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Part I

Properties of Mathematical
Expectation
1 General Introduction

This course is speci�cally designed for second-year students in computer engi-
neering. It is also valuable for students preparing for exams that require a solid
understanding of mathematical tools, particularly the concepts and terminology
related to probability theory.
Objectives
The primary objectives of the course are:

� To incorporate the role of randomness in decision-making processes.

� To understand and develop strategies for prediction in uncertain environ-
ments.

Fields of Application

� Medicine

� Quality control

� Environmental studies

� Insurance

� Games

� Computer science

Historically, probability theory emerged in the 17th century through the
study of games of chance, focusing on situations involving a �nite number of
outcomes. More advanced developments, which address in�nite or continuous
sample spaces, rely on more sophisticated tools from probability theory. How-
ever, all fundamental concepts can still be introduced and understood within
the context of �nite probability spaces.
Course Structure
The course is divided into two main parts:

1. First Part: Introduction to key concepts such as expectation, condi-
tional expectation, covariance, and correlation. It also includes a section
on di¤erent modes of convergence to emphasize the importance of ap-
proximating discrete and continuous probability distributions and their
simulations.
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2. Second Part: Focus on statistical inference and hypothesis testing. It
also introduces topics like information theory, including notions of sur-
prise, uncertainty, entropy, and information encoding.

This course aims to equip computer engineering students with the founda-
tional tools necessary for modeling and analyzing data e¤ectively.
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2 Random variables

De�nition 1 Let (
;F ; P ) be a probability space. A random variable ( often
abbreviated r:v subsequently) is an application�

X : 
! E � R
! 7�! X (!)

who checks the condition, for all x 2 R

X�1 (]�1; x]) = f! 2 
 : X (!) � xg 2 F

Example 2 If we toss a coin 2 times in a row and we are interested in the
number of tails obtained.We denote by X: "The number of tails obtained
during the two tosses": Let us show that X represents a random variable on
(
;F) such that


 = f(a1; a2) ; ai = heads or tails (F = T _ P = H) i = 1; 2g

and F = P(
), Indeed8>><>>:
if x < 0: X�1 (]�1; x]) = �,
if 0 � x < 1 : X�1 (]�1; x]) = f(T ;T )g ;
if 1 � x < 2 : X�1 (]�1; x]) = f(H;T ); (T ;H)g ;
if x � 2 : X�1 (]�1; x]) = 
:

So it is obvious that for every thing x 2 R : X�1 (]�1; x]) 2 P(
), so X
represents a random variable on (
;F ; P ):

Remark 3 In general we denote the set of values taken by the random variable
X; by DX and we call it the support of the random variable X.

2.1 Discrete Random Variable

De�nition 4 A discrete random variable is a function X(s) from a �nite or
countably in�nite sample space F to the real numbers

X : F !R:

Example 5 Toss a coin 2 times in sequence. The sample space is

F = fHH;HT; TH; TTg ;

and examples of random variables are
I X (s) = 1 The number of Heads in the sequence ; e.g, X(HT ) = 1 ,
I Y (s) =The index of the �rst H; e.g, Y (TH) = 2,
0 if the sequence has no H , i.e., Y (TT ) = 0.

NOTE : In this example X(s) and Y (s) are actually integers.
Value-ranges of a random variable correspond to events in F .
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Example 6 For the sample space

F = fHH;HT; TH; TTg ;

with X (s) =the number of Heads, the value X (s) = 1; corresponds to the event
fHT; THg ;and the values 1 < X (s) � 2; correspond to

fHHg

De�nition 7 You can say that a random variable X has a discrete probabil-
ity distribution when: exists �nite or enumerable set of real numbers M =
fx1; :::; xn; :::g that �

P (X = xi) � 0; i = 1; 2; :::P
i P (X = xi) = 1

Function P (X = xi) , P (xi) is called probability function of random variable
X. A distribution function of such a distribution is a step function with steps
in x!; :::; xn; ::. For a distribution function of a discrete random variable the
following is true:

F (x) =
X
xi�x

P (X = xi) :

Example 8 Throwing a dice, X a number of dots obtained

xi Pi F (xi)

1
1

6
0

2
1

6

1

6

3
1

6

2

6

4
1

6

3

6

5
1

6

4

6

6
1

6

5

6

De�nition 9 Let X be a real random variable with support DX : If DX is a
countable subset of R; then X is called a discrete random variable.

Properties

Proposition 10 If X and Y are two real discrete random variables on (
;F ; P );
then 8<: i) for allr eal a; b : aX + bY is a discrete random variable;

ii) XY is a discrete random variable;
iii) sup(X;Y ) and inf(X;Y ) is a discrete random variable.
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Proposition 11 Let X be a random variable de�ned on 
, and with valuesin
DX = fx1; x2; :::; xng : If for all i = 1; :::; n:

Ai = (X = xi) = f! 2 
 : X (!) = xig

So, the family fAi; i = 1; :::; ng forms a complete system of 
 and X =
Pn

i=1 xi1Ai

where 1Ai denotes the indicator function of the set Ai, that is to say

1Ai
(!) =

�
1 if ! 2 A
0 Otherwise (if ! =2 A)

Example 12 Let (
;F ; P ) the probability space of the balanced die

X1 (!) = 1f2;4;6g : P (f! 2 
;X1 (!) = 1g) = P (f2; 4; 6g) =
3

6
:

X2 (!) = 1f1;3;5g (!) : P (f! 2 
;X2 (!) = 1g) = P (f1; 2; 3g) =
3

6
=
1

2
:

2.2 Distribution function of a random variable

FX (t) = P (fX � tg) ; t 2 R:

Remark 13 If the range of the random variable function is discrete, then the
random variable is called a discrete random variable. Otherwise, if the range
includes a complete interval on the real line, the random variable is continuous.

Proposition 14 The data of FX is equivalent to that of PX Law of a R:V:

Properties of the probability distribution function:
1:0 � F (x) � 1 for +1 < x <1�
2. The distribution function is a monotonic increasing function of x, i.e.

8x1; x2 2 R : x1 < x2 ) F (x1) � F (x2)
3: The distribution function F (x) is left-continuous.
4: lim

x!+1
F (x) = 1; lim

x!�1
F (x) = 0:

5: 8a; b 2 R; a < b : P (a � X < b) = F (b)� F (a)
6: P (X = x0) = lim

x!x+0

F (x)� F (x0)

3 Mathematical expectation and Properties

3.1 Mathematical Expectation

The mathematical expected value of a discrete random variable X is

E[X] =
X
k

xk � P (X = xk) =
X
k

xk � PX(xk):

Thus E[X] represents the weighted average value of X ( E[X] is also called the
mean of X).
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Example 15 The expected value of rolling a die is

E[X] = 1� 1
6
+ 2� 2

6
+ :::+ 6� 1

6
=
1

6

6X
k=1

k =
7

2
:

Proposition 16 Prove the following
I The mathematical expectation is linear E[aX] = aE[X] where a is a real
number
I Expectation of a sum of random variables: X and Y two random variables
E[aX + bY ] = aE[X] + bE[Y ], where a; b two real numbers
IThe expected value of a function of a random variable is

E[g (X)] =
X
k

g (xk)P (xk):

Example 17 The pay-o¤ of rolling a die is k2DZD, where k is the side facing
up.

What should the entry fee be for the betting to break even?

Solution 18 Here g(X) = X2, and

E[g (X)] =
6X

k=1

k2
1

6
=
1

6

6 (6 + 1) (2:6 + 1)

6
=
91

6
' 15; 17DZD:

4 Covariance, Sum Variance, Correlation

4.1 Variance and Standard Deviation

Let X have mean
� = E[X]:

Then the variance of X is

V ar(X) = E[(X � �)2] =
X
k

(xk � �)2p(xk);

which is the average weighted square distance from the mean. We have

V ar(X) = E[X2 � 2�X + �2]

= E[X2]� 2�E[X] + �2

= E[X2]� 2�2 + �2

= E[X2]� �2:

The standard deviation of X is

�X =
p
V ar (X) =

p
E[X2]� �2:

which is the average weighted distance from the mean.
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Example 19 The variance of rolling a die is

V ar (X) =
6X
k

�
k2:
1

6

�
� �2

=
1

6

6(6 + 1)(2�6 + 1)
6

�
�
7

2

�2
=
35

12
:

The standard deviation is

� =

r
35

12
' 1:70:

4.2 Covariance

Let X and Y be random variables with mean

E[X] = �X ; E[Y ] = �Y :

Then the covariance of X and Y is de�ned as

Cov(X;Y ) � E[(X � �X)(Y � �Y )] =
X
k;l

(xk � �X)(yl � �Y )p(xk; yl):

We have

Cov(X;Y ) � E[(X � �X)(Y � �Y )]
= E[XY � �XY � �YX + �X�Y ]

= E[XY ]� �X�Y � �Y �X + �X�Y
= E[XY ]� E[X]E[Y ]:

Remark 20 Cov(X;Y ) measures �concordance � or �coherence � of X
and Y :

IIf X > �X when Y > �Y and X < �X when Y < �Y then

Cov(X;Y ) > 0:

IIf X > �X when Y < �Y and X < �X when Y > �Y then

Cov(X;Y ) < 0:

Proposition 21 Here are some properties of variance
I V ar(aX + b) = a2V ar(X); a; b 2 R
I Cov(X;Y ) = Cov(Y;X),
I Cov(cX; Y ) = cCov(X;Y ); c 2 R
I Cov(X; cY ) = cCov(X;Y );
I Cov(X + Y;Z) = Cov(X;Z) + Cov(Y;Z),
I V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X;Y ).
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Proposition 22 If X and Y are independent then Cov(X;Y ) = 0.

Proof. We have already shown ( with �X � E[X] and �Y � E[Y ]) that

Cov(X;Y ) � E[(X � �X)(Y � �Y )] = E[XY ]� E[X]E[Y ];

and that if X and Y are independent then

E[XY ] = E[X]E[Y ]:

from which the result follows.

Example 23

X=Y y = 6 y = 8 y = 10 PX(x)

x = 1
1

5
0

1

5

2

5

x = 2 0
1

5
0

1

5

x = 3
1

5
0

1

5

2

5

PY (y)
2

5

1

5

2

5
1

Show that 8>><>>:
I E[X] = 2;
I E[Y ] = 8;
I E[XY ] = 16;
I Cov(X;Y ) = E[XY ]� E[X]E[Y ] = 0:

X and Y are not independent. Thus if

Cov(X;Y ) = 0;

then it does not necessarily follow that X and Y are independent!

Proposition 24 If X and Y are independent then

V ar(X + Y ) = V ar(X) + V ar(Y ):

Indeed. We have already shown (in an exercise !) that

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X;Y );

and that if X and Y are independent then

Cov(X;Y ) = 0;

from which the result follows.
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Example 25 Compute

E[X]; E[Y ]; E[X2]; E[Y 2]

E[XY ]; V ar(X); V ar(Y )

Cov(X;Y )

for Joint probability mass function PX;Y (x; y)

X=Y y = 0 y = 1 y = 2 y = 3 PX(x)

x = 0
1

8
0 0 0

1

8

x = 1 0
1

8

1

8

1

8

3

8

x = 2 0
2

8

1

8
0

3

8

x = 3 0
1

8
0 0

1

8

PY (y)
1

8

4

8

2

8

1

8
1

4.3 Correlation

De�nition 26 The linear correlation coe¢ cient of two random variables X and
Y is the real number

� = Corr = Corr (X;Y ) =
Cov (X;Y )p
V (X)

p
V (Y )

:

Remark 27 � it�s a number such that

�1 � � � 1; with j�j = 1, 9a 2 R�;9b 2 R : Y = aX + b:
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4.4 Examples

Exercise 1
A 6-sided die is rolled. Let pi be the probability of the face marked i: This

die is rigged so that the probabilities of the faces are

p1 = 0; 15; p2 = 0; 2; p3 = 0; 3; p4 = 0; 1; p5 = 0; 1:

1. What is the probability of the face marked 6 coming up.
2. What is the probability of getting an even number.
Exercise 2
We have two urns U1 and U2, Urn U1 contains three white balls and one

black ball. Urn U2 contains one white ball and two black balls.
We roll an unrigged die. If the die gives a number less than or equal to 2; we

draw a ball from urn U1. Otherwise we draw a ball from urn U2. ( We assume
that the balls are indistinguishable by touch).
1. Calculate the probability of drawing a white ball.
2. We have drawn a white ball. Calculate the probability that it comes from

urn U1.
Exercise 3
The total production of a factory is carried out by three machines A; B and C

according to the percentages 75%; 15% and 10% respectively. The proportions of
defective production are 3%; 5% and 6% respectively. A unit of the production
of this factory is chosen at random.
1. What is the probability that this unit will be defective.
2. Knowing that the chosen unit is good, what is the probability that it

would be produced by machine C?
Exercise 4
Let (
; F; P ) be a probability space, with 
 �nite. Consider the application

X : (
; F )! R.
a) If n = 2; F = f�;
g, X (!1) = x1 and X (!2) = x2 where x1 6= x2.
Is X a random variable?
b) If n = 5, F = P (
) the set of all parts of 
, X (!1) = 0 and X (!2) =

X (!3) = 1 where X (!4) = X (!5) = 2.
1. Verify that X is a random variable on (
; F ).
2. Determine the mass function and the distribution function of this variable

by assuming that the f!i; i = 1; :::; ng are equiprobable.
3. Deduce the probabilities P (�1 < X � 2) and P (X � 2).
Exercise 5
A player throws a balance dice and wins 1DA if the result is even, he loses

1DA if the result is 1 or 3 and loses or wins nothing if the result is 5. We
denote X as the random variable equal to the player�s gain.
1. Determine the distribution of X.
2. Calculate E(X) and V ar(X).
3. Determine the distribution of the random variable Y = X2 and calculate

E(Y).

13



answer

Exercise 1
1. The event space 
 is the set f1; 2; 3; 4; 5; 6g we then have

p(
) = p(f1g) + p(f2g) + p(f3g) + p(f4g) + p(f5g) + p(f6g) = 1
, p1 + p2 + p3 + p4 + p5 + p6 = 1, p6 = 1� (p1 + p2 + p3 + p4 + p5)
= 1� 0; 85 = 0; 15;

that is, the probability of the face marked 6 coming out is 0; 15,
2. The probability of getting an even number is

P (f2; 4; 6g) = p(f2g) + p(f4g) + p(f6g) = 0; 2 + 0; 1 + 0; 15 = 0; 45:

Exercise 2
1. Consider the events
B: "the drawn ball is white",
A1: "the drawn ball comes from urn U1",
A2: "the drawn ball comes from urn U2",
So

P (A1) = P (f1; 2g) = 2

6
=
1

3
;

P (A2) = P (f3; 4; 5; 6g) = 4

6
=
2

3
;

P (B=A1) =
C13
C14

=
3

4
; and P (B=A2) =

C11
C13

=
1

3
:

Using the Total Probability formula, we �nd

P (B) = P (A1)P (B=A1) + P (A2)P (B=A2) ' 0; 47:

2. This is to calculate P (A1=B); using Bayes Theorem, we �nd

P (A1=B) =
P (A1)P (B=A1)

P (A1)P (B=A1) + P (A2)P (B=A2)
=
9

17
' 0; 53:

Exercise 3
Indeed: We consider the following events:
M1: "the chosen unit is produced by machine A"
M2: "the chosen unit is produced by machine B"
M3: "the chosen unit is produced by machine C"
D: "the chosen unit is defective"
B: "the chosen unit is good".
It is clear that 
 = fU=U unit produced by the machine A or else B or else Cg ;

the events M1; M2 and M3 forms a complete system of 
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et P (M1) = 0; 75; P (M2) = 0; 15; P (M3) = 0; 1; P (D=M1) = 0; 03;
P (D=M2) = 0; 055; P (D=M3) = 0; 06. 1. Using the Total Probability The-
orem, we have

P (D) = P (M1)P (D=M1) + P (M2)P (D=M2) + P (M3)P (D=M3)

= 0; 750� 0:03 + 0; 15� 0; 55 + 0; 10� 0:06 ' 037:

2. Event B is the opposite event of event D; therefore

P (B) = 1� P (D) = 1� 0; 037 ' 0; 963:

Using Bayes Theorem, we �nd

P (M3=B) =
P (M3)P (D=M3)P
i

P (Mi)P (B=Mi)
=
0:1� 0:06
0; 963

' 0:006:
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Exercise 4
a) X is a random variable on (
; F ) , 8x 2 R : X�1(] � 1; x]) 2 F .

Suppose x1 < x2 :if x 2 [x1; x2[,

X�1(]�1; x]) = f! 2 
;X(!) � xg = f!1g =2 F ,

So X is not a random variable on (
; F ).
b) 1. It is clear that for all x 2 R; X�1(]�1; x]) 2 P (
), so X is a random

variable on (
; P (
)).
2. The support of the random variable X is DX = f0; 1; 2g, and its mass

function PX is de�ned by:8>>>><>>>>:
PX(0) = P (X = 0) = P (f!1g) =

1

5

PX(1) = P (X = 1) = P (f!2; !3g) =
2

5

PX(2) = P (X = 2) = P (f!4; !5g) =
2

5

the distribution function FX of X is de�ned by8>>>><>>>>:
if x < 0; FX(x) = 0

if 0 � x < 1; FX(x) = PX(0) =
1

5

if 1 � x < 2 ; FX(x) = PX(0) + PX(1) =
3

5
if x � 2 ; FX(x) = PX(0) + PX(1) + PX(2) = 1.

hense

FX(x) =

8>>>><>>>>:
0 if x < 0
1

5
if 0 � x < 1

3

5
if 1 � x < 2

1 if x � 2
Let�s calculate

P (�1 < X � 2) = FX(2)� FX(�1) = 1� 0 = 1 et P (X � 2)
= 1� P (X < 2) = 1� FX(1)

= 1� 3
5
=
2

5
= 0; 4

Exercise 5
1. The support of the R:V is DX = f�1; 0; 1g and its mass function PX is

de�ned by 8>>>><>>>>:
PX (�1) = P (f1; 3g) =

2

6
=
1

3

PX (0) = PX (f5g) =
1

6

PX (1) = P (f2; 4; 6g) =
3

6
=
1

2
:
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2.
E (X) = (�1)� 1

3
+ 0� 1

6
+ 1� 1

2
=
1

6
' 0; 17

and
E
�
X2
�
= (�1)2 � 1

3
+ 02 � 1

6
+ 12 � 1

2
=
5

6

hence
V ar (X) = E

�
X2
�
� E2 (X) = 5

6
� 1

36
=
29

36
' 0; 8:

It is clear that the support of the R:V Y is DY = f0; 1g and its mass function
PY is de�ned by

PY (0) = PX (0) =
1

6

PY (1) = PX (�1) + PX (1) =
1

3
+
1

2
=
5

6

So
E (Y ) = 0� 1

6
+ 1� 5

6
=
5

6
' 0; 83:

17



5 Usual laws

5.1 Bernoulli�s law of parameter p, B(p)

This is the law of a random variable X which can only take 2 values, noted 1
and 0, and p 2 [0; 1] is the probability of the value 1:

P (X = 1) = p and P (X = 0) = 1� p

This is therefore the law of the indicator function 1A of an event A such that
P (A) = p. We have

E[X] = p and V ar(X) = p(1� p)

5.2 Binomial law with parameters n and p, B(n,p)

Let n random variables X1; X2; :::; Xn be independent and have the same distri-
bution B(p). The binomial distribution B(n; p) is the distribution of the random
variable Sn = X1 + X2 + +Xn. It is therefore the distribution of the number
of events among A1; :::; An that are realized, if A1; :::; An are independent and
have the same probability p. (Above, Xn = 1An

) Sn has values in f0; 1; :::; ng
and we have:

for k = 0; 1; :::; n; P (Sn = k) = Cknp
k (1� p)n�k

What�s more

E[X] =
nX
i=1

E[Xi] = np

and since the random variables are independent,

V ar(X) =
nX
i=1

V ar(Xi) = np(1� p)

5.3 Poisson�s law

Let � > 0. A random variableX follows the Poisson distribution with parameter
� if

X (
) = N and for everything k 2 N;P (X = k) = exp (�k) �
k

k!

we have

E[X] = � and V ar(X) = �

This is the "law of small probabilities" because the limit law of the binomial
law B(n; p), with np � �:

Remark 28 Fields of application: The Poisson law models rare phenomena, it
can also be used to approximate the binomial law as we will see later.
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Example 29 Assume that out of 1000 people traveling by train at a given time,
there is on average 1 doctor. Let X be the rv representing the number of doctors
on the train.
1. What is the probability distribution of the r v X?
2. What is the probability of �nding:
a) No doctors.
b) Between 1 and 2 doctors (in the broad sense).
c) At least two doctors.

Answer
1. The probability distribution of the r:v:X:
The r.v. X follows a Poisson distribution with parameter � = 1, we write

X ! P(1), and we have

P (X = k) = exp(��)�
k

k!
= exp(�1) 1

k!

2. The probability of �nding
a) No doctor is

P (X = 0) = e�1
10

0!
= e�1 = 0:368

b) Between 1 and 2 doctors (in the broad sense) is

P (1 � X � 2) = P (X = 1) + P (X = 2)

= e�1
�
1 +

1

2!

�
= 0; 552:

c) At least two doctors are

P (X � 2) = 1� P (X < 2)

= 1� (P (X = 0) + P (X = 1))

= 1�
�
0; 368 + e�1

1

2!

�
= 0; 448:

Proposition 30 If X ! P (�1) and Y ! P (�2), the random variables X and
Y being independent, then X + Y ! P (�1 + �2) :

5.4 Geometric law

We say that a r:v. X follows a geometric law of parameter p if

X(
) = N� and for evrything k 2 X(
); P (X = k) = p(1� p)k�1:

we note
X ! G(p):
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She admits for moments:

E(X) =
1

p
and V (X) =

1� p
p2

:

Remark 31 Application situation: The geometric law models the rank of the
�rst success by repeating a Bernoulli trial identically and independently to in-
�nity (theoretically).

5.5 Hypergeometric Law

We say that a random variable X de�ned on a probability space (
; F; P )
follows a Hypergeometric distribution of parameters N;N1; n and we denote
X ! H(N;N1; n)
if DX = f0; 1; :::;min(N1;n)g and its mass function pX is given by

PX(k) =

8<:
CkN1

� Cn�kN�N1

CnN
if k 2 DX

0 otherwise

Example 32 Consider an urn containing N balls of which N1 are white balls
and N �N1 are black balls. We draw n balls at once and we note by X: "The
number of white balls among the n drawn".

Using classical probability theory, it is easy to notice that

P (X = k) =
CkN1

� Cn�kN�N1

CnN
for evrything k 2 f0; 1; :::;min(N1; n)g

so it is a random variable which follows a hypergeometric law with parameters
N;N1; n, that is to say X ! H(N;N1; n).

Remark 33 If X ! H(N;N1; n), then we have

E(X) = np and var(X) = np(1� p)N � n
N � 1 ;

where p =
N1
N
:

5.6 Normal Distribution

How to explain the normal distribution?
The normal distribution, or normal distribution, de�nes a representation of

data according to which most of the values are grouped around the mean and
the others deviate symmetrically on both sides.
The normal distribution is the most widespread and useful statistical dis-

tribution. It accounts for many random phenomena. m is the mean and � is
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the standard deviation, when we write X follows N (m;�) : The following graph
shows the shape of the density of this law

Such as

f (x) =
1

�
p
2�
exp

�1
2

�
x�m
�

�2
;x 2 R

A r:v. follows a normal distributionN (40; 5), this means that the mean value
(expectation) of is worth E (X) = 40 and 5 designates its variance, therefore
� (X) = 5 and its distribution function is given by

F (x) =

Z x

�1
f (t) dt

5.6.1 Properties of the normal law

Let X be a random variable following a reduced � = 1, centered normal E(X) =
0 and F its distribution function, we have:8>>>><>>>>:

1:P (X � t) = 1� P (X < t) = 1� FX (x)
2: If t is positif FX (�x) = 1� FX (x)
3:For everything a; b 2 R; with a � b :
P (a � X � b) = FX (a)� FX (b)
4: For everything t � 0 : P (�t � X � t) = 2FX (t)� 1:

Example 34 If we have
F (t) = 0; 9750:

We read on the table of the Normal law N(0; 1) the value of t which is equal to
1; 96.

5.7 Exponential laws

Motivation
When one wants to establish a real mathematical model, it is often neces-

sary to make many simplifying assumptions to make the model �exible from a
computational point of view. A simplifying assumption often made in practice
is that some random variables are distributed according to an exponential law.
This is justi�ed by the simplicity of calculation linked to this law but also by
the fact that it often constitutes a good approximation of the real phenomenon.
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The exponential law is the law of the life of a material that does not wear
out over time. A material having a constant failure rate over time.

Remark 35 The exponential law is the only law that has such a property.

De�nition 36 A real random variable X follows an exponential distribution
with parameter � > 0 if its density is expressed by

f (x) =

�
� exp (��) if x � 0
0 otherwise

Its distribution function is

F (x) =

Z x

�1
f (t) dt =

�
1� exp (��x) if x � 0
0 otherwise

Mathematical expectation and variance of X

E (X) =
Z +1

0

xf (x) dx =
1

�

and
V ar (X) = E

�
X2
�
� E2 (X)

such as

E
�
X2
�
=

Z +1

0

x2f (x) dx =
2

�2
:

From the two previous equations, we deduce that

V ar (X) =
1

�2
:

5.8 Generating function of the moments of a discrete Ran-
dom variable

The moment generating function of a discrete r:v. X is given by:

GX(t) = E(etX) =
X

k2X(
)

etkP (X = k):

Example 37 The generating function of the moments of a r:v:X ! B(p):

GX(t) = E(etX) =
X

k2X(
)

etkP (X = k):

= et�0(1� p) + et�1p
= (1� p) + pet:
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The generating function of the moments of a r:a:Y ! G(p):

GY (t) = E(etY ) =
X

k2X(
)

etkP (Y = k):

=
1X
k=1

etkp(1� p)k�1

=
p

1� p

1X
k=1

((1� p)et)k

=
p

(1� p)
1

(1� (1� p)et) :

Example 38 A certain equipment has a probability p = 0:02 of failure each time
it is put into service. The following experiment is carried out: the equipment
is started, stopped, restarted, stopped, until it breaks down. Let X be the r:v
representing the number of trials required to obtain the failure.
1. What is the probability distribution of the r:v X?
2. What is the probability that this equipment breaks down (for the �rst time)
on the tenth trial?

Answer
1. The probability law of the r:v. X:
The r:v. X follows a geometric law with parameter p = 0:02, we write

X ! G(0:02), and we have:

P (X = k) = p(1� p)k�1 = (0; 02)(0; 98)k�1:

2. The probability that this equipment will fail (for the �rst time) on the
tenth attempt:

P (X = 10) = (0; 02)(0; 98)10�1 = 0; 016:
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5.9 Examples

Exercise 1
The mass function of a random variable X is

f(x) =

8>><>>:
2P if x = 1
P if x = 2
4P if x = 3
0 otherwise

1) Determine the value of P:
2) Calculate P (0 � X � 3) et P (X > 1; 5):
Exercise 2
We randomly choose a ball from an urn containing 8 numbered balls:

�2;�1;0;1;2;3;

Let X be the random variable representing the number of the chosen ball.
1) Determine the probability law, the distribution function, the mean of this

variable.
2) Repeat question 1, for the random variables jXj and X2.
Exercise 3
A mouse is placed in a cage. It faces 4 gates, only one of which allows it

to exit the cage. For each unsuccessful attempt, the mouse receives an electric
shock and is placed back in its original location. It is assumed that the mouse
memorizes the unsuccessful attempts and chooses equiprobably between the
gates it has not yet tried. Let X be the rv representing the number of attempts
to exit the cage.
1. Determine the probability distribution of the R:V X. Recognize the

distribution.
2. Calculate E(X) and V ar(X).
Exercise 4
An urn contains 7 balls: One red ball, 2 yellow balls and 4 green balls. A

player randomly draws a ball, if the ball is red, he wins 2 points, if it is yellow,
he loses 2 points, if it is green, he draws a second ball from the urn without
replacement, if this second ball is red, he wins 1 points, otherwise he loses 1
points. Let X be the R:V . associating the player�s gain with each draw.
1) Determine the probability law of R:V:X.
2) Calculate the expectation and variance of R:V:X.
3) The game conditions remain identical. Indicate the amount of gain that

must be awarded to a player when the ball drawn in the second draw is red, so
that the expectation of R:V:X is zero.
Exercise 5
A company produces pens in large quantities. The probability that a pen has

a defect is equal to 0:1. Eight pens are taken from this production, successively
and with replacement. We note X the R:V that counts the number of pens
with a defect among the eight pens taken.
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1. What is the probability distribution of the R:V X?
2. What is the probability that there is no pen with a defect?
3. What is the probability that there is at least one pen with a defect?
4. What is the probability that there are fewer than two pens with a

defect?
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Answer

Exercise 1
1. f is a mass function of the R:V X, then its support is DX = f1; 2; 3g :8>><>>:

f is a mass function of the r:v:X ,
3P

x=1
f(x) = 1:

3P
x=1

f(x) = 1, 2p+ p+ 4p = 1, p =
1

7

It is easy to deduce that the distribution function of the R:V X is

FX(x) =

8>>>><>>>>:
0 if x < 1
2

7
if 1 � x < 2

3

7
if 2 � x < 3

1 if x � 3

so using the properties of the distribution function we obtain8>><>>:
P (0 � X < 3) = FX(3)� FX(�0) + pX(0) = 1� 0 + 0�

4

7
=
3

7
and

P (X > 1; 5) = 1� FX(1; 6) = 1�
2

7
=
5

7
:

Exercise 2
1. The support of X is D(X) = f�2;�1; 0; 1; 2; 3; g and its mass function

PX is de�ned by:

P (X = �2) = P (X = �1) = P (X = 0) = P (X = 1) = P (X = 2) = P (X = 3)

=
1

6
;

that is,X follows uniform law on the set f�2;�1; 0; 1; 2; 3g (X ! Uf�2;�1;0;1;2;3g):
It is easy to deduce that the distribution function of the R:V X east

FX(x) =

8>>>>>>>><>>>>>>>>:

0 if x < �2
2

6
if � 2 � x < �1

3

6
if� 1 � x < 0

:
:
1 if x � 3

and
E(X) =

1

6
(�2� 1 + 0 + 1 + 2 + 3) = 1

2
:
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2. We pose Y = h1(X) = jXj and Z = h2(X) = X2 and we have:

DY = h1(X) = f0; 1; 2; 3g and DZ = h2(Y ) = f0; 1; 4; 9g

and mass functions PY and PZ are given by:

P (Y = 0) = P (X = 0) =
1

6

P (Y = 1) = P (X = 1) + P (X = �1) = 2

6
;

P (Y = 2) = P (X = 2) + P (X = �2) = 2

6
;

P (Y = 3) = P (X = 3) + P (X = �3) = 1

6
;

et

P (Z = 0) = P (X = 0) =
1

6

P (Z = 1) = P (X = 1) + P (X = �1) = 2

6
;

P (Z = 4) = P (X = 2) + P (X = �2) = 2

6
;

P (Y = 9) = P (X = 3) =
1

6
;

Distribution functions FY and FZ of Y and Z are de�ned by

FY (y) =

8>>>>>>>><>>>>>>>>:

0 si y < 0
1

6
si 0 � y < 1

2

6
si 1 � y < 2

3

6
si 2 � y < 3

1 si 3 � y
et

FZ(z) =

8>>>>>>>><>>>>>>>>:

0 if y < 0
1

6
if 0 � z < 1

2

6
if 1 � z < 4

4

6
if 4 � z < 9

1 if z � 9:
the expectation of the R:V are given by:

E(Y ) = 0� 1
6
+ (1 + 2)� 2

6
+ 3� 1

6
=
3

2
:
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and
E(Z) = 0� 1

6
+ (1 + 4)� 2

6
+ 9� 1

6
=
19

6
= 3; 16:

Exercise 3
Let us determine the probability law of R:V X: We have:8>>>>>>><>>>>>>>:

P (X = 1) =
1

4
= P1

P (X = 2) = (1� P1)
1

3
=
3

4
� 1
3
=
1

4

P (X = 3) = (1� P1) (1� P2)�
1

2
=
3

4

2

3

1

2
=
1

4

P (X = 4) = (1� P1) (1� P2) (1� P3) =
3

4

2

3

1

2
1 =

1

4
:

The law of probability of the R:V X :

xi 1 2 3 4
P

P (X = xi)
1

4

1

4

1

4

1

4
1

Since P (X = 1) = P (X = 2) = P (X = 3) = P (X = 4) =
1

4
, we deduce

that the R:V X ! Uf1;2;3;4g
Let�s calculate: 8><>:

E (X) =
n+ 1

2
=
5

2

V ar (X) =
n2 + 1

12
=
5

4

Exercise 4
1. Let us determine the probability law of the R:V X :

DX = f�2;�1; 1; 2g :

and

P (X = �2) =
2

7
; P (X = �1) = P (V1) :P (J2 or V2 jV1 )

= P (V1) [P (J2 jV1 ) + P (V2 jV1 )]

=
4

7
� 2
6
+
4

7
� 3
6
=
10

21
or J or R is Yellow or Red

and

P (X = 1) = P (V ) :P (J or V jV )

=
4

7
� 5
6
=
2

21
or J or V is Yellow or Green,

P (X = 2) =
1

7
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Summary of the law

X (
) = xi �2 �1 1 2
P

P (X = xi)
2

7

10

21

2

21

1

7
1

2. Let us calculate the mathematical expectation of the R:V .X as well as
the variance V ar (X) :

E (X) =
4X
i=1

xiP (X = xi) =
�14
21

= �0; 66 and

V ar (X) = E
�
X2
�
� E2 (X) such as:

E
�
X2
�
=

4X
i=1

x2iP (X = xi) =
36

21
= 1; 71

From where V ar (X) = 1; 71� (0; 66)2 = 1; 27

Let us denote "�" the algebraic gain corresponding to the event V1 \R2 :
We have:

P (V1 \R2) = P (V1) :P (R2 jV1 ) =
4

7
� 1
6
=
2

21
:

We therefore obtain

E (X) =
4X
i=1

xiP (X = xi) = (�2)�
2

7
+ (�1)� 10

21
+ �� 2

21
+ 2� 1

7

=
2�� 16
21

just solve the equation:

E (X) = 0, 2�� 16 = 0, � = 8 points.

Exercise 5
1. The probability law of the R:V:X :

X =
8X
i=1

Xi such as Xi ! B (0; 1)

So, we deduce that the R; V X follows a Binomial law with parameters n = 8
and P = 0; 1, that is X ! B (8; 0; 1);

P (X = k) = Ck8 (0; 1)
k
(0; 8)

8�k
; k 2 f0; 1; :::; 8g

2. The probability that there is no pen with a defect:

P (X = 0) = C08 (0; 1)
0
(0; 8)

8
= 0; 43

29



3. The probability that there is at least one pen with a defect:

P (X � 1) = 1� P (X = 0) = 1� 0; 43 = 0; 57

4. The probability that there are less than two pens with a defect:

P (X < 0) = P (X = 0) + P (X = 1) � 0; 813:
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6 Conditional Expectation and prediction

Remark 39 Let Z = (X;Y ) a pair of real random variables such that X (
) =
fx1; :::; xng and Y (
) = fy1; :::; ypg. So, the family of events

([X = xi] \ [Y = yi])1�i�n
1�j�p

forms a complete event system of 
.

Remark 40 The event [X = xi] and [Y = yj ] can also be noted [X = xi; Y = yj ]
or even [(X;Y ) = (xi; yj)] :

6.1 Laws associated with a pair of random variables

The pair of real random variables (X;Y ) is confused with a probability law
P(X;Y ) on 
 = R2. In this case, F is constructed with the �blocks� (a; b) �
(c; d):(X;Y ) represents a random experiment whose outcome is a stream of
reals. The law of the pair (X;Y ) is used to characterize the laisons and mutual
in�uences of the two characters in experimentec. Note

P(X;Y ) (�) = P ((X;Y ) 2 �)

The probability that the results of the experiment belong to �. In the case
where � = �1 ��2 we can write down the previous quantity

P(X;Y ) (�) = P (X 2 �1; Y 2 �2)

6.2 Marginal laws

The law of a pair is associated with two marginal laws, which are the laws of
each of the elements of the pair taken separately, de�ned by the set of possible
values and the associated probabilities obtained by summation:

PX (X = xi) =
X
j2J

P (X = xi; Y = yj) =
X
j2J

Pij = Pi:

PY (Y = yj) =
X
i2I

P (X = xi; Y = yj) =
X
i2I

Pij = P:j

If the couple�s law is presented in a table, these laws are obtained in the margins,
by row or column summation

Y=X xi
. . .
. . .
yj Pij P:j
. . .
. . .

Pi: 1
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6.3 Conditional laws

We can also associate two conditional laws with the law of a pair, i.e. the law
of one variable, the other having a �xed value ( law in a given row or column).
For example, for a �xed Y = yj , the conditional law of X is de�ned by the set
of possible values and the associated probabilities

P (X = xijY = yj) =
P (X = xi; Y = yj)

P (Y = yj)
=
Pij
P:j

= P ji

We check that it is a probability law on


X = fxi; i 2 Ig :
X
i2I

P ji =
1

P:j

X
i2I

Pij = 1

Example 41 The law of a pair (X;Y ) is given by the following table

Y=X �2 0 2
�1 0; 1 0; 2 0; 1 0; 4
2 0; 2 0; 2 0; 2 0; 6

0; 3 0; 4 0; 3 1

The conditional distribution of X for Y = �1 is shown in the table below

XjY = �1 �2 0 2
0;1
0;4

0;2
0;4

0;1
0;4 1

Recall that the two random variables X and Y are independent if for all i 2 I
and j 2 J :

P (X = xi; Y = yj) = P (X = xi)P (Y = yj) (Pij = Pi:P:j)

In this case, of course, conditional laws are confused with marginal laws; for
example

P (X = xijY = yj) = P ji =
Pi:P:j
P:j

= Pi:

This is one of the few cases where the marginal laws can be used to reconstruct
the law of the couple.

De�nition 42 Conditional laws are associated with moments, such as the ex-
pectation of the law de�ned by the pairs

��
yj ; P

i
j ; j 2 J

�	
, or:

E (Y jX = xi) =
X
j2J

yjP (Y = yj jX = xi) =
X
j2J

yjP
i
j :

Remark 43 The plot of this conditional expectation as a function of xi is called
the (non-linear) regression curve from Y to X.
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Example 44 In the previous example, the conditional distribution of Y for
X = 2 is given by the following table

Y nX = 2 �1 2
0;1
0;3

0;2
0;3 1

From this table, we can calculate the conditional expectation

E (Y jX = 2) = (�1) 1
3
+ 2

�
2

3

�
= 1:

Remark 45 Note that E (Y jX) is a function of X, so is a discrete random
variable whose probability law is de�ned by the set of possible values, in this
case fE (Y jX = xi) ; i 2 Ig and the associated probabilities Pi: = P (X = xi) :
We can therefore calculate the mean value of this random variable, i.e

E [E (Y jX)] =
X
i2I

Pi:E (Y jX = xi)

=
X
i2I

Pi:
X
j2J

yjP (Y = yj jX = xi)

=
X
i2I

Pi:
X
j2J

yjP
i
j

=
X
i2I

X
j2J

yjPi:
Pij
Pi:

=
X
j2J

yj
X
i2I

Pij

=
X
j2J

yjP:j = E (Y ) :

6.4 Moments associated with a couple

If h:R2 ! R is a continuous application, it de�nes a real random variable whose
moments, such as its expectation, can be calculated:

E (h (X;Y )) =
X
i2I

X
j2J

Pijh (xi; yj)

In the special case where h (X;Y ) = [X � E (X)] [Y � E (Y )], we de�ne the
covariance of X and Y

Cov (X;Y ) = E f[X � E (X)] [Y � E (Y )]g
= E (XY )� E (X)E (Y )

If X and Y are independent, then E (XY ) = E (X)E (Y ) and consequently
Cov (X;Y ) = 0:
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Example 46 Consider the pair (X;Y ) whose distribution is de�ned by the fol-
lowing table

Y nX �1 0 1
�1 1

8
1
8

1
8

0 1
16

1
8

1
16

1 1
8

1
8

1
8

The distributions of X and Y are symmetrical with respect to 0, so E(X) = 0 =
E(Y ) and

Cov (X;Y ) = E (XY ) = 1� 1
8
+ (�1) 1

8
+ (�1) 1

8
+ 1� 1

8
= 0;

and yet these two variables are not independent since, for example

P (X = �1; Y = �1) = 1

8
6= P (X = �1)P (Y = �1) = 5

16
� 3
8

V ar (X) = �2X and V ar (Y ) = �2Y

We�ll establish that this coe¢ cient lies between �1 and +1, due to the Schwarz
inequality

jE (XY )j �
p
E (X2)

p
E (Y 2)

which we obtain by considering the polynomial in �, always positive

E (X � �Y )2 = �2 � E
�
Y 2
�
� 2�E (XY ) + E

�
X2
�
� 0

which implies E2 (XY ) � E
�
X2
�
E
�
Y 2
�
� 0, or by applying this inequality to

centered variables
jCov (X;Y )j � �X�Y

and therefore j�j � 1. The case j�j = 1 corresponds to the existence of an a¢ ne
relationship between the two variables

j�j = 1 () 9a 2 R�; 9b 2 R; Y = aX + b:

This a¢ ne relationship, when it exists, can be written as follows

Y = E (Y ) +
Cov (X;Y )

V ar (X)
[X � E (X)] :
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7 Convergences

In this section we will study two types of convergence of such sequences, in
probability and in law.
We consider sequences of random variables (Xn)n2N where the variables Xn

de�ned on the same probability space (
;F ; P ), that is to say they concern the
result of a sequence of random experiments all of the same type.

7.1 Inequalities

7.2 Markov inequality

If X is a positive random variable (R:V ) whose expectation exists, Markov�s
inequality states that for all � > 0

P (X � �E (X)) � 1

�
or P (X � �) � E (X)

�

7.3 Bienaymé-Tchebychev inequality

We obtain the Bienaymé-Tchebychev inequality by applying the Markov in-

equality ( for all k such that E(Xk) exists: P
���Xk

�� � "� � E jXjk

"k
; " > 0) to

the v.a X � E(X) for k = 2, therefore for a R:V whose variance exists, that is
for all " > 0 �xed

P ((jX � E (X)j) � ") � V ar (X)

"2
:

Example 47 Let Y ! N (m;�) :

P (jY �mj � ") = 1� P (jY �mj < ")
= 1� P (m� " < Y < m+ ")

= 1�
�
�
� "
�

�
� �

�
�"
�

��
= 2

�
1� �

� "
�

��
Let us take for example the case where:

" = 4; � = 2:5: So
"

�
= 1:6 and �

� "
�

�
= 0:9452:

So in this case
P (jY �mj � ") = 0:1096:

let us compare with the increase obtained by the Bienaymé-Tchebychev inequal-
ity:

�2

"2
= 0:3906:

it is indeed an upper bound of the calculated probability.
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Example 48 Let Y ! B

�
20;

1

2

�
: So � =

p
5 and E (Y ) = 10: Let�s take for

example " = 3 :

P (jY � 10j � 3) = 1� P (7 < Y < 13 < ")

= 1�
12X
k=8

P (Y = y) = 1�
�
1

2

�20 12X
k=8

Ck20

= 1� 0:7368 = 0:2632:

Or
�2

"2
=
5

9
= 0:555:

The Bienaymé-Tchebychev inequality is therefore veri�ed.

Remark 49 The upper bound obtained with this inequality is often too large,
but it is universal. In some problems it is a question of improving this inequality,
that is to say of �nding a smaller upper bound of the probability in question, in
the case of random variables of a particular type.

8 Weak law of large numbers

8.1 Convergence in probability

The de�nition of convergence in probability involves a numerical sequence of
probabilities whose convergence will often be established using the Bienaymé-
Tchebychev (B:T ) inequality, which links a probability and a variance.
If (Xn) is a sequence of R:V that converges to a R:V X, this means that Xn

"gets closer" to X when n increases. We measure the distance between Xn
and X by jXn �Xj which will be all the smaller as n is large; but, concerning
R:V , we must consider the event jXn � Xj < " which will be realized with
a probability all the higher as n is large. We will therefore associate with
the random sequence (Xn) the numerical sequence of the probabilities of these
events, which must converge to one.

De�nition 50 We say that the sequence of random variables (Xn) converges
in probability to a variable X if, for all " > 0

P [(jXn �Xj) < "]! 1 When n!1

or, equivalently
P [(jXn �Xj) > "]! 0 When n!1

we write
Xn

p! X:

In the general case, it is di¢ cult to evaluate P [(jXn �Xj) > "], and therefore
its limit. On the other hand, when X is a certain random variable of value C,
we have

P [(jXn �Xj) > "] = P [(jXn � Cj) > "] = 1� P (C � " < Xn < C + ") :
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The interesting case is that of a sequence of variables X all with the same
expectation m. We then study the convergence in probability of this sequence
towards the certain variable with values m.

Theorem 51 (weak law of large numbers) Let (Xn)n2N� be a sequence of two-
by-two independent random variables, with the same expectation m and the same
standard deviation.�

We set Sn =
Pn

i=1Xi and Xn =
Sn
n
(mean of the n �rst Xi). Then the sequence�

Xn

�
n2N� converges in probability towards the certain variable of value m:

Indeed
To apply the inequality B.T. to the variable Xn, we calculate its expectation

and its variance.

E (Sn) =
nX
i=1

E (Xi) = nm;

from where

E
�
Xn
�
= E

�
Sn
n

�
=
1

n
E (Sn) = m:

V ar (Sn) =
nX
i=1

V ar (Xi) = n�
2;

because the variables X are independent two by two, where

V ar
�
Xn
�
= V ar

�
Sn
n

�
=
1

n2
V ar (Sn) =

�2

n
:

According to B.T.�s inequality,

8" > 0 : P
����Xn �m

��� � "� � �2

n"2
;

therefore according to the �gendarmes�theorem�, a probability being a pos-
itive number,

8" > 0 : lim
n!+1

P
����Xn �m

��� � "� = 0;
hence the result.

Example 52 Case of a sequence of Bernoulli variables.
If the variables X all follow the same Bernoulli distribution of parameter p, while
maintaining the independence hypothesis, the variable Sn follows a Binomial
distribution of parameters n and p: it represents the number of successes out
of n attempts of an event of probability p. We can then say that X represents
the frequency of success out of n attempts, and the sequence X converges
in probability towards the certain variable of value p. We can specify this fact
with Bernoulli�s Theorem:
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Theorem 53 In a succession of n independent Bernoulli trials, such that the
probability of success is p, the frequency Xn veri�es

8" > 0 P
���Xn � p

�� > "� � 1

4n"2

and the sequence
�
Xn

�
converges in probability towards the certain variable of

value p.

Remark 54 This theorem justi�es the fact that one can have an approximate
value of the probability of success, by taking the frequency of success over a large
number of attempts. For example, to see if a coin is fair, one tosses it a large

number of times, and the frequency of �heads�must be close to
1

2
.

9 Convergence in law

Convergence in law is a convergence of the laws of random variables, without
taking into account the behavior of the sequence for a �xed eventuality.

De�nition 55 We say that the sequence of random variables (Xn)n�1 con-
verges in law towards the random variable X when n tends towards in�nity, and

we write Xn
law!
n!1

X, if for any function f : R! R bounded continuous

E (f (Xn)) !
n!1

E (f (X))

This de�nition is not necessarily the easiest to handle, and there are many
equivalent de�nitions of this convergence.

Proposition 56 The convergence in law of Xn towards X is equivalent to each
of the following properties:
1. Simple convergence of characteristic functions

'Xn
(t) !

n!1
'X (t) 8t 2 R

2. Simple convergence of distribution functions at points of continuity

FXn
(x)! FX (x)

for all x such that FX is continuous in x.

Remark 57 The following lemma follows immediately from the de�nition of
convergence in law.

Lemma 58 If the following (Xn)n�1 converges in law to X and if: f : R! R
is a continuous function, then f (Xn) converges in law to f (X) :
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Theorem 59 Let (Xn)n�1 a sequence of independent real random variables
with the same distribution, with mean m and variance �2 �nished, either

Sn = X1 + :::+Xn:

So
Sn � nm
�
p
n

law!
n!1

S
law!
n!1

N (0; 1)

that�s to say

P

�
Sn � nm
�
p
n

� t
�
!
Z t

�1

1p
2�
exp

�
�1
2
x2
�
dx = � (t) 8t 2 R

Remark 60 The distribution function � of the normal law N (0; 1) above all
R.

Example 61 Let Xn ! U
��

1

n
;
2

n
; :::;

n

n

��
: So P

�
Xn =

k

n

�
=
1

n
:

for all real x 2 [0; 1] ;

Fn (x) =
X
k

n
�x

1

n
=
X
k�nx

1

n
=
1

n
[nx] ;

or [y] denotes the integer part of y, for any real y:Or we know that

[nx] � nx < [nx] + 1;

from where
nx� 1 < [nx] � nx;

and therefore

x� 1

n
<
1

n
[nx] � x:

According to the gendarmes�theorem we therefore have

lim
n!+1

1

n
[nx] = x

that�s to say
8x 2 [0; 1] lim

n!+1
Fn (x) = x:

Let F (x) = x on [0; 1], and F (x) = 0 if x < 0; F (x) = 1 if x > 1: So F is the
distribution function of a variable X following a uniform distribution on [0:1]:
The sequence (Xn)n�1 converges in distribution (converges in law)towards a
variable X ! U ([0; 1]) :
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10 Approximations

10.1 Approximation of the Binomial distribution by the
Poisson distribution

The binomial distribution depends on two parameters n and p, while the Poisson
distribution depends on only one parameter. For a binomial distribution to be
as close as possible to a Poisson distribution, we must at least hope that these
two distributions have the same expectation. The expectation of the binomial
distribution being n � p and that of the Poisson distribution being , it is
necessary that � = np. This necessary condition is not su¢ cient to achieve such
an approximation, theoretically the approximation is perfect when:8<: n! +1

p! 0
np = constant

In practice, the condition �
n � 30
np � 5:

or �
n � 50
p � 0; 1:

is su¢ cient to consider the approximation.

Example 62 We consider a binomial distribution with parameters n = 35 and
p = 0:1. We are in the conditions of approximation of this distribution by a
Poisson distribution with parameter

� = 0:1� 35 = 3:5:

10.2 Approximation of a hypergeometric law by a bino-
mial law

Let XN ! H (N;n; p), for any integer N such that Np is an integer. (We note

J =

�
N

Np
2 N

�
). the sequence (Xn)n2J converges in law towards a random

variable X ! B (n; p) :

Remark 63 We make this approximation from N > 10n.

11 Central Limit Theorem

Theorem 64 Let (Xn) a sequence of independent random variables with the
same distribution, with expectation m and standard deviation �: We pose

Sn =
nX
i=1

Xi; Xn =
Sn
n
, Zn =

Sn � nm
�
p
n

=
Xn �m
�p
n

:
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Then the sequence (Zn) converges in law towards a variable T ! N (0; 1) :

We know that E (Sn) = nm; E
�
X
�
= m; V ar

�
Xn

�
=
�2

n
: We notice that

Zn =
Sn � nm
�
p
n

=
Xn �m
�p
n

:

Zn is therefore the reduced centered variable associated with both Sn and Xn:

Remark 65 The sum of n independent variables and of the same law can be
approximated, for n large enough, by a variable of normal law, whose parame-
ters are the expectation and the variance of this sum.
The average of n independent variables and of the same law can be approxi-
mated, for n large enough, by a variable of normal law, whose parameters are
the expectation and the variance of this average.

11.1 Approximation of a Binomial distribution by a Nor-
mal distribution

If the variables Xi are independent Bernoulli variables of parameter p, the sums
Sn follow a binomial distribution of parameters n and p, of expectation np, of
variance npq, with q = 1 � p. The application of the central limit theorem to
the sequence Sn gives:

Theorem 66 Let X ! B (n; p). For n large enough the law of X can be
approximated by the normal law N (np; npq) :

In practice: this approximation is done as soon as n > 20, with an average
parameter p.

11.2 Law of Frequency of Success

Similarly, with the same notations, the variable Fn =
Sn
n
which gives the fre-

quency of success of an event E of probability p on n identical and independent
draws is the mean X of the n Bernoulli variables Xi ! B (p) :
The central limit theorem then gives:

Theorem 67 Let F be the frequency of the success of an event E of probability
p on n identical and independent draws. For n large enough the law of F can

be approximated by the normal law N
�
p;
pq

n

�
:
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11.3 Approximation of a Poisson distribution by a Normal
distribution

If the variables Xn of the initial sequence all follow a Poisson distribution of
parameter p, and if they are independent, their sums Sn follow a Poisson dis-
tribution of parameter np. The expectation and variance of Sn are both equal
to np. According to the central limit theorem, the general sequence converges
in distribution to a reduced centered normal distribution variable, which allows
the following approximation:

Theorem 68 Let X ! P (�) be. The law of X can be approximated by the
normal law N (�; �) :

Remark 69 In practice: we can make this approximation from � > 15:
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11.4 Examples

Discrete Usual Laws
Bernoulli (p) with p 2 [0; 1] : P (X = 0) = 1 �p and P (X = 1) = p.
Binomiale (n; p) with n > 0 and p 2 [0; 1] : P (X = k) = Cknp

k(1 � p)n�k
for k = 0; :::; n.
Géométrique(p) with p 2 [0; 1] : P (X = k) = p(1� p)k�1 for k 2 N�?.

Poisson(�) with � > 0 : P (X = k) = exp (��) �
k

k!
for k 2 N.

Exercise 1
A certain equipment has a probability p = 0:02 of failure each time it is

put into service. The following experiment is carried out: the equipment is
started, stopped, started again, stopped, until it breaks down. Let X be the
r:v. representing the number of trials required to obtain the failure.
1. What is the probability distribution of the r:v:X?
2. What is the probability that this equipment breaks down ( for the �rst

time) on the tenth trial?
Exercise 2
In a marble quarry, an inspection is carried out on slabs intended for con-

struction. The surface of the slabs is checked to detect any chips or stains. It
was found that on average there are 1; 2 defects per slab and that the number
of defects per slab follows a Poisson distribution.
1. What is the parameter of this variable? What are the possible values of

the variable?
2. What is the probability of observing more than 2 defects per slab?
3. The company presents its customers with two categories of slabs: those

with less than two defects (quality ***) and those with at least two defects
(quality **). What is the probability of observing at least two defects on a
slab? What is then the proportion of slabs of quality **?
4. Out of 500 slabs inspected, what is the expected number with no defects?
Exercise 3. Parts 1 and 2 are independent
Part 1
Let X,Y be two independent r:a. of Poisson distributions with respective

parameters � and �.
Determine the conditional distribution of X when the sum S = X + Y has

a �xed value S = s. Deduce the expression of the regression function of X on
S then the value of E [E(X=S)]
Part 2
The following model can be used to represent the number of injured people

in tra¢ c accidents over a weekend. The number of accidents follows a Poisson
distribution with parameter �. The number of injured people per accident,
follows a Poisson distribution with parameter m. The total number of injured
people is therefore

S jN = n = X1 +X2 + ���+XN
such that S jN = n ! P (nm)
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S is the sum of a random number of Poisson variables, independent and with
the same distribution.
1. Give an expression for P (S = s).
2. Calculate P (S = 0).
3. Calculate E(S) and V (S).
Exercise 4
A laptop manufacturer wants to check that the warranty period it must

associate with the hard drive corresponds to a not too large number of returns
of this component under warranty. Laboratory tests have shown that the law
followed by the life span, in years, of this component is the exponential law with
an average 4.
1. Specify the distribution function of this law as well as its expected value.

E(X) and are standard deviation .
2. What is the probability that a hard drive will operate without failure for

more than four years?
3. What is the probability that a hard drive will operate without failure for

at least six years, given that it has already operated for �ve years?
4. What is the probability that the lifetime belongs to the interval: [E(X)�

�;E(X) + �]?
5. How long do 50% of hard drives operate without failure?
6. Give the optimum warranty period to replace less than 15% of hard drives

under warranty.
Exercise 5
The distance ( in meters) traveled by a projectile follows a normal distribu-

tion. During training, we �nd that:
� The probability that a projectile exceeds 60 meters is 0:0869.
� The probability that a projectile travels a distance less than 45 meters is

0:6406.
� Calculate the average distance traveled by a projectile, as well as its stan-

dard deviation.
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Answer

Exercise 1
1. The probability law of the R:V .. X:
The random variable X follows a geometric distribution with parameter

p = 0;02, we write X ! G(0; 02), and we have

P (X = k) = p(1� p)k�1 = (0; 02)(0; 98)k�1; k 2 f1; 2; ::::g :

2.The probability that this equipment will fail (for the �rst time) on the
tenth attempt

P (X = 10) = (0; 02)(0; 98)10�1 = 0; 016:

Exercise 2
1. LetX be the variable: "number of defects per slab". The distribution

of X is a Poisson distribution. Its parameter is equal to the mean observed on
the sample: � = 1; 2. The possible valuesof X are positive integers
2.

P (X > 2) = 1� P (X � 2):

Or P (X = 0) = e�1;2; P (X = 1) = 1; 2� e�1;2; P (X = 2) = e�1;2 � 1; 2
2

2!
P (X = 0) = 0; 301 ; P (X = 1) = 0; 361 ; P (X = 2) = 0; 217:

P (X > 2) = 1� P (X � 2) = 1� 0; 879 = 0; 122

3. The probability of observing at least two defects on a slab is then

P (X � 2) = 1� P (X � 1) = 1� e�1;2 � 1; 2� e�1;2 = 0; 338:

The proportion of quality ** slabs is therefore 33; 8% .
4. Of the 500 slabs checked, the expected number showing no defects is

500� P (X = 0) � 150:

Exercise 3
Part 1
X and Y are two independent Poisson such that

X ! P (�) and Y ! P (�)

Let us determine the conditional law of X=S = X + Y�?
We know that

S ! P (�+ �)
and therefore for

0 � x � s; P (X = x=S = s) =
P (X = x; S = s)

P (S = s)

=
P (X = x)P (S = s=X = x)

P (S = s)

=
P (X = x)P (Y = s� x)

P (S = s)
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by calculation we �nd

P (X = x)P (Y = s� x)
P (S = s)

=
s!

x! (s� x)! �
�x�s�x

(�+ �)
s

= Cxs

�
�

�+ �

�x�
1� �

�+ �

�s�x
= Cxs P

x (1� P )s�x

We deduce that X=S = s! B

�
s;

�

�+ �

�
so of mean

E (X=S = s) = s
�

�+ �
constant.

So
E (X=S) is a random variable

such as

E (X=S) = S
�

�+ �
is a random variable and

E (E (X=S)) = E
�
S

�

�+ �

�
=

�

�+ �
E (S) =

�

�+ �
� �+ � = �:

Part 2

Remark 70 What to remember from this exercise The application of the theo-
rems of total expectation and total variance �nds its full meaning here.

1. If we know the number of accidents over the weekend, we can then
know the number of injured people over the weekend using the sum of Poisson
variables: we will therefore use the conditional probability law8><>:

P (S = s=N = n) =
e��n(�n)s

s!
) P (S = s) =

P1
n=0

e��n(�n)s

s!

e���n

n!

P (S = s) =
e���s

s!

P1
n=0

�nnse��n

n!
:

2.

P (S = 0) = e��
1X
n=0

�ne��n

n!
= exp[��(1� e��)]:

3. 8>>>>>>>>>><>>>>>>>>>>:

E(S) = E[E(S=N)]
E(S=N = n) = n�) E(S=N) = N�
E(S) = E(N�) = �E(N) = ��
V (S) = E[V (S=N)] + V [E(S=N)]
E(S=N) = N� and V (S=N) = N�
E[V (S=N)] = E(N�) = �E(N) = ��
V [E(S=N)] = V (N�) = �2V (N) = �2�) V (S) = ��+ �2�
= ��(1 + �):
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Exercise 4
1. The law followed by the lifetime, in years, of this component is the

exponential law with mean 4. Its density is

f(x) = 0; 25e�0;25xfor x � 0

The average lifespan is equal to 1=0; 25 = 4 years, and its standard deviation
is � = 4. The distribution function is

F (x) =

�
0 if x < 0R x
0
f(t)dt = 1� e�0;25x if x � 0

2.
P (X > 4) = 1� F (4) = exp(�1) = 0; 368:

3. By de�nition of a conditional probability

P (X � 6=X > 5) =
P (X � 6)
P (X > 5)

= e�0;25(6�5) = e�0;25 = 0; 78:

This is a phenomenon without memory
4.

P [E(X)� � < X < E(X) + �] = P (0 < X < 8) = F (8) = 0; 865:

5. We are looking for the duration d during which 50% hard drives work
without failure.

P (X > d) = 1� F (d) = 0; 5: From where exp(�0; 25d) = 0; 5:

We obtain d = 2; 77years:
6. We seek the duration t such that: P (X < t) � 0; 15. From where

P (X � t) = exp(�0; 25t) = 0; 85) t = � ln 0; 85
0; 25

' 0; 61:

Exercise 5
X ! N(m;�):
We seek to calculate the mean m and the standard deviation �: We pose:

Z =
X �m
�

! N (0; 1) :
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we have

�
P (X > 60) = 0; 0869
P (X < 45) = 0; 6406

)

8>><>>:
P

�
Z >

60�m
�

�
= 0; 0869

P

�
Z <

45�m
�

�
= 0; 6406

)

8>><>>:
1� P

�
Z � 60�m

�

�
= 0; 0869

= F

�
60�m
�

�
= 0; 9131

)

8>><>>:
F

�
60�m
�

�
= 0; 9131

F

�
45�m
�

�
= 0; 6406

Using the reduced centered normal distribution table, we have8><>:
60�m
�

= 1; 36

45�m
�

= 0; 36
)
�

� = 15:
m = 39; 6:
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Part II

Inferential Statistics
If probability theory is the deductive method of statistics, then by implication,
theory in statistical science must be represented by some well-de�ned popula-
tion with a known probability distribution and data by the sample drawn from
that population. Statistical inference then becomes the inductive methods for
using sample data to make inferences about the probability distribution of the
population from which the sample was drawn.

Population (
)

Known Probability Distribution
of Population

�!�!! Sample
Sampling Distributions
of Sample Statistics

Population
Probability Theory&% Statistical Inference

Sample

Statistical inference then is the inverse of the probability theory. It is the process
of making statements about an unknown population on the basis of a known
sample from that population.

12 Sampling Theory

Introduction
The study of the characteristics of all elements of a population is often

impossible to achieve due to cost and time constraints. This impossibility leads
to studying a subset from the parent population: The sample.Sampling consists
of deducing from the supposedly known knowledge of the characteristics of a
population, the characteristics of the samples taken from this population.
Estimation is the inverse problem. It involves estimating, from the charac-

teristics calculated on one or more samples, the value of the characteristics of
the parent population.

Parent population 
 Samples Ei
Number or size N n

Average m Xi

Frequency or proportion P fi
Variance �2 �2i
Standard deviation � �i

Probabilistic methods of sample formation consist of randomly selecting ele-
ments from the population and are the only ones that respect statistical laws.
The sampling of elements from the sample can be carried out.
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With replacement:
The sampled element is immediately returned to the parent population be-

fore sampling the next one. Since an element may be sampled several times, the
draws are independent and the sample is said to be non-exhaustive.
Without replacement:
The sample is exhaustive, but the draws are not independent since the com-

position of the parent population is modi�ed at each draw.In the following, in
order to apply the rules of probability calculation, the samples will be assumed
to be constituted with replacement, or to be samples without replacement whose
size is negligible compared to that of the population which is large or in�nite
(the draw is then similar to a draw with replacement). Let us indicate the
procedure to be implemented to constitute a sample using a table of random
numbers.
This table is made up of the numbers 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 and each of the

integer values has the same probability of appearing. Any number in the table
has no relationship with the number above, below, to the right or to the left of
it.the numbers are randomly scattered in the table we are using, the numbers
are grouped into columns of 5 digits, each line has 50 numbers (10 groups of
5). To choose numbers from the table, it is simply a matter of:
a) Choosing an entry point in the table.
b) Choosing a reading route. We can read the numbers in a line (from left

to right or from bottom to top).
We could also skip every other number,

12.1 L�enquête statistique (Techniques de sondage)

Randomly drawing a sample of size n = 10 using the random number table.
The delegate of a student association of a university wants to randomly draw a
sample of 10 individuals who are part of the association. Let�s suppose that
the AEU has 300 individuals listed on a �le. We therefore have the following:
Population: The individuals who are members of the association.
Sampling frame: The list of names of the individuals on the �le.
Statistical unit: The individuals.
Population size: N = 300.
Required sample size: N = 10.
Drawing method: Without replacement (exhaustive drawing). We

start by numbering each individual in the sampling frame from 001 to 300.
Since the sampling frame has 300 individuals, we will choose 3-digit numbers
from the table. To read the table, we propose the following rule: Start from
the 3rd line, considering only the last 3 digits of the 4th column (and the
following ones if applicable) with reading from top to bottom, only retain the
reading results that are between 001 and 300. Since we are drawing without
replacement, we reject any number already taken out that appears again in the
selection procedure. We then obtain the following 10 numbers: The individu-
als with the following numbers in the sampling frame will constitute the sample
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of size n=10.
251 045 075 157 199
267 278 026 238 051

12.2 Sampling distribution

Let in a parent population 
 of size N , a random variable X for which the
mathematical expectation m, the proportion P and the standard deviation are
known.
From this population come k samples E1; E2; :::; Ek of size n which will have

di¤erent means and standard deviations. The notion of sampling distribution
can be summarized and schematized:

Parent population: 

Size: N
Average: m (connue)
proportion: P (connue)
Standard deviation � (connue)

Sample 1
Size: n
Average:X1

proportion:f1
Standard deviation:�1

Sample 2
Size: n
Average:X2

proportion: f2
Standard deviation:�2

Sample k
Size: n
Average:Xk

proportion: fk
Standard deviation:�k

Remark 71 Deduce the characteristics of a sample of knowledge characteristics
of the parent population.

12.3 Sampling distribution of means

The averages Xi of each sample vary from sample to sample and represent the
distribution of the means of the random variable Xi which associates with any
sample of size n the mean of that sample.
The random variable Xn therefore takes the values: X1; X2; :::; Xk:

12.4 Characteristic values of Xn

� The mathematical expectation of the random variable Xn is equal to that of
the parent population:

E
�
Xn

�
= m

� The variance of the random variable Xn is equal to that of the parent
population reported to the sample size:

V
�
Xn

�
=
�2

n

� The standard deviation of the random variable Xn is deduced from the
variance:

�
�
Xn

�
=

�p
n
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Remark 72 If the samples are taken from a �nite parent population and are
constituted without replacement. The mathematical expectation of Xn is always
equal to m, but the standard deviation is corrected by the completeness factor
(correction factor)

�
�
Xn

�
=

�p
n

r
N � n
N � 1 �

�p
n

r
1� n

N
such as

n

N
represents the polling rate.

Mathematical justi�cation: Mathematical expectation and variance
of X, the sample mean

A sample of size n is randomly selected (drawing with replacement) whose
elements have a measurable characteristic X following a probability distribution
with mean E (X) = m and of variance V ar (X) = �2:
By randomly taking a sample of size n from this population, we create a

sequence of n independent random variables X1; X2; :::; Xn each of which has
the same distribution as X.

a) The sample mean X =
X1 +X2 + :::+Xn

n
is a random variable whose

mathematical expectation is E (X) = m:
Indeed

E
�
X
�
= E

�
X1 +X2 + :::+Xn

n

�
=
1

n
E (X1 +X2 + :::+Xn)

=
1

n
[E (X1) + E (X2) + :::+ E (Xn)] =

n

n
m:

b) The variance of X is equal to the variance �2 of the population divided
by n the sample size

V ar
�
X
�
= �2

�
X
�
= E

�
X �m

�2
=
�2

n

Indeed

V ar
�
X
�
= V ar

�
X1 +X2 + :::+Xn

n

�
=
1

n2
[V ar (X1 +X2 + :::+Xn)]

Since X1; X2; :::; Xn are independent, we can write

V ar
�
X
�
=

1

n2
[V ar (X1) + V ar (X2) + :::+ V ar (Xn)]

=
1

n2
�
�2 + �2 + :::+ �2

�
=

1

n2
n�2 =

�2

n
:
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12.5 Frequency sampling distribution

The probability of occurrence of an event A is equal to P . We consider random
samples of size n drawn from a population of size N . For each sample we deter-
mine the proportion f of occurrence of event A. The population and the samples
follow binomial distributions B(N;P ) and B(n; f) respectively. The averagemf

and the standard deviation �f of the sampling distribution of frequencies are:

mf = P and �f =

r
P (1� P )

n

if the draw is non-exhaustive or if the population is in�nite.

�f =

r
P (1� P )

n

r
N � n
N � 1

if the draw is exhaustive.

Remark 73 * If the sample size n is large enough ( in practice n � 30) the
sampling distribution of the mean approaches the normal distribution regardless
of the population distribution, that is:

X ! N

�
m;

�p
n

�
:

* Si la population est normalement distribuée, la distribution d�échantillonnage
de la moyenne est une loi normale quelle que soit la valeur n de la taille des
échantillons.
* Si la population parente possède une distribution pratiquement symétrique, il
semble qu�un échantillon d�au moins 15 observations soit convenable pour que
la distribution de la moyenne soit approximativement normale.
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13 Parameter Estimation

Introduction
Random variables X1; X2; :::; Xn are de�ned by their distribution function:

F (x1; x2; :::; xn; �) = P (X < x1; X2 < x2; :::; Xn < xn; �)

dependent on a parameter � belonging to a set � included in R. The problem
of estimation is that of measuring � from the observation of random variables
(X1; X2; :::; Xn) :

An estimator of � is a random variable, denoted b� = b� (X1; X2; :::; Xn),
su¢ ciently regular function of random variables X1; X2; :::; Xn and only of these
random variables (that�s to say that � must not intervene in b� explicitly):
Remark 74 We ask to b� the following two qualities:8<: 1) absence of bias: E

�b�� = � (biais = b (�) = E�b��� �)
2) Convergence: 8" > 0; lim

n!+1
P
h���b� � ���� > "i = 0

The �rst property is related to the absence of systematic error while the second
is convergence in probability.

De�nition 75 An estimator b� asymptotically unbiased
lim
n!1

E
�b�� = � and whose variance veri�es lim

n!1
V ar

�b�� = 0 is convergent.
Theorem 76 Any unbiased estimator whose variance tends to zero is conver-
gent.

Proof. This result is directly deduced from the Bienaymé-Tchebychev inequal-
ity:

P�

h���b�n � ���� > "i � V ar�

�b��
"2

! 0 When n!1
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Example 77 Estimated mean
When X1; X2; :::; Xn are independent random variables (i:r:v), of the same av-
erage m and of the same variance �2, the estimator of the mean, bm = X =

1

n

nX
i=1

Xi is such that,

�
E
�
X
�
= m

V ar
�
X
�
= �2

n ! 0 When n!1

So bm = X is an unbiased and consistent estimator of m:

Example 78 S2 = �2�echantillon = �
2
�echa is an unbiased estimator of �

2: Because

S2 =

X
i

�
Xi �X

�2
n� 1 ; E

�
S2
�
= �2

We can write

(n� 1)S2 =
X
i

�
Xi �X

�2
=
X
i

�
(Xi �m)�

�
X �m

��2
which gives, in development the right member

(n� 1)S2 =
X
i

(Xi �m)2 � n
�
X �m

�2
13.1 Optimal (e¢ cient) estimator

13.1.1 Quality of an estimator

The quality of an estimator will be measured using a distance to the parameter

which can be for example
���b�n � ���� or �c�n � ��2 : To obtain a numerical indicator

we can then determine the average value of this distance.
The indicator generally chosen, because it lends itself easily to calculations,

is the mean square error de�ned for all � by

EQ
�b�n� = E� �c�n � ��2 = V ar �b�n�+ b2n (�)

In the particular case of an unbiased estimator, this squared error coincides with
the variance of the estimator.
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13.1.2 E¢ cient estimator

An unbiased estimator is more e¢ cient (or simply e¢ cient) if its variance is the
lowest among the variances of the other unbiased estimators. Thus if b�1 andb�2 are two unbiased estimators of the parameter �, the estimator b�1 is more
e¤ective if

V ar
�b�1� < V ar �b�2� and E�b�1� = E�b�2� = �

The notion of an e¢ cient estimator can be illustrated in the following way.
The distribution of b�1 is more concentrated around � than that of b�2. If we

sample a normal population X and Me are unbiased estimators of m because

E
�
X
�
= E (Me) = m:

On the other hand, the variance of X is smaller than that of the median since

V ar
�
X
�
=
�2

n
and V ar (Me) = 1; 57

�2

n
:

For the same sample size, X is more e¤ective thanMe to estimatem; V ar
�
X
�
<

V ar (Me) :
Comparison of two estimators of m:

Example 79 Let X1; X2; X3 a random sample taken from an in�nite popula-
tion with E (Xi) = m and V ar (Xi) = �2: Show that

bm =
X1 + 2X2 + 3X3

6

is an unbiased estimator of m but is less e¢ cient than

X =

P
iXi
3

That is to say that

E (bm) = m and V ar (bm) > V ar � bX�
Let�s check that bm is an unbiased estimator of m

E (bm) = E
�
X1 + 2X2 + 3X3

6

�
=
1

6
[E (X1) + 2E (X2) + 3E (X3)]

=
6m

6
= m

Now let�s determine V ar (bm)
V ar (bm) = 14

36
�2

Or

V ar
�
X
�
=
�2

n
=
�2

3
, from where 0; 333�2 <

14

36
�2:

Therefore X is more e¤ective than bm to estimate m:
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13.2 Fréchet-Darmois-Cramer-Rao (F.D.C.R) inequality

We will see in some conditions there is a lower bound for all variances of unbi-
ased estimators, which will constitute a limit that does not allow to constantly
improve the estimators. On the other hand, if this bound is reached by an es-
timator, it will become the best and will be quali�ed as optimal in the class of
unbiased estimators.

De�nition 80 We call the likelihood of the sample (X1; X2; :::; Xn) the proba-
bility law of this n� uple; notée L (X1; X2; :::; Xn; �) and, de�ned by

L (x1; x2; :::; xn; �) = �
n
i=1P (Xi = xi; �)

if X is a discrete random variable and by

L (x1; x2; :::; xn; �) = �
n
i=1f (xi; �)

if is a continuous random variable of density f (x; �) :

Le théorème suivant préciser la borne inférieure pour la variance des estima-
teurs sans biais.

Theorem 81 Under the Cramer-Rao assumptions, especially if E = X (
) is
independent of the parameter to be estimated �, for any unbiased estimator b� of
� we have:

V ar�

�b�� � 1

In (�)
= BF (�)

such as In (�) is the amount of Fisher information which is de�ned by

In (�) = E
�
�@

2 ln l

@�2

�
and BF (�) is the lower bound of F.D.C.R.

Remark 82 If E = X (
) depends on the parameter to be estimated �, we

obtain In (�) = E
�
@ ln l

@�

�2
:

Example 83 Let X a random variable with exponential distribution of para-

meter
1

�
, or Gamma law noted �

�
1;
1

�

�
, with � > 0 density for x > 0 :

f (x; �) =
1

�
exp

�
�x
�

�
The likelihood here admits the following expression

L (x1; x2; :::; xn; �) = �
n
i=1f (xi; �) =

1

�n
exp

 
�1
�

nX
i=1

xi

!
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To calculate the Fisher amount of information we write

lnL (x1; x2; :::; xn; �) = �n ln � �
1

�

nX
i=1

xi:

@ ln l

@�
= �n

�
+
1

�2

nX
i=1

xi

as X (
) = R+ is independent of � we have

@2 ln l

@�2
=
n

�2
� 2

�3
Sn

such as

Sn =
nX
i=1

xi

From where

In (�) = E
�
�@

2 ln l

@�2

�
=
n

�2
+
2n�

�3
=
n

�2
:

Example 84 If we now take the example of the exponential law on [�;+1[, of
density

f (x; �) =

�
exp (� (x� �)) ; if x � �
0; othewise.

Likelihood is written

L (x1; x2; :::; xn; �) = exp

 
�

nX
i=1

(xi � �)
!

if all the xi are bigger than �; that is to say if

min fxi=1 � i � ng � �

we then have

lnL (x1; x2; :::; xn; �) = �
nX
i=1

xi + n�:

from where
@ ln l

@�
= n and In (�) = E

�
@ ln l

@�

�2
= n2:

13.3 E¢ cient estimator

De�nition 85 An unbiased estimator b� is said to be e¢ cient if its variance is
equal to the lower bound of (F:D:C:R) :

V ar
�b�� = 1

In (�)
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Example 86 If we take the example of the expenontial law with parameter
1

�
,

as E� (X) = �, we know that b�n = X is an unbiased estimator and is consistent.
Moreover

V ar�

�b�n� = V ar� �Xn� = V ar� (X)

n
=
�2

n
=

1

In (�)

so this estimator is also e¢ cient.

13.4 Methods for constructing an estimator

13.5 Maximum likelihood method

Likelihood L (x1; x2; :::; xn; �) represents the probability of observing the n�uple
(x2; :::; xn) for a �xed value of �: In the opposite situation, where (x2; :::; xn)
without knowing the value of �, we will assign to � the value which appears
most likely, taking into account the observation available, that is to say the
one which will give it the highest probability. We therefore set ourselves the
following rule: (x2; :::; xn) �xed we consider the likelihood L as a function of
� and it is attributed to � the value that maximizes this function. Hence the
following de�nition:

De�nition 87 We call the maximum likelihood estimator (e:m:v) any functionb� of (x2; :::; xn) who checks:
L
�
x1; x2; :::; xn;b�� = max

�2�
L (x1; x2; :::; xn; �)

This de�nition does not provide any information on the existence or uniqueness
of such an estimator. The search for e.m.v can be done directly by searching
for the maximum of L, or in the special case where the function L is twice

di¤erentiable with respect to �, as a solution to the equation
@ ln l

@�
= 0 who also

checks
@2 ln l

@�2
< 0:

Example 88 Let us �nd the emv for the exponential family of laws with pa-

rameter
1

�
: The log-likelihood is in�nitely di¤erentiable for � > 0 and we had

obtained in example 1

@ ln l

@�
= �n

�
+
1

�2

nX
i=1

xi = 0

) � =
1

n

nX
i=1

xi = Xn
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With
@2 ln l

@�2
=
n

�2
� 2

�3

nX
i=1

xi =
n

�3
�
� � 2Xn

�
either for

� = Xn�
@2 ln l

@�2

�
�=Xn

= � n

X
2

n

< 0;

so the emv is
� = Xn:
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13.6 Estimation of a mean by con�dence interval

We propose to estimate, by con�dence interval, the mean m of a measurable
characteristic of a population. This involves calculating, from the mean X of
the sample, an interval in which it is likely that the true value of m is found.
We obtain this interval by calculating two limits to which is associated a certain
assurance of containing the true value of m. This interval is de�ned according
to the following equation

P
�
X � k � m � X + k

�
= 1� �

and the limits will take, after having taken the sample and calculated the esti-
mate X, the following form

X � k � m � X + k:

where k will be determined using the standard deviation of the sampling distri-
bution of X and the con�dence level 1� � chosen a priori. We know that if we
take a random sample of size n from a normal population of known variance,

X ! N

�
m;
�2

n

�
If the distribution of the measurable trait ( the population) is unknown or the
population variance is unknown, a sample of size n � 30 allows us, according to
the central limit theorem, to consider that X follows approximately a normal
distribution. Consequently, the quantity

Z =
X �m
�p
n

or

0BB@X �m
Sp
n

as the case may be

1CCA
follows a reduced centered normal distribution.
Let us start from this fact to deduce a random interval having, a priori, a

probability 1�� to contain the true value of m, which amounts to determining
k such that

P
�
X � k � m � X + k

�
= 1� �

From where

P

0B@�Z�
2

� X �m
�p
n

� Z�
2

1CA = 1� �

So

P

0@X � Z�
2

�p
n
� m � X + Z�

2

�p
n

1A = 1� �
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which is of the form

P
�
X � k � m � X + k

�
= 1� �

from where
k = Z�

2

�p
n
:

Example 89 An independent laboratory has veri�ed on behalf of the consumer
protection o¢ ce, the bursting strength ( in kg=cm2) of a gasoline tank from a
certain manufacturer. Similar tests carried out a year ago allow us to consider
that the bursting strength is normally distributed with a variance of 9. Tests on a
sample of 10 tanks lead to an average bursting strength of 219kglcm2. Estimate
by con�dence interval the average bursting strength of this type of tank with a
con�dence level of 95%.

Example 90 The elements necessary for calculating the con�dence interval are
indicated as follows:

X = 219

� =
p
9 = 3kg lcm2

Sample size n = 10, the level of con�dence: 1� � = 0; 95 So � = 0; 05:
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14 Hypothesis testing

Introduction
Let a hypothesis H0 concerning a population on the basis of the results of

samples taken from this population we are led to accept or reject the hypothesis
H0. The decision rules are called statistical tests.
H0 denotes the hypothesis called null hypothesis and by H1 we denote the

hypothesis called alternative hypothesis we have:�
H0 true H1 false or
H0 false H1true

There are four solutions of which only the �rst two are correct:

a)H0 is true and we chose H0
b)H0 is false and has been rejected H0
c)H0is true and has been rejected H0
d)H1 is true and we chose H0

There are two types of errors:
a) If H0 is true and we rejected it, we say that we have an error of 1st species.

The probability of the error of 1t�ere species is noted �:
b) If H1 is true and we accepted H0, we say that we have an error of 2end

species. The probability of the error of 2end species is noted �: � is the signi�-
cance threshold of the test and 1� � his con�dence threshold.

15 Test categories

1. A test is said to be a simple hypothesis test if we want to choose between
two values of a parameter � (�0 and �1) we have:�

H0 : � = �0
H1 : � = �1

2. A test is said to be bilateral if

a)

�
H0 : � = �0
H1 : � 6= �1

a) right-tailed test or superiority test

b)

�
H0 : � = �0
H1 : � > �1

b) left-tailed test or inferiority test

c)

�
H0 : � = �0
H1 : � < �1
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or �0 and �1 are two values of the same parameter in two di¤erent populations.
3. A test is said to be of adjustment if:�

H0 : F (x) = F0 (x)
H1 : F (x) 6= F0 (x)

Or F (x) is the distribution function of the sampled variable and F0 (x) is the
distribution function of a known random variable.
5. A test is said to be independent if:�

H0 : X and Y are two independent random variables
H1 : X and Y are not independent variables.

15.1 Critical and acceptance region of a hypothesis

Constructing a test involves determining the critical region !0 of Rn. The value
of �, error of 1st species being �xed (in general � = 0:05; 0:01 or 0:1) the set of
values of the decision variable which allow us to exclude H0 and to choose H1 is
called critical region, the complementary !0 of this critical region is called the
acceptance region. We have

P (!0 jH0 ) = �;P (!0 jH0 ) = 1� �
P (!0 jH1 ) = 1� �;P (!0 jH1 ) = �

we extract a random sample from the population and accept H0 if the value of
the decision variable belongs to the acceptance region. Otherwise we reject it
and accept H1. For a �xed value �, we maximize the quantity 1� � called the
power of the test.

15.2 Test between two simple hypotheses (Neymane and
Pearson method)

We test �
H0 : � = �0
H1 : � = �1

we set the risk of 1st species �

L (x; �) = L (x1; :::; xn; �)

is the likelihood function with x = (x1; :::; xn), !0, critical region, is de�ned by

P (!0 jH0 ) = � =
Z
!0

L (x; �0) dx:

we maximize the quantity

1� � =
Z
!0

L (x; �1) dx = P (!0 jH1 ) = 1� � =
Z
!0

L (x; �1)

L (x; �0)
L (x; �0) dx
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to maximize 1� �, we are looking for the set of points of Rn such as

A =
L (x; �1)

L (x; �0)
� K�

the constant K� is determined byZ
A�K�

L (x; �0) dx = �:

15.3 Homogeneity test

From a sample of size n1 taken from a population P1 and a sample of size n2
taken from a population P2, the test allows us to decide between:�

H0 : �0 = �1
H1 : �0 6= �1

�0 and �1 are the two values of the same parameter of the two populations P1
and P2:

15.4 Test of homogeneity of two means

In case sample sizes are high (n1; n2 � 30) ; the variables X1 et X2 (correspond-
ing to populations P1 and P2) following the respective normal laws:

N

�
m1;

�1p
n1

�
; N

�
m2;

�2p
n2

�
ormi and �i are the mean and standard deviation of the population Pi (i = 1; 2) :
The random variable

�
X1 �X2

�
also follows a normal law

N

0@m1�m2;

s
�21
n1
+
�22
n2

1A
we choose between the two hypotheses�

H0 : m1 = m2

H1 : m1 6= m2

or �
H0 : m1 �m2 = 0
H1 : m1 �m2 6= 0

if H0 is true, m1 �m2 = 0 and

X1 �X2 ! N

0@0;
s
�21
n1
+
�22
n2

1A :
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We then have
P (jZj � U�) = 1� �

or

Z =

�
X1 �X2

�
� (m1 �m2)s

�21
n1
+
�22
n2

=

�
X1 �X2

�
� 0s

�21
n1
+
�22
n2

follows a normal law N (0; 1) : We accept H0 if the value z =

�
X1 �X2

�s
�21
n1
+
�22
n2

of Z

such as
�U� � z � U�

or the value of U� is obtained by reading the normal law table N (0; 1) : We
reject H0 if jZj > U�. We will say that the di¤erence is signi�cant between X1

and X2:

Remark 91 i) If �21 and �
2
2 are unknown, we replace them with the estimators

S21 =
1

n1 � 1

n1X
i=1

�
Xi �X1

�2
and

S22 =
1

n1 � 1

n2X
i=1

�
Xi �X2

�2
respectively.

as the samples are of large sizes we consider that

Z =

�
X1 �X2

�s
S21
n1
+
S22
n2

follows a normal law N (0; 1) (if H0 is true that is to say m1 �m2 = 0)
ii) If the samples are of respective sizes n1 < 30 and n2 < 30;the test is no
longer valid because the central limit theorem no longer applies. but for two
populations P1and P2 following normal distributions N (m1; �1) and N (m2; �2)
respectively having standard deviations �1 and �2equal and unknown, that is to
say �1 = �2 = � we have:

t =
X1 �X2

S

r
1

n1
+
1

n2
follows a Student distribution at n1 + n2 � 2 degrees o¤ reedom;

S2being the pointestimate of �2.

we then accept H0 if jtj < U� or U� is a value obtained by reading the
Student-Fisher t-distribution table (number of degrees of freedom n1 + n2 � 2;
signi�cance threshold �)
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15.5 Test of homogeneity of two proportions

Each individual of the two populations p1 and p2 may or may not possess a
certain characteristic. We say that this characteristic is present in proportion
P1 and P2 in the populations p1 and p2 respectively: we test at the signi�cance
threshold �: �

H0 : P1 = P2
H1 : P1 6= P2

or �
H0 : P1 � P2 = 0
H1 : P1 � P2 6= 0

Of the population Pi, a sample of size is extracted ni. It corresponds to a
proportion fi (i = 1; 2) :
If the samples are of large sizes (n1 � 30 and n2 � 30), the central limit

theorem allows us to assert that fi follows a normal law

N

 
Pi;

r
PiQi
ni

!

with Pi + Qi = 1. The random variable f1�f2 then follows a normal law

N

�
P1 � P2;

r
P1Q1
n1

+
P2Q2
n2

�
:

If H0 is true, P1�P2 = 0 and f1� f2 ! N

 
0;

s
PQ

�
1

n1
+
1

n2

�!
because

P1 = P2 = P: But since P is unknown, we make an approximation. We estimate
P by

f =
n1f1 + n2f2
n1 + n2

and so

f1 � f2 ! N

 
0;

s
f (1� f)

�
1

n1
+
1

n2

�!
and

Z =
f1 � f2s

f (1� f)
�
1

n1
+
1

n2

� ! N (0; 1) :
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Let U� the constant such that P (jZj � U�) = �: We then have

P (jZj < U�) = 1� �;

we accept H0 if the value

z =
f1 � f2s

f (1� f)
�
1

n1
+
1

n2

�
of Z is such that

�U� � z � U�
we reject H0 if jZj � U�:

Remark 92 U� is obtained by reading the normal law table N (0; 1) :
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16 Some selected themes of probability

16.1 Poisson process

One of the most important counting processes is the Poisson process. Intuitively,
it involves counting the number of occurrences of events that occur randomly
and independently of each other over time.

De�nition 93 The counting process (Nt)t�0 is a Poisson process with rate
� > 0, if

i) The process is independently increases;

ii) The number of occurrences in any time interval of length t follows the
Poisson distribution with parameter �t.

8s; t � 0; P (Nt+s �Ns = n) = e��t
(�t)

n

n!
; n = 0; 1; :::

It follows immediately from such a de�nition that a Poisson process is a process
with stationary increments and moreover.

E (Nt) = �t:

16.2 Markov Chaîns

16.3 Discrete-time processes

De�nition 94 A discrete-time random process is a family fXn;n 2 Ng of ran-
dom variables indexed by positive integers. A discrete-time process is character-
ized by the data of the law of each of the vectors (X0; X1; :::; Xn) for everything
n 2 IN . We then speak of process law to describe the set of �nite-dimensional
laws. Many results have been obtained concerning processes consisting of inde-
pendent variables and the same law. The simplest notion of dependence that can
be introduced into a sequence of random variables consists of assuming that the
value observed for the variable Xn depends only on the observed value for the
variable Xn�1. In this case, we only consider processes with values in a �nite
or countable set E (discrete-valued processes).

De�nition 95 A random process fXn;n 2 INg with values in E is a homoge-
neous Markov chain denoted (Xn) if, for all n � 0,

8i0; i1; :::; i; j 2 E; P (Xn = jjXn�1 = i;Xn�2 = in�2; :::; X0 = i0) = pij :

For a Markov chain, the conditional distribution of the variable Xn given
the past of the process at time n depends on the past only through the last
observation of the process. This property is often called the Markov property.
The value pij represents the probability that the process makes a transition to
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state j when it is in state i. Since these transition probabilities are positive
numbers and the process must necessarily make a transition to a state in E, we
have

8i; j 2 E; pij � 0 and
X
j2E

pij = 1;8i 2 E:

We note P the probability matrix pij state transition i to the state j

P =

0BB@
p00 p01 p02 :::
p10 p11 ::: :::
: : : :
: : : :

1CCA
The matrix P is called the transition matrix of the chain.

Example 96 Predicting the weather. A simplistic model of weather evolu-
tion is as follows. Suppose that the probability of rain tomorrow is a function of
the weather conditions of the previous days through today�s weather only. If it
rains today, it will rain tomorrow with probability �. If it is sunny today, it will
rain tomorrow with probability �. The evolution of weather is described using a
two-state process: 0 for rain and 1 for sunny.

Solution. This two-state process is a transition Markov chain

P =

�
� 1� �
� 1� �

�
:
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17 Surprise, insertitude, entropy

Introduction ( Information theory?)
IIn everyday language, "information" is used in various contexts: news,

intelligence, etc.
IIn the �eld of telecommunications, the notion of information is linked to

the e¢ ciency of communication systems
Ithe information contained in a message is a measurable quantity (Shannon

Engineer at Bell Labs).
Information theory touches on several areas
Icoding,
Idata compression,
Icryptography.

17.1 Amount of information and entropy of a source

17.2 Informative content of a message

For e¢ cient encoding of a message into a sequence of 0 and 1, it is necessary to
determine its informative content.

Example 97 IThe source always transmits the same message, consisting of
the letter A: The informative content of this message is zero, because the re-
ceiver learns nothing by receiving it.
IThe source emits either yes or no: the receiver receives binary information.
IThe source broadcasts tomorrow�s weather: the information content is very
rich, and the information transmitted is m-ary if there are m weather possibili-
ties.
IA message is �rich� in information if its knowledge leads to a more �pre-
dictable� system ( Case of a message that can take many di¤erent values.).

17.3 Informational content of a message and coding

In telecommunications, we always want to save the number of bits transmitted
for:
ISave time (eg: download a web page quickly from the Internet).
ISend as many messages as possible on the same medium (ex: several users

on the same optical �ber).
IDirect in�uence on the cost of transmissions. . .
So, we would like to encode the relevant information of the message and only

that!
IBut how do we measure the information content of a message? Information

Theory provides a measure of the amount of information.
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18 Uncertainty, Information and Entropy

De�nition 98 Discrete source: a system that regularly emits symbols from
a �nite alphabet.
Alphabet: a �nite set of symbols from the source

A = fS0; S1; :::; Sk�1g

Random source: symbols are randomly emitted according to the probabilities:

P (S = sk) = pk; k = 0; 1; :::; k � 1

with
Pk�1

k=0 pk = 1:
Memoryless source: random source whose emitted symbols are statistically
independent.

De�nition 99 the amount of information gained from observing the event S =
sk of probability pk, is de�ned by

I (sk) = � log (pk)

Remark 100 if pk =
1

2
, so I (sk) = 1bit:

Properties
I I (sk) = 0 if pk = 1;
I I (sk) � 0 for 0 � pk � 1;
I I (sk) > I (si) for pk < p;
I I (sksi) = I (sk) + I (si) ; if sk and si are statistically independent.

19 Entropy of a source

Consider a source that can send N di¤erent messages. Let pi be the probability
of sending the message mi.

Source of information

8>>>>>>>><>>>>>>>>:

I Symbol s1,probability p1
I Symbol s2,probability p2
I Symbol s3,probability p3

:
:
:

I Symbol sN ,probability pN

The entropy of the source S is called the mathematical expectation of I (sk)
taken as a random variable.

H (sk) =
NX
k=1

�pk log2 (pk) =
NX
k=1

pk log2

�
1

pk

�
:

72



Remark 101 Entropy provides a measure of the average amount of information
per symbol from the source, expressed in bits/symbol.

Example 102 IConsider a source emitting successive symbols equal to 0 or 1.
The probability of 1 is 0; 3. That of 0 is 0; 7. Calculate its entropy

H (S) = �0; 7 log2 (0; 7)� 0; 3 log2 (0; 3) = 0; 88sh:

IThe source in question reports the result of a rigged die roll:

P (1) = P (6) = 0; 2; P (2) = P (3) = P (4) = P (5) = 0; 15

Calculate its entropy

H (S) = 2� [�0; 2 log (0; 2) + 4 [�0; 15 log (0; 15)]] = 2; 571sh:

ICalculate the entropy of the source if the die is not rigged

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) =
1

6

H (S) = 6�
�
�1
6
log

�
1

6

��
= 2585sh:

Entropy is greater when messages are equally likely.

Conclusion 103 IInformation theory provides a mathematical model for quan-
tifying the information emitted by the source of a communication.
IFinding 1: The more di¤erent values an experiment�s results can take, the
greater the amount of information measured.
IIntuitively, this result makes sense. A source that can transmit many di¤erent
messages provides more information than a source that transmits a single value.
IFinding 2: When a source can produce many di¤erent values, the uncertainty
about the outcome of the experiment is high. Now, the amount of information
transmitted is all the greater as the number of possible outcomes is di¤erent.

Remark 104 The amount of information received is all the more important as
the uncertainty is great!

19.1 Coding theory and entropy

Communication System: Source Coding and Channel Coding
INow that we know how to measure the information contained in a message,

we can encode it.
ISource encoding represents the message in the most economical form pos-

sible in terms of number of bits.
IChannel coding adds information that allows the receiver to reconstruct

the message despite any errors that may appear due to noise on the channel.

73



19.1.1 Source coding

IThe goal of source coding is to �nd a binary translation of the messages emitted
by the source that saves bits and takes into account their information content.

Example 105 If the source emits the letter A with probability 0; 8, and and let-
ters B, C, D and E with probability 0; 05, we intuitively feel that it is better to en-
code A with fewer bits, because this letter occurs often, while B, C, D and E can be en-
coded in a larger number of bits.

20 Simulation

In the preceding, in particular with the technique of change of variables, we
were interested in this problem which amounts to determining the law of the
image by a known function of a random vector of given law. But when the
system is complex such as a meteorological model, simulation becomes the only
alternative to obtain information on the output variables. Finally, we will see in
the next section that the strong law of large numbers ensures that the average of
n independent and identically distributed integrable random variables converges
when n tends to in�nity towards the common expectation of these variables.
To calculate this expectation numerically, we can simulate on a computer a
realization of these n variables with n large and calculate the corresponding
average. This is the principle of the Monte Carlo method which is very widely
used in physics, reliability but also in �nancial mathematics.
To perform probabilistic simulations on a computer, a pseudo-random num-

ber generator is used. Such a generator returns a sequence (xn)n of real numbers
between 0 and 1. These real numbers are calculated by a deterministic algorithm
but imitate a realization of a sequence of independent and identically distributed
random variables according to the uniform law on [0; 1]. The correct behavior
of the sequence is veri�ed using statistical tests.
A commonly used method to construct the sequence (xn)n is the congruence:

xn =
yn
N
where the yn are integers between 0 and N � 1 calculated using the

recurrence relation
yn+1 = (ayn + b)mod (N)

The choice of the integers a; b;N is made so that the period of the generator
(always smaller than N) is as large as possible and that the properties of the
sequence (xn)n are close to those of a realization of a sequence of I:I:D. variables
following the uniform law on [0; 1].

20.1 Simulation of discrete random variables

20.1.1 Bernoulli�s law of parameter P2 [0; 1]

If U ! U ([0; 1]) then
X = 1fU�Pg ! B (P ) :
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In fact X takes the values 0 or 1 and

P (X = 1) = P (U � P ) =
Z 1

0

1fu�Pgdu = P:

20.1.2 Binomial distribution with parameters n2N� and P2[0,1]

If U1; U2; :::; Un are n independent uniform variables on [0; 1] then

X = 1fU1�Pg + :::+ 1fUn�Pg

nX
i=1

1fUi�Pg ! B (n; P )

From the above, the variables 1fUi�Pg,1 � i � n are independent Bernoulli
variables with parameter P . The random variable X, sum of these n variables
therefore follows the binomial distribution with parameters n and P

20.1.3 Geometric law with parameter P2]0, 1]

This is the law of the time of �rst success in a sequence of independent random
experiments with probability of success P . Thus, if the (Ui)i�1 are independent
uniform variables on [0; 1]

N = inf fi � 1;Ui � Pg ! Geo (P ) :

20.1.4 Simulation following any discrete law

It is however still possible to obtain a variable which takes the values (xi)i2N�

with respective probabilities (Pi)i2N� ( with the Pi � 0 such tha
P

i2N� Pi = 1)
using a single uniform variable Uon [0; 1] by setting

X = x11fU�P1g + x21fP1�U�P1+P2g + :::+ xi1fP1+:::+Pi�1�U�P1+:::+Pi+:::g:

Remark 106 To implement this very general method, it is necessary to program
a loop on i with the stopping test P1+:::+Pi � U . This can be costly in terms of
computation time when the series with general term Pi slowly converges towards
1.

20.2 Simulation of random variables with density

20.2.1 Uniform law on [a,b] with a<b2R

If U is a uniform variable on [0; 1] then

X = a+ (b� a)U ! U ([0; 1])
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20.2.2 Distribution function inversion method

Let P be a strictly positive probability density on R and

F (x) =

Z y

�1
P (y) dy

the associated distribution function. Comme F est continue et strictement
croissante sur R and check lim

x!�1
F (x) = 0 and lim

x!+1
F (x) = 1, it admits an

inverse function
F�1 : ]0; 1[! R

Example 107 The exponential law of parameter � > 0 is the density law
� exp (��x) if x > 0: The associated distribution function is

F (x) =

Z x

�1
� exp (��t) dt = (1� exp (��x)) if x > 0:

For u 2 ]0; 1[, we have

F (x) = u, x = F�1 (u) = � 1
�
ln (1� u) :

We deduce that if

U ! U ([0; 1]) ; � 1

�
ln (1� U)! exp (�) :

and since we have 1�U and U have the same probability distribution such that
UU ( 1� U ! U ([0; 1]) so in this case

� 1
�
ln (1� U) loi= � 1

�
ln (U)! exp (�) :
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