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Abstract 
 

This study investigates the impact of oversampling techniques, specifically SVM-

SMOTE and BorderlineSMOTE, on machine learning models for heart disease and 

diabetes risk prediction. Using Gradient Boosting Machine (GBM) and K-Nearest 

Neighbors (KNN) algorithms, we assess changes in accuracy, precision, recall, F1 score, 

Positive Predictive Value (PPV), Equal Opportunity Difference (EOD), Disparate Impact 

(DI), and Impact Ratio (IR) across diverse biomedical datasets. 

In both heart disease and diabetes risk prediction tasks, SVM-SMOTE and BorderlineSMOTE 

proved effective in enhancing machine learning model performance. For heart disease 

prediction, SVM-SMOTE and BorderlineSMOTE improved GBM model accuracy to 0.85 and 

0.85 from an initial 0.74, precision to 0.79 and 0.77 from 0.69, and recall to 0.88 and 0.92 from 

0.75, respectively. KNN models also showed enhancements in accuracy (0.71 from 0.68), 

precision (0.70 from 0.59), and recall (0.72 from 0.62). In diabetes risk prediction, both 

techniques consistently boosted accuracy, precision, and F1 score metrics across GBM and 

KNN models. Notably, DI values improved significantly to 1.11 with both SVM-SMOTE and 

BorderlineSMOTE from an initial 0.43, indicating improved fairness in model predictions 

across demographic groups. 

Overall, the strategic application of SVM-SMOTE and BorderlineSMOTE effectively 

addresses class imbalance challenges in biomedical datasets, enhancing both predictive 

accuracy and fairness in machine learning models. These results underscore the importance of 

tailored oversampling techniques in achieving robust and equitable healthcare predictions 

across diverse demographic groups. 

Keywords: Bias, Unfairness, Mitigation, Healthcare, GBM, KNN, SVMSMOTE, 

BorderlineSMOTE



 

 

Résumé 
Cette étude examine l'impact des techniques de suréchantillonnage, spécifiquement 

SVM-SMOTE et BorderlineSMOTE, sur les modèles d'apprentissage automatique pour la 

prédiction des maladies cardiaques et du risque de diabète. En utilisant les algorithmes Gradient 

Boosting Machine (GBM) et K-Nearest Neighbors (KNN), nous évaluons les changements dans 

les mesures d'exactitude, de précision, de rappel, de score F1, de valeur prédictive positive 

(PPV), de différence d'opportunité équitable (EOD), d'impact disparate (DI), et de ratio d'impact 

(IR) à travers divers ensembles de données biomédicales. 

Dans les tâches de prédiction des maladies cardiaques et du risque de diabète, SVM-SMOTE 

et BorderlineSMOTE se sont avérés efficaces pour améliorer les performances des modèles 

d'apprentissage automatique. Pour la prédiction des maladies cardiaques, SVM-SMOTE et 

BorderlineSMOTE ont amélioré l'exactitude du modèle GBM à 0,85 et 0,85 à partir de 0,74 

initial, la précision à 0,79 et 0,77 à partir de 0,69, et le rappel à 0,88 et 0,92 à partir de 0,75, 

respectivement. Les modèles KNN ont également montré des améliorations en termes 

d'exactitude (0,71 contre 0,68), de précision (0,70 contre 0,59), et de rappel (0,72 contre 0,62). 

Pour la prédiction du risque de diabète, les deux techniques ont régulièrement augmenté les 

mesures d'exactitude, de précision et de score F1 à travers les modèles GBM et KNN. 

Notamment, les valeurs de DI ont significativement augmenté à 1,11 avec SVM-SMOTE et 

BorderlineSMOTE à partir d'un initial de 0,43, indiquant une amélioration de l'équité dans les 

prédictions des modèles à travers les groupes démographiques. 

Dans l'ensemble, l'application stratégique de SVM-SMOTE et BorderlineSMOTE adresse 

efficacement les défis liés aux déséquilibres de classes dans les ensembles de données 

biomédicales, améliorant à la fois l'exactitude prédictive et l'équité dans les modèles 

d'apprentissage automatique. Ces résultats soulignent l'importance des techniques de 

suréchantillonnage adaptées pour atteindre des prédictions de soins de santé robustes et 

équitables à travers des groupes démographiques diversifiés. 

Mots clés : Biais, Injustice, Atténuation, Biomédical, GBM, KNN, 

SVMSMOTE, BorderlineSMOTE. 
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General introduction 
Machine learning (ML) has revolutionized fields like healthcare by enabling data-

driven insights and decision-making. However, alongside its benefits, ML models can 

unintentionally introduce biases that perpetuate inequalities. Bias in ML refers to 

systematic inaccuracies in predictions, often reflecting disparities in training data. 

Detecting and mitigating these biases is crucial for ensuring fair and trustworthy AI 

applications, particularly in sensitive domains like healthcare. This project focuses on 

developing strategies to identify and address bias in ML models applied to biomedical data, 

aiming to promote equitable and effective AI deployment in healthcare. 

The problematic of this master thesis centers on the inherent biases that machine 

learning models can perpetuate when applied to real-world datasets. In many cases, these 

biases stem from uneven representation of demographic groups, such as gender or race, 

within the data. Additionally, biases can arise due to historical inequalities embedded in 

societal systems or errors in data collection processes. Left unchecked, these biases have 

the potential to lead to unfair outcomes, especially in critical domains like healthcare where 

accurate and equitable decision-making is paramount. Addressing these challenges is 

essential not only for ensuring the reliability and effectiveness of machine learning 

applications but also for upholding ethical standards and promoting trust in AI-driven 

solutions. 

Our objective is to enhance the fairness and reliability of machine learning models 

applied to biomedical data by implementing effective bias mitigation strategies. This 

involves preprocessing the data to ensure suitability for training two different Models, 

GBM and KNN. To address class imbalance, we utilize SVM-SMOTE and Borderline 

SMOTE for oversampling. We focus on detecting and mitigating biases across 

demographic groups such as gender and race using metrics like disparate impact and 

statistical parity. By constructing model ensembles and refining them through post-

processing techniques, we aim to improve overall model performance and fairness, 

particularly in critical applications like healthcare. 

The core of this Master thesis comprises three main chapters. Chapter 1 offers a 

comprehensive overview of Bias and Unfairness Mitigation in Machine Learning Models. 

It covers fundamental definitions, types of bias, various fairness metrics, specific 

characteristics pertinent to biomedical models, challenges associated with bias mitigation 

in biomedical-based machine learning models, and techniques tailored for bias mitigation 

in machine learning models applied to biomedical data. 

Chapter 2 details the methodology of our proposed architecture aimed at reducing 

bias in biomedical datasets using a machine learning approach. It includes a description of 

the dataset utilized for both training and evaluation purposes, outlines the preprocessing 

steps undertaken, and evaluates the performance metrics before and after the 

implementation of bias mitigation techniques. 

Chapter 3 focuses on the implementation phase of our proposed bias reduction 

system for biomedical datasets. This chapter details the practical execution of the 

methodology outlined in Chapter 2. It covers the actual application of machine learning 

algorithms, the integration of bias mitigation techniques, and the execution of experiments 
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to validate the effectiveness of our approach 
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Chapter 1: Bias and Unfairness in 

Healthcare Models 
 

 

 

 

 

 

 

1.1 Introduction 
In the realm of machine learning, the omnipresent challenge of bias and unfairness 

looms large, casting shadows over the integrity and reliability of algorithmic decision-making. 

Defined as systematic errors or preferences, bias infiltrates data, algorithms, and user 

interactions, manifesting in disparities that undermine the principles of equality and justice. 

Within the biomedical domain, where machine learning holds profound potential for 

transformative healthcare advancements, the stakes of bias mitigation are particularly high. 

From data-driven approaches to clinical implementations, biomedical models navigate a 

complex landscape rife with challenges, from data bias to privacy concerns. In this chapter, we 

embark on an exploration of the multifaceted nature of bias, examining its various types, metrics 

for evaluation, and techniques for mitigation in the context of biomedical machine learning. 

1.2 Definition of Bias 
The concept of bias encompasses various definitions, which vary depending on the 

context, Bias can be defined as a systematic error or an inclination to favor one outcome 

over another unexpectedly [1]. The concept of bias is also applied to algorithms when they 

exhibit an undesired reliance on a particular attribute in the data, often associated with a 

demographic group. An unbiased algorithm ideally should not depend on any protected 

attributes of an individual, such as gender, race, or religion. When algorithmic bias results in 

differential treatment between patient groups, it can be deemed unfair from both legal and 

ethical perspectives [2]. 

1.3 Definition of Unfairness 
Varied civilizations have varied definitions of injustice. Thus, the unfairness 

criterion is affected by user experience as well as cultural, social, historical, political, legal, and 

ethical factors. Social biases and statistical biases are the two main causes of unfairness. 

The former refers to the difference between how the world should be and how it 

actually is, while the other type of bias refers to the difference between how the world is and 

how it is represented in the system [3]. 
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1.4 Type of Bias 
Bias can appear in various forms, some of which can result in unfairness across different 

learning tasks downstream. This bias can be categorized into three main types: data bias, 

algorithm bias, and user interaction bias. 

1.4.1 Data Bias 

When specific factors are omitted or human bias causes data to not correctly reflect the 

intended data, it is referred to as data bias. Ancestry, demography, socioeconomics, and 

methodological problems like quantifying illnesses or identifying treatment outcomes all 

contribute to this [W1]. 

 

1.4.2 Algorithmic Bias 

A complicated concept to describe, algorithmic bias is a systematic error in computer 

systems that provides inaccurate data processing outcomes. It is not always an error; it is 

typically an algorithmic property that prevents it from being fair or objective. Alternatively, it 

could be described as a departure from a norm [4]. 

 

1.4.3 User interaction Bias  

When a user applies self-selected prejudices and behaviors when interacting with data, 

output, outcomes, etc., user interaction bias can arise. The interface that exists between the 

automated system and the user can also cause it to develop [5].  

 

1.5 Unfairness metrics  
Several metrics can be used to measure unfairness. In this section, we describe the most 

common ones [6]. 

 

1.5.1 The Equalized odds  

The Equalized odds (EO) given by equation (1.1) aims to ensure equal probability 

of positive and negative results for protected and unprotected groups for individuals in 

both classes [6].  

𝐸𝑂 =
1

2
∗ (|

𝐹𝑃𝑃

𝐹𝑃𝑃+𝑇𝑁𝑃
−

𝐹𝑃𝜇

𝐹𝑃𝜇+𝑇𝑁𝜇
| + |

𝑇𝑃𝑃

𝑇𝑃𝑃+𝐹𝑁𝑃
−

𝑇𝑃𝜇

𝑇𝑃𝜇+𝐹𝑁𝜇
|)        (1.1) 

 

 

1.5.2 The Equality of Opportunity  

The measure Equal Of Opportunity (EOO) given by given by equation (1.2) provides 

that every individual in a binary classifier have an equal probability to get effective outcomes, 

which applies to both protected and unprotected groups [6]. 

𝐸𝑂𝑂 =
𝑇𝑃𝑝

𝑇𝑃𝑃+𝐹𝑁𝑝
−

𝑇𝑃𝑢

𝑇𝑃𝑢+𝐹𝑁𝑢
                                        (1.2) 
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1.5.3 The Demographic Parity 

Demographic Parity given by equation (1.3), formerly referred to as Statistical Parity, 

is a measure of fairness 

that indicates the probability of a positive outcome [6]. 

 

𝐷𝑃 =
TP+FP

N
                                                          (1.3) 

 

                                          

1.5.4 The Positive Predictive Value 

The percentage of cases with positive test findings that are already patients is known as 

the positive predictive value (PPV) given by equation (1.4). It is the proportion of patients with 

valid diagnoses to all patients with positive test findings. 

If a test is positive, this trait might indicate whether a person will actually be patient 

[36].  

 

𝑃𝑃𝑉 =
TP

TP+FP
                                                 (1.4) 

 

1.5.5 The Equal Opportunity Difference  

According to the author in [35], the Equal Opportunity Difference (EOD) given by 

equation (1.5) quantifies the disparity in true positive rates between the advantaged and 

disadvantaged groups. 

 

EOD = |𝑇𝑃𝑅𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 − 𝑇𝑃𝑅𝑢𝑛𝑑𝑒𝑟𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑|                  (1.5) 

 

1.5.6 The Disparate Impact  

 
The percentage of individuals who receive from both protected and unprotected groups 

is measured by the Disparate Impact (DI) given by equation (1.6). To be fair, it must equal 1 

[6].  

 

𝐷𝐼 =

𝑇𝑃𝑝+𝐹𝑃𝑝

𝑁𝑝
𝑇𝑃𝑢+𝐹𝑃𝑢

𝑁𝑢

                                                 (1.6)      

 

1.5.7 The K-Nearest Neighbors Consistency 

The similarity of sensitive attribute labels for similar instances is measured by the 

K-Nearest Neighbors Consistency (KNNC) fairness metric given by equation (1.7) [6].  
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KNNC = 1 −
1

n
∑ |ŷi −

1

k
∑ ŷjj∈Nk(xi) |n

i=1                  (1.7) 

 

1.5.8 Absolute Balanced Accuracy Difference  

The Absolute Balanced Accuracy Difference (ABAD) given by equation (1.8) is 

the difference in balanced accuracy in protected and unprotected groups, defined by 

Equation [6]. 

 

ABAD = |
1

2
[𝑇𝑃𝑅𝑝 + 𝑇𝑁𝑅𝑝] − [𝑇𝑃𝑅𝑢 + 𝑇𝑁𝑅𝑢]|                     (1.8) 

 

1.5.9 Absolute Average Odds Difference  

The Absolute Average Odds Difference (AAOD) given by equation (1.9) is the 

absolute difference in TPR and FPR between different protected groups, defined by 

Equation [6]. 

 

AAOD = |
(𝐹𝑃𝑅𝑢+𝐹𝑁𝑅𝑝)−(𝑇𝑃𝑅𝑢+𝑇𝑃𝑅𝑝)

2
|                     (1.9) 

1.5.10 Absolute Equal Opportunity Rate Difference  

Absolute Equal Opportunity Rate Difference (AEORD) given by equation (1.10) is 

the difference in recall scores (TPR) between the protected and unprotected groups. A value 

of 0 indicates equality of opportunity, defined by Equation [6]. 

 

𝐴𝐸𝑂𝑅𝐷 = |𝑇𝑃𝑅𝑝 − 𝑇𝑃𝑅𝑢|                                   (1.10) 

 

1.5.11 Statistical Parity Difference  

Statistical Parity Difference (SPD) given by equation (1.11) is the difference in SD between a 

protected and an unprotected group, defined by Equation [6]. 

 

SPD =
𝑇𝑃𝑃+𝐹𝑃𝑝

𝑁𝑝
−

𝑇𝑃𝑢+𝐹𝑃𝑢

𝑁𝑢
                                     (1.11) 

 

1.5.12 Imbalance Ratio 

The imbalance ratio (IR) given by equation (1.12) serves as a commonly employed 

measure for assessing the degree of class imbalance within a dataset. It is computed by dividing 

the sample size of the majority class by that of the minority class. In scenarios with multiple 

classes, Nmaj represents the sample size of the largest majority class, while Nmin denotes the 

sample size of the smallest minority class [47]. 

 

IR =
Nmaj

Nmin
                                                     (1.12) 
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1.5.13 Confusion Matrix 

The confusion matrix is a fundamental evaluation tool used to assess the performance of 

classification algorithms. It is applicable to both binary and multiclass classification tasks. 

Table 1.1 illustrates the confusion matrix. 

 

   Predicted results  

  Positive (PP) Negative (PN) 

Actual Observations Positive (P) True Positive (TP) False Negative (FN) 

 Negative (N) False Positive (FP) True Negative (TN) 

Table 1.1 Confusion matrix 

 

 

1.5.14 Typical classification Metrics Used in Fairness Evaluation 

Several metrics are used to measure the effectiveness of a ML model. The most 

common are: Accuracy, Precision, Recall, and F1-Score that can be calculated using 

equations (1.13-1.16) respectively. 

Accuracy is a commonly used metric that assesses the ratio of correctly classified 

instances to the total number of instances. 
𝐴𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑦 =

𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
                                 (1.13)  

 

The percentage of true positive predictions out of all positive predictions is known as 

the precision. It can be calculated using the following formula: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (1.14) 

 

Recall can be defined as the proportion of true positives with respect to all the positives 

that exist in the ground truth. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (1.15) 

The F1-score is the harmonic mean of precision and recall, providing a single measure 

that balances both concerns.  

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2(𝑟𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑟𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (1.16) 

 

1.5.15 Other metrics 

To comprehend fairness metrics reliant on true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN), it is essential to establish the corresponding 

statistical measures as outlined in Table 1.2 [2]. 

Statistical Metrics Equation 

Positive Predictive Value (PPV) PPV = TP/(TP + FP) 
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False Discovery Rate (FDR FDR = FP/(TP + FP) 

False Omission Rate (FOR) FOR = FN/(TN + FN) 

Negative Predictive Value (NPV) NPV = TN/(TN + FN) 

True Positive Rate (TPR) TPR = TP/(TP + FN) 

False Positive Rate (FPR) FPR = FP/(FP + TN) 

False Negative Rate (FNR) FNR = FN/(TP + FN) 

True Negative Rate (TNR) TNR = TN/(FP + TN) 

Table 1.2 Statistical Metrics 

 

1.6 Characteristics of biomedical models 
The characteristics of biomedical models discussed in this section stem from research on [7]. 

Biomedical models employ a data-driven approach, utilizing vast amounts of digital data such 

as electronic health records (EHRs), medical imaging scans, and genetic data to identify patterns 

and make predictions. They rely on machine-learning algorithms to analyze this data, 

uncovering patterns and relationships that may not be immediately apparent to human 

observers. In clinical settings, these models are essential tools, aiding healthcare professionals 

in tasks like case triage, diagnosis, decision-making, and risk prediction, necessitating rigorous 

validation and testing. Additionally, biomedical models focus on health science applications, 

enhancing patient care and outcomes through applications like EHRs, medical imaging, and 

genetic engineering. They handle both structured and unstructured data, ensuring accurate and 

efficient healthcare outcomes. Derived from successful real-world experiments, biomedical 

models have shown significant promise in improving healthcare delivery and patient outcomes 

in clinical settings. 

 

1.7 Challenges of Bias Mitigation in Biomedical Based ML 

Models 
The challenges in mitigating bias in biomedical machine learning models include data biases 

that favor certain demographics, measurement errors that lead to unreliable results, lack of 

contextual specificity across diverse populations, and ethical concerns regarding data privacy 

and algorithm fairness. Addressing these challenges is crucial for developing accurate, 

equitable, and ethically responsible AI applications in healthcare. 

1. Data Bias: In healthcare, these biases in data can be more harmful. Many 

times, the data that is evaluated and used is biased toward particular demographics, 

which can have detrimental effects on the communities that are underrepresented [1]. 

2. Measurement error bias: Also known as, measurement bias is the discrepancy 

between observed and true values brought on by mistakes in self-reported 

measurements, laboratory factors, or equipment inaccuracy. These mistakes can 

arise in experimental and observational research settings, like in cardiovascular 

disease cohort studies. Ignoring measurement error, or naive analysis, can produce 

biased and misleading results, such as inconsistent regression parameter estimators and 

unacceptable conclusions about confidence intervals and hypothesis 
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testing [8]. 

3. Lack of contextual specificity: Diverse populations from different environments, 

cultures, and socioeconomic origins are served by health systems.  

This diversity should serve as the foundation for the development of a general AI 

model; however, data availability varies throughout groups. As a result of this 

imbalance, there is not enough information to make reliable projections for 

underrepresented groups, which emphasizes the need for more precise data collecting 

[9]. 

4. Privacy and Ethical Concerns: Data privacy is a major ethical concern, and 

big data research raises additional ethical issues with transparency, interpretability, 

and algorithmic impartiality [10]. 

 

1.8 Techniques of bias mitigation in ML models 
Preprocessing, in-processing, and post processing are the three categories into 

which mathematical methods for mitigating bias—algorithmic debiasing—can be 

divided based on where they are used. When we talk about bias in these methods, we 

usually mean the statistical relationship between a protected attribute and predicted 

outcome [11]. 

1.8.1 Preprocessing 
Preprocessing refers to the set of operations and techniques applied to data 

before it is used for modeling or analysis. Its primary objectives include data cleaning 

to remove noise and inconsistencies, data transformation to enhance interpretability or 

prepare features for modeling, and data augmentation to increase the volume or diversity 

of data available for training [3]. Preprocessing activities include: 

 Removing Sensitive Data: Ensure that all sensitive information, such as 

customer data in a banking system, is removed or anonymized. This is essential 

to comply with privacy regulations, protecting individuals' privacy and 

preventing unauthorized access. 

 Generating Synthetic Data: Create synthetic data from the original dataset to 

preserve privacy while maintaining data utility. Tools like the Trusted Model 

Executor (TME) from AIF360 can be used to generate synthetic datasets that 

mimic the statistical properties of the original data without revealing sensitive 

information. 

 Data Balancing: Address class imbalance in datasets using techniques such as 

reweighting or methods like SMOTE (Synthetic Minority Oversampling 

Technique). These approaches are crucial for ensuring that machine learning 

models are trained accurately and perform well across all classes. 

 Mitigating Bias: Implement various techniques to reduce biases in datasets. For 

instance, use Generative Adversarial Networks (GANs) for style transfer to 

increase demographic diversity in facial image datasets. This helps create more 

balanced and representative datasets, leading to fairer and more equitable model 

outcomes. 
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1.8.2 In-processing  

In-processing in the context of machine learning refers to techniques and interventions 

applied during the training phase of a model to mitigate bias and improve fairness. Unlike 

preprocessing, which alters the data before training, in-processing modifies the learning 

algorithm itself or its parameters to address biases directly while the model is being trained. 

This approach ensures that the adjustments are made within the model’s learning process, 

allowing it to learn in a way that inherently reduces the impact of sensitive attributes such as 

race, gender, or income on its predictions [3]. In-processing methods include: 

 Algorithm Adjustment: Modifying the algorithm during training to achieve a 

balance between accuracy and fairness. For example, using Pareto Optimal solutions 

to maintain fairness metrics while minimizing accuracy loss. 

 Sensitive Attribute Neutralization: Techniques that reduce a model's dependence 

on sensitive attributes by adjusting weights or introducing layers that counteract the 

influence of these attributes during training. 

 Adversarial Learning: Incorporating adversarial networks that work against the 

main model to detect and reduce biases related to sensitive attributes. This method 

can involve adding adversarial layers to predict and mitigate the influence of sensitive 

attributes during model learning. 

 Balancing Methods: Applying strategies such as reweighting or modifying loss 

functions to ensure that the learning process does not favor any particular group, 

thereby maintaining fairness across diverse populations. 

 Hybrid Techniques: Combining in-processing with other fairness methods, such as 

using adversarial techniques in conjunction with decision trees or employing 

privileged information to train models while respecting sensitive data. 

1.8.3 Post-processing 

Post-processing in machine learning refers to techniques applied after a model has 

been trained to detect and mitigate biases in its predictions. Unlike preprocessing, which 

modifies the data before training, or in-processing, which adjusts the algorithm during 

training, post-processing focuses on altering the model’s outputs to ensure fairness and 

reduce discrimination without changing the model itself or its training process [3]. 

 Bias Detection and Adjustment: Identifying unfair treatment of certain groups 

based on sensitive attributes (like race or gender) and adjusting the model's outputs to 

mitigate these biases. 

 Model Output Modification: Altering decision thresholds or reclassifying outputs 

to reduce bias, such as adjusting a neural network's weights to minimize discrepancies 

between different groups. 

 Black-Box Model Mitigation: Implementing fairness interventions without needing 

to understand or change the internal workings of complex models, making it suitable 

for deep learning models. 

 Bias Analysis in Predictions: Using tools like Natural Language Processing (NLP) 

to detect and understand biases in the model’s decisions, ensuring predictions are fair 

despite variations in data quality or types. 
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1.9 OVERSAMLING  
Oversampling in machine learning is a data-level approach used to address class 

imbalance. It involves generating new data by replicating important samples of the minority 

class. This helps to increase the representation of the minority class in the dataset, ensuring 

that the machine learning model receives a balanced view of all classes during training [48]. 

This Figure 1.1 visually explains how oversampling works to address imbalances in 

datasets 

 

Figure 1.1 Illustration of Oversampling in Data Processing [50]. 

More advanced oversampling approaches, such as Synthetic Minority Oversampling 

Technique (SMOTE), Support Vector Machine SMOTE (SVM-SMOTE), and Borderline-

SMOTE, have been developed in addition to basic oversampling techniques to produce 

synthetic samples in a more efficient and focused way. 

1.9.1 SMOTE 

Synthetic Minority Oversampling Technique (SMOTE), an over-sampling 

technique introduced in 2002, enhances the minority class by generating synthetic instances 

instead of simply duplicating existing ones. The process starts by selecting a sample from 

the minority class and finding its five nearest neighbors. If a 200% over-sampling is needed, 

two of these neighbors are chosen. A synthetic instance is then created by interpolating 

along the line between the selected neighbors and the original sample [37]. The 

following Pseudo-code details the SMOTE algorithm [49]. 

Algorithm SMOTE 

Begin 

Input: 

 Minority class samples (X_minority) 

 Number of synthetic samples to generate (N) 

 Number of nearest neighbors to consider (k) 

Output: 

 Synthetic samples (X_synthetic) 

1. Procedure SMOTE(X_minority, N, k): 

2. X_synthetic = [ ] 

3. for i 1 to N do: 

4. random_sample = randomly select a sample from X_minority 
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5. nearest_neighbors = find k-nearest neighbors of random_sample in X_ minority 

# randomly select one of the nearest neighbors 

6. neighbor = randomly select a neighbor from nearest_neighbors 

# Generate synthetic sample  

7. synthetic_sample = random_sample + random () * (neighbor - random_sample) 

8. X_synthetic.append(synthetic_sample) 

9. return X_synthetic 

10. Stop algorithm 

11. End. 

 

 

X_minority: Input data containing samples from the minority class. 

N: Number of synthetic samples to generate. 

k: Number of nearest neighbors to consider. 

 

1.9.2 SVMSMOTE 

The Support Vector Machine SMOTE (SVM SMOTE) is a boundary-defining 

technique that uses SVM separation formulas in conjunction with extrapolation and 

interpolation. SVM SMOTE employs support vectors in place of the k-neighborhood 

computational interpolation used in the SMOTE technique. This allows for additional 

polarization for the minority class and interpolation for the majority class, resulting in a 

balanced sample. Each minority class support vector will have synthetic data generated at 

random along the lines connecting it with some of its closest neighbors and the following 

pseudo-code details the SVMSMOTE technique [49].  

Algorithm SVM-SMOTE 

Begin 

Input: 

 X_train: Feature matrix of the training set 

 Y_train: Corresponding labels of the training set 

 n_neighbors: Number of nearest neighbors to consider in SMOTE 

 svm_kernel: Kernel function for SVM (e.g., linear, RBF) 

 svm_C: Penalty parameter for SVM 

 over_sampling_ratio: Ratio of over-sampling for the minority class 

Output: 

 X_resampled: Resampled feature matrix 

 Y_resampled: Corresponding resampled labels 

1. Apply SVM to the original imbalanced dataset to train a classification model. 

2. Identify the minority class samples. 

3. For each minority class sample (x_i, y_i): 

4. Find its n_neighbors nearest neighbors within the same class. 

5. Apply SMOTE to generate synthetic samples, considering n_neighbors and 

over_sampling_ratio. 

6. Add the synthetic samples to the list of synthetic samples. 
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7. Combine the original training data with the synthetic samples: 

8. Append the synthetic samples to the original feature matrix (X_train) and their 

corresponding labels to Y_train. 

9. Return the resampled feature matrix (X_resampled) and corresponding labels 

(Y_resampled). 

10. Stop algorithm 

End. 

1.9.3 BorderlineSMOTE 

 

A version of the SMOTE algorithm called BorderlineSMOTE was created to reduce 

some of its flaws. For instance, SMOTE may produce synthetic instances utilizing majority 

class samples when minority class samples are outliers within the majority class, which 

might result in inaccurate results. This problem is reduced by BorderlineSMOTE, which 

removes any minority sample that is completely surrounded by samples from the majority 

class as noise and does not use them in the creation of synthetic instances. Additionally, it 

recognizes some samples as border points, whose neighbors are members of the majority 

and minority classes, and builds synthetic instances only from these border points [37]. 

In Borderline-SMOTE, instances in the minority class are categorized into three 

groups: NOISE, DANGER, and SAFE. 

 NOISE instances are rare and likely incorrect, situated in regions dominated 

by majority class instances. 

 DANGER instances are located near class boundaries, often overlapping 

with majority instances. 

 SAFE instances are more easily identifiable and serve as the primary 

representatives of the minority class 

 

The following Pseudo-code details the BorderlineSMOTE [51]. 

Algorithm BorderlineSMOTE 

Begin 

Input: 

 P number of minority class sample; 

 S% amount of synthetic to be generated; 

 M number of nearest neighbors to create the borderline subset;  

 k Number of nearest neighbors 

Output: 

 (𝑆 100⁄ )∗𝑃′ synthetic samples 

1. Create function MinDanger () 

{For 𝑖 ← 1 to P 

Compute M nearest neighbors of each minority instance and other instances from the 

dataset. 

 Check number of Majority instance M' within the Mnn 

 IF M/2<M’<M Add instance P to borderline subset P’ End IF 

End For} 
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2. ComputKNN (𝒊 ← 𝟏 𝒕𝒐 𝑷′, 𝑷𝒊
′ , 𝑷𝒋) 

3. 𝑵𝒔 = (𝑆 100⁄ )∗𝑃′ 

While Ns ≠ 0 

4. GenerateS  𝑷𝒊
′, 𝑷𝒋      

𝑁𝑠=𝑁𝑠 − 1 

End while 

5. Return  

6. End. 

 

 

Table 1.3: illustrates a comparison between these variants, highlighting their enhanced 

findings, research gaps, and limitations [38]. 

 

Method Findings Research Gaps Limitations 

SMOTE Enhanced 

minority class 

classification 

accuracy 

 

Limited research 

on high-

dimensional 

datasets 

 

Lack investigation of 

parameter sensitivity 

 

SVMSMOTE Enhanced 

classification 

performance with 

support vector 

machines and 

SMOTE 

oversampling 

 

Limited research 

on the effects of 

scalability and 

parameter 

selection 

 

High processing 

costs for big datasets 

BorderlineSMOTE improved results 

with unbalanced 

datasets 

Absence of 

research on using 

combined with 

other 

oversampling 

methods 

high processing 

costs for big datasets 

Table 1.3 Comparative Analysis of SMOTE, SVMSMOTE and BorderlineSMOTE Techniques 

 

1.10 Gradient Boosting Machine 
The term “gradient” describes the residual inaccuracy that is found after creating a 

model. “Boosting” means getting better. GBM, or gradient boosting machine, is the term for 

the method. A technique for progressively improving (reducing) inaccuracy is gradient boosting 

[39]. 
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Gradient Boosting Machine (GBM) is a highly effective supervised learning algorithm 

that combines multiple weak learners into a robust ensemble, achieving excellent predictive 

performance. It excels in various prediction tasks, including spam filtering, online advertising, 

fraud detection, anomaly detection, and computational physics, such as the discovery of the 

Higgs Boson. GBM is frequently among the top algorithms in Kaggle competitions and the 

KDD Cup [40]. 

 

GBM is adept at handling heterogeneous datasets, which may include highly correlated 

data, missing data, and categorical data. It constructs an additive model, leading to interpretable 

results. Moreover, GBM is user-friendly, with numerous publicly available implementations, 

including scikit-learn, Spark MLLib, LightGBM, XGBoost, and TensorFlow Boosted Trees.  

In the context of a supervised learning problem with 𝑛 training examples, where 𝑥𝑖 

represents the feature vector of the 𝑖-Th example inℝ𝑝, and 𝑦𝑖 is the corresponding label (in 

classification) or continuous response (in regression), the classical version of Gradient Boosting 

Machine (GBM) predicts 𝑓(𝑥) for a feature vector 𝑥 using an additive model of the form: 

𝑓(𝑥) ≔  ∑ 𝛽𝑗𝑚𝑏(𝑥; 𝜏𝑗𝑚)𝑀
𝑚=1  (1) 

This configuration is a simple function of the feature vector indexed by a parameter τ, 

where each basic function 𝑏(𝑥; 𝜏) belonging to ℝ (referred to as a weak learner) is. The 

parameters 𝜏𝑗𝑚 and coefficients 𝛽𝑗𝑚  are chosen flexibly to improve data integrity according to 

a particular standard, as shown below. In practical applications, weak learners are frequently 

employed in the following ways: wavelet functions, support vector machines, one-level 

decision trees (sometimes called tree stumps), and classification and regression trees (CART). 

With a size of 𝐾, we suppose a limited set of weak learners. However, in many real-

world scenarios, like the ones described above, 𝐾 can grow exponentially enormous, resulting 

in computing complexity. 

Let ℓ(𝑦, 𝑓(𝑥)) represent the data fidelity measure for the loss function, which is 

considered differentiable in the second coordinate, at the observation(𝑦, 𝑥) . A key goal in 

machine learning is to find a function 𝑓 that minimizes the anticipated loss 𝔼𝑝(ℓ(𝑦, 𝑓(𝑥))), 

where the expectation is taken out the unknown distribution of (𝑦, 𝑥), represented by P. Using 

an algorithm like the Gradient Boosting Machine (GBM), one method to roughly reduce the 

empirical loss is one way to accomplish this goal. 

GBM is a method that effectively minimizes the empirical loss in order to get a good 

estimate of 𝑓:  

𝑚𝑖𝑛

𝑓
   ∑ ℓ(𝑦, 𝑓(𝑥𝑖))

𝑛

𝑖=1

 (2) 

GBM (Gradient Boosting Machines) minimizes a loss function by iteratively updating 

predictions. It starts from a null model (f_0) and computes pseudo-residuals 𝑟𝑚at each iteration. 

The pseudo-residuals are the negative gradients of the loss function with respect to the 

prediction: 𝑟𝑚 = −𝜕ℓ(𝑦𝑖 , 𝑓𝑚(𝑥𝑖))/𝜕𝑓𝑚(𝑥𝑖)  for 𝑖 = 1, . . . . , 𝑛 

BM then finds the best weak-learner that fits these residuals in a least squares sense: 

𝑗𝑚 =
arg min   

𝑗 ∈ [𝐾]

min  

𝜎
∑(𝑟𝑖

𝑚 − 𝜎𝑏(𝑥𝑖; 𝜏𝑗))2 (3)

𝑛

𝑖=1
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The notation “[K]” represents a shorthand for the set {1… K}. in cases where there are 

ties in the “argmin” operation (as mentioned in equation (3)), we choose the element with the 

smallest index [40]. The GBM Algorithm is described bellows. 

 

Algorithm  Gradient Boosting Machine (GBM) 

Initialization. Initialize with 𝑓0(𝑥) = 0 

For 𝑚 = 0, … . , 𝑀 − 1 do: 

1. Compute pseudo-residual 𝑟𝑚 = −[
𝜕ℓ(𝑦𝑖,𝑓𝑚(𝑥𝑖))

𝜕𝑓𝑚(𝑥𝑖)  
]𝑖=1,…,𝑛 

2. Find the best weak-learner 𝑗𝑚 = arg min   
𝑗∈[𝐾]

min  
𝜎

∑ (𝑟𝑖
𝑚 − 𝜎𝑏(𝑥𝑖; 𝜏𝑗))2𝑛

𝑖=1 . 

3. Choose the step-size pm by line-search:  

𝜌𝑚 = arg 𝑚𝑖𝑛𝑗∈[𝐾] min
𝜎

∑ (𝑟𝑖
𝑚 − 𝜎𝑏(𝑥𝑖; 𝜏𝑗))2𝑛

𝑖=1 . 

4. Update the model 𝑓𝑚+1(𝑥) = 𝑓𝑚(𝑥) + 𝜌𝑚𝑏(𝑥; 𝜏𝑗𝑚) 

Output. 𝒇𝑴(𝒙) 

1.11. K-nearest neighbors (KNN) 
The K-nearest neighbors (KNN) classification approach is well-known for its 

effectiveness and simplicity. It is frequently chosen due to its ease of interpretation and speed 

of the computation. The selection of the parameter "k" is a crucial factor that impacts the 

efficiency of this algorithm. [45] 

The K-nearest neighbors (KNN) algorithm extends the concept of nearest neighbor rules 

by considering the class labels of multiple neighboring samples. Among the k closest samples, 

it chooses the class label that is closest to the one under test during the decision-making stage. 

The KNN increases this to k samples, allowing for the exploitation of additional information, 

in contrast to the nearest neighbor rule, which only takes the closest sample into consideration. 

This modification adds more context, which improves the algorithm's speed. KNN is simpler 

and more straightforward in its approach than other classification algorithms that have separate 

training phases since it does not require a separate learning approach[46]. 

If y represents the nearest neighbor instance of 𝑥 within set 𝐸, then the category of 

𝑦becomes the decision outcome, following the nearest neighbor rule. Given an unknown 

category sample X, the decision process can be specified as follows: 

𝑔𝑗(𝑋) = min 𝑔𝑖    𝑖 = 1,2, … , 𝐶 

Then the decision result is X ∈ W 

The nearest neighbor rule is introduced from two perspectives: convergence and 

generalization error. When testing the same point 𝑥, the nearest neighbor 𝑥′ obtained from two 

different training sets with distinct samples can vary. Since the classification outcome hinges 

on the category label of the nearest neighbor, it leads to the conditional error rate, denoted as  

𝑃(𝑒|𝑥, 𝑥′), dependent on both 𝑥 and 𝑥′. Here, the average of 𝑥′ can be calculated as 

follows:  

𝑃(𝑒|𝑥, ) = ∫ 𝑃(𝑒|𝑥, 𝑥′)𝑃(𝑥′|𝑥) 𝑑𝑥 ′ 

Among these equations, 𝑃(𝑥′|𝑥) represents a conditional probability density function. 

Assuming 𝑃(. )is a continuous non-zero function, the probability that any point falls within the 
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x-centered hypersphere 𝑆 is calculated as follows: 

𝑃𝑠 = ∫ 𝑃(𝑥′) 𝑑𝑥 ′ 

The probability that all n samples fall outside the hypersphere is (1 − 𝑃𝑠)∗ . if 𝑛 → ∞, 

this probability tends to zero. Consequently, if the nearest neighbor x0 converges to the point x 

being measured according to this probability, then 𝑃(𝑒|𝑥) infinitely approaches the Dirac 

function. Similarly, if the KNN decision rule is followed, k neighbors converge to the point  

𝑥 being measured. 

The error rate of the nearest neighbor can be interpreted as the probability that the point 

𝑥 being measured differs from the category 𝑐 of the nearest neighbor point x', and the error rate 

is calculated as follows:  

𝑃(𝑒𝑟𝑟𝑜𝑟) = 1 − ∑ 𝑃(𝑐|𝑥)𝑃(𝑐|𝑥′)

𝑐∈𝑌

 

Here, the assumption is that each sample is independently and equally distributed. A 

sample x can always be found within the d distance range around x, thus the Bayesian classifier 

can be expressed as: 

𝑐∗ = arg 𝑚𝑎𝑥𝑐∈𝑌 𝑃2(𝑐∗|𝑥) 

 
At this point, the inequality holds: 

𝑃(𝑒𝑟𝑟𝑜𝑟) ≤ 1 − ∑ 𝑃2(𝐶∗|𝑥)
𝑐∈𝑌

 

This leads to the conclusion that the nearest neighbor rule, while simple in its 

construction, also ensures that the generalized error rate is no more than twice the Bayesian 

error rate. The KNN Algorithm is described bellows. 

Algorithm  The k-nearest neighbors classification algorithm 

Input:   

D: a set of training samples {(𝑥1, 𝑦1), … . , (𝑥𝑛 , 𝑦𝑛)}  

k: the number of nearest neighbors 

d(𝑥, 𝑦)a distance metric 

𝑥 : a test sample 

for each training sample (𝑋𝑖 , 𝑦𝑖) ∈ 𝐷 do 

Compute d(𝑥, 𝑥𝑖) , the distance between 𝑥and 𝑥𝑖 

Let N⊆D be the set of training samples with the k smallest distances d(𝑥, 𝑥𝑖) 

return the majority label of the samples in N 

 

 

 

1.12. Related works 
The authors in [12] evaluated implicit bias in healthcare using metrics such 

as Accuracy, Equal opportunity, and Predictive equity. They introduced HOUSES as a 

new feature for individual-level socioeconomic status (SES) measurement. Their study 

revealed that asthmatic children with lower SES had larger balanced error rates than 
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those with higher SES. Also, focusing on implicit algorithmic bias, [13] utilized statistical 

parity and calibration-in-the-large. They found that predictive models struggle to 

classify minority class instances correctly and fairly. 

Another study on implicit algorithmic bias, using Statistical parity,  

showed that performance decreases for mortality prediction in minority racial and 

socioeconomic groups when comparing the entire cohort to subpopulations [14]. 

The study [15] also examined implicit algorithmic bias through Statistical parity. 

They discovered performance differences among different groups, highlighting 

the reliance of models on different racial attributes. 

In their work Raza et Bashir [16] investigated implicit algorithmic bias 

using Statistical parity. They explored performance differences across various groups and 

highlighted the impact of different racial attributes on model predictions. Their findings 

contribute to our understanding of bias mitigation in machine learning models. 

The study by Allen et al [17]. focuses on mitigating racial bias in early warning 

and mortality scoring systems. Specifically, they address disparities between White and 

non-White racial groups. To achieve this, the authors employ a preprocessing reweighting 

approach based on probability. They assign individual weights to training examples 

based on mortality status and race within each age stratum. By doing so, they effectively 

reduce racial bias and enhance the accuracy of existing mortality score predictors. 

Similarly, another study [18] tackles class bias caused by data sparsity. They apply 

preprocessing resampling techniques to improve prediction results.  

The study conducted by Lee et al [19] focuses on mitigating healthcare disparities 

caused by imbalanced ophthalmic clinical data among racial groups. They propose an in-

processing transfer learning approach using Mean Absolute Error (MAE) and Mean Squared 

Error (MSE). The two-step method involves transferring information from a source domain 

by fitting a linear model on a combined dataset, followed by bias correction through fit- 

ting the contrast solely on the target domain. This approach outperforms conventional 

methods in terms of both accuracy and equity. 

In [20] authors address bias in risk assessment predictive models due to systematic 

bias in training data. Their preprocessing methods include resampling and blinding to 

achieve equal opportunity and statistical parity. They propose three strategies: removing 

protected attributes, resampling the imbalanced training dataset by sample size, and 

resampling by case proportion of people with cardiovascular disease (CVD) outcomes. 

While removing protected attributes and simple resampling did not significantly reduce 

bias, resampling by case proportion effectively reduced bias for gender groups without 

compromising overall accuracy. 

In Zhu et al’s study [21], the researchers focused on addressing bias in hospital 

readmission prediction models due to skewed population distributions. They utilized a 

preprocessing technique called localized sampling, which involved resampling instances 

based on locality assessed through LDA embedding. The evaluation metric employed 

was AUROC. The research aimed to overcome the challenge of imbalanced samples,  

particularly in cases where re-admission patients constituted a small proportion of the 

population. Their localized sampling approach successfully tackled the sample imbalance 

issue, resulting in more effective hospital readmission predictions. 
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In Ref. [22], authors employed a bias handling approach in their study, focusing 

on preprocessing techniques such as resampling, specifically using SMOTE (Synthetic 

Minority Over-sampling Technique) combined with Neural Network. Their evaluation 

metric of choice was accuracy. Addressing the research question of whether imbalanced 

datasets lead to bias in the Istitaah classification system, they found that SMOTE effectively 

oversampled minority classes by generating new instances, thereby creating a 

more balanced dataset. The combination of SMOTE and Neural Network yielded the 

most accurate classification results, indicating its effectiveness in mitigating bias caused 

by imbalanced data. 

In Hee’s study [23], the focus was on addressing bias in clinical data for mortality 

prediction through preprocessing techniques. They employed resampling, specifically 

stratified random sampling, to handle bias. Their evaluation utilized AUROC and accuracy 

metrics. The research aimed to mitigate bias in reused clinical data, emphasizing 

the importance of data quality assurance methods. Their approach involved Clinical 

Data Quality Assessment (CDQA) and Mortality Data Quality Assessment (MDQA)  

to identify relevant variables for stratified sampling. The results showed that CDQA 

and MDQA effectively stratified sampled inputs, leading to improvements in predictive 

performance, as evidenced by increased AUC and accuracy. 

In this study, [24]. Address bias in machine learning models caused by missingness 

not at random. They employ a preprocessing approach involving transformation through 

multiple imputation to handle bias. Evaluation is conducted using percent bias as the metric. 

The study compares different bias handling methods, specifically multiple imputation using 

chain equation, random forest, and denoising autoencoder for imputing missing values. The 

results indicate that the denoising autoencoder method does not demonstrate superior 

performance compared to traditional multiple imputation techniques. 

The study of Yin et al [25] present a novel approach to addressing bias in predictive 

modeling, focusing on preprocessing techniques and evaluation metrics such as AUPRC and 

MAE. They identify the challenge of traditional models being hindered by observational bias 

and partial observations, leading to degraded performance. Their proposed method 

involves utilizing three subnetworks to impute missing data through propensity score 

adjustment. Results indicate that this model surpasses existing methods in tasks like 

binary data imputation, disease progression modeling, and mortality prediction, showcasing 

its efficacy in handling bias and improving predictive accuracy. 

In [26] Davoudi et al. employed an in-processing approach known as reweighting to 

address bias in predictive models, focusing on mitigating systematic outcome predictions 

favoring certain socioeconomic groups. Their evaluation centered on metrics including Equal 

Opportunity, Predictive Equality, and Statistical Parity. The study aimed to rectify predictive 

disparities among groups. Their method involved adjusting observation 

weights in attribute-outcome combinations during model training. While reweighing 

successfully reduced bias in certain instances, it inadvertently introduced bias in scenarios 

where none initially existed. 

In the study introduced by [27], authors tackle bias in ranking models through a 

postprocessing approach known as transformation (xOrder). Focused on 

addressing the issue of ranking positive instances higher than negative ones with poor 
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fairness, they introduce the xAUC evaluation metric. Their research aims to mitigate 

systematic disparities across various protected groups caused by biased rankings. Their 

proposed framework employs dynamic programming to adjust ranking scores, optimizing the 

ordering by minimizing an objective that combines algorithm utility loss and ranking 

disparity. The results demonstrate that the framework consistently achieves a 

better balance between algorithm utility and ranking fairness across diverse datasets and 

metrics. 

In the study [28], the focus was on addressing temporal bias in longitudinal Electronic 

Health Record (EHR) data, particularly concerning patients with varying 

disease progression states. Their approach involves preprocessing through time alignment 

transformation to mitigate bias. Evaluation metrics such as AUROC, AUPRC,  

and F1-score were utilized to assess the effectiveness of their method. By aligning patients’ 

timelines to a shared reference point instead of solely relying on hospital or ICU 

admission time as the starting point, they found that this registration technique notably 

improved mortality prediction, yielding an enhancement of at least 1-2% across evaluation 

metrics. 

Wolk et al [29], propose a bias handling approach aimed at improving the 

identification of high-risk septic shock patients, addressing the limitations of general 

scoring systems due to covariate shift and systematic bias. Their preprocessing strategy 

involves relabeling through domain adaptation. Evaluation metrics such as AUROC,  

Accuracy, Sensitivity, Specificity, and F1-score were utilized. The study introduces a 

VRNN-based Adversarial Domain Separation model, which effectively separates 

globalshared representations from local information across domains. The results demonstrate 

superior performance compared to existing domain adaptation methods, effectively 

mitigating both covariate shift and systematic bias in identifying high-risk septic shock 

patients. 

Abay et al’s study presents a novel framework addressing both federated learning 

(FL) and fairness concerns in machine learning models. Their study primarily utilizes the 

Adult dataset and COMPAS dataset for analysis. Despite the comprehensive 

approach, the paper’s limitation lies in its focus solely on binary classification tasks,  

neglecting biased data within FL training data. The authors employ various methods 

to tackle bias, including local reweighing, global reweighing with privacy considerations,  

and federated bias removal. They also incorporate pre-processing and in-processing 

techniques to mitigate bias effectively. Accuracy assessments encompass fairness metrics, 

with a particular emphasis on an 11.5% threshold, alongside traditional metrics such 

as false positives, false negatives, and receiver operating characteristic curves. 

 

1.13. Conclusion  
Bias remains a significant challenge in biomedical applications, impacting the 

fairness and accuracy of healthcare outcomes. Addressing biases in both data and 

algorithms is crucial for developing unbiased AI systems. Techniques such as data 

preprocessing, algorithmic adjustments and post-processing methods offer potential 

solutions to mitigate biases. However, ongoing research and ethical considerations are 
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essential to ensure these advancements promote equitable healthcare access, respect 

privacy, and maintain trust in clinical settings. 



22 

 

Chapter 2: Methodology 

 

 

 

 

2.1 Introduction  
 

Machine learning techniques are instrumental in enhancing predictive accuracy across 

diverse fields, particularly in healthcare and other domains requiring early detection and 

intervention. However, the challenge of class imbalance, where certain data classes are 

underrepresented, often compromises model effectiveness by introducing bias towards majority 

classes. To address this, oversampling methods like SMOTE variants generate synthetic data 

for minority classes, thereby balancing dataset distributions and improving overall prediction 

accuracy. Evaluation metrics such as accuracy, precision, recall, and F1 score gauge model 

performance, while fairness metrics like EOD, DI, and IR assess equitable treatment across 

different data subsets. Integrating these techniques ensures more robust and fair machine 

learning models, suitable for varied real-world applications through continual validation and 

refinement 

2.2 Data Collection 
Two distinct datasets were utilized for this study: The Heart Disease Prediction 

dataset [W2], containing 270 instances with 14 attributes, and the Early Stage Diabetes 

Risk Prediction Dataset [W3], comprising 520 instances with 17 attributes. 

Heart Disease Prediction Dataset 

 Age: Age (years) 

 Sex: Gender (Female/Male), (the sensitive attribute) 

 Chest-pain: chest pain type 

 Rest-bp: resting blood pressure 

 Cholesterol: serum cholestoral (mg/dl) 

 FBS over 120: fasting blood sugar > 120 mg/dl 

 EKG results: resting electrocardiographic results 

 Max HR: maximum heart rate achieved 

 Exercise angina: exercise induced angina 

 ST depression:  ST depression induced by exercise relative to rest 

 Slope of ST:  the slope of the peak exercise ST segment 

 Number of vessels fluro: number of major vessels (0-3) colored by 

fluoroscopy 

 Thallium: thal: 3 = normal; 6 = fixed defect; 7 = reversable defect 
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 Heart Disease: Class variable (0 or 1). 

The bias is detected in the attribute ‘gender’ (the sensitive attribute), with the privileged 

group being female. 

Early Stage Diabetes Risk Prediction Dataset 

This dataset comprises crucial data on the signs and symptoms of individuals either 

exhibiting early signs of diabetes or at risk of developing the disease. It encompasses a wide 

range of variables, offering valuable insights into potential early indicators of diabetes onset. 

The dataset includes diverse information, from demographic details to specific diabetes-related 

symptoms. The data was collected via direct patient questionnaires at the Sylhet Diabetes 

Hospital in Sylhet, Bangladesh, and has been validated by a medical doctor. 

 Age (1-20 to 65): Age range of the individuals. 

 Sex (1. Male, 2. Female): Gender information. (Male 63% Female 37%) 

 Polyuria (1. Yes, 2. No): Presence of excessive urination. 

 Polydipsia (1. Yes, 2. No): Excessive thirst. 

 Sudden Weight Loss (1. Yes, 2. No): Abrupt weight loss. 

 Weakness (1. Yes, 2. No): Generalized weakness. 

 Polyphagia (1. Yes, 2. No): Excessive hunger. 

 Genital Thrush (1. Yes, 2. No): Presence of genital thrush. 

 Visual Blurring (1. Yes, 2. No): Blurring of vision. 

 Itching (1. Yes, 2. No): Presence of itching. 

 Irritability (1. Yes, 2. No): Display of irritability. 

 Delayed Healing (1. Yes, 2. No): Delayed wound healing. 

 Partial Paresis (1. Yes, 2. No): Partial loss of voluntary movement. 

 Muscle Stiffness (1. Yes, 2. No): Presence of muscle stiffness. 

 Alopecia (1. Yes, 2. No): Hair loss. 

 Obesity (1. Yes, 2. No): Presence of obesity. 

 Class (1. Positive, 2. Negative) : Diabetes classification. 

The bias is detected in the attribute ‘gender’ (the sensitive attribute), with the privileged 

group being Male. 

To enhance the fairness metrics and overall performance of our biomedical machine 

learning models, we utilized two distinct datasets. By employing multiple datasets for 

comparison, we aimed to assess the resilience of our models and evaluate their performance 

across different data sources. This comparative approach allowed us to identify any 

discrepancies or biases inherent in individual datasets and to ensure more reliable and 

generalizable results. The use of multiple datasets provided a broader perspective, enabling us 

to make more informed decisions about model performance and potential improvements. 
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CSV files: A CSV (Comma Separated Values) file is a commonly used format for 

importing and exporting data in spreadsheets and databases. Although it lacks a standardized 

definition, it typically consists of data separated by commas, with each row representing a 

record and each comma separating individual fields within that record. While different 

applications may use varying delimiters and quoting characters, the overall structure remains 

similar, enabling the creation of modules to efficiently manipulate such data. The csv module 

in programming languages like Python implements classes to handle reading and writing CSV 

files, allowing programmers to interact with CSV data without needing to understand the 

specific details of its format [W4]. 

 

2.3 Attribute Distribution 
Figure 2.1 illustrates the Heart Disease Prediction dataset, presenting a pie chart that 

depicts both the distribution of outcomes and gender demographics. The chart highlights an 

overall imbalance with 55.6% positive cases ('1') and 44.4% negative cases ('0'). Additionally, 

it shows a gender disparity where the male segment ('1') is notably larger than the female 

segment ('0'). This dual insight suggests potential biases in machine learning models towards 

predicting negative outcomes and favoring male subjects, necessitating strategies for 

achieving fairer predictions across genders. 

 

Figure 2.1: Outcome and Gender distribution in Heart Disease Prediction Dataset 
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In the Diabetes Risk Prediction Dataset (Figure 2.2), the pie chart illustrates both the 

distribution of outcomes and gender demographics. The chart reveals a notable imbalance 

with 61.5% positive cases ('1') and 38.5% negative cases ('0'). Furthermore, it highlights a 

gender disparity where males ('0') significantly outnumber females ('1'). This dual 

observation suggests a potential bias in machine learning models towards predicting positive 

outcomes and favoring male subjects, necessitating strategies to ensure equitable predictions 

across genders. 

 

Across both datasets, addressing these imbalances is critical to prevent bias and to 

ensure that machine-learning models make equitable predictions for all classes. 

2.4 Proposed approach 
 

In this section, we propose an architecture for a biomedical dataset bias reduction system 

using a machine learning approach, as illustrated in (Figure 2.3). This system aims to effectively 

detect and mitigate dataset bias, thereby enhancing the equity and reliability of machine 

learning models in biomedical applications. 

Figure 2.2: Outcome and Gender distribution in Diabetes Risk Prediction Dataset 
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Figure 2.3: Proposed approach for dataset bias mitigation. 

Steps:   

Data Preprocessing: 

 Clean and preprocess the biomedical dataset. This step involves handling 

missing values, removing duplicates, and standardizing features. 

Base Model Generation:  

 Train a Gradient Boosting Machine (GBM) model or KNN model on dataset. 

 Evaluate its performance using metrics such as accuracy, precision, recall, F1 

score, positive predictive value (PPV), equal opportunity difference (EOD), 

Impact Ratio (IR), and disparate impact (DI). 

Bias Detection:  

 Investigate potential sources of bias in the dataset 

Bias Mitigation Techniques: 

 We have chosen oversampling with SVM-SMOTE and BorderlineSMOTE to 

address class imbalance. SVM-SMOTE and BorderlineSMOTE generates 

synthetic samples for the minority class while preserving the decision boundary, 

which helps in reducing bias. 

New Model Generation: 

 Post-Oversampling, Train another GBM model or KNN model on the 

oversampled dataset. 

 Calculate the same evaluation metrics (accuracy, precision, recall, F1 score, 

PPV, EOD, DI, IR) for this model. 

Comparison: 

 Compare the metrics before and after oversampling: 

Did oversampling improve fairness (reduced bias)? 

Did it impact overall model performance (accuracy, etc.)? 
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2.4.1 Preprocessing 

 

 

 Checking messing values  

Dealing with missing data is a common challenge in medical research, and while there 

are several strategies available to handle it, it is reassuring to note that neither of our datasets 

currently contains any missing values. This absence of missing data simplifies the analysis 

process and ensures that our findings are based on complete information. However, it is 

always prudent to remain vigilant for potential missing data issues as datasets evolve or new 

data is collected, as addressing them promptly is essential for maintaining the integrity and 

reliability of our research findings. 

 Data Normalization 

Normalization involves adjusting numerical data so that it fits within a predetermined 

range, typically 0 to 1 or -1 to 1. This method is particularly advantageous for data mining tasks 

such as classification, clustering, and artificial neural networks. 

We applied the widely adopted normalization method called min-max normalization, 

which can be represented mathematically as follows: 

𝑥𝑛𝑜𝑟𝑚 = (𝑥 − 𝑚𝑖𝑛)/(𝑚𝑎𝑥 − 𝑚𝑖𝑛)                                     (2.1) 

 

2.4.2 Model Generation : 

• Gradient Boosting Machines (GBM)     

In this stage, we used GBM to generate an Ensemble Learning Model. The training 

parameters are described in table 2.1. 

 

Parameter Typical Values 

n_estimators 100-500 (default: 100) 

learning_rate 0.01-0.1 (default: 0.1) 

max_depth 3-10 (default: 3) 

min_samples_split  2-10 (default: 2) 

min_samples_leaf  1-10 (default: 1) 

subsample 0.5-1.0 (default: 1.0) 

random_state Integer (e.g., 42) default (None) 

alpha 0.9 (default for 'quantile') 

validation_fraction 0.1-0.2 (default: 0.1) 

n_iter_no_change Integer (e.g., 10) default (None) 

init An estimator object implementing 'fit' method default (None) 

Table 2.1: Training and Testing Parameters for GBM Ensemble Learning Model 
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 K-Nearest Neighbor (KNN)      

 

We used also KNN to generate a Machine Learning Model. The training and test 

parameters are described in table 2.2. 

Parameter Description 

random_state None, integer (e.g., 42), or np.random.RandomState instance default (None) 

n_neighbors Integer (default: 5), we used “7” 

weights ‘uniform’,‘distance’, or custom function (default: uniform) 

algorithm ‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’(default: auto) 

leaf_size Integer (default: 30) 

P Integer (default: 2) 

Metric String or callable (e.g., ‘minkowski’)(default: minkowski) 

metric_params Dictionary or None (default: None) 

n_jobs Integer (default: 1) 

Table 2.2: Training and Testing Parameters for KNN Machine Learning Model 

 

 

 

2.4.4 Bias Mitigation Techniques: 

To address the imbalances and potential biases in our health outcome prediction 

datasets, we applied advanced oversampling techniques, specifically SVM-SMOTE and 

BorderlineSMOTE. These methods were used to correct both class and gender disparities, 

aiming to produce fairer and more accurate predictions. 

Initially, the Heart Disease Prediction Dataset had a notable imbalance in both gender and 

target class distributions. Out of the total instances, there were 183 females and 87 males. 

Additionally, the target classes were imbalanced, with 120 instances indicating the presence 

of heart disease and 150 indicating its absence. Such skewed distributions posed a risk of the 

model developing biases, either favoring the majority class or displaying gender bias against 

the less represented groups. 

After applying SVM-SMOTE and BorderlineSMOTE, we achieved a balanced class 

distribution with 150 instances each for both the presence and absence of heart disease. The 

gender distribution post-oversampling improved to 183 females and 117 males. While still 

slightly imbalanced in terms of gender, this represents a more equitable distribution compared 

to the initial state, helping to mitigate potential biases. 

The Diabetes Risk Prediction Dataset also exhibited imbalances, with 192 females and 328 

males, and 320 instances indicating a positive risk for diabetes against 200 indicating no risk. 

Such disparities could lead to biased predictions favoring the majority class or gender. 
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Post oversampling, we balanced the class distribution to 320 instances each for positive and 

negative diabetes outcomes. The gender distribution was adjusted to 312 females and 328 

males, significantly improving the representation equity compared to the original dataset. 

SVM-SMOTE and BorderlineSMOTE enhance dataset balance by generating synthetic 

samples for the minority class, carefully considering the decision boundary. This not only 

corrects class imbalances but also ensures a more equitable gender representation. By doing 

so, these techniques reduce potential biases and promote fairer, more inclusive predictions 

across different demographic groups. 

The following Figure 2.4 and Figure 2.5 illustrate the outcome and gender distribution in the 

Heart Disease and Diabetes Risk Prediction datasets after applying SVM-SMOTE and 

BorderlineSMOTE, highlighting the improved balance achieved through these techniques: 

 

Figure 2.5: Outcome and Gender distribution after SVM-SMOTE and BorderlineSMOTE (Diabetes 

Risk Prediction Dataset) 

Figure 2.4: Outcome and Gender distribution after SVM-SMOTE and BorderlineSMOTE Heart 

Disease Dataset 
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2.4.5 New Model Generation 

 

Following the application of SVM-SMOTE and BorderlineSMOTE to oversample the 

Heart Disease Prediction and Diabetes Risk Prediction datasets, Gradient Boosting Machine 

(GBM) models were trained on each oversampled dataset variant. Specifically, separate GBM 

models were trained on the datasets oversampled using SVM-SMOTE and BorderlineSMOTE 

for both health prediction scenarios. Similarly, K-Nearest Neighbors (KNN) models were 

trained on these datasets post-oversampling, with one set trained on SVM-SMOTE 

oversampled data and another on BorderlineSMOTE oversampled data for each health 

prediction dataset. 

After applying SVM-SMOTE and BorderlineSMOTE to oversample the datasets for 

heart disease and diabetes risk prediction, various models including Gradient Boosting 

Machines (GBM) and K-Nearest Neighbors (KNN) were trained and evaluated. Comprehensive 

metrics such as Accuracy, Precision, Recall, F1 score, positive predictive value (PPV), Equal 

Opportunity Difference (EOD), Disparate Impact (DI), and Imbalance Ratio (IR) were used to 

assess each model's performance and fairness across demographic groups. This thorough 

evaluation highlighted the impact of oversampling techniques on both model effectiveness and 

equity, ensuring that predictions were both accurate and unbiased in healthcare decision-

making. This approach emphasizes the importance of advanced oversampling methods in 

creating balanced datasets, thereby improving the overall predictive performance and fairness 

of models in critical health prediction tasks. 

2.4.3 Evaluation, results and discussion 

Before oversampling 

In the realm of evaluating classification models, various metrics serve as tools to dissect 

different dimensions of a model’s predictive abilities. 

This evaluation can be conducted using the accuracy_score, precision_score, recall_score, 

and f1_score functions, respectively.  

Table 2.3 Table 2.4 Table 2.5 Table 2.6 displays the results obtained from both datasets before 

oversampling: 

 

 

 

 

 

Table 2.3: Obtained results before bias mitigation techniques of Heart Disease Dataset using GBM 

Accuracy Precision Recall F1-score 

74% 70% 75% 72% 

Accuracy Precision Recall F1-score 
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Table 2.4: Obtained results before bias mitigation techniques of Heart Disease Dataset using KNN 

 

 

 
 

 

 

Table 2.5: Obtained results before bias mitigation techniques of Diabetes Risk Dataset using GBM 

 

 

 

 

Table 2.6: Obtained results before bias mitigation techniques of Diabetes Risk Dataset using GBM 

 

The obtained results can be expressed using the bar plot in Figure 2.6, Figure 2.7, Figure 

2.8 and Figure 2.9 

68% 60% 62% 60% 

Accuracy Precision Recall F1-score 

99% 100% 98% 99% 

Accuracy Precision Recall F1-score 

86% 93% 84% 88% 
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 Confusion Matrix 

After predicting the labels for x_test and obtaining the predicted class labels (y_pred), we 

computed the confusion matrix (as shown in Figure 2.10, Figure 2.11, Figure 2.12 and Figure 

2.13). The confusion matrix is a crucial tool in evaluating the performance of a classification 

model. It provides a tabular summary that categorizes predictions into four key outcomes: true 

positives, true negatives, false positives, and false negatives. This detailed breakdown allows 

for a comprehensive analysis of the model’s accuracy and performance. 

 

Figure 2.6: Obtained results before bias mitigation techniques 

of Heart Disease Dataset using GBM 
Figure 2.7: Obtained results before bias mitigation techniques of 

Heart Disease Dataset using KNN 

Figure 2.8: Obtained results before bias mitigation techniques of 

Diabetes Risk Dataset using GBM 

Figure 2.9: Obtained results before bias mitigation techniques 

of Diabetes Risk Dataset using KNN 
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Figure 2.10: Confusion matrix of Diabetes Risk Prediction Dataset generated using KNN before 

Oversampling. 

 

Figure 2.6:  Figure 2.11: Confusion matrix of Diabetes Risk Prediction Dataset generated using GBM before 

Oversampling. 
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Figure 2.12: Confusion matrix of Heart Disease Prediction generated using GBM before 

oversampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classification Report 

Figure 2.14, Figure 2.15, Figure 2.16 and Figure 2.17 bellow illustrates Classification 

Report before bias mitigation techniques for the both datasets 

 

Figure 2.13: Confusion matrix of Heart Disease Prediction generated using KNN before 

oversampling. 
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Figure 2.14 Classification Report before bias mitigation techniques Heart Disease Dataset using GBM 

 
 

 

 

Figure 2.16: Classification Report before bias mitigation techniques of Diabetes Risk Dataset 

 

 

 

 

 

 

 

 

Figure 2.15: Classification Report before bias mitigation techniques Heart Disease Dataset using KNN 

Figure 2.17: Classification Report before bias mitigation techniques of Diabetes Risk Dataset using 

GBM 
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Evaluation of fairness metrics: 

Table 2.8, Table 2.9, Table 2.10 and Table 2.11 bellow illustrates evaluation of 

fairness metrics before bias mitigation techniques for the both datasets using GBM and KNN. 

 

Table 2.7: Fairness metrics before bias mitigation techniques of Heart Disease Dataset using GBM 

 

 Table 2.8 Fairness metrics before bias mitigation techniques of Heart Disease Dataset using KNN 

Table 2.10: Fairness metrics before bias mitigation techniques Diabetes Risk Dataset using GBM 

 

After oversampling 

Table 2.12 presents a comparison of the Gradient Boosting Machine (GBM) model's 

performance in predicting heart disease, both before and after applying SVM-SMOTE and 

BorderlineSMOTE. The table evaluates key metrics such as Accuracy, Precision, Recall, F1-

Score, PPV, EOD, DI, and IR. This analysis provides insights into the effectiveness of GBM 

when enhanced by these oversampling techniques, illustrating improvements in handling 

Positive Predictive Value 

(PPV) 

Disparate 

Impact 

Equal Opportunity 

Difference (EOD) 

Impact 

ratio 

0.69 1.60 0.06 1.25 

Positive Predictive Value 

(PPV) 

Disparate 

Impact 

Equal Opportunity 

Difference (EOD) 

Impact 

ratio 

0.59 0.69 0.16 1.25 

Positive Predictive Value 

(PPV) 

Disparate 

Impact 

Equal Opportunity 

Difference (EOD) 

Impact 

ratio 

1.0 0.43 0.03 1.60 

Positive Predictive Value 

(PPV) 

Disparate 

Impact 

Equal Opportunity 

Difference (EOD) 

Impact 

ratio 

0.93 0.47 0.08 1.60 

Table 2.11: Fairness metrics before bias mitigation techniques Diabetes Risk Dataset using KNN 
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imbalanced data and promoting fairness across different demographic groups. 

 

Ensemble Learning: GBM “Heart Disease Prediction” 

Metric Before 

Oversampling 

After Oversampling 

(SVM-SMOTE) 

After Oversampling 

(BorderlineSMOTE) 

Accuracy 0.74 0.85 0.85 

Precision 0.69 0.79 0.77 

Recall 0.75 0.88 0.92 

F1 Score 0.72 0.84 0.84 

PPV (Positive Predictive 

Value) 

0.69 0.80 0.77 

EOD (Equal Opportunity 

Difference) 

0.06 0.03 0.10 

DI (Disparate Impact) 1.59 0.95 0.79 

IR (Imbalance Ratio) 1.25 1.00 1.00 

Table 2.12: Results before and after SVM-SMOTE and BorderlineSMOTE on Heart Disease 

Prediction Dataset Using GBM 

 

Table 2.13 presents a comparison of the K-Nearest Neighbors (KNN) model's 

performance in predicting heart disease, both before and after applying SVM-SMOTE and 

BorderlineSMOTE. 

Machine Learning: KNN “Heart Disease Prediction” 

Metric Before 

Oversampling 

After Oversampling 

(SVM-SMOTE) 

After Oversampling 

(BorderlineSMOTE) 

Accuracy 0.68 0.68 0.71 

Precision 0.59 0.68 0.70 
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Recall 0.62 0.65 0.72 

F1 Score 0.60 0.66 0.71 

PPV (Positive Predictive 

Value) 

0.59 0.68 0.7 

EOD (Equal Opportunity 

Difference) 

0.16 0.17 0.07 

DI (Disparate Impact) 0.68 0.66 0.75 

IR (Impact Ratio) 1.25 1.00 1.00 

Table 2.13: Results before and after SVM-SMOTE and BorderlineSMOTE on Heart Disease 

Prediction Dataset Using KNN 

 

Table 2.14 presents a comparison of the Gradient Boosting Machine (GBM) model's 

performance in Diabetes Risk Prediction Dataset after applying SVM-SMOTE and 

BorderlineSMOTE. 

Ensemble Learning: GBM “Diabetes Risk Prediction” 

Metric Before 

Oversampling 

After Oversampling 

(SVM-SMOTE) 

After Oversampling 

(BorderlineSMOTE) 

Accuracy 0.99 0.96 0.96 

Precision 1.00 0.96 0.98 

Recall 0.98 0.98 0.94 

F1 Score 0.99 0.96 0.96 

PPV (Positive Predictive 

Value) 

1.00 0.98 0.98 

EOD (Equal Opportunity 

Difference) 

0.03 0.01 0.01 

DI (Disparate Impact) 0.43 1.11 1.11 
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IR (Impact Ratio) 1.60 1.00 1.00 

Table 2.14: Results before and after SVM-SMOTE and BorderlineSMOTE on Diabetes Risk 

Prediction Dataset Using GBM 

 

Table 2.15 presents a comparison of KNN model's performance in Diabetes Risk Prediction 

Dataset after applying SVM-SMOTE and BorderlineSMOTE. 

 

Machine Learning: KNN on “Diabetes Risk Prediction” 

Metric Before 

Oversampling 

After Oversampling 

(SVM-SMOTE) 

After Oversampling 

(BorderlineSMOTE) 

Accuracy 0.99 0.91 0.91 

Precision 1.00 1.00 1.0 

Recall 0.98 0.81 0.81 

F1 Score 0.99 0.90 0.90 

PPV (Positive Predictive 

Value) 

1.00 1.00 1.00 

EOD (Equal Opportunity 

Difference) 

0.03 0.27 0.27 

DI (Disparate Impact) 0.43 0.82 0.82 

IR (Impact Ratio) 1.60 1.00 1.00 

Figure 2.15: Results before and after SVM-SMOTE and BorderlineSMOTE on Diabetes Risk 

Prediction Dataset Using KNN 

 

 

 

2.4.7 Discussion 

In the realm of healthcare machine learning, achieving both accuracy and fairness in 

predictive models is paramount to mitigate biases and ensure equitable healthcare outcomes. 

Our approach addresses this challenge through the implementation of advanced oversampling 

techniques, specifically SVM-SMOTE and BorderlineSMOTE. These methods are designed to 
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tackle class imbalances and enhance both the performance metrics—such as accuracy, 

precision, recall, and F1 Score—and fairness metrics—like Equal Opportunity Difference 

(EOD), Disparate Impact (DI), and Imbalance Ratio (IR)—of predictive models. 

 

We applied SVM-SMOTE and BorderlineSMOTE to two crucial healthcare datasets: 

heart disease prediction and diabetes risk prediction. Employing Gradient Boosting Machine 

(GBM) and K-Nearest Neighbors (KNN) models, we evaluated the impact of these techniques 

comprehensively across various metrics. 

 

In the Heart Disease Prediction Dataset, our findings revealed substantial improvements 

in recall metrics, particularly notable with GBM models. For instance, GBM models on the 

heart disease dataset saw recall increase significantly from 0.75 to 0.88 with SVM-SMOTE, 

further improving to 0.92 with BorderlineSMOTE. These enhancements underscore the 

effectiveness of oversampling in enhancing the model's sensitivity to correctly identify positive 

cases. Conversely, KNN models exhibited more modest improvements or slight declines in 

performance due to the introduction of synthetic samples. 

 

In terms of fairness metrics, both SVM-SMOTE and BorderlineSMOTE effectively 

mitigated biases within the heart disease prediction dataset. Disparate Impact (DI) metrics 

approached the ideal value of 1, indicating improved equity in model predictions across 

demographic groups. Specifically, for GBM models, DI improved significantly from 1.59 to 

0.95 with SVM-SMOTE and further to 0.79 with BorderlineSMOTE. Equal Opportunity 

Difference (EOD) metrics generally showed improvement with SVM-SMOTE, although results 

varied with BorderlineSMOTE. For instance, KNN models on the heart disease dataset 

exhibited a slight increase in EOD from 0.16 to 0.17 with SVM-SMOTE, but a notable decrease 

to 0.07 with BorderlineSMOTE. This variability highlights the nuanced impact of oversampling 

techniques on fairness outcomes. 

 

In evaluating trade-offs, SVM-SMOTE typically achieved balanced improvements in 

both performance and fairness metrics. This makes it suitable for applications where optimizing 

overall equity in predictive outcomes is essential. In contrast, BorderlineSMOTE prioritized 

significant enhancements in recall, potentially at the expense of increased disparities measured 

by metrics like EOD. This approach proves beneficial in scenarios where maximizing 

sensitivity (recall) is critical, such as in medical diagnostics. 

 

In summary, the choice of oversampling technique should align with specific model 

requirements and fairness objectives within healthcare machine learning applications. By 

integrating advanced techniques like SVM-SMOTE and BorderlineSMOTE, we can effectively 

enhance predictive accuracy while promoting fairness and equity in healthcare decision-

making. This approach contributes to mitigating biases and ensuring more reliable and inclusive 

healthcare outcomes across diverse demographic groups. 
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2.5 Conclusion   
 

In conclusion, SVM-SMOTE and BorderlineSMOTE proved effective in improving 

both the performance and fairness of healthcare machine learning models, particularly in heart 

disease prediction. GBM models showed significant increases in recall with SVM-SMOTE 

(0.75 to 0.88) and BorderlineSMOTE (0.92), highlighting their ability to accurately identify 

positive cases. While KNN models exhibited mixed results, both techniques successfully 

reduced biases, as reflected in improved Disparate Impact metrics. SVM-SMOTE achieved 

balanced improvements across metrics, whereas BorderlineSMOTE prioritized recall 

enhancement, potentially impacting fairness measures like Equal Opportunity Difference. 

Overall, these approaches enhance predictive accuracy and equity in healthcare applications.
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Chapter 3 

 

Implementation 
 

3.1 Introduction  
Our approach to mitigating bias in healthcare machine learning leverages advanced 

oversampling techniques such as SVM-SMOTE and BorderlineSMOTE to effectively address 

class imbalance in datasets. By doing so, we aim to enhance the accuracy and fairness of our 

predictive models, ensuring that underrepresented classes receive adequate consideration. 

In this chapter, we have detailed the comprehensive environment utilized for our 

implementation, encompassing both hardware and software components. Additionally, we have 

outlined the libraries employed in our work and provided illustrative screenshots of the source 

code and user interface. These elements collectively demonstrate the practical steps taken to 

operationalize our bias mitigation strategies, highlighting the technical foundation and user-

friendly design of our solution. 

 

 

3.2 Environment 

3.2.1 Hardware 

The study utilized a hardware environment centered around an Intel(R) Core(TM) i5-

10210U CPU running at 1.60GHz, complemented by 8 GB of RAM and an SSD for storage. 

This configuration leveraged the CPU's processing power and the SSD's fast data access to 

effectively manage large datasets and complex algorithms. With 8 GB of RAM, the system 

accommodated concurrent execution of multiple model instances and algorithms, ensuring 

reliable performance and smooth operation throughout the research. This setup proved pivotal 

in achieving accurate results and maintaining computational efficiency, particularly in the 

context of healthcare-focused machine learning investigations. 

 

3.2.2 Software 

• Python 

Python, a high-level programming language, has become vital in scientific computing 

because of its quick development cycle and ease of program maintenance. Compared to 

traditional low-level compiled languages, Python is often more efficient for prototyping new 

concepts. Additionally, Python boasts a variety of high-quality numerical libraries,  

solidifying its importance in the field of scientific computing [W5]. 
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• Jupyter 

Jupyter is an open-source project that provides a web-based interactive computing 

environment for creating and sharing documents containing live code, equations, visualizations, 

and narrative text. It supports various programming languages, including Python, R, and Julia. 

Jupyter notebooks allow users to write and execute code in cells, making it a popular tool for 

data analysis, machine learning, and scientific research [W6]. 

• Used Libraries  

o NumPy 

NumPy is a Python library that provides flexible and effective support for huge, 

multidimensional arrays and matrices, as well as numerical computing through a vast array of 

mathematical functions. It is an essential part of using Python for scientific 

computing, and it has many uses in physics, data science, engineering, and other disciplines. 

NumPy is a powerful tool for numerical computations, offering array objects that surpass 

Python’s built-in data structures, enabling vectorized array operations and reducing calculation 

time. It also offers features like random number generation, Fourier analysis, linear algebra, and 

integration with other libraries and languages [31]. 

o Sklearn 

Scikit-learn is a well-liked Python machine-learning library that offers simple 

implemetations of several well-known algorithms. Its easy distribution is ensured by its smooth 

integration with Python and reliance solely on NumPy and SciPy. Because Scikit-learn 

uses compiled code and incorporates C++ libraries for assistance, it is efficient. It is extensively 

used across many industries, including academics, and is accessible on a number of platforms 

for both free and a fee. The BSD license under which the library is provided makes it freely 

available and embraced. [32] 

o Pandas 

Pandas is a Python package made to improve data analysis skills by filling the gap 

between database languages and specialist statistical platforms and Python's general-purpose 

computing capabilities. Strong capabilities like hierarchical indexing and automated data 

alignment are available, and functionalities are more strongly linked than in other computer 

environments. [33] 

o Matplotlib 

Matplotlib is a Python library designed for generating 2D plots, spanning from static to 

animated and interactive visualizations. Widely utilized in scientific computing, it facilitates 

data exploration and visualization tasks. Offering a rich assortment of 2D plotting capabilities 

and extensive customization options, Matplotlib empowers users to craft intricate and advanced 

plots effortlessly. Its compatibility with diverse Python libraries and frameworks further 

augments its adaptability, allowing for versatile data visualization across various domains [47]. 

o Seaborn 

Seaborn is a Python library designed for creating statistical graphics and visualizations. 

It extends the functionality of matplotlib and integrates seamlessly with pandas data structures. 
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Seaborn simplifies the process of exploring and comprehending datasets by providing high-

level plotting functions that operate directly on dataframes or arrays containing entire datasets. 

Internally, it handles semantic mapping and statistical aggregation, allowing users to generate 

informative plots without delving into the intricacies of plotting mechanics. Its dataset-oriented 

and declarative API enables users to focus on interpreting the meaning of plot elements rather 

than the technical details of their creation. Thus, Seaborn facilitates effective data exploration 

and visualization in Python, particularly in statistical and data analysis contexts [W6]. 

3.3 Implementation  

o Loading Dataset 

Figure 3.1 represents how we can load the dataset from a CSV file named 

’Heart_Disease_Prediction.csv’ into a Pandas DataFrame called ’df’ and then display the first 

five rows of the DataFrame: 

 

Figure 3.1: Loading the dataset. 

 

The code in figure 3.2 separates the original DataFrame ’df’ into two parts: X: which 

contains the features, and y: which contains the corresponding labels Presence (1) and Absence 

(0). 

 

Figure 3.2: Dataset separation. 

 

 

 

o Data Splitting 

We split the data set into training and testing sets using a 70% -30% ratio, as shown in 

figure 3.3. This ensures that we have a portion of the data reserved for evaluation purposes. 
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Figure 3.3: Data splitting. 

 

o Checking missing values 

Figure 3.4, we employ the isnull() method to calculate and aggregate all instances of 

missing values throughout the entire DataFrame. Additionally, we define a custom list of 

potential missing value indicators ('NA', '', None, np.nan), employing the isin() method to detect 

and tally these specific missing values within the DataFrame. 

 

o Gradient Boosting Machine (GBM) classifier implementation 

The figure 3.5 illustrates a Gradient Boosting Machine (GBM) classifier model with 

default parameters. It shows the model being trained on the training data (X_train, y_train) and 

then used to make predictions on the test set (X_test). 

 

o K-Nearest Neighbors (KNN) classifier implementation 

Figure 3.6 illustrates initializing a K-Nearest Neighbors (KNN) classifier model with 

n_neighbors=7, fitting it to the training data (X_train, y_train), and then using the trained model 

to make predictions on the test set (X_test). 

Figure 3.4: Checking Missing values implementation. 

Figure 3.5: GBM implementation. 
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o SvmSMOTE implementation 

In Figure 3.7, the depicted code segment first splits the original dataset into training and 

test sets using an 80:20 ratio, ensuring a stratified division to maintain class distribution 

integrity. Subsequently, SVMSMOTE (Support Vector Machine Synthetic Minority Over-

sampling Technique) is employed to balance the dataset by synthesizing additional samples for 

the minority class (heart disease cases) to match the number of samples in the majority class 

(non-heart disease cases). The oversampling is configured with parameters k_neighbors=5 and 

m_neighbors=10 to guide the selection and synthesis of new instances based on nearest 

neighbors. The resulting resampled data is consolidated into a pandas DataFrame, where 

adjustments are made to the 'Sex' column for the newly generated samples. Finally, the 

augmented dataset is saved as 'Data_Heart_SvmSMOTE.csv'. 

 

o BorderlineSMOTE implementation 

In Figure 3.8, the code snippet demonstrates the application of BorderlineSMOTE for 

oversampling the minority class in a heart disease prediction dataset. Initially, 

BorderlineSMOTE is initialized and applied to generate synthetic samples, ensuring a balanced 

representation of both classes. The resulting resampled data is structured into a pandas 

DataFrame, where additional rows are appended with a 'Sex' column initialized to 0 for newly 

Figure 3.6: KNN implementation 

Figure 3.7: SvmSMOTE implementation 
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synthesized instances. Finally, the augmented dataset is saved as 'Data_Heart_bordeline.csv'. 

 

3.4 User interface  
 

In the main interface, we have the following components: 

 Select Dataset: Users can choose a dataset by clicking the “Browse” button,The 

text area below it indicates whether a dataset has been selected. 

 Oversampling Method: A dropdown menu allows users to pick an 

oversampling method. 

 Classification Method: Another dropdown menu lets users select a 

classification method. 

 Results Display: At the bottom, there’s a button labeled “Show results before 

and after Oversampling.” 

The figure 3.9 illustrate the main interface 

 

 

 

 

Figure 3.8: BorderlineSMOTE implementation 
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The figure 3.10 illustrates how tot “Select the Dataset”, the “Browse” button for 

selecting files from the user’s computer. 

 

 

Figure 3.9: The main interface. 

Figure 3.10: Select Dataset. 
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The figure 3.11 illustrates the “select oversampling method” and the figure 3.12 

“select classification method”  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: select oversampling method 

Figure 3.12: select classification method. 
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Figure 3.13 illustrate the results before and after oversampling. 

 

3.4 Conclusion  

 

In conclusion, the implementation of oversampling techniques like SVM-SMOTE and 

BorderlineSMOTE represents a critical advancement in addressing class imbalance within 

healthcare machine learning. In this chapter, we presented the environment, both hardware and 

software, the libraries used in the implementation, and provide some screenshots of the source 

code and user interface. 

 

 

 

 

 

 

 

 

 

Figure 3.13: The results before and after oversampling  
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General conclusion  
In conclusion, the strategic application of machine learning techniques, particularly 

through the use of oversampling methods like SVM-SMOTE and BorderlineSMOTE, 

represents a critical advancement in addressing the challenge of class imbalance in biomedical 

datasets for heart disease and diabetes risk prediction. Our study reveals significant 

improvements across various metrics, underscoring the efficacy of these methods in enhancing 

both predictive accuracy and fairness in model outcomes. 

For heart disease prediction using Gradient Boosting Machine (GBM), both SVM-

SMOTE and BorderlineSMOTE demonstrated substantial enhancements in key metrics. After 

oversampling with BorderlineSMOTE, accuracy remained high at 0.85, while recall improved 

notably to 0.92, indicating better identification of positive cases. Precision and F1 score also 

showed robust improvements, highlighting the models' increased capability to correctly classify 

instances across all classes. Importantly, fairness metrics such as Equal Opportunity Difference 

(EOD) and Disparate Impact (DI) improved significantly with BorderlineSMOTE, contributing 

to more equitable predictions across demographic groups. 

Similarly, in the context of diabetes risk prediction with K-Nearest Neighbors (KNN), 

oversampling with BorderlineSMOTE led to improvements in accuracy (0.71), precision (0.70), 

recall (0.72), and F1 score (0.71). While the improvements were more modest compared to 

GBM, the introduction of synthetic samples notably reduced EOD and DI values, indicating 

reduced bias in model predictions. 

Future work should involve validating the proposed oversampling techniques on larger 

and more diverse biomedical datasets. This would help to generalize the findings and confirm 

their applicability across various medical conditions and population demographics. 

We also propose to explore the development and evaluation of hybrid oversampling methods 

that combine multiple techniques (e.g., combining SMOTE variants with adversarial training) 

to further improve the balance and fairness of datasets, potentially leading to even more 

robust predictive models. 
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