
�
éJ
J.ª

�
�Ë@

�
éJ
£@Q

�
®Öß
YË@

�
éK
Q

K @ 	Qm.

Ì'@
�
éK
PñêÒm.

Ì'@

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University of May 8 th , 1945 - Guelma -

Faculty of Mathematics, Computer Science and Material Sciences

Computer Science Department

Master’s Thesis

Sector : IT

Option : STIC

Theme

Object Detection for Impaired Visual Assistance Using Transfer Learning
and IoT-Raspberry Pi

presented by:

Adem Hamici

N Full Name Quality
1 Dr. Halimi Khaled Chairman
2 Dr. Hallaci Samir Supervisor
3 Dr. Benhamida Nadjette Examiner

Acknowledgment

Thank you, Allah, for providing me the capacity to think and write, the courage to hold into my convictions,

and the perseverance to see my dreams through to completion.

I would like to express my profound gratitude to Dr. Samir Hallaci, my supervisor, for overseeing the

completion of this task and for providing me with the best of his knowledge and assistance.

I also want to express my gratitude to the jury members, Dr. Halimi Khaled and Dr. Benhamida

Nadjette, for giving me the privilege of judging this work.

I want to express my gratitude to all of the IT department teachers especially Abderrahmane Kefali ,

Seridi Hamid , Kouahla Zineddine , Seridi ali and Hiba Abdelmoumène and everyone else who

helped to create this work.

Finally, I would like to thank my family , my Teachers and my Friends.

Dedication

We express our deepest gratitude to Almighty Allah for granting us the strength and determination to

complete this work.

To my beloved mother, Fadia Zalani No words can truly capture the depth of my respect, my endless love,

and my gratitude for the countless sacrifices you’ve made for my education and well-being. Your unwavering

support and boundless love have been with me every step of the way since my childhood. I pray that your

blessings continue to guide me throughout my life. May this humble work be a realization of your hopes and

dreams, the result of your endless sacrifices. May God bless you with good health, happiness, and a long life

To my dearest father, Mourad You have been more than just a father to me—you have been a guiding light,

a true friend, and a constant source of wisdom throughout my life. Your prayers have been my strength during

this long and challenging journey. Words cannot express how much your unwavering support and love mean to

me. I pray that God, Almighty, keeps you in good health and blesses you with happiness and a long life, so

that you may continue to be the light that illuminates my path.

To my dear sister Lina, and to my cherished family members Mariam, Rabah, Ines, Sirin, Wassim,

Samer, Yamina, Karim, Rafif, Mouhamed, Samir, Ilham, Fehd, Ania, and Miral Words are

scarcely enough to express the deep connection, love, and affection I have for each of you. Your presence in my

life has been a source of immense strength and joy. I wish you all a life filled with happiness, success, and

fulfillment.

A special tribute goes to my grandfather, who was like a father to me and a pillar of support in my life. May

God have mercy on his soul and grant him eternal peace. His memory will always remain a guiding light in

my heart.

Special thanks to my friend Ahmed Rami Bouguettoucha, whose constant encouragement and support

have been invaluable to me. I wish him even greater success in all his endeavors. To my dear friends Ahmed,

minou, djihed , mouhamed, and Abd El Basset the memories of our laughter, shared moments, and

the experiences we’ve had together are priceless. I sincerely hope that our friendship endures and continues to

bring joy and warmth to our lives for years to come.

I would like to extend my heartfelt gratitude to all the members of the Consulate General of Algeria in

Naples. Your unwavering support, camaraderie, and collaboration have made our time together both

productive and memorable. Working alongside each of you has been an honor, and I am deeply thankful for

the shared experiences, professional growth, and mutual respect that have marked our journey. I dedicate this

work to all of you, with the hope that our paths continue to cross and that our collective efforts bring

continued success to our mission.

Abstract :

Navigating outdoor environments poses substantial challenges for blind and visually impaired people, limiting

their ability to move independently and safely. This thesis presents a novel AI-based system designed to enhance

mobility for visually impaired users by providing real-time object detection and depth sensing. Utilizing deep

learning techniques and the YOLOv8 object detection algorithm, the system is implemented on embedded

systems with the Raspberry Pi 4 and integrated with a 3D camera to assess the spatial proximity of detected

objects.

The custom WOTR (walk on the road) dataset developed for this project, tailored to the needs of visually

impaired individuals, ensures high accuracy in object detection and depth estimation. The system delivers

real-time audio feedback, offering practical guidance for non-controlled outdoor assistive navigation.

Comprehensive testing in various outdoor settings demonstrates the system’s effectiveness in detecting objects,

estimating their depth, and providing timely feedback. The portability and cost-effectiveness of the Raspberry

Pi 4 make this solution accessible to a wide audience, potentially improving the quality of life for visually

impaired individuals by enabling safer and more confident navigation. This work advances the field of assistive

technologies, offering a practical tool that empowers blind and visually impaired individuals to navigate outdoor

spaces with greater ease and independence.

Keywords : Deep learning, object detection, YOLOv8, embedded systems, 3D Camera, blind and visually

impaired people, Non Controlled outdoor assistive navigation.

Résumé :

La navigation dans les environnements extérieurs pose des défis considérables aux personnes aveugles et malvoy-

antes, limitant leur capacité à se déplacer de manière indépendante et en toute sécurité. Cette thèse présente

un nouveau système basé sur l’IA conçu pour améliorer la mobilité des utilisateurs malvoyants en fournissant

une détection d’objet et une détection de profondeur en temps réel. Utilisant des techniques d’apprentissage

profond et l’algorithme de détection d’objets YOLOv8, le système est implémenté sur des systèmes embarqués

avec le Raspberry Pi 4 et intégré avec une caméra 3D pour évaluer la proximité spatiale des objets détectés.

La base de données personnalisé "WOTR (walk on the road)" développé pour ce projet, adapté aux besoins

des personnes malvoyantes, garantit une grande précision dans la détection des objets et l’estimation de la

profondeur. Le système fournit un retour audio en temps réel, offrant des conseils pratiques pour la navigation

assistée non contrôlée en extérieur.

Des essais approfondis dans divers environnements extérieurs démontrent l’efficacité du système dans la détection

d’objets, l’estimation de leur profondeur et la fourniture d’un retour d’information en temps utile. La portabilité

et la rentabilité du Raspberry Pi 4 rendent cette solution accessible à un large public, ce qui pourrait améliorer la

qualité de vie des personnes malvoyantes en leur permettant de naviguer de manière plus sûre et plus confiante.

Ce travail fait progresser le domaine des technologies d’assistance, en offrant un outil pratique qui permet aux

personnes aveugles et malvoyantes de naviguer dans les espaces extérieurs avec plus de facilité et d’indépendance.

Mots clés : Apprentissage profond, détection d’objets, YOLOv8, systèmes embarqués, caméra 3D, personnes

aveugles et malvoyantes, navigation extérieure assistée non contrôlée

�
é�C

	
mÌ'@

É¾
�
��. É

�
®
	
J
�
JË @ úÎ« Ñî

�
EPY

�
¯ 	áÓ Ym�'
 AÜØ , Qå�J. Ë @

	
¬Aª

	
�ð

	á�

	
¯ñ

	
®ºÖÏ @ úÎ«

�
èQ�
J.»

�
HAK
Ym

�
�
' �

éJ
k. PA
	
mÌ'@

�
HA

J�
J. Ë @ ú

	
¯ É

�
®
	
J
�
JË @

	
�Q

	
®K

	á�

	
¯ñ

	
®ºÖÏ @

	á�
ÓY
	
j
�
J�ÖÏ @ É

�
®
	
J
�
K 	QK

	Qª
�
JË A

�
ÒÒ�Ó ú

«A
	
J¢�B@ ZA¿

	
YË@ úÎ« A�Ü

ßA
�
¯ @

�
YK
Yg. A

�
ÓA

	
¢
	
�

�
ékðQ£

B@ è

	
Yë ÐY

�
®
�
K . 	áÓ

�
@ð É

�
®
�
J�Ó

�
�J
ÒªË@ ÕÎª

�
JË @

�
HAJ

	
J
�
®
�
K Ð@Y

	
j
�
J�AK. ð . ú

Îª

	
®Ë @

�
I

�
¯ñË@ ú

	
¯

�
�ÒªË@ PAª

�
�
�
��@ð ÐA�k.

B@

	
¬A

�
�
�
�» @ Q�

	
¯ñ
�
K ÈC

	
g 	áÓ Qå�J. Ë @

	
¬Aª

	
�ð

@Q�
ÓA¿ ©Ó ÉÓA¾
�
JÓð Raspberry Pi 4 ©Ó

�
ém.
×YÓ

�
éÒ

	
¢
	
�

@ úÎ« ÐA

	
¢
	
JË @

	
YJ

	
®
	
J
�
K Õ

�
æK
 , ÐA�k.

B@ 	á«

	

�
�ºÊË YOLOv8 �

éJ
Ó
	PP@ñ

	
kð

.
�
é
	
®
�
�
�
�ºÖÏ @ ÐA�k.

CË ú

	
GA¾ÖÏ @ H. Q

�
®Ë@ Õæ

J

�
®
�
JË XAªK.

B@

�
éJ

�
KC

�
K

�
éJ
J. Ê

�
JË

�
A�J
�

	
k

�
éÒÒ�ÖÏ @ð , ¨ðQå

�
�ÖÏ @ @

	
YêË AëQK
ñ¢

�
� Õç

�
' ú

�
æË @ WOTR (walk on the road) �

é��
	
jÖÏ @

�
HA

	
KAJ
J. Ë @

�
é«ñÒm.

× 	áÒ
	
�
�
�

�
I

�
¯ñË@ ú

	
¯

�
éJ

�
Kñ�

�
HA

	
¢kCÓ ÐA

	
¢
	
JË @ ÐY

�
®K
 .

�
�ÒªË@ QK
Y

�
®
�
Kð ÐA�k.

B@

	
¬A

�
�
�
�» @ ú

	
¯

�
éJ
ËA«

�
é
�
¯X ,Qå�J. Ë @

	
¬Aª

	
� X@Q

	
¯

B@

�
HAg. AJ

�
Jk@

. Õºm�
�
' 	
àðYK.

�
�Ê¢Ë@ Z @ñêË @ ú

	
¯
�
èY«A�ÖÏ @

�
ékCÒÊË

�
éJ
ÊÔ

« �
H@XA

�
�P@

Q
	
¯ñK
 AÜØ , ú

Îª

	
®Ë @

�
éªk. @QË @

�
éK

	
Y
	
ª
�
JË @ Õç'
Y

�
®
�
Kð Aê

�
®Ô« QK
Y

�
®
�
Kð ÐA�k.

B@

	
¬A

�
�
�
�» @ ú

	
¯ ÐA

	
¢
	
JË @

�
éJ
ËAª

	
¯

�
éJ
k. PA

	
mÌ'@

�
HA

J�
J. Ë @

	
Ê

�
J
	
m× ú

	
¯ ÉÓA

�
�Ë@ PAJ.

�
J
	
kB@ Qê

	
¢
�
�

PñêÔg
.

ÈðA
	
J
�
JÓ ú

	
¯ ÉmÌ'@ @

	
Yë Éªm.

�
�
' �

é
	
®Ê¾

�
JË @

�
IJ
k

	áÓ é
�
JJ
ËAª

	
¯ð Raspberry Pi 4 	PAêk. É

�
®
	
K

�
éJ

	
K A¾Ó@

	
à@

.I. �A

	
JÖÏ @

�
I

�
¯ñË@ ú

	
¯

úÎ« ÉÒªË@ @
	
Yë ÉÒªK
 . Q�.»

@
�
é
�
®
�
Kð

	
àAÓ

AK. É

�
®
	
J
�
JË @

	á�
ºÖ
�
ß ÈC

	
g 	áÓ Qå�J. Ë @

	
¬Aª

	
� X@Q

	
¯

B@

�
èAJ
k

�
èXñk.

	áÓ 	á�m�'
 Y
�
¯ AÜØ , ©�@ð

�
éJ
k. PA

	
mÌ'@ 	á» AÓ

B@ ú

	
¯ É

�
®
	
J
�
JË @ 	áÓ Qå�J. Ë @

	
¬Aª

	
�ð

	á�

	
¯ñ

	
®ºÖÏ @ 	á

�
ºÖ

�
ß

�
éJ
ÊÔ

« �
è@X

@ ÐY

�
®K

�
IJ
k ,

�
èY«A�ÖÏ @

�
HAJ

	
J
�
®
�
JË @ ÈAm.

× QK
ñ¢
�
�

. Q�.»

@
�
éJ
ËC

�
®
�
J�@ð

�
éËñîD��.

	á�

	
¯ñ

	
®ºÖÏ @ð , XAªK.

B@

�
éJ

�
KC

�
K @Q�
ÓA¾Ë@ð ,

�
ém.
×YÖÏ @

�
éÒ

	
¢
	
�

B@ð , YOLOv8 ð , ÐA�k.

B@

	
¬A

�
�
�
�» @ð ,

�
�J
ÒªË@ ÕÎª

�
JË @ :

�
éË @YË @

�
HAÒÊ¾Ë@

. AîE. Õºj
�
JÖÏ @ Q�

	
«

�
éJ
k. PA

	
mÌ'@

�
èY«A�ÖÏ @

�
ékCÖÏ @ð , Qå�J. Ë @

	
¬Aª

	
�ð

Contents

List of Figures iii

List of Tables vi

General introduction 1

1 Introduction to AI-Based Solutions for Visual Impairments 4

1.1 Introduction . 4

1.2 Human Vision System vs Computer Vision systems . 4

1.2.1 Anatomy and Function of the Human Eye . 4

1.2.2 Computer/machine Vision . 7

1.3 Challenges in Navigating Life with Visual Impairments . 8

1.3.1 The different types of visual impairments . 8

1.3.2 The difficulties that people with visual impairments face in their daily lives 8

1.4 Classic Solutions for Helping People with Visual Impairments . 9

1.4.1 The benefits and limitations of each of these solutions . 12

1.5 AI Innovations for Assisting Individuals with Visual Impairments 13

1.6 Related works . 14

1.7 AI and Deep Learning . 17

1.7.1 Artificial intelligence . 17

1.7.2 Machine learning . 18

1.7.3 Deep learning . 19

1.8 Datasets(Benchmarks) . 25

1.8.1 MS COCO dataset : . 25

1.8.2 PASCAL VOC dataset : . 26

1.8.3 ImageNet dataset . 27

1.8.4 Open Images dataset . 28

1.9 Conclusion . 29

i

2 Real-Time Object Detection with Deep Learning 30

2.1 Introduction . 30

2.2 Real-Time Object Detection . 30

2.2.1 Accuracy . 32

2.2.2 Frames per second (Fps) . 32

2.3 How to choose the best model for object detection system ? . 32

2.4 Object Detection Models . 33

2.4.1 EfficientDet . 33

2.4.2 MobileNetV2 . 34

2.4.3 Faster R-CNN (Region Convolutional Neural Network) 34

2.4.4 SSD (Single Shot MultiBox Detector) . 34

2.4.5 RetinaNet . 34

2.4.6 YOLO (You Only Look Once) . 35

2.5 Conclusion . 43

3 Conception 44

3.1 Introduction . 44

3.2 What makes YOLO a better choice for Object Detection ? . 44

3.3 Global architecture . 45

3.4 Data Acquisition . 46

3.5 Data preparation . 47

3.5.1 Data collection . 47

3.5.2 Data preprocessing . 49

3.5.3 challenges faced in data preparation . 50

3.6 YOLOv8 architcture . 51

3.6.1 What are the main features in YOLOv8? . 52

3.7 Model configuration . 54

3.7.1 choose the best model . 54

3.7.2 Augmentation . 55

3.8 Train model on our data . 56

3.8.1 Hyperparameter Choices to Train YOLOv8 . 56

3.8.2 Loss Function . 57

3.8.3 training procedure . 58

3.8.4 Challenges Faced During Training . 59

3.9 metrics . 60

3.10 IOT module . 61

3.10.1 Sensors . 61

3.11 Conclusion . 62

4 Implementation and Results 63

4.1 Introduction . 63

4.2 Development environment . 63

4.2.1 Hardware Environment . 63

4.2.2 Software environment . 65

4.3 Overview of the Assistive Navigation System for the Visually Impaired 67

4.3.1 Overview . 67

4.3.2 User Interface (UI) . 67

4.3.3 Object Detection . 68

4.3.4 Alert System . 68

4.3.5 Camera and Data Handling . 69

4.3.6 Detailed Object Interactions and Alerts . 69

4.4 Training and validation . 74

4.4.1 training results : . 74

4.5 Test, Results and Discussion . 78

4.5.1 Test and Results . 78

4.5.2 Discussion . 80

4.6 Conclusion . 81

General conclusion 81

bibliography

iii

List of Figures

1.1 human eye anatomy [1] . 5

1.2 The Pathway of Visual Processing . 6

1.3 Human Vision vs Computer Vision . 7

1.4 Braille Writing System . 9

1.5 Navigating with a White Cane . 10

1.6 guide dog . 10

1.7 Magnifiers aids [2] . 10

1.8 assistive technology aids [3] . 11

1.9 Human assistance[3] . 11

1.10 Different subdomain AI, ML, ANN and DL [4] . 17

1.11 machine learning models and their training algorithms [5] . 18

1.12 Human learning VS Machine learning [6] . 19

1.13 The architecture of ANN.[7] . 20

1.14 The architecture of DNN.[8] . 20

1.15 The architecture of CNN.[9] . 21

1.16 The architecture of RNN.[10] . 21

1.17 The architecture of GAN. 22

1.18 The architecture of GAN.[11] . 22

1.19 The architecture of RL.[12] . 23

1.20 The architecture of Transfer Learning.[13] . 23

1.21 The architecture of Transfer Learning. 24

1.22 The architecture of Transfer Learning.[13] . 24

1.23 Difference between classification, detection and segmentation .[14] 25

1.24 Example of images of MS-COCO [15] . 26

1.25 Example of annotation of MS-COCO . 26

1.26 The most popular models used for various tasks on the MSCOCO 26

iv

1.27 Example of annotation of PASCAL VOC . 27

1.28 The most popular models used for various tasks on the PASCAL VOC 27

1.29 Example of images of ImageNet . 28

1.30 The most popular models used for various tasks on the open Image 28

1.31 Example of images of Open Image . 28

1.32 The most popular models used for various tasks on the Open Image 29

2.1 Difference Between 60FPS And 24FPS[16] . 32

2.2 YOLO model architecture [17] . 35

2.3 Divide the image into (S*S) grid. 35

2.4 The predicted vector in the case of a single box. 36

2.5 Intersection over union. 36

2.6 Examples of IoU. 37

2.7 The predicted vector in the case of multiple boxes in the cell. 37

2.8 A tensor that specifies the bounding box . 37

2.9 The output after different steps of NMS [18] . 38

2.10 YOLOv2 architecture[19] . 39

2.11 YOLOv3 Architecture . 39

2.12 YOLOv4 Architecture [20] . 40

2.13 YOLOv5 Architecture [21] . 40

2.14 YOLOv6 Architecture [22] . 41

2.15 YOLOv7 Architecture [23] . 42

2.16 YOLOv8 Architecture [24] . 42

2.17 YOLO NAS Architecture [25] . 43

3.1 Comparing YOLOv8 to Other YOLO Models: A Comparative Analysis.[26] 45

3.2 Global architecture . 46

3.3 RGB Image VS Depth Image . 47

3.4 Object categories in the WOTR dataset . 48

3.5 Some Pictures form Pothole dataset . 49

3.6 Data Preprocessing . 49

3.7 WOTR format conversion to WOTR-Yolo Format . 50

3.8 YOLOv8 Architecture.[26] . 52

3.9 Visualization of an anchor box . 53

v

3.10 New YOLOv8 C2f module [27] . 53

3.11 YOLOv8 COCO evaluation[28]. 54

3.12 training procedure . 59

3.13 System architecture (IOT) . 61

4.1 Google Colab Logo . 64

4.2 RPI4 logo . 65

4.3 Python logo . 65

4.4 PyTorch logo . 66

4.5 OpenCv logo . 66

4.6 PyCharm logo . 66

4.7 Case one . 72

4.8 Case tree . 73

4.9 Case four . 73

4.10 Depth and RGB . 74

4.11 Train batch . 74

4.12 validation batches . 75

4.13 Results . 76

4.14 Confusion matrix . 77

4.15 Confusion Matrix Normalized . 78

vi

List of Tables

1.1 Comparison of Solutions for Visually Impaired Individuals . 12

1.2 Comparison of different computer vision systems for assisting visually impaired individuals . . . 17

1.3 Differences between Artificial Intelligence and Machine Learning 19

3.1 WOTR dataset statistics . 48

3.2 YOLOv8 Training Configuration.[29] . 57

3.3 Sensors for the IoT System . 61

4.1 Case two . 72

4.2 Results of training . 77

4.3 Inference times and FLOPs for different model weights on CPU and GPU 79

1

General Introduction

Navigating outdoor environments poses significant challenges for visually impaired individuals, impacting their

ability to interact with and perceive their surroundings safely. These challenges necessitate the development of

innovative solutions that can enhance the independence and mobility of those affected. Recent advancements in

deep learning, particularly in real-time object detection, offer promising avenues for addressing these challenges.

In this thesis, we present a solution that leverages the YOLOv8 object detection algorithm and the Raspberry

Pi 4, enhanced by depth-sensing capabilities, to provide real-time audio feedback to visually impaired users.

Our system is designed not only to detect objects and obstacles but also to accurately assess their depth,

offering a critical advantage in guiding users through complex environments. By integrating depth information,

the system provides more nuanced feedback, allowing users to understand the relative distance of objects, which

is vital for safe navigation. This feedback is delivered in real-time through audio cues.

A significant contribution of this thesis is the development of a custom dataset tailored to the specific needs

of visually impaired individuals navigating outdoor spaces. This dataset, which incorporates subclasses from

various benchmarks, was used to train and fine-tune the YOLOv8 model, ensuring high accuracy and reliability

in object detection and depth estimation. The system is further enhanced by the integration of Depth sensors

,which collectively contribute to its functionality and usability.

The system has been rigorously tested across different outdoor environments to evaluate its performance. The

results demonstrate that the system can reliably detect objects, estimate their depth, and provide timely audio

feedback, making it a practical tool for enhancing the mobility of visually impaired individuals. Additionally,

the system’s portability, enabled by the Raspberry Pi 4 platform, ensure that it can be widely accessible to

those in need.

This thesis offers a comprehensive and innovative solution to the challenge of assisting visually impaired indi-

viduals in navigating outdoor environments. By combining advanced object detection with depth sensing and

real-time feedback, the system significantly improves the user’s ability to move independently and confidently.

The successful integration of these technologies into an accessible and portable system underscores the potential

to positively impact the lives of visually impaired individuals, empowering them to navigate outdoor spaces with

greater ease and safety.

our thesis is decomposed to four chapters:

• Chapter 1: Introduction to AI-Based Solutions for Visual Impairments

introduces AI-based solutions for visual impairments by comparing the human vision system with AI-

2

driven computer vision. It discusses the challenges faced by visually impaired individuals and reviews

traditional aids, highlighting their limitations. The chapter then focuses on how AI, particularly deep

learning, offers more effective solutions. It also explains key AI concepts and reviews relevant datasets,

setting up the groundwork for developing a custom dataset for YOLOv8 model training.

• Chapter 2: Real-Time Object Detection with Deep Learning

This section delves into real-time object detection, underscoring its importance in computer vision and its

role in AI-based solutions for visual impairments. It reviews various object detection models, including

EfficientDet, MobileNetV2, Faster R-CNN, SSD, RetinaNet, and YOLO, focusing on their strengths and

suitability for real-time use. The chapter highlights how deep learning has improved object detection accu-

racy and speed, discusses criteria for model selection, and emphasizes the need for real-time performance

in assistive technologies. This analysis leads to a detailed examination of YOLOv8, the key algorithm in

the solution.

• Chapter 3: YOLOv8 Model Architecture and Training

This section provides an in-depth overview of the YOLOv8 model, focusing on its architecture, configu-

ration, and training process for the specific application. It details model parameters, loss functions, and

the integration of sensors like depth sensors to enhance system functionality. The chapter discusses the

challenges encountered during training, emphasizing the importance of custom datasets and how differ-

ent model configurations affect performance. The training process and results are thoroughly analyzed

to demonstrate YOLOv8’s effectiveness in real-time object detection and its contribution to the overall

system.

• Chapter 4: Development Environment and Implementation

This section explores the development environment and implementation of the project, detailing the

hardware and software tools used, such as the Raspberry Pi 4 and various sensors. It outlines the design

and implementation steps, addressing development challenges and the solutions applied. The chapter

emphasizes the integration of hardware and software components, focusing on creating a functional, user-

friendly system. It highlights the project’s outcomes, demonstrating the system’s ability to deliver accurate

object detection and real-time feedback in outdoor environments.

We conclude with a general summary and discussion of future perspectives.

3

Chapter 1

Introduction to AI-Based Solutions for

Visual Impairments

1.1 Introduction

Visual impairments affect millions of people worldwide creating difficulties, in recognizing faces , understanding

text and navigating. While traditional solutions like aids and specialized software exist to address these chal-

lenges their effectiveness is limited. As a result the rise of AI powered tools has attracted attention for their

potential to better support individuals with impairments.

This section aims to give an overview of these solutions. It starts by comparing vision with machine vision

capabilities and discussing the obstacles faced by those with impairments. It then explores interventions and

highlights the benefits offered by AI technologies. Furthermore it delves into how 3D technology combined

with AI can expand the support for people with impairments. The focus is on explaining the basics of AI

learning and its crucial role in improving accessibility solutions. Additionally it examines known datasets used

for model training and assessment well, as popular deep learning frameworks. Finally this section concludes by

summarizing points and providing a glimpse into the topics that future chapters will address.

1.2 Human Vision System vs Computer Vision systems

1.2.1 Anatomy and Function of the Human Eye

Understanding the anatomy and functioning of the human eye is crucial to creating effective treatments for

visual impairments, as it plays a major role in our capacity to comprehend the world around us. This section

will provide an overview of the eye’s anatomy and function, detailing its various components and how they work

together to process light and transmit nerve impulses to the brain.

4

The structure of the eye

The eye is a sensitive and intricate organ with a unique anatomical and physiological structure [30], which can

be divided into three main layers:

• Outer Layer:

– The cornea is a transparent, approximately spherical structure with an outer radius of curvature of

about 8 mm.

– The sclera is a dense, white, opaque fibrous tissue, also nearly spherical, with a radius of curvature

of about 12 mm.[31]

• Middle Layer (Uveal Tract):

– The iris plays a crucial optical role by controlling the size of its aperture.

– The ciliary body is essential for the process of accommodation, enabling the eye to change focus.

– The choroid is located at the back of the eye and plays a role in providing the eye’s blood supply.

[31]

• Inner Layer:

– The retina is an extension of the central nervous system, connected to the brain via the optic

nerve.[31]

Lens and Chambers: The lens, located about 3 mm inside the eye, is attached to the ciliary body by

suspensory ligaments known as zonules.

The inside of the eye is divided into three compartments:

• The anterior chamber, located between the cornea and iris, contains aqueous humor.

• The posterior chamber, situated between the iris, ciliary body, and lens, also contains aqueous humor.

• The vitreous chamber, found between the lens and retina, is filled with a transparent gel called vitreous

humor.[31]

Figure 1.1: human eye anatomy [1]

5

The pathway of vision

When light enters the eye, it triggers chemical changes in certain pigments within the photoreceptor cells of

the retina, leading to the production of electrical impulses . Before passing onto ganglion cells, these impulses,

which contain visual information, pass through a network of linked neurons in the retina. The optic nerve,

which is made up of these ganglion cells, sends visual information to the occipital lobe of the brain’s visual

cortex. These impulses are processed by complex neuronal circuits in the visual cortex, which combine different

visual clues to create a coherent image of the object being watched. The ability to see and interpret visual

inputs is made possible by this intricate processing, which offers a thorough awareness of the world [32].

Because of the intricate biological design of human vision , the two eyes each have a separate field of view. Since

each eye records data from half of the visual field, the brain integrates the pictures seamlessly. When this process

is completed, one develops binocular vision, which enables depth perception and enhances spatial awareness by

overlapping the central regions of the visual field. However, the marvels of human vision extend even further .

Humans are able to see the world in three dimensions due in large part to differences in the periphery of each

eye’s visual field. This skill is necessary for navigating our surroundings, determining distances properly, and

engaging with the things in our immediate environment. Our ability to perceive depth allows us to approximate

sizes , which facilitates the execution of simple activities like picking up a cup from a table or more complicated

ones like maneuvering a car safely through traffic. Humans sense depth through the intricate interaction of

several visual signals, which adds levels of complexity and richness to our perception of the environment [33]

(figure 1.2).

Figure 1.2: The Pathway of Visual Processing

Capabilities of the human visual system

• Interprets and understands complex visual scenes in real-time.

• Swiftly processes and comprehends intricate visual environments.

• Identifies a wide range of visual attributes (hues, forms, patterns, motions) with precision.

• Adapts to varying lighting, distances, and angles for consistent perception.

• Recognizes familiar objects and faces, even with partial obstruction or altered viewpoints.

6

• Handles demanding tasks like reading and symbol recognition with ease.

• Perceives depth, enabling 3D understanding of objects and environments.

1.2.2 Computer/machine Vision

Computer Vision, also known as Machine Vision, is a discipline that lets machines learn how to "see" and is

an important application field of deep learning technology, which is widely used in security, industrial quality

inspection and automatic driving scenarios. Specifically, the goal is to enable the machine to identify objects

in images or videos captured by the camera, detect the object’s location, and track the target object , so as

to understand and describe the scene and story in the picture or video, in order to simulate the human brain

visual system. Therefore, computer vision is also commonly referred to as machine vision, and the goal is to

build artificial systems that can "sense" information from images or videos.[34] The development of computer

vision begins with biological vision.

Limitations of the visual machine

In contrast to the human visual system (Figure 1.3), a visual machine operates within predefined limits based

on the data it has been trained on . Should this data be skewed or incomplete, the machine’s performance in

real-world circumstances may be damaged. Additionally, the machine’s effectiveness is bound by the intricacy

of the jobs it has been taught to accomplish. For instance, if the computer is simply taught to detect specified

things in preset circumstances, it may fail to adapt to fresh situations or identify unknown objects.

Another restriction of the visual machine is its inability to participate in reasoning or contextual knowledge

equivalent to human cognition. Despite its potential to distinguish things within a picture, the computer may

stumble in recognizing the connections between these objects or interpreting the image’s underlying meaning.

Consequently, this constraint might induce mistakes or misinterpretations in specific settings.

Moreover, the visual machine is bound by the processing resources at its disposal. Tasks of increasing complexity

or datasets of bigger size may need more powerful technology or lengthier training durations, consequently

incurring heightened expenditures or logistical obstacles.

Despite its impressive powers, the visual machine is restricted by variables such as training settings, datasets,

contextual understanding restrictions and computing constraints.

Figure 1.3: Human Vision vs Computer Vision

7

1.3 Challenges in Navigating Life with Visual Impairments

1.3.1 The different types of visual impairments

Visual impairment comprises different disorders affecting vision, ranging from minor to severe. Among the sorts

of visual impairments [35] are:

• Color Vision Deficiency: commonly known as color blindness, hampers an individual’s ability to

accurately perceive or distinguish certain colors. The most prevalent types are red-green and blue-yellow

color blindness.

• Blindness: The most severe kind, defined by full loss of vision in both eyes, due to reasons such hereditary

diseases, traumas, infections, or medical problems.

• Low vision: Significantly diminished vision without full blindness, resulting in difficulty with skills like

reading or recognizing faces, commonly linked with illnesses such as cataracts, glaucoma, or age-related

macular degeneration.

• Night blindness (nyctalopia): Difficulty seeing in low-light situations owing to variables like genetic

abnormalities, hunger, or medical illnesses.

• Visual processing disorders: Conditions affecting the brain’s interpretation of visual information,

resulting to difficulty with identifying forms, letters, numbers, or depth perception.

• Photophobia: Sensitivity to strong light producing discomfort or agony.

These classes reflect a portion of the varied range of visual impairments, each having distinct manifestations and

implications on people. It’s interesting that experiences with visual impairment might vary greatly dependent

on individual disorders and their severity.

1.3.2 The difficulties that people with visual impairments face in their daily lives

Individuals with visual impairments encounter a range of daily challenges, including :

1. Navigational challenges : Limited vision impairs people’s ability to safely navigate their surroundings,

making it difficult to go freely through streets, public areas, and new locations.

2. Social interactions : Visual limitations may make it difficult to perceive nonverbal communication

signs including facial emotions and body language during social interactions. As a result, people may

have difficulty sustaining social bonds and participating in social activities.

3. Access to information : Individuals with visual impairments have difficulties to obtaining information

via printed materials, computer displays, and other visual media.

4. Employment opportunities : Visual impairments may restrict employment chances by creating chal-

lenges to obtaining job-related documents, navigating working surroundings, and executing activities that

need visual acuity.

8

5. instructional barriers : Visual impairments may make it difficult to access instructional materials,

participate in classroom activities, and get equal educational opportunities.

6. everyday living tasks : Individuals with vision impairments may have substantial difficulty while doing

basic everyday activities such as cooking, cleaning, and personal hygiene. To do these things safely and

efficiently, you may need to use assistive technologies or ask for help from others.

7. Emotional and psychological impact : Dealing with the limits imposed by visual impairments may

result in emotions of frustration, alienation, and poor self-esteem.

8. Accessibility barriers : Inaccessible infrastructure, transit systems, and public facilities make it more

difficult for people with visual impairments to move about and participate in community life.

Despite the numerous challenges that individuals with visual impairments face in their daily lives, various

solutions and support systems are available to help them overcome these obstacles and lead independent,

fulfilling lives.

1.4 Classic Solutions for Helping People with Visual Impairments

Several traditional solutions have been developed to assist individuals with visual impairments in their daily

lives

• Braille : is a tactile writing method used by the blind and visually handicapped. Braille characters

represent letters, numerals, punctuation marks, and other symbols, enabling people to read by touch.

Figure 1.4: Braille Writing System

• White Canes : White canes help people with vision impairments discover hazards and navigate their

environment safely. They give tactile feedback and indicate to others that bearer is visually impaired.

9

Figure 1.5: Navigating with a White Cane

• Guide dogs : Specially trained guide dogs assist individuals with visual impairments by guiding them

around obstacles, stopping at barriers, and navigating crowded areas. These guide dogs enhance mobility

and independence for their users .

Figure 1.6: guide dog

• Magnifiers : Magnifying devices such as handheld magnifiers, magnifying glasses, or electronic magnifiers

enlarge text and images, making them easier to see for individuals with low vision.

Figure 1.7: Magnifiers aids [2]

10

• assistive technology : Assistive technology: Various assistive technologies, including screen magni-

fication software, speech recognition software, Braille displays and more, help individuals with visual

impairments perform tasks on computers, smartphones and other electronic devices.

Figure 1.8: assistive technology aids [3]

• Family and friends: friends and family may be a valuable source of support for those who are visually

impaired. They may aid with everyday chores, transportation assistance, and emotional support. To

support their loved ones who have vision impairments in leading independent lives, family and friends

may also educate themselves on assistive technology and adaptive technologies.

Figure 1.9: Human assistance[3]

It is essential to acknowledge that these solutions include some limits and may not be universally appropriate.

Furthermore, they may not cover every issue that affects those who are visually impaired. To create more

sophisticated and individualized solutions, researchers have looked into emerging technologies like artificial

intelligence (AI) and Computer Vision.

11

1.4.1 The benefits and limitations of each of these solutions

Solution Benefits Limitations
Braille

• Enables independent reading and
writing via touch.

• Facilitates access to written informa-
tion.

• Provides standardized communica-
tion.

• Can be difficult and time-consuming
to learn.

• Resources may not be widely avail-
able.

• May not suit those with cognitive or
tactile limitations.

White Canes
• Enhances safety by identifying obsta-

cles.

• Provides haptic feedback for naviga-
tion.

• Raises public awareness of impair-
ment.

• May miss small or overhead obsta-
cles.

• Can cause discomfort due to stigma.

• Requires training and practice.

Guide Dogs
• Increases mobility and freedom.

• Offers emotional support and com-
panionship.

• Boosts confidence and social interac-
tion.

• High cost of training and care.

• Not suitable for all individuals.

• Requires ongoing care and training.

Magnifiers
• Enhances text and image readability.

• Portable and easy to use.

• Available in various formats.

• Limited field of view.

• May distort images when highly
magnified.

• Less effective for severe impairments.

Assistive
Technology • Improves access to digital devices.

• Increases independence in various
tasks.

• Adaptable solutions for diverse
needs.

• Can be costly.

• Requires technical skills and support.

• May not be compatible with all plat-
forms.

Family and
Friends • Provides emotional support.

• Assists with daily tasks and mobility.

• Raises awareness of individual’s
needs.

• May lead to dependency or strain.

• Support availability may vary.

• Lack of training may limit effective-
ness.

Table 1.1: Comparison of Solutions for Visually Impaired Individuals

12

It is crucial to remember that not everyone with visual impairments would benefit from these traditional

solutions, and that the advantages and disadvantages may change based on the particular solution and the

requirements of the person.

1.5 AI Innovations for Assisting Individuals with Visual Impair-

ments

A plethora of artificial intelligence (AI) solutions have surfaced to assist those who are visually impaired.

These solutions use deep learning algorithms to evaluate visual input and provide customized feedback. These

inventions consist of:

1. Object Recognition Systems : These systems employ deep learning and computer vision techniques

to rapidly and accurately identify objects in real time. When combined with wearable technology, such

as glasses or smartphones, they offer users audio cues about their surroundings. For instance, Microsoft’s

Seeing AI app utilizes object recognition to identify items, transcribe text, and even recognize faces .

2. Navigation Systems : AI-driven navigation systems help people who are blind or visually impaired

navigate both indoor and outdoor environments. These systems deliver users aural cues when they discover

impediments using computer vision and deep learning techniques. Most notably, the Aira app pairs smart

glasses with trained agents to provide real-time instruction to blind and visually impaired users.

3. Reading Assistance Systems : These programs translate written text into audio or braille formats

using optical character recognition (OCR) technology and deep learning algorithms. The KNFB Reader

app is an example of this kind of technology; it can extract text from a variety of sources, such as books,

menus, and signs.

4. Social Interaction Systems : Artificial intelligence (AI)-powered solutions help those who are visually

impaired during social interactions. The Seeing AI app, for example, is very good at identifying faces and

provides information about emotional cues based on facial expressions.

5. Assistive Learning Systems : By providing customized instructional material and adaptive learning

opportunities, AI-driven learning systems meet the educational demands of those who are visually im-

paired. These systems use machine learning algorithms and natural language processing (NLP) to tailor

online courses and textbooks to the unique requirements and learning preferences of visually impaired

students. These technologies enable people with visual impairments to more successfully pursue chances

for academic and professional growth by offering interactive and accessible learning materials. A system

like this is the Bookshare platform, which uses AI algorithms to transform digital books into braille, big

print, audio, and other accessible forms to meet the various learning needs of visually impaired users.

These artificial intelligence (AI) solutions have the potential to improve the independence and information

accessibility of people who are visually impaired. They do have certain limits, however, including the need to

purchase specialist technology and issues with object identification accuracy. However, it is anticipated that

further research and development efforts in this field will improve existing solutions, providing the visually

impaired community with more accurate and user-friendly assistance.

13

1.6 Related works

in table 1.2 we will present an overview of relevant research and details about each article related to assisting

visually impaired individuals over the past decade :

Ref Year Title Approach

Extra

Sensors Dataset Accuracy / FPS

Indoor

/

Out-

door

[36] 2017 Computer Vision

for the Visually

Impaired: the

Sound of Vision

System

-3D reconstruction

and segmentation of

the environment -

Detection of objects,

ground plane, walls,

doors, stairs, signs,

text - Different

processing pipelines

for indoor and

outdoor environments

Stereo RGB

camera -

Depth-of-

Field

camera

(Structure

Sensor) -

Inertial

Measure-

ment Unit

(IMU)

/ Ground Surface

Detection: TPR

0.98, PPV 0.90,

ACC 0.89 Obstacle

Detection: TPR

0.97, PPV 0.78,

ACC 0.76 Object

width error: 0.13m

Object height error:

0.17m Object

center deviation:

16px

Both

[37] 2017 A Cloud and

Vision-based

Navigation

System Used for

Blind People

Vision-based SLAM

for navigation

Stereo

cameras

Microphone

Speaker

ImageNet

dataset for

object

recognition

Custom

RMB

(Chinese

currency)

dataset with

90,000

images for

currency

recognition

Traffic light

recognition

dataset

OCR

datasets

99.9% accuracy

reported for

currency (RMB)

recognition

Both

14

Ref Year Title Approach

Extra

Sensors Dataset Accuracy / FPS

Indoor

/

Out-

door

[38] 2017 Using

Technology

Developed for

Autonomous

Cars to Help

Navigate Blind

People

/ Lidars and

cameras

/ / Both

[39] 2019 An Object

Detection

Technique For

Blind People in

Real-Time Using

Deep Neural

Network

convolutional neural

network with single

shot multi-box

detector (SSD)

algorithm Combines

Faster R-CNN with

deep neural network

and SSD algorithm

with additional layers

Uses feature maps

extraction and

convolutional filters

for detection of small

objects

Integrates

an audio

device to

help blind

people

Pascal VOC

dataset

COCO

dataset (80

classes,

80,000

images and

40,000

validation

images)

achieved 78.68

mAP

/

15

Ref Year Title Approach

Extra

Sensors Dataset Accuracy / FPS

Indoor

/

Out-

door

[40] 2021 Computer

Vision-based

Assistance

System for the

Visually

Impaired Using

Mobile Edge

Artificial

Intelligence

Neural Compute

Stick-2, model

optimization

techniques

(OpenVINO,

TensorFlow Lite)

OpenCV AI

Kit-Depth

(OAK-D)

sensor, GPS

device

-Google

Open Image

dataset.

-LISA

traffic signs

dataset.

-German

Traffic Sign

Recognition

Benchmark

(GTSRB)

dataset.

-Traffic

Cone

dataset .

-Cityscapes

dataset

Custom.

-dataset of

images

collected by

the

researchers

Object detection

model

(SSD-MobileNet):

0.62 mean average

precision (mAP)

Traffic sign

classifier: Precision

ranges from 0.71 to

1.00 for different

signs Elevation

change detection:

96% accuracy on

depth images, 97%

accuracy on RGB

images

Both

[41] 2022 A Wearable

Assistive Device

for Blind

Pedestrians

Using Real-Time

Object Detection

and Tactile

Presentation

YOLOV3 model

compression for object

detection

Shape-

memory

alloy (SMA)

actuators,

vibration

motors

/ 96% accuracy in

obstacle position

recognition

Both

16

Ref Year Title Approach

Extra

Sensors Dataset Accuracy / FPS

Indoor

/

Out-

door

[42] 2023 Assistive Object

Recognition and

Obstacle

Detection

System for the

Visually

Impaired Using

YOLO

YOLOv3 Raspberry

Pi, Camera

and HC

SR-04

sensor

MSCOCO 45 fps and 28 mAP Both

Table 1.2: Comparison of different computer vision systems for assisting visually impaired individuals

1.7 AI and Deep Learning

1.7.1 Artificial intelligence

AI is defined as the science, engineering, and technology focused on intelligent behavior, emulating human

capabilities such as thinking, sensing, and reacting (Gherghina, 2015) [43]. Additionally, AI is characterized by

a system’s ability to accurately interpret external data, learn from it, and use these learnings to achieve specific

goals and tasks through flexible adaptation (Kaplan & Haenlein, 2019) [44]. It is also viewed as a technology

of machine information processing that simulates human cognitive activities (Popkova & Sergi, 2020) [45]. The

ultimate goal of AI is to develop intelligent machines capable of perceiving, learning, reasoning, and interacting

autonomously, driving advancements in various fields such as healthcare, finance, transportation, and more.

[46] (figure 1.10).

Figure 1.10: Different subdomain AI, ML, ANN and DL [4]

17

1.7.2 Machine learning

As a branch of artificial intelligence (AI), machine learning (ML) uses algorithms to evaluate data, draw con-

clusions from it, and make choices on their own without the need for explicit programming. These algorithms

fall into two categories: supervised , unsupervised , semi-supervised and Rienforcement . Supervised models

use previously learned information to analyze fresh datasets, whereas unsupervised models make deductions

from the data. ML algorithms use statistical techniques to categorize and predict data in order to identify both

linear and non-linear correlations within datasets. Notwithstanding obstacles including the need for mathemat-

ical proficiency, high-quality data, and comprehension of intricate algorithms, machine learning (ML) presents

revolutionary possibilities for work automation and enhancing corporate processes.[46, 5]

Figure 1.11: machine learning models and their training algorithms [5]

18

Differences Between Artificial Intelligence and Machine Learning :

Artificial Intelligence Machine Learning

AI enables a computer to mimic human intel-
lect in order to resolve issues.

ML enables a computer to independently learn
from historical data.

The objective is to create a clever system that
is capable of handling challenging jobs.

The objective is to create machines that can
learn from data in order to improve output
accuracy.

We create machines that can do intricate jobs
much like a human.

We use data to educate computers to carry out
certain jobs and provide precise outcomes.

There are several uses for AI. The range of applications for machine learning
is restricted.

AI replicates human decision-making in a sys-
tem by using technology.

To create predictive models, machine learning
(ML) employs self-learning algorithms.

AI can handle any kind of data, including
unstructured, semi-structured, and structured
data.

Only organized and semi-structured data may
be used by ML.

Decision trees and logic are used by AI systems
to learn, reason, and self-correct.

When given fresh data, machine learning (ML)
systems may self-correct based on statistical
models.

Table 1.3: Differences between Artificial Intelligence and Machine Learning
[47]

Figure 1.12: Human learning VS Machine learning [6]

1.7.3 Deep learning

Deep learning, a subset of artificial intelligence (AI), trains computers to analyze data in a way that mim-

ics the human brain’s processing . Deep learning models possess the capability to discern intricate patterns

across various forms of data, including images, text, and audio, facilitating precise insights and predictions.

This methodology enables the automation of tasks traditionally reliant on human intelligence, such as image

description and speech-to-text transcription. [48]

19

Subdomain of Deep Learning

• Artificial Neural Networks (ANNs) : computer models that draw inspiration from the design and

operation of organic neural networks seen in the human brain. Interconnected nodes, or neurons, arranged

in layers—input, hidden, and output layers—make up artificial neural networks (ANNs). [9]

Figure 1.13: The architecture of ANN.[7]

• Deep Neural Networks (DNNs) : deep neural networks (DNNs) are a type of machine learning

algorithms that try to replicate the way the brain processes information. Between the input and output

layers of a DNN are several hidden layers (l). A certain number of units, or neurons, are present in each

layer, which perform a specific functional change on the input. The universal approximation theorem

states that these kinds of models may estimate the behavior of any function. Through a set of weights

(wi,k), a bias (b), and a non-linear activation function (f), the output (y) of a unit (i) in layer (l) is

connected to the output (x) of the previous layer (k) with J outputs. [49]

Figure 1.14: The architecture of DNN.[8]

• Convolutional Neural Networks (CNNs) : are a kind of artificial neural network intended to analyze

time-series data, audio signals, pictures, and other data using a grid-like architecture. The network is able

to extract high-level characteristics and patterns from raw inputs because of the convolutions, pooling, and

non-linear transformations that are performed on the input data by its several layers of linked neurons.

20

Natural language processing, autonomous driving, picture and audio recognition, and other applications

have all shown impressive performance from CNNs. [9]

Figure 1.15: The architecture of CNN.[9]

• Recurrent Neural Networks (RNNs) : are a kind of artificial neural network that uses feedback

loops in its architecture to process input in a sequential fashion. This enables RNNs to forecast or make

judgments based on the current input while preserving a state or recollection of the prior inputs. RNNs

are useful in language modeling, voice recognition, and natural language processing because they can

manage variable-length sequences and capture temporal relationships. [10]

Figure 1.16: The architecture of RNN.[10]

• Long Short-Term Memory Networks (LSTM) : Long Short-Term Memory Networks are sequential

neural networks with deep learning capabilities that preserve information. It is a unique kind of recurrent

neural network that can solve the RNN’s vanishing gradient issue. Hochreiter and Schmidhuber created

LSTM to address the issue brought about by conventional RNNs and machine learning methods. [50]

21

Figure 1.17: The architecture of GAN.

• Generative Adversarial Networks (GANs) : are a kind of deep learning models made up of a

discriminator and a generator neural network. While the discriminator network learns to distinguish

between the created data and the genuine data, the generator network learns to create synthetic data

samples that mimic real data from a training set. GANs employ adversarial training to generate high-

quality synthetic data that may be used for a variety of tasks, including creating images and videos, and

that can be distinguished from actual data. [51]

Figure 1.18: The architecture of GAN.[11]

• Reinforcement Learning (RL) : is a type of machine learning It involves figuring out how to behave

in a situation to maximize benefits. Similar to how toddlers explore their environment and pick up skills

that help them accomplish goals, this ideal conduct is acquired through interactions with the environment

and observations of how it responds.[52]

22

Figure 1.19: The architecture of RL.[12]

• Transfer Learning : a method where a pre-trained deep learning model’s parameters are adjusted on a

smaller dataset to fit a new task or domain. Transfer learning makes use of information gained from one

job to enhance performance on a different one. [53]

Figure 1.20: The architecture of Transfer Learning.[13]

• Attention Mechanisms : Attention mechanisms in deep learning optimize sequential or set-like data

tasks by selectively emphasizing specific input components. They improve handling of long-term de-

pendencies, accommodate variable-length sequences, and prevent overfitting. By computing attention

weights, these mechanisms determine the contribution of each input element to the output, enhancing

model performance. [54]

23

Figure 1.21: The architecture of Transfer Learning.

• Autoencoders for unsupervised learning and feature extraction: One kind of neural network

that may be used for feature extraction and unsupervised learning is an autoencoder. Its objective is

to reassemble the input data by passing through a bottleneck layer in the network’s center. It consists

of an encoder and a decoder. Through this method, significant characteristics from the input data are

extracted and utilized for further tasks like classification and clustering. The network is encouraged to

learn effective representations of the data by the autoencoder, which is taught to reduce the reconstruction

error between the input and the output. [55]

Figure 1.22: The architecture of Transfer Learning.[13]

Advanced Techniques in Deep Learning

Advanced techniques in deep learning encompass a range of methodologies tailored for tasks such as classification,

detection, and segmentation. These techniques leverage complex neural network architectures and optimization

strategies to achieve superior performance in handling intricate patterns and large-scale datasets.

• Classification: is the act of giving a specific label or category to a given input, depending on its

distinctive characteristics. In the domain of image classification, deep learning models are trained using

extensive datasets of labeled pictures to acquire the ability to identify various objects or patterns in images

and accurately give them the appropriate label. This procedure utilizes neural networks and a range of

methods, including convolutional layers, pooling, and activation functions, to extract and modify the

characteristics of the input data into a format suitable for classification. [56]

• Object detection: Object detection is the procedure of identifying the existence of objects in an

image or video and outlining a bounding box around them. The process entails classifying the item and

24

ascertaining its precise position within the picture or video. Typically, this procedure is accomplished

by using object identification algorithms that use deep neural networks to extract features and classify

objects. Deep learning has greatly enhanced the precision and effectiveness of object recognition in many

fields such as surveillance, robotics, and autonomous vehicles. [57]

• Segmentation: picture segmentation refers to the process of dividing an image into many segments or

regions, where each area corresponds to a distinct item or component of the image. This is commonly

done by giving a label to each pixel in the picture, specifying which item or area it belongs to. Deep

learning methods, such as convolutional neural networks (CNNs), have been extensively employed for

image segmentation tasks, and have demonstrated promising results in many applications such as medical

imaging, autonomous driving, and remote sensing. [58]

In general, classification focuses on assigning labels to entire images, detection aims at localizing and labeling

objects within images, and segmentation entails labeling every pixel within an image.

Figure 1.23: Difference between classification, detection and segmentation .[14]

1.8 Datasets(Benchmarks)

In the training phase of machine learning algorithms, data is crucial since it provides the basis for AI to

understand human-like thinking processes. Additionally, data accelerates the learning curve; as algorithms

consume more data, their accuracy increases. With the increased accessibility of datasets nowadays, machine

learning models have experienced a dramatic metamorphosis.

This section will delve into benchmark databases for detection and their details, along with the commonly used

models in each database.

1.8.1 MS COCO dataset :

Microsoft released the MS COCO dataset, which is a large-scale dataset for object identification, picture segmen-

tation, and captioning. The COCO dataset is widely used by machine learning and computer vision researchers

for a variety of computer vision applications. One of computer vision’s main objectives is to understand visual

situations. This includes identifying the items in the picture, localizing them in two and three dimensions,

25

figuring out their characteristics, and describing the relationships between them. As a result, the dataset may

be used to train item identification and classification algorithms. [59]

Figure 1.24: Example of images of MS-COCO [15]

Figure 1.25: Example of annotation of MS-COCO

Figure 1.26: The most popular models used for various tasks on the MSCOCO

1.8.2 PASCAL VOC dataset :

PASCAL VOC (Visual Object Classes) stands as a renowned computer vision dataset, pivotal for tasks like

object detection, segmentation, and classification. Comprising 20 distinct object classes ranging from animals

to household items, it annotates images with bounding boxes and class labels. The dataset is split into training,

with around 11,000 images, and validation, with about 5,000, all annotated with segmentation masks and

26

labels. Serving as a benchmark, PASCAL VOC has spurred advancements in object detection and segmentation

algorithms, shaping the landscape of computer vision research. [60]

Figure 1.27: Example of annotation of PASCAL VOC

Figure 1.28: The most popular models used for various tasks on the PASCAL VOC

1.8.3 ImageNet dataset

The WordNet hierarchy is used to arrange the images in the ImageNet dataset. "Synonym set" or "synset" refers

to any relevant notion in WordNet that may be defined by a group of words or word phrases. WordNet has

more than 100,000 synsets, of which more than 80,000 are nouns. Our goal at ImageNet is to offer each synset

with an average of 1000 photos. Every concept’s image has undergone quality control and human annotation.

When ImageNet is finished, we anticipate that it will provide tens of millions of neatly labeled and arranged

pictures for the majority of the ideas found in the WordNet hierarchy. [61]

27

Figure 1.29: Example of images of ImageNet

Figure 1.30: The most popular models used for various tasks on the open Image

1.8.4 Open Images dataset

Open images is a large dataset with more than 9 million photos and a large number of annotations (15.4

million bounding boxes in 600 categories). With its extensive annotations, this dataset is a goldmine for data-

intensive techniques and is establishing new benchmarks in object recognition. Open Images provides a wealth

of information covering more than 6,000 categories, arranged into subsets for training, validation, and testing.

This allows for the advancement of cutting-edge computer vision algorithms. [62]

Figure 1.31: Example of images of Open Image

28

Figure 1.32: The most popular models used for various tasks on the Open Image

1.9 Conclusion

In summary, this chapter gave a general overview of AI-based assistive technology for the blind. We looked

at the drawbacks of conventional approaches and emphasized how artificial intelligence (AI) may be useful in

helping people with vision impairments overcome their obstacles. We spoke about what the human visual system

is capable of, how we see things in three dimensions, and how deep learning plays a part in creating artificial

intelligence-based solutions. We also covered popular deep learning frameworks and benchmark datasets. This

chapter lays the groundwork for the next chapters, which will go into further detail on the particular AI models

and methods used to increase accessibility and improve the lives of those who are visually impaired.

29

Chapter 2

Real-Time Object Detection with Deep

Learning

2.1 Introduction

object detection is a crucial area of computer vision , which is essential to many applications including self-

driving cars, security systems, and medical diagnostics. Object recognition has been transformed by the use of

deep learning algorithms, which provide previously unheard-of levels of accuracy and efficiency above conven-

tional computer vision methods. This chapter will examine the field of deep learning-driven real-time object

recognition, with an emphasis on popular models like R-CNN, SSD, RetinaNet, and YOLO. We will also look

at how these developments may be used in the real world, especially in creating AI-based aids for those who

are blind or visually impaired. These technologies, which provide real-time support and navigation capabilities,

not only increase accessibility but also greatly improve quality of life. We will also talk about the possibility of

real-time object identification in the future, including the usage of more advanced neural network designs and

the integration of edge computing.

2.2 Real-Time Object Detection

Real-time object detection has become a crucial component of computer vision, focusing on the swift and

accurate identification of objects within images and video streams. This capability is widely used across various

applications, such as autonomous vehicles, robotics, surveillance, and augmented reality. The advent of deep

learning, particularly Convolutional Neural Networks (CNNs), has revolutionized this field by enabling the

autonomous extraction of intricate feature representations from raw pixel data, allowing for robust object

recognition.

Several deep learning-based object detection models have been developed, each with distinct architectures and

advantages. Notable examples include YOLO (You Only Look Once), SSD (Single Shot Multibox Detector),

and Faster R-CNN (Region-based Convolutional Neural Networks). These models strike a balance between

accuracy and speed to address the demands of real-time applications. The real-time object detection process

30

involves collecting and annotating data, training the model, and performing inference, where the models analyze

live video streams or image sequences to generate bounding boxes and class labels for detected objects.

Despite significant advancements, real-time object detection remains an ongoing area of research. Optimization

techniques, such as model quantization and hardware acceleration using GPUs or TPUs, enhance processing

speed and efficiency. Researchers are continuously exploring new algorithms, architectures, and hardware im-

provements to increase model accuracy, efficiency, and adaptability, with the goal of developing robust real-time

object detection systems.

Moreover, real-time object detection supports the creation of assistive technologies for the visually impaired,

including wearable devices that can detect objects and provide auditory or haptic feedback. These innovations

hold the potential to greatly improve the quality of life for individuals with visual impairments by enhancing

their independence and mobility. [63]

There are several features that can influence real-time object detection:

• Model architecture: The selection of model architecture significantly impacts the speed and accuracy of

real-time object detection. To strike a balance between speed and accuracy, neural network architectures

such as YOLO (You Only Look Once), SSD (Single Shot Multibox Detector), and Faster R-CNN (Region-

based Convolutional Neural Networks) are crucial. Each architecture possesses unique features that make

it suitable for different real-time applications.

• Data Quality and Quantity: Effective object detection relies on high-quality and diverse datasets.

Abundant and well-prepared data improve the model’s ability to learn and generalize, enhancing accuracy

in real-world scenarios.

• Hardware Acceleration: Using hardware accelerators like GPUs (Graphics Processing Units) and TPUs

(Tensor Processing Units) significantly boosts processing speed and efficiency. These accelerators handle

the complex computations required for deep learning, enabling real-time inference.

• Algorithm Efficiency: The efficiency of algorithms used for feature extraction, object proposal gener-

ation, and classification directly impacts the speed and accuracy of real-time object detection. Efficient

algorithms are crucial for processing visual data quickly and accurately.

• Environmental Conditions : Real-time object detection can be affected by varying environmental

conditions such as lighting and weather. Robust models must handle these variations to maintain accuracy

in different scenarios.

• Sensor Quality : The quality and capabilities of sensors, including cameras and depth sensors, influ-

ence object detection performance. High-resolution and high-frame-rate sensors provide clearer and more

detailed data, improving detection accuracy.

By considering and optimizing these features, real-time object detection systems can achieve higher accuracy,

faster inference times, and greater robustness across various applications.

31

2.2.1 Accuracy

Accuracy in detecting objects in real time is a sensitive and important criterion, as it directly impacts the

reliability and effectiveness of the application. High accuracy ensures that objects are correctly identified and

localized, which is crucial in critical applications such as autonomous driving, where misdetections or false

positives can lead to severe consequences. Accurate detection also enhances the user experience in assistive

technologies for visually impaired individuals, providing precise and timely information that supports safe

navigation and interaction with the environment. Furthermore, in surveillance and security systems, accuracy

is vital for correctly identifying threats and ensuring appropriate responses. Therefore, optimizing for accuracy

in real-time object detection is essential for maximizing the benefits and minimizing the risks associated with

these technologies.

2.2.2 Frames per second (Fps)

The frame rate, or frames per second (FPS), is a critical factor in real-time object detection, indicating the

system’s efficiency in processing video frames rapidly. Achieving high FPS is essential to reduce latency in

identifying and tracking objects. Factors like algorithm selection, input image resolution, scene intricacy, and

hardware capabilities influence the FPS of an object detection system. To reach high FPS rates, techniques

such as model optimization, parallel computing, and hardware enhancements are employed. Striking a balance

between accuracy and speed is critical for functional real-time object detection systems, with ongoing research

focused on enhancing both aspects.

Figure 2.1: Difference Between 60FPS And 24FPS[16]

2.3 How to choose the best model for object detection system ?

Selecting the most suitable model for an object detection system is a crucial process that involves several key

considerations to ensure both high performance and practical applicability. The selection process must account

for the following factors:

1. Accuracy Requirements: The main goal of an object detection system is to accurately identify and

localize objects within images or video streams. Models like Faster R-CNN, YOLO, and SSD each offer different

trade-offs between precision and speed. Faster R-CNN is renowned for its high accuracy, making it ideal for

applications where precision is crucial. On the other hand, YOLO and SSD strike a balance between accuracy

and speed, providing real-time detection capabilities that are suitable for scenarios where speed is also essential.

32

2. Computational Efficiency: The computational resources available significantly impact the choice of

model. Models like YOLO, which prioritize speed, are optimized for deployment on devices with limited

computational power, such as mobile phones or embedded systems. On the other hand, more complex models

like Faster R-CNN may require robust hardware, including GPUs or TPUs, to process data efficiently.

3. Input Data Characteristics: The nature of the input data, including image resolution and scene com-

plexity, influences model selection. High-resolution images and complex scenes with numerous objects demand

models capable of handling detailed information without compromising on performance. Models should be

evaluated on their ability to maintain high FPS (frames per second) while processing diverse and intricate

datasets.

4. Application Context: The specific use case of the object detection system guides model choice. For

instance, autonomous driving systems necessitate real-time detection with high reliability, favoring models like

YOLO that offer quick responses. In contrast, applications in medical imaging may prioritize accuracy over

speed, thus benefiting from models with higher precision like Faster R-CNN.

5. Scalability and Adaptability: The model’s ability to scale and adapt to different environments and

tasks is also crucial. Transfer learning and fine-tuning capabilities enable models to be repurposed for various

applications with minimal additional training. Models that can be easily adapted to new datasets and evolving

requirements are preferable for long-term use.

6. Robustness to Variability: Ensuring the model’s robustness to changes in lighting, occlusion, and

object variations is essential. Models should be tested extensively under diverse conditions to evaluate their

performance consistency. Techniques such as data augmentation during training can enhance the model’s ability

to generalize across different environments.

In conclusion, selecting the optimal model for an object detection system involves a comprehensive assessment of

accuracy, computational efficiency, input data characteristics, application context, scalability, and robustness.

By meticulously evaluating these factors, researchers and practitioners can identify the most suitable model

that meets the specific requirements and constraints of their application, thereby maximizing the system’s

effectiveness and reliability.

2.4 Object Detection Models

Object detection using deep learning has seen significant advancements, and we will explore several models

that have been developed to assist in navigation, particularly in the context of helping blind people navigate

outdoors.

2.4.1 EfficientDet

• Description: EfficientDet is a family of object detectors that leverage a new model scaling method that

uniformly scales all dimensions of depth/width/resolution using a compound coefficient. It is designed to

achieve a balance between speed, accuracy, and computational efficiency, making it suitable for deployment

on mobile and edge devices. [64]

33

• Use Case for Blind Navigation: Given its efficiency and compact size, EfficientDet can be implemented

in mobile devices or wearable technology that assists blind users in real-time object detection.

2.4.2 MobileNetV2

• Description: MobileNetV2 is a lightweight deep learning model optimized for mobile devices. When

combined with SSD, it provides a powerful yet efficient object detection system that can run on devices

with limited computational resources, making it ideal for portable applications. [65]

• Use Case for Blind Navigation: This combination is perfect for low-power devices like smartphones

or wearable glasses that assist blind individuals by detecting objects in real-time without requiring heavy

computational power.

2.4.3 Faster R-CNN (Region Convolutional Neural Network)

– Description: Faster R-CNN is an advanced object detection model that incorporates a Region

Proposal Network (RPN) to generate region proposals likely to contain objects. It is highly accurate

but slower compared to YOLO and SSD, making it more suitable for applications where accuracy is

prioritized over speed. [66]

– Use Case for Blind Navigation: Faster R-CNN could be used in applications where accuracy in

detecting and classifying objects is critical, possibly in scenarios where blind users need to identify

specific objects, like bus stops or traffic signs.

2.4.4 SSD (Single Shot MultiBox Detector)

– Description: SSD is another popular object detection model known for balancing speed and ac-

curacy. It detects objects in images in a single pass, without requiring a region proposal network,

which makes it faster than traditional methods. SSD is particularly effective for detecting multiple

objects of different scales within an image. [67]

– Use Case for Blind Navigation: SSD’s ability to quickly detect multiple objects makes it ideal

for outdoor navigation systems where real-time processing is crucial.

2.4.5 RetinaNet

– Description: RetinaNet is a popular object detection model that addresses the problem of class

imbalance in object detection by introducing a new loss function called "Focal Loss." This makes it

particularly effective at detecting small objects and handling difficult cases where certain classes are

underrepresented. RetinaNet offers a good balance between speed and accuracy. [68]

– Use Case for Blind Navigation: RetinaNet is useful in scenarios where detecting smaller or less

prominent objects (like curbs or small obstacles) is essential for safe navigation. It can be deployed in

wearable devices or mobile applications that assist visually impaired individuals by detecting these

objects in real-time.

34

2.4.6 YOLO (You Only Look Once)

The YOLO (You Only Look Once) method revolutionized object identification with its precise and efficient

approach. It was first reported in the publication "You Only Look Once: Unified, Real-Time Object

Detection" by Joseph Redmon et al. in June 2016[17]. In contrast to conventional techniques, YOLO

does not need region suggestions since it can anticipate bounding boxes and class probabilities directly

in a single assessment. The network makes accurate predictions by reasoning globally across all objects

by using the attributes of the whole picture. Predicting bounding boxes for every class at the same time

improves detection unity and efficiency. Faster inference times are achieved by enabling collaborative

training of the whole detection pipeline via the end-to-end (Figure 2.2) learning of the YOLO network.

Amazingly, YOLO maintains a high average accuracy in spite of its real-time speed, which makes it ideal

for a variety of applications.

Figure 2.2: YOLO model architecture [17]

There are 2 fully linked layers and 24 convolutional layers in the network design. For picture classification,

it draws inspiration from the GoogLeNet model, however it uses different initialization modules. YOLO,

on the other hand, uses 3x3 convolutional layers after 1x1 reduction layers. With this improvement, YOLO

can accurately identify objects in real-time and offers a single method for completing the job.

The YOLO algorithm model is divided into three stages:

– Image Division into Cells: The image is split into a grid of size S x S, such as 3 x 3 in this example,

resulting in a total of N cells. Each cell in the grid is responsible for detecting objects within its

assigned region.

Figure 2.3: Divide the image into (S*S) grid.

– Each cell predicts B bounding boxes: After dividing the image into N cells, each cell in the

grid predicts B bounding boxes along with confidence scores for those boxes. Each bounding box

35

prediction consists of five components: x, y, w, h, and confidence. The coordinates (x, y) represent

the center of the box relative to the boundaries of the grid cell. The width and height predictions

(w, h) are given relative to the entire image. Lastly, the confidence score reflects the Intersection

over Union (IoU) between the predicted box and any ground truth box. [17]. Example: Imagine

that the picture is split into a 3x3 grid of cells (S=3). The prediction is done for a single bounding

box (B=1) in each cell, and the objects that are present are either people (2 in this case) or horses

(1 in this case). For every cell, the CNN predicts a vector Y. (Figure 2.4).

Figure 2.4: The predicted vector in the case of a single box.

The values of vector Y in the YOLO format are calculated as follows:

∗ Pc: The confidence prediction represents the Intersection over Union (IoU) between the predicted

box and the ground truth box.

∗ bx: Computed as (x - h’) / h’

∗ by: Computed as (y - w’) / w’

∗ bh: Computed as h / 416

∗ bw: Computed as w / 416

∗ Intersection over Union (IoU): Intersection over Union (IoU) is a widely used evaluation

metric in object detection. It measures the overlap between the predicted bounding box and

the ground truth box , it acts as a gauge for forecast accuracy. A precision criterion is chosen

in order to assess the performance [69] . The area of intersection divided by the area of union,

or IoU (Figure 2.5) , provides important information about the accuracy of object detection

predictions.

Figure 2.5: Intersection over union.

36

In the training phase, the projected bounding box’s confidence is assessed by comparing its

Intersection over Union (IoU) score to that of the ground truth box. figure 2.6, provides instances

of both high and low IoU scores. It is clear that greater points are awarded to projected bounding

boxes that show a significant overlap with the ground truth boxes, while lower values are given

to those that show less overlap.

Figure 2.6: Examples of IoU.

∗ Anchor Box : In the preceding instance, we examined the situation in which a single bounding

box was anticipated. On the other hand, YOLO uses anchor boxes to deal with situations when

there are many bounding boxes in a single grid cell. Each cell is represented by a vector, as was

previously explained. The vector is changed to provide room for the extra bounding boxes when

a cell contains more than one box.

Figure 2.7: The predicted vector in the case of multiple boxes in the cell.

Generally speaking, each individual cell in the S × S grid that we create from the picture predicts

B bounding boxes, the related confidence scores, and the class probabilities C. Next, a tensor

with dimensions is encoded using these predictions. .[17]

Figure 2.8: A tensor that specifies the bounding box

37

∗ Non Maximum Suppression : is used as the last step of the detection process when more

than one bounding box finds the same item in the picture. Its goal is to keep just the most

accurate bounding box after removing the less probable ones. To do this, the approach consists

of five phases.[18]

· Step 1: Select the bounding box with the highest confidence score as the initial choice.

· Step 2: Assess the overlap (Intersection over Union) between this chosen box and the other

boxes.

· Step 3: Remove bounding boxes that have an overlap (Intersection over Union) exceeding

50%.

· Step 4: Proceed to the next bounding box with the highest confidence score.

· Step 5: Repeat steps 2 through 4 until all objects in the image have been addressed.

Figure 2.9: The output after different steps of NMS [18]

YOLOv2 Model

Joseph Redmon and Ali Farhadi set out to enhance the YOLO (You Only Look Once) model in December

2016 with the goal of making it more resilient, quick, and efficient. As a result, YOLOv2, a major

improvement over the original YOLO system, was created. A unique multi-scale training technique, one

of the many enhancements introduced by YOLOv2, enables the model to operate well at varying scales

while providing a balance between speed and accuracy. YOLOv2 outperforms state-of-the-art techniques

like SSD and quicker R-CNN with ResNet, achieving 76.8 mAP at 67 FPS and 78.6 mAP at 40 FPS on

the PASCAL VOC 2007 dataset while retaining quicker processing rates.

Additionally, YOLOv2 integrates object detection and classification tasks into a unified training approach.

By training on both the ImageNet classification dataset and the COCO detection dataset, YOLOv2 can

predict detections for classes that lack labeled detection data. This is demonstrated by YOLO9000 (an

extension of YOLOv2), which achieves a mean average precision (mAP) of 19.7 on the validation set with

only 44 out of 200 classes having detection data, and 16.0 mAP for the remaining 156 classes not included

in COCO.

By expanding its detection capabilities to more than 9000 item types, YOLO9000 demonstrates how ef-

fective and thorough detection algorithms may make use of large amounts of classification data. This

development highlights the potential of YOLOv2 in applications that need fast and precise object recog-

nition across a variety of categories. [70].

38

Figure 2.10: YOLOv2 architecture[19]

YOLOv3 Model

YOLOv3, an enhanced iteration of the YOLO (You Only Look Once) object detection paradigm, was

unveiled by Joseph Redmon and Ali Farhadi in 2018 [71]. With a number of design changes, this up-

date sought to improve the model’s efficiency and accuracy. Even with its improved accuracy, YOLOv3

maintains the speed of its predecessors. With a mean Average Precision (mAP) of 28.2, it runs at 320 x

320 resolution in 22 milliseconds, three times quicker than SSD. YOLOv3 outperforms RetinaNet, which

hits 57.5 AP50 in 198 milliseconds, by achieving 57.9 AP50 for the.5 Intersection over Union (IOU) mAP

detection measure in 51 milliseconds on a Titan X. With a successful combination of speed and accuracy,

this new version further demonstrates the promise of the YOLO framework for real-time object recogni-

tion. The fact that the whole code and trained models are accessible online encourages improvements and

uses in a range of computer vision applications.

Figure 2.11: YOLOv3 Architecture

YOLOv4 Model

The improved YOLOv4 (You Only Look Once) object identification model was presented by Alexey

Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao in 2020. The goal of this iteration was to

improve the model’s efficiency and accuracy for real-time applications. YOLOv4 incorporates several

advanced features, such as Mish activation, Cross mini-Batch Normalization (CmBN), Weighted-Residual-

Connections (WRC), Cross-Stage-Partial-connections (CSP), and Self-adversarial-training (SAT). With

these improvements , YOLOv4 can operate at about 65 frames per second (FPS) on a Tesla V100 GPU and

achieve impressive performance, with a 43.5% Average Precision (AP) and 65.7% AP50 on the MS COCO

dataset. YOLOv4’s main objective is to provide an extremely accurate and efficient object recognition

39

model that can run in real-time on traditional GPUs, enabling sophisticated object identification to be

used in a variety of applications. [72]

Figure 2.12: YOLOv4 Architecture [20]

YOLOv5 Model

The creator and CEO of Ultralytics, Glenn Jocher, created the object detection model YOLOv5 in 2020.

YOLOv5, which was developed using PyTorch, builds on the improvements made in YOLOv4 and has

a modified CSPDarknet53 backbone, a neck that uses SPPF and a modified CSP-PAN, and a head that

resembles YOLOv3.

The Ultralytics AutoAnchor algorithm, which dynamically modifies anchor boxes to better match the

dataset and training parameters, is one of the main advances in YOLOv5. In order to strengthen stability

against runaway gradients, YOLOv5 also adds a number of augmentations, including MixUp, random

affine, Mosaic, and HSV augmentation.

YOLOv5 provides many scaled variants (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) to

accommodate varying hardware limitations and application requirements. These variations range in width

and depth from high-performance models geared for speed to lightweight ones for devices with limited

resources.

In general, YOLOv5 offers improved object recognition skills, real-time performance, and a speed-accuracy

trade-off that is well-balanced. It has a large and vibrant community of contributors and is actively

updated, open source, and supported by Ultralytics.[73]

Figure 2.13: YOLOv5 Architecture [21]

40

YOLOv6 Model

YOLOv6, introduced in 2022, improves upon earlier versions with enhanced network design and training

methods, striking a balance between speed and accuracy. It features a Bi-directional Concatenation (BiC)

module in the neck for better localization and the SimCSPSPPF block, which simplifies the SPPF block

for faster performance. YOLOv6 also uses anchor-aided training (AAT), blending anchor-free and anchor-

based paradigms while maintaining inference efficiency. Additionally, it extends the backbone and neck

for improved COCO dataset performance. A self-distillation approach enhances smaller models, with the

RepBi-PAN design ensuring precise localization, especially for small objects.

YOLOv6 offers many models to meet different requirements. For example, YOLOv6-N can obtain 37.5%

AP at 1187 FPS on the COCO dataset, while YOLOv6-S can get 45.0% AP at 484 FPS, exceeding other

standard detectors of comparable size. While still retaining competitive inference rates, models like as

YOLOv6-M and YOLOv6-L provide even greater accuracy, hitting 50.0% and 52.8% AP, respectively.

In terms of object detection, YOLOv6 is a major advancement as it combines real-time performance with

great accuracy. In keeping with the tradition of the YOLO series, it is actively updated, open source, and

supported by the YOLO community, offering state-of-the-art solutions for both research and real-world

applications [74].

Figure 2.14: YOLOv6 Architecture [22]

YOLOv7 Model

YOLOv7, released by WongKinYiu and Alexey Bochkovskiy in 2022, sets a new standard in object detec-

tion with its balance of speed and accuracy. It operates at 5-160 FPS, achieving 56.8% AP at 30+ FPS

on an NVIDIA V100 GPU, outperforming all real-time detectors. The YOLOv7-E6 variant reaches 55.9%

AP at 56 FPS, surpassing models like ConvNeXt-XL and SWIN-L Cascade-Mask R-CNN.

YOLOv7’s standout feature is its use of only the MS COCO dataset for training, without additional

datasets or pre-trained weights. It includes innovations such as anchor-aided training, the SimCSPSPPF

block for better representation, a BiC module for localization, and a self-distillation approach for smaller

models. YOLOv7’s optimized modules and "trainable bag-of-freebies" enhance accuracy without adding

41

inference costs, making it a leading model in real-time object detection.[75]

Figure 2.15: YOLOv7 Architecture [23]

YOLOv8 Model

YOLOv8 was created by Ultralytics in January 2023 [24]. Its architecture, which consists of a head,

neck, and backbone, is identical to that of YOLOv5. But with a more sophisticated detection head and

improved convolutional layers in the backbone, YOLOv8 offers a number of advancements that make it

a superior option for real-time object recognition. Additionally, it supports a number of computer vision

methods, including instance segmentation, which makes it possible to identify many objects in pictures or

movies.

The Darknet-53 backbone network, which powers YOLOv8, is quicker and more precise than the YOLOv7

network. It predicts bounding boxes using an anchor-free detection head, which increases efficacy. More

features and a better convolutional network help the model perform faster and more accurately. Moreover,

YOLOv8 uses feature pyramid networks to identify objects with varying sizes.

Moreover, YOLOv8 provides an intuitive API that makes it easier to implement in a variety of applica-

tions. With its enhanced convolutional layers, enhanced architecture, and enhanced detection capabilities,

YOLOv8 is a potent solution for real-time object identification workloads.

Figure 2.16: YOLOv8 Architecture [24]

YOLO NAS Model

Deci.ai has developed a state-of-the-art object detection model called YOLO-NAS [25], which outperforms

YOLOv6 and YOLOv8 in terms of mean average precision (mAP) and inference delay. Pre-trained on

datasets like COCO and Objects365, YOLO-NAS is suitable for real-world applications. The model is

available through Deci’s Super Gradients library, providing pre-trained models for various computer vision

tasks.

YOLO-NAS employs Neural Architecture Search (NAS), specifically Deci’s AutoNAC technology, to au-

tomate the design of the neural network architecture. This approach optimizes stage sizes, topologies,

42

block types, and the number of channels, balancing accuracy, computational complexity, and model size

while considering hardware and data constraints.

The model incorporates Quantization-Aware RepVGG (QA-RepVGG) blocks to enable Post-Training

Quantization (PTQ), minimizing accuracy loss through 8-bit quantization and reparameterization. YOLO-

NAS uses a hybrid quantization method to optimize performance, balancing accuracy and latency. Addi-

tionally, attention mechanisms and inference time reparametrization further enhance the model’s real-time

object detection capabilities. [76]

Figure 2.17: YOLO NAS Architecture [25]

2.5 Conclusion

We have studied the area of deep learning for real-time object identification in this chapter. We spoke about

the importance of object detection in a variety of applications, including surveillance systems, medical

imaging, and self-driving automobiles. The YOLO model, which is a kind of deep learning approach, has

significantly improved object identification efficiency and accuracy.

We have selected YOLOv8 as the paradigm for our notion in this area. one of the newest version of the

YOLO series is called YOLOv8, and we will examine its intricate architecture as well as its features and

capabilities in the next chapter.

In conclusion, computer vision has been completely transformed by real-time object identification with the

YOLO paradigm. It is a great option for real-time applications because to its single-pass image processing

capability. A look at YOLOv8’s comprehensive architecture and its consequences for object detection will

be covered in the next chapter.

43

Chapter 3

Conception

3.1 Introduction

In this chapter We will explore the YOLOv8 model’s intricate architecture as well as the procedures for

getting data ready and training the model for our system . This procedure is essential to creating a

system that offers real-time item detection and identification to blind people. We will also examine the

architecture and operation of the system, showing how it provides users with precise and rapid support.

3.2 What makes YOLO a better choice for Object Detection ?

YOLO (You Only Look Once) is a widely recognized object detection model, celebrated for its real-time

performance and accuracy. Here are the key differences and strengths of YOLO compared to other object

detection models:

– Single-shot detection : YOLO is a one-shot object detection model that completes both object

classification and detection in a single network run. In contrast, numerous passes or area suggestions

are needed for two-shot or multi-shot models like Faster R-CNN. YOLO is much quicker than many

other object identification techniques since it is a single-shot model.

– Speed : YOLO is a real-time object detection system that processes photos and videos quickly. In

order to do this, the input picture is divided into a grid of cells using a fully convolutional architecture,

where each cell predicts a certain number of bounding boxes and the class probabilities that go along

with it. Because of its speed advantage, YOLO is a good fit for applications like live video analysis,

autonomous driving, and video surveillance that need for quick inference times

– Simplicity : Comparing YOLO’s design to other intricate object detection models such as Faster

R-CNN or Mask R-CNN, it is comparatively simple and easy to comprehend. It is composed of fully

connected layers for class probabilities and bounding box predictions, after a sequence of convolutional

layers. YOLO is easy to train, deploy, and adjust for a variety of applications due to its simplicity.

– Multi-scale predictions : YOLO performs predictions at various spatial resolutions by utilizing

feature maps from different network layers, enabling detection at multiple scales . With the use of

44

this multi-scale technique, YOLO can handle items at multiple scales and identify objects of varying

sizes, which makes it adaptable to a variety of situations.

– High accuracy : Even while it may not always reach the same degree of accuracy as certain

cutting-edge models like Cascade R-CNN or EfficientDet, YOLO has shown comparable accuracy

on a number of benchmark datasets. Yolo is a popular option for many real-time object detection

applications because of its ability to balance speed and accuracy, particularly in situations when

prompt reaction is essential.

– Objectness score : YOLO introduces the concept of an "objectness" score, which represents the

probability that an object is present in a bounding box. This score helps filter out low-confidence

detections and reduces false positives, thereby improving the reliability of the detection results.

– Unified Detection Framework : YOLO optimizes a combined loss function that addresses both

localization (bounding box regression) and classification tasks simultaneously. This unified approach

allows YOLO to treat object detection as a single problem, making it more computationally efficient

and easier to implement. However, it’s important to note that this unified method may not achieve

the same performance as two-stage models, which handle each task separately.

YOLO has a large and active community, contributing to its continuous improvement. Each version

of YOLO (e.g., YOLOv1, YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, YOLOv8, and

recently YOLONAS and YOLOv9 And YOLOv10) introduces enhancements and modifications to the

original architecture. These advancements further refine the accuracy, speed, and usability of YOLO for

diverse object detection tasks.

Figure 3.1: Comparing YOLOv8 to Other YOLO Models: A Comparative Analysis.[26]

3.3 Global architecture

These are the main steps in our system’s process, as illustrated in the global architecture figure 3.6 .

45

Data Collection

Data Preprocessing

Model Configuration

Train Model on Data

Select Best Weights

Validation/Test

Prediction

Feedback IoT

Data Acquisition

Pre trained model

Colab/GPU

Colab/GPU, RPI4/CPU

Camera

Update

Figure 3.2: Global architecture

3.4 Data Acquisition

The Data Acquisition module is designed for optimal camera placement, either on a chest holder or a head-

mounted device, to capture the most relevant environmental data for our system. This setup allows the

Kinect camera to continuously collect RGB images and depth information from the user’s surroundings.

The chest or head mounting ensures a stable and consistent field of view, crucial for accurate object

detection and depth estimation. The RGB images provide visual context, while the depth data adds a

critical third dimension, enabling our model to not only identify objects but also determine their distance

from the user. This real-time data stream is essential for the system’s ability to assist visually impaired

users in navigating their environment safely and effectively.

46

Figure 3.3: RGB Image VS Depth Image

3.5 Data preparation

3.5.1 Data collection

Choosing a dataset was not a straightforward task, as we aimed to create a large database of images for

detecting outdoor objects. We considered using object detection performance tests to aid in building the

database, but this proved challenging. Our goal was to simplify the labeling process and assist people in

navigating outdoor environments more freely. Initially, we attempted to select subclasses from ImageNet,

OpenImages, or COCO. However, due to the enormous size of these databases, we were unable to load

them, making it difficult to create new subclasses. Next, we tried merging the PASCAL VOC database

with MS COCO, but we encountered issues with overlapping classes and significant differences between

samples within each class. Following this, we explored datasets specifically designed for the visually

impaired. Fortunately, we discovered a dataset that includes the most crucial items commonly found on

roads, captured from the perspective of an average person. This dataset, named ’ WOTR A Dataset

for the Visually Impaired Walk on the Road ’ [77], contains 13,928 images , which includes 15 types

of common obstacles and 5 types of road judging objects 3.4, Covering two major scenarios of walking

on the road and crossing the road covering that individuals with visual impairments should be aware of,

whether to avoid or follow. Additionally, we added a class for potholes [78] The dataset contains 665

images with bounding box annotations provided in PASCAL VOC format , which pose a significant

help to visually impaired pedestrians.

47

Label Total Train Test Val

Image BBox Image BBox Image BBox Image BBox

Tree 6462 22515 4322 15613 1120 3667 1020 3235
Reflective cone 1308 4125 840 2549 243 819 225 757
Ashcan 2267 2857 1495 1869 405 524 367 464
Warning column 3118 10431 2115 7099 514 1681 489 1651
Roadblock 1093 4402 741 2978 185 728 167 696
Pole 8569 31144 5610 21120 1536 5240 1423 4784
Fire hydrant 1306 1384 856 905 232 246 218 233
Pedestrian 7708 35245 5069 23288 1349 6099 1290 5858
Dog 786 1022 511 665 148 193 127 164
Bicycle 3101 5995 2076 4015 530 992 495 988
Bus 1360 1788 855 1118 254 358 251 312
Truck 2555 3537 1653 2289 478 657 424 591
Car 7353 27585 4862 18372 1293 4841 1198 4372
Motorcycle 4295 12163 2859 8066 754 2205 682 1892
Tricycle 1331 1580 861 1025 248 295 222 260
Red light 3102 4961 2045 3242 550 873 507 846
Green light 2972 4965 1937 3269 548 902 487 794
Crosswalk 5268 8558 3491 5737 933 1493 844 1328
Tactile paving 1723 2381 1161 1599 296 410 266 372
Sign 2549 3360 1665 2189 467 625 417 546
Total 13928 189998 9056 127007 2534 32848 2338 30143

Table 3.1: WOTR dataset statistics
[79]

Figure 3.4: Object categories in the WOTR dataset
[79]

48

Figure 3.5: Some Pictures form Pothole dataset

3.5.2 Data preprocessing

Figure 3.6: Data Preprocessing

1. Extract and Convert Bounding Box Coordinates

In the first step, the bounding box coordinates (xmin, ymin, xmax, ymax) are extracted from the XML

files of the COCO dataset. These coordinates are then converted into the YOLO format, which includes

the class index and normalized values for the bounding box center (x_center, y_center) and its dimensions

(width, height). The resulting YOLO labels are formatted as: class_index x_center y_center width

height.

– x_center: Calculated as (xmin + xmax)/(2 × image_width).

– y_center: Calculated as (ymin + ymax)/(2 × image_height).

– width: Calculated as (xmax − xmin)/image_width.

– height: Calculated as (ymax − ymin)/image_height.

49

2. Divide Images and Labels

In the second step, the images in the JPEGImages folder are divided into val and train sets based on the

lists in the imageSets text files. Corresponding YOLO label text files are also divided accordingly. The

result is two main directories, val and train, each containing an images folder with the respective images

and a labels folder with the corresponding YOLO format label text files.

Figure 3.7: WOTR format conversion to WOTR-Yolo Format

3.5.3 challenges faced in data preparation

When collecting and processing data, several important characteristics should be considered. Here are

some key points to keep in mind :

1. Class Imbalance: There may be a substantial difference in the number of instances for each class.

Common things such as cars and people, may make up the majority of the collection but uncommon

objects, such as fire hydrants and potholes, may be underrepresented.

Impact : This imbalance can lead to a model that is biased towards the more frequent classes,

resulting in poor performance on the underrepresented classes.

2. Annotation Quality and Consistency : It may be difficult to guarantee consistent and high-

quality annotations, particularly when working with big datasets. All objects must have exact bound-

ing boxes in their annotations.

Impact : Since the model learns from these annotations, poor annotation quality may drastically

reduce model performance. During training, the model may get confused by inconsistent annotations.

3. Handling Diverse Scenarios : The collection comprises items situated in several contexts, includ-

ing varying lighting conditions, weather patterns, and backdrops.

Impact : A model that was trained on a non-diversified dataset may not be able to adapt adequately

to novel or untested situations. Robust model performance depends on ensuring that the dataset

encompasses all potential situations.

4. Object Occlusion and Overlap : In real-world photographs, objects often obscure one another.

For instance, a bus may block a person or a bicycle.

Impact : As a result, the model may find it challenging to correctly identify and categorize obscured

items. To tackle these circumstances, appropriate augmentation and annotation procedures are

required.

50

5. Normalization and Conversion Accuracy : Precise computations are necessary to guarantee

accuracy when converting bounding box coordinates from the source format (such as COCO) to the

YOLO format.

Impact : Any mistakes made during this conversion procedure might result in inaccurate bounding

box estimations, which would be detrimental to the model’s functionality.

6. File Management and Organization : It might be difficult to manage the whole dataset structure,

make sure that each picture has a matching label file, and properly organize files into training and

validation sets.

Impact : Inadequate file management might result in mistakes and inconsistencies during model

training, such as missing files or labels that are not aligned.

7. Managing Big and Small Items : The items in the collection range in size from little ones like

reflecting cones and poles to big ones like buses and trees.

Impact : To guarantee that the model can recognize items of varied sizes with accuracy, meticulous

annotation and maybe distinct augmentation techniques are needed to address the different scales.

3.6 YOLOv8 architcture

YOLOv8, the latest version of the YOLO model family, is designed to handle advanced computer vision

tasks such as instance segmentation, object detection, and image classification. Developed by the same

team behind YOLOv5, YOLOv8 brings significant architectural improvements and an enhanced developer

experience.

Key upgrades to YOLOv8’s design include advancements in the head, neck, and backbone components

compared to earlier YOLO models. The architecture incorporates more efficient convolutional layers,

which increase both the speed and accuracy of the model. One of the standout features of YOLOv8 is its

ability to handle instance segmentation, allowing it to not only detect objects but also differentiate between

multiple instances of the same object within an image or video. This makes it particularly well-suited for

real-time object detection in dynamic environments.

The backbone of YOLOv8, based on the Darknet-53 network, delivers superior performance over its

predecessor, YOLOv7. It benefits from a larger feature map, which helps the model better capture

details and improve its object detection capabilities. YOLOv8 also employs an anchor-free detection

head, simplifying the process of predicting bounding boxes and further boosting detection accuracy.

In addition to its architectural improvements, YOLOv8 is built with user experience in mind. It features

an intuitive API that simplifies its integration into various applications, making it accessible to both

beginners and experts in the field of computer vision. The model also uses feature pyramid networks

(FPN) to detect objects of varying sizes, enhancing its versatility across different scenarios.

Overall, YOLOv8’s improvements in speed, accuracy, and ease of use make it a powerful tool for tackling

the latest challenges in object detection and instance segmentation.[80]

51

Figure 3.8: YOLOv8 Architecture.[26]

3.6.1 What are the main features in YOLOv8?

YOLOv8 introduces improvements in both its architecture and development experience.

Anchor-Free Detection In contrast to traditional models that use anchor boxes to predict offsets from

predefined anchors, YOLOv8 adopts an anchor-free approach. The model directly predicts the center of

an object, eliminating the need for anchor boxes. This simplification enhances the detection process and

improves accuracy.

52

Figure 3.9: Visualization of an anchor box

New Convolutions

The convolutional layers in YOLOv8 have been significantly upgraded. The initial 6x6 convolution in

the stem is replaced by a more efficient 3x3 convolution. Additionally, the main building block has been

modified, with C2f substituting C3. The C2f module concatenates the outputs from all Bottleneck units,

which include two 3x3 convolutions with residual connections. unlike C3, which only uses the output of

the last Bottleneck unit. This change improves feature extraction and model performance.

Figure 3.10: New YOLOv8 C2f module [27]

Modified Kernel Size

Although the Bottleneck structure remains the same as in YOLOv5, YOLOv8 changes the kernel size of

the initial convolution from 1x1 to 3x3. This adjustment brings the model closer to the ResNet block

architecture, improving its ability to capture detailed features in the image.

53

Efficient Feature Concatenation

In the neck section of YOLOv8, features are concatenated directly without preserving the same channel

dimensions. This reduces the number of parameters and the overall tensor size, making the model more

efficient and contributing to faster inference times.

3.7 Model configuration

The model setup includes the backbone network architecture, feature pyramid construction, anchor sizes

and ratios, loss functions, input image size, confidence thresholds, and post-processing methods such

as Non-Maximum Suppression (NMS). Further details are illustrated in the figure 3.8. These setup

parameters are critical because they control the model’s general behavior during inference and training,

as well as its speed, accuracy, and performance. The accuracy and efficiency of the model’s object detection

may be greatly impacted by fine-tuning and refining the model design.

3.7.1 choose the best model

There are five YOLOv8 models. Table 3.11 illustrates the accuracy and key metrics of these model’s

performance on the MSCOCO dataset .

Figure 3.11: YOLOv8 COCO evaluation[28].

Figure 3.11 provided from the official Ultralytics website illustrates the variations among five YOLOv8

models in terms of efficiency, speed, FLOPS (floating-point operations per second), and the number of

parameters. Each model offers a different balance between these factors:

– Smaller Models: These models, while faster in execution, tend to have fewer parameters and lower

FLOPS, which results in quicker processing times but reduced accuracy. The trade-off here is that

although they are ideal for applications requiring high-speed performance, they may not achieve the

level of precision needed for detailed object detection tasks.

– Larger Models: In contrast, larger YOLOv8 models have more parameters and higher FLOPS,

leading to greater accuracy in detection. However, this increased accuracy comes at the expense of

54

slower execution speeds. These models are more suitable for scenarios where precise object identi-

fication is critical, but they may not meet real-time performance requirements due to their longer

processing times.

Given that our goal is to assist visually impaired individuals, we need to strike a balance between speed

and accuracy. Therefore, the medium-sized YOLOv8 models are selected. These models offer a rea-

sonable compromise, providing sufficient accuracy without the high computational demands and longer

processing times of the larger models. This balance ensures that the system can perform effectively in

real-time scenarios while still delivering the precision necessary for reliable object detection and navigation

assistance.

3.7.2 Augmentation

Augmentation settings are crucial for enhancing the training dataset, which, in turn, improves the effec-

tiveness, speed, and accuracy of YOLO models. By transforming the training data, these settings help

generate a more diverse and representative dataset, leading to better model performance. Key variables in

augmentation include transformation type, intensity, probability, additional characteristics, dataset size,

composition, and task specificity.

A well-designed augmentation strategy involves careful adjustment and testing of these variables to create

a robust training dataset. This process helps in training a more effective YOLO model by increasing the

variety of the data.

Some of the augmentation parameters used include:

– HSV-Hue, HSV-Saturation, and HSV-Value: Adjustments to the hue, saturation, and value

of images to enhance color diversity.

– Rotation: Rotating images to provide different viewing angles.

– Translation: Shifting images horizontally or vertically to simulate movement.

– Scale: Changing the size of objects to introduce variability in object size.

– Shear: Applying shear transformations to alter the shape of objects.

– Perspective: Adjusting the perspective to simulate different viewpoints.

– Flip Up-Down and Flip Left-Right: Flipping images to create mirror effects.

– Mosaic: Combining multiple images into a single mosaic to increase dataset variety.

– Mixup: Blending two images to create a new, combined image.

– Segment Copy-Paste: Copying and pasting segments from one image to another to enhance object

diversity.

The precise values assigned to each parameter determine the extent of the modifications applied to the

images during training. By fine-tuning these augmentation parameters, researchers and practitioners can

effectively improve the quality and diversity of the training dataset. This results in YOLO models that

are more effective and accurate in object recognition tasks, making them more valuable for practical

applications.

55

3.8 Train model on our data

3.8.1 Hyperparameter Choices to Train YOLOv8

Here are some key points explaining our hyperparameter choices during training:

– Batch Size: The batch size refers to the number of samples processed in a single training iteration.

It affects both training time and memory usage. While a larger batch size can speed up training, it

requires more memory. We have chosen a batch size of 16.

– Learning Rate: The learning rate controls the step size during the optimization process. A high

learning rate may cause the model to overshoot the optimal solution, whereas a low learning rate

might lead to slow convergence. We set the learning rate to 0.01.

– Image Size: The size of the images used for training impacts both model performance and training

time. Larger image sizes can enhance model accuracy but demand more memory and processing

power. We use an image size of 640x640.

– Number of Epochs: The number of epochs indicates how many times the entire dataset is passed

through the model during training. We have set the number of epochs to 40.

– Data Augmentation: Techniques such as random cropping, flipping, rotation, and color distortion

are used to increase the diversity of the training data and improve the model’s robustness.

– Weight Decay and Momentum: These regularization techniques help prevent overfitting and

enhance the model’s generalization. We use a weight decay of 0.0005 and a momentum of

0.8.

– Optimizer: The optimizer determines the algorithm used for training. We employ the Adam

optimizer, which integrates the benefits of Adagrad and RMSprop. The optimizer is set to auto.

Other factors that may affect the training process :

56

Key Description and Value
model we set the Path to model file, Value= yolov8m.pt
data Set the Path to data file, Value=data_blind_ind-oor_v1500.yaml
patience Epochs to wait for no observable improvement for early stopping of train-

ing, Value= 50
save Save train checkpoints and predict results, Value=True
save_period Save checkpoint every x epochs (disabled if < 1), Value= -1
cache True/ram, disk or False. Use cache for data loading, Value+ False
device Device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu,

Value= None
workers Number of worker threads for data loading (per RANK if DDP), Value=

8
project Project name, Value= None
name Experiment name, Value= None
exist_ok Whether to overwrite existing experiment, Value= False
pretrained Whether to use a pretrained model, Value= False
verbose Whether to print verbose output, Value= False
deterministic Whether to enable deterministic mode, Value= True
single_cls Train multi-class data as single-class, Value= False
rect Rectangular training with each batch collated for minimum padding,

Value= False
cos_lr Use cosine learning rate scheduler, Value= False
resume restarting the last checkpoint’s training, Value= True
amp Automatic Mixed Precision (AMP) training, choices=[True, False],

Value= True
fraction Dataset fraction to train on (default is 1.0, all images in train set), Value=

1.0
profile Profile ONNX and TensorRT speeds during training for loggers, Value=

False
lr0 Initial learning rate (i.e. SGD=1E-2, Adam=1E-3), Value= 0.01
lrf Final learning rate (lr0 * lrf), Value= 0.01
warmup_epochs Warmup epochs (fractions ok), Value= 3.0
warmup_moment-
um

Warmup initial momentum, Value= 0.8

warmup_bias_lr Warmup initial bias lr, Value= 0.1
box Box loss gain, Value= 7.5
cls Cls loss gain (scale with pixels), Value= 0.5
dfl Dfl loss gain, Value= 1.5
pose Pose loss gain (pose-only), Value= 12.0
kobj Keypoint obj loss gain (pose-only), Value= 2.0
nbs Nominal batch size, Value= 64
overlap_mask Masks should overlap during training (segment train only), Value= True
mask_ratio Mask downsample ratio (segment train only), Value= 4
val Validation and testing are integral parts of the training process, Value=

True

Table 3.2: YOLOv8 Training Configuration.[29]

3.8.2 Loss Function

The YOLOv8 loss function integrates several components to address various aspects of object detection.

It includes three main elements:

1. Localization Loss: This measures the difference between the predicted and actual bounding box

coordinates (x, y, width, height). YOLOv8 employs either Mean Squared Error (MSE) or Smooth

L1 loss to evaluate localization accuracy.

57

2. Confidence Loss: This assesses the accuracy of the predicted objectness score for each bounding

box, using binary cross-entropy loss to compare the predicted score with the ground truth.

3. Class Loss: This component handles the classification task by calculating the difference between

predicted class probabilities and the actual class labels, using categorical cross-entropy loss.

The overall loss function is a weighted sum of these components, with weights adjusted according to their

importance and impact on the final loss. The significance of each component can be modified by scaling

their respective losses.

3.8.3 training procedure

After configuring the YOLOv8 model, the training process unfolds as follows:

1. Feed the preprocessed images into the YOLOv8 model.

2. Calculate the overall loss using the designated loss function.

3. Use backpropagation to compute the gradients.

4. Update the model’s weights with the chosen optimizer and save the weights that perform best.

5. Repeat these steps for the specified number of epochs.

6. Finally, assess the trained model on a separate test set to evaluate its performance

58

Figure 3.12: training procedure

3.8.4 Challenges Faced During Training

During the training process with our data, we faced several significant challenges :

1. Resource Limitations: Handling large datasets proved difficult due to limited computational re-

sources.

2. Inconsistencies Between Drive and Colab: We faced synchronization issues between Google

Drive and Colab, which disrupted the workflow.

59

3. Colab’s GPU Limitations: Colab’s GPU sessions would automatically terminate after a few hours,

requiring substantial time to restart and continue training.

4. Server Training Delays: When attempting to train on a server, the process was extremely slow

and often unresponsive.

5. Time Constraints: Finally, the time was the big challenge that we face.

3.9 metrics

– True Positives (TP): Instances where the model correctly identifies a positive sample (e.g., car)

as positive.

– False Positives (FP): Instances where the model incorrectly classifies a negative sample (e.g., other

objects) as positive.

– True Negatives (TN): Instances where the model correctly identifies a negative sample (e.g., other

objects) as negative.

– False Negatives (FN): Instances where the model incorrectly classifies a positive sample (e.g., car)

as negative.

– Mean Average Precision (mAP): mAP is a frequently used statistic for measuring the per-

formance of object identification algorithms like YOLOv8. It tests the model’s capacity to reliably

recognize objects by evaluating both accuracy and recall across multiple Intersection over Union

(IoU) criteria. A higher mAP score denotes greater detection accuracy, suggesting that the model is

successful at properly detecting and localizing objects inside pictures.

– Intersection over Union (IoU): IoU estimates the overlap between the predicted bounding boxes

and the ground truth bounding boxes in object detection tasks. It is determined by dividing the area

of intersection between the two boxes by the area of their union. IoU serves as a critical parameter for

determining whether an anticipated detection should be classed as a true positive or a false positive.

– Precision refers to the fraction of successfully detected items out of all objects predicted by the

model. It is derived by dividing the number of genuine positives by the total number of true posi-

tives and false positives.

Precision = TP
TP + FP

Recall : also called as sensitivity, estimates the fraction of properly detected items out of all real

objects contained in the collection. It is obtained by dividing the number of true positives by the

total number of true positives and false negatives.

Recall = TP
TP + FN

These metrics are essential for assessing the efficacy of the YOLOv8 model in object identification. They

give insights on the model’s accuracy, precision, recall, and general detection skills. By assessing these

60

indicators, you may discover the model’s strengths and areas for development, allowing for tweaks that

can boost its performance.

3.10 IOT module

Figure 3.13: System architecture (IOT)

3.10.1 Sensors

Sensor Definition
kinect Camera (1) uses an optical sensor to collect visual data or pictures,

allowing for image processing, visual identification, and
surveillance.

Sonore Feedback Sensor (2) Provides audio notifications or warnings by delivering au-
ditory feedback or sound signals to the user.

SD Card (3) Serves as the storage device for the RPI4’s operating sys-
tem (RPI OS), Python (GUI), and model weights

Vibration Feedback Sensor
(4)

Gproduces vibrations that provide the user tactile feed-
back—that is, bodily feelings or warnings.

LCD (4) Liquid crystal displays, or LCDs for short, are a kind of
flat-panel display technology that produce visual images
using liquid crystals.

kinect depth sensor (4) Captures depth information by emitting light pulses and
measuring the time it takes for the reflected light to re-
turn from nearby objects. The camera uses this timing
information to calculate the distance between itself and
the object based on the speed of light

Table 3.3: Sensors for the IoT System

61

3.11 Conclusion

In this chapter, we meticulously analyzed the training process of the YOLOv8 model and the data prepara-

tion for a system designed to assist vision impaired persons outside. We examined the system architecture,

including data collection and preprocessing, specific attributes of YOLOv8, model setup, and the training

procedures. Furthermore, we examined the prediction methodology, assessment metrics, and the incorpo-

ration of an IoT module to augment the system’s capabilities. This chapter provides a thorough overview

of the system’s design and execution. The findings of this study will be addressed in the subsequent

chapter .

62

Chapter 4

Implementation and Results

4.1 Introduction

An integral part of the software development process, a development environment provides developers

with the necessary hardware and software tools to design, create, and test programs. It includes software

tools such as text editors, programming languages, frameworks, and integrated development environments

(IDEs), as well as hardware components like computers, displays, and peripherals.

We will provide a summary of the development environment that we employed for our project in this

chapter. Let’s start by talking about hardware configuration and stressing the value of a dependable

workstation. We will next go into detail on the software tools that were essential to the development

process, such as the particular IDEs, libraries, and frameworks that made it possible for us to create and

test our application quickly.

Furthermore, we will delineate the distinct stages of system design and implementation, offering discern-

ments into the used techniques and approaches. The difficulties we ran into with hardware constraints,

software incompatibilities, and debugging complexity will also be covered in this chapter. Ultimately, we

will outline our accomplishments to date, emphasizing the significant turning points attained and their

role in the project’s overall success.

This exploration not only highlights the technical aspects of the development environment, but also

emphasizes its critical role in the successful delivery of a robust and functional system.

4.2 Development environment

4.2.1 Hardware Environment

Google Colab:

Google Colab4.1 is a cloud-based platform designed for interactive Python programming with a notebook

interface, ideal for machine learning and data analysis. It integrates well with frameworks like PyTorch,

TensorFlow, and Keras. Colab offers three runtime environments—CPUs, GPUs, and TPUs—with a

63

maximum of 12 hours of uninterrupted runtime before the virtual machine resets due to Colab’s resource

management policies.

– Central Processing Unit (CPU) in Google Colab: Colab’s CPU features a 64-bit x86 archi-

tecture, suitable for various computing tasks within the virtual environment.

– GPU in Google Colab: The Tesla T4 GPU, available in Colab, is designed for intensive computing

tasks, particularly in deep learning and scientific simulations. It features Tensor Cores optimized for

deep learning and supports PyTorch, CUDA, and TensorFlow frameworks.

– Tensor Processing Unit (TPU) in Google Colab: Colab also provides access to TPUs, spe-

cialized hardware designed by Google for accelerating deep learning tasks. TPUs are optimized for

high-speed matrix operations and can significantly enhance the performance of large-scale machine

learning models, particularly those built with TensorFlow.

Figure 4.1: Google Colab Logo

Google Drive

Google Drive is a cloud storage service from Google that allows users to securely store, organize, and

access files from any internet-connected device. Additionally, Google Drive offers a range of storage plans

to accommodate different needs. [81]

In our setup, Google Drive is used to store datasets and model weights, ensuring these critical resources

are safely backed up and easily accessible. To streamline the workflow, we have connected our Google

Colab notebook with Google Drive. This integration facilitates seamless transfer of files between Colab

and Drive, enhancing our efficiency in developing and refining models. Additionally, Google Drive offers

a range of storage plans to accommodate different needs.

RPI4

The Raspberry Pi 4 Model B, developed by the Raspberry Pi Foundation, offers significant upgrades over

previous models, making it highly versatile. Key features include:

– Enhanced Performance: Equipped with a 1.5 GHz quad-core Cortex-A72 CPU, it delivers im-

proved speed for complex tasks.

– Memory Options: Available in 2GB, 4GB, and 8GB RAM variants to suit different needs.

64

– Advanced Connectivity: Features dual-band 802.11ac Wi-Fi, Bluetooth 5.0, Gigabit Ethernet,

USB 3.0, and dual micro-HDMI ports for high-definition displays.

– GPIO Expansion: Retains a 40-pin GPIO connector for hardware integration.

– Storage Options: Supports microSD cards and external storage via USB 2.0 and 3.0 ports.

– OS Compatibility: Works with Raspbian (now Raspberry Pi OS), Ubuntu, and other Linux dis-

tributions.

– Cooling and Power: Requires adequate cooling and a 5V/3A USB-C power supply due to its

increased performance.

In our project, we utilize the Raspberry Pi 4 to implement a solution that combines the YOLOv8 object

detection algorithm with depth-sensing capabilities. This setup provides real-time audio feedback to

visually impaired users, enhancing their ability to navigate their environment safely and effectively.

Figure 4.2: RPI4 logo

4.2.2 Software environment

Python

Python is a versatile and widely-used programming language with applications in web development, data

analysis, machine learning, and scientific computing. The latest release, Python 3, brings improvements

in syntax, Unicode support, memory management, and performance. Managed by the Python Software

Foundation, Python has a rich ecosystem of libraries and frameworks designed for various use cases. [82]

Figure 4.3: Python logo

Torch

PyTorch, sometimes referred to as Torch, is an open-source machine learning framework that is mostly in-

tended for deep learning uses. Because of its dynamic computational architecture that allows for real-time

modifications, it offers both flexibility and efficiency for building and training neural networks. PyTorch

is an excellent choice for managing large deep learning projects because of its superior GPU support.

The framework simplifies the model-building process, offers numerous customization options, and comes

65

with a number of libraries for various purposes. PyTorch’s user community, thorough documentation,

and easy-to-use APIs are what make it so popular. It is always being improved and added to with new

features. [83] [84]

Figure 4.4: PyTorch logo

OpenCV

OpenCV is a robust open-source library designed for computer vision and machine learning. It supports

various programming languages and provides a broad range of functions for tasks such as image processing,

object detection, and camera calibration. Engineered for real-time performance, OpenCV includes modules

for machine learning and is extensively employed in fields like robotics, augmented reality, and surveillance.

Available under the BSD license, OpenCV is freely accessible for use and modification. [85].

Figure 4.5: OpenCv logo

PyCharm

PyCharm is a dedicated integrated development environment (IDE) tailored specifically for Python pro-

gramming. It offers a comprehensive suite of tools and features designed to boost productivity, such as

advanced code editing, debugging, testing, and version control integration. Created by JetBrains, Py-

Charm is celebrated for its intuitive interface and robust capabilities. It supports a variety of popular

Python frameworks and libraries, and provides options for customization, ensuring compatibility across

multiple operating systems.[86].

Figure 4.6: PyCharm logo

66

4.3 Overview of the Assistive Navigation System for the Visually

Impaired

4.3.1 Overview

Navigating busy urban environments presents significant challenges and stress for individuals who are

visually impaired. Without the ability to see, these individuals must depend heavily on their remaining

senses—hearing, touch, and memory—to traverse a world filled with unpredictable obstacles. Each step

can be fraught with uncertainty as they navigate potential hazards such as tripping over unseen objects,

colliding with poles, or misjudging distances to curbs. While traditional tools like the white cane offer

some assistance, they provide limited information about the surroundings, often only detecting objects in

immediate proximity.

To address these limitations, we propose an advanced assistive navigation system that leverages deep

learning and Kinect technology to enhance spatial awareness and navigation. The core of the system

involves a camera mounted on a wearable device, which uses a sophisticated deep learning model to detect

and identify objects in real-time. The integration of a Depth Camera sensor further enriches the system

by providing accurate depth information, enabling precise distance measurement.

When an object is detected within a 1-meter range, the system triggers a voice assistant that provides a

clear and informative alert. For instance, the assistant might announce, "There is a pole 0.8 meters in

your way, slightly to your right," offering both the distance to and direction of the obstacle. This verbal

guidance helps the user understand the location of obstacles relative to their current position, whether

directly ahead, to the right, or to the left.

For objects located beyond the 1-meter range, the system remains silent to avoid unnecessary interruptions.

Users can interact with the system using voice commands such as "start," "stop," and "detect just my way,"

allowing them to control the system’s functionality as needed. Additionally, the system allows users to

adjust the distances for the first and second warnings, providing flexibility to accommodate personal

preferences and environmental conditions.

This combination of real-time object detection, depth-sensing, and auditory feedback provides a three-

dimensional understanding of the environment. It enables visually impaired individuals to navigate more

safely and confidently, significantly reducing the stress and fear associated with traversing spaces they

cannot see. The system empowers users to move through their surroundings with increased independence,

transforming the way they experience and interact with the world.

4.3.2 User Interface (UI)

The user interface plays a crucial role in allowing the user to interact with the system, select detection

modes, adjust alert thresholds, and control the object detection process.

1. Mode Selection :

– Interaction: The user can select between different detection modes: "Canter focus" or "Full

focus."

67

– Effect: The mode selection dictates the detection behavior and alert logic, either focusing solely

on the user’s direct path or including objects detected on the sides as well.

2. Alert Thresholds :

– Interaction: The user can adjust the first and second alert thresholds via comboboxes.

– Effect: These thresholds alter the sensitivity of the system to detected objects, determining

when alerts are triggered based on proximity.

3. Control Buttons :

– Interaction: Start and Stop buttons enable the user to control the object detection process.

– Effect: These buttons initiate or terminate the background object detection and alert mecha-

nisms.

4.3.3 Object Detection

The object detection component is the core of the system, responsible for identifying objects within the

camera’s view and analyzing their positions and distances relative to the user.

1. Object Identification :

– Interaction: The YOLO model processes the camera feed to detect and classify objects.

– Effect: The system identifies the objects and their types, such as persons, vehicles, or signs,

which is essential for subsequent alert generation.

2. Position Analysis :

– Interaction: The system analyzes the position of detected objects in relation to the user’s path,

determining whether they are on the left, right, or directly ahead.

– Effect: This analysis enables the system to generate direction-specific alerts, aiding in naviga-

tion.

3. Depth Measurement :

– Interaction: Depth data from the Kinect camera is used to measure the distance of objects

from the user.

– Effect: The proximity of objects affects the timing and urgency of the alerts given to the user.

4.3.4 Alert System

The alert system is responsible for converting the detected objects and their positions into actionable

audio alerts that assist the user in real-time navigation.

1. Alert Generation :

– Interaction: Alerts are generated based on the type, position, and distance of detected objects.

– Effect: The system produces spoken messages or notifications, providing guidance to the user

about their surroundings.

68

2. Alert Thresholds :

– Interaction: Alerts are triggered when objects are within predefined thresholds.

– Effect: These thresholds control the conditions under which alerts are issued, ensuring that the

user is informed of nearby obstacles without being overwhelmed by unnecessary notifications.

3. Speech Synthesis :

– Interaction: The system uses the pyttsx3 library to convert text-based alerts into spoken

messages.

– Effect: The auditory feedback provided by the system allows the user to understand the nature

and position of detected objects, facilitating safer navigation.

4.3.5 Camera and Data Handling

This component deals with capturing and processing visual data from the environment, which is then used

for object detection and alert generation.

1. Video Capture :

– Interaction: The Kinect camera captures video frames in real-time.

– Effect: These frames provide the RGB image necessary for object detection by the YOLO model.

2. Depth Data Retrieval :

– Interaction: Depth data is retrieved from the Kinect camera alongside the RGB image.

– Effect: This data is crucial for calculating the distance of objects from the user, which influences

alert generation.

3. Data Processing :

– Interaction: The system processes the video frames and depth data to detect objects and

calculate their distances.

– Effect: This processing step determines the position of objects relative to the user and triggers

appropriate alerts.

4.3.6 Detailed Object Interactions and Alerts

The system’s alert mechanisms are finely tuned to handle various objects and scenarios, ensuring that the

user receives relevant and timely information.

Person Detection :

- In the User’s Path :

1. Initial Alert:

– Condition : A person is detected within 2 meters directly ahead.

– Announcement : "There is a person 2 meters in your way."

2. Close Proximity:

69

– Condition : If the person moves closer than 1 meter.

– Announcement : "Watch out, there is a person very close to you."

– Additional Guidance:

∗ If an object is detected within 1 meter on the left side, the system will add: "Move to the

right."

∗ If no object is detected within 1 meter on the right side, the system will confirm: "You can

move left or right."

3. Position Change :

– Condition: A person moves from the side into the user’s path.

– Announcement: "A person has moved into your path."

4. No Repeated Alerts :

– Condition: Avoid repeating alerts unless the person moves significantly closer.

- In the User’s Left/Right :

1. Position Change :

– Condition: Announce if a person moves from the side towards the user’s path.

– Announcement: Only announce if the person moves directly in front of the user.

Vehicle Detection :

- In the User’s Path :

1. Always Announce :

– Condition: Any vehicle detected directly in the user’s path.

– Announcement: "There is a [vehicle type] [distance] in your way."

– Additional Guidance:

∗ If an object is detected within 1 meter on the left side, the system will add: " Move to the

right "

∗ If no object is detected within 1 meter on the right side, the system will confirm: " You can

move left or right "

- In the User’s Left/Right:

1. Crowded Areas:

– Condition: Multiple vehicles detected on one side.

– Announcement: "There are [count] [vehicle type] on your [left/right]."

2. Moving Vehicles:

– Condition: Vehicle moving towards the user.

– Announcement: Always alert the user if a vehicle is approaching.

Infrastructure Detection (Poles, Trees, Fire Hydrants, etc.) :

70

1. Far Away (>2m):

Initial Detection:

– Condition: Object detected at a distance greater than 2 meters.

– Announcement: "Watch out, there is a [object type] in your way."

2. Close Proximity (<2m):

Distance Information:

– Condition: Object detected within 2 meters.

– Announcement: "The [object type] is [distance] meters in your way."

3. In the User’s Left/Right:

Very Close (<1m):

– Condition: Object detected within 1 meter on the side.

– Announcement: Announce the blind about the object.

Traffic Signs and Lights :

- Crosswalks:

1. Initial Detection:

– Condition: Crosswalk detected.

– Announcement: "there is Crosswalk in your way."

2. User Request for Crossing:

– Condition: User requests assistance in crossing.

– Response: Guide the user to the crosswalk if detected and inform them about the light’s status.

- Light Signals:

1. Relevant to Crosswalk:

– Condition: If red/green light is associated with a crosswalk.

– Announcement: "You can cross; the light is green" or "Stop; the light is red."

2. Contextual Awareness: Condition: Ignore lights not relevant to the crosswalk.

Blind Road/Signs:

1. Detection:

– Condition: Blind road or important navigation signs detected.

– Announcement: Provide information about hazards or navigation cues.

71

Figure 4.7: Case one

in this case 4.7 the assistant announce to the person : " Watch out, there is a ashcan in your way

, There are 2 cars on your left " because all the objects meet the condition but the second ashcan is

not mentioned because it is far away and to his left.

scenario 1 scenario 2 scenario 3

Table 4.1: Case two

scenario 1 : in this scenario 4.1 the assistant announce to the person : " There is one car on your

left " because the object meet the condition but the person is not mentioned because it is far away (>2m)

and other objects do not meet the condition.

scenario 2 : in this scenario 4.1 the assistant announce to the person : " There is a person 1.8 meters

in your way , There is one car on your left " because the objects meet the condition (1m < person

< 2m).

scenario 3 : in this scenario 4.1 the assistant announce to the person : " Watch out, there is a person

very close to you , you can move left or right , There is one car on your left " because the

object meet the condition (person < 1m) , Since the system does not detect any object close on his right

(<1m), he can move either left or right. However, if there is an object detected very close on his right

(<1m), the system tell him he should move left to avoid it.

72

Figure 4.8: Case tree

in this case 4.8 the assistant announce to the person : " Watch out, there is a roadblock, bicycle

and motorcycle in your way. There are 4 cars on your right " .

Figure 4.9: Case four

in this case 4.9 the assistant announce to the person : " Crosswalk in your way , Watch out, there

is car and pole in your way " , in case he detect Light Signals with the Crosswalk and the light is

green the assistant tell him " You can cross; the light is green" and if the light is red he tell him "

Stop; the light is red" .

73

Figure 4.10: Depth and RGB

Our system captures the world through two distinct modalities: RGB and depth images, as illustrated in

Figure 4.10. The RGB image provides rich color and texture information, allowing the system to perceive

the environment in a manner similar to human vision, identifying features like shapes, patterns, and colors.

Meanwhile, the depth image adds a layer of spatial understanding by measuring the distance of objects

from the camera, enabling the system to construct a three-dimensional representation of its surroundings.

Together, these inputs create a comprehensive view of the environment, enhancing the system’s ability to

interpret and interact with real-world scenarios.

4.4 Training and validation

We trained the model with a focus and then validated its results to assess its performance. To guarantee

the best possible outcomes, the training procedure was closely observed. The following are the results of

this training session.

4.4.1 training results :

These are random 16 batch samples of training and validation sets :

Figure 4.11: Train batch

74

Train batches are used to update the model’s parameters. During training, the model learns from these

batches by adjusting its weights to minimize the loss function.For example, in the figure 4.11.

Figure 4.12: validation batches

Validation batches are used to evaluate the model’s performance during training. They help in monitoring

the model’s progress and detecting overfitting. For instance, in the figure 4.12.

train/val metrics

these results are while the train of 40 epochs (Graphically in the figure 4.13, and statisticaly in the table

4.2 and also we have Confusion matrix 4.14 and Confusion Matrix Normalized 4.15) :

75

Figure 4.13: Results

76

Class Images Instances Precision Recall mAP50 mAP50-
95

all 2402 30312 0.837 0.733 0.819 0.563
car 1198 4372 0.839 0.757 0.844 0.593
truck 424 591 0.687 0.538 0.612 0.441
pole 1423 4784 0.778 0.781 0.841 0.505
tree 1020 3235 0.748 0.763 0.816 0.446
dog 127 164 0.732 0.695 0.746 0.547
bicycle 495 988 0.763 0.615 0.727 0.421
person 1290 5858 0.846 0.713 0.815 0.506
sign 417 546 0.864 0.744 0.841 0.604
red light 507 846 0.871 0.835 0.898 0.574
fire hy-
drant

218 233 0.889 0.721 0.845 0.601

bus 251 312 0.872 0.613 0.771 0.556
motorcycle 682 1892 0.823 0.741 0.832 0.519
reflective
cone

225 757 0.899 0.702 0.814 0.570

green light 487 794 0.892 0.899 0.944 0.610
ashcan 367 464 0.852 0.761 0.831 0.664
warning
column

489 1651 0.890 0.715 0.833 0.485

blind road 266 372 0.844 0.836 0.870 0.671
crosswalk 844 1328 0.914 0.886 0.946 0.787
tricycle 222 260 0.879 0.719 0.793 0.656
roadblock 167 696 0.896 0.723 0.826 0.600
pothole 64 169 0.792 0.631 0.747 0.470

Table 4.2: Results of training

Figure 4.14: Confusion matrix

77

Figure 4.15: Confusion Matrix Normalized

4.5 Test, Results and Discussion

4.5.1 Test and Results

The table 4.3 below provides a comparative analysis of inferences on the same image using different weights

:

Weights Input Image Inference

Time

CPU

GPU FLOPs

Best.pt 659.5ms 65.7ms 28.6

78

Weights Input Image Inference

Time

CPU

GPU FLOPs

yolov8n.pt 308.9ms 40.0ms 8.7

yolov8s.pt 789.4ms 67.86ms 28.6

yolov8m.pt 1264.7ms 73.18ms 78.9

yolov8l.pt 2763.9ms 75.38ms 165.2

yolov8x.pt 3585.1ms 87.18ms 257.8

Table 4.3: Inference times and FLOPs for different model weights on CPU and GPU

79

4.5.2 Discussion

The comparison of various YOLOv8 models, including the model developed in this research, provides

significant insights into their performance, particularly in the context of real-time object detection aimed

at assisting visually impaired individuals. This discussion analyzes the inference times, computational

demands (FLOPs), and detection accuracy of each model based on a specific test scenario and demonstrates

the advantages of our model.

Inference Time and Computational Complexity

The analysis of inference times and FLOPs across the YOLOv8 models highlights the trade-offs between

computational efficiency and detection speed. Models with lower FLOPs, such as YOLOv8n, tend to

exhibit faster inference times, particularly on CPUs, making them more suitable for environments with

limited computational resources. These models prioritize quick processing but may compromise on detec-

tion accuracy due to their simpler architectures.

Conversely, models with higher FLOPs, such as YOLOv8m, YOLOv8l, and YOLOv8x, typically demon-

strate slower inference times, especially on CPUs, due to their increased complexity. These models are

designed to enhance detection accuracy by processing more features, but their longer inference times can

be a limitation in real-time applications, where rapid feedback is crucial.

The model developed in this research, which operates with 28.6 FLOPs, demonstrates a well-balanced

performance, combining efficient computational demand with robust detection capabilities. It achieves a

CPU inference time of 659.5ms and a GPU inference time of 65.7ms, positioning it between YOLOv8n

and YOLOv8s in terms of computational efficiency. Importantly, our model delivers competitive inference

times without sacrificing detection accuracy, making it particularly suitable for real-time applications

where both speed and precision are critical.

Detection Accuracy in Real-World Scenario

The test image, captured at night in a street environment with low visibility and various critical objects

(a pole, fire hydrant, crosswalk, and traffic light), provided a challenging scenario for the models:

– Our Model : The model developed in this research demonstrated superior detection capability by

accurately identifying all relevant objects, including the fire hydrant, pole, crosswalk, and green light

of the traffic signal. This comprehensive detection is crucial for ensuring safe navigation for visually

impaired users, making our model the most effective in this context.

– YOLOv8n and YOLOv8s : While both models detected some key objects, such as the fire hydrant

and the traffic light, they failed to correctly identify the obstructing pole and misinterpreted other

objects, potentially leading to dangerous situations for the user.

– YOLOv8m, YOLOv8l, and YOLOv8x : These models exhibited several false detections, such

as non-existent parking meters and incorrect traffic lights, while missing critical objects like the pole

in the path. Such errors make these models less reliable for outdoor navigation that demand precise

and accurate object detection.

80

4.6 Conclusion

In this chapter, we have detailed the implementation of an object detection system developed to assist

visually impaired individuals, utilizing the YOLOv8 convolutional neural network on a Raspberry Pi.

The chapter began with an overview of the development environment and software tools essential for

creating the system. We then provided a comprehensive overview of the Assistive Navigation System,

explaining its various components and functionalities tailored for real-time object detection. Following

this, we presented the testing procedures and results, highlighting the model’s performance in different

scenarios. Finally, a thorough discussion was conducted to analyze the system’s effectiveness, emphasizing

the balance between computational efficiency and detection accuracy, as well as the model’s suitability

for real-world applications. This chapter demonstrated the potential of integrating advanced AI models

with low-cost hardware to create practical solutions for enhancing the independence of visually impaired

users.

81

General Conclusion

In this thesis, we developed a novel solution to support visually impaired individuals in navigating outdoor

environments using advanced AI-based techniques. Our system leverages YOLOv8 for real-time object

detection and depth measurement, integrated with the Raspberry Pi 4 for a compact and cost-effective

implementation.

Our approach distinguishes itself by not only identifying key objects but also assessing their depth, which

is crucial for providing actionable spatial awareness. Depth information enhances the system’s ability to

guide users by offering a more nuanced understanding of their surroundings, which is particularly beneficial

in complex outdoor settings.

The integration of depth sensing into our object detection framework allows for improved guidance and

navigation, helping users avoid obstacles and interact more effectively with their environment. This

advancement, coupled with real-time feedback through audio cues, ensures that our system offers practical

and immediate assistance.

Through rigorous testing and optimization, we demonstrated that our solution effectively combines object

detection and depth perception to create a reliable navigation aid. The affordability and portability of the

Raspberry Pi 4 make this technology accessible, empowering visually impaired individuals with enhanced

mobility and independence.

Overall, our system represents a significant step forward in assistive technology, offering a sophisticated

yet practical tool for navigating outdoor spaces. We believe this work not only advances the field of

AI-based assistive technologies but also holds the promise of making a meaningful impact on the daily

lives of visually impaired individuals.

Perspectives:

While our system has achieved significant advancements in assisting visually impaired individuals, there

are several avenues for future research and improvement:

1. Real-world testing: To fully validate the system’s performance and usability, it should be deployed

in diverse real-world environments. Gathering feedback from visually impaired users in various

outdoor settings will provide insights into practical challenges and user needs, informing further

refinements and improvements. This could also help identify any unforeseen issues in different weather

conditions or complex environments.

2. Integration of Optical Character Recognition (OCR): Incorporating OCR technology could

significantly enhance the system’s functionality by enabling it to read and interpret text from books,

82

advertisements, car plates, and road signs. This addition would provide users with valuable informa-

tion about their surroundings, further improving navigation and situational awareness.

3. Expansion of the Dataset: To improve the system’s robustness and accuracy, expanding the

custom dataset to include a broader range of object classes and environmental conditions is essential.

This could involve adding new subclasses relevant to outdoor navigation, such as different types of

terrain, various types of street furniture, and additional objects commonly encountered in urban and

rural settings.

4. Integration of Additional Sensors: Adding more sensors, such as GPS for precise location track-

ing or environmental sensors for detecting weather conditions, could enhance the system’s capabili-

ties. GPS integration could provide users with location-based guidance, while environmental sensors

could offer additional context about changing conditions, improving the system’s adaptability and

reliability

Bibliography

[1] Freepik. Human eye anatomy. https://www.freepik.com/free-vector/

human-eye-anatomy-poster-with-eyelid-optic-nerve-symbols-isometric-vector-illustration_

26765445.htm. Accessed: 2024-03-18.

[2] Magnifiers aids. https://m.media-amazon.com/images/I/71ss5rYBltL._AC_SL1500_.jpg. Ac-

cessed: 2024-03-25.

[3] Amy Green. Assistive technology aids. https://bhekisisa.org/article/

2016-03-22-game-changing-technology-for-blind-people-at-a-price/. Accessed: 2024-

03-25.

[4] Aditi Kothiya and Dhruv Kumar Patwari. Different subdomain ai, ml, ann and dl. https://medium.

com/co-learning-lounge/what-is-deep-learning-ai-in-simple-words-ad2c39e13bf2. Ac-

cessed: 2024-03-29.

[5] Bishop Christopher M and Nasrabadi Nasser M. Pattern recognition and machine learning, vol-

ume 4. Springer, 2006. https://www.microsoft.com/en-us/research/uploads/prod/2006/01/

Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.

[6] Human learning (hl) versus machine learning (ml). https://www.researchgate.net/figure/

Human-learning-HL-versus-machine-learning-ML-Model-capacity-in-ML-is-analogous-to_

fig1_346857783. Accessed: 2024-05-04.

[7] Masooma Memon. Ann vs cnn vs rnn: Neural networks guide. https://levity.ai/blog/

neural-networks-cnn-ann-rnn. Accessed: 2024-04-10.

[8] Qingsen Wu, Haixu Liu, Jian Xin, Lin Li, Zuochang Ye, and Yan Wang. Deep neural networks-based

direct-current operation prediction and circuit migration design. Electronics, 12(13), 2023.

[9] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv preprint

arXiv:1511.08458, 2015.

[10] Robin M Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview. arXiv

preprint arXiv:1912.05911, 2019.

[11] Jithin S L. Generative Adversarial Network (GAN). https://www.linkedin.com/pulse/

generative-adversarial-network-gan-jithin-s-l/. Accessed: 2024-04-11.

[12] Huaxiu Yao. Deep reinforcement learning architecture for tuning the ve-

hicles’ speeds in the simulator. https://www.researchgate.net/figure/

https://www.freepik.com/free-vector/human-eye-anatomy-poster-with-eyelid-optic-nerve-symbols-isometric-vector-illustration_26765445.htm
https://www.freepik.com/free-vector/human-eye-anatomy-poster-with-eyelid-optic-nerve-symbols-isometric-vector-illustration_26765445.htm
https://www.freepik.com/free-vector/human-eye-anatomy-poster-with-eyelid-optic-nerve-symbols-isometric-vector-illustration_26765445.htm
https://m.media-amazon.com/images/I/71ss5rYBltL._AC_SL1500_.jpg
https://bhekisisa.org/article/2016-03-22-game-changing-technology-for-blind-people-at-a-price/
https://bhekisisa.org/article/2016-03-22-game-changing-technology-for-blind-people-at-a-price/
https://medium.com/co-learning-lounge/what-is-deep-learning-ai-in-simple-words-ad2c39e13bf2
https://medium.com/co-learning-lounge/what-is-deep-learning-ai-in-simple-words-ad2c39e13bf2
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.researchgate.net/figure/Human-learning-HL-versus-machine-learning-ML-Model-capacity-in-ML-is-analogous-to_fig1_346857783
https://www.researchgate.net/figure/Human-learning-HL-versus-machine-learning-ML-Model-capacity-in-ML-is-analogous-to_fig1_346857783
https://www.researchgate.net/figure/Human-learning-HL-versus-machine-learning-ML-Model-capacity-in-ML-is-analogous-to_fig1_346857783
https://levity.ai/blog/neural-networks-cnn-ann-rnn
https://levity.ai/blog/neural-networks-cnn-ann-rnn
https://www.linkedin.com/pulse/generative-adversarial-network-gan-jithin-s-l/
https://www.linkedin.com/pulse/generative-adversarial-network-gan-jithin-s-l/
https://www.researchgate.net/figure/Deep-reinforcement-learning-architecture-for-tuning-the-vehicles-speeds-in-the-simulator_fig2_331344124
https://www.researchgate.net/figure/Deep-reinforcement-learning-architecture-for-tuning-the-vehicles-speeds-in-the-simulator_fig2_331344124

Deep-reinforcement-learning-architecture-for-tuning-the-vehicles-speeds-in-the-simulator_

fig2_331344124. Accessed: 2024-04-11.

[13] Harley Davidson Regua. Introducing Transfer Learning as Your Next En-

gine to Drive Future Innovations. https://medium.datadriveninvestor.com/

introducing-transfer-learning-as-your-next-engine-to-drive-future-innovations-5e81a15bb567.

Accessed: 2024-04-11.

[14] O’Reilly Media. Types of object recognition tasks. https://www.oreilly.com/library/view/

neural-network-projects/9781789138900/e1f93bb9-0e51-428d-8e06-f19143ecc927.xhtml.

Accessed: 2024-04-13.

[15] V7 Labs. Coco dataset: All you need to know to get started. https://www.v7labs.com/blog/

coco-dataset-guide. Accessed: 2024-04-14.

[16] szjy led. Frame Rate(FPS) vs. Refresh Rate(Hz): Do You Know Their Difference ? https://www.

szjy-led.com/frame-rate-vs-refresh-rate/. Accessed: 2024-06-25.

[17] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[18] Aishwarya Singh. Selecting the right bounding box using non-max suppres-

sion (with implementation). https://www.analyticsvidhya.com/blog/2020/08/

selecting-the-right-bounding-box-using-non-max-suppression-with-implementation/.

Accessed: 2024-08-13.

[19] Saeed Masoudnia. YOLOv2 + architecture. https://www.researchgate.net/figure/

YOLOv2-architecture-YOLOv2-architecture-is-modified-with-our-new-assisted-excitation_

fig3_333773329. Accessed: 2024-06-28.

[20] ultralytics. YOLOv4 : Détection rapide et précise des objets. https://docs.ultralytics.com/fr/

models/yolov4/. Accessed: 2024-06-28.

[21] Ultralytics. Overview of model structure about YOLOv5. https://github.com/ultralytics/

yolov5/issues/280. Accessed: 2024-07-05.

[22] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke, Qingyuan

Li, Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei Liang, Linyuan Zhou, Xiaoming Xu,

Xiangxiang Chu, Xiaoming Wei, and Xiaolin Wei. Yolov6: A single-stage object detection framework

for industrial applications, 2022.

[23] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-freebies

sets new state-of-the-art for real-time object detectors, 2022.

[24] Juan Terven and Diana Cordova-Esparza. A comprehensive review of yolo: From yolov1 and beyond,

2023.

[25] Juan Terven, Diana-Margarita Córdova-Esparza, and Julio-Alejandro Romero-González. A compre-

hensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Machine

Learning and Knowledge Extraction, 5(4):1680–1716, 2023.

[26] Range King. Brief summary of yolov8 model structure. https://github.com/ultralytics/

ultralytics/issues/189. Accessed: 2024-08-05.

https://www.researchgate.net/figure/Deep-reinforcement-learning-architecture-for-tuning-the-vehicles-speeds-in-the-simulator_fig2_331344124
https://www.researchgate.net/figure/Deep-reinforcement-learning-architecture-for-tuning-the-vehicles-speeds-in-the-simulator_fig2_331344124
https://www.researchgate.net/figure/Deep-reinforcement-learning-architecture-for-tuning-the-vehicles-speeds-in-the-simulator_fig2_331344124
https://www.researchgate.net/figure/Deep-reinforcement-learning-architecture-for-tuning-the-vehicles-speeds-in-the-simulator_fig2_331344124
https://medium.datadriveninvestor.com/introducing-transfer-learning-as-your-next-engine-to-drive-future-innovations-5e81a15bb567
https://medium.datadriveninvestor.com/introducing-transfer-learning-as-your-next-engine-to-drive-future-innovations-5e81a15bb567
https://www.oreilly.com/library/view/neural-network-projects/9781789138900/e1f93bb9-0e51-428d-8e06-f19143ecc927.xhtml
https://www.oreilly.com/library/view/neural-network-projects/9781789138900/e1f93bb9-0e51-428d-8e06-f19143ecc927.xhtml
https://www.v7labs.com/blog/coco-dataset-guide
https://www.v7labs.com/blog/coco-dataset-guide
https://www.szjy-led.com/frame-rate-vs-refresh-rate/
https://www.szjy-led.com/frame-rate-vs-refresh-rate/
https://www.analyticsvidhya.com/blog/2020/08/selecting-the-right-bounding-box-using-non-max-suppression-with-implementation/
https://www.analyticsvidhya.com/blog/2020/08/selecting-the-right-bounding-box-using-non-max-suppression-with-implementation/
https://www.researchgate.net/figure/YOLOv2-architecture-YOLOv2-architecture-is-modified-with-our-new-assisted-excitation_fig3_333773329
https://www.researchgate.net/figure/YOLOv2-architecture-YOLOv2-architecture-is-modified-with-our-new-assisted-excitation_fig3_333773329
https://www.researchgate.net/figure/YOLOv2-architecture-YOLOv2-architecture-is-modified-with-our-new-assisted-excitation_fig3_333773329
https://docs.ultralytics.com/fr/models/yolov4/
https://docs.ultralytics.com/fr/models/yolov4/
https://github.com/ultralytics/yolov5/issues/280
https://github.com/ultralytics/yolov5/issues/280
https://github.com/ultralytics/ultralytics/issues/189
https://github.com/ultralytics/ultralytics/issues/189

[27] Automatic urine sediment detection and classification based on yolov8 - scientific figure on research-

gate. https://www.researchgate.net/figure/The-new-YoloV8-c2f-module_fig3_371992105,

2024. Accessed: 12-08-2024.

[28] Ultralytics. Ultralytics yolov8 docs. https://docs.ultralytics.com/tasks/detect/. Accessed:

2024-08-13.

[29] Ultralytics yolov8 docs. https://docs.ultralytics.com/usage/cfg/. Accessed: 2023-05-28.

[30] Chuhan Wang and Yan Pang. Nano-based eye drop: Topical and noninvasive therapy for ocular

diseases. Advanced Drug Delivery Reviews, 194:114721, 2023.

[31] David Atchison. Optics of the human eye. CRC Press, 2023.

[32] Helga Kolb. The architecture of functional neural circuits in the vertebrate retina. the proctor lecture.

Investigative ophthalmology & visual science, 35(5):2385–2404, 1994.

[33] Ian P Howard and Brian J Rogers. Binocular vision and stereopsis. Oxford University Press, USA,

1995.

[34] Chang Che, Haotian Zheng, Zengyi Huang, Wei Jiang, and Bo Liu. Intelligent robotic control system

based on computer vision technology. arXiv preprint arXiv:2404.01116, 2024.

[35] Anne Lesley Corn and Jane N Erin. Foundations of low vision: Clinical and functional perspectives.

American Foundation for the Blind, 2010.

[36] Simona Caraiman, Anca Morar, Mateusz Owczarek, Adrian Burlacu, Dariusz Rzeszotarski, Nicolae

Botezatu, Paul Herghelegiu, Florica Moldoveanu, Pawel Strumillo, and Alin Moldoveanu. Computer

vision for the visually impaired: the sound of vision system. In Proceedings of the IEEE international

conference on computer vision workshops, pages 1480–1489, 2017.

[37] Jinqiang Bai, Dijun Liu, Guobin Su, and Zhongliang Fu. A cloud and vision-based navigation system

used for blind people. In Proceedings of the 2017 international conference on artificial intelligence,

automation and control technologies, pages 1–6, 2017.

[38] Manuel Martinez, Alina Roitberg, Daniel Koester, Rainer Stiefelhagen, and Boris Schauerte. Using

technology developed for autonomous cars to help navigate blind people. In Proceedings of the IEEE

International Conference on Computer Vision Workshops, pages 1424–1432, 2017.

[39] Ashwani Kumar, SS Sai Satyanarayana Reddy, and Vivek Kulkarni. An object detection technique

for blind people in real-time using deep neural network. In 2019 Fifth International Conference on

Image Information Processing (ICIIP), pages 292–297. IEEE, 2019.

[40] Jagadish K Mahendran, Daniel T Barry, Anita K Nivedha, and Suchendra M Bhandarkar. Computer

vision-based assistance system for the visually impaired using mobile edge artificial intelligence. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2418–

2427, 2021.

[41] Junjie Shen, Yiwen Chen, and Hideyuki Sawada. A wearable assistive device for blind pedestrians

using real-time object detection and tactile presentation. Sensors, 22(12):4537, 2022.

[42] Divyansh Chaudhary, Anubhav Mathur, Ayush Chauhan, and Aakanshi Gupta. Assistive object

recognition and obstacle detection system for the visually impaired using yolo. In 2023 13th Interna-

https://www.researchgate.net/figure/The-new-YoloV8-c2f-module_fig3_371992105
https://docs.ultralytics.com/tasks/detect/
https://docs.ultralytics.com/usage/cfg/

tional Conference on Cloud Computing, Data Science and Engineering (Confluence), pages 353–358,

2023.

[43] Ştefan Gherghina. An artificial intelligence approach towards investigating corporate bankruptcy.

Review of European Studies, 7(7):5–22, 2015.

[44] Andreas Kaplan and Michael Haenlein. Siri, siri, in my hand: Who’s the fairest in the land? on the

interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1):15–

25, 2019.

[45] Elena Popkova and Bruno S. Sergi. Human capital and ai in industry 4.0: Convergence and divergence

in social entrepreneurship in russia. Journal of Intellectual Capital, 2020.

[46] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

[47] Artificial intelligence (ai) vs. machine learning (ml). https://cloud.google.com/learn/

artificial-intelligence-vs-machine-learning#:~:text=Artificial%20intelligence%20is%

20the%20overarching,systems%2C%20and%20natural%20language%20processing. Accessed:

2024-05-04.

[48] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding neural

networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

[49] Adem R.N. Aouichaoui, Resul Al, Jens Abildskov, and Gürkan Sin. Comparison of group-contribution

and machine learning-based property prediction models with uncertainty quantification. In Metin

Türkay and Rafiqul Gani, editors, 31st European Symposium on Computer Aided Process Engineering,

volume 50 of Computer Aided Chemical Engineering, pages 755–760. Elsevier, 2021.

[50] Goodfellow Ia. Deep learning/ian goodfellow, yoshua bengio and aaron courville, 2016.

[51] Divya Saxena and Jiannong Cao. Generative adversarial networks (gans) challenges, solutions, and

future directions. ACM Computing Surveys (CSUR), 54(3):1–42, 2021.

[52] Maxim Lapan. Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-

networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more. Packt Publishing Ltd,

2018.

[53] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and

Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2020.

[54] Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. A review on the attention mechanism of deep learning.

Neurocomputing, 452:48–62, 2021.

[55] Ozan İrsoy and Ethem Alpaydın. Unsupervised feature extraction with autoencoder trees. Neuro-

computing, 258:63–73, 2017. Special Issue on Machine Learning.

[56] Görkem Algan and Ilkay Ulusoy. Image classification with deep learning in the presence of noisy

labels: A survey. Knowledge-Based Systems, 215:106771, 2021.

[57] Xiongwei Wu, Doyen Sahoo, and Steven CH Hoi. Recent advances in deep learning for object detec-

tion. Neurocomputing, 396:39–64, 2020.

[58] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Ter-

zopoulos. Image segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 44(7):3523–3542, 2022.

https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning#:~:text=Artificial%20intelligence%20is%20the%20overarching,systems%2C%20and%20natural%20language%20processing.
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning#:~:text=Artificial%20intelligence%20is%20the%20overarching,systems%2C%20and%20natural%20language%20processing.
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning#:~:text=Artificial%20intelligence%20is%20the%20overarching,systems%2C%20and%20natural%20language%20processing.

[59] Vidushi Meel. What is the COCO Dataset? What you need to know in 2024 . https://viso.ai/

computer-vision/coco-dataset/. Accessed: 2024-04-14.

[60] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

pascal visual object classes challenge: A retrospective. International Journal of Computer Vision,

111(1):98–136, January 2015.

[61] ImageNet. About ImageNet. https://image-net.org/about. Accessed: 2024-04-14.

[62] Open Images team. Open images dataset v7. https://storage.googleapis.com/openimages/web/

index.html. Accessed: 2024-04-14.

[63] Naif Alsharabi. Real-time object detection overview: Advancements, challenges, and applications.

Omran University Journal, 3(6):12–12, 2023.

[64] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection.

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10781–

10790, 2020.

[65] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-

bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 4510–4520, 2018.

[66] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object

detection with region proposal networks. Advances in neural information processing systems, 28,

2015.

[67] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu,

and Alexander C. Berg. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015.

[68] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense

object detection. CoRR, abs/1708.02002, 2017.

[69] Seyed Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian D. Reid, and Silvio

Savarese. Generalized intersection over union: A metric and A loss for bounding box regression.

CoRR, abs/1902.09630, 2019.

[70] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 7263–7271, 2017.

[71] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767, 2018.

[72] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and

accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[73] Ultralytics. YOLOv5. https://docs.ultralytics.com/fr/models/yolov5/. Accessed: 2024-07-

05.

[74] Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng Cheng, Bo Zhang, Zaidan Ke, Xiaoming Xu,

and Xiangxiang Chu. Yolov6 v3. 0: A full-scale reloading. arXiv preprint arXiv:2301.05586, 2023.

[75] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-freebies

sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 7464–7475, 2023.

https://viso.ai/computer-vision/coco-dataset/
https://viso.ai/computer-vision/coco-dataset/
https://image-net.org/about
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://docs.ultralytics.com/fr/models/yolov5/

[76] Vaibhav Singh. Meet yolo-nas: New yolo object detection model beats yolov6 and yolov8. https:

//learnopencv.com/yolo-nas/. Accessed: 2024-07-07.

[77] Haiying Xia, Cong Yao, Yumei Tan, and Shuxiang Song. A dataset for the visually impaired walk

on the road. Displays, 79:102486, 2023.

[78] Atikur Rahman Chitholian. Pothole dataset, 2020. Available on Roboflow Universe under ODbL v1.0

license.

[79] Haiying Xia, Cong Yao, Yumei Tan, and Shuxiang Song. A dataset for the visually impaired walk

on the road. Displays, 79:102486, 2023.

[80] ultralytics. Yolov8 architecture explained: Exploring the yolov8 architecture. https://yolov8.org/

yolov8-architecture-explained/. Accessed: 2024-08-05.

[81] David Chapet. Google drive : pourquoi et comment l’utiliser ? https://atlanticdigital.

fr/google-drive#:~:text=Google%20Drive%20est%20un%20cloud,importe%20o%C3%B9%20sur%

20la%20plan%C3%A8te. Accessed: 2024-08-23.

[82] python team. The python tutorial. https://docs.python.org/3/tutorial/index.html. Accessed:

2024-08-23.

[83] Pytorch. https://pytorch.org/. Accessed: 2024-08-12.

[84] Pytorch. https://github.com/pytorch/pytorch. Accessed: 2024-08-12.

[85] Oencv. https://opencv.org/. Accessed: 2024-08-12.

[86] JetBrains. (n.d.). Pycharm: Python ide for professional developers. https://www.jetbrains.com/

pycharm/. Accessed: 2024-08-12.

https://learnopencv.com/yolo-nas/
https://learnopencv.com/yolo-nas/
https://yolov8.org/yolov8-architecture-explained/
https://yolov8.org/yolov8-architecture-explained/
https://atlanticdigital.fr/google-drive#:~:text=Google%20Drive%20est%20un%20cloud,importe%20o%C3%B9%20sur%20la%20plan%C3%A8te.
https://atlanticdigital.fr/google-drive#:~:text=Google%20Drive%20est%20un%20cloud,importe%20o%C3%B9%20sur%20la%20plan%C3%A8te.
https://atlanticdigital.fr/google-drive#:~:text=Google%20Drive%20est%20un%20cloud,importe%20o%C3%B9%20sur%20la%20plan%C3%A8te.
https://docs.python.org/3/tutorial/index.html
https://pytorch.org/
https://github.com/pytorch/pytorch
https://opencv.org/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

	List of Figures
	List of Tables
	General introduction
	Introduction to AI-Based Solutions for Visual Impairments
	Introduction
	Human Vision System vs Computer Vision systems
	Anatomy and Function of the Human Eye
	Computer/machine Vision

	Challenges in Navigating Life with Visual Impairments
	The different types of visual impairments
	The difficulties that people with visual impairments face in their daily lives

	Classic Solutions for Helping People with Visual Impairments
	The benefits and limitations of each of these solutions

	AI Innovations for Assisting Individuals with Visual Impairments
	Related works
	AI and Deep Learning
	Artificial intelligence
	Machine learning
	Deep learning

	Datasets(Benchmarks)
	 MS COCO dataset :
	 PASCAL VOC dataset :
	ImageNet dataset
	Open Images dataset

	Conclusion

	Real-Time Object Detection with Deep Learning
	Introduction
	Real-Time Object Detection
	Accuracy
	Frames per second (Fps)

	How to choose the best model for object detection system ?
	Object Detection Models
	EfficientDet
	MobileNetV2
	Faster R-CNN (Region Convolutional Neural Network)
	SSD (Single Shot MultiBox Detector)
	RetinaNet
	YOLO (You Only Look Once)

	Conclusion

	Conception
	Introduction
	What makes YOLO a better choice for Object Detection ?
	Global architecture
	Data Acquisition
	Data preparation
	Data collection
	Data preprocessing
	challenges faced in data preparation

	YOLOv8 architcture
	What are the main features in YOLOv8?

	Model configuration
	choose the best model
	Augmentation

	Train model on our data
	Hyperparameter Choices to Train YOLOv8
	Loss Function
	training procedure
	Challenges Faced During Training

	metrics
	IOT module
	Sensors

	Conclusion

	Implementation and Results
	Introduction
	Development environment
	Hardware Environment
	Software environment

	Overview of the Assistive Navigation System for the Visually Impaired
	Overview
	User Interface (UI)
	Object Detection
	Alert System
	Camera and Data Handling
	Detailed Object Interactions and Alerts

	Training and validation
	training results :

	Test, Results and Discussion
	Test and Results
	Discussion

	Conclusion

	General conclusion
	bibliography

