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Notations

The following notations allow the reader to clearly understand the content of this manuscript.

e «, (3, \, uare scalars and x, y, u, v, w,u’,v’', w' are vectors.
e @ This is an internal composition law.

e ® This is an external composition law.

e [ avector space over K.

e K" The field of n-tuples of real or complex numbers.

e (r1,x9,...,x,) An element of K" (vector).

e K, [z] The vector space of all polynomial of degree not exceeding n with real or
complex coefficients.

e C ([a,b],R) The vector space of all continuous functions on [a, b] .

e C*([a,b],R) The v. space of all infinitely differentiable functions on [a, ] .

e M, (K) The vector space of all n by n real (or complex) matrices.

e S, (K) The vector space of all n by n real (or complex) symmetric matrices.

e A, (K) The vector space of all n by n real (or complex) skew-symmetric matrices.
e GL, (K) The vector space of all n by n invertible matrices.

e M (B) The matrix of the mapping f with respect to the basis B.

e P The passage matrix.

e {e1,e,...,e,} In general denotes for the canonical basis.

o Vect{uy,us,...,u,} The vector space of all linear combinations of the vectors u; (1 <
1 < n).



e ker f The kernel of the linear mapping f or the kernel of the bilinear symmetric form

f.
e Im f The vector subspace {f (v) : v € E}.
e F' @ G Direct sum between F and G.
e L, (E) The v. spacefl|of all bilinear forms on E.
e L(E,F) The v. space of all linear mappings from E to F'.
e L (E,K) The v. space of all linear mappings from E to K.
e g or () Quadratic forms.
e C The isotropic cone; C' = {v € E: f (v,v) = 0}.
e E* dual v. space of a vector space E.
e ®* The dual mapping of ®.
e S, (E) The v. subspace of all symmetric bilinear forms on F.
e A, (E) The v. subspace of all skew-symmetric bilinear forms on E.
e O, (E) The set of all quadratic forms on E.
o diag{ay,as, ..., a,} Diagonal matrix whose diagonal entries are ay, as, ..., a,.
e tr (A) The trace of an n by n matrix A.
e Sp(A) The spectral set of A = The set of eigenvalues of A.
e Z The conjugate of the vector z € C".
e i The imaginary pure number (i* = —1).
o [ The identity matrix.
e Re(z) The real part of a complex number z.
e A’ The transpose of a matrix A.
e det (A) Determinant of a square matrix A.

e A* The transpose conjugate of a complex n by n matrix A.

1v. space means vector space.
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e ||v]| the norm of the vector v.

e (u,v) The scalar product (or inner product) between the vectors v and v.
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General Introduction

his work is the fruit of teaching of this subject at the University of 8 Mai 45

Guelma. It is intended for students of the 2" year mathematics. This volume

is devoted to a part of the program of Algebra 4 (bilinear forms, quadratic
forms, sesquilinear forms and hermitian forms. One can see [1], [2], [3], [4], [5], [6]).

Each chapter begins with a clear presentation of definitions, lemmas and theorem:s,
illustrated with numerous examples. This is followed by a graduated number of a set of
solved exercises.

The course summary is sufficiently developed so that everyone will find the results
they need to solve proposed problems. Although the large number of additional prob-
lems makes their solution difficult, special importance should nevertheless be given to
those presented in the first two chapters. After engaging in it, the student will feel more
confident.

I had been teaching this material by French from 2012 to 2016. Then I have taught it to
students a second time, but by English, starting 2020 to now. Being the first subject pre-
sented to students at the beginning of their education, they gladly accepted presenting it
in English language. Indeed, this course, which is based on bilinear forms (linearity from
the right and those from the left), is a continuation study of Algebra II taught in the first
year MLI. It is composed of five chapters. In Chapter|l| we recall some definitions and give
without proof some classical results on vector spaces and linear mappings, that is, we list
in the this chapter the basic notions on a vector space and its dual space. In chapter 2|we
deal with bilinear forms over a real vector space. It is not possible to understand such
properties without examining the related concepts of linear forms. More precisely, this
chapter describes the most properties of bilinear forms on a vector space and gives exam-
ples of the three most common types of such forms as well as symmetric, skew-symmetric
and alternating bilinear forms. Chapter (3| deals with the spectral decomposition of self-
adjoint linear mappings. The important condition of nondegeneracy for a bilinear form,
Gauss decomposition theorem and the orthogonal basis for a symmetric bilinear form are
the subject of Chapter 4] An introduction to Hermitian space is given in Chapter 5| At the
end of this lecture-note, the reader will find a conclusion and a bibliography:.



CHAPTER 1

LINEAR FORMS, DUALITY (VECTOR
SPACE AND ITS DUAL SPACE

s a continuation of Algebra 2, we present in this chapter many relationships be-
tween scalars, vectors and linear mappings having many variables defined on a
finite-dimensional v. space. Recall that the v. space is a basic object in the study of linear
algebra. It is a set of several vectors which are objects that can be added together and
multiplied by numbers, which are called scalars in this context. This chapter deals with

mappings defined on some special v. spaces that display one or two variables.

1.1 Vector space (a summary of lessons)

Let K =R or C and let £ be a non-empty set equipped with two operations @© and ®,

where
1. @ is an internal composition law;i.e.,V u,v € E:u®v € E.
2. ® is an external composition law; i.e, VA e K, Vv e E: A®@v € E.
We say that (£, @, ®) is a v. space on the field K if the following conditions hold:
1. (E,®) is a commutative (Abelian) group.
2 VAeKVuve E:A@udv)=AQu) d&(A®0),
BVAMpeRKVveE: A +p)@u=AR0v)® (pt®v),
4.V NpeRVveE : A® (nv)=(Ap Qu,
5. VveFE : lx®v=v. (fK=RorC= 1x=1).

To make statements (things) easier; in a v. space (E, ®, ®) over K, the internal law &
we designate it 4+ and the external law ® we designate it - or nothing. The definition of a
V. space becomes:

We say that (£, +, .) is a vector space (or just v.s.) over the field K if:

2



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 3

i. + is an internal composition law on E;ie., Vu,v € E:u+v € E.
ii. -is an external composition law on E;ie., VA€ K, Vv e E: \v e E.

1. (E,+)is a commutative (abelian) group.

N

VAeK Yu,v € E:XN(u+v) = u+ v,
B VANpeKVYve E:(A+p)v= >+ puv,
4.V \peKVveE:XA(uw) = (M),

5. Vve F:1gv =w.

We must know the following facts:

e The elements of the vector space £ are called vectors and the elements of the field K
are called scalars (= the sum of two vectors is a vector and the multiplication of a

vector by a scalar is a vector).

e The neutral element with respect to + in the vector space £/ we designate it 0; and

we call it the zero vector.

e In the v. space F over K; we have Vv € E : —v = (—1) v; where —v is the symmetric
element of v with respect to +, and (—1) v is the multiplication of the vector v by the
scalar —1.

e For two vectors u and v of the vector space E, we write by convention u — v instead
of u+ (—v)andu+ (—1)v

Let (E,+,.) a vector space over the field K and let F' be a subset of E.

Definition 1.1. We say that F' is a vector subspace (or subspave) of E if (F, +,.) is a vector

space over K, where 0p = Op.

Remark 1.1. From the above definition we deduce that every vector space is a vector
subspace of itself.

Let E be a v. space, and let /" and G be two subspaces of F.

e Wehave FNG={ve F/veFandve Gland F+G ={u+ve E /ue Fandv € G}
are vector subspaces of E.

e Notethat F+G=G+F, F+F=F, FNGCFCF+Gand FNGCGC F+G.

e Note thatifv € F+G,thenda € F,3b € G : v = a+b; where a and b are not unique.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 4

e The v. space E is a direct sum of G and F; and write E = G ® F,if E = G + F and

e We say that G is supplementary of F'in E (or the opposite) if £ = G @ F.

e We have £ = G @ F < Every vector v of E is written in a unique way a + b, where
ac€GandbeF.

Proposition 1.1. Let F' be a subset of E. We have

 (@DVYuwveF:utveF
Fisavectorsubspaceong i)VIeK Vve F:A-veF
(iii) F # 0 (0g € F)

Or equivalently,

£ DF#0 (05 € F)

Fisav. subspace of E 5
VN peKVYuveF : Au+pu-veF.

Example 1.1. Suppose that K = R or C. Then
K" = {(x1, z9, ..., z,) : x; € K}
is a vector space on K with the laws + and - defined by
1. V (21,29, ... xn), (Y1, Y25 ooy Yp) € K™

(1, T2, s Tn) + (Y1, Y20 s Yn) = (1 + Y1, T2 + Y2, oo Tn + Yn)

2. VXeK, VYV (xy,x9,...,2,) € K" :
Axy, Tay ooy ) = (A1, Ao, .oy Ay,)

where Og» = (0,0, ..., 0) is the zero vector of this space.
—_———
n-times

For these laws, we have

e R"isav. space over R,
e R"isnot a v. space over C,

e C"isav. space over C,

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 5

e C"isav. space over R.
Let £/ be a v. space on K, and let v, vy, vs, ..., v, € E.

. . L. def
e We have: v is a linear combination of vy, vs, ..., Uy © I A\, Aa, oos A € K

V= )\11)1 + /\22}2 + ...+ )\n’l}n.

e We always have 0 = 0.v; + 0.v3 + ... + 0.v,, (Where O is the zero vector of space E).
e The sum of two linear combinations is a linear combination.
e Multiplying a linear combination by a scalar is a linear combination.

Let £ be a v. space on K and let vy, vs, ..., v,, € E. The set of all linear combinations of
vectors vy, Vs, ..., v, Wenote it Vect (v1, v, ..., v,) OF (01, g, ..., v,) and we call it the subspace

generated by the vectors vy, vs, ..., v,,. We have then
Vect (v1, 09, ..., ) = {01 + Aavo + .. + Ay 0 A, Ao, Ay € KT

Moreover, we have
o Vect (0g) ={0g}.

e Vect (v1,s,...,0,) is a vector subspace of E (with vy, v, ...,v, € Vect (v1,v2,...,0,)).
Therefore, the subspace generated by vectors of a space is a vector subspace. of this
space.

e If F'is a vector subspace of £, then we have vy, vy, ..., v, € F' < Vect (v1,v2, ..., 0,) C
F. Therefore, the subspace generated by vectors is the smallest v. subspace contains

these vectors.
o If v = X\v; + Avy + ... + A\, then Vet (vq, vy, ..., v, v) = Vect (v1, vg, ..., 0y) .
o Vect (v1,v9,...,0,,0r) = Vect (v1,v,...,0,).

o If F'=Vect (v1,09,...,v,) and G = Vect (uy, ug, ..., ), then
F+ G = Vect (v1,02, ey U, Up, Uy ooy Upy) -
Let E be a v. space over K, and let vy, vy, ..., v, € E.
We call a linear relationship between the vectors vy, vs, ..., v,; any relation of the form

AU + AUy + ... + A\, = 0F, where )\1, )\2, 7/\n e K.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 6

1. If A1, Ag, ..., A, are all zero, we say that this linear relation is trivial.

2. If A\, Ao, ..., A\, are not all zero, we say that this linear relation is non-trivial.

We say that the vectors vy, vs, ..., v, are linearly independent (or free) if there is no non-
trivial linear relationship between the vectors v, vs, ..., v,,, in other words; any linear rela-
tionship between vectors vy, vs, ..., vy, is trivial; i.e.,

def
vy, Vg, ..., U, are free &
V/\1,>\2, ;)\n EK: M+ X+ ...+ 0, =0g=A1=X=...= ), =0.

e We say that the vectors vy, vs, ..., v, are linearly dependent (or linked) if they are not
free, in other words; if there is at least one non-trivial linear relationship between the

vectors vy, vs, ..., vy; i.€.,

. def
vy, Vg, ..., U, are linked &

A1, A2, ..., Ay € K (are not all null) : A\jv; + Aovg + ... + A\, = 0.

e The family of vectors {v;,vs,...,v,,} are said to be free if the vectors vy, vs, ..., v, are
free.

e The family of vectors {v;, vs, ..., v, } are said to be linked if the vectors vy, vs, ..., v, are
linked.

e Note that if a family contains a linked part, then this family is linked.

e If v € F, then v # 0g < v is free; since we have
v#£0pe VAeEK: Mv=0r=A=0).

e The null vector or the zero vector O is linked; since we have 1.0 = 0g, which is a

non-trivial linear relationship.

e If a family of vectors contains the zero vector, then that family is related; i.e., family
{v1,vg, ..., v, 05} is linked, since {0z} is linked; or because

O.Ul + O.UQ + ...+ O.Un + 1OE = OE

Let E be a vector space over K, and let vy, vy, ..., v, € E.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 7

1) E = Vect (v1, v, ..., )

e The family {vy, vo, ..., v, } is a base (or basis ) of E <
2) vy, Vg, ..., U, are free.

Note that £ = Vect (v1,vs,...,v,), i.e.,, E is spanned by vy, v, ..., v,; o1, we say that
{v1,v9,...,v,} is a generated part of E.
e Please note, a basis of F is not always exists or unique.

o If £ = Vect(vy,vy,...,v,), then E admits at least one basis {uy, us, ..., U, }; with m <
n, and all the bases of E have the same number of vectors m. This unique number
m; denoted by dim F, is called the dimension of £.

o Ifvy, v, ..., v, are free, then by definition {v;, vs, ..., v, } is a basis of £, and so dim £ =
n. Notice, in this case, that every other basis E contains exactly n vectors.

e If vy, v, ...,v, are linked, then a vector of them is a linear combination of the other

vectors. For example, v; = A\gvs + ... + A\, v,,. Therefore,

Vect (v1,v9, ..., 0,) = Vect (vg, U3, ..., V) -

Now, if vg,vs, ..., v, are free, then by definition {vs, vs, ...,v,} is a basis of £E. Hence,
dim £ = n — 1. But, if v, vs, ..., v, are linked, then, a vector of them is a linear combination

of the others; For example v,, = apvs + a3vs... + a,,—1v,—1. Hence,
E =Vect (vg,vs,...,v,) = Vect (vg,v3, ..., 1) ...and so on.

e Note that the vector subspace {0z} has no basis; but by convention we put dim {0z} =
0 ({0g} = Vect ({0g}), where {0g} is linked).

e Note thatif £ = Vect (v), where v # 0g (i.e., v is free), then {v} is a base of E. In this
case, dim F = 1.

e For the vector space K" over K, we have dimK" = n; since the family of vectors

{ey, ea, ..., €, } form a basis of K"; which is called the canonical basis of K", where

e = (1,0,...,0) e = (0,1,...,0), ..., en = (0,0, ..., 1) .

e For the vector space C" on the field R, we have dim C" = 2n; since the family of
vectors

. . . )
{e1,ieq, ey, i€9, ..., €, 06, } , where i = —1

form a basis of C" over R; which is called the canonical basis of C* over R.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 8

e For the vector space R,, [z], we have dimR,, [z] = n + 1; because the family of vectors
{1,z,2?,...,2"} form a basis of R,, [z]; which is called the canonical basis of R,, [z].

e If dim F = n, then
{vg,v3,...,v,} isabasis of £ < E = Vect (vg,v3, ..., 0,) < Vg, U3, ..., U, are free.
e If F'is a vector subspace of E, then we have dim F' < dim E.

e If F'is a vector subspace of F, then we have dim F' = dim F & F = E.

e Dimension theorem. If F' and G are two vector subspaces E, then we have

dim (F + G) +dim (FNG) = dim F' 4+ dim G. (1.1)

e Assume that B = {vy, vy, ...,v,} is a basis of £/ and let v € E. Then
= )\17 )\27 7)\n ceK:v= )\11)1 -+ )\2'1]2 + ...+ )\nvn,

since £ = Vect (vq,v9,...,v,). But; since the vectors vy, vs, ..., v, are free, then the
scalars i, \g, ..., A, are unique. In this case the scalars ( Aj, Ao, ..., \,,) we call them
the coordinates of v in the basis B.

e In the vector space K" over K, we have V (z1, z, ..., z,) € K" :
(T1, T, ..., Tp) = T1€1 + Too + ... + Tpey,

where {ej, e, ...,€,} is the canonical basis of K". Therefore, (z1, s, ...,x,) are the

coordinates of the vector (z1, xs, ..., z,,) in the canonical basis {ej, es, ..., €, }.

e In the vector space C" on R, we have V (21, 22, ..., 2,,) € C":
(21,22, .y 2n) = 101 + Y1 (i€1) + T2x2 + 2 (T€2) + ... + Tpen + Yn (i€n),

where z;, = o + iyr (1 < k < n) and {ey,ieq, e, i€9..., €5, 7€, } is the canonical ba-
sis of C" over R. Hence, (z1,y1, 22, %2, ..., Tn, y,) are the coordinates of the vector

(21, 29, ..., Z,) in the canonical basis.

e In the v. space R,, [X], we have

VPER,[z]: P=ay+a-v+ay-2°+..+a,- 2"

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.2. LINEAR MAPPINGS AND LINEAR FORMS 9

where {1, x, 22, ..., 2"} is the canonical basis of R,, [z] . Hence, (ag, a1, as, ..., a,) are the

coordinates of P = ag + a; - ¢ + ay - 22 + ... + a,, - " in the canonical basis.

e In the vector space M, (R), we have: VA = (a;;) € M3 (R) :

) 1oy, 01y, 00, 0 0
= Q11 - a9 * ao1 * Aoo * ,
oo Voo V10 2\o1
where
10 0 1 0 0 0 0
e1 = , ey = ,e3 = L4 =
! 00/ "° 00/ " 10) " 0 1

is the canonical basis of M5 (R) . Hence, dim M, (R) = 4. More generally, dim M,, (R)

n?.

1.2 Linear mappings and linear forms

Let E and F be two vector spaces over the same field K, and let f : £ — F be a mapping]]
from E to F.

) fisalinearmappingﬂc}g Vu,ve E,VaeK:

{ Jlutv)=f(u)+f @) 12)
flov)=a-f@).

) fisalinearmappingpg) Va,eK,Vu,ve E:
flarutf-v)=a-f(u)+5-f(v). (1.3)

e We denote by L (E, F') the set of all linear mappings from E to F.
e If E = F, then we denote by £ (£) instead of £ (E, E) .

Definition 1.2. Let £ be a vector space over K. A linear form over K is a linear mapping
from E to K. The vector space of all linear forms on E, denoted by E*, is called the dual

vector space of E.

Example 1.2. Using or (L.3), we can easily prove that the following mappings are

linear forms on F

!Sometimes we say a map instead of mapping.
2— — we say a linear functional instead of a linear mapping.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.2. LINEAR MAPPINGS AND LINEAR FORMS 10

1. The mapping f : R* — R such that f (z,y) = 22 — y is a linear form on R

2. The mapping f : K — R such that
f(z1, 20,0y xy) = @121 + agxs + ... + apTy,

is a linear form on R"”, where a; € R, fori = 1,2, ..., n.

3. The mapping f : R, [x] — R such that

is a linear form on R,, [z].
4. The mapping f : M,, (K) — R such that f (A) = ¢tr (A) is a linear form on M,, (K).

5. Let £ be vector space of finite dimension (or a finite-dimensional vector space), say
dim F = n and let B = {uy, us, ..., u, } be a basis of E. Note that every vector v € £

can be written (uniquely) as u = aju; + ... + @, u,. For each i € 1,n, the mapping

u' BF =K

u— ul (u) = o 14

is a linear form on F.

The dual space of £, denoted £, is the v. space of all linear mappings on E. In other
words, E* = L (E,K) .
We have the following facts:

e If F has finite dimension, then dim £ = dim E*.

o If uy, us, ..., u, is a basis of F, then the dual basis of u, us, ..., u, is the list ®;, ®,, ..., ,,

of elements of £*, where each @, : £ — K is a linear mapping such that

®; (u;) = { Lifi = (1.5)

0, otherwise.

In the case when I/ = K", we can easily find the corresponding dual basis of the
canonical basis of K", namely (e) = {ey, €2, ..., &, }. Define the mappings:

o, : K'—=K

(1, Tay oy ) @

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.2. LINEAR MAPPINGS AND LINEAR FORMS 11

We see that @, (e;) satisfies (1.5). Hence, {®q, ®», ..., @, } is the corresponding dual
basis of the canonical basis (¢) of K™.

e Every basis of E*is the dual basis of a unique basis of F, it is called the predual basis.

e Let f be a nonzero linear form over E. Then there exists a nonzero vector v such that
f(v) = 1. In fact, since f # 0, there exists a nonzero vector z such that f (zq) # 0.
Lo
The results holds for v =

f (o)

e Let E be a finite-dimensional v. space, namely dim F¥ = n. If v € F is a nonzero

vector, then there exits a linear form f € E* such that f (v) = 1. Indeed, let v =
QiU + ... + auu, be a a nonzero vector. Then there exists iy € 1,n such that «;, # 0.

Define u;, as in (1.4). Thatis, uj (v) = a4, # 0. Hence, the result holds if we put
u*

e
Proposition 1.2 (Changing dual basis). Let By and By be two basses of E and let P be the
passage matrix from By to By. Then (P~")' is passage matrix from By to BBy,
Definition 1.3 (dual mapping). If & € £ (E, F'), then the dual mapping of f is the linear
mapping ®* € L (£*, F*) defined by ®* (f) = f o ®, for f € E*.

Example 1.3. Define the mapping

¢ : R,[z]—R

p — O(p) =7,

where p' denotes the derivative of p. Let us take, for example f : R, [x] — R such that
f(p) = p(n) (here n is a positive integer). Then ®* (f) is the linear mapping on R, []
given by

(@ () () =(feo®)(p)=f[2(@)]=f{)=p(n).

Hence, ®* (f) is the linear map on R,, [z] that takes p to p’ (n).
Suppose further that f : R, [x] — R such that f(p) = fabp (t) dt. Then ®* (f) is the
linear mapping on R,, [z] given by

(@ (f)(p)=(fo®)(p) =) =f®) =/ p(t)dt=p(b) —pla).

Hence, ®* (f) is the linear map on R,, [z] that takes p to p (b)) — p (a).

Let us state some algebraic properties of dual maps:

1. (P1 + o))" = ®f + P} forevery & + Py € L(E,F).
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1.2. LINEAR MAPPINGS AND LINEAR FORMS 12

2. (- @) = -0 forall® € L(E,F)and a € K.

3. (P10®y)" = P50 forall®, € L(E,F)and &, € L(F,G).

e Any linear mapping is a homomorphism (we can talk about the kernel, the image and

SO on).
e If f: £ — Fis linear mapping, then f (0g) = O (the converse is false).
o If f(0p) # Op, then f : E — [ is not a linear mapping.

e Be careful, if f : £ — Fislinear and v € E, then: f (v) = 0 # v = Og (in general).
But, if f is injective, then f (v) = 0p = v = 0g (since f (v) = 0p & f (v) = f (0g)).

e Every linear mapping f : £ — FE is called Endomorphism of E.
e Every linear mapping f : E — F bijective is called Isomorphism.
e Every bijective Endomorphism of F is called Automorphism of E.

e Every linear mapping f : R — R™ is uniquely defined as follows:
[z, 20, .., 2n) = (@121 + @12T2 + ... + Q1n Ty, oy A1 1 + A2 + oo+ A Ty)
where (a;;) € Rforallé,j (i=1,2,...,mand j =1,2,....n).
e The kernel of a linear mapping f : &/ — F is the set defined by
kerf={veFE : f(v)=0rp}. (1.6)

We can easily prove that ker f is a vector subspace of E.

e The image of a linear mapping f : E — F'is the set defined by

Imf={f(w) : veFE}.
We can easily prove that Im f is a vector subspace of F.

o If f: E — Fis the zero linear mapping (i.e., f (v) =0,V v € E), then ker f = F and
Im f={0p}.

e The identical mapping of £, i.e., idp, is linear, where ker (idg) = {Og} and Im (idg) =
E.
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e If f: E — Fislinear, then

E =Vect (vi,va,...;v,) = Im f=Vect (f (v1), f (va),..., [ (v,)).

In practice, we use the canonical basis of £. So, we have in particular:

e If f:R" — F'islinear and {ey, e, ..., €, } is the canonical basis of R", then we have

Im [ =Vect(f(e1), [f(e2), ... f(en)),
where e; = (1,0,...,0),e2 = (0,1,...,0), e, = (0,0, ..., 1).

o If f: R, [x] — Fis linear and {1, z,2?, ...,2"} is the canonical basis of R, [z], then
we have

Im f=Vect (f(1),f(z),...f (")),
where ¢; = (1,0, ...,0) ,e2 = (0,1,...,0), e, = (0,0, ..., 1)

e If f is linear, then the number dim (I/m f) is called the rank of f and we note it by
rank (f), i.e.,
rank (f) = dim (Im f).

o If f: ' — Fislinear, then
f is injective < ker f = {0g} < dim (ker f) =0,
and also, we have

fis surjective < Im f = F < dim (Im f) = dim F.

e If f: E — Fislinear, then

dim F = dimker f +dim Im f. (Rank Theorem)

e If f: E — Fislinear with dim F = dim F), then
f is surjective < f is bijective < f is injective.

In practice, we use this result if £ = F, i.e., if f is an Endomorphism on E.
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1.3 Proposed Problems on linear forms

Exercise 1. Determine the linear form f defined by
F(1,1,1) =0, f(2,0,1) = land f(1,2,3) = 4,

then, determine ker f. The same question for g, where ¢ (1,0,1) = —1, ¢(0,1,1) = 0 and
g(=1,1,1) = 2.
Exercise 2. Let £ = R? and f1, f» € E* such that
fl ($7y) :x+y/ f2 (I,y) =T =Y.
1. Show that {f1, f>} is a base of E*.
2. Express g and h, in this base, where g (z,y) = z and h (z,y) = 2z — 6y.
3. Determine the predual base of { f1, f2}.

4. Note that {(1,2),(—1,1)} is a base of £, find its dual base.

Exercise 3. Let {e1, e, e3} be the canonical basis of E = R? and let fy, fo, f3 € E*
defined by
Ji=2e] + €5+ €3
fo=—€] +2€
f3 = e} + 3es.

1. Prove that {f1, fo, f3} is a basis of E*.
2. Determine the predual basis of { f1, f2, f3}.

3. Prove that A = {(1,1,1),(-1,2,1),(0,1,3)} is a basis of E, and find its dual basis,
say A"

4. Calculate ¢ the passage matrix from { fi, f2, f3} to A*.

Exercise 4. Consider the vector space of real polynomials of degree not exceeding 2,
i.e., E = Ry [z]. Define the mappings o, 1, p2 from E to R by

Vpe B go(p) =p(0), o1 () = p (1) etw(p)zfolza(t)dt.

1. Prove that p;, € E* fori =0, 1, 2.

2. Show that {¢y, ©1, w2} is a basis of E*.
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3. Determine the predual basis of {yg, ¢1, p2}.

4. Prove that {1,1 + z,1 + z + 2%} is a basis of E, and find its dual.
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CHAPTER 2

BILINEAR FORMS OVER A VECTOR SPACE

U n this chapter we present a basic introduction on Bilinear forms over a vector space
including rank, kernel, Orthogonalization of Gram-Schmidt, Orthogonal matrices and
diagonalization of real symmetric matrices.

2.1 Bilinear forms (Definitions)

In this section, R is the field of real numbers and F is a vector space over R. For example,
E =R", R, [z] or P, [z], C ([a,b] ,R), C* (]a,b] ,R) and M,, (R) with n > 1, and so on.

Let £ be a vector space on R. As above, a linear form[l|is a mapping f from E to R such
that for every (z,y) € E? and A € R, we have

i) flx+y)=f(@)+f(),
(ii) f(Az) =Af (@)
Similarly, we have the following definition:

Definition 2.1. Let F be a vector space on R. A bilinear form is a mapping f from E? to R
such that for every (z,2',y,y') € E* and X € R, one has

@) fQz+2,y) =\ (2,y) + f(2',y),
(i) f(z, \y+y') =\ (z,y) + f(2,9).

Asin (I.2) and (T.3), note that a bilinear form is a mapping f from E? to R such that f is
linear from the left and linear from the right. For details, we present the following remark.

Remark 2.1. Let f : ' x I — R be a bilinear form on E. This means that for all z, 2/, y,y’ €
E and X € R we have

o f(z+ay)=[f(z,y)+ f(@y),

If f : E x E — F is bilinear, then f is called a bilinear mapping. However, if f : E x E — K is bilinear,
then f is called a bilinear form.

16
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o fla,y+y)=[f(z,y)+ f(zy)
o f(Az,y) =Af(2,y),
o [z, hy) =Af(z,y).
Definition 2.2. Let f : E? — R be a bilinear form.

1. f is said to be symmetric if for each (z,y) € E?, f (z,y) = f (y, ).
2. fis said to be skew-symmetric if for each (z,y) € E?, f (x,y) = —f (y, 7).

3. fis said to be alternating if for each z € E, f (z,x) = 0.

Example 2.1. We can easily check that the following mappings are symmetric bilinear

forms.

1. fRxR =R, f(z,y) = xy.

2. [ R2xR*= R, ((z,9), (2/,9)) — 22’ + yy'.
3. ¢ P[z] xP[z] —» Rwith ¢ (p,q) = [*p(t) g (t)dL.
4. Letz = ($1,$27$3)/ Yy = (y17y27 y3) € R* with / ('T?y) = T1Y1 + Ta2Y2 — T3Y3.

Example 2.2. Let u = (z,y),v = (2/,9') € R* with f (u,v) = 23/ — 2’y. Then f is a skew-

symmetric alternating bilinear form.

Notation 2.1. Let £, (E) denote the vector space of all bilinear forms over £, S, (E) denote
the vector space of all symmetric bilinear forms over E and A, (£) denote the vector space

of all skew-symmetric bilinear forms over £.

We can prove the following fact: £, (E) = Sz (E) @ A, (E) . Indeed, we have f; =0 €
S (E) N Ay (E) . Also, if f € S, (E) N Ay (E), then by Definition 2.2) f (z,y) = f (y,x) =
—f (y,z) for every x,y € E. Hence, f (x,y) = 0 for every z,y € E. So, f = f,. Thus, we
have proved that S; (E) N Ay (E) = {fo}. Now, let f € Lo (F). For any z,y € E, we see
that

Fla,y) = f(x,y);f(y,x) n f(a:,y);—f(ij)

where h, is skew-symmetric and h, is symmetric.

= hl (1',:1/) +h2 (-T,y),
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Theorem 2.1. Let

T Y
T2 Y2

r = LY = . e R"
Tn Yn

Let A € M,, (R) be a square matrix. Define f : R" x R"— R, (z,y) + x'- A-y. Then f isa
bilinear form over R". Moreover, if A is symmetric, then [ is also symmetric.

Proof. For all z,2',y € R" and for all A € R we have

fQx+ay) = ()\x—l—x’)t-A-y
= M Ay+ @) Ay
= M (z.y)+ f (2 y).

Thus, f is linear from the left. We use the same manner to show that f is linear from the
right. For every z,y,y’ € R” and A € R we have

[l y+y) = 2"Ay+y)
= \'Ay + 2" Ay
= M(z,y)+ f(z,9).

Next, assume that A is symmetric. We show that f is also symmetric. In fact, we have

flzy) = 2'Ay
= (xtAy)t (since z' Ay € R)
= y'Al (mt)t (well-known result)
= y'Azx (since A is symmetric)

Hence, f (z,y) = f (y, ).
The proof is finished. O

We conclude from Theorem [2.T| the following corollary.

Corollary 2.1. Every matrix A € M, (R) produces a bilinear form over R" and every

symmetric matrix A € M,, (R) produces a symmetric bilinear form over R".

Theorem 2.2. Let B and B’ be two bases of E. Let P be the passage matrix from B to B' and let
[+ ExE — Rbeabilinear form over E. If A = My (B)and A’ = My (B'), then A’ = P"-A-P.
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2.2. ORTHOGONAL MATRICES 19

Proof. Assume that B = {ej,ea,...,e,} and B’ = {e}, ¢}, ..., e, }. For every z,y € E, we see
that
95:2?:1%"61’ y:Z?zlyi'ei
and

o n ro o n ro
$_2¢:1xi'ei 9—21‘:1%"61’

Thatis, x = P -2’ and y = P - /. Therefore,
— t. . — . /t. . . / — ,t. t ./
flay) =t Ay=(P-a) A (P-yf) = () - P'AB.

Thus, the matrix of f with respect to the basis B’ is given by: A’ = P*- A - P, where A is
the matrix of f with respect to the basis B. The proof is finished. O

Theorem 2.3. If dim E = n, then dim £, (E) = n?.

Proof. Let {uy,us, ..., u,} be abasis of E. Define the bilinear forms f; ; by

1, for (i,7) = (r,s)

fij(eres) = { 0, for (i, j) # (r,s)

Letz =31 zu;and y = Z?:l y;u; be two vectors of E. It is clear that
fij (@, y) =2y, fori=1,2,.. n.

Now, let f € £, (E) and put f (e, e5) = a,s. It follows that

flzy) = f (Zfﬁzuwzyyuz> =D > wyif (eiey)

i=1 j=1
n n n n
= Z Z TilYjij = Z Z iy fij (T, ).
i=1 j=1 i=1 j=1
Then these n? bilinear forms f;; generated the vector space f; ;. Since (fi;),; -, form a

free family, we conclude that (f; ;) is a basis of £, (E) . The proof is finished. O

1<i,j<n

2.2 Orthogonal matrices

Definition 2.3. An invertible square matrix A is said to be orthogonal if A' = A™'.

Clearly, a sufficient and necessary condition for A to be orthogonal is that AAt = A'A =
I, , where [ is the identity matrix.
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Example 2.3. By the above definition, the following matrices:

cosa Sinwo
( ] ) with o € R, (2.1)
—sina cos«
1 1 1
% % V2 V6 V3B
2 2 1 1 1
01 and 75 76 7?:
V2 V2 0 =2 L
NS

are orthogonal.
Proposition 2.1. Let A € M,, (R) be an orthogonal matrix. Then det (A) = £1.

Proof. Since A" = A, we conclude that A'A = I,,. This gives
det (A'A) = det (A") det (A) = (det (A))* = det (I,,) = 1.

Hence, det (A) = +1. O

We need to define matrix norms and scalar product over a vector space .

2.2.1 Matrix norms

Definition 2.4. Let E be a vector space over K (R or C). The norm over E, denoted by ||.||,
is a mapping

I E—=Ry

x — |z|]| (we say: the norm of x)
which satisfy the following properties:
1. Foreveryz € E: |jz|| > 0and ||z|| =0 < = = 0g;
2. Forevery x € E and scalar a € K : ||az| = |af . ||z||;
3. Forevery z,y € E : ||z +y| < |z| + |yl -

In this case, the couple (E, ||.||) is called normed vector space or normed space. So, a
normed space FE is a v. space endowed by a norm.

Example 2.4. Here, we only use the two vector spaces, K" and M,, (K) with K = R or C.
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2.2. ORTHOGONAL MATRICES 21

1. Define over K" the following norms:

N[

Bl
=
I

2
>l lell = (Zm) ,
i=1
el = max (o).
2. Define over M,, (K) the following norms:
||A||1 = mjaxZ|aZ-j| and ||AHoo :miaXZ|aij|
; “

[All, = (Z‘aﬂ > and HA”p = <Z|aij|p>
1,J

t
As an application, for v = < -1 1 =2 ) , we have

loll, = 4. llall, = V6and |z, =

-2

and for A = ( -1
7 3

) € M,, (R), we also have

|All, = max (8,5) = 8, ||A||, = 3V7and ||A||, = max(3,10) = 10

Lemma 2.1. For each matrix A € M,, (K) and for each x € K", we have the following inequality:
[Az < [[A[} ]

The above lemma remains interesting for future study.

2.2.2 Scalar Product (Inner product) over a real vector space

Definition 2.5. Let £ be real vector space. The inner product over £ is a mapping (., .)
defined by

(,) : ExE—5R

(z,y) = (x,y)

which satisfy the following properties:

1. Forallz € E, (z,z) > 0and (z,2) =0 < = = 0.
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2. Forall z,y € E, we have (z,y) = (y,z) .

3. Forall z € E and scalar a € R, we have (Az,y) = A (z,y)

4. Forall x,y,z € E,wehave (z +y,2) = (z,2) + (y, 2) .

We say, the scalar product between = and y, or the inner product between x and y.

Example 2.5. Define over R" the scalar product (., .) by

Ty Y1
x n
v Tr = .2 y Y = y.2 € ]Rn : <£C, y> = Z TiYi- (22)
: : i=1
Tn Un

t t
We can write (2.2) a (z,y) = 2'-y. In particular, for z = ( T1 Ty ) andy = ( Y1 Yo ) ,

we have

(x,y) = ((w1,72) , (y1,92)) = T1y1 + T2Y2.

Example 2.6. Define over the vector space C([a, b]) the inner product:
b
Vi€ o) (fa)= [ ) gl)de

Theorem 2.4. Let A € M,, (R). The following properties are equivalent:
(i) Ais orthogonal.
(ii) For every x € R", |Az|| = ||z|| .
(iii) For every x,y € R", (Ax, Ay) = (x,y) .
Proof. 1)=2). Assume that A is orthogonal. Let z € R” we have
|Az||* = (Az, Az) = (z, A'Az) = (z, I,x) = (x,x) = || (2.3)

Therefore, || Az|| = ||z]| .
2)=3). Suppose that V= € R" : [|Az| = ||z| . Let 2,y € R™ we see that

1A @ +yI* = llz +y]*

2Sometimes we use the notation ‘z - y instead of 2t - y. We also write *A - A instead of A* - A when A is a
square matrix.
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This means that (Az + Ay, Az + Ay) = (x + v,z + y), or, equivalently,
(Az, Az) + (Ay, Ay) + 2 (Az, Ay) = (z,2) + (y,y) +2(z,y).

Thus, (Az, Ay) = (z,y) .
3)=1). Assume thatV z,y € R" : (Az, Ay) = (x,y) . Then

(z,A'Ay) = (z,y),
ie., (x, A'Ay — y) = 0. In particular, for = 2’ Ay — y, we obtain
¢ 2
HA Ay — yH = 0.
Hence, A Ay = y. Consequently, A’A = I,,. O

Example 2.7 (Homework). Consider the matrix

For any 6 real, show that ¢/ is orthogonalf}

2.3 Gram-Schmidt Orthonormalization Theorem

Let E be a Euclidean space and let B = {u1, us, ..., u, } be a basis of E. There exists a unique
orthonormal basis {e1, es, ..., e, } of E satisfying the following conditions:

1. Vect{ey,ea,...,en} = Vect {uy,ug,...;un} .

2. (ei,ui> =0fori= 1,2, ey N

The following formulas permit us to find such orthonormal basis recursively as fol-

lows:

Uy

€1 —
ful

Uk = Up — > i (€isUp) - € (24)
Vg

€ —
vk

Example 2.8. Let us take £ = R?* and B = {(1,-1),(1,1)} = {uy,uy}. Clearly, B is a

basis of R?. Now, we construct the corresponding orthonormal basis using Gram-Schmith

3We can prove that A is diagonalizable, where ¢4 is given by 2.1).
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method. First, we have

and
vy = up—(e1,uz) €
() (a) o
Hence,

V2 ( 1 1 )
eo=7—"7=(—7,—14|.
T el \V2'V2
We deduce that B = {ey, €5} is an orthonormal basis of R?. Similarly, let

B=1{(1,1,1,),(0,1,1,),(0,0,1)} = {uy, us, us} .

Y A U T |
We have e; = m = <7§, el 7§> . Next, by (2.4) we have

Vg = U2 — €1>U2> €1

- (o) eo)
21
3

- 01D (f )= (55)
Hence, e; = HZ_EH - (——g X, %a) . Also, by by @),
vs = ug— (e1,us) e1 — (€2, us) €2
oo (R o)) (G dt)
(o) o)) ()
A&

1 2 -1
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2.4 Diagonalization of real symmetric matrices

Recall that a matrix A € M,, (C) is said to be symmetric if A* = A. It is well known that for

any matrix A € M,, (R), the matrices A’A and AA" are symmetric. If A is skew-symmetric,

then A? is symmetric. Moreover, A + A’ is always symmetric and A — A’ is always skew-

symmetric. So we can easily prove that
M, R) =S5, (R) DA, (R).

We can easily show that if A is symmetric, then e is also symmetric. Indeed, by definition,
if A is symmetric then we have

. oo i b 4o AN I At I Qi A
(e”) =<ZW) :Z(W> :Z(u) =2 =t

i=0 i=0 i=0 ’ i=0

The result holds. Another important result is given by:

Lemma 2.2. Every symmetric matrix A € M,, (R) is diagonalizable. Moreover, every symmetric
matrix A € M,, (R) can be represented in the form:

A=P.D-P, (2.5)

where P is orthogonal and D is diagonal whose diagonal entries are the eigenvalues of A.
Proof. The proof is found in the course of Algebra III. O

Definition 2.6. Let A € M,, (R) be a symmetric matrix. We have
e Ais said to be positive if 2’ Az > 0 for every z € R".
e Ais said to be definite positive if z' Az > 0 for every z € R" — {Og» }.

Next, we present the following theorem.

Theorem 2.5. Let A € M, (R). Then A is symmetric definite positive if and only if there exists
an invertible matrix M such that
A=M'M. (2.6)

Proof. Assume that A = M*M with M is invertible. Then A is symmetric, since

At = (M'M)" = M* (M")" = M*M = A.
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On the other hand, let = # 0 be a column vector. We put

(Mz)" = ( i Y2 oo Un )
Since M € GL, (R), then Mz = y # 0. Therefore,
2’ Az = 2" (M'M) x = (Mz)' (Mz) = y'y = ny > 0.
i=1

Thus, A is definite positive.

Conversely, assume that A is symmetric definite positive. By Lemma we write
Ais symmetric = 3 P € GL,, (R) such that A = PDP",

where D = ()\;) is diagonal whose diagonal elements are the eigenvalues of A. However,
since A est definite positive, the matrix D is also definite positive, that is, its diagonal
entries are strictly positive. Thus, we can define the diagonal matrix:

VD = diag {\/)\—17 \/)‘_% v \/)‘_”} !

and rewriting, we get
t t
A= PDP' = PVDVDP' = PVD <\/5> Pt — (P\@) (P\/E) — MM,
t
where M = (P\/E) € GL, (R); since P,v/D € GL, (R). The proof of Theorem [2.2|is
finished.

Corollary 2.2. Let A be a symmetric definite positive matrix. Then det (A4) > 0.

Proof. First method. Since A is a symmetric definite positive then by Theorem A =
MM, where M is invertible. Therefore,

det (A) = det (M'M) = det (M") det (M) = (det (M))? > 0.

Second method. Since A is a symmetric definite positive then Sp(A) C R%. On the other
hand, it is well-known that

det (A) =[]\,

from which it follows that det (A) > 0. O

Another interesting property of symmetric matrices is the following result:
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Proposition 2.2. Let A be a symmetric matrix and let (A1, x), (A2, y) be two eigenpairs of A with
a # . Then (z,y) = 0.

Proof. Indeed, we see that

A <5L’,y> = <)\11’,y> = <Ax7y> = <I7Aty> = <$,Ay> = <l’, )‘2y> =N <$,y>,

and since o # 3, we deduce that (x,y) = 0. O

2.5 Proposed Problems on bilinear forms

Exercise 1. Let v; = (2,1) and v, = (1, —2) two elements of th real vector space R? reported
by its canonical basis. Show that {v;,v5} is a basis of R?. Consider the linear form ¢ over
R? defined by ¢ (v;) = 15 and ¢ (vs) = —10. Find ¢ (z) for anyz = (x1, 22) in R?. Give the
dual basis {vy, va}.

Exercise 2. Let E be real vector space R? related to its canonical basis {e;, e;} and let f

be the bilinear form defined on F setting for every x = (21, 22) and (y1,y2) in E,

f(z,y) = 33x1y1 — 14 (2192 + 22y1) + 62215

1. Find the matrix of f relative to the basis {e;, es}.
2. Prove that the vectors v; = e; + 2es, v3 = 2e;1 + 5ey form a basis of F.
3. Write the matrix of f with respect to the basis {v, v2} .

4. What is the rank of f7

Exercise 3. Let f be the bilinear form defined on the vector space R? by

fler,er) =1, f(er,e2) =1
f(€2761> = _1, f(€1,€2) = 3,

where {e1, e} is the canonical basis of R?. Specify the value f (z,y) for every z,y in R2.
Exercise 4. Let f be the bilinear form on R? setting z = (21, z2) and (y1, y2) in R?

f(z,y) = 2z1y1 — 3x1y2 + Z2Yo.

1. Find the matrix A’ of f related to the basis {u; = (1,0),us = (1,1)}.

2. Find the matrix B of f related to the basis {v; = (2,1) ,us = (1,—1)}.
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3. Find the passage matrix P from the basis {u;, us} to the basis {v;, v2} and verify that
B = P'A'P.

4. What is the rank of f?

Exercise 5. Let £/ be a vector space over a commutative field K (R or C). We denote
by S the set of symmetric bilinear forms on £ and by A the set of antisymmetric bilinear
forms on E.

1. Show that S and A are two vector subspaces of E.

2. Show that the vector space of bilinear forms B(E) over E is the direct sum of S and
A.

3. We assume that F is of finite dimension n. What are the dimensions of S and A.

Exercise 6. Are the following functions £ x I — R bilinear forms over the vector
space E? If yes, write their matrix in the canonical basis. Are they symmetric? When
E = R3, give their matrix in the basis B = {v,v2,v3}, where v; = (1,0,1), v2 = (1,1,0)
and v3 = (—1,0,1).

o [(2,y) = x1y1 + Tays + x3y3, E = R?

o f(z,y) =y1y2 +x1y1 + z3y3, E = R?

o f(z,y) =23y + 320, B =R

o f(x,y) = 21ys — 223 (32 + 2u1) + 4232 — Y129, E = R?

Exercise 7. Let f,, f, be bilinear forms on R* whose matrices in the canonical basis are

1 -1 0 0 1 3
A= -1 =3 2 |andAy=| 1 -2
0 -2 -1 5 5+ 0

Write the matrices By and B, of f; and f, with respect to the basis {vy,vs, v3}, where
v1 = (1,0,0), v2 = (3,3,0), v3 = (5,31, 1) . Deduce the rank of each of the linear forms
fiand fa.

Exercise 8. Prove that the vectors e; = (1,0,2), e; = (0,1,1) and e3 = (—1,0, 1) form a
basis of R3.

Determine the matrix with respect to this basis of the bilinear form R* x R* — R

defined, for every x = (1, 9, 23) and y = (y1, y2, y3) in R® by

f (xa y) = 211Y2 + ToY2 — ToYy3 — 2X3Y1 + T3ys — T3Ys3.
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Exercise 9. Let f be a bilinear form on F and A its matrix representation in a given

basis. f is said to be symmetrical or symmetric (resp., skew-symmetric, alternating) if
f(xy) = [y, ) (vesp., f(z,y) = =f(y,x), [ (x,2) = 0) for every z, y belong to E.

1. Prove that f is symmetric (resp., skew-symmetric) if and only if A* = A (resp., A" =
—A).

2. Prove that if f is alternating, then f is skew-symmetric.

3. Recall that the basic field K of E is infinite. Show that if f is antisymmetric, then f is
alternating.

4. Define f : R x R — Rand g : R? x R? — R such that f (z,y) = zy and

g ((xh $2) ) (yh yz)) = T1Y2 — T2Y1,

where z,y € R and (z1,22), (y1,42) € R Study whether f and ¢ are symmetric,
skew-symmetric or alternating.

Exercise 10. Let (¢) = {e1, e, €3} be the standard basis of R* and let f the bilinear
symmetric form over R? given by

f(x,y) = z1y1 + 622y2 + 56x3y5 — 2 (T1y2 + T2y1) + 7 (x1ys + x3y1) — 18 (x2ys + x3Y2) ,
for x = (w1, 22, 73) and y = (y1, yo, y3) in R3.

1. Find the matrix of f with respect to the basis (e).

2. Prove that the vectors €] = ey, €, = 2e; + €5 and e} = —3e; + 2e3 + e3 form a basis of
R3.

3. Write the matrix of f with respect to the basis (¢’) = {¢}, e, 5 }.
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CHAPTER 3

SYMMETRIC BILINEAR FORMS AND
QUADRATIC FORMS

Un this chapter we focus on the goal of symmetric bilinear forms which define quadratic
forms, where every bilinear form is uniquely represented as the sum of a symmetric

bilinear form and a skew-symmetric bilinear form. Let us start by the following definition:

Definition 3.1. Let £ be a vector space over R. A mapping ¢ : £ — R is said to be
quadratic form if there exists a symmetric bilinear form f : £ x E — Rsuch that f (z,z) =
¢ (z) for any = € E. In this case, f is said to be the polar form of ¢. Thus, f is the polar for
of ¢ if and only if f is bilinear, symmetric and f (z,z) = ¢ (z) for any x € E.

Example 3.1. Using the above definition, we can easily show that the following mappings
are quadratic forms over E.

1. E=Randq: E— R, 2+ 2.
2. E=R?’and q: E— R, (2,y) — 2> + %
3. E=Plz]andq: E— R, p—= fapr (1) dt.
4. E=R3and q: E— R, (21,29, 73) > 27 + 23 — 2.
The corresponding polar forms are given in Example

Notation 3.1. Let ¢ : £ — R be a quadratic form over £E. We denote by Q, (E) the set of

all quadratic forms over E.

3.1 Relation between a quadratic form and its polar form

Let ¢ : E — R be a quadratic form and let u,v € E. Then the polar form of ¢, namely f
satisfies:

fu,v)=—lg(u+v)—q(u—v)]=5[g(u+v)—q(u)—q@)]. (3.1)

e~ =
N =

30
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In general, if we would like to prove that a mapping ¢ : £ — Ris a quadratic form, we
first define the mapping f from E*toRby f : E x E— R,

(1,0) = 5 la (ut0) g (1) = g (0)]
and by Definition 3.1jlwe must prove the following facts:
1. fisbilinear,
2. fis symmetric,
3. f(z,x) =q(z)forany z € E.

Example 3.2. Define the mapping @) : P, [x] = R, p — p (0) p (1). Show that () is a quadratic
form over P, [z]. In deed, by we obtain ¢ : Py [x] X Py [2] — R, where

1

(p0) = ¢ (p.0) = 5p(0)g (1) + 50 (0) p(1).

We can easily check that ¢ is bilinear, symmetric and ¢ (p,p) = Q (p) .

3.2 Quadratic forms over R"

First, the analytic expression of ¢ is given by:
q = Zaij C Xl = Z Z(lij cXij, (32)
i, i=1 j=1

where (a;;) are real numbers. There are two cases to consider:
Case 1. a;; = aj; for 1 <, j < n. The quadratic form ¢ is given by the following matrix
form:

n n
_ 2
q(r1,72,...,T,) = @i Ty + Qij * TiT;

=1 7]
n n
2 : 2 2 :
= aiia:i + 2 aij . il?iflfj
i=1 1<j
a;; a2 ... QAip T
G12 G2 ... Q2 T2
= ry T2 ... Tp . . 5
Ain  G2n ... Qpn Tn
= 2 Az,
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Case 2. a;; # aj; for some 1 < 4,5 < n. Here, we see that

n n n n
2 2
q = E ai; - T; + E Qij - T = E a;; - T + g (ai; + aji) - xiz;
i=1

i#£] i=1 1<j
n n
2 17 71
i=1 1<J
n n
E : 2 E
= aii'xi +2 bij '.Z'iZUj,
i=1 1<J
where b;; = b;; (1 <4, j <n). It follows that
aqy aiz2+az1 A1n+ani 1
fm;r& a9 a2n+an2 T
q = r1 T2 ... Tp
(lln‘ganl a2n‘£an2 . ann :L»n

In both cases, ¢ can be written in the form ¢ = 2" - A - x with A symmetric.

Corollary 3.1. Every symmetric matrix A € M,, (R) produces a quadratic form over R".

J2)

Example 3.3. For ¢ = 27 + bxy29 + 723, we have

o= (o)

Here E = R?. But, if E = R? we also have

N|OT =
~J nojot

1 g 0 T
q:<1'1 ) .1]3) % 7 0 )
0 00 T3

Similarly, for ¢ = —2% + 5zy29 + 1173 + 225 + 22973 — 23, we also have

5 1
-1 3 3 1
q=<x1 o l‘g) g 2 1 T
1 -1 3
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3.3 Quadratic forms over an arbitrary vector space

Let E be a vector space of dimension n (finite-dimensional space) and let (¢) = {eq, €2, ..., €, }
be a basis of E. Let f € S, (F) and let ¢ € Q, (E) be the corresponding quadratic form.
For each u,v € E we have

n n
u= Za:iei and v = Zyiei, where z;,1y; € Rfor 1 <i,7 <n.
i=1 i=1

Then

flu,v)=f (Z L€, Z%@) = Z%yz‘f (ei,€:) + Z (wizj + x;3;) f (€i, €;) -
=1 =1 i=1

1<j

In the matrix form (for £ = R"), we obtain

fler,er) fle,ea) ... fleren) n
flzy) = <x1 2 xﬂ) [ ez, e1) flez,e2) f(ea,en) y:2

f(€n761> f(eme?) f(emen) Yn

By definition, the following matrix

flerer) flerer) .o fler,en)
M, () = f(ea er)  f(e2,e2) f (e, en)
flen,er) flen,ea) oo flen,en)
is called the matrix of f in the basis (e) .
Example 3.4 (Homework). Show that the mappings:
a2 A g (A) =tr (ATA)
@ A g (A) =tr (A7)

are quadratic forms, where ¢r (M) denotes the tracdl| of M.

1Recall that the trace of an n by n matrix M = (a;;) is defined by tr (M) = a11 + a2 + ... + apn.-
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3.4 Orthogonalization method

Using some properties of symmetric matrices, we prove the following theorem:

Theorem 3.1. Every quadratic form over R" is diagonalizable. That is, if ¢ = x'Ax for some A
symmetric and x € R"™, then ¢ = v' Dv for some D diagonal and v € R". In other word, we have!
Every quadratic form over R™ is of the form:

q=A -0+ Ay V3 A Ay 02, (3.3)

where the scalars Ay, ..., A, and the vectors (vy,vs, ...,v,) € R" satisfy Av; = A\wv;. That is, by

(3.3) we get
)\1 (%1
)\2 Vo
q:(vl Vy ... Un) . .
A’I’L /UTL
Proof. We know that
g=1"-A-z,

where A is symmetric. By Lemma 2.2} we have
g=a'- (PDP') -z =2'P-D-Pa= (Pz) - D P
Now, if we put v = P'z, then we obtain ¢ = v* - D - v. Since

A1
A2

An
is diagonal and v* = < vl Vg ... Uy, ), the proof of (3.3) finished. O
Example 3.5. Let ¢ = 22?7 — 4x,79 + 53,

1) Write ¢ in the form z' Az, where A € M (R).

2) Using the Orthogonalization method, write ¢ in the form A\;v? + 03, where A1, Ay
are the eigenvalues of A. Solution. 1) In fact, we have

- 2 2 2 —2 Ty
q = 2&71 4.771372 + 5‘%2 = 1 X9 .
-2 5 i)
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2

-2
2) We put A = ( . ) . After few computation, the eigenpairs of A are:

)\1 = 1—)11,1:(2,1),
Ay = 6—)162:(1,—2).

We see that ||uy, = ||uz||, = V/5. Setting

Pz( _2>andD:<10>.
N 0 6

Clearly, P is orthogonal (PP* = I,). Moreover, we have

PDP' = (

It follows that

Sl= Gl
S

Sk
mltl:alH
N——
/-
o
S O
N——
VR
S5
Sl S
N——

Il
VN
[lp b
o
N——

I

N

g=a2'Az =2t (PDP)z =a'P-D- Pz = (P'z)" - D - Pla.

Now, we put v = P’z. That is,
v::<

q = v'-D-v=\vi+ v
2 1 2 1 2 2
- g\/gl‘l + 5\/5%2 + 6 g\/gl'l - 5\/51'2

(2x1 + x2)2 (x1 — 25172)2
S e

Sl= Gl
SL S

T . %\/5% + %\/gfz
T2 Bl %\/5% - %\/ng .

Therefore,

= 1.
Thus, we have written ¢ as in (3.3).

Example 3.6 (Homework 1). Let ¢ = 2z, 5.

1. Write ¢ in the form 2! Az, where A € M, (R).

2. Using the Orthogonalization method, write ¢ in the form A\v} + Ayv3, where A1, \s
are the eigenvalues of A.
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Example 3.7 (Homework 2). Define the matrix

s

|
— = N
— N
(NG Y S

Write Aas A = P - D - P*, where P is orthogonal.

3.5 Definitions and results

Let f € Sy (FE) (that s, f is a bilinear symmetric form over E).

Definition 3.2. A bilinear form f is called nondegeneratef] if it satisfies the condition:
f(z,y) =0 for all z € E implies that y = 0.

Thus, f is called nondegenerate if ker f = {Og}. In the case when ker f # {0z}, f is
said to be degenerate.

Definition 3.3. A vector v € E is said to be isotropic if f (v,v) = 0. A subset A C E is
called isotropic if f (v,v) = 0 forany v € E.

We denote by C the set of all isotropic vectors. That is,
C={vekFE: f(v,v)=0}. (3.4)

The set C'is called the isotropic cone of E. Note that if v € C, then a - v € C. In fact, for
every v € C'and o € R we have

q(aw) = f (av,av) = o*f (v,v) = 0. (3.5)

Proposition 3.1. If f is skew-symmetric, then every vector is isotropic.

Proof. If f is skew-symmetric, i.e., f (z,y) = —f (y,x) for any z,y € E, then f (z,z) =
—f(z,z)forany z € E,so f (z,z) = 0forany z € E. O

Proposition 3.2. Let f € Ly (E). Then f is alternating if and only if C = E.

3.5.1 Is the isotropic cone a vector space?

In general, the isotropic cone of F is not a vector subspace of £. Thus, we have the fol-
lowing theorem.

%In some references we find the word “nonsingular” instead of nondegenerate.
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Theorem 3.2. Let f be a nonzero bilinear symmetric form defined on a vector space E. Then

C =ker f L ¢ is a vector subspace of E.

For the proof we need to the following lemma.

Lemma 3.1. Let q be a quadratic form defined over E and let f be its polar form, where E is vector
space over R. Assume that C' is a vector subspace of E and there exists an element xo € C/ ker f.
Then

Vy € Eif f(vo,y) # 0, theny € C,

where C' denotes the isotropic cone.

Proof. Lety € E such that f (z¢,y) # 0. We have

VA € R:qg(A\zo+y)=f(A\zo+y, A\vo +9)
= 2\f (zo,y) + ¢ (y) (since q(zo) = 0).

If we let \y = L(y) € R, then clearly ¢ (Aozo +y) = 0, from which we deduce that

B 2f ($07 y)
Aoz +y € C. But, C'is given as a subspace containing x,. Thus, we deduce that y belongs

to C, as claimed. ]

Proof of Theorem (=) Let ¢ be the quadratic form of f. For every (z,y) € C*and A € R,
we get that

e ¢(z+y)=qx)+q(y) +2f(z,y) =0. Impliesz +y € C.
e g(\r) =)q(z) =0;ie,\z €C.

Thus, C is a subspace of E.
(<) Suppose that C is a subspace of . Note that the inclusion ker f C C'is always
true; since

f(z,y)=0,Vye E = f(x,x) =0 (by taking the case y = z).

We would like to prove that if C' is a subspace of E, then C' C ker f. Assume by the way of
contradiction that C' ¢ ker f. There exists a nonzero vector x, with zy € C/ ker f. Define

H={yeE; f(xoy)=0}.
It suffices to verify that £ C C. In fact, let = € F'and y ¢ H. We have

Z=y+z—y.
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From Lemma 3.1, we have y € C. We distinguish two cases:
Case1.If zisin H, theny + =z ¢ H, since

f($0>y+z) :f($0>y)+f($0>z) 7&0
#0 =0

Likewise, from Lemma we have y + z € C. In this case, we have

z=y+z— y €C (sinceC isasubspace of E).
C c
S €

Case 2. If z ¢ H, by Lemma 3.1 once again, we have z € C. Thus, E = C, and so f = 0;
since ¢ = 0. But this is a contradiction with our hypothesis that f is a nonzero bilinear
form. Our proof of Theorem is finished. O

Definition 3.4. Two vectors x and y are said to be orthogonal by f if f (z,y) = 0. We
denote by z L y.

We deduce from the above definition that C consists all vectors z such that z L z. Also,
ker f consists vectors which are orthogonal with all the vectors of E.

Definition 3.5 (Orthogonal set). Let A C E. The orthogonalf| of A with respect to f is
usually denoted by A+ and defined by

At ={z€E, f(x,y) =0foreveryy € A}. (3.6)

Example 3.8 (Homework). When does A C A+?

Remark 3.1. In the case when a nondegenerate bilinear form on E is not symmetric, there

are two different orthogonals of A :
1. A ={x € E, f(z,y) = 0foreveryy € A}.

2. At ={zr € FE, f(y,z) =0foreveryy € A}.

Here, we can prove that
(AJ_,L)J-:R _ (AJ_,R)J-’L — A

Definition 3.6 (Kernel of a bilinear symmetric form). Let f € Sy (E). The kernel of f is
defined by
ker f ={z € E, f(z,y) =0foreveryy € E}. (3.7)

3In some references we say “perp space to A” instead of the orthogonal of A.
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From Definition we deduce that ker f = E+. Note that z( € ker f iff f (z,y) = 0 for
every y € E. Similarly, z, ¢ ker f if and only if there exists § € E such that f (x,7) # 0,
or equivalently f (zo,y) # 0 for somey € E.

Theorem 3.3. Let f € Sy (E) and let A, B C E. Then
1. (A1) > A
2. (AnB)" > At + BL,
3. (AUB)" > AtnB*

Proof. 1. Letv € A. For any u € A+, we have f (u,z) = 0 for any = € A. In particular, for
r = v we have f (u,v) = 0. This means that (Al)L contains v. As required.

2. Letv = a+ b € A+ + B+, where A+ contains a and B~ contains b. We will prove
that (AN B)™ contains v. For every z € AN B we have f(a,2) = f(b,x) = 0 and so
f(a+0b,x) =0since f € Sy (E). Thus, f (v,z) = 0.

3. Letv € A+ N B*. For every x € AU B we have

e If r € A, then f (v,z) = 0 since v € AL,

e If z € B, then f (v,x) = 0 since v € B™.

In both cases we have f (v,z) = 0 forany 2 € AU B. Thus, v € (AU B)", as asked. [J

Proposition 3.3. Let f be a bilinear form over E. Two subsets A and B of E are called orthogonal
with respect to f if f (z,y) = 0 for any x in A and y in B. The following conditions are equivalent:

1. Aand B are orthogonal,
2. AcC B,

3. BC AL,

Proof. We prove (a) = (b). Let ay € A. For each vector v € B, f (ag,v) = 0 since A and
B are orthogonal. Hence, ay € B*. Next, (b)) = (c). Let by € B. For each vector v € A4,
we have v € B*, and so f (b, v) = 0 since by € B. Hence, by € A*. Finally, (c) = (a). Let
u € Aand v € B. Since v € A*, then f (u,v) = 0. O

Definition 3.7. Let E be a v. space on R and let {ey, s, ..., €, } be a family of n vectors of E.
We have

o {e1,€9,...,e,} is orthogonal by f if f (e;,e;) = 0 for i # j.
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e {e1,€e,...,e,} is orthonormal by f if f(e;,e;) = 0 for i # j and f (e;,e;) = 1 for

i=1,2,...n.
Definition 3.8. Let ¢ € Q, () and f its polar form. Then
e gor f is said to be positive if ¢ (z) > 0 for every x € E.
e gor fissaid to be definite positive if ¢ (x) > 0 for every z € E — {0g}.

Example 3.9. ¢ = z% — 4x,25 + 423 is positive. In fact, we see that
q = (z1 — 225)% > 0 for every (zy, ;) € R
But, ¢ = 27 — 2z129 + 223 is definite positive. In fact, we have
q = (z1 — x5)° + 22 > 0 for every (z,,7,) € R? — {(0,0)}.

Theorem 3.4. Let f € Sy (E). If f is definite positive, then f is nondegenerate.

Proof. Letz € ker f. Then by (3.7), f (z,y) = 0 for every y € E. In the case when y = z,
we get f (z,z) = 0. But, since f is definite positive, f (z,z) = 0 implies x = 0. ]

Theorem 3.5 (Cauch-Schwarz inequality). Let ¢ € Oy (E) and f € Sy (E). If q is positive,
then

(f (z,9))* < q(x) q(y) forevery z,y € E.

3.5.2 When is a quadratic form surjective?

Let ¢ € Qy (E) . Here we ask if any real number is represented by this quadratic form. We
present the following result:

Theorem 3.6. Let q be a quadratic form on a real vector space E. The following three properties
are statements:

1. q is surjective.
2. q is neither positive nor negative.

3. There exists an isotropic vector which is not in the kernel.

Proof. (1) = (2). Since q is surjective, then there exists xy € E (resp. z; € E) such that

{ q(xo) >0,
q(z1) <0.
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Then ¢ is not negative (resp. positive).
(2) = (3). Let zp and z; in E such that ¢ (zg) > 0 and ¢ (z1) < 0. Consider then a vector
of the form Azy + z1, where A € R. Let f be the polar form of ¢, we have

q ()\I‘O + IL’l) = f ()\I‘O + X1, )\l’o + ZEl)
= Nq(z0) + 2Xf (zo, 1) + q (1) = p(N).

Assume that p (\) = 0. By computation, we find

A = f2(zg,21) — q(x0) q (z1) > 0.

Then the equation p (A\) = 0 has two roots. Let \; be one of them. Then the vector y, =
Aoy + 1 is by construction, isotropic. We prove by the way of contradiction that y, is not
in the kernel of f, that is, assume that y, € ker f. Hence, f (yg,x) = 0 foreach z € E . In
particular, for z = z, and for x = x; we have

{ 0= f (30, 70) = Aog (w0) + [ (w0, 71),
0= f (o, x1) = Ao f (zo,21) +q(21).

That is,
A5q (20) + Mo f (o, 21) =
Xof (o, 1) + ¢ (21) = 0.
We deduce that \2q (z) = ¢ (71) < 0. A contradiction.

(3) = (1). Let yy be an isotropic vector which is not in the kernel of f. There exists
y1 € E such that f (yo,v1) # 0. Then for each v € R, we put

v —q ()

- €R,
2f (y07 yl)

from which it follows that

qg(\yo+y1) = Q<2f_(;0(zll)y0+y1>

)
q(y1) v—q(yl)
f(zf( )y 0ty yo+y1)

Yo, Y1

Thus, ¢ is surjective. The proof of Theorem [3.6]is finished. O
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3.6 Gauss Decomposition (Silvester’s Theorem)

First, we need to the following definition:

Definition 3.9 (signature of a quadratic form). Assume that

=1+ o+ [P — = A (3.8)

where f1, fo, ..., ;45 are linearly independent forms over R". The couple (r, s) is called the
signature of q.

Recall that if f; (21, x9, ..., x,) = agi)xl +ag)x2 + .. —HLS)xn with ay) ceRforl1 <i<r+s
and 1 < j <n, then fi, fo, ..., f;+s are linearly independent if and only if

agl) CL§2) agr—l-s)

(1) (2) (r+s)
as’ a ..a

> ! £ 0.
oV a§2) . aY“)

In the rest of this section we show how to write any quadratic form over R" as in (3.8).
To make this, we use the well-known identity:

(a+b+c+..)" =a>+ 0>+ +2ab+ 2ac+ ... + 2bc + 2bd + ... (3.9)

Let q (21,22, ..., 2,) = ZZ‘J a;; - v;x; be a quadratic form over R"”, where a;; = aj; for
1 <i,7 <n. We distinguish two cases:
Case 1. When ay; # 0, we put

/

1
T =Y — — (a12y2 + ...+ amyn)
ai
T2 = Y2 (3.10)
\ Tn = Yn

It follows that
q (1'17 T2, >xn) = ally% + q/ (y2:y37 7yn) )

where ¢ is also a quadratic form; but over R"~'. Then we repeat the same argument with

/

q.
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Case 2. When a;; = 0, but a;2 # 0. Here, we put

.

T1 = Y1+ Y2

T =Y1 — Y2

T3 = Ys (3.11)
Tn = YUn-

It follows that .
q (ilj'l, Ty .uny l’n) = Zb” . yiyj/
i,J

where b;; # 0. This is the first case (we have transformed ¢ so that we can apply the first
case). By this method we can write ¢ in the following form:

g=xfiE it .. L1,

where m <nand fi, fs, ..., f are linearly independent forms over R".

Example 3.10. Using Gauss” Method, diagonalize the following two quadratic forms and
deduce their signatures :

o g =13 + 23+ 225 — 4119 + G013
o (o = 21179 + 2x913 + 211 23.

Solution: For ¢y, since a;; = 1 it follows from (3.10) that

T1 = Y1 + 29
T2 = Y2
T3 = Ys.
This implies
) 2 2
¢ = x]+ x5+ 225 — 4dx129 + 622703

= (n+ 2y2)2 + y; + 2y§ — 4 (y1 + 2y2) Y2 + 612y3
= 7 — 3ys + 6yoys + 2u3
= yi+q (v, 03) -

Yo =22+ 23
Y3 = z3.
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It follows that

¢ = —3y; + 6yoys + 2u3
= —3(z —I—z3)2+6(z2+23)23—|—2z§
= —32; +52;.

Finally, we obtain
g = (w1 — 229)" + 523 — 3 (22 — w3)” = fT + f35 — [3,
where fi, f» and f; are linearly independent forms over R? since
0 0 5 |=-5%#0.
—1

Thus, the signature of ¢; is (2, 1). For the quadratic form ¢,, by (3.11) we put

T1 =Y T Yo
T =Y — Y2
T3 = Ys.

We obtain

@ = 2 +vy2) (yi —y2) +2(y1 —y2) ys + 221y3
= 2y +dysyn — 2u5

Setting once again
1 =21 — 23
Y2 = 22
Y3 = z3.

It follows that

¢ = 2ui +4ysy — 205
= 2(z — 23)° + 423 (21 — z3) — 222

— 2 2 2
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Hence,

e = 2(y+ys)® — 22 — 293

1+ 2 Ty — X 2
= 2( 12 2—|—3:3) —2( 12 2) —23:%

= fi-fH-f

where fi, f» and f3 are linearly independent forms over R? ; since

3
—1 0 |=24#0
0 -2

[ e

The signature of ¢, is (1, 2) and the rank is 3.

Example 3.11. Consider the quadratic form ¢ = z,23 + 7223, where E = R3. Find the
signature of q.
Solution: We put

T1 =Y + Yo,
To =Y1 — Y2,
T3 = Y3.

We obtain
q=(y1+vy2)ys + (11 — ¥2) Ys = 2y1y3

Y1 =21+ 2
Ys = 21 — 22

We put once again

Then

q = 2(z1+ 2) (21 — 2) = 227 — 22; (the signature is (1,1))

_ 9 Y1+ Y3 2_2 Y1 — Y3 2
2 2

_ m;cz+x3 2_2 MQM_IB 2
2 2 '

Remark 3.2. The inner product is a bilinear form, symmetric and definite positive. For each
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(z,y) € R™ x R", we have

n

Y2
(x,y):<x1 T ... xn) . :xty'

Yn

Corollary 3.2. Let A € M,, (R). Then there exists a symmetric matrix B € S,, (R) such that
z' Az = ' Bz for every x € R".
Proof. Since x'Ax = a € R, for every z € R" we have

rtAr = (a:tAx)t =zt Alx.

It follows that . . A At
Tt Axr = §:vtAx + ExtAtx =zt ( —; ) .
t
Note that the matrix B = is always symmetric. O

Proposition 3.4. Let A € M, (R) be a symmetric and let (o, ), (B,y) be two eigenpairs of A
with a # (. Then x and y are orthogonal, i.e., x L y. Or, equivalently, (x,y) = 0.

Proof. Indeed, we have

a(z,y) = (ax,y) = (Az,y) = (z, A'y) = (z, Ay) = (=, By) = B (z,y),
and since « # 3, it follows that (z,y) = 0. O
Example 3.12 (Homework). 1. Consider the equation

az® + 2hxy + by? = 0. (3.12)

t
Write (3.12) in the form v*Av = 0, where A € M, (R) and v = ( x oy > .
2. Write the equation A2} + A3 = 0 in the matrix form.

3. Let A € M,, (R). Weaskif v'Av =0V v € R", implies A =07

0 —1
Ans. No, take the matrix A = ( _ ) .
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Definition 3.10. Let £ be a real vector space equipped with an inner product (.,.). The
couple (£, (.,.)) is said to be a real pre-Hilbert space. A real pre-Hilbert space of finite

dimension is said to be Euclidian space.

Let (E, (., .)) be a pre-Hilbert space. The related norm is defined by
VeeE: |z =+ (z, ). (3.13)

Note that (3.13) a well-known identity which is used in (2.3).

3.7 Proposed problems (quadratic forms)

Exercise 1. Determine in the canonical basis of R*® the matrix of the symmetric bilinear
form f such that for v; = (1,2,1), v, = (—1,2,0), v3 = (1,0,1), one has f (v,v3) = 0,
f(va,v3) =4, f(v1,v3) = =1, f (v1,v1) =5, f(ve,v2) =1, f(vs,v3) = 0. Find the quadratic
form associated with f.

Exercise 2. Let f be a symmetric bilinear form on E and ¢ the quadratic form associated
with f. Show that for all z, y in F, one has

(q(x+y) —q(z—y)). (3.14)

| =

flz,y) =

Consider the mapping ¢ : £ — K such that for all z € E, and A € K we have ¢ (\z) =
Nq(z). Themap f : E x E — K given by is bilinear. Show that ¢ is the quadratic
form associated with f.

Exercise 3. In the vector space R? define the quadratic form:

q () = 3325 — 281115 + 623,

where ( T, T )t are the coordinates of x in the canonical basis {e;, ¢;} of R?. Determine
the expression of ¢ when we take as basis {¢/, ¢4} = {e1 + 2e2, 2e; + 5es } . Write the polar
form of ¢ in both bases.

Exercise 4. Let f be a symmetric bilinear form on E and let A and B be two parts of E.
Prove that A C (Al)L and if A C B, then B+ C A+

In the vector space R? related to its canonical base the symmetrical bilinear form de-
tined by

f(z,y) = z1y1 + 2200,

t t
where ( T1 Ty T3 ) and( Y1 Yo Y3 ) are the coordinates of z and y. Find e; and

(ef) "
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What can we deduce from this?
Exercise 5. Let f be a symmetric bilinear form on E and let /" and G be two subspaces
of E. Show that

(F+G)'=FuUG)=FnGrand Fr+ G c (FNG)* .

In the vector space R? related to its canonical base the symmetric bilinear form defined

by
[ (@, y) =z,

where < T Xo )t and ( Y1 Yo >t are the coordinates of = and y. Calculate (Vect {e;})",
(Vect {ey + ex})", (Vect {ex})" + (Vect {e; + ex})and (Vect {1} N Vect {e1 + e,})". What
can we deduce from this?

Exercise 6. In the vector space R’related to its canonical base the quadratic form de-
tined by

q(z) =23 + 25 + 235 — 4 (2122 + 1173 + T273)

t
where ( T, Ty T3 ) are the coordinates of . Without using the Gauss method, find a

basis of R® which is orthogonal by f, where f is the polar form of g.
Exercise 7. In the vector space £ = R? define to its canonical basis the quadratic form

q(x) = af + a3 + l’% — (129 + 2123 + T223),
t
where < T1 Ty T3 > are the coordinates of z,and let f be the polar form of ¢.

1. Decompose ¢ into sum of squares using the Gaussian method.
2. Find a base of £ which is orthogonal to f.

3. Find the matrix A and B of f respectively in the canonical and orthogonal basis of
E.

4. Verify by calculation that PAP = B, where P is the passage matrix from the canon-

ical basis to the orthogonal basis.

Exercise 8. Let A € M,, (C) . Show that if A is symmetric, then there exists B € M,, (C)
such that A = B* - B.
Exercise 9. Let (¢) = {e1, e2, e3} a basis of a real vector space E of dimension 3 and let

q(x) = 2% + 423 + 22 + dvy39 — 27175 — 120973,
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be a quadratic form over E, where z = x1e; + x2e3 + x3e is any vector of E. Reduce ¢ ()
in sum of squares using the Gaussian method and deduce its rank and signature.

Exercise 10. Let (¢) = {e1, €2, €3} a basis of a real vector space E of dimension 3. Define
q(x) = 2% + 423 + 22 + dwy3y — 22175 — 120973,

which is a quadratic form on E, where = = e, + x2e5 + x3€ is any vector of E. Construct,
without using the Gauss method, a basis (¢’) of E which is orthogonal with respect to g.

Exercise 11. Let (¢) = {ey, €2, €3} a basis of a real vector space E of dimension 3. Define
the quadratic form on F,

q(x) = 2% + ax3 + 523 + 2x179 — 67173 + 27973,
where a € R and = = z1e; + x2e5 + x3€3 is any vector of E.

1. Give the polar form f of ¢ as well as the matrix A associated with ¢ relative to the
base (e).

2. Reduce ¢ to sum of squares using the Gaussian method.

3. Construct, without using the Gauss method, a basis (¢’) of £ which is orthogonal for

f.
4. Give the matrix B associated with f in the basis (¢’) .

5. Deduce the rank and signature of q.

Exercise 12. Let (¢) = {ej1, e2, €3} be a basis of a real vector space E of dimension 3.
Define
q () = 4a7 + 2525 + ax; — 122120 + 4103 + 27973

a quadratic form on E, where a is a real number and x = z1e; + z9e5 + x3e3 is any vector

of I/, and let f be the polar form of g.

1. Give the matrix A associated with f relative to the base (¢).
2. Reduce ¢ to sum of squares using the Gaussian method.

3. Deduce the rank and signature of q.

4. Study if f is degenerate, positive, definite.

5. Construct, without using the Gauss method, a basis (¢’) of E which is orthogonal by

f.
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6. Give the quadratic form associated with f in the basis (¢’).
Exercise 13. Let ¢ be a real quadratic form of signature (s,¢). Show that

1. g is non-degenerate if and only if s + ¢ = n,
2. qis positive if and only if t = 0,

3. gis negative if and only if s = 0,

4. qis definite positive if and only if s = n,

5. ¢ is definite negative if and only if ¢ = n.

Exercise 14. Show that ¢; : A —— tr (A'A) and ¢ : A — tr (A?) are quadratic forms.
Exercise 15. Find the signature of the quadratic form related to the polar form

f : R'xR*"—>R
(z,y) = (@1+zo+...+z) (1 +y2+ ... +Yn) — (T101 + Zay2 + ...+ TpYn) -
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CHAPTER 4

INTRODUCTION TO HERMITIAN SPACE

% hroughout this chapter, the field used here is the field of complex numbers and E
is a vector space over C. For example, £ = C" withn > 2, C, [z], M,, (C), and so
on. The basic goal of this chapter is to define quadratic forms over a complex pre-Hilbert
space of finite dimension, namely, hermitian space.

4.1 Sesquilinear forms and hermitian quadratic forms

In this section, we deal with a sesquilinear form defined over a complex vector space E,
which is a mapping from E x E to C, linear according to one of the variables and semi-
linear with respect to the other variable.

4.1.1 Definitions and examples

Definition 4.1. Let £ be a vector space on C. A semi-linear form is a mapping f from £
to C such that for every (u,v) € E? and « € C, one has

L flutv)=f(u)+f(v),
2. f(av) =af (v).

Example 4.1. The mapping

f . C—>C

z = f(z)=2
is a semi-linear form over C. In fact, we see that

e Forevery 21,2 € C,

51
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e For every z € Cand a € K = C we have
flaw)=az=a-z=af (2).

Definition 4.2. A sesquilinear form is a mapping f from E? to C such that f is linear from
the left and semi-linear from the right. Thai is, for every (z,’,y,9') € E* and A € C, one
has

L fAe+aly) = Af(z,y)+ f (@ y),

2. f(z,  y+y) =X (z.9) + f(z.¥)

Example 4.2. Let f : C x C — C, (21, 22) — 2 - Z and we prove that f is a sesquilinear
form. In fact, for every (z1, 29, 21, 23) € C* and X € C, we have

f (/\21 + 29, Zi) = ()\Zl + Zz) . Z_i = )\le_i + ZQZ
= )‘f (21721) + f (Z2721) :

That is, f is linear from the left.

Fli M +2) = 2o (A +2)5 = 210 (A2f + 23)
= Az +azh = A (2,2) + f(21,23).
That is, f is semi-linear from the right.

As we have done above, we deduce:

Theorem 4.1. Let B and B’ be two bases of E. Let P be the passage matrix from B to B’ and
let f: Ex E — R bea sesquilinear form over E. If A = My (B) and A’ = My (B’), then
A'=P-A-P.

Definition 4.3. A hermitian sesquilinear form is a sesquilinear form f over E satisfying

f(z,y) = f (y,z), for each (z,y) € E*.

Example 4.3. The sesquilinear form defined over C by

f : CxC—C

(21,22) — z1%2

is hermitian. In fact, for each (21, z;) € C?, one has

f(21722) = R1R9 = R1R9 = 2129 = 2921 = f(22,21).

N
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That is, f is hermitian.

Theorem 4.2. Let A be a hermitian matrix, and let f : C* x C" — C, f (x,y) — 2*Ay. Then f
is a hermitian sesquilinear form over C".

Proof. We use the same argument as in the proof of Theorem [2.1] O

Theorem 4.3. Let f be a sesquilinear form over E. Then f is hermitian if and only if f (z,z) € R
forevery x € E.

Proof. Assume that f is Hermitian. Then by definition, f (z,y) = m for every z,y €
E. In particular, when = = y we have f (z,2) = f (z,z) for every x € E. Thus, f (z,z) € R
for every x € E.

Conversely. Assume that f (z,z) € R for every x € E. Then for every z,y € E we also

have
flx+y,r+y) €R,
f iz +y, iz +y) € R.
It follows that
fx.2)+ fy.y)+f(zy)+ fy,z) ER,
€R €R
fr,z)+ f(y,y) +ilf (z,y) — f(y,2)] € R
€R €R
We put
{ a=f(z,y)+f(y2) €R,
ﬁ :Z[f(I,y) _f(yax)] € R.
It is clear that . .
L b and 25 = o),
and so f (y,x) = f (x,y). This completes the proof. O

4.1.2 Hermitian matrices

At first, define hermitian matrices:

Definition 4.4. Let A = (a;),; ;.,, € My (C). The matrix (a;),, ,, is called conjugate
of A, denoted by A. The transpose conjugate matrix of A is called the adjoint of A, and
denoted by A*.

Note that for any matrix A € M,, (C), we have A* = A7 = (4)". That is, the conjugate
transpose is the same with the transpose conjugate.
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Definition 4.5. A matrix A € M,, (C) is said to be hermitian if A* = A. That is, if A’ = A.
Thus,

. . def . .
Ais herm1t1an<:e>aij:aﬂ for1 <i,j<n.

Example 4.4. The matrices

5 94 1 147 243
Az( ),B: 1—i -2 —i
2—3i 1 0
are hermitian.
We also state the following elementary properties:
1. I =1,
2. (A" = A,
3. (A+ B)" = A* + B*,
4. (@A) =a- A%,
5. (AB)" = B*A*.

Remark 4.1. Let A € M,, (C). We can easily prove that the matrices A + A*, AA* and A*A

are hermitian.
Proposition 4.1. The diagonal entries of a hermitian matrix A are real numbers.

Proof. Let A = (aij),, ;<,, € Mn(C) be a hermitian matrix. Since a;; = @j; for each
1 <i,5 <n,then

Q4 :CL_“,VZ = 1,2,...,77,.
It follows that a; € R fori =1,2,...,n. H

Proposition 4.2. Let A and B be two hermitian matrices. Then AB is hermitian if and only if
AB = BA.

Proof. We see that (AB)" = AB iff B*A* = ABiff BA = AB, as desired. O
Definition 4.6. Let A € M,,(C).
1. Ais said to be skew-hermitian if A* = —A. Thatis, if A* = —A.

Proposition 4.3. Let A € M,,(C). The diagonal entries of a skew-hermitian matrix A are zero or
imaginary pure.
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Proof. Let A = (a;;),; j<, € Mn(C) be a skew-hermitian matrix. Since —a;; = —ay; for

each 1 < 1,57 < n, then

—Qy; = Gy, Vi= 1, 2, ..., n.
It follows that Re (a;) = 0,50 a;; = 0 or «; - i with ; € R* fori = 1,2, ..., n. O
Proposition 4.4. Let A € M,,(C). Then A is skew-hermitian if and only if i A is hermitian.

Proof. We have
(1A =iAd s —iA"=iAs A" =—-A

The proof is finished. O

Example 4.5 (Homework). 1. Find the complex number b for which the matrix

0 b 0

A=|b 0 1-b |,beC
0 b—1 0

is hermitian.
2. Let

0 =z vy

A=| -2 0 =z |,z,y,2€C
-y —z 0

Find the complex numbers z, y, z such that (i) A* = A4, (ii) A* = —A, (i) A is unitary.

4.2 Hermitian quadratic forms over C"

Let £ be a v. space over C. Recall that a map ¢ : £ — C is said to be hermitian quadratic
form if there exists a hermitian sesquilinear form f : £ x E — R such that f (z,2) = ¢ ()
forany z € E.

Remark 4.2. Every hermitian matrix A € M,, (C) produces a hermitian quadratic form
over C".

Next, the analytic expression of g is given by:

n n n
q = E Qg5 - l’zl’_] = E E Ay - IZI_j
%,J i=1 j=1
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Thus, every hermitian quadratic form over C" is given by the following matrix fornfl}

ailr a2 o Q1p T
19 A29 o Qop 1'_2
Q<$17I2»"‘7xn) = T1 Ty ... Ty
A1y, A2 oo Qpn Tn
= 2\ A7,

where a;; = @;; for 1 <i,j <mn.

Definition 4.7. 1. A hermitian sesquilinear form f : £ x E — C is said to be positive if
forany v € E,
f(v,v) €R,.

2. A hermitian sesquilinear form f : E' x E — C is said to be definite positive if for any
veFR,
f(v,v) e RY.

Theorem 4.4. Let A € M,,(C). Then A is hermitian definite positive iff there exists an invertible
matrix M such that
A= M-TT. (4.1)

Definition 4.8. Let E be a vector space over C. An inner product over I is a sesquilinear

form, hermitian and definite positive.

Thus, a vector space E over C equipped with a sesquilinaer form which is hermitian
and definite positive is called pre-Hilbert space. If a pre-Hilbert space E has finite dimen-
sion, it is called Euclidean space.

4.3 Gauss decomposition for hermitian forms

Here, we have not a direct method as in Section but we usually use the following

well-known facts:
e Foreveryz € C: z-z = |z|*.
e Forevery z € C: 2+ % = 2Re (2).

e For every 21,2, € C:

. 1 2 1 2
21'22+Z1'22:§|Z1+22| —§|2’1—2’2| .

'In some references ' - A - z is the matrix representation of a quadratic hermitian form over C", where
T -A-x=2"A-7
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Example 4.6. Diagonalize the following hermitian quadratic forms:
1. ¢ = 2,73 — ixe7;, B = C%
2. @p = 11Ty + 121 T3 — 10277 + 2Tz, B = C2.
3. g3 = X171 + a1221T3 + A1 271 + G227

4. Deduce the signature of the quadratic form given by:

p L _
Gy = QX171 + 101T9 — 1T2T1 + T2T2, o € R.

Solution. We can write

q1 = 11Ty — 1T
= 21 (1T2) + 71 (—iza)

= (—i[L‘g) + @1 (—izy) (which is of the form 21z3 + Z129)
1

= A =1fI%,

where f; et f, are linearly independent forms over C?, since

The signature of ¢ is (1, 1) . Likewise, we have

G2 = T1T1 + 11Ty — 1T2T1 + ToTo
= (71 —ixp) (T1 +173)
= (@) —ix9) (1 — 129)
= |zy — iz)’

= ‘f1’2~

The signature of ¢ is (1,0) .

. 1 . ) o 1 1
= 3 |z — zx2|2 —5 |z1 + 2952|2 (since 2123 + Z120 = 5 |21 + ,22|2 ~ 5 |21 — 22|2)

For the quadratic form ¢}, = ax17T7 + 2173 — i22T7 + 2272, a € R. We see that

= (a—1) 2T +q = (a—1) |z + |21 —iza]?.
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We deduce that
a =1, the signatureis (1,0).

a > 1, the signature is (2,0).
a < 1, the signature is (1,1).

Finally, we have

g3 = T1T1 + 120172 + A21X271 + A22T2T2
= (21 + ag1x2) (T1 + a12T3) + (a2 — a12a91) X273
= (21 + a1x2) (1 + a21wa) + (a2 — a12a91) T2T2

= |z + a21x2|2 + (ag2 — ai2a91) |$2|2 :
—_——

€R
Example 4.7. Let ¥ = C, and let ¢ be the Hermitian quadratic form over F given by

q = A12T1T2 + A13T1T3 + A1220271 + A23T2T3 + A13T3T1 + A23T3T2.

Give the diagonal form of Gauss.
Solution. We have

q = Q122172 + 137173 + Q120271 + A23X2X3 + Q130371 + G23T3T2
= 1 (a12T3 + a13T3) + T (G12%2 + G13%3) + A23T2T3 + 232372

= 1 (a12T3 + a13T3) + G23%2T3 + T1 (1202 + A13%3) + Q237372
A23Q12

__ __ a23 __ __ __
= I ((Zlgxg + CL131‘3) + —XT2 (algl’g + (113$3) — T2 +
13 a3
- _ Q23 _ _ Q23012 __
71 (@222 + Gi3w3) + —T2 (A1272 + A1303) — ———ToT2
N ai3 ai3 .
wV
23 _ _ __  Qg3__\ — (23012 Q23012 __
= <x1 -+ —332) (a12x2 -+ algl'g) -+ ($1 + —29 (&121'2 + algl'g) — + — ToXo
a13 13 @13 @13
1 a S| a 2 A930a
23 _ 23 _ 23012 2
= =T + (— + (112) ) + a13r3| — =< |T1 + (— — CL12> To — 133 — 2Re (—> |l’2| .
2 a13 2 a3 a3

Example 4.8. Diagonalize the Hermitian quadratic form given by its matrix:

0 1-i 0
My=1| 1+4i 0 i
0 —i 0

Here, M, is the matrix of the hermitian quadratic form ¢ with respect to the standard basis
of C°.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



4.3. GAUSS DECOMPOSITION FOR HERMITIAN FORMS 59

Solution. We have

q = (1—9)xiTa+ (14 10) 2277 + ix9T3 — 10372

= o [(1+4) 77 + T3] + T2 [(1 — i) 71 — iz3]

= x[(1 —i)xy —ixs] + T2 [(1 — i) 21 — ix3] (which is of the form 2,73 + Z729)
1 1
= §|x2+(1—i)x1—ix3|2—§|x2—(1—i)x1+ix3|2

= ’f1‘2 - ’f2‘2-

The signatureis (1,1).
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CHAPTER 5

SPECTRAL DECOMPOSITION OF
SELF-ADJOINT LINEAR MAPPINGS

U n this chapter we present a sufficiently and necessary condition for a linear form to
be normal in a complex pre-Hilbert space of finite dimension. But first, define the
inner product on a complex vector space and then we state, without proof, the spectral

decomposition theorem of self-adjoint linear mappings.

5.1 Scalar Product over a complex vector space

Definition 5.1. Let E be complex v. space. The inner product of E (over FE) is a function
(.,.) defined by

(,.) : ExXxE—=C

(z,y) = (z,9)
satisfying the following properties:

1. Forallz € E, (z,z) € R, and (z,2) =0 < x = 0.

2. Forall z,y € E, we have (z,y) = (y, z).
3. Forall z € F and scalar o € R, we have (\z,y) = A (z,y)

4. Forall z,y,z € E,wehave (vt + vy, z) = (x,2) + (y,2) .

We say, the scalar product between = and y, or the inner product between x and y.

Definition 5.2. Let £ be a complex vector space equipped with an inner product (., .). The
couple (E, (.,.)) is said to be a complex pre-Hilbert space. A complex pre-Hilbert space
of finite dimension is said to be hermitian space.
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Example 5.1. Define over C" the scalar product (., .) by

Vo, yeC':(x,y) = Z%E (5.1)
i=1

t t
We can write (5.1) a (x,y) = 2'-7y. In particular, for z = ( T, Ty ) andy = < Y1 Yo ) ,
we have

(,y) = ((z1,22), (Y1, Y2)) = 2177 + 2.
We will accept the following lemma without proof.

Lemma 5.1. For every z,y € C" :

[z, )| < [l -yl (5.2)

5.2 Spectral decomposition of self-adjoint linear mapping
At first, define unitary and normal matrices or linear mapping.
Definition 5.3. Let A € M,,(C).

1. Ais said to be unitary if A* = A1,

2. Aissaid to be normal if A*A = AA*. This means that A commutes with its transpose

conjugate.

Example 5.2. We can check that the matrix

is unitary; however for the matrix:

v 7]

we can easily check that N*N = NN*, so N is normal.

Proposition 5.1. Every n by n complex invertible matrix A can be represented as A = U - T,
where U is unitary and T = (t,;) is upper triangular with t;; > 0.

Proof. The proof is similar to the real case. O

ISometimes we use the notation *x - 7 instead of z? - 7.
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Lemma 5.2. Every hermitian matrix A € M,, (R) can be represented in the form:
A=P'.D-P, (5.3)

where P is orthogonal and D is diagonal whose diagonal entries (€ R) are the eigenvalues of A.

From the above lemma, we deduce that every hermitian definite positive matrix A can
written as A = M'- M , where M = v/DP is invertible.

Definition 5.4. Let f € £ (FE), the adjoint (or the hermitian conjugate) of f is the mapping
f* € E* satisfying
{f (), v) = {u, [ (v)),

for any u,v € E. Further, f is said to be self-adjoint or hermitian if f = f*.

Theorem 5.1. Let A € M,,(C) be a hermitian matrix (resp. self-adjoint mapping). Then x' AT €
R for each x € C".

Proof. We have

AT = (2'A7)" (since 2'AT = a € C)

7)" A'z (known result)

= z'AT (since A" = A).

This implies that ' A7 = 2? A7 . Hence, 2' AT € R. O

Second proof. We know that

ajlr a9 o Qp T
‘oA 12 Q929 QAon, CB_Q
TAT = 21 19 T ,

Ain QA2n ... Qpn Ty

where a; € R for 1 < i < nand a;; = @j; for i # j because the matrix A is Hermitian.
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Therefore,
ItAf = E az’jxi«f_j
%)
n
= E AT + g AjjTiTj
i=1 i#]
n
— 2 o 7.
= Q4 ‘l‘z| -+ (aijxia:j + ajia:ja:i)
i=1 i<j
€R
n
o 2 J— R —
= Q4 |ZL‘Z| + (CLij[Ei.CEj + Clij.lfiﬂfj>
i=1 i<j
—_——
€R
n
2 _
= E ai; |z;|” 4+ 2Re E ;T T;
=1 i<j
€R R
The proof is finished. O

Remark 5.1. By a second method we prove that the eigenvalues of a hermitian matrix
A (resp. self-adjoint mapping) are real numbers. Let f4 be the corresponding hermitian
sesquilinear form of A and let (A, z) be an eigenpair of A. Applying Theorem we

obtain

fa@7) = @) 'AZ=@)'Ae=@) ' a=)\@)'x

——

€R
= A |zl eRr
=1
SN

Hence, A € R.

Theorem 5.2. The eigenvalues of a hermitian matrix (vesp. self-adjoint mapping) are real num-
bers.

Proof. Let (A, z) be an eigenpair of a hermitian matrix A (note that = # 0)f] We can write
Mz,z) = (z,z) = (Az,z) = (Az)'T = 2'A'T
£\ — —
= (D)) 7 Gince (A)' = 4) =24z
= 2'Ax = (2, Az) = (z,\v) = X (z, 7).

The eigenvectors are always nonzero.
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Thus, A = Aand so A € R. O

Corollary 5.1. The eigenvalues of a real skew-symmetric matrix are imaginary pure.

—\t

Proof. First Method. It suffices to show that i A is hermitian. In fact, (14)" = ((zA)) =—i-
At = —i(—A) = iA. By Theorem[.2 the eigenvalues of iA are real, and so the eigenvalues
of A are imaginary pure.

Second Method. Proceeding along the same manner as in the proof of Theorem
Let (X, z) be an eigenpair of A. Then

Mz,x) = (A\r,z) = (Az,2) = (A2)'7 = o' A'T
= 2'(-A)T (since A= Aand A" = —A)
= —a' Ar=—(2,Az) = — (x,\z) = —\(z,7).

Therefore, (A + A) (z,z) = 0. Since z # 0, we deduce that 2Re (\) = 0 and hence ) is

imaginary pure. The proof is finished. O

Theorem 5.3 (Spectral decomposition of self-adjoint linear mapping). Let E be a pre-
Hilbert space over C with dim E = n and let f € L(E). Then f is normal iff there exists an
orthonormal basis for E formed by the eigenvectors of f.

Proof. For the proof, one can see [1]. O

We finish this subsection by a simple comparison between linear algebra and sesquilin-

ear algebra.

Linear Algebra Sesquilinear Algebra

Linear Semi-linear

f is bilinear f is sesquilinear

f is bilinear symmetric [ is sesquilinear hermitian

q is a quadratic form q is a hermitian quadratic form
Euclidian space Hermitian space

Symmetric matrix Hermitian matrix

Anti-symmetric (skew-symmetric) matrix | Anti-hermitian (skew-hermitian) matrix
Orthogonal matrix Unitary matrix

Pre-Hilbert space over R Complex Pre-Hilbert space
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5.3 Proposed problems

Exercise 1. Let f be a sesquilinear form on £. Show that f is hermitian sesquilinear form
on F if, and only if, for every z in E, f (z, z) is real.
Exercise 2. Show that

i. The set of all sesquilinear forms over E, equipped with the usual sum of functions

and multiplication by a scalar, is a vector space over C.

ii. The set of all hermitian forms over F, equipped with the usual sum of functions and

multiplication by a scalar, is a vector space over C.

Exercise 3. Let [ be a hermitian sesquilinear form on E. Two parts A and B of E are
said to be orthogonal with respect to f if f (x,y) = 0 for any = in A and y in B. Prove that
the following conditions are equivalent:

(1) A and B are orthogonal.

(i) A C B+

(iiiy B C A*.

Exercise 4. Let f be a hermitian sesquilinear form on E and g its associated Hermitian

quadratic form. Prove that for all z, y in £ and «, § in C we have
o qlz+y)+alz—y)=2q(2)+2(),
o q(ax+By) = laf* g (z) + 2Re (aBf (x.9)) + 18" a ().
Exercise 5. Let (e) = {ey, e2, e3} a basis for a vector space E of dimension 3.

1. Let f be the sesquilinear form defined by
f(7,y) = 30,y +2i01 Yo —5iz1 Pz + (2 + 1) 2ot — Tool2 +T2Y3 +ix37 — 3%+ (1 — 1) 2375.

1.1. Determine the matrix of f with respect to the basis (e) .
1.2. Is f hermitian?

2. Explain the hermitian form g whose matrix in the base (e) is given by
—2 { )

- =1 3=
O 3+ 4

Give the hermitian quadratic form associated with g.
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3. Determine, in the basis (¢), the matrix of the hermitian form h whose associated

hermitian quadratic form is

q(x) = 3a1T7 — Dix1T3 + (2 — 0) 22T3 — Ta9Ts + DixsTy + (2 + 1) 2373 + x3T3.

Exercise 6. Show that the product of two hermitian matrices A and B is a Hermitian
matrix if and only if AB = BA.

Exercise 7. Let A be the hermitian matrix:

1 141 21
A=\ 1—i 4 2—3
-2 24+ % 7

Find an invertible matrix P such that P*- A P is diagonal. Deduce the rank and signature
of A.

Exercise 8. Let A be an invertible complex matrix. Show that the matrix (4)" A is
hermitian definite positive.

Exercise 9. Let ¢ be a hermitian quadratic form on F with polar form f and let z be an
isotropic vector for g.

1. Show that if ¢ is defined then f is non-degenerate.

2. Show that forall y € E and A € C, we have
q¢(y+Ar) =q(y) +2Re (A f (2,y)).
3. Deduce that if ¢ is positive then for all y € E'and i € R, we get

0<q(y)+2ulf (z,y).

4. Using the previous questions, show that if ¢ is positive and f is nondegenerate, then
q is definite.

Exercise 10. Let A be an invertible complex matrix. Show that if A is hermitian then
A~ is also hermitian.

Exercise 11. A complex matrix A is said to be anti-hermitian if (4)' = —A. Show that
the matrix A is anti-hermitian if and only if A is hermitian.

Exercise 12. Give a Gaussian decomposition of the Hermitian quadratic forms of C?
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whose matrices in the canonical basis are

1 1—7 0 0 —72 1
A= 1+1 3 ) and B = i 0 —I
0 —7 1 -7 1 0

Deduce their core, rank and signature.

Exercise 13. Show that a hermitian quadratic form on a vector space £ is non-degenerate
if, and only if, the matrix A which represents it in a basis of E is invertible.

Exercise 14. We consider the hermitian quadratic form on C? given by:

q(x) =171+ (1 + a) 275 + (1 +a-+ az) T3T3 + 1T1Tg — 109X — 1aT2T3 + 1aT3T3,

t
where a is a real number and < T1 Ty X3 ) are the coordinates of = in the canonical
basis of C3.

1. Give the matrix of ¢ in the canonical basis as well as its polar form f.

2. Using the Gauss method, decompose ¢ into the sum of squares of modules of inde-

pendent linear forms.

3. Deduce an orthogonal basis of C? relative to f and give the matrix of ¢ in the new
basis.

4. Discuss according to the values of a the rank, signature and kernel of q.
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CHAPTER 6

SOLUTIONS TO SOME EXERCISES AND
PROBLEMS

% he present chapter consists a detailed solution to some exercises and problems re-
lated to symmetric bilinear forms and quadratic forms. These problems were the
subject of some previous TD’s at department of mathematics.

Exercise 01. Find the corresponding symmetric matrix of each of the following quadratic

forms:
1. q(z,y) = 42® — 6xy — Ty?, where £ = R%
2. q(x,y) = vy + y*, where E = R2.
3. ¢(z,y,2) = 2* +y* — 22° + 2y + yz, where £ = R3.
4. q(z,y,2) = 22% + 2y + 22% + 2xy + 2yz + 222, where E = R3.
5. q(x,y,z,t) = 22% + 2y* + 22% + 2zy + 2yz + 27z, where E = R™.

Solution. We can easily write

4 =3 4 -3
1)A:<_3 _7>;sinceq(x,y):<x y)(_g _7> (i).lnfact,wehave

(4 2)(0) - (e semn) ()

= da® — 6oy —Ty* = q(z,y).
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Using the same manner, we obtain

1 ! 0
0 3 12
2) A = L 2] A=] 1 =
-1 2 2
2 0 L o
2
9 1 1 2110
1210
HA = | 121],5A=
11 9 1120
0000
Exercise 02. Consider the quadratic form
g : R*=R
(z,y) — o=y

1. Calculate the polar form of ¢, say f.
2. Write f in the matrix form.
3. Calculate the isotropic cone C.

4. Verify that ¢ is nondegenerate.

Solution.

1. We know that .
fluv)=7(g(u+v)—qu-v)),

where u = (z,y) and v = (2/, /) € R?; i.e,,

f o RExR?5R

(u,v) = f(u,v).

Then
fluo) = flzy), (@y))
= i(q(m+x’,y+y’) —q(x—a"y—y))
= () -y - @+ - y))
= xz' —yy
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2. We see that the matrix form of f is given by

flu,v) = (m y)(é i)(;)

= u'Av, whereu = (z,y) and v = (2/,%/) .

3. We calculate the isotropic cone C'. By (3.4), we have

C:

4. We verity that ¢ is nondegenerate. Indeed, we have

ker f = {(z,y) €eR*; f((z,y),(d,y)) =0,V (,y) € R*}
= {(z,y) eR®;aa’ —yy' =0, V (¢,y) € R?}

= {(0,0)}.
Thus, f or g is nondegenerate.

Exercise 03. Let f € S, (E), and let ¢ be the associated quadratic form. Let z; € E with
q (x) # 0. Setting

F': is the subspace generated (spanned) by x,
G ={y € E; f(zo,y) = 0}.

Prove that £ = F & G.

Solution. At first, we can check that FNG = {0g} .

Letw € FNG. Since u € F, u = kxy for some scalar £ € K. Since u € G, then
[ (xo,kzo) = kf (x0,20) = 0. But, f(zg,20) # 0, then k = 0. This gives u = 0. Thus,
FNGc{0g}.

Second, we prove that £ = F' 4+ G. Let v € E and let

o f(l'o,x) . . f(l’(],x) .
mi\f(%,xo) x(i—i_f f(SC(J,iUo) o
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where u € F (since u is of the form Azxg with \ = f((xx—o,xl‘)) € R). Likewise, since
0,40
xo, T
f(zo,v) = f (370,33 - % '930> = [ (w0, ) — [ (z0,2) =0,

then v € G. Thus, we have shown that FNG = {0z} and F'+G = E,and hence £ = F&G.

Exercise 04. Let A € M,,(R) and = € R". Prove that

Solution. For each A € M,,(R) and = € R", we have

Az = 2'Ax = (xtAx)t (since 2" Az € R)
= 2'A (:vt)t (well-known result)

= g'Alz.

Then we can write

1 1 1 1
2 Ar = ZxtAx + 2t Ax = §xtAx + —gtAly = ot <

A+ A
2 2 2 -

2

This completes the proof.
Exercise 05. Define the quadratic form

q = 7% + 41179 + 373,

Calculate the polar form associated with ¢, denoted by f.
Solution. The polar form f of ¢ is given by

f i R2xR*>R

(u,v) —  f(u,v) =u"Av,

1 2
where u = (z1,22), v = (y1,42) € R*and A = ( 5 3 ) Hence,

(1))

= 21Y1 + 221Y2 + 222y1 + 3225
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t
Exercise 06. Let x = ( x; x5 ) € R2 Show that there are infinitely many matrices
A € M5(R) such that
1 4
vt Az = 2 x, (6.1)
00

where z € R2.
Solution. Let n € N. From Exercise 06, we have

Xt<14>xxt(é;‘)+(12)x

0 0 2

2

_ oyt 1 n X
N 4—n 0 '

Then (6.1) is true for infinitely many matrices A.
Exercise 7. Let f € S, (F) and let /' be a subspace of E. Prove that

1 2
= X! ( 0 ) X (in this case, the matrix is symmetric)

FCF+e f(r,2) =0, foreveryx € F. (6.2)
Assume that F = R?, and let
f : RPxR*—=R
(21,22, 23) , (Y1,Y2,¥3)) + T1y1 + Tayo — T3Ys.

Define F = {(x1, 29, 23) € R*; 21 = 23 and z» = 0}. Prove by two methods that F' C F*.

Solution.

1. Suppose that f (x,z) = 0 for all z € F, and we prove that F C F*. Lety € F, we

have

fx+y,x+y) = Oforeachz € F

Then for each z € F, f (z,y) = 0. Hence, y € F*.

Assume that F' C F* and we show that f (z,2) = 0 for each z € F. In fact, letz € F.

For all y € F, we have
f(y,x) =0. (sincexz € F*).
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In particular, f (z,2) = 0 foreach z € F.

2. 1¥ Method. For every « = (\,0,\) € F, we have by (6.2) that
[, x) = F(A0,A),(A,0,4) = X% + 0% = X* = 0,
Hence, F C F*.

2"¢ Method. By Definition 3.5, we can compute ' as follows:

Ft = {yeR’% f(z,y) =0; Ve € F}
= {(yl,y2,y3)€R3 F N 0,0), (Y1, 42,93)) = 0; VI:(AaO>/\)€F}
= {(y1,y2,y3) ER% Ay1 — Adys = 0; Vo = (A,0,)) € F}
= {1, y2.93) ER; AN(y1 —y3) = 0; Vo = (X\,0,)) € F}
= {(y17y2>y3)€R y1—y3}
= Vect{(1,0,1),(0,1,0)}.

Since

F = {(xl,xg,xg) eR3: z; =x3and 2o = O}
= Vect{(1,0,1)},

then clearly, F C F*.

Exercise 8.

1. Using Gauss” Method, diagonalize the following two quadratic forms:
a. q = a:% + :13% + 2x§ —4dx1x9 4+ 62923

b. qo = 2w129 + 21923 + 221 23.

Then, determine their associated signatures.

2. Diagonalize the following quadratic form (use two methods).

q (21, 19) = —122,29 + 523,

Solution.

a. Using Gauss’s method, we put
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( 1
r1 =1y — — (a12y2 + ... + @1nYn)
11
To = Y2
L Tn = Yn
That is,
1 = Y1+ 2Yo
Ty = Y2
T3 = Ys3-
This implies
2 2 2
¢ = 2]+ x5+ 225 — 4x1209 + 62273

= (1 +2u2)% +y3 + 292 — 4 (g1 + 24) Yo + 6yays
= yi — 3y + 6yoys + 2y3
= yi+4q; (v2,93) -

Yo =22+ 23
Y3 = 23.

Likewise, let us take

It follows that

¢ = —3y5 + 6yays + 245
= -3 (2’2 + 23>2 + 6 (22 + 23) z3 + 22%

= —32) +5z;.
Finally, we obtain
@ = (21— 22)" + 525 — 3 (a2 — x3)" = L + f3 — f3,

where f1, f> and f; are linearly independent forms over R? since

0 0 5 |=-5%#0.

The signature of ¢; is (2, 1).
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b. Consider the quadratic form
Qo = 22129 + 22923 + 211 23.

In this case, we put

T1=UY1 T Y2
To =Y1 — Y2
I3 = Ys.

We obtain

@ = 2(y1+y2) (1 —y2) +2(y1 — y2) ys + 22193
= 297 +4ysyr — 24
= &
Setting once again

Y1 =21 — 23

Yo = 22
Yz = z3.
It follows that
¢ = 297+ dysyr — 2u;
= 2(z — 23)° + 423 (21 — z3) — 222
= 227 — 223 — 223,
Hence,

@ = 2+ Z/3)2 - 29; - 23/?2,

T+ 2 T — X 2
C(mEn ) e (52) e

= fi-fH-f

where f1, f> and f; are linearly independent forms over R? ; since

N =

—2#0

O = N
|
[
e}

0 -2

The signature of ¢, is (1, 2) . The rank is 3.
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2. Using two methods, we diagonalize the following quadratic form

q (21, 22) = —122,29 + 523,
1°" method. Setting

—6 6
To=Yo— | —U1 | =Y+ VY1, T1 =W

5 5
We obtain
q(r1,29) = —12x1x2+5x%
6 6 \2
= —12y ?/2+51/1 +5 y2+5y1
36
= by; — gy%
6 \° 36

= 5 <$2 — gl’l) — gﬂ?%
= il = |l

where fi, f» and f3 are linearly independent forms over R?, since

The signature of ¢ is (1,1).
274 method. We have

o = () (2 2)(2)

0 —6
= 2'Az, where A = ( - ) € S5 (R).

Then we can write A in the form PDP?, where P is orthogonal and D is diagonal whose
diagonal entries are the eigenvalues of A. The eigenpairs of A are

)\1 == _47 U1 = (3’ 2)
)\2 == 9, Vg = (-2,3)
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Therefore,

v (%)
P: =
( [orlly  oall ) (

q(z1,m0) = 2'Ax
= 2'PDP's (since A= PDP")
= (P'z)' D (P'z)

S 5h
S5
SN—

which gives

= o'Dv, where v = P'z.
It follows that

(% F)(2)
()

%\/ 131’2 — 12—3\/ 13371

V2

/132, + /132 ) B ( o )

5
— —
s
S5
w w

[l
VR

That is,

= 92}%—41}%

3 2 2 3 2 2
_ 9(1_3¢1—3m2_1_3\/ﬁx1) _4<1_3¢ﬁx1+ﬁ¢1—3m2)
= |A] |k

where f; are f, linearly independent form over R?, since

3v13 —2v13 40
3v13 213 '

The signature is (1, 1).
Exercise 9. Let £ = M (R) be the vector space of 2 x 2 square matrices on R. Let

1 2
M = ,
and let f (A, B) = tr (A'M B), where A, B € E.

1. Prove that f is a bilinear form on the space E.
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2. Find the matrix of f with respect to the canonical (standard) basis of E:
s (10 01 00 00
0oo0/)'\oo/)'\1o/) \o 1]

1. We first prove that f is a bilinear form on the space E. Indeed, V A, A’, B € M,(R),
vV XA € R we have

Solution.

FOA+ A B) = tr ((/\A Ay MB)
= tr (AAtMB + (A MB)
= M (A'MB) + tr ((4) MB)
— M(AB)+ f(A,B).

2. We compute M, (B), where

5 10 0 1 00 0 0
B oo/ \oo/)'\10)/)\o1

/o
N~ N N~ ~

el () €3 €4

From a simple calculation, we obtain

At e 0
(i)

Similarly, we have f (e1,e2) =0, f (e1,e3) = 2,...

It follows that
fler,en) fler,ex) fler,es) fl(er,eq) 1 020
M; (B) = f(ea,er) flea,ea) flea,es) flea eq) _ 01 0 2
fles,er) fles,ea) fles es) fles, eq) 3040
[(es,e1) flea,ea) fleases) fles eq) 0 3 04
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Exercise 10. Recall that a bilinear form on a vector space F is called alternating form if
and only if
VeeFE, f(z,x)=0.

1. Let f be an alternating bilinear form on a vector space E. Prove that f is skew-

symmetric.

2. Assume that f # 0 and 2 < dim £ < oo. Prove that there exist two vectors u;, us € F
such that
f (Ul, UQ) =1.

Calculate f (ug, uy).

3. Let U be the v. subspace spanned by u; and w,. Verify that {u;, u,} is a base of U.
Write the associated matrix of f in this basis.

4. Setting
W={wekE; f(wu)=0,YuecU}=U"

Prove that £ = U @ W and deduce that there exists a basis B of the vector space E

for which

0 1
-1 0

-1 0

Solution.

1. For each (z,y) € E* we have

0 (since f is alternating)

= f(z,2)+ f(y,y) +f(2,9) + f(y,2).
—— =

=0 =0

flx+yz+y)

Hence, f (z,y) = —f (y, x). Then f is skew-symmetric.
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2. Since f # 0, there exist two vectors x,y € F such that f (z,y) = a # 0, and so

f (2731) = [ (ur,u2) = 1.

Since f (u1,uz) = —f (ug,u1), then f (uz,u;) = —1.

3. Let U be the vector subspace generated by u; and u,. We prove that u; and u, are
linearly independent. By the way of contradiction, if we put us = ku;, then

f(ur,ug) = f (w1, kur) = kf (ug,u1) = 0.
A contradiction. Then {uy, us} is a base of U.

The matrix of f associated of {uy,us} is

My (fur,u0)) = ( oo ) .

4. Setting W ={w € E; f(w,v) =0,VveU}. Weprove that E =U & V.
It is clear that {Og} C U N W. Further, if x € U N W implies

T = auy + Puo,
f(x7u1) = 0/
f(z,uz) =0.

where o, 5 € R. Hence,
af (u,u) =0=a =0
Bf (ug,u1) =0= 3 =0.

Then = = 0. Therefore, U N W = {0g}.
It remains to be shown that £ = U + W. For each x € E, setting

u= f(z,u2)uy — f(z,u1)uy

We see that © = u + z — u. Let v is a linear combination of ©; and u,, then v € U.

It suffices to prove that x — u € W. In fact, we see

flx—uu) = f(x—f(x,u2)ur + f(x,u1)us,u)
= f(x7u1) - f(x’ul)
= 0.
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Similarly, we also see

flx—uup) = f(x—f(x,u2)us + f(x,u1)us,us)
= f(l’,UQ) - f(vaJ?)
= 0.

Hence f (z —u,v) =0,V v € U. Then x — u € W, which gives the result.
Now, the restriction of f on the set W is an alternating bilinear form. By induction,
there exists a basis B = {us, uy, ..., u, } of W with

0 1
-1 0

M, (B) = 0 1 € M,_s(R).
-1 0

Thus, uy, us, ..., u, is a basis of E' for which the matrix representing f has the desired form.
Exercise 11. Let E be a vector space over R with dimension 2. Let f € S, (E), and let ¢

be the associated quadratic form. Prove that the following three statements are equivalent:

a. fis nondegenerate and there is a nonzero vector e; such that ¢ (e;) = 0.

b. There exists a basis of E for which the matrix of f is given by

A:(g;).

c. There exists a basis of I for which the matrix of f is given by
1
D= ! .

Solution. (a) = (b). Since f is nondegenerate and e; # 0, there exists a vector y € E
such that

f (elay) 7é 0.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



82

We put

so we get

f(el,z>:f(el, ! )y>:1.

For the vector e; = z — ¢ (z) e1, we find

{ flerea) = f(er,z2—3q(2)er) =1 = f(ea,en),
f(62,€2) :0

The family {e;, e2} is a basis of E. Otherwise, e; = ke; and f (e1, e2) = 0. Here, the matrix

A:(g;)_

(b) = (c). Conserving the previous notations. The vectors

of f is given by

, 1
el = %61 + e2,
eh = 561 — €9
satisfy the following equations
(. 1 1
gler) =f(5e1+ex,5e1+ex) =1,
2 2
1 1
q(ey) =f Qfr T g — e ) = -1,
., 1 1
fley,er) =f 561 + €2, Qe €)= 0.
\

The family {e}, €, } is a basis of E. Otherwise, we get ¢;, = ae}, where a € R. Then

2

~1=q(ch) = g (ae}) = a’(¢}) = @,

A contradiction. In this basis the matrix of f is given by

(5 4)

(c) = (a). Conserving the previous notations. The quadratic form is nondegenerate
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since the matrix D is invertible. For the nonzero vector v" = ¢/ + ¢, we have
q(v) = f (v, 0") = f (eh +€h, €} +€5) = 0.

Exercise 12. Let E be a real vector space and let a € E. Let ¢ be a quadratic form over

E with the polar form f. Define the mapping ¢’ from E to R, by setting:

Vi€l ¢ (z)=q(a)q(@) ~(f(a.2).
1. Prove that ¢’ is a quadratic form whose polar form f will be specified.

2. Verify that a € ker f’ and that ker f C ker f’. Deduce the following inclusion set:
R.a C ker f'.

3. If a is nonisotropic, i.e., ¢ (a) # 0, then prove that ker f &R - a = ker f'.

Solution.

1. We see that ¢’ is a quadratic form because the mappin
q ppmg

f: ExE—R
(I7y) = q(a)f(x,y)—f(a,x)f(a,y)

is a symmetric bilinear form (since f is also a symmetric bilinear form). Further,

f'(z,z) = ¢ (x) for every x € F.

2. We Verify that a € ker f’ and ker f C ker f'.

For each y € E, we have

f'(a,y) = q(a) f (a,y) = f(a,a) f (a,y) = 0.

Hence, a € ker f'.
We show that ker f C ker f’. In fact, if = € ker f, then for each y € F we have

f(x,y) =q(a) f(z,y) = f(a,2) f (a,y) = 0.

=0 =0

Thus, = € ker f'.
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We show that Ra C ker f’. Let A € R. For each y € E, we have

f/ ()‘aa y) - f ()\CL, y) q (a> - f (a7 )\CL) f (CL, y)
- /\q (a) f (CL, y) - )‘q (CL) f ((l, y)
= 0.

Therefore, Ra C ker f'.

If a is nonisotropic, we prove that ker f @ Ra = ker f’.
Since ker f and R.a are two subspace of E, then {0z} C ker f NRa. If 2 € ker f N Ra,
then x = Aa and f (\a,y) = 0 for each y € E. That is,

f(Aa,a) = Aq(a) = 0.

Hence A = 0 (since ¢ (a) # 0). Which implies © = 0. Consequently, ker f N Ra C {0g}.
Finaly, we obtain ker f N"Ra = {0} .
For each = € ker f’ and y € E, we write

q(a)x = f(a,x)a+q(a)z — f(a,z)a, (6.3)

-~

where f (a,2)a € Ra. It suffices to prove that ¢ (a) z — f (a,z)a € ker f. In fact, for each
y € E, we have

flgla)r— f(a,x)a,y) = q(a)f(z,y)— f(a,z)f(a,y)

= 0 (since z € ker f).

From (6.3), we have
_Jflaz) qla)z—f(az)a
= a -+ ,
q(a) q(a)
——— ~~ 4
€Ra €ker f

since u € ker f < au € ker f.
Exercise 13.

1. Let ¢ be a quadratic form on a vector space £ and let {ey, es, ..., €, } be a finite orthog-

onal set for ¢. Prove the following equality:

glerter+..+te)=qler) +qle2) +...+q(e).

2. Let (£, (.,.)) be a Hilbert space and let {ej, es, ..., €, } be an orthonormal basis of E.
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Prove that

n

VxGE:x:Z@,eZ)ei.

=1

3. Let A = {uy, uy, ..., u,} be a finite orthonormal set. Show that A is free. Further, for

each x € E prove that the vector
y=x— (x,u1)uy — (T, us) ug — ... — (T, up) Uy
is orthogonal with u;, fori = 1,2, ..., n.
Solution.

1. Let ¢ be a quadratic form on a vector space £ and let {ey, es, ..., €, } be a finite orthog-

onal set for q. We have

gles+ea+...+e) = fler+e+...+e,e1+e+...+e)
= q(er)+q(e)+...+q(e;) (since f (e;,e;) =0) fori # j)

2. Let {e1, e, ..., €, } be an arbitrarily orthonormal basis of E. We prove that

n

VxEE:sz(m,eQei.

i=1

For each x € E/, we have x = aeq + asey + ... + oe,. Further, we have
(x,e;) = (€1 + agea + ... + aen, ;) = o, (e, €;) = a, (6.4)

fori = 1,2,...,n. We replace «; by (z,e;) in the equation (6.4), we obtain for the
desired result.

3. Let A = {uy, uy, ..., u, } be a finite orthonormal set. We show that A is free.
For each ay, ay, ..., a,, € R, we have
a1Uq + Us + ... + Uy = O,

implies

0 =(0,u;) = (yus + agug + ... + QuUp, ;) =, Vi =1,2,....,n.
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Further, for each = € E, the vector
y=1x— (x,ur)uy — (T, us) ug — ... — (T, up) uy,
is orthogonal with u;, : = 1,2, ..., n; since

(y,u;) = (z—(zup)ug — (x,us) ug — ... — (T, Up) Up, U;)

= (z,ui) — (@, u) (Ui, ;)
——

=1
Exercise 14. Let ¢ be a quadratic form over R" which has the matrix A in the standard
basis, and let ..« be the greatest eigenvalue of A. Prove the following inequality:
q (1,22, 0y Tn) < Amax (xf + x5+ ..+ xi) .

Solution. Let z € R™ with

lell, = \fa? + a3 +.. 43 = 1,
and let {uy, us, ..., u, } an orthonormal basis formed by the eigenvectors of A. We have
T = iUy + agUug + ... + Uy,
with a? + a3 + ... + o2 = 1, since ||z||; = (x,z) = 1. In this case, we can write

q(z) = 2'Ax

= (oqug + agus + ... + oznun)t A(oqug + agus + ... + auy)

2t 2t 2t
ajuiAuy + asus Aus + ... + au, Auy,

Modubuy + Aoadubug + ..+ )\naiu;un (since Au; = \u;, 1 =1,2,...,n)

IN

2.t 2.t 2.t
Amax (alulul + ayusus + ...+ anunun)

Amax (0F + a3 + ...+ a2) (since ufu; =1, i =1,2,...,n)

Amax  (since af + a3 + ... + a2 = 1).

Hence, q () < Apax-
Now, for each z € R" we put

x .
u=——;ie, |ull, =1

]l
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Since ¢ (u) < Amax, it follows that

T 1
q - q (ZE) S /\max .
(||37||2> [E41P

Therefore, q (2) < Apax [|Z]ly = Amax (23 + 23 + ... + 22). This completes the proof.

Exercise 15.

1. Let A be a hermitian matrix, and let

f . C'xC'"—=C
(r,y) — 2'Ay.
Prove that f is a hermitian form.

2. Let f be a sesquilinear Hermitian form over a vector space . Show that

Va,y,y €e EVa,BeC: f(z,ay+ By) =af (x,y) + Bf (z,9).

Notice that if f : E x E — C is linear on the left and semilinear on the right, then f is
called “sesquilinear form”, thatis, V z,2',y,y/ € E,¥v A € C:

e f(hx+a',y) = A (z,y)+ f(2y)
o fz,  y+vy) = M(x,y)+f(z,y).

A hermitian sesquilinear form is a sesquilinear form f over E satisfying

f(z,y) = f(y,x) forallz,y € E.

1. Let A be a hermitian matrix. We prove that the mapping

f . C"xC'=C
(z,y) — z'Ay

is a hermitian form. (i.e., f is hermitian sesquilinear form ). In fact, forevery z, 2,y €
C™and \ € C, we have

fOz+2y) = QAx+2) Ay
= MtAT + (2) Ay
= /\f(x,y)—f—f(x',y)
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Thus, f is linear from the left. Similarly, for every z,y,y’ € C" and A € C, we have

[ y+y) = " Ay +vy)

= Ay + 2" Ay)
- /\f (fL’,y) + f (‘Tay/) :

Thus, f is semi-linear from the right.

Moreover, for each z,y € C", we have

flzy) = 2'Ay
— W (since z' Ay € C)
= () Atz
= (AT
— AT
= y'Az (since A is hermitian)

= fy,z).

2. Let f be a sesquilinear hermitian form over a vector space . We show that

Vr,y,y' € ENo,f € C: f(x,ay+ BY) =af (z,y) + f (z,9).

In fact, we have

Va,y,y € ENa,BeC: f(r,ay+By) = f(ay+ By, )
= af(y,z)+6f (Y )
= af (y,x)+ 51 (v, z)
= af(z,y) +Bf (x,9).

Exercise 16. Let

o C*xC?=>C
(,y) = 4z + (2 —19) 2172 + (24 1) 2271 — Sx270.

Show that f is a hermitian sesquilinear form. Calculate f (z,z), where x € C2.
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Solution. We write f in the form

flz,y) = <£C1 562)(2:1_@ 2——52)<g>

— X'AY,where X = ) andy = ).
T2 Y2

Since A* = A, then A is Hermitian. Then f is a Hermitian sesquilinear form.
Calculate f (x, ), where x € C2. In fact, we have

flz,z) =4z >+ (2 =) 1Tz 4 (2+10) 2277 — 5 |22]”

Exercise 17.
1. Diagonalize the following Hermitian quadratic forms:

i) 1 = iT1@ — izo7y, B = C2.
i) g = 21 T7 + i1 T3 — i9T1 + 19T, B = C2.
i) g3 = 2171 + a1271T2 + A21T2T1 + A92T2T.
2. Deduce the signature of the quadratic form given by:
q; = ari17T1 + lex_g — ZIE2$_1 + ZL‘QJZ_Q, a € R.
Solution.

e We can write

g1 = 1T1Ty — 1T2T1
= a1 (iT3) + T1 (—ixs)

= a1 (—iz3) + Ty (—izz) (whichis of the form 217 + Z122)

1 _ 1 . . o 1 1
= 3 |z — zarg\2 ~5 |zy + zx2|2 (since 2123 + Z120 = 5 |21 + 22]2 ~ 5 |21 — zz|2)
= ‘f1|2— ‘f2|27

where f et f, are linearly independent forms over C? ; since

The signature of ¢; is (1,1).
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e Likewise, we have

G2 = T1T1 +1T1T3 — 1T2T1 + ToTo
= (21 —ixe) (T1 + iT2)
= (21— imy) (21 — iwp)
= oy — iz

= ‘fl’Q'

The signature of ¢, is (1,0) .

For the quadratic form ¢}, = ax,77 + ix1T3 — ix2T1 + 2272, o € R. We see that

¢ = (a—1)z171 + ¢

= (a—1) |m1|2 + |z — ix2|2.

We deduce that
a =1, the signature is (1,0).
a > 1, the signatureis (2,0).
a < 1, the signature is (1,1).
e We have

q3 T1T1 + Q120102 + A21T2T1 + A22T2T2
= (71 + anr2) (T1 + a1272) + (a2 — a12a91) 2T
= (1 + a21®2) (T1 + a21%2) + (22 — A12a91) T2T3
= |+ a21x2|2 + (@22 — a12a21) |$2|2~

SN

Exercise 18. Let E be a vector space with dim £/ = 3, and let ¢ be the hermitian
quadratic form over £ given by

q = A12T1T2 + A13T1T3 + A122X271 + A23T2T3 + A13T3T1 + A23T3T2.

Give the diagonal form of ¢ using Gauss method.
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Solution. We have

q = Q1221T2 + A1321T3 + Q122271 + A23X2T3 + A1303T1 + A23T3T2
= 11 (a12T3 + a13T3) + T1 (@12%2 + G1373) + A23T2T3 + 237372

= 1 (a12T2 + a13T3) + A23%2T3 + T (A12T2 + A1323) + G23T3T2
Q23012

_ — as3 __ _ __
= 1 (a12T3 + a13T3) + — 23 (1273 + a13T3) — ToT9 +
a13 13
i _ ag3___ — A23Q12
71 (12w + Q1373) + —T3 (Q12%2 + G1373) — ———T2Tg
o a13 ai3 .
NV
23 _ _ __  Qg3__\ ,___ _ 23012 A23012 __
= <$1 + —$2) (a12T3 + a13T3) + (xl + =73 | (@2wa + Gr3z3) — + —— | 222
13 a13 a13 a13
1 a 2 a 2 A93Q
23 _ L _ 23012 2
= = 1| + <— + a12) i) + a13r3| — = |1 + (— - alg) Lo — A13T3| — 2Re (—) |x2] .
2 13 2 a3 a13

Exercise 19. Diagonalize the Hermitian quadratic form given by its matrix:

0 1—i 0
My=1| 147 0 i
0 —i 0

Here, M, is the matrix of the Hermitian quadratic form ¢ with respect to the standard basis
of C3.
Solution. We have

q = (1—9)xiTa+ (14 10) 2077 + ix9T3 — 10372

= x[(1+149) 77 +iT3) + T2 [(1 — i) 21 — ix3)

= m[(1 —i)xy —ixs] + T2 [(1 — i) 21 — ix3] (which is of the form 2,75 + Z729)
1 1

= §|x2+(1—i)x1 — ixs|” — §|x2— (1 — i)z + ixs|?

= 1A - 1AI

The signatureis (1,1).
Exercise 20. Let

1 0 b
B=10 a+i a ,a,beC.
b b+1 b—ai

For which values of the parameters a and b is the matrix B Hermitian? In the case when

B is Hermitian, find its Hermitian quadratic form.
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Solution. The matrix B is Hermitian if and only if

1 0 b 1 0 b
B = B)a|0at+i a |=|0a—i b+l
b b+1 b—ai b a b+w
(a+ieR
& b+1=a
b—aieR

a=aoa—1,wherea € R
& b=a—-1-—1
a—1—i—(a—i)ieR
a =« — i, where o € R
& b=(a—1)—1
a—2—(1+a)ieR

a=—1,
= a=—-1—1
b=—2—1.
Therefore,
1 0 —2—1
B= 0 -1 -1+

244 —1—i -3

Now, we give the analytic expression of the corresponding Hermitian quadratic form of
B. (see (2?)):

g = 1171 + (=2 — i) 21T3 — T2T2 + (=1 4+ 1) 2273 + (=2 + 1) 2377 + (=1 — i) 2373 — 3373.

Exercise 21 Prove that every real quadratic form ¢ = 2* Az is diagonalizable.

Further, prove that if ¢ is definite positive, then the integral

[:/// e @122 Tn) do o da,

converges and calculate its valud}

1Use the following well-known formula: [ e~** = /7.
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Solution. Let

g = 2'Ax
ai; Qg - Qip 1
a2 Q2 -+ G2y L2
= T1 T T,
Q1p A2p - App Tn

be quadratic form over R". We prove that ¢ is diagonalizable. However, since A is sym-
metric, there exists an orthogonal matrix P such that A = PDP*, where

D= dzag {)\1, )\27 7)\n} .

It follows that
q=a2"Ax = 2 (PDPt) x = (xtP) D (Ptx) = (Ptx)t DP'x.
Setting
U1
Pz =v= U.Q ,
Un,
Implies
g = v'Dv
)\1 U1
A
= ( V1 Uy - Up, ) 2 . 1}.2

>~
3
S
3

= )\1’0% + )\QU% + ...+ )\n’l)i,

'''''
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Ai > 0foreveryi=1,2,...,n. Then

I = /// e a(®1,72,00 x”)dxld:pg...dmn

2
= Ou// / —(Mavdaavi+AAned )dvldvz...dvn, where oy € R*

Note that

1
dvidvsy...dv, = —dx1dzs...dz,
ag

Exercise 22. Let ¢ = z' Az be a quadratic form over the vector space R™. Prove that
¢ is nondegenerate < det (A) # 0 (i.e., A is invertible).
Solution. By Definition 3.6 recall that ker f = {z € E; 2’ Ay = 0 for each y € E}. Then

ker f = {0}eVyeR" :2'Ay=0=2=0

& VyeR": Az =0=>2=0

& Az=0=>z=0 ;since (VyeR":y'A'z =0) & A'lz =0
o A'cGL, (R)

& AeGL,(R).

Exercise 23. Let E' = R, [z] be the vector space of polynomials having degree < 2, and
let

Q : E—-R

p = p0)p(1).
1. Prove that @ is a quadratic form, and then give its polar form f.
2. Determine M, (B), where B is the canonical basis of E.

3. Prove that f is degenerate. Is it positive ?, definite positive?, negative?, definite neg-

ative?

Solution.
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1. From simple computation, the polar form of () is given by
f o+ Rofz] Rofz] = R
1
pg) = [(ra=7@QP+q—-Q(pP—q)

4
! L (1) q(0).

= SpO)a()+5

2. Calculate the matrix M, (B), where B is the canonical basis of R, [z]. We have

PO =1 f () = 5.0 (1La?) = 3. (#6%) = 0.f (.0) =0

Therefore,
1 1
1 = =
1 2 2
5 0 0

3. Since det (Mg (B)) = 0, then f is degenerate.

Further, @ neither positive nor negative; since

{ Q@2r—1)=(-1)x1=-1<0,
Q(—r—2)=(-2)x(=3)=6>0.

Remark 6.1. The eigenvectors of Mg (B) are 3v/3 + 2,1 — 11/3,0. Then Mg, (B) is neither
positive nor negative.

Exercise 24. Let (£, (.,.)) an inner product space (a pre-Hilbert space) and let F’ be a
subspace of E. Prove that F C (F*+)" and so F = (F)" whenever E has finite dimension.

Solution. We have

Ft={r€eF; (z,y)=0foreachy € F},
(FL)l: {z e F; (z,y) =0foreachy € F*}.

We prove that F' C (FL)L. Let 7y € F. Assume that z ¢ (FL)L, there exists y, € F* such
that (z¢, yo) # 0. But, (z,yo) = 0 for every x € F. A contradiction.
Next, assume that F is a finite dimension space. Since F = F & F*+ = 1 @ (FL)l, by

(1.1) we get
dim F + dim F* = dim E et dim (F*)" 4 dim F* = dim E.

which gives dim F' = dim (FL)L. Moreover, since F' C (FL)l, we have F = (FL)L .
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Exercise 25. Let ¢ be the mapping defined on the vector space E = R,, [z] by

b
0 (P,Q) = / P (t)Q (t)dt, where a < b.

1. Prove that ¢ is an inner product (a scalar product).

2. For n = 2, calculate M, (B) "this is the matrix of ¢ in the standard basis of R, [z]".

3. Apply Cauchy-Schwarz’s inequality.

Solution. We prove that ¢ is an inner product. That is, ¢ is a symmetric bilinear form

definite positive.

For each (P, Q, P, Q) € E* and for each ) € R, we have

(AP +P,Q) =

and also, we have

Then ¢ is a bilinear form. Further,

o (P,Q) = /

Forall P € E — {0}, we have ¢ (P, P)

¢ is an inner product.

/b AP+ P)(t)Q(t)dt
/ (AP (D) Q (1) + Py (1)Q (1)) dt

b

A/ PWQWd+ [ PLt)Qt)dt

+
Ao (PQ) + ¢ (P, Q)

b
P(t) (AQ + Q) (t) dt

b

P(t) (AQ(t) + Q1 (1)) dt

J
J

A/bP(t)Q(t)dt—l—/bP(t)Ql(t)dt
Ao (P.Q) + ¢ (P,Q1).

¢ is symmetric since for each (P, Q)) € E?, one has

1) di = /@ at = (Q, P).

= [? P2 () dt > 0. Then ¢ is definite positive. Hence
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Now, we calculate M, (B) :

(LD (L) ¢ (1,1

M,(B) = | ¢(Lt) @tt) ot

P (L) @ (t,1%) @1
[Pdt [Pedr [Pt

= | [edt [Pe2de [Ptdt

[Pede [Peddt [Pt
b—1 b —a* b —dd

b21a2 b3za3 b4§a4

b33a3 b4§a4 b5éa5

3 4 5

e From Cauchy-Schwarz inequality, for each (P, Q) € E?, we have

1o (P,Q))> = (P,Q)]” < (P,P)(Q,Q)

That is,
2 b b
g/ P? (t)dt/ Q* (1) dt.

Exercise 26. Let A be a symmetric matrix with real entries. Prove that the quadratic

/bP(t)Q(t)dt

form g = 2" Az is definite positive if and only, if the eigenvalues of A are strictly positive.
Solution. Let ¢ = z'Ax be quadratic form definite positive, where A € S,,(R) and let
(A, z) be eigenpair of A. Since = # 0, it follows that

0<2'Ar = (z,Az) = (z,\z) =\ (z,x) < X > 0;because \ € R (4 is symmetric).
——
>0; since x#0.

Exercise 27. Let f be a bilinear form on a vector space E. Show that the mapping;:

q @ F—-R

r — f(r,x)

is a quadratic form.

Solution. Let f be a bilinear form over E. Clearly, the mapping

¢  ExXE—-R

[z, y)+ f(y,z)
2

(z,y) = ¢(z,y) =
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is symmetric bilinear form. Further, for each ©+ € E we have ¢ (z,2) = f (z,2) = q(z).
Then ¢ is a quadratic form over E.
Exercise 28. Let g be a quadratic form over E. Prove that two vectors x and y satisfying

q(x)q(y) < 0 are independent.

Solution. Assume, by the way of contradiction that z, y are dependent. Since x and y
are nonzero (otherwise, if x or y is zero then ¢ (z) ¢ (y) = 0), there exists A € R* such that
y = A\z. By B.9), ¢ (z) ¢ (y) = X2 (¢ (x))* > 0, this contradicts our assumption.

Exercise 29. Diagonalize the quadratic form

q(z,y) = ax® + 2bzy + cy’.

Deduce its signature.
Solution. Note that

q(fmy):(@“ y)(Z i)(j)

1. Assume that a # 0. By (3.11), we put
/ 1 / /
r=x2"——(by) andy =y’
a
It follows that
q(z,y) = ax®+bry+ cy?
/ b / ? / b/ / "2
= ald ——y' ) +20|2" ==y |y +c(¥))
a a
N2 b2 N2
= a4 (e D) )
b b
= a(x+—y)2+(c——) y?
a a
2 b? 2
= a-[fil" + c-— | fl7

where f; =z + gy and f, = y are two independent linear forms over R?, since

0

| #o

Q>

o Ifa,c— % > 0, then the signature of ¢ is (2,0) .
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o Ifa,c— % < 0, then the signature of ¢ is (0, 2) .
e Ifa>0andc— % <0ora<0Oandc— % > 0, then the signature of ¢ is (1,1).
2. Assume that a = 0 and b # 0. There are two cases.

2.1. Forc =0, we let
r=2+y andy =2 -1/,

which implies

q(r,y) = 2bry=2b(a"+y) (2" — )
— 2b(a')? — 2b(y)? = (Y

)2 . Qb(x ; y)Q.

2.2. For ¢ # 0, we let

1
y=u——(bv) and x = v.
c

It follows that

qg = 2bxy+cy?

Exercise 30. Let A € M,,(R) be a symmetric definite positive matrix. Using two meth-
ods, prove that det (A) is strictly positive.
Solution. 1° method. We show that A is definite positive < V A € Sp(A4) : A > 0. In

fact, if A is definite positive, for each eigenpair (\, z) of A we have

0<2'Az = (z,Az) = (z, \x) =X (z,2) & X>0,since A € R (A is symmetric).
——
>0, since x#0.

It follows that

274 method. In the case when A is symmetric definite positive, we deduce from Theo-
remthat A = M'M, where M € GL, (R). Hence, det (4) = det (M*M) = (det (M))* >
0 (note that det (M) = det (M?") and det M # 0 since M is invertible).
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Remark 6.2. Let A € M, (C) be a hermitian definite positive matrix. Then det (A) €
RY.

Exercise 31. Let E be a real vector space and let ¢ be a nondegenerate quadratic form
over E of the polar form f. Let a € E be a nonisotropic vector. Define the mapping;:

S, : E—FE
f(z,a)
¢(@) ©

r — Sy(x)=x-2
1. Verity the equality

f(Sa(x), 5 (y) = f(x,y) forany (z,y) € E*.

2. Let x; and x5 be two vectors of E such that ¢ (z1) = ¢(z3) # 0. Prove that at least
one of the vectors z; + x, and z; — z; is nonisotropic (use the way of contradiction).

3. Deduce that there exists a nonisotropic vector a’ € E such that

Sa/ (.Tl) = —X9 OY Sa’ (331) = X9.

Solution.

1. For any (z,y) € E?, we see that

00 (s L5 L)

~ floy) - 2f (y,a) f(z,a)  2f (z,a) f(a,y)

4(a) (@) 2(@

2. Assume that both z; + 25 and x; + x; are isotropic. Therefore,

{ f(z1 + xa, 21 + 22) =0,
0

f($1 — T2, T1 —$2) =

Implies
q(21) + ¢ (22) + 2f (1, 22) = 0,
q(x1) + q(xe) — 2f (x1,22) = 0.

So, 4q (z1) = 4q (x9) = 0. This is a contradiction.
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3. In the case when z; + 23 = d’ is nonisotropic, we get

f (1,21 + 2)

Sa’ (Z'1> = a:ﬁ—xg (331) = q (331 + x2) ('Tl + z?)
S 2(q(x1) + f (z1,72)) g1t
= N ) T a(e) +2f (e
. ($1)—|-f($1,x) . -
o (x1)+f(:r1,a:)(1+ 2

Similarly, in the case when z; — 3 = d’ is nonisotropic, we can prove that S, (z1) =

x1. Indeed, we have

Sl = S ln) a2 q(z1 — x9) (1 — 22)
- 2(q(x1) — f(x1,22)) S
= 1 Q(x1)+‘1(x2)—2f(x1,x2)( 1+ Z2)
= 2 — Q(.Tl) - f (331,1‘2) (ml B 1»2)
o Q(ajl) - f (331,332)

As required.

Exercise 32. Compute the signature of each of the following quadratic forms:

1. (i) ¢=2z123+ 2w973.

n

(i) ¢g=> i - mzj,n=1,2,..

]

Solution. (i) See Example
(ii) We see that

n

qzzij'%%‘:($1+2x2+3x3—|—...

i?j

and so, the signature of this quadratic form is (1,0).

+ nxn)Q,
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Conclusion

Quadratic forms have many applications in cryptography. In the context, it is very in-
teresting to know large prime numbers which are represented by some special quadratic
forms. For example, it is well known that every prime number of the form 4k + 1 can be
represented by the quadratic form ¢ = z? 4 y*. Currently, there are many open problems
on the distribution of values of quadratic forms, some others include quadratic forms in-
volving systems of forms having k-tuple of variables. For more information, see the paper
Ten problems on quadratic forms stated in [7]. In addition, in sesquilinear algebra, the study
of Hermitian spaces is the basic of Hermitian Geometry.
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