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Abstract

Dynamic systems play a crucial role in various fields, including meteorology, finance, and
technology, and are characterized by their complexity and interdependencies. Traditional
modeling and prediction methods often struggle to capture the intricate behaviors and
evolving patterns of these systems, leading to suboptimal control and prediction outcomes.
Forest fires are a prime example of dynamic systems, where interactions among meteoro-
logical conditions, fuel types, and topography result in unpredictable and nonlinear fire
spread patterns. This issue is particularly critical in regions like Algeria, where recent
forest fires have caused significant damage, underscoring the need for advanced predictive
and management tools.
This work aims to study dynamic systems and propose an intelligent and adaptive model
for dynamic forest fire prediction using Deep Neural Networks (DNN) and Cellular Au-
tomata (CA). The primary advantage of this system lies in its ability to accurately predict
fire ignition points based on meteorological and environmental data and to simulate fire
spread across various landscapes with greater precision. This dual-method approach en-
hances detection and simulation accuracy, reduces response times for authorities, and
improves wildfire containment and mitigation efforts.

Keywords: Complex systems; Forest Fire Management; Deep Neural Networks; Cel-
lular Automata; Predictive Analytics, Fire Spread Simulation.
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Résumé

Les systèmes dynamiques sont un aspect fondamental de divers domaines, influençant
des secteurs tels que la météorologie, la finance et la technologie. Ces systèmes se car-
actérisent par leur complexité et leurs interdépendances, qui posent des défis importants
aux méthodes traditionnelles de modélisation et de prévision. Les approches convention-
nelles ne parviennent souvent pas à saisir les comportements complexes et les schémas
évolutifs des systèmes dynamiques, ce qui se traduit par un contrôle et une prévision
sous-optimaux. Les incendies de forêt sont des exemples de systèmes dynamiques, où les
interactions entre les conditions météorologiques, les types de combustibles et la topogra-
phie entraînent des schémas de propagation des incendies imprévisibles et non linéaires.
Il s’agit d’un problème critique, en particulier dans des régions comme l’Algérie, où les
récents incendies de forêt ont causé des dégâts considérables, soulignant la nécessité de
disposer d’outils de prévision et de gestion avancés. Notre objectif dans ce travail est de
proposer un système intelligent et adaptatif de gestion des incendies de forêt en utilisant
des réseaux neuronaux profonds et des automates cellulaires. Le principal avantage de
notre système est sa capacité à prédire avec précision les points d’allumage des incendies
sur la base de données météorologiques et environnementales et à simuler plus précisément
la propagation des incendies dans différents paysages. Cette approche à double méthode
améliore la précision de la détection et de la simulation, ce qui réduit les temps de réponse
des autorités et améliore les efforts de confinement et d’atténuation des incendies de forêt.

Mots clés: Systèmes complexes; Gestion des incendies de forêt; Réseaux de neu-
rones profonds; Automates cellulaires; Analyses prédictives; Simulation de propagation
des incendies.
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General Introduction

Dynamic systems are integral to numerous aspects of modern life, influencing critical
areas such as weather forecasting, financial market stability, and the functionality of tech-
nological systems. However, the inherent complexity and interdependencies within these
systems pose significant challenges to traditional modeling and prediction methods. Con-
ventional approaches often fail to capture the nuanced behaviors and evolving patterns
of dynamic systems, leading to inaccuracies in forecasting future states and detecting
anomalies in real-time. Addressing these challenges requires innovative methodologies
that leverage cutting-edge technologies to enhance predictive capabilities and monitoring
efficiency.

In recent years, forest fires have emerged as a pressing global concern, posing signif-
icant threats to ecosystems, wildlife, human safety, and infrastructure. Forest fires are
dynamic systems due to their complex, evolving interactions with meteorological, fuel, and
topographical factors. These interdependencies result in unpredictable and non-linear fire
spread patterns. This escalating threat has become particularly pronounced in Algeria, a
country with vast and diverse forested regions. Incidents like the devastating forest fire
in Tizi Ouzou (2021), have left an indelible mark on both the landscape and the collec-
tive consciousness. Indeed, the Tizi Ouzou forest fire serves as a stark testament to the
urgent need for advanced systems dedicated to monitoring and managing these dynamic
environments, particularly in the context of prediction and management.

To overcome these limitations, this work proposes an intelligent system called FireTrack,
which combines a Deep Neural Network (DNN) and Cellular Automata (CA) models to
create an advanced approach for forest fire management. Proposed DNN model is em-
ployed to accurately predict ignition points using meteorological and environmental data,
while CA model simulates the spread of fire across the landscape. This dual-method ap-
proach aims to enhance both detection and spread simulation, providing a dynamic and
comprehensive model for understanding and mitigating wildfire risks.

The core of this thesis consists of three main chapters:

1. Overview of Dynamic Systems: This chapter 1 provides an introduction to dynamic
systems, including definitions, terminology, and types of dynamic systems. It sets
the foundation for understanding the concepts discussed in the subsequent chapters.

2. Dynamic Systems Prediction (DSP) Techniques Literature Review: This chapter 2
provides a comprehensive review of techniques used in Dynamic Systems Predic-
tion (DSP). It explores existing literature to analyze various methods employed in
predicting their behavior. Additionally, this chapter presents important research on
Forest Fire Prediction and Monitoring.

1



3. Methodology and Implementation: This Last chapter 3 outlines the methodology
adopted in the thesis, focusing on the selection and implementation of specific tech-
niques for the proposed system. It details the methodology taken to achieve the
research objectives and develop the intelligent system for predictive analytics.

Finally, this master thesis concludes with a general summary and offers perspectives on
potential directions for future research.

2



Chapter 1

Overview of Dynamic Systems

1 Introduction

Dynamic systems, in a broad sense, refer to systems that evolve or change over time. They
are characterized by the interplay of various components or variables that interact with
each other, leading to dynamic behaviors or outcomes. These systems can be found across
numerous disciplines, including physics, engineering, biology, economics, social sciences,
etc.

In this chapter, the definition and characteristics of dynamic systems are presented,
along with the fundamental concepts and terminologies essential for understanding how
these systems operate. Different types of dynamic systems and their classifications are
also explored, highlighting the key features that distinguish them from one another. Addi-
tionally, the characteristics and behaviors of dynamic systems are discussed, emphasizing
their significance in various real-world applications.

2 Definitions

Dynamic systems are sets of interconnected components or variables that evolve or change
over time, often exhibiting complex behaviors or patterns arising from the interactions
among these components. They are characterized by their temporal dynamics, where the
state of the system at any given time depends not only on its current state but also on
its history and the influences of external factors [1] [2] [3] [4].

According to Ogata [5], a system is called dynamic if its present output depends on
past input; if its current output depends only on current input, the system is known as
static. The output of a static system remains constant if the input does not change. The
output changes only when the input changes. In a dynamic system, the output changes
with time if the system is not in a state of equilibrium.

3 Dynamic systems terminology

In dynamic systems, concepts such as state variables, dynamics, and equilibrium are piv-
otal, shaping our understanding across disciplines like mathematics and physics. These
principles govern the behavior of interconnected components over time [5].

3



CHAPTER 1. OVERVIEW OF DYNAMIC SYSTEMS

Within dynamic systems, a system’s state at any moment is marked by a point in
a state space, with its evolution determined by a specific function. This function acts
as the system’s rule for development, dictating future states based on the present one.
In deterministic systems, a single future state is determined, while stochastic systems
incorporate random events into the evolution of state variables [5] [6].

• State variables are quantities that uniquely define a system’s state at any given
time. Typically represented by real numbers or vectors in a geometric space, these
variables pinpoint a specific location in the state space.

• Dynamics refer to the evolution rule governing a system, outlining the progression
from the current state to future states. This function can be deterministic, leading
to a single future state, or stochastic, introducing randomness.

• Equilibrium in dynamic systems signifies a state where the system remains un-
changed over time, often achieved when forces within the system are balanced.
Mathematically, an equilibrium point is where the derivative of the state variable is
zero.

4 Types of Dynamic Systems

Dynamic systems can be classified into four main categories: (1) distributed versus
"lumped" systems, (2) continuous-time versus discrete-time systems, (3) time-varying
versus time-invariant systems, and (4) linear versus nonlinear systems [7].

4.1 Distributed versus Lumped Systems

In a distributed system, an infinite number of "internal" variables are required, leading to
the system being governed by Partial Differential Equations (PDEs). On the other hand,
a lumped system involves a finite number of "internal" variables, resulting in the system
being governed by Ordinary Differential Equations (ODEs).

4.2 Continuous-Time versus Discrete-Time Systems

Continuous-time systems have variables and functions defined for all time, while discrete-
time systems have variables defined only at discrete time points. Continuous-time systems
are analog domain-based, involving variables like position , whereas discrete-time systems
are digital domain-based, with variables like sampled position existing at discrete-time
points.

4.3 Time-Varying versus Time-Invariant Systems

In a time-varying system, system parameters change over time (e.g., varying friction
coefficient), whereas time-invariant systems have constant parameters. The variation of
system parameters should not be confused with the variation of dynamic variables.

4



CHAPTER 1. OVERVIEW OF DYNAMIC SYSTEMS

4.4 Linear versus Nonlinear Systems

Linear dynamic systems follow the principle of superposition, meaning the response caused
by two or more stimuli is the sum of the responses that would have been caused by each
stimulus individually. Nonlinear dynamic systems, on the other hand, do not adhere to
this principle, making them more complex and often more representative of real-world
systems [7].

5 Characteristics of dynamic systems

Dynamic systems characteristics define their behavior and functioning, with dynamic
characteristics specifically focusing on criteria for instruments that change rapidly with
time. These criteria include [8]:

• Response Speed: This characteristic denotes how quickly a system reacts to
changes in its input or environment, with faster response times being preferable.

• Fidelity: Fidelity represents the accuracy with which a system reproduces its out-
put in response to changes in input, indicating a faithful representation of the input.

• Lag: Lag refers to the undesirable delay between input changes and the system’s
response, highlighting the importance of minimizing lag for real-time applications.

• Dynamic Error: Dynamic error signifies the deviation between the desired output
and the actual system response, with lower dynamic error being more favorable.

6 Predicting and monitoring Dynamic Systems

Dynamic systems, prevalent in natural and engineered domains, profoundly influence our
world, spanning various disciplines from ecological balance to financial markets. Research
in dynamic system prediction and monitoring primarily revolves around developing in-
telligent systems. These systems aim to forecast and monitor the behavior of dynamic
systems, which evolve over time. The goal is to create models capable of accurately
predicting future states and monitoring their real-time evolution.

a) Predicting Dynamic Systems The prediction aspect involves developing mathe-
matical models and algorithms to anticipate the future states of a dynamic system
based on its past and current states. This often requires the use of Artificial Intelli-
gence (AI) techniques and historical data to make accurate predictions about future
states [9].

b) Monitoring Dynamic Systems

On the other hand, monitoring involves the continuous observation of a dynamic
system to track its state and performance over time. This can involve the use
of sensors and other data collection devices to gather real-time data about the
system. The collected data can then be analyzed to detect any significant changes
or anomalies that could indicate a problem or a shift in the system’s behavior [10]
[11].
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CHAPTER 1. OVERVIEW OF DYNAMIC SYSTEMS

c) Intelligent Systems The term ’Intelligent Systems’ refers to systems that use
advanced computational techniques, to perform tasks that typically require human
intelligence. In the context of dynamic system prediction and monitoring, ’Intelli-
gent Systems’ can learn from data, adapt to changes, and make informed decisions
or predictions about future states. [12].

7 Dynamic system representations

7.1 Mathematical Tools for Modeling Dynamic Systems

Dynamic systems are modeled using various mathematical tools, each with specific appli-
cations and advantages [13]:

• Differential Equations: Differential equations are fundamental in modeling con-
tinuous dynamic systems where changes occur smoothly over time. For instance,
they are used in physics to describe the motion of particles under forces, in biology
to model population dynamics, and in engineering to design control systems. The
power of differential equations lies in their ability to capture the continuous nature
of most real-world processes, allowing for precise and detailed analysis of system
behavior.

• Difference Equations: Difference equations are ideal for systems that evolve in
discrete steps rather than continuously. Examples include financial models that
predict stock prices at the end of each day or population models where generations
do not overlap. They are simpler to solve compared to differential equations and
are particularly useful in computer simulations where time is often discretized. Dif-
ference equations are widely used in digital signal processing and in the design of
algorithms for predictive control in discrete-time systems.

• State-Space Representations: State-space models provide a comprehensive frame-
work for representing complex dynamic systems. By expressing the system’s state as
a vector and its evolution as a set of linear or nonlinear equations, these models can
handle multiple interdependent variables simultaneously. This approach is highly
beneficial in control theory, robotics, and aerospace engineering, where it is crucial
to monitor and control various aspects of a system’s state. State-space representa-
tions also facilitate the application of modern control techniques like state feedback
and optimal control.

7.2 Artificial Intelligence (AI) Tools for Modeling Dynamic Sys-
tems

AI tools offer advanced capabilities for modeling dynamic systems, leveraging data-driven
approaches to enhance prediction and control:

• Machine Learning (ML): ML algorithms are trained on historical data to recog-
nize patterns and make predictions about future states. For example, in predictive
maintenance, ML models can forecast equipment failures based on historical us-
age and sensor data, reducing downtime and maintenance costs. In environmental

6



CHAPTER 1. OVERVIEW OF DYNAMIC SYSTEMS

modeling, ML can predict changes in weather patterns or pollutant levels. The flex-
ibility of ML allows it to be applied across diverse fields, from healthcare to finance,
improving decision-making through data-driven insights [14].

• Deep Learning (DL): DL, a subset of ML, involves neural networks with multiple
layers that can model complex relationships within data. In dynamic systems,
DL is used for tasks requiring high-dimensional data analysis, such as image-based
object tracking in autonomous vehicles, natural language processing for real-time
translation systems, and speech recognition for interactive voice response systems.
DL’s ability to handle large datasets and uncover intricate patterns makes it suitable
for applications where traditional modeling techniques fall short [15].

• Reinforcement Learning (RL): RL algorithms learn to make optimal decisions
by interacting with the environment and receiving feedback in the form of rewards
or penalties. This approach is particularly effective in scenarios where the system’s
dynamics are complex and not fully known. For instance, RL can be used to develop
adaptive control strategies for robotics, optimize resource allocation in network man-
agement, or design trading algorithms in financial markets. By continually learning
from the environment, RL systems can adapt to changing conditions and improve
their performance over time [16].

• Agent-based modeling and simulation (ABMS): ABMS has emerged as a
powerful tool for studying complex systems characterized by the interaction of au-
tonomous agents [17]. Unlike traditional modeling approaches that rely on aggregate-
level equations or rules, ABMS focuses on representing individual agents and their
interactions within an environment. This allows for the exploration of emergent
phenomena that arise from the interactions of agents, making ABMS particularly
well-suited for modeling dynamic systems with nonlinear and unpredictable behav-
iors [18]. ABMS has found applications across diverse domains, including trans-
portation, urban planning, epidemiology, ecology, and economics. It offers a com-
prehensive approach to understanding and predicting behavior of dynamic systems
by capturing the interactions between agents at a micro-level, which leads to the
emergence of macro-level patterns and behaviors [17].

At the core of ABMS is the concept of an agent, an autonomous entity capable
of perceiving its environment, making decisions, and interacting with other agents.
Agents exhibit a wide range of behaviors influenced by their internal state, envi-
ronmental information, and interactions with other agents. The modeling of envi-
ronments provides the context for agent interactions and influences agent behavior
through feedback mechanisms. Interactions between agents give rise to emergent
phenomena such as self-organization, cooperation, and competition, which are es-
sential for understanding system dynamics [19]. Methodologies of ABMS include
behavior-based modeling, rule-based modeling, and cellular automata [20] [21].

8 AI Methodology for Capturing System Dynamics

AI models capture the dynamics of various systems by learning patterns and relationships
from data to make predictions or decisions. This process is as follows [22]:

• Data Collection.

7



CHAPTER 1. OVERVIEW OF DYNAMIC SYSTEMS

• Feature Extraction.

• Model Selection.

• Training and validation.

9 Application areas

Dynamic systems theory offers a powerful framework for addressing real-world problems
and challenges across a wide range of disciplines. Applications utilizing dynamic systems
theory to model real-world phenomena encompass:

a) Control Systems

Dynamic systems theory is fundamental in control systems engineering, where it
is applied to design and analyze feedback control systems. These systems play a
critical role in regulating the behavior of dynamic processes across industries such
as aerospace, automotive, manufacturing, and robotics [23].

b) Economics and Finance

Dynamic systems models find application in economics and finance to examine eco-
nomic phenomena encompassing market dynamics, business cycles, and investment
behavior. These models are utilized in diverse areas including macroeconomic mod-
eling, financial market analysis, and forecasting [24] [25] [26].

c) Ecology and Environmental Science

Dynamic systems theory is pivotal in understanding ecological systems, addressing
population dynamics, ecosystem interactions, and biodiversity. It enables ecologists
to model and analyze intricate ecological processes and anticipate the consequences
of environmental changes [27].

d) Epidemiology

Dynamic systems models are indispensable in epidemiology, examining the spread
of infectious diseases like COVID-19, influenza, and HIV/AIDS. They enable pub-
lic health officials to assess disease transmission dynamics, evaluate intervention
strategies, and formulate informed policy decisions [28].

e) Sociology and Psychology

Employing dynamic systems approaches, researchers in sociology and psychology
investigate social and psychological phenomena, including group dynamics, cultural
evolution, and individual behavior. These approaches facilitate the understanding
of how social systems evolve over time and the interactions among individuals within
them [29].

f) Mechanical Engineering

Dynamic systems theory is extensively utilized in mechanical engineering to model
and analyze mechanical systems such as engines, vehicles, and machinery. It assists
engineers in predicting system behavior, optimizing performance, and designing
control systems for stability and reliability [30].
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CHAPTER 1. OVERVIEW OF DYNAMIC SYSTEMS

g) Neuroscience and Brain Dynamics

Dynamic systems models find application in neuroscience for investigating the dy-
namics of neural circuits and brain function. They contribute to understanding
how neural networks process information, generate behavior, and adapt to changing
environments [31].

h) Climate Science

Utilizing dynamic systems theory, climate science models and simulates Earth’s
climate system, encompassing atmospheric circulation, ocean currents, and climate
feedback mechanisms. These models assist in climate prediction, impact assessment,
and policy formulation [32].

10 Conclusion

This chapter provided an overview of dynamic systems, emphasizing their evolving nature
and broad applications across disciplines. Key concepts like state variables, dynamics, and
equilibrium were discussed, along with the classification of dynamic systems into various
categories. The importance of studying dynamic systems for prediction and monitoring
purposes, as well as their applications in fields such as control systems, economics, and
ecology, was highlighted.
The next chapter will delve into Dynamic Systems Prediction (DSP) techniques through
a comprehensive literature review, with a particular emphasis on modeling and predicting
forest fires as a case study. This exploration will encompass various methodologies used to
forecast fire behavior, emphasizing advancements and practical applications in the field.
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Chapter 2

Dynamic Systems Prediction (DSP)
Techniques Literature Review

1 Introduction

Accurately forecasting the behavior of dynamic systems remains a significant challenge
across diverse scientific disciplines. Characterized by constant evolution and intricate
interdependencies between constituent parts, these systems often defy straightforward
modeling using conventional techniques. However, recent breakthroughs in Artificial In-
telligence (AI) offer promising avenues to address this longstanding predicament. In this
chapter, the potential of AI techniques for predicting dynamical systems is analyzed, high-
lighting its advantages and limitations. Subsequently, an in-depth analysis of the Cellular
Automata (CA) model is provided, detailing its structure, rules, and effectiveness in DSP.
Finally, a case study on the application of AI to forest fire prediction and monitoring is
presented, illustrating the practical implications of these techniques.

2 Overview of AI Techniques in DSP

Predictive analytics has been revolutionized by intelligent systems infused with AI, en-
abling to glean valuable insights from vast data pools and accurately foresee future out-
comes. This section presents popular techniques for predicting the dynamic behaviors of
systems.

2.1 Machine learning

Machine learning (ML) is a subfield of AI that enables computers to learn and improve
from experience without being explicitly programmed. By analyzing data, ML algorithms
identify patterns, make predictions, and refine their accuracy with more information. This
capability supports a wide range of applications, from recommending movies and detect-
ing fraud to assisting in medical diagnoses and enabling self-driving cars, significantly
impacting various fields [33].
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Figure 2.1: Machine learning prediction process [W1].

According to Figure 2.1, the machine learning process begins with inputting training
data into a chosen algorithm. This training data can be known or unknown and influences
the algorithm’s development. New input data is then used to test the algorithm’s accuracy.
If predictions do not match the actual results, the algorithm is retrained repeatedly until
it achieves the desired accuracy. This iterative process allows the algorithm to continually
improve and provide increasingly accurate predictions over time.

Key ML techniques, such as Decision Trees (DT), Random Forest (RF) and Support
Vector Machine (SVM) are extensively applied in dynamic system prediction. The sub-
sequent sections will provide brief descriptions of these most common machine learning
systems [34] [35] [36].

2.1.1 Decision Tree (DT)

A decision tree is a hierarchical technique where each path from the root represents
a sequence of data separations, leading to a boolean outcome at the final node [34].
This structure, consisting of nodes and connections, simplifies complex decision-making
processes. The primary advantage of decision trees is their ability to transform intricate
problems into straightforward, visual processes, making the solutions more understandable
and interpretable [37].

A DT consists of several key components:

• Root Node: The base of the DT.

• Decision Node: A sub-node that splits into additional sub-nodes.

• Leaf Node: A sub-node that does not split further, representing possible outcomes.

• Sub-tree(Branch): A subsection of the DT composed of multiple nodes.

Figure 2.2 illustrates the structure of a decision tree.
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Figure 2.2: Decision tree [W2].

DT models are widely used in Electric Power dynamic Systems research for predict-
ing damping ratios of inter-area oscillations and enhancing small-signal stability through
generation rescheduling [38] [39]. Additionally, in healthcare informatics, DTs play a
significant role in various dynamic systems, such as predicting diseases, identifying risk
factors, and aiding in clinical decision-making, particularly in the context of cardiovascular
disease prediction [40] [41].

2.1.2 Random Forest (RF)

Random Forest is an algorithm based on DTs. Unlike a single DT, Random Forest con-
structs multiple trees to make predictions, which helps reduce overfitting (figure 2.3).

Figure 2.3: Random forest [W3].

12



CHAPTER 2. DYNAMIC SYSTEMS PREDICTION (DSP) TECHNIQUES
LITERATURE REVIEW

This technique, known as bagging, involves using multiple trees to classify a feature
vector, with individual classifications aggregated to determine the final output. This
approach enhances prediction accuracy and generalization [42].
The Random Forest (RF) model has gained widespread application across various dynamic
systems due to its adaptability and robustness. In healthcare, RF is employed for early
diagnosis and prognosis, enhancing patient outcomes [43]. In finance and banking [44], it
predicts mortgage defaults and detects fraudulent activities [45] [35], ensuring financial
stability [36]. The model is also utilized in the stock market to forecast price fluctuations,
aiding investors in making informed decisions. Notably, during the COVID-19 pandemic
[46], RF played a crucial role in guiding public health actions by simulating virus spread
[47] and assisting authorities in decision-making [48].

2.1.3 Support Vector Machine (SVM)

SVM is another significant model in machine learning, renowned for its effectiveness in
high-dimensional spaces and its versatility in handling both linear and non-linear data.
SVM operates by finding a hyperplane in an N-dimensional space that distinctly classifies
the data points. Through the process of maximizing the margin between the nearest data
points in each class (Figure 2.4), SVMs identify the best hyperplane in an N-dimensional
space to divide two classes of data points. Despite the complexity of this task, SVMs are
known for their effectiveness and robustness [49].

Figure 2.4: Linear SVM model [W4].

SVMs have found applications in various fields. They have been used for image-based
analysis and classification tasks [50]. In the realm of geospatial data, SVMs have been
used to handle noisy data and solve inversion problems [51] [52]. During the COVID-19
pandemic, SVMs were integrated with other models to simulate the spread of the virus,
aiding authorities in making informed decisions [53] [54].

2.2 Deep learning

Deep learning, a subset of machine learning, empowers artificial intelligence systems to
learn from data through artificial neural networks [55]. This technique has been ex-
tensively explored for many dynamic systems, including the prediction and detection of
dynamic forest fires phenomena [56]. To leverage the potential of deep learning, numerous
studies have been conducted on fire incidence modeling in this domain [57].
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2.2.1 Deep Neural Network (DNN)

A DNN is an artificial neural network with multiple layers between the input and output
layers (Figure 2.5). Each layer learns to transform its input data into a slightly more
abstract and composite representation, allowing the network to model complex non-linear
relationships, and generate compositional models where the object is expressed as a lay-
ered composition of primitives [58].

Figure 2.5: Deep neural network (DNN) [W5].

DNN model is used in many fields, including modeling of dynamical systems [12], solv-
ing flows of dynamical systems [59], integrating model-based and data-driven learning for
dynamical system evolution [60], predicting dynamic thermal nonlinear processes [61] and
demonstrating high accuracy in predicting short-term electricity consumption in dynamic
power systems [62] [63].

2.2.2 Long Short-Term Memory (LSTM) networks

LSTMs were specifically designed to address the challenge of learning long-term dependen-
cies in sequences. Unlike conventional Recurrent Neural Networks (RNNs), which struggle
with capturing long-term relationships, LSTMs possess a unique architecture that allows
them to retain and utilize information over extended periods. This capability is due to
the presence of "cells" with memory units and gates that regulate information flow, en-
abling LSTMs to decide when to remember or forget information (Figure 2.6). Their
exceptional memory retention makes LSTMs particularly effective for complex sequence
tasks like machine translation and natural language processing [64].

LSTM have proven effective in predicting traffic patterns in urban areas, offering
valuable insights for dynamic traffic management and congestion reduction [65] [66].
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Figure 2.6: Long short-term memory (LSTM) [W6].

2.2.3 Autoencoder

Autoencoder is an unsupervised learning model, which can automatically learn data fea-
tures from a large number of samples and can act as a dimensionality reduction method.
Autoencoder consists of two parts: Encoder and Decoder [67] (Figure 2.7).

Figure 2.7: Autoencoder schema [W7].

Autoencoders are often applied for anomaly detection [68], data denoising [69], and
dimensionality reduction. In dynamic manufacturing systems [70], autoencoders are uti-
lized to detect anomalies in machine operations, thereby preventing equipment failures
and ensuring continuous production flow [71].
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2.3 Strengths and Limitations of ML and DL in DSP

AI has emerged as a powerful tool in predicting the behavior of dynamic systems, offering
both strengths and limitations that warrant discussion AI has emerged as a powerful
tool for predicting the behavior of dynamic systems, offering notable strengths as well as
certain limitations [72]. This section will present both aspects:.

2.3.1 Strengths

• Pattern Recognition: AI techniques, including machine learning and deep learn-
ing, excel at recognizing complex patterns within large datasets.

• Integration with Domain Knowledge: AI techniques can be combined with
domain knowledge to enhance prediction accuracy.

2.3.2 Limitations

• Data Dependency: The effectiveness of AI for dynamic system prediction relies
heavily on the availability and quality of data. In situations where data is sparse or
unreliable, AI models may struggle to make accurate predictions.

• Generalization: Robust generalization is a key challenge in AI-based prediction
of dynamic systems..

• Ethical and Societal Implications: The use of AI in predicting dynamic system
behaviors raises ethical and societal concerns, particularly regarding privacy and
the potential for unintended consequences.

Given these limitations, Cellular Automata (CA) model, provides a robust framework
for simulating complex system behaviors through simple, discrete state changes.

2.4 Overview of Cellular Automata (CA) in DSP

Cellular Automata (CA) have emerged as a powerful paradigm for simulating and pre-
dicting the behavior of dynamic systems. This section provides an in-depth analysis of
the structure, rules, and effectiveness of CA in simulating complex dynamic systems.

2.4.1 CA Concept

Cellular Automata (CA) are discrete computational systems that consist of a grid of cells,
each of which can be in one of a finite number of states. The state of each cell evolves over
discrete time steps according to a set of rules based on the states of its neighboring cells.
Cellular automata are used to model complex systems and phenomena by simulating the
behavior of each cell and observing the patterns and structures that emerge from their
interactions [73].

2.4.2 CA Structure

Typically, it consists of a regular grid of cells interconnected with their neighbors, with
each cell possessing a finite set of states. While the grid can exist in various dimensions,
in this work, we focus on the two-dimensional grid structure [74].
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1. The Cell

The fundamental unit of CA is the cell, which functions as a Finite State Automaton
evolving according to predefined update rules. Each cell’s state is influenced by its
previous states and the states of its neighboring cells. While cells typically form a
lattice structure, there are no inherent limitations, and alternative configurations are
permissible. Furthermore, cells need not be identical, allowing for diversity within
the grid [74].

2. Update Rules

The state of a CA is determined by a set of update rules governing the transition
from the current state to the next state for each cell. These rules are predefined
and dictate how each cell’s state evolves based on its current state and the states
of its neighbors. The update process is iterative, with each iteration representing a
discrete time step in the simulation [74].

3. Interaction with Neighbors

Central to the operation of CA is the interaction between cells and their neighbors.
Various methods exist for defining cell neighborhoods, with the most common being
the 4-connected Von Neumann neighborhood and the 8-connected Moore neighbor-
hood. The choice of neighborhood configuration influences the extent of interaction
and spatial relationships within the model [74]. CA are utilized across a wide range
of fields, demonstrating their versatility in simulating complex dynamic systems.
They are used in the evolutionary dynamics of social networks to simulate and an-
alyze network evolution [75]. In spatial modeling, CA employ the Voronoi spatial
model to manage neighborhood relations and generate complex global patterns.

In urban modeling [76]. CA simulate dynamic states on a local scale to aid in
urban development planning [77]. They are also applied in road traffic simulation
to analyze traffic flow dynamics [78]. In biology, CA model complex biological
phenomena [79], while in epidemiology, they have been employed to model the
Covid-19 pandemic [80], showcasing their wide-ranging applications in public health
and other domains.

2.5 A Case Study: Forest Fires

2.5.1 Phenomenon of a forest fire

The phenomenon of a forest fire can be introduced as a dynamic system due to its complex
and evolving nature over time [81] [82] [83].

2.5.2 AI-based Research on Forest Fire Prediction and Monitoring

a) Machine learning-based systems In the realm of forest fire prediction, ma-
chine learning techniques such as the DT algorithm, along with its ensembles, have
emerged as valuable tools. DT, with its ability to predict, explain, and classify
outcomes within a tree structure, offers a transparent and interpretable model.
Stojanova’s research [84] exemplifies the effectiveness of DT and its ensembles in
predicting forest fires.
This body of evidence not only underscores the importance of DT and its ensembles
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in forest fire prediction but also highlights their significance in evaluating associated
risks, further emphasizing their value in this critical field of study.

In addition, research conducted by various authors [85] [86] has consistently high-
lighted the superior predictive capabilities of RF in anticipating forest fires [87].

Furthermore, the Support Vector Machine (SVM) model has garnered attention as
a robust predictive tool for forest fire damage. By maximizing the margin between
nearest data points in each class, SVM identifies the optimal hyperplane in an N-
dimensional space, effectively distinguishing between different classes of data points.
Numerous studies have underscored SVM’s effectiveness in this domain. For exam-
ple, Xie [88] leveraged SVM to analyze historical data and environmental factors,
while Bayat [89] found SVM to possess the highest predictive ability in forecasting
burned area sizes. Cortez P. [90], meanwhile, applied SVM alongside weather in-
puts to predict the burned areas of small fires. Collectively, these studies highlight
SVM’s potential to enhance forest fire management strategies through its capacity
to analyze complex datasets and provide accurate predictions.

b) Deep Learning-based system
Recent advancements in forest fire modeling using deep learning (DL) have shown
significant progress in simulation techniques. For instance, Cheng-Yu et al. [91]
developed a DNN model that utilized demographic, architectural, and economic data
to forecast fire incidents. The model demonstrated remarkable performance metrics
closely aligned with ideal benchmarks, highlighting its efficacy. Similarly, Lai et al.
[92] enhanced prediction accuracy through a DNN system analyzing meteorological
data, geographical information, and historical fire records, effectively addressing
imbalanced data challenges. Additionally, Sam-Keun Jae-Geun [93] showcased the
potential of DNN models in predicting the burned area of forest fires, particularly
small-scale incidents, utilizing meteorological data.

The Long Short-Term Memory (LSTM) model has emerged as a pivotal tool in
forest fire prediction, as evidenced by a study [94] focusing on wildfire scale pre-
diction. This study leveraged meteorological data and fire records, where LSTM
outperformed other neural network models such as Back Propagation Neural Net-
work (BPNN) and Recurrent Neural Network (RNN), particularly in early-stage
wildfire prediction [95].

Furthermore, the utilization of autoencoders represents a significant advancement
in forest fire prediction. Can Lai et al. [96] highlighted an autoencoder-based DNN
technique to address challenges posed by imbalanced data distributions in forest fire
datasets. By leveraging autoencoders, the DNN model overcomes these hurdles, en-
hancing prediction accuracy, and emphasizing the importance of advanced machine
learning techniques in augmenting wildfire management and prevention endeavors
[97].
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c) Cellular Automata-based systems Recent work on forest fire modeling using cel-
lular automata (CA) has shown significant advancements in simulation techniques
such as: Aleixo et al. [98] employed a CA framework to simulate local fire dynamics,
identifying phase transitions for various fire risk combinations and using these val-
ues to parameterize the landscape network. Hui and Rui [99] proposed a simulation
algorithm integrating a geographic CA to address the high error rates and ineffi-
ciencies of traditional models in large-scale forest fire simulations. Mahdizadeh and
Navid [100] developed a CA model to simulate wildfire spread, accounting for key
spatial and temporal factors such as wind speed and direction, vegetation type and
density, and topographical conditions. Jellouli et al.[101] investigated the use of CA
methods for forest fire simulation, incorporating parameters like natural vegetation,
density, humidity, wind force, and elevation. In addition, a forest fire prediction
model developed by Xuan Sun and colleagues incorporates other CA models such
as the Wang Zhengfei model to simulate the spread of fire based on neighboring cell
interactions. By combining CA principles with Machine Learning techniques, the
model improves the precision of forecasting forest fire propagation, providing valu-
able insights for effective risk management and firefighting strategies [102] [103].

The strengths and Limitation of different methodologies discussed in the preceding liter-
ature on forest fire prediction, are outlined in articles [104] [105] [56] [106] [107].

The selection of methods was informed by their respective advantages. Therefore,
Deep Neural Networks (DNN) and Cellular Automata (CA) were chosen to complement
each other’s inherent disadvantages, thereby leveraging the strengths of both technologies
to achieve optimal performance.

3 Conclusion

This chapter delved into the role of intelligent systems, particularly AI techniques, in pre-
dictive analytics, focusing on their applications in forecasting dynamic system behaviors.
It explored various AI methods such as CA, ML, and DL, highlighting their strengths,
limitations, and real-world applications. While CA offers insights into complex system
behaviors through local interactions, ML techniques like RF and SVM prove effective
in predicting forest fires despite challenges with data size and computational efficiency.
ML models, such as DNNs and LSTM, further enhance prediction accuracy, especially in
handling imbalanced data and time-series forecasting. Overall, the chapter emphasized
the transformative potential of intelligent systems in predictive analytics, advocating for
continued research and development in the field. Based on the analysis of previous AI
methods, two techniques have been selected for the proposed system, which are presented
in Chapter 3.
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Chapter 3

Methodology and Implementation

1 Introduction

The escalating threat of forest fires to ecosystems, wildlife, and human life necessitates
the development of advanced systems for early detection, monitoring, and prediction.
With climate change driving an increase in both the frequency and intensity of these
fires, the need for innovative solutions leveraging modern technology has never been more
urgent. This chapter details the design and methodology of a proposed system aimed
at addressing these challenges through advanced data processing, Deep Learning (DL)
prediction model, and Cellular Automata (CA) for modeling fire spread.

2 Proposed System: FireTrack

Existing forest fire detection systems, as discussed in the previous chapter, tend to empha-
size either detecting fires in specific areas or tracking their spread. However, addressing
only one of these aspects falls short of providing a comprehensive fire management strat-
egy.
Therefore, this work proposes an advanced system, FireTrack, that integrates both a spe-
cific Deep Learning technique and a CA model for predicting and monitoring forest fires.
This system is designed to enhance detection capabilities while simultaneously tracking
the progression of fires. By merging these technologies, the proposed solution aims to
offer a more robust and complete approach to forest fire management.

3 Architecture of the proposed FireTrack system

The FireTrack system architecture leverages a specific DNN architecture for predicting
fire ignition points [108]. It then utilizes a CA model to simulate fire spread. The following
figure illustrates the overall architecture of the proposed system. Each subsystem will be
described in detail in the following sections.
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According to Figure 3.1, the proposed system is divided into three subsystems:

Figure 3.1: Proposed system architecture.

3.1 Data Collection and Preprocessing Subsystem

a) Data Collection

In this step, the focus is on gathering meteorological data such as temperature,
humidity, wind speed, and wind direction from sensors or with drones. However,
due to the unavailability of sensors and drones, in this work, a meteorological dataset
is used as a substitute to fulfill the role of these data collection mechanism.
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The primary used dataset comes from Algeria and consists of 244 cases with me-
teorological observations from the northeastern Bejaia region and the northwestern
Sidi Belabbas region, recorded during June to September 2012 [W13]. This period
was chosen due to the high incidence of fires recorded from 2007 to 2018.

The dataset includes temperature, relative humidity, and wind speed to predict fire
and non-fire occurrences, with 138 instances classified as "fire" and 106 as "not fire."
(Figure 3.2).

Figure 3.2: Algerian forest fires dataset.

b) Data Preprocessing

Data preprocessing is a vital step for ensuring data quality and prediction accuracy.
This process involves several key activities: deleting duplicate rows, removing erro-
neous data, handling missing data, and performing feature selection to enhance the
dataset’s overall quality.

Duplicate data, often resulting from errors or merging datasets, can distort ana-
lytical results and is identified through exact or partial matching and subsequently
removed. Erroneous data, which includes incorrect or inconsistent data points, is
detected using exploratory data analysis and can be corrected or removed to en-
sure dataset accuracy and reliability. Mean imputation, a technique for handling
missing data, replaces missing values with the mean of the observed data for that
variable, thereby maintaining the overall distribution and central tendency of the
data. Mathematically, if (x1, x2, . . . , xn) are the observed values of a variable with
missing data, the mean (x̄) is calculated as:

x̄ =
1

N

n∑
i=1

xi (3.1)

where n is the number of observed values. Each missing value is then replaced with
x̄ .This approach preserves consistency and sample size, particularly in datasets
with a small proportion of missing values.
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In this preprocessing step, the Algerian forest fires dataset undergoes a rigorous
quality check. This ensures the data’s integrity and suitability for the subsequent
analysis.

Data satdardisation and Splitting In this study, an 80%-20% train-test split
was initially employed to allocate data for model evaluation. Various ratios, in-
cluding 70%-30%, 60%-40%, 80%-20%, and 50%-50%, were tested to determine the
optimal split, as supported by scientific literature. Xu and Goodacre [109] [110]
emphasize the importance of selecting an appropriate split for reliable evaluation,
while Raschka [111] highlights the need to experiment with different splits to achieve
optimal performance. After thorough testing, it was found that the 80%-20% split
provided the best balance between training data sufficiency and testing data relia-
bility, making it the optimal choice for this model (see Figure 3.3).

Figure 3.3: Data splitting code.

3.2 Forest Fire Prediction Subsystem

This subsystem employs a Deep Neural Network (DNN) model. DNNs are well suited for
this task due to their ability to capture complex patterns and relationships within the
data compared to other techniques tested in this system During our model selection pro-
cess, we conducted an extensive evaluation of various machine learning and deep learning
techniques to identify the most effective approach. Based on this comprehensive analysis,
we determined that the Deep Neural Network (DNN) model was the optimal choice due
to its superior performance metrics. DNN model ensures high accuracy in prediction by
leveraging multiple layers of nonlinear .The model takes the preprocessed meteorological
data as input and outputs predictions regarding the likelihood of forest fires. processing
units, which can effectively learn from the intricate features of the dataset. Feature
selection is a crucial step in training a DL model that aims to improve model performance
by reducing the dimensionality of the data. It involves selecting the most relevant features
that contribute significantly to the prediction task, while eliminating redundant or highly
correlated features.

Feature selection is a crucial step in training a DL model that aims to improve model
performance by reducing the dimensionality of the data. It involves selecting the most
relevant features that contribute significantly to the prediction task, while eliminating
redundant or highly correlated features.
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Figure 3.4: Code feature selection

Additionally, we exclude the date-related attributes (Day, Month, Year) and Region,
as our focus is on environmental variables that directly influence the target variables [112].

The proposed DNN architecture starts with an input layer containing neurons, each
representing a selected environmental variable. A dropout layer follows to prevent over-
fitting. The number of hidden layers and neurons was empirically selected. The output
layer consists of a single neuron producing a probability value for forest fire occurrence.
This proposed architecture balances complexity and efficiency, making it well-suited for
accurate forest fire prediction. This approach enhances the model’s accuracy underscoring
its potential to significantly contribute to forest fire prediction and prevention efforts.

3.3 Forest Fire Spread Prediction Subystem

This subsystem predicts the spread of forest fires by employing a CA model. With previ-
ous prediction of fire points over the area, this system models the potential spread based
on multiple factors such as altitude, temperature, wind, and others rules of fire spread.
The integration of these predictions, with the environmental data from the previous sys-
tem, allows for a comprehensive approach to simulating and monitoring the spread of
forest fires, enhancing response strategies.

3.3.1 Proposed Configuration

To model the propagation of a forest fire using a CA model, we define a grid where each
cell represents a small area of the forest. Each cell can be in one of three distinct states,
represented by specific colors for visualization purposes (see Figure 3.5):

• N (Non-burnt): The cell, colored green, contains vegetation that is susceptible to
catching fire.

• B (Burning): The cell, colored red, is currently on fire and actively spreading the
fire to adjacent cells.
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• C (Burnt): The cell, colored black, has been consumed by the fire and can no
longer burn or spread the fire.

Figure 3.5: Example of Grid of cells

4 Fire Spread Rules

During my two-month internship at the Forest Conservation Service in Guelma (attached
internship certificate), I gained comprehensive knowledge of the factors influencing the
propagation of forest fires. This understanding was based on various environmental fac-
tors. The wind, including direction (North, South, East, West, and diagonal directions
like North-East) and speed, plays a crucial role. Temperature indicates the ambient heat
levels, while altitude affects oxygen levels and terrain, influencing how fires spread. These
characteristics were used to create rules to model fire propagation behavior.
Understanding these factors is essential for predicting and managing the spread of for-
est fires effectively. The primary rules are that a burning cell provides each neighboring
non-burning cell a base probability P0 of catching fire, ensuring a realistic simulation and
the burning trees can generate sparks that travel to other parts of the forest, thereby
spreading the fire further.

5 Environment

5.1 Hardware

The implementation of FireTrack system is performed on an AMD Quad-Core A8-7410
2.5GHz, RAM 8Gb.

5.2 Software And Programming language

• Python(3.10): is an interpreted, object-oriented, high-level programming language
with dynamic semantics. Its high-level built in data structures, combined with
dynamic typing and dynamic binding, make it very attractive for Rapid Application
Development, as well as for use as a scripting or glue language to connect existing
components together [113].

25



CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

• Netlogo(6.3.0): is a multi-agent programmable modeling environment used for
simulating natural and social phenomena. It is particularly well-suited for modeling
complex systems that evolve over time. Researchers and educators use NetLogo
to build models and run simulations to analyze how individual behaviors lead to
collective outcomes in various scientific fields [114].

5.3 Used Libraries

• Keras: is a high-level Python library for building and training deep learning models.
It provides an easy-to-use interface for quick prototyping and supports both con-
volutional and recurrent neural networks, running on top of TensorFlow, Theano,
and CNTK backends. Keras offers various components for developing complex neu-
ral networks, such as layers, objectives, optimizers, and activation functions, along
with tools for data preprocessing, model evaluation, and visualization. Its simplic-
ity and user-friendliness make it a popular choice in both academia and industry,
and its extensive documentation and active community further enhance its utility
in developing deep learning applications [115].

• Pandas: is an open-source Python library designed to offer data structures for
efficiently handling large and complex datasets. It provides a variety of tools for data
cleaning, transformation, and exploration. Pandas is especially useful for managing
tabular data, which is common in scientific applications such as social science and
bioinformatics. It simplifies the process of working with structured data, making it
a popular choice among researchers and data analysts [W14].

• Scikit-learn (sklearn): is a Python library that provides a wide array of machine
learning algorithms for both supervised and unsupervised learning tasks. Built
on top of established libraries such as NumPy, SciPy, and Matplotlib, it offers a
user-friendly interface for data manipulation. Scikit-learn includes algorithms for
classification, regression, clustering, and dimensionality reduction, as well as tools
for data preprocessing, model selection, and evaluation. Its ease of use, flexibility,
and scalability have made Scikit-learn popular in both academic research and indus-
try. Additionally, its comprehensive documentation and active community of users
and developers make it a valuable resource for those interested in machine learning
[116].

• NumPy: is a Python library that facilitates numerical computing with a wide range
of mathematical functions, providing robust and efficient support for large, multi-
dimensional arrays and matrices. It is an essential tool for scientific computing in
Python and is widely used in fields such as engineering, physics, and data science.
NumPy’s array objects are more efficient and powerful than Python’s built-in data
structures for numerical calculations. The library enables vectorized operations
on arrays, significantly reducing computation time. Additionally, NumPy offers
functionalities like linear algebra, Fourier analysis, random number generation, and
tools for interfacing with other programming languages and libraries [117].
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• Matplotlib: is a Python library for creating 2D plots, including static, animated,
and interactive visualizations. It is widely used in scientific computing for data
exploration and visualization. With a comprehensive set of 2D plotting functions
and a high degree of customization, Matplotlib allows users to create sophisticated
and complex plots with ease. It is compatible with various other Python libraries
and frameworks, enhancing its versatility for visualizing data in different contexts
[118].

• PyQt5: is a set of Python bindings for the Qt application framework, enabling the
creation of cross-platform applications with rich graphical user interfaces, extensive
widget libraries, and advanced features like database integration, web embedding,
and multimedia handling [w15].

6 FireTrack interface

The FireTrack interface, as can be seen in Figure 3.6, consists of in the forest populated
with pine and oak trees, represented by a grid of cells (or patches), where each cell may
contain one or more trees, an empty space or a place burned by fire.

Figure 3.6: FireTrack System .

A set of global variables was defined, using the elements NetLogo graphics, to represent
either properties of the forest itself or environmental factors that can affect the spread of
fire. Among others, the following parameters:

• Forest-density: the density of the forest.

• East-wind-speed: the wind speed in the east direction .

• North-wind-speed: the wind speed in the north direction .

• Initial-temperature: the initial temperature for each cell.
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7 Results and discussion

We will start with the evaluation matrices that we use to measure our model’s perfor-
mance.

7.1 Evaluation Metrics

The ability to measure a model’s performance is critical for comparing various algorithms
or models as well as for risk assessment. The primary purpose of performance metrics is
to answer the issue of how accurate a model is at forecasting future events. In addition,
a number of parameters must be calculated, such as:

• True Positive (TP): Both the actual and anticipated outputs were 1, as in the
situations.

• True Negative (TN): The actual outcome was 0 compared to the instances’ ex-
pected 0.

• False Positive (FP): When a case expected 1 but produced a 0.

• False Negative (FN): The output was 1 instead of 0, as the examples had pro-
jected.

• Confusion Matrix: The confusion matrix is a commonly used evaluation tool for
classification tasks, suitable for both binary and multiclass classification problems.
Table 3.1 shows the confusion matrix.

Predicted classes
class = Negative class = Positive

Actual classes class = Negative TN FP
class = Positive FN TP

Table 3.1: Confusion matrix.

• Accuracy

Accuracy measures the proportion of correctly classified instances out of the total
number of instances. It is calculated using the formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

• Recall

Recall, also known as sensitivity or true positive rate, determines the ratio of true
positive predictions to all actual positive instances. It highlights the model’s abil-
ity to identify positive instances. Recall can be calculated using the recall_score
function and the following formula:

Recall =
TP

TP + FN
(3.3)
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• Precision

Precision is another important metric that calculates the ratio of true positive pre-
dictions to all positive predictions. It specifically measures the accuracy of positive
predictions. Precision can be derived using the precision_score function and the
following formula:

Recall =
TP

TP + FP
(3.4)

• F1-score

The F1 score is a metric that combines precision and recall into a single value,
providing a balanced measure of the model’s performance. It takes into account
both false positives and false negatives and is particularly useful in scenarios with
imbalanced class distributions. The F1 score is the harmonic mean of recall and
precision and can be computed using the f1_score function. It is calculated using
the following formula:

F1_score = 2× precision× recall

precision+ recall
(3.5)

7.2 Fire Forest prediction subsystem result

The performance of the proposed Deep Neural Network (DNN) model is notable for its
robust predictive capabilities, as evidenced by various evaluation metrics. The model
achieved an impressive accuracy of 0.98, demonstrating its ability to correctly classify
the vast majority of instances. Precision and recall were recorded at 1 and 0.96, respec-
tively, indicating that the model excels in identifying true positives while minimizing false
negatives. Furthermore, the F1-score, which balances precision and recall, was also 0.98,
underscoring the model’s overall effectiveness in predictive performance. These results
collectively highlight the DNN model’s proficiency in accurately predicting forest fires,
ensuring both high sensitivity and specificity in its predictions.

7.2.1 Classification Report

The classification report, as depicted in the Figure ??, highlights the model’s excellent
overall performance, achieving an accuracy of 0.98. This high accuracy underscores the
model’s effectiveness in correctly classifying instances within the dataset. The detailed
metrics in the report, including precision, recall, and F1-score, further affirm the model’s
exceptional performance across various evaluation criteria.

7.2.2 Precision Recall Curve

The ROC curve depicted in the Figure 3.7 closely approaches the ideal top-left corner,
signifying a high true positive rate and a low false positive rate. This indicates the model’s
exceptional ability to accurately classify positive cases while minimizing the misclassifica-
tion of negative cases. Such performance highlights the model’s robustness and reliability
in distinguishing between classes effectively.
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Figure 3.7: Precision Recall Curve.

7.3 Fire forest spread subsystem result

The results of a forest fire simulation are presented and analyzed across four distinct
scenarios. These scenarios maintain similar model configurations, differing only in the
parameters of wind speed in the north and east directions, and terrain slope. All relevant
values are detailed in Table 3.2.

Properties Scenario 1 Scenario 2 Scenario 3 Scenario 4
Initial

Temperature 38°C 38°C 38°C 30°C

Inclination 30° -30° 30° -30°
North Wind -10° -10° 10° 10°
East Wind 15 15 15 15

Table 3.2: Configurations of different scenario.

The findings underscore the critical roles of wind conditions, and ignition patterns in
forest fire dynamics, offering valuable insights for developing effective fire management
strategies.
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8 Conclusion

This chapter outlined the methodology and implementation of the proposed advanced
system for forest fire management, leveraging modern technology tools for early detection,
monitoring, and prediction. By detailing the system’s architecture, data preparation,
DNN structure, and proposed CA model, the robustness, and effectiveness of the system
were demonstrated.

Evaluation metrics confirmed its reliability, and the integration of cellular automata
simulation enhanced fire spread prediction by incorporating meteorological factors. Ex-
perimental results also validated the system’s performance, showing significant improve-
ments in forest fire management. The proposed approach underscores the crucial role of
technology in mitigating the impacts of forest fires on ecosystems, wildlife, and human
life.

Finally, the robustness of the proposed system was validated during my participation in
the AI 24 Day event organized by the Computer Science Department at the University of
Guelma, where I presented it as a workshop speaker (Certificate of participation attached
in the end of this document). The model garnered positive feedback from the academic
community, reinforcing its potential for practical, real-world application.
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General conclusion

Forest fires are complex events influenced by numerous factors, including topography, veg-
etation, weather conditions, and ignition sources. Traditional fire management methods
often fail to provide rapid and accurate predictions, leading to substantial ecological and
economic losses. The main challenge is to develop a system that integrates these diverse
factors to deliver reliable real-time predictions, thereby enhancing fire management effec-
tiveness.

In this work, we proposed an intelligent system called ‘FireTrack’, which combines
Deep Neural Network (DNN) and Cellular Automata (CA) models.

This study delves into the dynamics of systems and their behaviors, particularly in
the context of modeling forest fires. The document is organized into three chapters:

• Chapter 1 lays the groundwork by introducing dynamic systems. It covers key con-
cepts such as state variables (describing the system’s current conditions), dynamics
(how the system evolves over time), and equilibrium states (when the system is sta-
ble). These foundational ideas are crucial for understanding the advanced prediction
techniques and research methods discussed in subsequent chapters.

• Chapter 2 reviews prediction techniques for dynamic systems with a focus on
forest fire prediction. It examines various machine learning models, highlighting
their applications, strengths, and limitations. This review helps in selecting the
most effective techniques for accurate fire predictions.

• Chapter 3 is the core of the research, detailing the design and implementation of
the proposed FireTrack framework. It explains the processes for data preparation,
and the development of the CA model for simulating fire spread. Additionally, it
describes the evaluation metrics used to assess the system’s reliability and effective-
ness. The results demonstrate significant improvements in prediction accuracy and
fire spread simulation.

Future work will focus on enhancing the system by incorporating real-time data from
sensors placed in forests. These sensors will continuously monitor environmental condi-
tions such as temperature, humidity, and wind speed, allowing for more accurate and
timely predictions. Future research will also explore advanced artificial intelligence tech-
niques to develop strategies for effectively limiting the propagation of fires once detected.
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