functions (IMFs) [2]. Each IMF represents an oscillatory 

component of the original signal [60]. The decomposition process relies on an algorithm known 

as the sifting process [115], which iteratively extracts the IMFs. 

The EMD decomposition process, as illustrated in Figure 2.1, can be described by the 

following steps [116]: 

 Introduce the original signal.  

 Identify all local maxima and minima of the signal.  

 Construct the upper envelope eupper(t) by interpolating the local maxima, and the lower 

envelope elower(t) by interpolating the local minima. 

 Compute the mean of the two envelopes m(t) using the relation: 

( ) ( ) ( )
2

upper lowere t e t
m t

+
=           (2.1) 
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 Extract the candidate IMF h(t) by subtracting the mean envelope from the original 

signal: 

( ) ( ) ( )h t x t m t= −            (2.2) 

 Validation of the IMF, verify if h(t) satisfies the conditions to be considered an IMF: 

 The number of zero crossings and local extrema must be equal or differ by at most 

one. 

 The mean of the upper and lower envelopes should be zero at every point. 

If these conditions are not met, repeat steps 1 to 4 using h(t) as the new signal. 

 Extraction of IMFs: once an IMF ci(t) is obtained, subtract ci(t) from the original signal 

to obtain the residue r(t): 

( ) ( ) ( )ir t x t c t= −             (2.3) 

 Repeat the same process to the residue r(t) to extract subsequent IMFs. 

The original signal can be reconstructed as the sum of all IMFs and the final residue rn(t): 

( ) ( ) ( )
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Figure 2.1. Organizational chart for the EMD. 

3. Principle of the VMD method 

VMD is an innovative and adaptive signal processing method, proposed in [3], which 

decomposes a signal S(t) into its band-limited intrinsic mode functions (IMFs) uk(t) [84], each 

characterized by a specific center frequency ωk and bandwidth [117]. This method aims to 

minimize a cost function defined in terms of the mode spectra [89]: 

{ } { }
( ) ( )
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j t
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   ∂ δ +      
∑         (2.5) 

Where: ∗ denotes convolution, 
2

2
.  is the squared 2L norm− , and δ  is the Dirac function. 
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To overcome the minimization problem proposed in Equation (2.5), the augmented 

Lagrangian L was introduced [3]: 

{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( )
22

2 2

, , : ( ) * ,kj t
k k t k k kk k k

ju t u t e S t u t t S t u t
t

α δ λ
π

− ω  ω λ = ∂ + + − + −    
∑ ∑ ∑L   (2.6) 

Here, α is the bandwidth constraint. 

The steps of the VMD method, as shown in Figure 2.2, are as follows: 

 Introduce the signal for decomposition. 

 Initialize Parameters: set the decomposition parameters for VMD, including the number 

of IMFs K and the bandwidth constraint α. 

 Update the Modes uk(t), using gradient descent to minimize the cost function: 

( ) ( ) ( )
2

1 2
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    = ∂ +       
∑        (2.7) 

 Update the Center Frequencies ωk, using gradient descent to minimize the cost function: 

( ) ( )
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1 2

arg min * k
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∑        (2.8) 

 Calculate the Residual r(t), by subtracting the sum of the obtained modes from the 

original signal: 

( ) ( ) ( )kr t s t u t= −∑            (2.9) 

 Check for Convergence: verify whether the updates to the modes and frequencies have 

stabilized (i.e., no significant changes). 

 If the algorithm has converged, save the modes uk(t) and their center frequencies ωk. 

 If the algorithm has not converged, use r(t) as the new signal and repeat the update 

steps. 

The original signal can be reconstructed as the sum of the IMFs and the final residual r(t): 

( ) ( ) ( )
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Figure 2.2. Organization chart for the VMD. 

4. Comparison between EMD and VMD 

Table 2.1 presents a comparison of the main differences between EMD and VMD. EMD is 

highly adaptive and performs well without requiring prior parameters, offering excellent local 

resolution. However, it is sensitive to noise and may suffer from mode mixing. 

In contrast, VMD, although requiring initial parameters such as the number of modes and 

center frequencies, provides greater robustness against noise and reduces the phenomenon of 

mode mixing through its optimization of bandwidths. VMD, while more computationally 

complex, often converges more quickly and efficiently. 
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Table 2.1. Comparison between EMD and VMD. 

Criteria EMD VMD 

Adaptivity [118] 
Highly adaptive, without a priori 

parameters. 

Partial adaptivity, requires 

number of modes. 

Locality [119] 
Very local, excellent temporal 

resolution. 

Less local, less fine temporal 

resolution but more stable. 

Stopping criterion [120, 121] 
Based on local criteria (crossed 

zeros, envelopes). 

Based on the convergence of the 

global cost function. 

Noise robustness [122] 

Sensitive to noise and extreme 

local variations, risk of mode-

mixing. 

Less sensitive to noise, better 

separation of components. 

Mode-mixing [96] 
Susceptible to the mode-mixing 

phenomenon. 

Reduces mode-mixing 

phenomenon by optimizing 

bandwidths. 

Computational Complexity [2, 

3] 

Less complex, but may require 

many sifting iterations. 

More complex due to Variational 

optimization, but often converges 

faster. 

Parameter Specification [64, 

90] 
No parameters required a priori. 

Requires specification of number 

of modes 

Processing of Nonlinear and 

Nonstationary Signals [83] 

Efficient, naturally adapts to 

signal dynamics. 

Very efficient, but requires a 

good estimation of the initial 

parameters. 

Applications [59, 84, 88, 123] 
Used in various applications due 

to its simplicity and adaptability. 

Increasingly used thanks to its 

robustness and its bandwidth 

separation capacity. 

Bibliographic References [80, 

124] 

Older, widely studied and 

documented. 

More recent method, but growing 

rapidly in the literature. 

Theoretically, VMD is more effective than EMD for applications requiring precise 

separation of signal components and increased robustness against perturbations. Its ability to 

provide more stable modes and better noise management makes it a more advanced method for 

fault diagnosis in rotating machinery. 
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5. Application to gear defects 

To better understand the difference between the two methods and to observe their real 

implications as well as the diagnostic results, we propose in the following section an application 

of both methods for diagnosing gear faults using signals measured from a test bench. 

5.1. Description of the test bench 

The data used in this study were measured on the Machine Fault Simulator (MFS) test bench 

using the SpectraQuest processing software. The MFS test bench primarily consists of a 0.75 

kW electric motor with a maximum rotational speed of 6000 rpm, a coupling, and a belt 

transmission system (with pulleys d1=51 mm, d2=126 mm, and belt length L=965 mm), 

offering a transmission ratio of 0.4. Finally, a gearbox is included, as illustrated in Figure 2.3. 

The single-stage gearbox contains two straight bevel gears with a ratio of 1.5:1. A magnetic 

brake is used to simulate the load. The input and output gears have 18 and 27 teeth, respectively, 

resulting in a transmission ratio of 0.67. Two accelerometers were used to measure the vibration 

signals: the first accelerometer is a bi-directional sensor placed on top of the gearbox reducer, 

capturing both axial and radial vibrations, while the second accelerometer is mounted 

horizontally to capture additional vibration data. 

 

Figure 2.3. MFS test bench. 

Based on the selected dataset from the MFS, two signals are chosen for this study, each 

representing a state of the machine. The first signal corresponds to the case of a half-extracted 

tooth (Figure 2.4 (a)), and the second corresponds to the case of a fully extracted tooth (Figure 

2.4 (b)). 
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a. b. 

Figure 2.4. Defective gear: a. half tooth extracted, b. tooth extracted completely. 

The chosen signals (Figure 2.5) are measured for a motor shaft rotational frequency of F = 

36 Hz, resulting in an input frequency to the gearbox corresponding to the faulty gear of Fr1 = 

14.54 Hz, an output frequency of Fr2 = 9.69 Hz, and a meshing frequency of Fm = 261.87 Hz. 

These signals are subsequently processed using EMD and VMD to highlight the differences in 

the results. Figure 2.5 (a) presents the case with a half-extracted tooth, while Figure 2.5 (b) 

presents the case of a fully extracted tooth. 

  
a. b. 

Figure 2.5. The signals chosen for the study: 
a. Case of a half tooth extracted, b. Case of a tooth extracted. 

 

5.2. EMD analysis 

The EMD was first applied to the signal of a gear with a half-tooth extracted. This 

decomposition resulted in 14 IMFs, as illustrated in Figure 2.6(a). Each IMF represents a 

distinct oscillatory component extracted from the original signal, as shown in Figure 2.6(b). 
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a. 

 
b. 

Figure 2.6. The resulting IMFs by EMD for a defect of a half-extracted tooth: 
a. time representation, b. frequency representation. 

The analysis of these 14 IMFs reveals how each component can be associated with specific 
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noise, while low-frequency trends (IMF9 to IMF14) represent the overall behavior of the 

system. However, only the first four IMFs are relevant for diagnostics, as they may contain 

information about the machine’s condition. Therefore, these are the IMFs to be further 

investigated. 

Table 2.2 presents various scalar indicators calculated for each IMF obtained through EMD. 

These indicators include: Kurtosis, Peak-to-Peak Value, Root Mean Square (RMS), Crest 

Factor, Energy, Peak Value, and K-Factor. It is evident that the first four IMFs are the most 

relevant for fault diagnosis. They exhibit high values of kurtosis, peak-to-peak, RMS, and 

energy, indicating that they capture the frequency components associated with faults. In 

contrast, the higher-order IMFs capture lower-frequency components and more uniform 

variations, contributing less to the direct identification of faults. The analysis of this table 

confirms the observations made in Figure 2.6. 

Table 2.2. Scalar indicators of IMFs obtained by EMD: case of a half-extracted tooth. 

IMFs 
Indicators 

Kurtosis Peak to Peak RMS Crest Factor Energie Peak Value K-Factor 

IMF1 3,96 0,27 0,032 4,34 16,88 0,13 0,004 

IMF2 4,17 0,16 0,018 4,61 5,32 0,08 0,001 

IMF3 5,61 0,13 0,012 5,03 2,59 0,06 0,0008 

IMF4 3,13 0,11 0,014 4,01 3,37 0,05 0,0008 

IMF5 3,04 0,07 0,009 3,65 1,60 0,03 0,0003 

IMF6 2,83 0,02 0,003 3,13 0,22 0,01 4,27E-05 

IMF7 2,84 0,01 0,001 3,18 0,06 0,006 1,19E-05 

IMF8 2,37 0,007 0,001 2,42 0,03 0,003 6,06E-06 

IMF9 2,28 0,003 0,0008 2,14 0,01 0,002 1,71E-06 

IMF10 2,61 0,002 0,0005 2,50 0,005 0,001 8,93E-07 

IMF11 3,67 0,002 0,0003 2,62 0,002 0,001 3,96E-07 

IMF12 2,31 0,001 0,0003 1,70 0,001 0,0006 2,09E-07 

IMF13 2,09 0,0006 0,0002 1,40 0,0008 0,0003 7,41E-08 

IMF14 1,53 0,0001 0,002 1,02 0,07 0,002 4,82E-06 
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To diagnose the fault, the first 4 IMFs are subsequently processed using envelope analysis 

to obtain the envelope spectra shown in Figure 2.7. The envelope spectra of the IMFs clearly 

show the presence of the rotational frequencies Fr1, Fr2 and some of their harmonics 

1 2 2(2 , 2 ,3 ,...)r r rF F F× × × , but we are not able to achieve a clear fault detection (based on the 

typological spectrum). The presence of Fr1 and its harmonics is explained by the intentionally 

simulated fault on the input shaft gear. However, the extraction of half a tooth from a spur gear 

does not produce enough impact, and the contact between the teeth was not significantly 

affected, which requires more advanced analysis methods. On the other hand, the presence of 

Fr2 and its harmonics may indicate the emergence of a second fault on the output shaft gear. It 

should be noted that this latter fault could arise due to the manipulation of the test bench 

(assembly and disassembly of the gears). 

 

Figure 2.7. Envelope spectra of the first 4 IMFs obtained by EMD for the case of a half-
extracted tooth.  

In contrast, for the second case, where the EMD was applied to the signal from a gear with 

a completely extracted tooth, the decomposition resulted in 16 IMFs. After observing these 

IMFs and analyzing their corresponding scalar indicators, we again selected the first four IMFs 

for fault diagnosis. The selected IMFs are presented in Figure 2.8. In this case, the fault 

detection is much clearer: we observe very high kurtosis values for the selected IMFs (see figure 

2.8 (b)). 
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The envelope spectra in Figure 2.8(c) show a dominance of the rotational frequency of the 

defective gear Fr1, along with a rich presence of harmonics (2×, 3×, 4×, ...) forming pattern 

consistent with a gear fault. We observe that for the complete removal of a tooth, the defect 

masks all other frequency components. 

 
a. b. c. 

Figure 2.8. The IMFs chosen for the case of an extracted tooth obtained by EMD: 
a. time representation, b. frequency representation, c. envelope spectra. 

 

5.3. VMD analysis 

Unlike EMD, VMD requires the prior selection of the number of IMFs. To allow for a direct 

comparison between the two methods, we selected 14 IMFs for VMD. The results of this 

decomposition are presented in Figure 2.9. 

We observe that the IMFs obtained by VMD differ significantly from those produced by 

EMD. First, each IMF covers a narrow frequency band around a central frequency, which aligns 

with the principle of VMD. Second, the resulting IMFs are organized from low to high 

frequencies, reflecting a better separation of the frequency components of the original signal. 

However, we also note the existence of some IMFs that do not contain relevant information 

for diagnosis, as well as redundant IMFs containing the same information. This observation 

underscores the critical importance of selecting the appropriate number of modes for the 

effective application of VMD. A judicious choice of K allows for the capture of essential 

information while minimizing redundancy and non-informative components. 
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a. 

 

b. 

Figure 2.9. The resulting IMFs by VMD for a defect of a half-extracted tooth: 
a. temporal representation, b. frequency representation. 
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Table 2.3, which presents scalar indicators for the 14 IMFs obtained by VMD, shows a non-

uniform distribution of values. This variability in indicators does not provide clear distinctions 

regarding the relevance of the IMFs for fault diagnosis. Unlike EMD, where scalar indicators 

can help identify relevant IMFs for diagnosis, VMD produces indicator values that do not 

effectively differentiate informative IMFs from non-informative ones. Consequently, the scalar 

indicators from VMD do not provide sufficiently discriminative information to assess the 

relevance of the IMFs in the context of fault diagnosis. This observation highlights the need for 

additional approaches or alternative criteria to select the most relevant IMFs when using VMD. 

Table 2.3. Scalar indicators of IMFs obtained by VMD: case of a half-extracted tooth. 

IMFs 
Indicators 

Kurtosis Peak to Peak RMS Crest Factor Energie Peak Value K-Factor 

IMF1 2,37 0,08 0,014 2,98 3,19 0,04 5,80E-04 

IMF2 3,24 0,10 0,012 3,99 2,43 0,05 5,92E-04 

IMF3 5,81 0,13 0,011 5,62 2,09 0,06 7,17E-04 

IMF4 3,33 0,07 0,008 4,03 1,13 0,03 2,84E-04 

IMF5 3,16 0,09 0,013 3,44 2,78 0,04 5,85E-04 

IMF6 3,38 0,08 0,009 4,45 1,46 0,04 3,96E-04 

IMF7 3,50 0,09 0,011 4,19 2,06 0,05 5,31E-04 

IMF8 3,56 0,06 0,007 3,84 0,84 0,03 1,98E-04 

IMF9 6,65 0,01 0,001 5,41 0,03 0,01 1,03E-05 

IMF10 3,32 0,10 0,013 3,77 2,58 0,05 6,09E-04 

IMF11 7,19 0,02 0,001 6,95 0,03 0,01 1,16E-05 

IMF12 9,89 0,02 0,001 8,48 0,02 0,01 1,05E-05 

IMF13 3,48 0,06 0,008 3,58 1,17 0,03 2,60E-04 

IMF14 3,15 0,10 0,013 3,77 2,75 0,05 6,44E-04 
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The initial choice of 14 IMFs for VMD, although intended to provide a comprehensive 

comparison with EMD, revealed limitations in terms of the relevance of scalar indicators for 

diagnosis. Moreover, the 14 IMFs obtained by VMD included many redundant and non-

informative components, complicating the analysis.  

To optimize the efficiency of VMD, we propose reducing the number of IMFs to 3. This choice 

is based on the characteristics of VMD, which extracts IMFs within a band around a central 

frequency [88]. After a spectral investigation of the signal to be decomposed, as shown in Figure 

2.10, we observe the presence of 3 relevant frequency zones. 

 

Figure 2.10. Signal spectrum with half a tooth extracted. 

The 3 resulting IMFs from VMD for these 3 zones are presented in Figure 2.11. We can 

observe the effectiveness of VMD in isolating significant parts of the signal with an appropriate 

choice of the number of modes (highlighting zones with high energy levels). The inspection of 

the envelope spectra of the three IMFs revealed the presence of the rotational frequency Fr1 and 

its harmonics (2 ,3 , 4 ,...)× × × , notably in IMF2, confirming the gear defect induced in the 

system. The presence of Fr2 and its harmonics in IMFs 1 and 3 further indicates the existence 

of another defect within the system. This defect may have been introduced due to handling of 

the test bench during the assembly and disassembly of the faulty teeth. 
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     a.           b.           c. 

Figure 2.11. The 3 IMFs chosen for the case of an extracted half tooth obtained by VMD: 
a. time representation, b. frequency representation, c. envelope spectra. 

For the second case, where a tooth was fully extracted, we applied VMD by choosing to 

decompose the signal into 2 IMFs. This choice is motivated by the need to simplify the analysis 

while capturing the most relevant information for diagnosis. The results of this decomposition 

are presented in Figure 2.12. Inspection of the envelope spectra of the 2 IMFs obtained revealed 

the presence of the rotational frequency Fr1 and its harmonics in the envelope spectra, clearly 

indicating the manifestation of the fault caused by the tooth extraction. This precise detection 

demonstrates the effectiveness of VMD in isolating and identifying significant signal 

components related to specific mechanical faults.  
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     a.           b.           c. 
Figure 2.12. The 2 IMFs chosen for the case of an extracted tooth obtained by VMD: 

a. temporal representation, b. frequency representation, c. envelope spectra. 

The comparative analysis of the two cases demonstrates the superiority of VMD over EMD. 

For the first case, EMD produced 14 IMFs, of which only the first 4 were relevant for diagnosis. 

In contrast, VMD effectively identified faults with only 3 IMFs, showing a better ability to 

isolate significant signal components. For the second case, VMD, by decomposing the signal 

into only 2 IMFs, also successfully detected the fault, illustrating its efficiency and precision in 

fault identification. This comparison highlights that VMD offers better adaptability and superior 

diagnostic capability with a reduced number of modes, simplifying the analysis and making 

diagnosis more efficient. 

The importance of selecting the number of IMFs in VMD is crucial for achieving an optimal 

and precise decomposition. A reliable criterion for determining this number is necessary to 

maximize the method's efficiency. This issue will be addressed in detail in the next chapter, 

where we will propose a criterion for optimal decomposition using VMD. 
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6. Conclusions 

In conclusion, the comparative analysis between EMD and VMD in the context of gear fault 

diagnosis has revealed several key findings:  

- VMD has proven to be more effective in isolating significant signal components with a 

reduced number of modes, offering better adaptability and precision in fault detection. 

- However, the optimal selection of the number of modes for VMD remains a crucial 

challenge that requires careful consideration. 

- While EMD generates a larger number of Intrinsic Mode Functions (IMFs), it has shown 

limitations in effectively separating signal components, especially when dealing with 

subtle faults. 

This study highlights the importance of a judicious selection of the decomposition method 

based on the nature of the fault and the characteristics of the analyzed signal. It also paves the 

way for future research focused on optimizing VMD parameters to further enhance its 

effectiveness in the diagnosis of rotating machinery. 
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Chapter 03 

Fault diagnosis by a new VMD-WMRA 
approach, optimized by a new criterion 

 

In this chapter, we develop an innovative method for diagnosing mechanical faults in 

gearboxes by combining VMD with WMRA. We introduce an optimization criterion based on 

Shannon entropy to determine the optimal number of IMFs in the VMD, significantly 

improving analytical accuracy, even in the presence of noisy vibrational signals. This method 

is validated through numerical simulations and experimental tests, demonstrating its robustness 

and effectiveness in detecting and localizing gear faults in complex environments. The results 

show that our approach outperforms traditional techniques by providing a reliable and high-

performing solution tailored to the industrial needs of vibrational diagnostics. 
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1. Introduction 

Vibratory analysis plays a crucial role in preventing catastrophic machine failures, which 

can lead to unexpected downtime, production losses, and safety hazards. It also helps identify 

the root causes of defects, facilitating maintenance operations such as adjustments, 

troubleshooting, and repairs. Consequently, vibration monitoring has consistently attracted the 

interest of researchers due to its effectiveness in detecting anomalies. 

However, despite significant advancements, determining the optimal number of modes in 

VMD remains a major challenge due to the complexity of existing methods. Moreover, 

analyzing the obtained IMFs is often complicated by noise or disturbances in the measured 

signals, particularly in the context of gearbox fault diagnosis. 

In this chapter, we propose a novel approach that combines VMD with WMRA for 

diagnosing gearbox faults under noisy conditions. This method includes an innovative 

optimization criterion to effectively determine the number of modes in VMD, providing a 

robust solution suited to complex industrial environments. 

2. Mathematical formulation 

The purpose of this section is to provide an overview of the Shannon Entropy (SE) theory 

and the fundamentals of WMRA to help readers better understand the background and 

functioning of these techniques. It is important to note that the fundamentals of VMD were 

already discussed in the previous chapter. 

2.1 Wavelet multi-resolution analysis WMRA 

WMRA is a highly effective signal processing method that has gained popularity in recent 

years. It involves the use of the Wavelet Transform, a mathematical technique for representing 

a signal S(t) using functions derived from scaling and translating a basic function known as the 

mother wavelet ψ(t) [14]. The wavelet family is characterized as follows [125]: 

( ),
1

a b
t bt

aa
ψ ψ − =  

 
           (3.1) 

where 𝑎𝑎 and 𝑏𝑏 are the scaling and translation parameters, respectively. 

Since ψ* is the conjugate of ψ, the Continuous Wavelet Transform (CWT) of the function 

S(t) is defined as [125]:  

*1( , ) ( )* t bCWT a b S t dt
aa

ψ
+∞

−∞

− =  
 ∫         (3.2) 
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Replacing a with 2m  and b with 2mn , where n and m are integers, we obtain the Discrete 

Wavelet Transform (DWT) [125]: 

( )*( , ) 2 ( )* 2
m

mnDWT m n S t t n dtψ
− +∞ −

−∞
= −∫         (3.3) 

The DWT involves a cascade decomposition as proposed by [126], using low-pass and high-

pass filters to separate the signal, yielding two sets of coefficients: 

- Approximation coefficients cAj for low-frequency components. 

These vectors undergo down-sampling during the decomposition process and are 

subsequently reconstructed through additional filters to obtain the approximations 𝐴𝐴𝑗𝑗 and 

details 𝐷𝐷𝑗𝑗. The sub-signals can be reconstructed using the following model [126]: 

1j j j

n
j ji j

A A D

S A D

−

≤

= +

= +∑                (3.4) 

An Optimized WMRA (OWMRA) was proposed by [55] specifically designed for shock 

signal analysis. This optimized version involves selecting different parameters to determine the 

appropriate number of levels for gear fault analysis, using kurtosis as the optimization criterion. 

The number of levels is expressed as [55]: 

max ( )1.44log
c

F Sn
F

 
≤  

 
           (3.5) 

where Fmax  is the maximum frequency of the signal S(t) and Fc  is the shock frequency. 

In this study, the WMRA was performed using the Daubechies 5 (db5) wavelet. This choice 

was motivated by the db5 wavelet’s proven effectiveness in vibration signal analysis, 

particularly for fault detection in rotating machinery [5]. 

2.2 Shannon entropy  

Shannon Entropy (SE) measures the uncertainty or randomness of a probability distribution. 

It is calculated as follows [127]: 

( ) ( ) ( )( )21
logN

i ii
SE n p n p n

=
= −∑          (3.6) 

where ( )ip n  represents the probability of obtaining the value ni. 
In fault detection of transmission systems, SE quantifies the uncertainty and information 

content of the vibration signal produced by a gearbox. It helps identify gearbox failures by 

evaluating the degree of randomness in the gear signals [111].  
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Consequently, SE serves as a practical criterion for analyzing and measuring the similarity 

between vibration signals [128]. In our case, the similarity between IMFs of a signal is based 

on changes in the frequency spectrum of the vibration signal. 

3. Proposed approach 

As previously mentioned, our approach aims to detect gear faults from highly noisy signals. 

To improve diagnostic results, we propose a new criterion based on the normalized variation of 

SE between two successive IMFs to determine the optimal number of IMFs required for VMD-

based signal decomposition. Subsequently, WMRA is used to demodulate the obtained IMFs, 

enhancing fault detection. 

The detailed methodology of the proposed procedure, illustrated in the flowchart of Figure 

3.1, is as follows: 

 Measure the vibration signals and calculate their SE. 

 Initialize VMD decomposition parameters, such as the initial number of IMFs k0, which 

should be high for gear fault detection (typically between 20 and 30). Other parameters, 

such as the bandwidth constraint α and tolerance, are selected based on studies from [3] 

and [89]. 

 Iterate the VMD process, where j ranges from 2 to k0, incrementing by 1. For each 

iteration, calculate SE for each IMF, denoted as SEIMF. This indicator is then normalized 

relative to the overall SE to obtain NSEIMF using the following formula: 

IMF
IMF

SENSE
SE

=             (3.7) 

 Check the stopping criterion after each iteration by calculating the difference between 

two consecutive NSEIMF values: 
( ) ( )1j jNSE IMF IMFNSE NSE

−
∆ = − . If NSE∆  is less than 1%, it 

indicates that the similarity between the two IMFs exceeds 99%, and the iteration stops. 

 Determine the optimal number of IMFs by selecting the last iteration before reaching 

the similarity threshold. This avoids the over-segmentation phenomenon, where two 

IMFs carry redundant information [3]. The signals are then decomposed again using 

this new k value to obtain optimal IMFs suitable for fault detection.  

 Finally, the selected IMFs are processed through WMRA to identify demodulation 

frequencies (bearing resonance frequencies, gear meshing frequencies, belt resonance 

frequencies, etc.) that help explain the nature of the fault. 
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Figure 3.1. The flowchart of the proposed approach for fault detection. 

4. Numerical simulation 
4.1 Determining the number of IMFs in a sinusoidal signal 

To verify the effectiveness of the proposed criterion for determining the number of IMFs in 

the decomposition using the VMD method, we conducted tests on a simulated signal ( )X t , 

composed of the sum of three distinct sinusoidal signals ( ) ( )1 , 2X t X t  and ( )3X t , given by 

the expressions (3.8) [129]: 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 3

1 3sin 2 5

2 0.4sin 2 200

3 1.2sin 2 50

X t X t X t X t

X t t

X t t

X t t

π

π

π

= + +

=

=

=

         (3.8) 

Figures 3.2 and 3.3 illustrate these three signals and the overall signal, respectively. In this 

application example, we have prior knowledge of the exact number of IMFs contained in the 

signal ( )X t , which is three. 
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The objective is to confirm the effectiveness of the proposed criterion for selecting the 

optimal number of IMFs during decomposition. Each of the obtained IMFs should represent a 

distinct component of the signal we constructed. By validating the effectiveness of this criterion 

in accurately extracting the different components of the original signal, we can subsequently 

use it for the decomposition of simulated and measured gear signals. 

  
Figure 3.2. Three simulated sinusoidal signals. Figure 3.3. The signal obtained from the sum of the 

three simulated signals. 

The decomposition of the signal ( )X t using the proposed approach, following the flowchart 

in Figure 3.1, yields the value of the proposed criterion NSE∆  after each iteration. These values 

are presented in Table 3.1 and Figure 3.4. We observe that for NSE∆  less than 0.01, the selected 

number of IMFs is K=3. 

Table 3.1. Value of the criterion NSE∆  and the number of corresponding IMFs.  

NSE∆  0,7159 0,0136 0,0099 0,0043 0,0056 0 0,0025 0.0051 0.003 

Number of 

IMFs K 
2 3 4 5 6 7 8 9 10 

The decomposition of the signal X(t) using VMD with the optimal number of IMFs, 

determined by the proposed criterion, is illustrated in Figure 3.5. We observe that the IMFs 

obtained from this decomposition highlight the three components of the original signal, 

confirming the effectiveness of the proposed criterion in determining the optimal number of 

IMFs. 
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Figure 3.4. Variation of the proposed criterion NSE∆   

for the signal ( )X t . 

Figure 3.5. The resulting IMFs from VMD for K = 
3. 

To further strengthen the validation of our criterion, we present the IMFs obtained from the 

VMD decomposition for K=2 and K=4 in Figures 3.6(a) and 3.6(b), respectively. In Figure 

3.6(a), we can clearly observe mode mixing and its influence on IMF1. This indicates a case of 

under-segmentation, where two combined IMFs are insufficient to capture all the characteristics 

of the original signal. In Figure 3.6(b), we notice shared information between IMF2 and IMF4. 

This represents a case of over-segmentation, where an excessive number of IMFs are generated, 

and some of them may contain redundant or similar information. These observations are 

mentioned in reference [3]. By examining the results of these two cases, we can confirm the 

performance of our criterion for achieving a precise and complete signal decomposition. 

 

 
a. b. 

Figure 3.6. Resulted IMFs from VMD: a. for K = 2, b. for K = 4. 
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4.2 Numerical simulation of gear faults 

Gear faults manifest in both vibration spectra and envelope spectra at the rotational 

frequencies of the shafts on which the gears are mounted. The amplitudes of these rotational 

frequencies are amplified at the gear meshing frequencies and their harmonics for each gear 

pair. For this reason, it is advisable to select these resonance frequencies and conduct detailed 

analyses around them. The combined VMD-WMRA approach, based on the proposed criterion, 

can be used with high efficiency for diagnosing this type of fault. 

In this section, we simulate a gear fault signal ( )enS t , based on the mathematical model 

provided by [130]. The gearbox shown in Figure 3.7 consists of three shafts rotating at 

frequencies of 15 Hz, 12 Hz, and 17 Hz, respectively. The gear mounted on the first shaft has 

1 42Z =  teeth, while the gears mounted on the second shaft have 2 50Z =  and 3 65Z =  teeth, 

and the gear on the third shaft has 4 45Z =  teeth. The following expression (3.9) is used to 

generate the signal ( )enS t  for studying gear faults. Processing this signal with the proposed 

approach allows us to identify gear faults in this gearbox. 

𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡) = (∑ 𝑆𝑆𝑒𝑒(𝑡𝑡 − 𝑛𝑛 × 𝜏𝜏𝑒𝑒)+∞
𝑒𝑒=−∞ ) ∗ �

1 + ∑ 𝑆𝑆𝑟𝑟1+∞
𝑚𝑚=−∞ (𝑡𝑡 − 𝑚𝑚 × 𝜏𝜏𝑟𝑟1) +

∑ 𝑆𝑆𝑟𝑟2+∞
𝑝𝑝=−∞ (𝑡𝑡 − 𝑝𝑝 × 𝜏𝜏𝑟𝑟2) � + 𝑛𝑛(𝑡𝑡)    (3.9) 

Where: Se(t) is the response signal of gear meshing. 

𝜏𝜏𝑒𝑒 is the meshing period, calculated as: 𝜏𝜏𝑒𝑒 = 1/𝐹𝐹𝑚𝑚. 

𝜏𝜏𝑟𝑟1 , 𝜏𝜏𝑟𝑟2 are the rotation periods of the defective gears, defined as:  

𝜏𝜏𝑟𝑟1 = 1/𝐹𝐹𝑟𝑟1 , 𝜏𝜏𝑟𝑟2 = 1/𝐹𝐹𝑟𝑟2. 

n(t) is a white Gaussian noise added to simulate real-world conditions. 

1 1 1 2 2 588m r rF F Z F Z Hz= × = × = and 2 2 3 3 4 760m r rF F Z F Z Hz= × = × =  are the first and 
second meshing frequencies.  

Gear defects were simulated on Gear Z2 of the intermediate shaft and Gear Z4 of the output 

shaft of the gearbox. 
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Figure 3.7. Gearbox configuration: schematic representation. 

In Figures 3.8, we present the simulated signal of the two gear faults and its spectrum, 

respectively. The spectrum clearly shows the appearance of the two meshing frequencies (Fm1 

and Fm2) and their harmonics. A simple zoom around the meshing frequencies reveals that they 

are modulated by the rotational frequencies Fr2 and Fr3 , corresponding to the faults on gears Z2 

and Z4, respectively. Thus, the simulated signal accurately reflects the different frequency 

characteristics of the gearbox with good precision. 

  
Figure 3.8. Simulated signal 𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡) of the combined gear fault in the time and frequency domains. 

The decomposition of the signal simulating the gear faults using the VMD method, based on 

the proposed criterion, yields 4 IMFs, as shown in Figure 3.9. In Figure 3.10, we present the 

signals and spectra of the four IMFs. We observe a highly effective isolation of the meshing 

frequencies and some of their harmonics, enabling a more precise diagnosis of potential failures 

in the gearbox. 
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Figure 3.9. Variation of the NSE∆  for 𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡). 

The main advantage of the proposed criterion is to minimize the number of IMFs likely to 

contain information about potential faults. As a result, the combination of the two signal 

processing methods, VMD and WMRA, becomes simpler and more effective. 

In the case of simulated signals or measured signals with minimal noise, VMD alone can 

provide a correct diagnosis. However, for highly noisy signals, VMD must be combined with 

WMRA for superior diagnostic efficiency 

  

Figure 3.10. IMFs obtained from VMD of simulated signal ( )enS t  in the time (left) and frequency (right) 

domains. 

Applying WMRA to each of the four IMFs in Figure 3.10 allows us to obtain the envelope 
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rotational frequency of the intermediate shaft 2 12rF Hz= , on which we simulated the fault 

(Figure 3.11(a)). 

Meanwhile, IMF2, which covers the second meshing frequency Fm2 = 760Hz, has an 

envelope spectrum showing the modulation of Fm2 by the rotational frequency of the output 

shaft 3 17rF Hz=  (Figure 3.11(b)). IMFs 3 and 4, which cover the combinations of 3Fm2 plus 

4Fm1 and 4Fm2 plus 5Fm1, respectively, have envelope spectra that reveal the combination of the 

two fault frequencies Fr2 and Fr3. 

 
a. 

 
b. 

 
c. 

 
d. 

Figure 3.11. Envelope spectra obtained from WMRA for each IMF: a. IMF 01, b. IMF 02,  

c. IMF 03 and d. IMF 04 
 

5. Experimental Study 

The vibration signals analyzed in this section were measured on a test bench designed and 

built at the Laboratory of Mechanics and Structures of the University of Guelma, Algeria, as 

shown in Figure 3.12(a). The experimental setup consists of the following components: 

• Electric motor with a power of 2.2 kW and a rotational speed of 1500 rpm. 
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• Elastic coupling to transmit motion between the motor and the gearbox. 

• Gearbox, with its mechanical characteristics detailed in Table 3.2. 

• Electromagnetic brake used to apply varying loads on the gearbox. 

• V-ribbed belt for power transmission between the output shaft and the electromagnetic 

brake. 

Vibration signals were experimentally measured at two rotational frequencies: 14 Hz and 23 

Hz, under both healthy and faulty gear conditions. Data acquisition was performed using the 

Bruel & Kjær PULSE 16.1 analyzer and the Pulse LabShop software, as shown in Figure 

3.12(a).  

  

a. b. 
Figure 3.12. The experimental setup: a. test rig and b. defected gear. 

To validate the results from the numerical simulations presented in Section 4, the 

experimental setup was designed to replicate the same mechanical components of the 

previously simulated gearbox. Table 3.2 provides the mechanical characteristics of the gears, 

including: transmission ratios for each gear stage (U1 and U2), rotational frequencies of the three 

shafts (Fr1, Fr2 and Fr3), and gear meshing frequencies (Fm1 and Fm2) for two motor speeds. 
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Table 3.2. Used gears and characteristic frequencies. 

Gear type Straight teeth 

Gear characteristics  Transmission ratios 𝑈𝑈1 = 42 50⁄ = 0.84 

𝑈𝑈2 = 65 45⁄ = 1.444 

Rotation Frequencies  First case:  𝐹𝐹𝑟𝑟1 = 14 Hz 

𝐹𝐹𝑟𝑟2 = 12 Hz 

𝐹𝐹𝑟𝑟3 = 17 Hz 

Second case:  𝐹𝐹𝑟𝑟1 = 23 Hz         

𝐹𝐹𝑟𝑟2 = 20 Hz 

𝐹𝐹𝑟𝑟3 = 28 Hz 

Meshing frequency  First case:  𝐹𝐹𝑚𝑚1 = 588 𝐻𝐻𝐻𝐻 

𝐹𝐹𝑚𝑚2 = 761 𝐻𝐻𝐻𝐻 

Second case:  𝐹𝐹𝑚𝑚1 = 966 𝐻𝐻𝐻𝐻 

𝐹𝐹𝑚𝑚2 = 1300 𝐻𝐻𝐻𝐻 

Three Bruel & Kjær Type 4533-B accelerometers were mounted horizontally on the gearbox 

casing, positioned near each gear stage. A total of four vibration signals were recorded within a 

frequency bandwidth of 6400 Hz: S1 and S2: signals without gear faults, and S3 and S4: signals 

with gear faults. These signals illustrated in Figure 3.13, will be processed using the proposed 

diagnostic method. 
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a. 

  

b. 

  

c. 

  

d. 
Figure 3.13. Vibratory signals measured for different cases and their spectra:  

a. S1 without gear defect and 1 14rF Hz= , b. S2 without gear defect and 1 23rF Hz= ,  

c. S3 with gear defect and 1 14rF Hz= , d. S4 with gear defect and 1 23rF Hz= . 
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To achieve precise fault diagnosis, an analysis of scalar indicators was performed. In this 

study, six scalar indicators were calculated and are presented in Table 3.3, some of which are 

energy-sensitive indicators: Peak Value (PV), Root Mean Square (RMS), Energy (E), Power 

(P), while others are shape-sensitive indicators: Kurtosis (K), Crest Factor (CF).  

Upon examining these indicators, it is evident that the signals exhibit not only the 

experimentally simulated gear faults but also additional anomalies. Moreover, the signals are 

heavily contaminated with noise, complicating fault detection. For example, in signal S1, the 

kurtosis value reaches 5.08, while under normal conditions without impulsive defects, this value 

should not exceed 3. The high noise levels present in the signals pose significant challenges for 

fault detection, highlighting the need for an effective diagnostic method. These observations 

underscore the importance of implementing a robust diagnostic approach capable of identifying 

faults despite substantial signal noise. An in-depth analysis based on the proposed VMD-

WMRA approach will be essential for accurate fault detection in the studied gearbox. 

Table 3.3. Scalar indicators’ value. 

 RMS CF PV E*103 K P 

Without gear defect 
S1 5.56 5.96 33.10 506.22 5.08 30.90 

S2 3.77 4.38 16.90 116.29 3.76 14.19 
 

With gear defect 
S3 4.80 6.55 33.60 378.84 6.12 23.12 

S4 10.04 6.20 82.10 165.07 6.05 100.75 
 

6. Results and discussions  

This section is dedicated to the experimental validation of the proposed approach for 

detecting faults in gearboxes. As previously mentioned, the vibration signals (S1, S2, S3, and 

S4) were measured under two operational conditions: without gear faults (S1 and S2) and with 

gear faults (S3 and S4). These measurements were conducted at two different rotational speeds, 

Fr1=14 Hz and Fr1=23 Hz. 

The work involves first processing the four signals using WMRA. The results obtained will 

be compared with those from the proposed approach applied in numerical simulations, i.e., 

determining the optimal number of IMFs based on the proposed criterion, followed by 

decomposing the same signals using VMD and finally processing each IMF using WMRA. 
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6.1. Signal processing without gear fault 

The signals S1 and S2, along with their corresponding spectra, are presented in Figure 3.14. 

These signals, which correspond to the gearbox without gear faults, exhibit abnormal values of 

scalar indicators, suggesting the presence of another type of fault. 

  

a. 

  

b. 
Figure 3.14. Signals without gear defects and their corresponding spectra:   

a. S1 with Fr1 = 14 Hz, b. S2 with Fr1 = 23 Hz.  

For S1, shown in Figure 3.14(a), the spectral analysis reveals a dominance of the meshing 

frequency Fm1, which overshadows the other frequencies, making diagnosis difficult and 

necessitating the use of more advanced signal processing methods. On the other hand, for S2, 

shown in Figure 3.14(b), we can clearly observe noise in the signal. The corresponding 

spectrum shows the appearance of Fm1 and its harmonic 2Fm1, where the amplitude of 2Fm1 is 

approximately 1.5 times greater than that of Fm1, indicating insufficient backlash (insufficient 

tooth root clearance). 
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6.1.1. Results obtained by WMRA. 

Processing the two signals S1 and S2 using WMRA for both rotational speeds yield the 

envelope spectra shown in Figure 3.15. We observe that the amplitudes of the harmonics of the 

input shaft rotational frequency 2Fr1, 3Fr1 and 4Fr4  are higher than that of the fundamental 

frequency Fr1, indicating misalignment of the input shaft. The misalignment is more 

pronounced, especially at the rotational frequency of 14 Hz, as shown in Figure 3.15(a). The 

vibration amplitude at this frequency is twice that observed at 23 Hz, as shown in Figure 3.15(b). 

This result is confirmed by the doctoral work of J. Bouyer [131], which shows that the 

amplitude of misalignment increases with the intensity of the misalignment torque, particularly 

when the load or rotational speed is low. 

 
a. 

 
b. 

Figure 3.15. Envelope spectra obtained from WMRA:  
a. S1 with Fr1 = 14 Hz, b. S2 with Fr1 = 23 Hz. 

 

6.1.2. Results obtained by VMD-WMRA combination 

Decomposing the same signals using VMD, based on the proposed criterion, yields the 

signals and spectra of the different IMFs, as shown in Figure 3.16. For S1 (Figure 3.16(a)), we 

observe that the spectra of the obtained IMFs perfectly isolate the meshing frequency Fm1

(IMF1) and some of its harmonics (IMFs 2, 3, and 4). Similarly, for S2 (Figure 3.16(b)), we 

observe the isolation of the meshing frequency Fm1 (IMF2) and its fifth harmonic (IMF3). 

Additionally, IMF1 isolates a resonance at 422 Hz, with an amplitude lower than that of Fm1. 

After investigating this resonance and based on the calculations below, we conclude that this 

resonance represents the natural frequency of the belt FBr . The values of FBr for the two 

rotational speeds are presented in Table 3.4. The absence of FBr  in S1 is due to its proximity in 

value to Fm1Fm1, which has a high amplitude, causing Fm1 to overshadow FBr , unlike in S2. 
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a. b. 

Figure 3.16. Resulting IMFs and the corresponding spectrum obtained from VMD:  

a. S1 with Fr1 = 14 Hz, b. S2 with Fr1 = 23 Hz. 

The values of the belt resonance frequency can be obtained using the following expressions:  

9.555e
e

PC
N

= × , where Ce is the input torque, Pe is the input power, and Ne is the input 

rotational speed. 

e
s

C
C

u
= , where Cs is the output torque and u is the total transmission ratio. 

s

PT
V

= , where T is the belt tension and Vs is the linear speed of the belt. 

1
2Br

b

TF
L µ

= , where Lb is the free length of the belt and μ is the linear mass of the belt. 
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Table 3.4. Calculation results for the two rotation frequencies.  

Rotation 

frequency Fr1 

Input torque 

Ce 

Output torque 

Cs 
Belt tension T 

The resonant 

frequency 𝐹𝐹𝐵𝐵𝑟𝑟 

14 Hz 25.01 N.m 20.68 N.m 827 N 535 Hz 

23 Hz 15.22 N.m 12.55 N.m 502 N 417 Hz 

To diagnose the faults, WMRA is applied to each IMF for both rotational speeds, as shown 

in Figures 3.17 and 3.18. For S1, the presence of input shaft misalignment is confirmed by the 

modulation of the rotational frequency harmonics (2Fr1, 3Fr1), which exceed the amplitude of 

the rotational frequency itself, as shown in IMFs 1, 2, and 4. 

  

  

Figure 3.17. Envelope spectra obtained by the WMRA for each IMF of S1. 
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For S2, shown in Figure 3.18, the input shaft misalignment is confirmed by the presence of 

the 2Fr1 peak, which exceeds the rotational frequency Fr1 , as shown in IMFs 2 and 3. The 

presence of input shaft misalignment, combined with insufficient backlash between the two 

gears (identified in the spectrum of Figure 3.14(b)), caused misalignment in the second shaft, 

detected in IMFs 1 and 2 by the presence of a peak at 2Fr2 in the absence of the rotational 

frequency Fr2. Additionally, in IMF3, we observe a peak at 4 Hz. 

  

   
Figure 3.18. Envelope spectra obtained by the WMRA for each IMF of S2. 

After inspecting the belt condition, we found two defects in the grooves of the poly-V belt, 

as shown in Figure 3.19. These defects justify the presence of the peak at 4 Hz, corresponding 

to the belt passage frequency FB  and a large number of its harmonics. 
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Figure 3.19. Defects identified on the V-ribbed belt. 
 

6.2. Signal processing with gear fault 

The signals exhibiting gear faults, S3 and S4, shown in Figure 3.20, were also studied in this 

section. Following the presence of a fault on a tooth of the driven gear rotating at frequency Fr2, 

we observe an increase in vibration amplitudes compared to the case without gear faults in both 

the signals and their spectra. 
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a. 

  

b. 
Figure 3.20. Signals with gear faults and their corresponding spectra: 

a. S3 with Fr1 = 14 Hz, b. S4 with Fr1 = 23 Hz. 

The signal S3, shown in Figure 3.20(a), exhibits high-amplitude shocks compared to S1, and 

the corresponding spectrum still shows the dominance of the meshing frequency Fm1. The 

spectrum of S4, shown in Figure 3.20(b), reveals that the presence of a fault on the gear rotating 

at 23 Hz has exacerbated the insufficient backlash fault, as the amplitude of 2Fm1 exceeds that 

of Fm1 by approximately 3.5 times. We also observe a sevenfold increase in the amplitude of 

FBr compared to S2, with a frequency shift up to 502 Hz. This frequency shift is due to the 

increase in belt tension T resulting from the worsening of the insufficient backlash fault and the 

misalignment on the various shafts. 
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6.2.1. Results obtained by WMRA 

In the envelope spectra obtained by processing the two signals using WMRA, as shown in 

Figure 3.21, we observe the absence of harmonics of Fr2 for both rotational speeds of 14 Hz and 

23 Hz. Therefore, we can conclude that WMRA alone does not allow for the localization of the 

gear fault on the driven gear. 

It turns out that during the disassembly and reassembly of gear Z2 to create a fault on the 

flank of a tooth, misalignment was introduced on the intermediate shaft. This latter fault is 

represented by the presence of a peak at 2Fr2, as well as the confirmation of input shaft 

misalignment by a peak at 3Fr1, as shown in Figure 3.21(a). On the other hand, for S4, shown 

in Figure 3.21(b), we observe a significant increase in vibration amplitudes, approximately 20 

times, due to: on one hand, the increase in rotational speed in the presence of faults and, on the 

other hand, the belt resonance, which allows the appearance of the third harmonic of the belt 

fault at 3FB and misalignment faults on both shafts. 

 
a. 

 
b. 

Figure 3.21. Envelope spectra obtained by WMRA:  

a. S3 with Fr1 = 14 Hz, b. S4 with Fr1 = 23 Hz. 
 

6.2.2. Results obtained by VMD-WMRA combination. 

Figure 3.22 presents the IMFs and their spectra obtained by VMD using the proposed 

criterion for the two signals S3 and S4. We observe that the IMFs perfectly isolate the different 

frequencies (belt resonance frequency, meshing frequency, and its harmonics). Figure 3.22(a) 

shows the isolation of Fm1 and some of its harmonics (3Fm1, 4Fm1, 5Fm1, 10Fm1), while Figure 

3.22(b) shows the appearance of the belt resonance frequency FBr and some of the harmonics 

of the meshing frequency (2Fm1, 3Fm1, 5Fm1). 

0 50 100 150

Frequency (Hz)

0

0.5

1

1.5

2

2.5

3

3.5

Am
pl

itu
de

10 4

2Fr2

4Fr1

3Fr1

0 50 100 150

Frequency (Hz)

0

2

4

6

8

Am
pl

itu
de

10 5

3FB
Fr1

2Fr2

2Fr1



Chapter 03 Fault diagnosis by a new VMD-WMRA approach, optimized by a new criterion 

 76 

    

    

    

    

  

 

a. b. 

Figure 3.22. The IMFs obtained by VMD and the corresponding spectra: 

a. S3 with Fr1 = 14 Hz, b. S4 with Fr1 = 23 Hz. 

The envelope spectra of each IMF for the rotational frequency of 14 Hz, obtained by applying 

WMRA, are presented in Figure 3.23. In the envelope spectra of IMF1, IMF2, and IMF3, we 

clearly observe the modulation of Fm1 by the rotational frequency of the intermediate shaft Fr2, 

on which the gear with the tooth fault is mounted. This result was not achievable using WMRA 

alone. 
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Figure 3.23. Envelope spectra obtained by the WMRA for each IMF of S3. 

Figure 3.24 presents the envelope spectra obtained by combining VMD and WMRA. In the 

envelope spectrum of IMF1, we observe the presence of a large number of harmonics of FB , 

with amplitudes lower than FB . This indicates the presence of a belt fault, as previously 

illustrated in Figure 3.19. In the envelope spectrum of IMF2, we observe the modulation of Fm1

 by the rotational frequency of the driven shaft Fr2. Unlike the case of S3, the diagnosis of the 

gear fault is less evident due to the presence of major misalignment on the input shaft, 

represented by a peak at 2Fr1, which dominates the harmonics of Fr2. The envelope spectrum 
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of IMF3 shows the presence of harmonics of Fr1, which is explained by insufficient backlash. 

Additionally, IMF4 confirms the presence of belt faults through the appearance of multiple 

harmonics of FB. 

  

  

Figure 3.24. Envelope spectra obtained by the WMRA for each IMF of S4. 
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7. Conclusions 

In this chapter, we proposed a combined approach based on VMD and WMRA for fault 

detection in gearboxes. The primary objective was to develop a robust and efficient method for 

diagnosing faults, even in the presence of noise or disturbances in the measured vibration 

signals. 

We highlighted the advantages of our approach through both numerical simulations and 

experimental measurements. The obtained results demonstrate that VMD is a powerful tool for 

decomposing complex signals into Intrinsic Mode Functions (IMFs). Also, the use of SE 

enabled the determination of the optimal number of IMFs for each decomposition. 

The analysis of IMFs obtained via VMD was further enhanced using WMRA, which helped 

isolate resonance frequencies and identify specific gearbox fault characteristics, even in noisy 

signals. We illustrated the effectiveness of our approach by processing both simulated signals 

and real signals measured on a test bench. 

In conclusion, our proposed method offers a promising approach for fault detection in 

gearboxes, effectively addressing the challenges posed by noise and signal disturbances. The 

encouraging results obtained through both simulations and experimental validation demonstrate 

the potential of this approach to improve the reliability and accuracy of gear fault diagnostics. 

This could have significant implications for preventive maintenance in mechanical systems, 

contributing to enhanced operational efficiency and extended service life of industrial 

equipment. 
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approach 

 

In this chapter, we present a new approach combining VMD with Long Short-Term Memory 

(LSTM) networks for fault diagnosis in rotating machinery. Our method surpasses traditional 

vibration analysis techniques by offering enhanced accuracy in identifying fault types and 

severity levels across various datasets. The results from our research demonstrate the robustness 

and effectiveness of the VMD-LSTM approach, which provides a reliable framework for 

proactive maintenance and real-time monitoring of industrial systems. 
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1. Introduction 

In the current industrial context, the early detection of rotating machinery failures represents 

a major challenge for optimizing performance and reducing maintenance costs. Although 

conventional vibration analysis techniques have proven effective, they show limitations when 

faced with the increasing complexity of mechanical faults. This evolution has led to the 

development of innovative approaches combining advanced signal processing and artificial 

intelligence. 

This chapter explores a novel methodology that integrates VMD with Long Short-Term 

Memory (LSTM) neural networks. This synergy between signal processing and deep learning 

aims to create a more robust and adaptable fault detection system. Our study first presents the 

theoretical foundations of LSTM networks, detailing their architecture and mathematical 

formulations, before demonstrating their practical application to mechanical fault detection. 

Experimental results obtained on various datasets demonstrate the relevance of this hybrid 

approach for monitoring rotating machinery under demanding industrial conditions. 

This research contributes to the evolution of predictive maintenance strategies by proposing 

a methodological framework capable of identifying and characterizing complex faults, paving 

the way for more efficient management of industrial equipment. 

2. Proposed approach 

Traditional vibration analysis is widely used to detect faults in rotating machinery but 

struggles with complex fault patterns in signals and a wide range of fault types. On the other 

hand, researchers have used raw signals to train fault classification networks. Improved signal 

decomposition techniques are introduced to address these issues by breaking down signals into 

simpler components and revealing hidden fault signatures. The integration of artificial 

intelligence enables smarter learning from these signal features. This paper proposes a method 

that combines fault revelation through VMD and sequential learning through LSTM to enhance 

fault detection in machinery, overcoming the limitations of traditional analysis through 

intelligent signal decomposition for more accurate results.  

Figure 4.1 outlines the steps of the proposed approach:  

 Data Acquisition: This is the simplest and most straightforward step. It involves 

repeatedly measuring vibration signals on the machine for different fault scenarios. 

 Application of VMD: The signals measured in the first step are decomposed using the 

VMD method. The number of IMFs, denoted as KK, is chosen by taking the average 

number of IMFs for each signal using the previously proposed criterion. 
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 Data Splitting: At this stage, the dataset is divided into three subsets: training (80%), 

validation (10%), and testing (10%). Each signal is defined by its IMFs. 

 Feature Extraction: Scalar indicators are the most important features in detecting faults 

in rotating machinery. Therefore, scalar indicators are calculated for all IMFs obtained 

in the three subsets. 

 Training and Classification: The features from the training and validation subsets are 

used to train the LSTM network to obtain a reliable classification model. Once the 

model is trained, it is used to classify the test set defined by the calculated features. 

 

Figure 4.1. Flow chart of the proposed VMD-LSTM fault detection approach. 

Finally, to confirm the superiority of the proposed approach over conventional vibration 

analysis, envelope analysis is performed on the IMFs of the test set to obtain envelope spectra 

and verify the potential detection of faults in these signals. 

3. Theoretical context  

Understanding the theoretical foundations is essential to grasp the proposed approach for 

fault detection. This section briefly describes the basic principles of LSTM networks, while 

VMD and scalar indicators have been thoroughly explained in the previous chapters. 

LSTM networks are a type of Recurrent Neural Network (RNN) architecture designed to 

capture long-term dependencies in sequential data. An LSTM unit consists of different gates 

(input, forget, and output gates) that regulate the flow of information within the network. 

Mathematically, an LSTM unit for a given input sequence { }1 2, ,...., TX x x x=  of length T can 

be defined through the following computational steps [105]: 
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 Compute the Input, Forget, and Output Gates: 
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 Update the Cell State Ct  and Hidden State ht: 
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Where: it, ft and ot are the input, forget, and output gate vectors at time step t, 

Wi, Wf, Wo and WC  are the weight matrices, 

bi, bf, bo and bC are the bias terms, 

σ represents the sigmoid activation function, 

tanh is the hyperbolic tangent function, 

4. Experimentations 

In the experimental phase, the proposed approach was validated using two distinct datasets. 

The first dataset, LMSDS (Laboratory of Mechanics and Structures Dataset), was developed at 

the Laboratory of Mechanics and Structures at the University of Guelma, Algeria. This dataset 

provides an extensive collection of vibration signals, including gear and bearing faults under 

various operating conditions. The test bench used to generate this data is described in detail in 

Chapter 3 and illustrated in Figure 3.12. The data was sampled at a frequency of 16,384 Hz 

with a recording duration of one second. 

The second dataset, CWRUDS (Case Western Reserve University Dataset), was obtained 

from the Case Western Reserve University Bearing Data Center [132]. This dataset includes a 

wide range of vibration signals from bearings operating under various conditions, covering both 

normal and faulty states. The data was collected using a dedicated test bench designed to 

simulate typical bearing faults, including ball, inner race, and outer race faults. The test bench, 

shown in Figure 4.2, consists of a motor, a coupling with a transducer/encoder, and a 

dynamometer. The signals were recorded at a sampling frequency of 48 kHz, with each case 

comprising 10-second recordings, subsequently segmented into one-second samples. This 

dataset enables an in-depth analysis of bearing behavior across a wide range of operating 

conditions, providing a solid foundation for the analysis and validation of the proposed 

approach. 
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Figure 4.2. Case Western Reserve University’s test bench. 

This strategy of using two datasets ensures that the effectiveness of the proposed method can 

be demonstrated for both gear and bearing faults, regardless of the type or severity of the fault. 

Table 4.1 presents the frequency characteristics necessary for fault detection, including the 

rotational frequencies Fr and the calculated bearing fault frequencies (BPFO, BPFI, BPF, and 

CF). 

Table 4.1. Frequency characteristics of the defects for both sets. 

LMSDS   CWRUDS 

F(Hz) Shaft 1 Shaft 2  Shaft 3  Fr (Hz) BPFI BPFO BPF CF 

Fr  14 11.76 16.93 28.66 to 

29.95  

155.19 to 

162.18 

102.74 to 

107.36 

135.08 to 

141.16 

10.68 to 

11.16 BPFO 42.88 36.02 51.86 

BPFI 69.10 58.04 83.56 

 BPF 56.50 47.46 68.32 

CF 5.34 4.49 6.46 

Table 4.2 provides the complete compositions of the samples in the two datasets: SD (Small 

Defect), AD (Average Defect), and CD (Critical Defect). Each severity level in the dataset 

includes 30 samples, each one second long, divided into 24 for training, 3 for validation, and 3 

for testing. 
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Table 4.2. Total compositions of the datasets used (CWRUDS on the left and LMSDS on the 

right). 

Data Set Defect Type Defect 
Severity 

 

Data Set Defect Type Defect Severity 

C
W

R
U

D
S 

 

Without 
Defect / 

L
M

SD
S 

 

Without Defects / 

Ball Defect 

SD 
Bearings Defects 

SD 
AD 

AD 
CD 

Gears Defects 

SD 

CD 
AD 
CD 

Inner Ring 
Defect 

SD 
CD + SD 
CD + AD 

AD 
CD + CD 

Combined Gears 
and Bearings 

Defects 

SD Bearing + SD gear 

CD 
SD Bearing + AD Gear 

SD Bearing + CD Gear 

Outer Ring 
Defect 

SD 
AD Bearing + SD Gear 

AD Bearing + AD Gear 

AD 
AD Bearing + CD Gear 

CD Bearing + SD Gear 

CD 
CD Bearing + AD Gear 

CD Bearing + CD Gear 
 

5. Results and discussions  

5.1. Vibratory analysis 

This section presents a conventional vibration analysis of the test datasets. The VMD 

decomposition parameters (K, α) were defined based on [88, 129, 133], resulting in an average 

number of IMFs equal to K = 5. Among the large number of processed samples, the ball bearing 

faults from the CWRUDS dataset and the gear faults from the LMSDS dataset are presented 

below.  
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Figure 4.3 describes the analysis procedure, with Figure 4.3(a) showing the time-domain 

representation of three signals with small ball defects, Figure 4.3(b) presenting the resulting 

IMFs for each signal, and Figure 4.3(c) displaying the envelope spectrum of the signals. 

Analyzing the envelope spectrum in Figure 4.3(c), we can clearly see that there is no fault 

characteristics related to BPF. Despite the presence of some peaks in IMFs 2 and 3 of the first 

signal and IMF 3 of the second signal, these peaks correspond to the rotational frequency Fr and 

do not provide a diagnostic of the bearing's condition. 

   

a. 

   

b. 

   

c. 
Figure 4.3. Vibratory analysis of small ball defect of CWRUDS:  

a. Time domain representation, b. Resulting IMFs and c. Envelope spectrum of the IMFs. 
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Figure 4.4 shows the envelope spectra for other severity levels of the ball defect. Figure 

4.4(a) represents different samples of the average defect, while Figure 4.4(b) examines the 

critical defect. The absence of BPF is also evident in these envelope spectra. Despite the 

robustness of VMD for fault detection, which enabled it to detect both inner and outer race 

faults in the same dataset, diagnosing the ball defect across all three severity levels proved 

impossible in this case. These results are highly consistent and confirm the findings of [134, 

135]. 

   

a. 

   

b. 

Figure 4.4. IMFs’ envelope spectrum of ball bearing defect signals from CWRUDS:  

a. Average ball defect and b. Critical ball defect. 
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The LMSDS signals contain noise, making detection more challenging. It was impossible to 

detect faults in all cases. While VMD is an effective signal processing tool, the measured signals 

in this case posed a significant challenge. For gear faults, the analysis of the small defect signals 

presented in Figure 4.5 yielded no results. Figure 4.5(a) shows the time-domain representation 

of the three signals, and it is clear that the signals are corrupted with high levels of noise. The 

resulting IMFs in Figure 4.5(b) are analyzed using envelope analysis to produce the spectrum 

in Figure 4.5(c). The analysis of these spectra reveals the presence of some peaks corresponding 

to Fr1 and its harmonics (×2, ×3, ...), which are related to the first shaft, suggesting the presence 

of misalignment on the input shaft. However, the spectrum in Figure 4.5(c) reveals the absence 

of Fr2, which is linked to the faulty gear. 

   

a. 

   

b. 
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c. 

Figure 4.5. Vibratory Analysis of small gear defect of LMSDS:  

a. time domain representation, b. Resulting IMFs, and c. Envelope spectrum of the IMFs. 

The analysis of residual gear faults in Figure 4.6 continues without providing clear 

indications of faults. In Figures 4.6(a) and 4.6(b), the presence of Fr1 and its harmonics confirms 

the diagnosis of misalignment for the average and critical gear faults, where the amplitude of 

the harmonics exceeds that of the rotational frequency. 
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b. 

Figure 4.6. IMFs’ envelope spectrum of gear defect signals from LMSDS:  

a. Average gear defect, b. Critical gear defect.  

Figures 4.7(a) to 4.7(c) present the analysis of combined gear faults, corresponding to critical 

and small, critical and average, and critical and critical defects, respectively. Some peaks of Fr2

 are visible, but there are no harmonics, and Fr3 is completely absent, making the detection of 

gear faults impossible. 
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b. 

   

c. 

Figure 4.7. IMFs’ envelope spectrum of combined gear defect signals from LMSDS:  

a. Critical and small defects, b. Critical and average defects, c. Critical and critical defects. 

The diagnostic process for the two datasets containing gear and bearing faults revealed that 

traditional VMD analysis struggled to accurately detect the majority of fault types, with the 

exception of inner and outer race faults. While acknowledging these limitations, it is important 

to highlight the inherent complexity and variability of fault signatures, which can render 

traditional methods ineffective in certain scenarios. 
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5.2. Application of the VMD-LSTM combination 

This section presents the results of the classification and diagnosis of gear and bearing faults 

found in the two datasets. This manuscript provides a comprehensive investigation of the 

datasets using several Recurrent Neural Networks (RNNs) to accurately detect faults. The 

RNNs are created by feeding the feature matrix obtained from the calculation of scalar 

indicators of the IMFs produced by VMD decomposition into LSTM networks. 

Table 4.3 provides a complete overview of the feature matrix extracted from the signals. The 

feature matrix includes a wide range of parameters derived from the signal, providing valuable 

information about the machine's condition. The feature matrix captures a broad spectrum of 

parameters, enabling the LSTM network to learn complex relationships and temporal 

dependencies in the data. Each element of the feature matrix adds valuable information about 

the underlying vibrational characteristics of the machine. Using Table 5.3 as the input feature 

matrix allows the LSTM network to learn and adapt effectively to the complexities of the data, 

resulting in robust fault detection capabilities. The predictive accuracy of the model can be 

refined through iterative training and validation processes, providing actionable insights for 

proactive maintenance and condition monitoring of rotating machinery. 
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Table 4.3. Feature matrix of a signal without defect from the CWRUDS. 

Scalar Indicator 
Signal without defect 

IMF1 IMF2 IMF3 IMF4 IMF5 

STD 0.03958896 0.0368447 0.02334455 0.00817395 0.00174969 

Skewness 0.05681834 -0.00012252 -1.85E-05 0.00533201 4.48E-05 

Kurtosis 2.71165859 2.89355662 1.57581672 3.15807748 3.13994139 

Peak to Peak 0.25788425 0.24297596 0.09014244 0.08313773 0.01543696 

RMS 0.04057073 0.03684446 0.02334432 0.00817412 0.00174968 

Crest Factor 3.35643633 3.32929993 1.91088351 4.96755348 4.41690562 

Shape Factor 1.24073652 1.26023958 1.11796921 1.25710614 1.2617955 

Impulse Factor 4.16445314 4.19571555 2.13630892 6.24474199 5.57323165 

Margin Factor 127.357565 143.51159 102.308736 960.385072 4019.17476 

Energy 79.0072305 65.1606772 26.1579428 3.20717998 0.14694662 

Crest Value 0.13617307 0.12266625 0.04553417 0.04253234 0.00772818 

K Factor 0.00552464 0.00451957 0.00106296 0.00034766 1.35E-05 

Entropy 451.797539 382.196711 187.878762 28.4404843 1.75466756 

 

5.2.1. Case of CWRUBDS 

Figure 4.8 shows the RNNs trained for the CWRUDS dataset. The process begins with the 

classification of the fault type (RNN1), followed by the classification of the severity of each 

fault type (RNN2, RNN3, RNN4). Finally, to further test the proposed approach, a classification 

of all classes in this dataset was performed (RNN5). This last step includes the procedure used 

by the previous RNNs (RNN1, RNN2, and RNN3) to provide a direct fault type and its 

corresponding severity. 
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Figure 4.8. Trained RNNs for fault detection of CWRUDS. 

Figure 4.9 shows the training progress of RNN1. The total number of iterations was set to 

60, and the training accuracy reached 100% before the end of the process, despite some 

disturbances at the beginning of the training process, as shown in Figure 4.10. The model 

initially had high variance, but as progress was made and the performance of the LSTM 

networks in sequential training improved, the RNN converged, and both the training and 

validation accuracy (Figure 4.10(a)) reached 100% and stabilized before the end of training. 

The loss function in Figure 4.10(b) confirms the model's convergence, as we can see good 

alignment with the training process and lower loss values. 

  

a. b. 

Figure 4.9. Training progress of RNN1: a. Training accuracy and b. Loss. 

0 10 20 30 40 50 60

Itteration

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Training Accuracy
Validation Accuracy

0 10 20 30 40 50 60

Itteration

0

0.5

1

1.5

2

2.5

3

3.5

L
os

s



Chapter 04 Automated diagnosis of rotating machine faults using the VMD-LSTM approach 

 95 

Figure 4.10 represents the confusion matrix of RNN1 trained to detect fault types in the 

CWRUDS dataset. The strong diagonal concentration demonstrates the performance of RNN1 

in identifying different machine health states. Even with multiple states, the trained network 

correctly predicted each target class. Despite the limitations of traditional vibration analysis 

using VMD, the proposed approach accurately diagnosed the health state, offering an intelligent 

fault detection method for bearing faults. 

 
Figure 4.10. The confusion matrix resulted from the trained RNN1 for defect type 

classification of CWRUDS. 

Figure 4.11 presents the performance of the other RNNs trained for the CWRUDS dataset. 

Figures 4.11(a), 4.11(b), and 4.11(c) show the classification results for detecting the severity of 

different bearing faults found in CWRUDS, complementing the results of RNN1. Figure 4.11(a) 

represents the confusion matrix for detecting ball faults using RNN2. The classification 

accuracy was 100%, demonstrating the proposed approach's ability to accurately detect ball 

faults, even at early stages such as small defects. Figures 4.11(b) and 4.11(c) show the results 

of RNN3 and RNN4, with classification accuracy also at 100%. These results confirm those 

obtained from classical vibration analysis, where VMD was able to detect faults in both inner 

and outer races. Figure 4.11(d), on the other hand, shows the classification results using RNN4, 

where the proposed approach performed admirably in detecting bearing faults in CWRUDS. 

The classification was performed on all ten data cases, and the accuracy was 100%, 

demonstrating the proposed approach's ability to monitor machine condition and diagnose 

faults. The output class correctly classified each target class, from healthy bearings to various 

faults (ball, inner race, outer race), as well as the three fault severities (small, average, critical). 
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                  a.                                                                                                      b. 

 

 

c. d. 

Figure 4.11. Confusion matrix resulted from the classification of CWRUDS:  

a. RNN2, b. RNN3, c. RNN3 and d. RNN4. 
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5.2.2. Case of LMSDS 

The RNNs trained for the LMSDS dataset, presented in Figure 4.12, were constructed using 

the same concept as the previous ones. The first step is to determine the fault type (RNN6). The 

next step was to determine the severity of bearing and gear faults (RNN7, RNN8). Finally, a 

classification of the combination of both faults was performed (RNN9) to obtain a 

comprehensive diagnosis. 

 

Figure 4.12. Trained RNNs for fault detection of LMSDS. 

Figure 4.13 shows the training progress of RNN6 for classifying fault types in the LMSDS 

dataset. The training accuracy reached 100% before the end of the iterations, consistent with 

the validation accuracy shown in Figure 4.13(a). Both the training and validation results 

indicate that the trained RNN6 learned the features effectively. The loss presented in Figure 

4.13(b) also aligns with these results, as we can see that the loss dropped to nearly zero. 
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a. b 

Figure 4.13. Training progress of RNN6: a. Training accuracy and b. Loss. 

Figure 4.14 shows the classification results for RNN6. The confusion matrix shows complete 

concentration on the diagonal, with all target classes correctly predicted. The proposed 

approach was able to identify and classify different machine cases, even in the presence of gear 

and bearing faults. 

 
Figure 4.14. The confusion matrix resulted from the trained RNN6 for defect type 

classification of LMSDS. 

Figure 4.15 illustrates the performance evaluation of LMSDS using confusion matrices 

generated from three different fault severity categorization scenarios. First, Figure 4.15(a) 

represents the confusion matrix for bearing fault severity classification generated by RNN7, 

demonstrating an impressive accuracy of 100%.  
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This shows the effectiveness of combining VMD and LSTM in accurately classifying bearing 

fault severity levels. Similarly, Figure 4.15(b) represents the confusion matrix of RNN8 for gear 

fault severity classification, achieving a remarkable accuracy of 100% and detecting all gear 

faults. Even in the presence of combined faults, the proposed approach is able to correctly 

classify gear fault severity levels. However, when faced with the challenge of classifying mixed 

gear and bearing faults, as shown in Figure 4.15(c), RNN9 exhibits a slight drop in accuracy to 

83.3%. This decrease in accuracy is due to the inherent complexity associated with the 

combined nature of gear and bearing faults. 

Overall, the use of VMD-LSTM as a combined approach is robust and reliable for detecting 

fault types and classifying severity in rotating machinery. Its ability to accurately identify fault 

types and severity levels, even in the presence of multiple faults, demonstrates its potential as 

a powerful tool for proactive maintenance and condition monitoring in industrial applications. 
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c. 

Figure 4.15. Confusion matrix resulted from the classification of LMSDS:  

a. results of RNN7, b. results of RNN8 and c. results of RNN9.  

The main novelty of this approach lies in its ability to achieve high accuracy in fault detection 

using a small dataset for training, thereby reducing the need for large datasets typically required 

by conventional deep learning models. Thanks to VMD's ability to extract meaningful features 

from signals, LSTM can effectively classify fault types and their severity levels, even with a 

limited dataset. This method proves particularly useful in industrial applications where 

obtaining large labeled datasets is impractical. The method's ability to handle small datasets is 

demonstrated by its high classification accuracy, validated using two distinct datasets: bearing 

faults from CWRUDS and combined gear and bearing faults from LMSDS. 
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6. Performance evaluation of the proposed approach 

Table 4.4 summarizes the results of vibration analysis and the VMD-LSTM method for fault 

detection across two different datasets: CWRUDS and LMSDS. In the case of vibration analysis 

with VMD, it is evident that while the method was effective in detecting inner and outer race 

faults in the CWRUDS dataset, it showed limitations in diagnosing other types of faults. 

Table 4.4. Results of vibratory analysis and VMD-LSTM approach. 

Dataset 
Vibratory analysis 

 

VMD-LSTM approach 

Defect Detection RNNs Test accuracy 

C
W

R
U

D
S 

 RNN1 100% 

Ball defects No detection RNN2 100% 

Inner ring defects Fault detected RNN3 100% 

Outer ring defects Fault detected RNN4 100% 

 RNN5 100% 
  

L
M

SD
S 

 RNN6 100% 

Bearing defects No detection RNN7 100% 

Gear defects No detection RNN8 100% 

Bearing + Gear defects No detection RNN9 83.3% 

In particular, VMD failed to diagnose ball faults in the CWRUDS dataset, as these faults are 

challenging to detect, and it provided no diagnosis for fault cases in the LMSDS dataset, where 

the signals were corrupted by noise. In contrast, the proposed VMD-LSTM approach proved to 

be a robust alternative, outperforming the results for both datasets. The VMD-LSTM method 

surpassed traditional vibration analysis by detecting all fault types in the CWRUDS dataset 

with 100% accuracy, including ball faults that classical VMD analysis could not detect. 

Furthermore, the VMD-LSTM approach maintained strong fault detection performance in 

the LMSDS dataset, achieving 100% accuracy for all fault types except for combined gear and 

bearing faults, where it still achieved an accuracy of 83.3%. Gear faults are generally more 

frequent than bearing faults. 
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Using a small set of training samples, the proposed VMD-LSTM approach is compared to 

several other methods, such as Long Short-Term Memory (LSTM), Multi-Layer Perceptron 

(MLP), one-dimensional Convolutional Neural Networks (1D-CNN), and two-dimensional 

Convolutional Neural Networks (2D-CNN). This comparison highlights the effectiveness of 

the VMD-LSTM approach for fault detection and severity classification, particularly in 

scenarios where data is limited. 

Table 4.5 summarizes the performance of each classifier on the CWRUDS dataset for 

different fault types, showing that the VMD-LSTM model outperforms other classifiers by 

achieving 100% accuracy for all fault types and for the entire dataset. Although MLP and 1D-

CNN exhibit relatively low overall accuracies (46.66% and 53.33%), with particular difficulties 

in detecting inner race faults, 2D-CNN and LSTM offer better performance, with overall 

accuracies of 75.00% and 73.33%, respectively. However, none of them achieve the perfect 

classification obtained by VMD-LSTM, demonstrating its effectiveness for fault detection in 

rotating machinery. 

Table 4.5. Results for the classification models of the CWRUDS. 

Classifier 
CWRUDS’ test accuracy 

Defect type Ball defect Inner ring defects Outer ring defect All dataset 

MLP 41.66% 33.33% 58.33% 66.66% 46.66% 

1D-CNN 50.00% 40.66% 58.33% 58.33% 53.33% 

2D-CNN 66.66% 41.66% 80.00% 83.33% 75.00% 

LSTM 58.33% 50.00% 66.66% 66.66% 73.33% 

VMD-LSTM 100% 100% 100% 100% 100% 

Table 4.6 compares the classification performance of various models on the LMSDS dataset 

for bearing faults, gear faults, and combined gear and bearing faults. The VMD-LSTM method 

achieves 100% accuracy for bearing and gear faults and 83.3% for combined faults, 

demonstrating its robustness. In contrast, MLP shows the weakest overall performance, 

particularly for detecting bearing faults (55.56%) and combined faults (60.41%). 1D-CNN and 

LSTM offer moderate performance, with accuracies ranging from 66.70% to 77.77% for 

bearing and gear faults but lower for combined faults. 2D-CNN shows high accuracy, especially 

for gear faults (94.44%) and bearing faults (88.88%), but still falls short of VMD-LSTM's 

performance. Overall, VMD-LSTM stands out as the most effective model for fault detection 

in this dataset. 
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Table 4.6. Results for the classification models of the LMSDS. 

Classifier 
LMSDS’ test accuracy 

Defect 
type 

Bearing 
defects 

Gear 
defects 

Combined gears and bearings 
defects 

MLP 58.33% 55.56% 66.66% 60.41% 

1D-CNN 75.00% 66.70% 77.77% 68.75% 

2D-CNN 91.66% 88.88% 94.44% 79.16% 

LSTM 83.34% 77.77% 83.33% 72.91% 

VMD-LSTM 100% 100% 100% 83.3% 

The VMD-LSTM approach combines the strengths of VMD's signal decomposition and 

LSTM's sequential learning capabilities to provide a powerful and reliable framework for 

identifying fault patterns and assessing their severity. This method not only overcomes the 

limitations of traditional vibration analysis techniques but also excels in managing complex 

fault scenarios. Moreover, it demonstrates consistent and superior diagnostic performance for 

a wide range of fault types, even with a reduced training dataset, making it particularly useful 

in real-world industrial applications where data is often limited. 
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7. Conclusions 

In this chapter, we developed an innovative method combining VMD and LSTM networks 

for fault detection in gears and bearings of rotating machinery. Tested on two datasets 

(CWRUDS and LMSDS), our approach outperformed classical vibration methods and 

traditional classifiers, particularly for complex fault signatures. It combines the adaptive 

decomposition capabilities of VMD and the sequential learning of LSTM, enabling precise 

detection and effective classification of fault types and severity levels. This work opens 

perspectives for future improvements and applications to larger datasets in industrial contexts. 
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General Conclusion  

The primary objective of this thesis was to develop and implement advanced diagnostic 

techniques for fault detection in rotating machinery. Specifically, we explored methods of signal 

analysis techniques (VMD, WMRA) and artificial intelligence approaches (LSTM) to propose 

robust and accurate solutions for industrial environments. This research was supported by a 

series of experimental studies aimed at optimizing fault detection in gears and bearings, 

overcoming the challenges posed by the complexity of vibration signals, which are often 

nonlinear and noisy. 

Fault diagnosis in rotating machinery presents major challenges, including the variability of 

real-world machines and the difficulty in isolating a specific fault when multiple anomalies 

coexist. While traditional approaches have proven effective, they exhibit limitations in detecting 

combined or low-amplitude faults. In this context, our research focused on enhancing signal 

processing techniques and integrating machine learning methods to improve fault detection 

sensitivity and accuracy. 

First, a literature review was conducted on condition-based maintenance and vibration-based 

fault diagnosis techniques. Then, different signal decomposition methods (EMD and VMD) 

were analyzed in the context of vibration signals, demonstrating the relevance of VMD for 

better separation of signal components. 

For gear fault diagnosis, the VMD-WMRA approach was implemented to optimize the 

isolation of significant frequency components, particularly by introducing a Shannon entropy-

based criterion. This method demonstrated notable efficiency in detecting gear defects, even in 

high-noise environments. The main findings of this study indicate that: 

- The VMD-WMRA combination provides a more precise separation of frequency 

components, thus facilitating the detection of subtle anomalies. 

- The proposed criterion optimizes the number of required modes for effective signal 

decomposition, improving the robustness of fault detection. 

Finally, to meet the need for automated fault diagnosis, the VMD-LSTM approach was 

developed, combining the advantages of VMD decomposition with deep learning for automatic 

and accurate fault detection in bearings and gears. Experimental tests on multiple datasets 

demonstrated that: 
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- The classification of faults was significantly improved, with high accuracy across 

various types and severity levels of defects. 

- This approach proved to be robust for predictive maintenance of rotating machinery 

under challenging industrial conditions. 

Future Perspectives 

This work opens new research directions, including: 

• The development of additional indicators for multi-fault diagnostics in high-noise 

environments. 

• The optimization of decomposition techniques using hybrid approaches to maximize the 

accuracy of vibration-based monitoring techniques. 

• The expansion of experimental tests to include signals simulating various degradation 

levels, ensuring the practical applicability of the proposed diagnostic models in 

industrial settings. 

In conclusion, this thesis demonstrated the effectiveness of combined diagnostic approaches 

for improving fault detection and providing advanced tools for proactive maintenance in 

industrial systems. The results contribute to enhancing vibration-based machine monitoring and 

aligning maintenance practices with the growing demands of modern industrial environments, 

particularly in Algeria. 
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