
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University of 8 May 1945-Guelma-

Faculty of Mathematics, Computer Science and Science of Matter

Department of Computer Science

Lab Manual

Algorithmics and Data
Strutures 1

Intended for first-year undergraduate students in Mathematics

Established by:

Dr. Abderrahmane KEFALI

kefali.abderrahmane@univ-guelma.dz

2023/2024

1st Year Mathematics – University of Guelma i Dr. Abderrahmane Kefali

Preface

It is with great pleasure that we present this practical work notes dedicated to the module

"Algorithmics and Data Structures 1". Specifically designed for first-year Mathematics

students at the Department of Mathematics in the Faculty of Mathematics and Computer

Science and Material Sciences at the University of 8 May 1945, Guelma. However, this

document can also be useful for any non-computer science student wishing to learn the

basics of algorithmics and programming.

Indeed, C programming is renowned for its simplicity, efficiency, and portability, making it a

preferred choice for the development of system software, embedded applications, and many

other fields. This practical work notes aims to strengthen fundamental knowledge in

algorithmics and C programming. By delving into the practical work presented in this

document, students will have the opportunity to explore fundamental concepts of structured

programming, such as data types, control structures, loops, arrays, and much more. They

will learn to translate complex problems into clear algorithms and implement them effectively

in C.

This material aligns with the module syllabus and adheres to the latest pedagogical

framework established for the common core in mathematics, applied mathematics, and

computer science, as proposed by the national pedagogical committee of the MI field since

the academic year 2018-2019. It is structured into six parts, covering the entirety of the topics

covered during the semester. Each of the six practical work sheets is dedicated to a specific

chapter, offering a natural progression and a comprehensive pedagogical approach. The

themes covered include an introduction to algorithms, simple sequential algorithms,

conditional structures, loops, arrays, strings, and user-defined types.

The first sheet serves as an introduction, presenting the development environment used

during the practical work sessions and guiding students to establish their first C program.

The second sheet covers simple programming concepts in C, such as basic types,

input/output, assignment, etc. The third sheet focuses on conditional structures in C,

providing varied exercises on different conditional structures. The fourth sheet introduces

loops, structures allowing the repetition of tasks, with exercises covering the three types of

loops. The fifth sheet explores arrays, multidimensional arrays, and strings, with each of

these three structures studied in detail. The last practical work sheet is dedicated to user-

defined types, emphasizing records and enumerations.

Each practical work sheet begins with a recap of the theoretical concepts necessary for the

completion of exercises, accompanied by concrete examples to facilitate understanding.

Exercises are divided into two categories: training activities designed to accompany students

in the discovery of new concepts, and application exercises focused on the practical use of

learned concepts to solve real-world problems.

1st Year Mathematics – University of Guelma ii Dr. Abderrahmane Kefali

A distinctive feature of this practical work notes lies in its detailed approach to solutions. For

each exercise, I not only provide the source code but also offer a thorough description of the

solution and relevant comments. This approach aims to guide students through the

resolution process, fostering a deep understanding of the studied concepts. Each sheet

(except the first) contains 10 application exercises and at least 2 training activities, totaling

more than 60 exercises included in this document.

I sincerely hope that this material will be a valuable resource for students seeking mastery of

the fundamentals of algorithmics and programming. May this document be a helpful

companion throughout your academic and professional journey.

1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali

Table of Contents

Preface ... i

Table of Contents ... 1

List of Figures .. 5

List of Tables ... 6

Lab No 1. C language Introduction .. 7

1) Objectives ... 7

2) C language overview .. 7

3) Software Required for C Programming ... 7

4) Presentation .. 8

5) Getting Started with Code::Blocks .. 8

5.1) Launching Code::Blocks .. 8

5.2) Description of the Code::Blocks 20.03 Interface .. 8

5.3) Creating a project.. 9

5.4) Editing the source file ... 11

5.5) Saving and opening ... 12

5.6) Compile and run .. 12

5.7) Exit Code::Blocs .. 12

6) Your first program in C with Code::Blocs .. 13

Lab No 2. Simple sequential algorithm .. 14

1) Objectives .. 14

2) Recap: Key Concepts in C Programming ... 14

2.1) C program structure .. 14

2.2) Constant and Variables declaration .. 15

2.2.1) Constant declaration ... 15

2.2.2) Variable declaration .. 15

2.3) Instructions .. 15

2.3.1) Assignments ... 16

2.3.2) Reading ... 16

2.3.3) Writing .. 16

2. Practice activities ... 17

2.3) Activity 1 : Declaration and assignment .. 17

2.4) Activity 2 : Reading instruction ... 18

3. Application exercises .. 19

3.1) Exercise 1 : Fahrenheit to Kelvin Conversion .. 19

3.2) Exercise 2 : Circle Perimeter and Area .. 20

3.3) Exercise 3 : Car Selling Price Calculation .. 20

1st Year Mathematics – University of Guelma 2 Dr. Abderrahmane Kefali

3.4) Exercise 4 : Basic Arithmetic Operations .. 21

3.5) Exercise 5 : Spring Elongation Calculation ... 22

3.6) Exercise 6 : Duration Conversion .. 22

3.7) Exercise 7 : Distance Calculation .. 23

3.8) Exercise 8 : Character Variables Swap ... 24

3.9) Exercise 9 : Document Size Calculation .. 25

3.10) Exercise 10 : Monthly Loan Repayment Calculation .. 26

Lab No 3. Conditional Structures ... 28

1) Objectives .. 28

2) Recap: Key Concepts in Conditional Structures ... 28

2.1) Simple Conditional Structure ... 28

2.2) Compound Conditional Structure .. 29

2.3) Nested Conditional Structures .. 29

2.4) Multiple Choice Statement (switch) .. 29

2.5) Branching Statement (goto) ... 30

3) Practice activities ... 30

3.1) Activity 1 : simple, compound, and nested conditional statements .. 30

3.2) Activity 2: Multiple-choice structure .. 32

3.3) Activity 3: Branching statement .. 33

4) Application exercises .. 35

4.1) Exercise 1: Identify Minimum ... 35

4.2) Exercise 2: Check if a point is inside a rectangle .. 36

4.3) Exercise 3: Solve Second-degree Equation ... 37

4.4) Exercise 4: Identify Character Type ... 38

4.5) Exercise 5: Calculate Paper Ream Cost ... 39

4.6) Exercise 6: Display Time One Second Later .. 40

4.7) Exercise 7: Minimum Coins for Amount .. 41

4.8) Exercise 8: Display Day's Name ... 42

4.9) Exercise 9: Arithmetic Operations ... 43

4.10) Exercise 10: Count Positive and Non-Positive Numbers .. 44

Lab No 4. Loops .. 46

1) Objectives .. 46

2) Recap: Key Concepts in Loops .. 46

2.1) The While loop .. 46

2.2) The do…while loop .. 47

2.3) The for loop ... 47

2.4) Nested loops... 47

3) Practice activities ... 48

3.1) Activity 1: The « while » and « do…while » loops .. 48

3.2) Activity 2 : The « for » loop ... 50

4) Application exercises .. 52

4.1) Exercise 1: Counting Positive and Negative Numbers ... 52

1st Year Mathematics – University of Guelma 3 Dr. Abderrahmane Kefali

4.2) Exercise 2: Multiplication Table .. 53

4.3) Exercise 3: Sum of Digits ... 54

4.4) Exercise 4: Weighted Average ... 55

4.5) Exercise 5: Min and Max of a sequence of numbers ... 56

4.6) Exercise 6: GCD calculation using Euclidean Algorithm ... 57

4.7) Exercise 7: Base conversion ... 59

4.8) Exercise 8: Fibonacci sequence ... 61

4.9) Exercise 9: Reciprocal Powers Sum ... 63

4.10) Exercise 10: Binomial Expression Expansion ... 64

Lab No 5. Arrays and Strings ... 67

1) Objectives .. 67

2) Recap: Key Concepts in Loops .. 67

2.1) Arrays .. 67

2.1.1) Declaration ... 67

2.1.2) Accessing to elements of an array .. 68

2.1.3) Manipulation of an array .. 68

2.2) Multidimensional arrays ... 68

2.2.1) Declaration ... 68

2.2.2) Accessing to elements of a multidimensional array ... 69

2.2.3) Manipulation of a multidimensional array .. 69

2.3) Strings ... 69

2.3.1) Declaration ... 69

2.3.2) Accessing a character of the string ... 70

2.3.3) Manipulation of a String .. 70

3) Practice activities ... 70

3.1) Activity 1: Arrays ... 70

3.2) Activity 2 : Strings ... 73

4) Application exercises .. 75

4.1) Exercise 1: Exam Grades and Statistics ... 76

4.2) Exercise 2: Array Value Search and Occurrences .. 77

4.3) Exercise 3: Array normalization .. 80

4.4) Exercise 4: Capturing State Changes in a Binary Array ... 81

4.5) Exercise 5: Sieve of Eratosthenes ... 82

4.6) Exercise 6: Sparse Matrix Detection .. 84

4.7) Exercise 7: Image thresholding .. 85

4.8) Exercise 8: Diagonal Permutation ... 86

4.9) Exercise 9: Business Sales Analysis ... 88

4.10) Exercise 10: Palindrome Checker... 90

Lab No 6. Custom Types (Structures and enumeration) .. 92

1) Objectives .. 92

2) Recap: Key Concepts in custom types .. 92

2.1) Enumerations ... 92

1st Year Mathematics – University of Guelma 4 Dr. Abderrahmane Kefali

2.1.1) Declaration of an enumeration ... 92

2.1.2) Manipulation of an enumeration .. 93

2.2) Structures ... 93

2.2.1) Declaration of a structure .. 94

2.2.2) Accessing Structure Fields ... 95

2.2.3) Manipulation of a structure ... 95

3) Practice activities ... 95

3.1) Activity 1: Enumerations .. 95

3.2) Activity 2: Structures ... 97

4) Application Exercises ... 99

4.1) Exercise 1: Geometric Shape Calculator ... 99

4.2) Exercise 2: Traffic Light Controller ... 101

Solution: .. 101

4.3) Exercise 3: Population Statistics.. 102

4.4) Exercise 4: Deck of Cards .. 104

4.5) Exercise 5: Point Distance Calculator .. 105

4.6) Exercise 6: Age Comparison ... 106

4.7) Exercise 7: Complex Number Operations .. 107

4.8) Exercise 8: Invoice Calculation ... 108

4.9) Exercise 9: Family Information ... 110

4.10) Exercise 10: Car Park Management ... 111

References .. 115

1st Year Mathematics – University of Guelma 5 Dr. Abderrahmane Kefali

 List of Figures

Figure 1.1. Main interface of Code::Blocs 20.03 ... 9

Figure 1.2. “New from template” window ... 10

Figure 1.3. Window for choosing between C and C++ languages .. 10

Figure 1.4. Window for entering the project title and path ... 11

Figure 1.5. Window for choosing the compiler ... 11

Figure 1.6. Expanding the project tree from the management area ... 12

Figure 1.7. Activating the “main.c” file... 12

Figure 1.8. Different types of triangles ... 13

Figure 5.1. Example of an array ... 68

Figure 5.2. Example of 3×4 matrix ... 69

Figure 5.3. Example of the normalization of an array .. 80

Figure 5.4. Example of transitions in a binary array ... 81

Figure 5.5. Example of a matrix before and after diagonal permutation .. 87

1st Year Mathematics – University of Guelma 6 Dr. Abderrahmane Kefali

List of Tables

Table 2.1. Basic Data Types in the C Language. ..15

Table 2.2. Input and Output Formats in the C Language. ...16

Table 5.1. Predefined functions for string manipulation ..70

Lab No 1. C language
Introduction

1) Objectives

The objective of this initial practical work is to facilitate the students' acquaintance with the

development environment designated for use throughout this semester, namely the

Code::Blocks environment. In this lab, students will embark on a guided exploration to

master the essentials of Code::Blocks, enabling them to create, compile, and execute their

inaugural C program. This hands-on experience will not only introduce students to the

Code::Blocks interface but also immerse them in the foundational commands essential for

programming in C. By the conclusion of this practical work, students will have gained a

robust understanding of the Code::Blocks environment, laying a solid groundwork for their

programming endeavors in this semester. Let's embark on this journey into the realm of

Code::Blocks, empowering students with the skills to navigate and utilize this development

environment effectively.

2) C language overview

C is a versatile and widely used programming language that has stood the test of time,

proving its resilience and adaptability since its creation in the early 1970s. It was developed

by Dennis Ritchie at Bell Labs for the purpose of creating the Unix operating system. Over

the decades, C has become one of the most influential programming languages, influencing

the development of numerous other languages.

The key features of C Language are:

• Simplicity and Efficiency,

• Portability,

• Structured Programming,

• Low-Level Manipulation,

• Procedural Programming

3) Software Required for C Programming

To program in the C programming language, you need to have three types of software:

• Text Editor: Used for writing the source code of the C program. In theory, software like

Notepad on Windows is sufficient. Ideally, it is recommended to use an intelligent text

editor that automatically colorizes the code, making it much easier for you to navigate.

• C Compiler: This is used to transform (compile) your source code into binary

(executable) code. The most well-known and widely used C compiler is GCC (GNU

Compiler Collection). It is a cross-platform, open-source compiler, indispensable on Unix

systems, created by the GNU project (for more details on this project, please refer to the

Algorithmics and Data Structures 1 Lab No 1. Introduction

1st Year Mathematics – University of Guelma 8 Dr. Abderrahmane Kefali

online project page: http://www.gnu.org/). The Windows version is called MinGW and can

be downloaded for free from: http://tdm-gcc.tdragon.net/download.

• Debugger: A tool to help you trace errors in your program.

Before you begin, you have two options:

• Option 1: Obtain each of these three programs separately. This is the more complicated

method, but it works. I will not detail this solution here; instead, I will discuss the simple

method.

• Option 2: Use an all-in-one program that combines a text editor, compiler, and debugger.

These all-in-one programs are called IDE (Integrated Development Environment).

However, there are several IDEs for the C language. Among the most well-known IDEs for

Windows, we can mention:

• Microsoft Visual C++

• Borland C++ Builder

• Dev C++

• Turbo C++

• NetBeans IDE

• Code::Blocks

All these IDEs allow you to program without any issues. Some are more feature-rich, while

others are a bit more intuitive to use. However, in all cases, the programs you create will be

the same regardless of the IDE you use. Therefore, the choice is not as crucial as one might

think.

For this course, we have chosen Code::Blocks. This will be the IDE we use in all our lab

sessions.

4) Presentation

Code::Blocks is an Integrated Development Environment (IDE) mainly designed for

programming in C and C++. The version of Code::Blocks that will be used during the lab

sessions is version 20.03 known for its reliability and feature-rich environment.

This IDE offers a user-friendly interface and a multitude of tools, streamlining the process of

code creation, debugging, and execution. Its versatility makes it an excellent choice for both

beginners and seasoned developers, providing a seamless coding experience.

5) Getting Started with Code::Blocks

5.1) Launching Code::Blocks

You can launch Code::Blocks 20.03 by clicking on the desktop icon or from the Start

Menu → All Programs → Code::Blocks.

5.2) Description of the Code::Blocks 20.03 Interface

When you click on the Code::Blocks 20.03 icon, the interface described in Figure 1.1 will

appear:

http://www.gnu.org/)
http://tdm-gcc.tdragon.net/download

Algorithmics and Data Structures 1 Lab No 1. Introduction

1st Year Mathematics – University of Guelma 9 Dr. Abderrahmane Kefali

Figure 1.1. Main interface of Code::Blocs 20.03

5.3) Creating a project

To create a new project, follow these steps:

• Click on "Create a new project" in the main window, or go to the File menu → New →

Project, or click the "New" button in the standard toolbar and select "Project" from

the drop-down menu.

• The "New from template" window opens and prompts you to choose a project template.

Select "Console application" and click "Go". See Figure 1.2.

• The dialog box that opens serves no purpose; check the box that says "Skip this page

next time" and click "Next >" to continue.

• The next window (Figure 1.3) will then ask you if you will be using C or C++. Select C,

and then click the "Next >" button.

1) Title bar 2) Menu bar 3) Tool bars

4) Management
area

5) Editor

6) Notification
area 7) Status bar

Algorithmics and Data Structures 1 Lab No 1. Introduction

1st Year Mathematics – University of Guelma 10 Dr. Abderrahmane Kefali

Figure 1.2. “New from template” window

Figure 1.3. Window for choosing between C and C++ languages

• Now, you need to give your project a name and select the folder where it will be saved.

Enter the name in the "Project title" field, and then click the button to browse for the

directory where the project will be saved. Confirm by clicking the "Next >" button. See

Figure 1.4.

• Finally, the last window (Figure 1.5) allows you to choose the compiler (usually GNU

GCC by default) and then click the "Finish" button.

Algorithmics and Data Structures 1 Lab No 1. Introduction

1st Year Mathematics – University of Guelma 11 Dr. Abderrahmane Kefali

Figure 1.4. Window for entering the project title and path

Figure 1.5. Window for choosing the compiler

• The project is now created, and it will appear in the current workspace on the left side of

the interface.

5.4) Editing the source file

• Expand the "Workspace" tree of projects located in the "Projects" tab of the

"Management Area" in Code::Blocks.

• Click on the  sign to the left of "Sources" to display the list of files in the project as

shown in Figure 1.6.

• Double-click on "main.c". It will be displayed in the central editing window with C syntax

highlighting. Now, it's ready to be edited (Figure 1.7).

Algorithmics and Data Structures 1 Lab No 1. Introduction

1st Year Mathematics – University of Guelma 12 Dr. Abderrahmane Kefali

Figure 1.6. Expanding the project tree from the management area

Figure 1.7. Activating the “main.c” file

5.5) Saving and opening

• Don't forget to save your program after each modification by selecting the "Save file"

command from the "File" menu, clicking the button on the "Standard" toolbar, or

using the keyboard shortcut + .

• To open an existing project, go to the "File" menu and select the "Open..." command or

use the keyboard shortcut .

5.6) Compile and run

Code::Blocks has a "Build" menu and a "Compiler" toolbar reserved for

compilation and execution.

• To compile the project, simply click on the "Build" command in the "Build" menu, or click

the button in the "Compiler" toolbar, or use the keyboard shortcut + .

• You can start the running by clicking either the "Run" command in the "Build" menu, or

the button in the "Compiler" toolbar, or by using the keyboard shortcut + .

• You can also compile and run (in one click) by clicking the "Build and Run" command in

the "Build" menu, or the button in the "Compiler" toolbar, or by using the keyboard

shortcut .

5.7) Exit Code::Blocs

You can exit Code::Blocks directly by clicking the button , or by choosing the "Quit"

action from the "File" menu, or by using the keyboard shortcut .

Algorithmics and Data Structures 1 Lab No 1. Introduction

1st Year Mathematics – University of Guelma 13 Dr. Abderrahmane Kefali

6) Your first program in C with Code::Blocs

Create a new project and name it "First Project-<your name>" following the same steps

outlined in section 3.3. Then, open the "main.c" file by following the steps described in

section 3.4. The following program will be displayed:

#include <stdio.h>

#include <stdlib.h>

int main()

{

 printf("Hello world!\n");

 return 0;

}

1. Compile and run this program.

2. Modify the sentence "Hello world" to "Hello, my name is <Your name>, I am a first-year

Mathematics student", then compile and run the program. What do you notice? Deduce

the role of printf.

3. Modify the program by adding "\n" and then "\t" after "Hello," and re-run it. What do you

notice? Deduce the meaning of "\n" and "\t".

4. Now, make the necessary modifications to the program so that it displays " I am a first-

year" and " Mathematics student" each on a separate line.

5. Modify the program to display:

a) A filled rectangle of asterisks (Figure 1.8.a)

b) A right-angled triangle of asterisks (Figure 1.8.b)

c) An isosceles triangle of asterisks (Figure 1.8.c).

*
**

 *

(a) (b) (c)

Figure 1.8. Different types of triangles

6. Delete all the printf statements in the program and replace them with:

printf("Your mark is %d/20",15).

7. Change 15 to 15.75. Compile and run the program. What do you notice?

8. Change "%d" to "%f", then compile and run.

9. Deduce the role of "%d" and "%f".

Lab No 2. Simple sequential
algorithm

1) Objectives

The aim of this lab is to familiarize students with the fundamental structure and basic

elements of a C language program. Through activities and practical exercises, students will

acquire the skills to construct comprehensive programs in C, demonstrating proficiency in

manipulating variables, constants, and basic instructions.

By the end of this lab, students should confidently execute C language programs and apply

essential programming concepts. For optimal preparation, students are encouraged to refer

to section number 9 of Chapter 2 titled "Translation into C language" before diving into the

problem-solving aspect of this lab. This section provides detailed explanations of the

concepts necessary to successfully complete the application exercises in this lab. Let's

embark on this journey to establish a strong foundation in C programming!

2) Recap: Key Concepts in C Programming

Before delving into the exercises, it's essential to revisit some fundamental concepts in C

programming.

2.1) C program structure

In a C program, the structure typically adheres to the following format:

<Library Declarations>

main()

{

 <Constant and Variable Declarations>

 <Instructions>

}

The <Library Declarations> section involves including external libraries, signaled by

#include directives, providing additional functionalities to the program. Common

inclusions, such as #include <stdio.h>, offer access to predefined input and output

functions.

The main() function, denoted in lowercase, serves as the program's starting point. Within

the braces indicating the scope of the program, both constant and variable declarations, as

well as instructions, are enclosed. This encapsulation within braces defines the overall scope

of the C program.

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 15 Dr. Abderrahmane Kefali

2.2) Constant and Variables declaration

This section is where you declare any constants and variables that will be used in the

program.

2.2.1) Constant declaration

Constants are values that do not change during the program's execution, usually defined

using #define directive according to the syntaxe:

#define <name_constant> <value_Constant>

For example, #define PI 3.14 declares a constant named PI with the value 3.14.

2.2.2) Variable declaration

Variables, on the other hand, are dynamic entities that can hold varying values during

program execution. Their declaration involves specifying the data type followed by the

variable name as follows:

<type_Variable> <name_Variable>;

For instance, int x; declares an integer variable named x.

However, the various data types recognized in the C language are the following:

Data type Signification Size

(Bytes)

Range of acceptable values

Char Character 1 -128 à 127

unsigned char Unsigned Character 1 0 à 255

short Short Integer 2 -32768 à 32767

unsigned short Unsigned Short Integer 2 0 à 65535

Int Integer 4 -2147483648 à 2147483 647

unsigned int Unsigned Integer 4 0 à 4294967295

long Long Integer 4 -2147483648 à 2147483647

unsigned long Unsigned long Integer 4 0 à 4294967295

Float Floating (real) 4 3.4×10-38 à 3.4×1038

Double Double Floating 8 1.7×10-308 à 1.7×10308

long double Long Double Floating 10 3.4×10-4932 à 3.4×104932

Table 2.1. Basic Data Types in the C Language.

It's essential to note that both constant and variable names are identifiers and must adhere to

specific rules. Identifiers are case-sensitive, can include letters, digits and underscores ('_'),

but must begin with a letter or underscore.

2.3) Instructions

Within the C program structure, the section denoted as <Instructions> represents the

heart of the program, where a sequence of instructions guides the computer on how to

perform specific tasks.

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 16 Dr. Abderrahmane Kefali

In C language the basic instructions include assignments, reading, and writing. All these

instructions must end with a semicolon (;).

2.3.1) Assignments

Assignment is an operation that allows assigning a value to a variable. It is symbolized by the

sign '='. Its syntax is as follows:

<name_variable> = <value> ;

The right-hand part <value> can be a direct value, a constant, another variable, or an

expression.

For instance, x=7; assigns the direct value 7 to the integer variable x.

2.3.2) Reading

In the C programming language, there are several functions for inputting values from the

keyboard, with scanf being one of the most common functions for this purpose. The

syntax of this function is as follows:

scanf("<format>", &<name_variable>);

Here,

• <format>: A format specifier string that defines the expected input format. It consists of

conversion specifiers (See Table 2.2).

• <name_variable>: the name of the variable where the scanned values will be stored.

Note that the sign of address ('&') is mandatory.

The various format specifiers are the following:

Format Data type Data representation

%d Int Signed decimal

%hd short int Signed decimal

%ld long int Signed decimal

%u unsigned int Unsigned decimal

%hu unsigned short int Unsigned decimal

%lu unsigned long int Unsigned decimal

%f float Floating-point, fixed decimal

%lf double Floating-point, fixed decimal

%Lf long double Floating-point, fixed decimal

%c char Character

%s String of characters

Table 2.2. Input and Output Formats in the C Language.

For example, scanf("%d",&x); allows to read an integer and store it in the variable x.

2.3.3) Writing

The most common function to write (display) in C language is printf function. His syntax

is as follows:

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 17 Dr. Abderrahmane Kefali

printf("<control string>",<expression>);

Such as:

• <control string>: The text to be displayed in addition to format specifier that defines

the desired output format of the <expression>. The format consists of conversion

specifiers as defined in Table 2.2.

It is crucial to use escape characters in the control string, such as '\n' for a newline, to

ensure proper formatting and presentation of output.

• <expression>: Values or variables to be formatted and displayed, corresponding to the

format specifiers.

For instance, printf("The value of x is %d",x); displays the string "The value

of x is " followed by the value of the variable x.

2. Practice activities

The practice ctivities in this section serve the purpose of reinforcing and applying the

concepts of C programming learned in the preceding material. They provide an opportunity

for hands-on practice, allowing students to integrate and solidify his understanding of these

notions by working through several scenarios.

2.3) Activity 1 : Declaration and assignment

Consider the following program:

#include <stdio.h> // Use the standard input/output library

int main(){ // The main program

 #define x 4 // Declare a constant named x with a value of 4

 int a,b,c,d,t1,t2; // Declare 6 integer variables

 a = 5; // Assign the value 5 to variable a

 b = 3; // Assign the value 3 to variable b

 c = 1; // Assign the value 1 to variable c

 t1 = b * b; // Store the result of b*b in variable t1

 t2 = x * a * c; // Store the result of x*a*c in variable t2

 d = t1 - t2; // Store the result of t1-t2 in variable d

 printf("The result is %d", d); // Display the result d

}

1. Create a new project and type the program above. Note that the sentences after "//"

are comments, so there is no need to write them.

2. What does this program do?

3. Replace int with float then compile and execute. What do you notice?

4. Make the necessary corrections for the program to work correctly.

Solution:

1. Creation of a new project.

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 18 Dr. Abderrahmane Kefali

2. This program begins by declaring a constant and six variables. It then assigns values,

which can be either direct values or the results of expressions, to each variable.

Finally, the program computes a result based on these variables and displays the

final outcome using printf.

3. When transitioning the variable types from int to float in the program, a

discrepancy becomes evident in the displayed value. Despite the actual value of the

variable d being -11, the program erroneously shows 0. However, this inconsistency

arises from the mismatch between the data types of the variables (which have been

changed to float) and the display format specifier in the printf statement,

(which still uses "%d", indicating an integer). The result is a misrepresentation of the

calculated value.

4. To rectify this inconsistency and accurately reflect the nature of the computation, it is

essential to align the display format in the printf statement with the updated

variable types. By employing the "%f" format specifier, the program will correctly

represent the result as a floating-point number during output, ensuring coherence

between variable types and display presentation.

2.4) Activity 2 : Reading instruction

The following program is supposed to calculate the result of dividing two integers entered by

the user.

#include <stdio.h>

main(){

 int x,y,r;

 printf("Enter 2 integer numbers: ");

 scanf("%d%d",&x,&y);

 r=x/y;

 printf("%d / %d = %d",x,y,r);

}

1. Create a new project and type the program above.

2. Compile and run the program. Is the result correct?

3. Change the type of the variable r to float, then compile and run it. Is the issue

resolved?

4. If not, replace the last "%d" in the printf with by "%f," then compile and run it. Is

the provided result correct?

5. As a final attempt, add (float) before x in the instruction r=x/y, making it

r=(float)x/y. Compile and run it. Is the program correct now?

6. What do you conclude from what happened?

Solution:

1. Creation of a new project.

2. After compiling and running the program, no compiler errors are detected. However,

upon entering values for the variables x and y, it becomes apparent that the result

stored in variable r is inaccurate. This discrepancy stems from the fact that the

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 19 Dr. Abderrahmane Kefali

program performs integer division, truncating any decimal values and potentially

leading to an imprecise outcome.

3. After converting the variable type of r to float, the displayed result becomes 0,

pointing us directly to the issue discussed in the previous exercise: the incoherence

between variable types and display presentation.

4. Upon replacing the last "%d" in the printf statement with "%f", the result is indeed

displayed as a floating-point number. However, an observation of the displayed

outcome reveals that the fractional part of the number is zero. This behavior suggests

that despite the change in the display format, the underlying issue persists, and it

appears that an integer division is still being performed.

5. Yes, by introducing (float) before x in the instruction r=x/y, thus modifying it

to r=(float)x/y, the program successfully addresses the issue.

6. From the observed behaviors and the modifications made to the program, several

conclusions can be drawn:

• Format Specifier and Display: The choice of format specifier in the printf

statement is crucial for accurate representation of variable values. Mismatching

the specifier with the variable type can lead to misleading or incorrect output.

• Integer Division: In C, when performing division between two integers, the result

is also an integer, with any fractional part truncated. This behavior can lead to

imprecise results, especially when dealing with floating-point arithmetic.

• Casting to Float: To ensure accurate floating-point division, it's essential to

explicitly cast at least one of the operands to a float before the division operation.

This casting ensures that the division involves floating-point numbers, allowing

for proper representation of fractional parts.

3. Application exercises

In all the following exercises, you are not required to ensure the validity of the entered data.

3.1) Exercise 1 : Fahrenheit to Kelvin Conversion

To convert Fahrenheit degrees to Kelvins, the following formula is used:

𝐾 =
𝐹 + 459,67

1,8

Where K is the degree in Kelvin and F is the degree in Fahrenheit.

Write a program that allows entering a temperature in Fahrenheit from the keyboard and

converts it to Kelvins.

Solution:

The program consists of three steps:

• Input a temperature value in Fahrenheit.

• Utilize the given formula to convert the Fahrenheit temperature to Kelvins.

• Display the result

It is as follows:

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 20 Dr. Abderrahmane Kefali

#include<stdio.h>

int main() {

 float F, K;

 // Read temperature in Fahrenheit from the user

 printf("Enter temperature in Fahrenheit: ");

 scanf("%f", &F);

 // Convert Fahrenheit to Kelvins using the formula

 K = (F + 459.67) / 1.8;

 // Display the result

 printf("Temperature in Kelvin: %.2f\n", K);

 return 0;

}

3.2) Exercise 2 : Circle Perimeter and Area

Write a program that reads the radius R of a circle and calculates and displays its perimeter

and area.

Solution:

The program first prompts the user to provide the radius value (R) and then utilizes the

formulas for perimeter and area of a circle to perform the calculations.

• The perimeter (also known as the circumference) is calculated using the formula 2πR.

• The area is calculated using the formula πR2.

Finally, the program presents the computed values for both perimeter and area.

Here is the program:

#include<stdio.h>

main(){

 #define pi 3.14

 float R,p,a;

 //Read the radius of the circle from the user

 printf("Enter the radius of the circle: ");

 scanf("%f",&R);

 //Calculate perimeter and area

 p=2*pi*R;

 a=pi*R*R;

 //Display the results

 printf("The perimeter is %.3f\n",p);

 printf("The area is %.3f\n",a);

 //"%.3f" to display 3 digits after the decimal point

}

3.3) Exercise 3 : Car Selling Price Calculation

The selling price of a new car includes the sum of the base price, a dealer's profit, and a

sales tax. The dealer's profit percentage is 10%, and the sales tax is 9% of the base price.

Write a program allows entering the base price of a car and calculates and displays its selling

price.

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 21 Dr. Abderrahmane Kefali

Solution:

The solution involves obtaining user input for the base price and then applying the specified

profit and tax percentages to calculate the total selling price. The program concludes by

displaying the calculated selling price as the output.

To implement this solution, the following C program is provided:

#include<stdio.h>

int main() {

 float basePrice, dealerProfit, salesTax, sellingPrice;

 // Read the base price of the car from the user

 printf("Enter the base price of the car: ");

 scanf("%f", &basePrice);

 // Calculate dealer's profit (10% of base price)

 dealerProfit = basePrice*10/100;

 // Calculate sales tax (9% of base price)

 salesTax = basePrice*9/100;

 // Calculate selling price

 sellingPrice = basePrice + dealerProfit + salesTax;

 // Display the result

 printf("Selling Price: %.2f\n", sellingPrice);

 return 0;

}

3.4) Exercise 4 : Basic Arithmetic Operations

Write a program that allows you to enter 2 integers from the keyboard and calculates and

displays their sum, difference, product, quotient, and remainder of division.

Solution:

#include<stdio.h>

main(){

 int x,y,sum,diff,prod,quot,rem;

 //Read two integers from the user

 printf("Donner 2 nombres entiers: ");

 scanf("%d%d",&x,&y);

 //Calculate sum,difference,product,quotient,and remainder

 sum=x+y;

 diff=x-y;

 prod=x*y;

 quot=x/y;

 rem=x%y;

 //Display the results on separate lines

 printf("The sum is %d\n",sum);

 printf("The difference is %d\n",diff);

 printf("The product is %d\n",prod);

 printf("The quotient is %d\n",quot);

 printf("The remainder of division is %d\n",rem);

}

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 22 Dr. Abderrahmane Kefali

3.5) Exercise 5 : Spring Elongation Calculation

We aim to calculate the elongation L of a spring with stiffness K to which a mass m is

attached, considering the relationship m * g = K * L.

Such as:

• K: stiffness of the spring,

• m: attached mass,

• L: elongation of the spring,

• g: gravitational constant equal to 9.8 m/s².

Write a program that input the necessary data and calculates and displays the value of the
spring's elongation

Solution:

The objective is to create a program capable of computing the elongation (L) of a spring

when given the stiffness (K) and the attached mass (m).

The program achieves this by prompting the user to input the values for stiffness (K) and

mass (m). Subsequently, it utilizes the provided formula to calculate the elongation (L).

However, it is given that: m * g = K * L, and therefore L=(m*g)/K.

The final step involves displaying the computed elongation as the program output.

Here is the requested program:

#include<stdio.h>

int main() {

 #define g 9.8

 float K, m, L;

 // Prompt the user for input

 printf("Enter the stiffness of the spring (K): ");

 scanf("%f", &K);

 printf("Enter the attached mass (m): ");

 scanf("%f", &m);

 // Calculate elongation using the formula m * g = K * L

 L = (m * g) / K;

 // Display the calculated elongation

 printf("The elongation of the spring (L) is: %.2f\n", L);

 return 0;

}

3.6) Exercise 6 : Duration Conversion

Write a program that asks the user for a duration value expressed in seconds and displays

its equivalent in hours, minutes, and seconds.

Example: 3800 seconds → 1 hour 3 minutes 20 seconds.

Solution:

In addressing this exercise, the solution hinges on employing the / and % operators.

Recognizing that an hour consists of 3600 seconds serves as a foundational understanding.

Therefore, through integer division (dividing the total seconds by 3600), we obtain the

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 23 Dr. Abderrahmane Kefali

corresponding number of hours. For instance, in the provided example, 3800 seconds

equate to precisely 1 hour (the result of 3800 / 3600).

Subsequently, addressing the remaining seconds (200 in this case, derived from 3800 %

3600), we apply the rule that one minute is equivalent to 60 seconds. Achieving this

conversion involves integer division (200 / 60 = 3), determining the number of minutes. The

remainder in this division represents the remaining seconds (20).

Let's now implement this logic into a program that takes a duration value in seconds from the

user and displays its equivalent in hours, minutes, and seconds

#include<stdio.h>

int main() {

 int totalSeconds, h, m, s;

 // Prompt the user for the duration in seconds

 printf("Enter the duration in seconds: ");

 scanf("%d", &totalSeconds);

 // Calculate hours, minutes, and seconds

 h = totalSeconds / 3600;

 m = (totalSeconds % 3600) / 60;

 s = totalSeconds % 60;

 // Display the equivalent duration

 printf("Equivalent duration:\n");

 printf("%d hours %d minutes %d seconds", h, m, s);

 return 0;

}

3.7) Exercise 7 : Distance Calculation

Write a program that allows reading the coordinates of two points in the plane and calculates

and displays the distance between them.

Recall that the distance between two points A(x1,y1) and B(x2,y2) is given by the following

formula:

Note: In C language, the calculation of the square root is achieved using the sqrt function.

Solution:

The solution involves taking user input for the coordinates of two points in the plane,

specifically A(x1, y1) and B(x2, y2). These four coordinates are essential for calculating the

distance between the two points using the distance formula. The formula involves the

squared differences in x and y coordinates, and the resulting sum is then square-rooted

using the sqrt function in the C language. This calculated distance is then displayed to the

user. The program's structure adheres to the mathematical representation of the distance

formula, ensuring accurate and efficient computation.

The program to perform this calculation is as follows:

22)12()12(yyxxd −+−=

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 24 Dr. Abderrahmane Kefali

#include<stdio.h>

#include<math.h>

main(){

 float x1,y1,x2,y2,dis;

 printf("Enter the coordinates (x,y) of point A: ");

 scanf("%f%f",&x1,&y1);

 printf("Enter the coordinates (x,y) of point B: ");

 scanf("%f%f",&x2,&y2);

 dis = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));

 printf("The distance between the 2 points is: %.2f",dis);

}

Note that the <math.h> header file is necessary for using the sqrt function, which is

employed in this program to calculate the square root.

3.8) Exercise 8 : Character Variables Swap

Write a program that allows you to enter the values of 2 character variables from the

keyboard and swaps their content.

Solution:

In the resolution of this exercise, which involves reading and swapping two character

variables (designated as a and b in the following program), two fundamental ideas are

pivotal.

The initial idea centers around the process of reading character variables using scanf and

the format specifier "%c". However, unlike numerical inputs, character inputs may be

influenced by whitespace characters, including the newline character ('\n'), which can lead

to unexpected behavior. This is because when the user enters a character and presses

'Enter', the newline character remains in the input buffer. Consequently, the next

scanf("%c", &variable); might unintentionally capture this newline character instead

of waiting for new input.

To address this issue, a space is strategically introduced before the "%c" in the scanf

format string (e.g., scanf(" %c",&variable);). This extra space instructs scanf to

ignore any whitespace characters, ensuring a more reliable input process.

The second idea is the mechanism employed to swap the contents of two variables (a and

b in this case). To perform a correct swap without losing information, a third variable (c in

the following program) is introduced. The purpose of the temporary variable c is to

temporarily store the value of a before it is overwritten with the value of b.

This is necessary because if we directly assign a = b first, the original value of a would

be lost, and both a and b would end up with the value of b. However, the sequence c =

a; a = b; b = c; facilitates a secure exchange, preventing the loss of the original

values of both a and b. The temporary variable c acts as a placeholder, enabling a

smooth and accurate swapping process.

The program below exemplifies these adjustments, demonstrating the correct reading and

swapping of two characters entered by the user:

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 25 Dr. Abderrahmane Kefali

#include<stdio.h>

int main() {

 char a, b, c;

 printf("Enter the first character: ");

 scanf(" %c", &a);

 //the space before %c to consume any whitespace

 printf("Enter the second character: ");

 scanf(" %c", &b);

 c = a;

 a = b;

 b = c;

 printf("After swapping, a='%c' and b='%c'\n", a, b);

 return 0;

}

3.9) Exercise 9 : Document Size Calculation

We want to digitally store a document consisting of two identical pages. Each page is

comprised of both text and an image, with the image size fixed at 40 KB. The text on a page

consists of P sentences, where each sentence concludes with a period. Each sentence is

constructed from M words, and each word contains C characters, with words separated by

02 white spaces.

Create a program to calculate the size of this document in bytes, keeping in mind that each

character is encoded using 1 byte.

Solution:

In this exercise, our aim is to create a program that accurately calculates the size of a digital

document comprising two identical pages, each containing both text and an image.

The user is prompted to input key parameters: the number of sentences (P), words per

sentence (M), and characters per word (C), shaping the structure of the textual content on

each page.

The program's calculation process is methodical. It starts by computing the total character

count in a sentence, considering characters within words, spaces, and the concluding period.

This count serves as the foundation for subsequent calculations.

Moving forward, the program extrapolates the sentence character count to determine the

overall character count on an entire page. This involves multiplying the sentence character

count by the user-specified number of sentences (P), effectively encapsulating the textual

content for one page.

To gauge the size of a single page in bytes, the program multiplies the total character count

by the size of each character (encoded as 1 byte) and adds the fixed size of the

accompanying image (40 KB, converted to bytes). Recognizing that our document consists

of two identical pages, the program extends its calculations to determine the total size of the

entire document in bytes.

In presenting the results, the program aims for user-friendly clarity, providing a

straightforward output of the calculated document size.

The program enabling this computation is as follows:

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 26 Dr. Abderrahmane Kefali

#include <stdio.h>

int main() {

 //constants

 #define IMG_SIZE_KB 40

 #define CHAR_SIZE_B 1

 #define NB_SPACES 2

 // Variables

 int P,M,C,charInSentense,charInPage;

int pageSizeBytes,documentSize;

 // User input

 printf("Enter the number of sentences (P): ");

 scanf("%d", &P);

 printf("Enter the number of words per sentence (M): ");

 scanf("%d", &M);

 printf("Enter the number of characters per word (C): ");

 scanf("%d", &C);

 // Calculate the number of characters in a sentence

 // M words with C characters each, plus M-1 spaces,

 // plus 1 period

 charInSentense = M * C + (M - 1) * NB_SPACES + 1;

 // Calculate the number of characters in a page

 charInPage = P * charInSentense;

 // Calculate the size of a page in bytes

 pageSizeBytes =charInPage*CHAR_SIZE_B+IMG_SIZE_KB*1024;

 // Calculate the document size in bytes

 documentSizeBytes=2*pageSizeBytes; //Two identical pages

 // Display the result

 printf("The size of the document is: ");

 printf("%d bytes\n", documentSizeBytes);

 return 0;

}

3.10) Exercise 10 : Monthly Loan Repayment Calculation

A young couple decides to build a house. The purchase of the land and the construction

require a loan of E dinars. This couple wants to know how much their monthly repayment will

be if the repayment is made over n years, with an interest rate of T% on the loan.

Write a program to assist the couple in determining their monthly repayment amount.

Solution:

The solution involves several steps:

• Capture the loan amount (E), the number of years (n), and the interest rate (T).

• Subsequently, it calculates the interest (I) using the formula: I = E × T / 100.

• Next, it computes the annual repayment (RA) as: (E + I) / n,

• After that, it calculates the monthly repayment (RM) as: RA / 12.

• Finally, it displays the monthly repayment amount

Algorithmics and Data Structures 1 Lab No 2. Simple sequential algorithm

1st Year Mathematics – University of Guelma 27 Dr. Abderrahmane Kefali

The implementation of these steps is reflected in the following C program.

#include <stdio.h>

int main() {

 // Variables

 float E, T, I, RA, RM;

 int n;

 // User input

 printf("Enter the loan amount in dinars: ");

 scanf("%f", &E);

 printf("Enter the annual interest rate (%): ");

 scanf("%f", &T);

 printf("Enter the loan duration in years: ");

 scanf("%d", &n);

 // Calculate the value of the interest (I)

 I = E * T / 100;

 // Calculate the annual repayment (RA)

 RA = (E + I) / n;

 // Calculate the monthly repayment (RM)

 RM = RA / 12;

 // Display the Result

 printf("The monthly repayment is: %.2f dinars\n", RM);

 return 0;

}

Lab No 3. Conditional
Structures

1) Objectives

Embark on a journey of discovery with this practical work designed to delve into the realm of

conditional structures in the C programming language. Through a curated set of activities

and exercises, our primary goal is to impart a profound understanding of the diverse forms of

conditional structures and their practical applications.

Upon the completion of this practical work, students will possess the skills to adeptly

navigate problems involving multiple situations. Mastery of the studied conditional

instructions will empower them to craft solutions that are not only accurate but also adhere to

best practices in programming.

This practical work goes beyond the syntax and mechanics of conditional structures; it aims

to cultivate a problem-solving mindset, an indispensable skill in the dynamic landscape of

programming. Get ready to unravel the intricacies of conditional structures, and let's

transform theoretical knowledge into actionable proficiency.

2) Recap: Key Concepts in Conditional Structures

Before diving into the exercises, let's revisit some key concepts related to conditional

structures in C programming.

Conditional structures allow the execution of different blocks of code based on the result of

tests. Tests can take two forms: simple and alternative.

2.1) Simple Conditional Structure

This structure executes a block of instructions only if a logical expression (condition) is true.

The syntax is as follows:

if(<condition>)

 <block of instructions>;

The <condition> refers to a boolean expression or a logical statement that evaluates to

either true or false.

Example:

int a;

scanf("%d", &a);

if (a > 0)

 printf("positive number");

Remarks:

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 29 Dr. Abderrahmane Kefali

• The C language does not have a boolean type or TRUE and FALSE values. The FALSE

logical value is expressed by the value 0, and the TRUE value by any other value.

• The <block of instructions> must be enclosed in curly braces “{...}” if it

consists of more than one instruction.

2.2) Compound Conditional Structure

This structure executes one block of instructions if a logical expression (condition) is true and

another block if the expression is false. The syntax is as follows:

if(<condition>)

 <block of instructions1>;

else <block of instructions2>;

Example:

int a;

scanf("%d", &a);

if (a >= 0)

 printf("positive number");

else

 printf("negative or zero number");

2.3) Nested Conditional Structures

Nested conditional structures involve placing one conditional statement inside another. This

allows for more complex decision-making. The nesting of multiple tests is done in the C

language as follows:

if(condition1) <block of instructions1>;

else if(condition2) <block of instructions2>;

 else if(condition3) <block of instructions3>;

 else <block of instructions_n>;

2.4) Multiple Choice Statement (switch)

The multi-choice statement allows the execution of instructions based on the evaluation of

the value of an expression acting as a selector. Its syntax is as follows:

switch(<expression>){

 case <value>: <block of instructions1>

 break;

 case <value2>: <block of instructions2>

 break;

 case <value_n>: <block of instructions n>

 break;

 default: <block of instructions n+1>

}

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 30 Dr. Abderrahmane Kefali

If the value of the expression is equal to one of the values, the corresponding block of

instructions is executed. Otherwise, the block of other instructions corresponding to

default is executed.

Remarks:

• The value of the <expression> can only be an integer or a character.

• The break statement is necessary to exit the switch structure. If it is absent at the

end of the instructions block for <value_i>, execution continues with the instructions

for the next value.

• The default statement is optional.

• It is not necessary to group the instructions in curly braces “{...}” in this structure.

2.5) Branching Statement (goto)

Branching statements allow the transfer of control to a labeled statement. This is achieved in

the C language using the goto statement. The general syntax for the goto statement is:

<Label_name>:

 instruction i ;

goto <Label_name>;

Here, <Label_name> is a user-defined identifier followed by a colon, and it marks the

target statement where control will be transferred.

3) Practice activities

The activities presented in this section are tailored to offer valuable training and hands-on

practice, allowing you to reinforce your understanding of conditional structures in a practical

context.

3.1) Activity 1 : simple, compound, and nested conditional statements

Consider the following program:

#include <stdio.h>

int main(){

 int n;

 printf("Enter an integer number: ");

 scanf("%d",&n);

 if(n%2==0) printf("The number %d is divisible by 2",n);

 if(n%2!=0) printf("The number %d is not divisible by 2",n);

 return 0;

}

1. Create a new project and type the program above.

2. Compile and run it. What does this program do?

3. Modify the program to perform the same task but with a single comparison.

4. Make the necessary adjustments to the program to test whether the entered number is

divisible by 2 and 3, only by 2, only by 3, or by neither of them.

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 31 Dr. Abderrahmane Kefali

Solution:

1. Creation of a new project.

2. The provided C program prompts the user to enter an integer, checks if it is divisible by 2,

and then prints a corresponding message.

3. To perform the same task with a single comparison, we should use the compound test

structure (if - else). Here's the modified program:

#include <stdio.h>

int main(){

 int n;

 printf("Enter an integer number: ");

 scanf("%d",&n);

 if(n%2==0)

 printf("The number %d is divisible by 2",n);

 else printf("Le nombre %d is not divisible by 2",n);

 return 0;

}

It's important to note a crucial distinction between the two versions of the program. In the

original code, despite its apparent similarity to the modified version, a noteworthy

inefficiency exists. The initial program unconditionally performs two separate tests,

irrespective of the outcome of the first condition. In contrast, the modified version

employs a single if-else statement, ensuring that only one condition is evaluated. If

the first condition (n%2==0) is true, the corresponding block of code executes, bypassing

the else block. This enhancement enhances the code's efficiency, particularly when

conditions are mutually exclusive, by eliminating redundant evaluations.

4. To examine various divisibility conditions based on the entered number, the program

employs nested conditional structures. The code is as follows:

#include <stdio.h>

int main() {

 int n;

 // Input

 printf("Enter an integer number: ");

 scanf("%d", &n);

 // Test for divisibility by 2 and 3

 if (n % 2 == 0 && n % 3 == 0)

 printf("The number %d is divisible by both 2 and 3", n);

 // Test for divisibility by only 2

 else if (n % 2 == 0)

 printf("The number %d is divisible only by 2", n);

 // Test for divisibility by only 3

 else if (n % 3 == 0)

 printf("The number %d is divisible only by 3", n);

 // Not divisible by 2 or 3

 else printf("The number %d is neither divisible by 2 nor by 3", n);

 return 0;

}

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 32 Dr. Abderrahmane Kefali

3.2) Activity 2: Multiple-choice structure

We want to write a program that displays, for a selected season, the list of months it

contains. The program starts by displaying, in a menu, all the seasons of the year. The user

is then prompted to select one of the seasons. Finally, the program displays the months of

that season.

Recall that there are four seasons (spring, summer, autumn, and winter), each containing

three months, and that March is the first month of spring.

The menu to be displayed is in the following format:

List of seasons:

 1: Spring

 2: Summer

 3: Autumn

 4: Winter

Enter your choice:

If the user, for example, enters 3, the program displays:

The months are: September, October, November

The following code, once completed, is supposed to perform the requested task:

#include <stdio.h>

int main(){

 int s;

 printf("List of seasons:\n");

 printf("\t1: Spring\n");

 switch(s){

 case 1:

 break;

 default:

 }

 return 0;

}

1. Create a new project and type the code provided above.

2. Complete the program to make it perform the desired task, then compile and run it.

Solution:

1. Creation of a new project.

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 33 Dr. Abderrahmane Kefali

2. Here is the expected program. It is designed to display a menu featuring all the seasons of the

year. It then prompts the user to enter a season number and utilizes a switch statement to

display the list of months associated with the selected season.

#include <stdio.h>

int main() {

 int s;

 // Display the menu of seasons

 printf("List of seasons:\n");

 printf("\t1: Spring\n");

 printf("\t2: Summer\n");

 printf("\t3: Autumn\n");

 printf("\t4: Winter\n");

 // Prompt user to enter his choice

 printf("Enter your choice: ");

 scanf("%d", &s);

 // Complete the switch statement to display the months

//based on the user's choice

 switch (s) {

 case 1:

 printf("The months: March, April, May\n");

 break;

 case 2:

 printf("The months: June, July, August\n");

 break;

 case 3:

 printf("The months: September,October,November");

 break;

 case 4:

 printf("The months: December,January,February ");

 break;

 default:

 printf("Incorrect season number ");

 }

 return 0;

}

3.3) Activity 3: Branching statement

Here is an incomplete C program that uses the goto branching instruction. Your task is to

fill in the missing parts to create a program that allows users to input a sequence of positive

integers. The program should continue accepting numbers until a negative or zero value is

entered. Finally, it should calculate and display the sum of the entered numbers.

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 34 Dr. Abderrahmane Kefali

#include <stdio.h>

int main() {

 int n,sum;

 sum=0;

 printf("Enter a positive integer. ");

 printf("Enter a negative or zero value to end:\n");

 scanf("%d",&n);

 if(n > 0){

 }

 printf("The sum is %d",sum);

 return 0;

}

Solution:

In order to complete the requested task, we must first assign a label (input in the following

program) to the instruction that we want to jump back, which is the input instruction. After

each input, we test if the entered number is positive. If it is the case, we add it to the sum and

we use the goto statement to jump to the labeled instruction in order to input another

number, creating a loop-like behavior. This allows the program to repeatedly prompt the user

for positive integers until a negative or zero value is entered. The completed program looks

like this:

#include <stdio.h>

int main() {

 int n,sum;

sum=0;

// Assign a label to the input instruction

 input:

printf("Enter a positive integer. ");

 printf("Enter a negative or zero value to end:\n");

 scanf("%d",&n);

// Check if the entered value is positive

 if(n > 0){

 // Add the positive number to the sum

 sum=sum+n;

 // Use goto to jump back to the labeled instruction

 goto input;

 }

//Display the sum once a negative or zero value is entered

 printf("The sum is %d",sum);

 return 0;

}

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 35 Dr. Abderrahmane Kefali

4) Application exercises

The application exercises in this section are designed to provide practical applications and

reinforce your understanding of the concepts covered in the previous sections.

4.1) Exercise 1: Identify Minimum

Write a program that prompts the user to enter 3 integer numbers and then identifies the

minimum among them.

Solution:

To determine the minimum among three integers, we start by prompting the user to input

these values. Given the exercise's scope, there no input-error cases. Following the input

phase, the next step involves comparing the three integers to identify the smallest value. In

this context, the minimum is defined as the number that is either smaller than or equal to the

other two. Finally, it remains only to display the result.

We present here two distinct programs that achieve this purpose. The first program utilizes

simple conditional structures (if statement), while the second employs compound

conditional structures (if-else statement).

First program:

#include <stdio.h>

int main() {

 int n1,n2,n3,min;

 //Prompt the user to enter three integers

 printf("Enter the first integer: ");

 scanf("%d", &n1);

 printf("Enter the second integer: ");

 scanf("%d", &n2);

 printf("Enter the third integer: ");

 scanf("%d", &n3);

 //Determine the minimum among the three integers

 min = n1;

 if (n2 < min) {

 min = n2;

 }

 if (n3 < min) {

 min = n3;

 }

 //Display the result

 printf("The minimum is: %d\n", min);

 return 0;

}

Second program:

#include <stdio.h>

int main() {

 int n1,n2,n3,min;

 // Prompt the user to enter three integers

 printf("Enter the first integer: ");

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 36 Dr. Abderrahmane Kefali

 scanf("%d", &n1);

 printf("Enter the second integer: ");

 scanf("%d", &n2);

 printf("Enter the third integer: ");

 scanf("%d", &n3);

 //Determine the minimum among the three integers

 if (n1 <= n2 && n1 <= n3) {

 min = n1;

 }

 else if (n2 <= n1 && n2 <= n3) {

 min = n2;

 }

 else {

 min = n3;

 }

 //Display the result

 printf("The minimum is: %d\n", min);

 return 0;

}

4.2) Exercise 2: Check if a point is inside a rectangle

Establish a program that reads the coordinates (x, y) of a point and determines if this point is

inside a rectangle defined by the coordinates of its top-left point (x1, y1) and its bottom-right

point (x2, y2).

Solution:

To solve this problem, we need to check whether the given point (x, y) lies inside the

rectangle defined by its top-left point (x1, y1) and bottom-right point (x2, y2). We can

determine this by comparing the x and y coordinates of the given point with the

corresponding coordinates of the rectangle.

If the x-coordinate of the point is greater than x1 and less than x2, and the y-coordinate of

the point is greater than y1 and less than y2, then the point is inside the rectangle.

The program is the following:

#include <stdio.h>

int main() {

 //Read coordinates of the point

 int x,y,x1,y1,x2,y2;

 printf("Enter the coordinates of the point (x, y): ");

 scanf("%d%d", &x, &y);

 //Read coordinates of the top-left point of the rectangle

 printf("Enter the coordinates of the top-left point of the rectangle

(x1, y1): ");

 scanf("%d%d", &x1, &y1);

 //Read coordinates of the bottom-right point of the rectangle

 printf("Enter the coordinates of the bottom-right point of the

rectangle (x2, y2): ");

 scanf("%d%d", &x2, &y2);

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 37 Dr. Abderrahmane Kefali

 //Check if the point is inside the rectangle

 if (x > x1 && x < x2 && y > y1 && y < y2) {

 //Print the result

 printf("The point is inside the rectangle.\n");

 } else {

 printf("The point is outside the rectangle.\n");

 }

 return 0;

}

4.3) Exercise 3: Solve Second-degree Equation

Write the program to solve a second-degree equation of the form:

a x2 + b x + c = 0.

Solution :

The resolution of a second-degree equation, represented in the form a x2 + b x + c = 0,

involves determining the roots of the equation.

However, to solve a second-degree equation, the coefficients a, b, and c are first obtained

from the user. The program then verifies that the equation is indeed second-degree (where a

is nonzero). Subsequently, the discriminant (Δ = b2 – 4 a c) is calculated to discern the nature

of the roots.

If the discriminant is positive, the equation has two real solutions. If it is zero, there is one

real solution, which indicates a repeated root. In the case of a negative discriminant, the

equation has not a real solution. Finally, the program displays the results.

Here is the requested program:

#include <stdio.h>

#include <math.h>

int main() {

 int a, b, c, delta;

 float x1, x2;

 // Read coefficients a, b, and c

 printf("Enter the coefficients a, b, c of the equation: ");

 scanf("%d%d%d", &a, &b, &c);

 // Check if the equation is not a second-degree

 if (a == 0) {

 printf("First degree equation\n");

 //Calculate and print the single solution

 x1 = (float)-c / b;

 printf("It has one solution: %.2f", x1);

 }

 else {

 printf("Second degree equation\n");

 // Calculate the discriminant

 delta = b * b - 4 * a * c;

 // Check the value of the discriminant

 if (delta < 0)

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 38 Dr. Abderrahmane Kefali

 printf("It has no real solutions");

 else if (delta == 0) {

 //Calculate and print the double solution

 x1 = (float)-b / (2 * a);

 printf("It has a double solution: %.2f", x1);

 }

 else {

 // Calculate and print the two distinct solutions

 x1 = (float)(-b - sqrt(delta)) / (2 * a);

 x2 = (float)(-b + sqrt(delta)) / (2 * a);

 printf("It has two solutions: %.2f and %.2f",x1, x2);

 }

 }

 return 0;

}

Note that the <math.h> header file is necessary for using the sqrt function, which is

employed in this program to calculate the square root.

4.4) Exercise 4: Identify Character Type

Write a program that reads a character from the keyboard and determines whether it is a

letter, a digit, or a symbol.

Solution:

To determine whether a character entered by the user is a letter, a digit, or a symbol, we can

leverage the ASCII values. Letters in the ASCII table fall within specific ranges, as do digits

and symbols. By comparing the ASCII value of the entered character with these ranges, we

can make the classification.

The program implementing this classification is as follows:

#include <stdio.h>

int main() {

 char ch; // User-input character

 // Read a character from the keyboard

 printf("Enter a character: ");

 scanf(" %c", &ch);

 //Note the space before %c to consume any whitespace

 //Check if the entered character is letter, digit, or symbol

 if ((ch >= 'A' && ch <= 'Z')||(ch >= 'a' && ch <= 'z')){

 printf("The entered character is a letter");

 } else if (ch >= '0' && ch <= '9') {

 printf("The entered character is a digit");

 } else {

 printf("The entered character is a symbol");

 }

 return 0;

}

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 39 Dr. Abderrahmane Kefali

4.5) Exercise 5: Calculate Paper Ream Cost

Write a program that allows a stationery to calculate the total cost of an order of paper

reams. The unit price for a ream is 340 DA for a quantity exceeding 50 units or if the

customer has made previous purchases from the seller. When the customer has no prior

purchases, the unit price for a ream is 370 DA for a quantity between 20 and 50, and 400 DA

for a quantity less than 20. The program should input the order quantity and the number of

previous purchases, then calculate and display the total amount to pay.

The program should account for all possible cases, including input errors.

Solution:

The requested program aims to facilitate a stationery in calculating the total cost of a

customer's order of paper reams based on specific pricing conditions. The unit price per

ream varies depending on both the order quantity and whether the customer has made

previous purchases.

The solution begins by prompting the user to enter essential information, specifically the

order quantity and the number of previous purchases. To ensure accuracy, the program

rigorously validates the entered values, promptly signaling an input error if necessary.

Following this, the program systematically applies specified pricing conditions, checking the

order quantity against defined thresholds and considering whether the customer has made

prior purchases. Based on these conditions, the program calculates the unit price and

subsequently computes the total amount to be paid for the paper reams. The final step

involves displaying the calculated total amount in Algerian Dinar (DA).

This solution is implemented by the following C program.

#include <stdio.h>

int main() {

 int qtt, nbPurch;

 float unitPrice, totalAmount;

 //Input order quantity and number of previous purchases

 printf("Enter the order quantity: ");

 scanf("%d",&qtt);

 printf("Enter the number of previous purchases: ");

 scanf("%d",&nbPurch);

 if(qtt<=0 || nbPurch<0)printf("Input error");

 else{

 //Determine the unit price

 if (qtt > 50 || nbPurch > 0) {

 unitPrice = 340;

 }

 else if (qtt >= 20 && qtt <= 50) {

 unitPrice = 370;

 }

 else {

 unitPrice = 400;

 }

 // Calculate the total amount to pay

 totalAmount = qtt * unitPrice;

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 40 Dr. Abderrahmane Kefali

 // Display the total amount to pay

 printf("Total amount to pay: %.2f DA",totalAmount);

 }

 return 0;

}

4.6) Exercise 6: Display Time One Second Later

Write a program that reads a time in the format (hour:minutes:seconds) and displays the time

one second later.

For example, if the user enters 21:32:8, the program should display: “One second from now,

it will be 21:32:9”.

The program should account for all possible cases, including input errors.

Solution:

The requested program is designed to read a time in the format (hour:minutes:seconds) and

then display the time one second later. To achieve this, the solution first prompts the user to

input a time, validates the input for correctness, and then increments the seconds component

by one. If the seconds component exceeds 59, it resets to 0, incrementing the minutes

component. Similarly, if the minutes component surpasses 59, it resets to 0, incrementing the

hours component. If the hours component reaches 24, it resets to 0, indicating midnight at

the start of a new day. The final result, representing the time one second later, is then

displayed to the user.

The described steps are encapsulated in the following program:

#include <stdio.h>

#include <stdlib.h>

int main() {

 //Declare variables to store hours, minutes, and seconds

 int h, m, s;

 //input a time in the format hour:minutes:seconds

 printf("Enter a time (hour:minutes:seconds): ");

 scanf("%d:%d:%d", &h, &m, &s);

 //Validate the input for correctness

 if (h < 0 || h > 23 || m < 0 || m > 59 || s < 0 || s > 59)

 printf("Invalid time");

 else {

 //Increment the seconds component by one

 s = s + 1;

 //Adjust seconds if necessary

 if (s > 59) {

 s = 0;

 m = m + 1;

 //Adjust minutes if necessary

 if (m > 59) {

 m = 0;

 h = h + 1;

 // Reset hours to 0 if it exceeds 23

 if (h > 23)

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 41 Dr. Abderrahmane Kefali

 h = 0;

 }

 }

 // Display the time one second later

 printf("After 1 second,it will be %d:%d:%d\n",h,m,s);

 }

 return 0;

}

Remark:

Usually, scanf validates input using either the Enter key or spaces as separators.

However, it is also possible to specify a different character as a separator by incorporating

that character into the format string. In our scenario, the colons (‘:’) within the format string

"%d:%d:%d" serve as separators, facilitating the matching and extraction of hours,

minutes, and seconds as the user inputs the time through the keyboard.

4.7) Exercise 7: Minimum Coins for Amount

Write a program that asks for an amount of money between 1 and 100 DA and then displays

the minimum number of coins (50, 10, 5, and 1) required to make up that amount.

Solution:

To accomplish the requested task, the solution begins by prompting the user to input an

amount within the range of 1 to 100 DA. To ensure the validity of the entered amount, the

program performs a validation check. If the input is valid, it employs a systematic approach to

determine the optimal distribution of coins.

The program iteratively utilizes the div operator (/) to determine the number of each

denomination and the mod operator (%) to update the remaining amount, until the target

amount is reached, keeping track of the count for each denomination.

The final result, representing the minimum number of each coin required, is then displayed to

the user.

The program accomplishing this task is as follows:

#include <stdio.h>

int main() {

 //Declare variables

 int amount,nb50,nb10,nb5,nb1,r;

 //Input an amount of money less than 100 DA

 printf("Enter an amount of money less than 100 DA: ");

 scanf("%d", &amount);

 // Validate the input within the specified range

 if (amount <= 0 || amount >= 100)

 printf("Invalid input");

 else {

 //Calculate the number of each coin denomination

 nb50 = amount / 50;

 r = amount % 50;

 nb10 = r / 10;

 r = r % 10;

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 42 Dr. Abderrahmane Kefali

 nb5 = r / 5;

 nb1 = r % 5;

 //Display the results

 printf("We have:\n");

 printf("\t%d pieces of 50 DA\n", nb50);

 printf("\t%d pieces of 10 DA\n", nb10);

 printf("\t%d pieces of 5 DA\n", nb5);

 printf("\t%d pieces of 1 DA", nb1);

 }

 return 0;

}

4.8) Exercise 8: Display Day's Name

Write a program that allows to enter a day of the week (a number between 1 and 7) and

display the corresponding day's name. For example, Saturday corresponds to the number 1.

Utilize a switch statement to efficiently handle the different cases, associating each valid

input with the corresponding day's name.

Solution:

The solution adheres to the directive to use a switch statement instead of nested if-else

structures. The process begins by prompting the user to input a day number. Subsequently,

a switch statement is employed, with the day number serving as the selector. Each case in

the switch statement corresponds to a day of the week, and for each valid case (1 to 7), a

printf instruction displays the respective day in words. Any other values outside this range

are considered incorrect, and the program provides an error message indicating input error.

Here is the program:

#include<stdio.h>

int main(){

 //Declare variable to store the user-inputted day number

 int day;

 //Enter a day of the week (a number between 1 and 7)

 printf("Enter a day number: ");

 scanf("%d",&day);

 //Use switch statement to determine the day's name

 //based on the entered number

 switch(day){

 case 1: printf("Saturday");

 break;

 case 2: printf("Sunday");

 break;

 case 3: printf("Monday");

 break;

 case 4: printf("Tuesday");

 break;

 case 5: printf("Wednesday");

 break;

 case 6: printf("Thursday");

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 43 Dr. Abderrahmane Kefali

 break;

 case 7: printf("Friday");

 break;

 //Display an error message for invalid input

 default:printf("Incorrect day number");

 }

 return 0;

}

4.9) Exercise 9: Arithmetic Operations

Write a program that, from a menu, allows you to perform addition, subtraction, multiplication,

or division of two numbers based on the user's choice. The two numbers and the operation to

be performed should be entered by the user.

Use switch statement.

Solution:

The program is designed to function as a simple calculator, offering the user a menu to

choose between addition, subtraction, multiplication, or division of two numbers. The solution

employs a switch statement to efficiently handle the user's choice. The process begins by

prompting the user to input two numbers and select the desired operation from the menu. A

switch statement then interprets the user's choice as the selector, executing the

corresponding operation and displaying the result. Special attention is given to the division

operation, as the program checks for division by zero to prevent errors.

Here is the implementation:

#include<stdio.h>

int main() {

 float a, b, r;

 char op;

 //Prompt the user to enter two numbers

 printf("Enter two numbers: ");

 scanf("%f%f", &a, &b);

 // Display the menu for operation selection

 printf("Press + for addition\n");

 printf("Press - for subtraction\n");

 printf("Press * for multiplication\n");

 printf("Press / for division\n");

 printf("Your choice: ");

 // Added space before %c to skip whitespace characters

 scanf(" %c", &op);

 // Use switch statement to perform the selected operation

 switch(op) {

 case '+':

 r = a + b;

 printf("%.2f + %.2f = %.2f\n", a, b, r);

 break;

 case '-':

 r = a - b;

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 44 Dr. Abderrahmane Kefali

 printf("%.2f - %.2f = %.2f\n", a,b, r);

 break;

 case '*':

 r = a * b;

 printf("%.2f * %.2f = %.2f\n", a, b, r);

 break;

 case '/':

 // Check for division by zero

 if(b != 0) {

 r = a / b;

 printf("%.2f / %.2f = %.2f\n", a, b, r);

 } else {

 printf("Unable to divide");

 }

 break;

 default:

 printf("Unknown Operator");

 }

 return 0;

}

4.10) Exercise 10: Count Positive and Non-Positive Numbers

Write a C program that utilizes goto statement to prompt the user to enter 10 integer

numbers. The program should then count and display the number of positive values and the

number of non-positive values (including zero).

Solution:

The solution involves using a goto statement to establish a loop for input validation and the

counting of positive and non-positive values within a series of integers. The solution utilizes

three counters: one for the loop, another for positive values, and the third for non-positive

values.

The program initializes the counters for the loop, positive, and non-positive values to zero

and then enters a loop labeled as "input". In this loop, the user is prompted to input an

integer number. A conditional structure is employed to determine whether the entered

number is positive or non-positive (including zero). The loop counter is subsequently

incremented, indicating the processing of another value. The program checks if the

predefined number of values has not been reached yet, allowing it to jump back to the label

and reiterate the process.

After processing all input numbers, the program displays the final count of positive and non-

positive values.

#include<stdio.h>

int main() {

 //Declare variables

 int n,i,nbPos, nbNeg;

 //Initialize counters

 i = 0;

 nbPos = 0;

Algorithmics and Data Structures 1 Lab No 3. Conditional Structures

1st Year Mathematics – University of Guelma 45 Dr. Abderrahmane Kefali

 nbNeg = 0;

 //Loop for input validation and counting

 input:

 //Prompt the user to enter an integer number

 printf("Enter an integer number: ");

 scanf("%d", &n);

 //Check if the entered number is positive

 if (n > 0)

 nbPos = nbPos + 1; //Increment positive counter

 else

 nbNeg = nbNeg + 1;//Increment non-positive counter

 i = i + 1; //Increment loop counter

 // Check if 10 numbers have been entered

 if (i < 10)

 //Jump back to the label for next iteration

 goto input;

 //Display the result

 printf("Number of positive values: %d\n", nbPos);

 printf("Number of non-positive values: %d", nbNeg);

 return 0;

}

Lab No 4. Loops

1) Objectives

In this comprehensive lab, our primary aim is to provide the students with a profound

understanding of iterative structures in the C programming language. Through a series of

examples, activities and practical exercises, we intend to demystify the intricacies of different

loop types, equipping the students with the knowledge and skills necessary to tackle a

diverse range of programming challenges.

Upon completion of this lab, the students should be able to solve any problem involving

repetitions and use all the studied loops correctly.

This lab aims not only to teach the students the syntax and mechanics of loop structures but

also to instill a problem-solving mindset, preparing them for the dynamic landscape of

programming where loop mastery is a fundamental skill. Embrace the journey into the world

of C programming loops, and let's transform theoretical knowledge into practical proficiency!

2) Recap: Key Concepts in Loops

Before delving into the exercises, let's review some fundamental concepts related to loops in

C programming.

Loops provide a powerful mechanism for executing a block of code repeatedly, and they

come in different forms, each tailored for specific scenarios. The main types of loops include:

while, do…while, and for loops.

2.1) The While loop

The while loop executes a block of instructions as long as a specified condition is met. Its

basic syntax is as follows:

While(<Condition>)

 <block of instructions>;

As for If statement, the <condition> is a boolean expression or a logical statement that

evaluates to either true or false.

In this loop, the condition is tested before entering the loop. Therefore, the block of

instructions that forms the body of the loop may never be executed; this happens when the

condition is false from the beginning.

Example:

The following peace of code displays the integers from 1 to 10:

int i = 1;

while (i <= 10) {

 printf("%d ", i);

 i++;

}

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 47 Dr. Abderrahmane Kefali

2.2) The do…while loop

The do…while loop shares similarities with the while loop in that it iterates the execution

of a block of instructions as long as a condition is true. However, it differs from the while

loop in that the condition check is performed after the code is executed. Consequently, the

block of code is guaranteed to execute at least once. The syntax of do…while loop is as

follows:

do{

 <block of instructions>;

}while(<condition>);

Example:

The following peace of code displays the integers from 1 to 10 using do…while loop:

int i = 1;

do {

 printf("%d ", i);

 i++;

} while (i <= 10);

2.3) The for loop

The for loop provides a concise way to iterate over a range of values. Its syntax includes

an initialization statement, a condition, and an iteration statement:

for (<initialization>; <condition>; <iteration>)

 <block of instructions>;

Such as:

• <initialization> is an initialization expression. It initializes the loop control variable

and is typically in the form: <counter> = <initial value>.

• <condition> is a boolean expression that is evaluated before each iteration. If the

condition is true, the loop continues; otherwise, it exits.

• <iteration>) is a progression expression. It typically updates the loop control variable

by incrementing or decrementing it.

Example:

The peace of code allowing to display integers from 1 to 10 using for loop is the following:

int i;

for (i = 1; i <= 10; i++) {

 printf("%d ", i);

}

2.4) Nested loops

Nested loops involve placing one loop structure inside another. This concept introduces

increased complexity and flexibility. For example, using nested loops can be effective when

dealing with multi-dimensional arrays or when solving problems that involve hierarchical

structures. The flexibility offered by these loop structures empowers programmers to

efficiently handle a wide range of scenarios.

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 48 Dr. Abderrahmane Kefali

Example:

The following nested loops prints all pairs of (i,j) where i takes values from 1 to 3, and

for each value of i, j takes values from 1 to 4.

for (i = 1; i <= 3; i++)

for (j = 1; j <= 4; j++){

 printf("(%d,%d)\n", i,j);

}

3) Practice activities

This section is dedicated to hands-on practice with loop structures in C programming. Each

activity includes a code snippet, accompanied by instructions to test, analyze, and potentially

modify the code. Through these activities, students will reinforce their understanding of

loops, practice debugging, and gain proficiency in utilizing different loop types to solve varied

problems. The activities are designed to challenge students progressively, encouraging them

to actively engage with the provided code and apply loop concepts in practical scenarios.

3.1) Activity 1: The « while » and « do…while » loops

Consider the following program:

#include <stdio.h>

int main() {

 float a,b,c;

 printf("Please enter two real numbers : ");

 scanf("%f%f",&a,&b);

 while (b == 0) {

 printf("Provide a non-zero value for the divisor: ");

 scanf("%f", &b);

 }

 c = a / b;

 printf("%f / %f = %f", a, b, c);

}

1. Create a new project and type the code above.

2. Compile and run the program. What does this program do?

3. What will happen if we give a zero value to the variable b?

4. What will happen if we give a non-zero value to the variable b from the beginning?

5. Remove the scanf("%f",&b) statement, then compile and run the program. What

happened?

6. What is the difference between using while and using if in this example?

7. Rewrite the code using a do…while loop and explain the difference with while.

Solution:

1. Creation of a new project.

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 49 Dr. Abderrahmane Kefali

2. The provided program is designed to take two real numbers as input, perform division

(a / b), and display the result. However, there is a check in place using a while loop

to ensure that the divisor b is not zero. If the user enters zero as the divisor, the

program prompts him to provide a non-zero value until a valid input is received. Once

a non-zero value is obtained, the division is executed, and the result is displayed.

3. If a zero value is provided for the variable b, the program will prompt the user to

provide a non-zero value for the divisor, and it will continue to do so until the user

enters a non-zero value.

4. If we give a non-zero value to the variable b from the beginning, the program will

proceed directly to perform the division and display the result without repeating the

input of a non-zero value for the divisor as the condition for entering the loop is not

met.

5. If the scanf("%f", &b) statement is removed, the program will not take input for

the variable b inside the loop. Consequently, if the initial value entered by the user

for variable b is zero, the program will get trapped in an infinite loop. This occurs

because the condition while (b == 0) remains true, continuously prompting the

user for a non-zero value for b without making progress.

6. In this example, if we use an if statement for checking the divisor's value, the

program would prompt the user for input once. If the entered value for b is zero, the

program would continue with the calculation using this zero value, potentially leading

to incorrect results without giving the user a chance to correct the input. On the other

hand, when employing a while loop, the program ensures iterative input validation

by repeatedly prompting the user for input until a non-zero value is provided for

variable b. This approach allows for multiple attempts to input a valid value, ensuring

accurate calculations.

7. The code using the do…while loop

#include <stdio.h>

int main() {

 float a,b,c;

 printf("Please enter a real number: ");

 scanf("%f",&a);

 do{

 printf("Please enter another non-zero real number: ");

 scanf("%f", &b);

 }while(b == 0);

 c = a / b;

 printf("%f / %f = %f", a, b, c);

}

The main difference between the while and do...while loops in this example lies

in when the condition is checked. In the while loop, the condition (b==0) is checked

before entering the loop, so if the condition is false initially, the loop won't execute at all.

In contrast, the do...while loop checks the condition after the loop body, ensuring

that the body executes at least once before checking the condition.

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 50 Dr. Abderrahmane Kefali

3.2) Activity 2 : The « for » loop

Consider the following program:

#include <stdio.h>

int main() {

 int i,n;

 printf("Enter a positive integer : ");

 scanf("%d", &n);

 for (i = 1; i <= n; i++) {

 if(i%2==0)printf("%d is an even number\n",i);

 else printf("%d is an odd number\n",i);

 }

}

1. Create a new project and type the code above.

2. Compile and run the program. What does this program do?

3. Add the necessary instructions for it to also calculate and display the number of

values in each class.

4. Add the instruction i=i+1 at the end of the loop. What do you notice?

5. Change the last instruction to i=i-1. What happened?

6. Rewrite the program using a while loop.

Solution:

1. Creation of a new project.

2. This program prompts the user to enter a positive integer n. Then, for each number

from 1 to n, it displays whether it is even or odd. The program uses a for loop to

iterate 1 to n.

3. To modify the program to calculate and display the number of values in each class

(even and odd), we introduce two other variables, one for counting even numbers

(nbEven) and another for counting odd numbers (nbOdd). These variables are

initialized to zero before entering to the loop. After that, we increment the respective

counters based on the classification of each number. Here's the modified code:

#include <stdio.h>

int main() {

 int i, n, nbEven, nbOdd;

 printf("Enter a positive integer: ");

 scanf("%d", &n);

 nbEven = 0;

 nbOdd = 0;

 for (i = 1; i <= n; i++) {

 if (i % 2 == 0) {

 printf("%d is an even number\n", i);

 nbEven++;

 }

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 51 Dr. Abderrahmane Kefali

 else {

 printf("%d is an odd number\n", i);

 nbOdd++;

 }

 }

 printf("There are %d even numbers\n", nbEven);

 printf("There are %d odd numbers\n", nbOdd);

}

4. When adding the instruction i=i+1 at the end of the loop, we notice that the

program displays only odd numbers. In fact, this instruction increments the value of i

by 1 after each iteration. However, the loop header already contains i++, which also

increments i by 1 at the beginning of each iteration. As a result, there are two

increments for each iteration, causing i to take on only odd values.

5. If the last instruction is changed to i=i-1, it results in an infinite loop where the

value of i is continually decremented, negating the increment operation in the loop

header (i++). As a result, the loop condition (i <= n) may always be true, leading to

an infinite loop. The program is trapped, and it may not progress as expected.

6. The given for loop program can be rewritten using a while loop assuring the

same functionality. In this modified version, the condition (i <= n) determines

whether the loop will continue to execute. The increment operation i++ is now

placed inside the loop. This adjustment ensures that the loop will iterate as long as i

remains less than or equal to n.

Here is the modified program using a while loop:

#include <stdio.h>

int main() {

 int i, n, nbEvens, nbOdds;

 printf("Enter a positive integer: ");

 scanf("%d", &n);

 nbEvens = 0;

 nbOdds = 0;

 i = 1;

 while (i <= n) {

 if (i % 2 == 0) {

 printf("%d is an even number\n", i);

 nbEvens++;

 }

 else {

 printf("%d is an odd number\n", i);

 nbOdds++;

 }

 i++;

 }

 printf("There are %d even numbers\n", nbEvens);

 printf("There are %d odd numbers\n", nbOdds);

}

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 52 Dr. Abderrahmane Kefali

4) Application exercises

Application exercises this section provide scenarios where you can apply the programming

concepts you've learned. These exercises are designed to challenge you to create

comprehensive solutions, encouraging practical problem-solving and the integration of

various programming skills.

4.1) Exercise 1: Counting Positive and Negative Numbers

Write a program that allows the user to input a series of non-zero numbers. The program

should continuously prompt the user to enter a number until he input zero. While taking input,

the program should count and display the number of positive and negative numbers in the

series. The input should stop when the user enters zero.

Solution:

The requested program is designed to interact with the user to input a series of numbers. To

achieve this, we employ a loop to continuously prompt the user for input until he enters zero.

Two counters, nbPos and nbNeg, are initialized to zero before entering the loop. During

this process, these counters are updated based on whether the entered number is positive or

negative. The loop terminates when the user inputs zero, and we finally display the final

counts of positive and negative numbers.

However, we've implemented two programs to achieve this goal. The first utilizes a while

loop, while the second employs a do...while loop. Below, you'll find both programs:

First program:

#include <stdio.h>

int main() {

 //Declare variables

 int x, nbPos, nbNeg;

 //Initialize counters

 nbPos = 0;

 nbNeg = 0;

 // Get input from the user

 printf("Enter a series of numbers (enter 0 to stop):\n");

 printf("Enter a number: ");

 scanf("%d", &x);

 // Continue reading numbers until 0 is entered

 while (x!=0) {

 //Check if the entered number is positive or negative

 if (x > 0) nbPos=nbPos+1;

 else nbNeg=nbNeg+1;

 printf("Enter a number: ");

 scanf("%d", &x);

 }

 // Display the counts

 printf("Number of positive numbers: %d\n", nbPos);

 printf("Number of negative numbers: %d\n", nbNeg);

 return 0;

}

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 53 Dr. Abderrahmane Kefali

Second program:

#include <stdio.h>

int main() {

 //Declare variables

 int x, nbPos, nbNeg;

 //Initialize counters

 nbPos = 0;

 nbNeg = 0;

 //Get input from the user

 printf("Enter a series of numbers (enter 0 to stop):\n");

 do{

 printf("Enter a number: ");

 scanf("%d", &x);

 //Check if the entered number is positive or negative,

 if (x > 0) nbPos=nbPos+1;

 else if (x<0) nbNeg=nbNeg+1;

 //Continue reading numbers until 0 is entered

 }while (x!=0);

 // Display the counts

 printf("Number of positive numbers: %d\n", nbPos);

 printf("Number of negative numbers: %d\n", nbNeg);

 return 0;

}

4.2) Exercise 2: Multiplication Table

Create a program that prompts the user to input an integer between 1 and 9. The program

should then display the multiplication table for the entered number. If the user inputs a

number outside this range, the program should prompt the user for input until a valid number

is provided.

Solution:

In this exercise we aim to generate the multiplication table for a user-input integer within the

range of 1 to 9. To achieve this, the solution utilizes a do…while loop to prompt the user

for an integer between 1 and 9 continuously until a valid input is provided. This loop structure

guarantees that the program won't proceed until a suitable number is entered.

Once a valid input is obtained, the program proceeds to calculate and display the

multiplication table for the chosen integer. This is achieved through a for loop that iterates

from 1 to 10, calculating the product of the user's integer and the loop variable (representing

the multiplicand). The result is then printed for each iteration, presenting a clear and

organized multiplication table.

The implemented solution is reflected in the following program.

#include <stdio.h>

int main() {

 //Declare variables

 int nb,i,res;

 // Prompt user for input within the specified range

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 54 Dr. Abderrahmane Kefali

 do {

 printf("Enter an integer between 1 and 9: ");

 scanf("%d", &nb);

 //Continue input the number until a number within

 //the range is entered

 } while (nb < 1 || nb > 9);

 // Generate and display the multiplication table

 printf("Multiplication table for %d:\n", nb);

 for (i = 1; i <= 10; ++i) {

 // Calculate the result of multiplication

 res = nb * i;

 // Display the multiplication equation and result

 printf("%d * %d = %d\n", nb, i, res);

 }

 return 0;

}

4.3) Exercise 3: Sum of Digits

Write a program that asks the user to enter a positive integer n, then calculates and displays

the sum of its digits.

Execution example:

Enter a positive integer: 148

The sum of the digits in 148 is 13.

Solution:

The following program prompts the user to enter a positive integer n and then calculates

and displays the sum of its digits. The solution involves extracting individual digits from the

entered number and accumulating their sum. The extraction of digits is achieved using a loop

(specifically, a while loop, as the number of repetitions is not known in advance). In each

iteration, the program extracts the last digit using the modulo operator (%), and integer division (/) is

utilized to discard the last digit, effectively progressing to the next one.

The program ensures that the input is a positive integer and displays an error message if a

non-positive integer is provided.

#include <stdio.h>

int main() {

 //Declare variables

 int n, i, sum, digit;

 // Prompt user for a positive integer

 printf("Enter a positive integer: ");

 scanf("%d", &n);

 // Check if the entered number is negative

 if (n < 0)

 printf("Input error");

 else {

 // Initialize sum to 0

 sum = 0;

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 55 Dr. Abderrahmane Kefali

 // Extract digits and calculate sum using a while loop

 while (n > 0) {

 // Extract the last digit

 digit = n % 10;

 // Add the digit to the sum

 sum = sum + digit;

 // Remove the last digit from the number

 n = n / 10;

 }

 // Display the sum of the digits

 printf("The sum of the digits is %d", sum);

 }

 return 0;

}

4.4) Exercise 4: Weighted Average

Write a program to help students calculate the weighted average of their first-semester

courses. The user should be prompted to enter the number of courses they want to consider.

For each course, the program should request a valid coefficient and the mark. The program

should then calculate and display the weighted average using the provided coefficients and

marks based on the formula:

weighted average =
∑ mark × coefficient

∑ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

Solution:

To facilitate students in computing their weighted average, we have devised a solution

centered around loops. Initially, the user inputs the number of courses they wish to consider.

The program ensures that the entered number is both positive and non-zero. Subsequently,

the program prompts the user to input coefficients and corresponding marks for each course.

Employing a do...while loop ensures continuous prompting until valid values are

entered. The program multiplies these values, adding the result to the weighted sum.

Simultaneously, each coefficient is added to a sum of coefficients. This process iterates until

the specified number of courses is reached, utilizing a for loop for this purpose. The

weighted average is then calculated by dividing the weighted sum by the sum of coefficients.

Here is the program:

#include <stdio.h>

int main() {

 // Declare variables

 float coeff, mark,weighSum, sumCoeff, weighAvg;

 int i, nbCourses;

 //Get the number of courses

 printf("Enter the number of courses: ");

 scanf("%d", &nbCourses);

 // Validate that the entered number of courses

//is positive and non-zero

 if (nbCourses <= 0)

 printf("input Error");

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 56 Dr. Abderrahmane Kefali

 else{

 //Initialize the sums

 weighSum = 0;

 sumCoeff = 0;

 // Input coeffs and marks for each course

 for (i = 0; i < nbCourses; i++) {

 // Input mark

 do {

 printf("Enter mark for course %d: ", i + 1);

 scanf("%f", &mark);

 //Continue input mark while the entered mark

 //is not valid

 }while (mark < 0 || mark>20);

 // Input coefficient

 do {

 printf("Enter coefficient for course %d: ",i+ 1);

 scanf("%f", &coeff);

 //Continue input coeff while the entered coeff

 //is not valide

 } while (coeff <= 0);

 // Update the weighted sum and sum of coeffs

 weighSum = weighSum+(coeff * mark);

 sumCoeff = sumCoeff+coeff;

 }

 // Calculate and display the weighted average

 weighAvg = weighSum / sumCoeff;

 printf("The weighted average is: %.2f\n", weighAvg);

 }

 return 0;

}

4.5) Exercise 5: Min and Max of a sequence of numbers

Write a program that reads a sequence of real numbers ending with 0, and calculates and

displays the minimum and maximum of the entered numbers.

Solution:

The solution to this exercise involves utilizing two variables (min and max) to keep track of

the minimum and maximum values. Initially, the user is prompted to input the first value of

the sequence, considering it as both the minimum and maximum until further input. If the first

value entered by the user is zero, the program displays a message indicating that there are

no valid values to calculate the minimum and maximum. Subsequently, a while loop is

employed to continuously input the subsequent numbers in the sequence. As the user inputs

real numbers, the program checks each number against the current minimum and maximum.

If a number is smaller than the current minimum or larger than the current maximum, the

corresponding variables are updated accordingly. This iterative process continues until the

user inputs 0, indicating the end of the sequence. After the input is complete, the program

displays the calculated minimum and maximum values based on the entered sequence of

real numbers.

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 57 Dr. Abderrahmane Kefali

The program for this task is as follows:

#include <stdio.h>

int main() {

 // Declare variables

 float number, min, max;

 // Prompt user to enter the first real number

 printf("Enter a real number (enter 0 to end): ");

 scanf("%f", &number);

 // Check if the first value is zero

 if (number == 0)

 printf("No valid values entered");

 else{

 //Initialize min and max with the first entered number

 min = number;

 max = number;

 // Continue reading real numbers until 0 is entered

 while (number != 0) {

 // Update min if the current number is smaller

 if (number < min)

 min = number;

 // Update max if the current number is larger

 else if (number > max)

 max = number;

 // Prompt user for the next real number

 printf("Enter a real number (enter 0 to end): ");

 scanf("%f", &number);

 }

 // Display the calculated minimum and maximum values

 printf("Minimum: %.2f\n", min);

 printf("Maximum: %.2f\n", max);

 }

 return 0;

}

4.6) Exercise 6: GCD calculation using Euclidean Algorithm

The Greatest Common Divisor (GCD) of two integers is their largest common divisor. We

want to use the Euclidean algorithm to calculate the GCD of two positive integers (the GCD

of two integers is equal to the GCD of their absolute values, so we restrict ourselves to

positive integers). The algorithm is based on the following observations:

• The GCD of two numbers is not changed if we replace the larger of the two by their

difference.

In other words, for a > b, GCD(a, b) = GCD(a - b, b).

• The GCD of any number and 0 is always the number itself. In other words, GCD(a, 0) = a.

Exemple : Calculate the GCD of 35 and 20.

35 – 20 = 15 ⇒ GCD(20, 15).

20 – 15 = 5 ⇒ GCD(15, 5).

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 58 Dr. Abderrahmane Kefali

15 – 5 = 10 ⇒ GCD(10, 5).

10 – 5 = 5 ⇒ GCD(5, 5).

5 – 5 = 0 ⇒ GCD(5, 0) = 5.

So GCD(35, 20) = 5.

Write a program that asks the user to provide two positive integers, then uses the Euclidean

algorithm to calculate their GCD.

Solution:

The following program is supposed to calculate the Greatest Common Divisor (GCD) of two

integer numbers entered by the user using the Euclidean algorithm.

The program initiates by prompting the user to input two positive integers, validating the input

to ensure positivity. It then employs the Euclidean algorithm in a while loop, iteratively

replacing the larger of the two numbers with their difference until one of them becomes 0.

This process effectively calculates the GCD of the original integers. Once the loop

terminates, the non-zero number represents the GCD, which is subsequently displayed to

the user.

#include <stdio.h>

int main() {

 // Declare variables

 int a, b, gcd;

 // Prompt user to enter two integer numbers

 printf("Enter 2 integer numbers: ");

 scanf("%d %d", &a, &b);

 // Check for input errors (negative numbers)

 if (a < 0 || b < 0)

 printf("Input error");

 else {

 // Check if either of the numbers is 0

 if (a == 0 || b == 0)

 gcd = 0;

 else {

 // Calculate GCD using the Euclidean algorithm

 while (a != b) {

 if (a > b)

 a = a - b;

 else

 b = b - a;

 }

 gcd = a;

 }

 // Display the calculated GCD

 printf("The GCD is %d", gcd);

 }

 return 0;

}

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 59 Dr. Abderrahmane Kefali

4.7) Exercise 7: Base conversion

Write a program that converts a number from decimal format to binary format (base 2), and

then to octal format (base 8).

Modify the program to convert the input to any base provided by the user.

Solution:

a) Binary conversion:

To convert a decimal number to binary, the process begins by prompting the user to enter a

positive integer. Subsequently, the program rigorously verifies the positivity of the input,

issuing an error message if a negative number is detected. Employing a while loop, the

program executes binary conversion by iteratively dividing the number by 2. During each

iteration, the remainder is calculated using the modulo operator (%), representing the binary

digit for that iteration. These remainders are methodically accumulated in reverse order, with

each iteration contributing to the construction of the binary representation. The final output is

then displayed as the equivalent binary representation. The following program embodies the

solution:

 #include <stdio.h>

int main() {

 //Declare variables

 int n, digit, n2, weight;

 //Prompt user to enter a positive integer

 printf("Enter a positive integer: ");

 scanf("%d", &n);

 //Check for input errors (negative numbers)

 if (n < 0)

 printf("Input error");

 else {

 //Variable to store the binary equivalent (initially 0)

 n2 = 0;

 //Weight of each digit in the result (initially 1)

 weight = 1;

 //Binary conversion using a while loop

 while (n != 0) {

 //Calculate the remainder (binary digit)

 digit = n % 2;

 //Update the number by dividing it by 2

 n = n / 2;

 //Accumulate the binary representation

 n2 = n2 + digit * weight;

 //Update the weight for the next digit

 weight = weight * 10;

 }

 //Display the equivalent binary representation

 printf("The equivalent in binary is: %d", n2);

 }

 return 0;

}

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 60 Dr. Abderrahmane Kefali

b) Octal conversion:

The conversion into octal is performed in a manner similar to the procedure used for binary

conversion. The only distinction lies in the base used for division and accumulation of

remainders. While the binary conversion involves dividing the decimal number by 2, for octal

conversion, the decimal number is divided by 8 during each iteration of the while loop. The

program enabling this conversion is as follows:

#include <stdio.h>

int main() {

 //Declare variables

 int n, digit, n8, weight;

 //Prompt user to enter a positive integer

 printf("Enter a positive integer: ");

 scanf("%d", &n);

 //Check for input errors (negative numbers)

 if (n < 0)

 printf("Input error");

 else {

 //Variable to store the octal equivalent (initially 0)

 n8 = 0;

 //Weight of each digit in the result(initially 1)

 weight = 1;

 //Binary conversion using a while loop

 while (n != 0) {

 //Calculate the remainder

 digit = n % 8;

 //Update the number by dividing it by 8

 n = n / 8;

 //Accumulate the octal representation

 n8 = n8 + digit * weight;

 //Update the weight for the next digit

 weight = weight * 10;

 }

 //Display the equivalent octal representation

 printf("The equivalent in binary is: %d", n8);

 }

 return 0;

}

c) Conversion to a base B:

Building upon the previous programs, we have crafted a versatile solution capable of

converting a number to any desired base. This program prompts the user to input a positive

integer and specify the intended base for conversion. Similar to the earlier implementations,

the process involves iterative divisions, with the key distinction being that the divisions are

performed based on the user-specified base (denoted as B). Here is the program:

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 61 Dr. Abderrahmane Kefali

#include <stdio.h>

int main() {

 //Declare variables

 int n, digit, nB, weight, B;

 //Prompt user to enter a positive integer

 printf("Enter a positive integer: ");

 scanf("%d", &n);

 //Prompt user to enter the base for conversion

 printf("Enter the base for conversion: ");

 scanf("%d", &B);

 // Check for input errors (negative numbers or invalid bases)

 if (n < 0 || B < 2)

 printf("Input error");

 else {

 //Variable to store the result (initially 0)

 nB = 0;

 //Weight of each digit in the result

 weight = 1;

 //Base conversion using a while loop

 while (n != 0) {

 //Calculate the remainder (base B digit)

 digit = n % B;

 //Update the number by dividing it by the base

 n = n / B;

 //Accumulate the base B representation

 nB = nB + digit * weight;

 //Update the weight for the next digit

 weight = weight * 10;

 }

 // Display the equivalent representation in the base B

 printf("The equivalent in base %d is: %d", B, nB);

 }

 return 0;

}

4.8) Exercise 8: Fibonacci sequence

The Fibonacci sequence is defined as follows :

• F1 = 1

• F2 = 1

• Fi = Fi-1 + Fi-2 for i > 2.

Write a program to calculate the nth term of the Fibonacci sequence for a positive integer n

given by the user.

Solution:

The solution to this exercise involves creating a program that calculates the nth term of the

Fibonacci sequence for a positive integer n, as specified by the user.

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 62 Dr. Abderrahmane Kefali

The program employs three variables to manage the Fibonacci sequence calculation: Fi

represents the current value of the Fibonacci sequence, while Fi_2 and Fi_1 store the

two preceding terms. The program begins by prompting the user to input the desired term n

of the Fibonacci sequence.

Following the user's input, the program ensures the validity of the entered value by checking

if it is a positive integer. Subsequently, it initializes the values of Fi_2 and Fi_1 with the

pre-defined initial terms of the Fibonacci sequence (both set to 1).

To iteratively calculate the Fibonacci sequence up to the desired term, the program employs

a for loop that starts from 3. This starting point is chosen because the first two terms of the

Fibonacci sequence are already pre-defined as 1. In each iteration of the loop, the Fi is

calculated as the sum of the current values of Fi_2 and Fi_1. The values of Fi_2 and

Fi_1 are then updated to prepare for the next iteration. This process continues until the

loop reaches the specified term n.

The final result, representing the nth term of the Fibonacci sequence, is displayed to the user.

Here's the corresponding program in C:

#include <stdio.h>

int main() {

 //Declare variables

 int n, i, Fi_1, Fi_2, Fi;

 //Enter a positive integer greater than zero

 printf("Enter a positive integer greater than zero: ");

 scanf("%d", &n);

 //Check for input errors (non-positive integers)

 if (n <= 0)

 printf("Input error");

 else {

 //Handle special cases for n = 1 and n = 2

 if (n == 1 || n == 2)

 Fi = 1;

 else {

 //Initialize variables for Fibonacci sequence

 Fi_1 = 1;

 Fi_2 = 1;

 Fi = 0;

 //Calculate Fibonacci sequence up to n

 for (i = 3; i <= n; i++) {

 //Update current term (Fi) based on

 //previous two terms

 Fi = Fi_1 + Fi_2;

 //Update previous two terms for

 //the next iteration

 Fi_2 = Fi_1;

 Fi_1 = Fi;

 }

 }

 //Display the calculated Fibonacci term

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 63 Dr. Abderrahmane Kefali

 printf("Fi(%d) = %d", n, Fi);

 }

 return 0;

}

4.9) Exercise 9: Reciprocal Powers Sum

Create a program that prompts the user to input a positive non-zero integer n and another

positive integer p. Calculate and display the sum of the reciprocal powers of the first n natural

numbers raised to the power p using the formula:

𝑆 = ∑
1

i𝑝

𝑛

𝑖=1

=
1

1𝑝
+

1

2𝑝
+ ⋯ +

1

n𝑝

For instance, if n = 4 and p = 5, the sum S would be:

𝑆 =
1

15
+

1

25
+

1

35
+

1

45

Ensure that the entered values are valid (positive integers) and handle any input errors

appropriately.

Note: Implement the power calculation within your program without relying on predefined

functions.

Solution:

The program is designed to calculate and display the sum of reciprocal powers of the first n

natural numbers raised to the power p. The solution to this intricate problem involves the

adept use of nested loops. Here's the systematic breakdown of the resolution process:

The process initiates by prompting the user to input two positive integers, n and p,

ensuring the validity of their values. Subsequent to this, the sum (denoted as S) is initialized

to 0. Following the initialization, the program utilizes a for loop (the outer one) to iteratively

calculate the sum based on the provided formula. This main loop is responsible for traversing

through the terms from 1 to n. Inside this primary loop, an inner loop is employed to

calculate the power of each term without using predefined functions, thereby achieving the

power to the p operation. The result of each power operation is then accumulated in the

sum variable (S), which holds the overall sum of reciprocal powers. This accumulation

process continues until the specified number of terms is reached. Finally, the calculated sum

is displayed to the user.

Here is the program:

#include <stdio.h>

int main() {

 //Declare variables

 int n, p, powRes, i, j;

 float S;

 //Prompt user for input

 printf("Enter the number of terms (n): ");

 scanf("%d", &n);

 printf("Enter the power (p): ");

 scanf("%d", &p);

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 64 Dr. Abderrahmane Kefali

 //Initialize the sum

 S=0;

 //Validate input

 if (n <= 0 || p <= 0)

 printf("Input error");

 else {

 //Calculate sum of reciprocal powers using nested loop

 for (i = 1; i <= n; i++) {

 powRes = 1;

 // Nested loop to calculate power

 for (j = 1; j <= p; j++) {

 powRes= powRes * i;

 }

 // Accumulate the result in the sum variable

 S = S+ (float)1 /powRes;

 }

 // Display the result

 printf("The sum of reciprocal powers is: %f",S);

 }

 return 0;

}

4.10) Exercise 10: Binomial Expression Expansion

In mathematics, the binomial formula is a well-known expression that allows for the

expansion of a binomial expression raised to a positive integer power. The general form of

the binomial formula is given by

(𝑎 + 𝑏)𝑛 = ∑ (
𝑛

𝑘
) 𝑎𝑛−𝑘𝑏𝑘

𝑛

𝑘=0

Where (𝑛
𝑘

) represents the binomial coefficient, calculated as:

(
𝑛

𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!

This formula provides a systematic way to expand expressions like (𝑎 + 𝑏)𝑛 into a sum of

terms. The binomial coefficients represent the coefficients of each term in the expansion, and

they follow the pattern of Pascal's Triangle.

Write a program that prompts the user to enter two numbers a and b, as well as a positive

integer n. The program should then calculate and display the expanded form of the binomial

expression (𝑎 + 𝑏)𝑛 using the binomial formula. Ensure that the entered values are valid,

and handle any potential input errors.

Solution:

The solution to this problem involves utilizing nested loops to systematically calculate the

binomial coefficients and powers for the expanded form of the binomial expression (𝑎 + 𝑏)𝑛.

The process begins by prompting the user to input three values: a, b, and n, ensuring their

validity. The program then initializes the result variable and employs nested loops. The outer

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 65 Dr. Abderrahmane Kefali

loop controls the iteration through the terms of the binomial expansion (n terms), while the

inner loops calculate the binomial coefficients and powers for each term. The results are

accumulated, and the expanded form of the binomial expression is displayed to the user.

The program facilitating this expansion is as follows:

#include <stdio.h>

int main() {

 //Declare variables

 int a, b, n, i, k, nFact,kFact,fact,aPow,bPow;

 int coeff,Res;

 //Prompt user for input

 printf("Enter the values for a, b, and n: ");

 scanf("%d %d %d", &a, &b, &n);

 //Validate input

 if (n < 0)

 printf("Invalid input for n");

 else{

 //Display the expanded form of the binomial expression

 printf("Expanded form of (%d + %d)^%d: ", a, b, n);

 for (k = 0; k <= n; k++) {

 //Calculate n!

 nFact=1;

 for(i=1;i<=n;i++)

 nFact=nFact*i;

 //Calculate k!

 kFact=1;

 for(i=1;i<=k;i++)

 kFact=kFact*i;

 //Calculate (n-k)!

 fact=1;

 for(i=1;i<=n-k;i++)

 fact=fact*i;

 //Calculate binomial coefficient

 coeff=nFact/(kFact*fact);

 //Calculate a^(n-k)

 aPow=1;

 for(i=1;i<=n-k;i++)

 aPow=aPow*a;

 //Calculate b^k

 bPow=1;

 for(i=1;i<=k;i++)

 bPow=bPow*b;

 //Calculate the term result

 Res = coeff * aPow * bPow;

 //Display the term

 printf("%d", Res);

 // Display the term's sign if not the last term

 if(i <= n) {

 printf(" + ");

Algorithmics and Data Structures 1 Lab No 4. Loops

1st Year Mathematics – University of Guelma 66 Dr. Abderrahmane Kefali

 }

 }

 }

 return 0;

}

Lab No 5. Arrays and Strings

1) Objectives

The primary objective of this lab is to foster a deep and practical understanding of utilizing

arrays and character strings in the context of C programming. Arrays, recognized as

fundamental data structures, empower programmers to efficiently store and manage multiple

values of the same type within a singular variable. The distinctive elements within an array

are easily accessible through their respective indices, providing a systematic approach to

organized data storage.

In the absence of a dedicated String type in the C language, character strings are

ingeniously represented as arrays of characters, culminating with the special character ‘\0’.

This lab serves as a comprehensive exploration into the intricacies of arrays and strings,

offering students a robust foundation in handling structured data.

By the conclusion of this lab, students are expected to not only master the declaration and

initialization of arrays and strings but also to adeptly manipulate these data structures,

whether they are one or two-dimensional. Through practical exercises and hands-on

activities, this lab aims to instill proficiency in students, enabling them to navigate and

harness the power of arrays and character strings effectively in their C programming

endeavors.

2) Recap: Key Concepts in Loops

In this comprehensive recap, we explore fundamental concepts that form the backbone of C

programming: arrays, multidimensional arrays, and strings. These elements play a pivotal

role in data manipulation and are essential for any programmer to grasp. Throughout this

recap, we will delve into the definition, declaration, accessing of elements, and the

fundamental manipulation of these data structures. Let's explore these concepts in detail.

2.1) Arrays

An array is a data structure that stores under a single name a collection of finite elements of

the same type, each identified by an index or a key.

2.1.1) Declaration

The declaration of an array in c language follows the following syntax:

<type_elements> <name_Array>[<size>];

Such as: <type_elements> represents the type of elements composing the array,

<name_Array> is an identifier designating the array, and <size> is the number of

maximum usable elements.

In C language, we can initialize the array during its declaration by putting, within curly braces,

the list of initialization values.

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 68 Dr. Abderrahmane Kefali

Examples:

int t[5]; //declares an array containing 5 integer elements

int t[5]={1,2,3,4,5}; //declares an array containing 5 integer elements and initializes

it with the values from 1 to 5.

2.1.2) Accessing to elements of an array

It is possible to access an element of the array by specifying the index (the position)

corresponding to that element within square brackets. Note that arrays are indexed starting

from 0, not 1. Thus, t[0] indicates the first element of the array t. The fifth element is

t[4], and so on, as indicated by Figure 5.1.

Figure 5.1. Example of an array

2.1.3) Manipulation of an array

The elements of an array are manipulated individually and possess all the properties of a

variable of the same type. They can be read, written, assigned a value, etc.

Generally, manipulating an array involves using a loop, specifically the for loop, to iterate

through array elements for operations such as accessing, reading, updating, or processing

each element.

Example:

To read all elements of the array t, we use :

for(i=0;i<5;i++)

 scanf("%d",&t[i]);

2.2) Multidimensional arrays

Multidimensional arrays offer a structured way to organize data in more complex scenarios

where elements are arranged in multiple dimensions. A multidimensional array is an array

whose elements can themselves be arrays, which can, in turn, contain other arrays, and so

on.

In this course, we will focus on two dimensions arrays commonly referred to as matrices.

2.2.1) Declaration

Declaring a multidimensional array involves specifying the type, name, and dimensions. For

example, a two-dimensional array in C is declared as follows:

<type_elements> <name_Array>[<nbRows>][nbColumns];

Here, <type_elements> represents the type of elements composing the matrix,

<name_Array> is an identifier for the matrix, <nbRows> is the number of rows, and

<nbColumns> is the number of columns.

Index 0 1 2 3 4

t 1 2 3 4 5

t[0] t[1] t[2] t[3] t[4]

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 69 Dr. Abderrahmane Kefali

Similar to one-dimensional arrays, multidimensional arrays can be initialized during

declaration. Initialization involves providing a list of values enclosed within nested curly

braces.

Examples:

int M[3][4]; // declares an integer matrix of 3 rows and 4 columns

int matrix[3][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}}; //initializes an

integer matrix of 3 rows and 4 columns with specific values.

2.2.2) Accessing to elements of a multidimensional array

Accessing elements in a multidimensional array requires specifying the indices for both the

row and column within double square brackets.

However, M[1][2] refers to the element of row 1 and column 2 as illustrated in Figure

5.2.

 0 1 2 3

M

0 1 2 3 4 M[1][2]

1 5 6 7 8

2 9 10 11 12

Figure 5.2. Example of 3×4 matrix

2.2.3) Manipulation of a multidimensional array

Manipulating multidimensional arrays involves nested loops to traverse elements efficiently.

For a two-dimensional array, a nested for loop is commonly used, iterating over both rows

and columns.

Example:

The following nested loops allow displaying all the elements of the matrix M:

for(i=0;i<3;i++)

 for(j=0;j<4;j++)

 printf("%d",M[i][j]);

2.3) Strings

Strings are sequences of characters that play a crucial role in handling text data. Unlike

some other programming languages, C does not have a dedicated data type for strings.

Instead, they are represented as arrays of characters, terminated by a null character '\0'.

2.3.1) Declaration

In C, strings can be declared and initialized in various ways, with the most common method

being the use of a character array.

Strings can also be initialized during declaration:

Examples:

char name[20]; //declares a character array with a capacity for 19 characters

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 70 Dr. Abderrahmane Kefali

char wilaya[] = "Guelma"; //declares and initializes the string wilaya with a

specific value.

2.3.2) Accessing a character of the string

Accessing a character within a string is done similarly to accessing elements in a regular

array. For example wilaya[0] refers to the first character of the string wilaya which is

'G'.

2.3.3) Manipulation of a String

Manipulating strings involve various string manipulation functions provided by the C Standard

Library (<string.h>). Common operations include reading, writing, finding the length of a

string, concatenating two strings, comparing strings, and extracting substrings.

Reading a string can be achieved using the scanf function with the format code "%s".

However, C provides other functions specifically dedicated to reading strings. One such

function is gets, with the syntax:

gets(<name_String>);

Similarly, writing a string may be accomplished by the printf function with the format

code "%s". C also offers other functions dedicated to writing strings, such as the puts

function, with the syntax:

puts(<name_String>);

Several other string manipulation functions are available, summarized in the following table:

Fonctions Description

strcat() Concatenate two strings

strcmp() Compare two strings

strcpy() Copy one string into another

strlen() Return the length of a string

Table 5.1. Predefined functions for string manipulation

3) Practice activities

This section offers practice exercises to enhance your understanding of arrays and strings in

C programming. Test, analyze, and potentially modify the provided code snippets to reinforce

your skills. These activities aim to challenge you progressively, fostering active engagement

and practical application of arrays and strings concepts.

3.1) Activity 1: Arrays

Consider the following program:

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 71 Dr. Abderrahmane Kefali

#include <stdio.h>

int main() {

 #define n 4

 int T[n]; int i;

 printf("Please fill the array\n");

 for (i = 0; i < n; i++) {

 printf("T[%d] = ", i);

 scanf("%d", &T[i]);

 }

 printf("The array T contains the values :\n");

 for (i = 0; i < n; i++) {

 printf("%d\n", T[i]);

 }

 return 0;

}

1. Create a new project and type the above code.

2. Compile and run, what does this program do?

3. What is the nature of the variable T?

4. What is the difference between a variable of type int and an array of the same type?

5. How can you access each element in an array?

6. What will happen if we try to access an index beyond the size of the array?

7. Replace the expression « i < n » in both loops with « i < 10 » and execute the code.

Is there a problem? Explain what happens.

8. Change the program to calculate the sum of the elements in the array.

9. Make the necessary modifications for the program to declare a matrix with 4 rows and 3

columns (a two-dimensional array), read its elements, and calculate their sum.

Solution:

1. Creation of a new project.

2. The provided C program prompts the user to input 4 values and then display them.

3. The variable T in the provided C program is an array. Specifically, it is an array of

integers (int) used to store multiples values.

4. The primary difference between a variable of type int and an array of the same type

lies in their nature and usage. A variable of type int is a singular storage location that

holds a single integer value, identified by a name. On the other hand, an array of type

int, is a collection of multiple storage locations, each capable of holding an integer

value. However, while a variable is suitable for representing a single numeric entity, an

array is designed to handle scenarios where multiple related values need to be stored

and processed together.

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 72 Dr. Abderrahmane Kefali

5. We can access each element using its index, which depends on the order of elements in

the array. The first element has an index of 0, the second has an index of 1, and so on,

up to the nth element, which has an index of (n-1).

6. Students are very likely to answer that the program will produce an error; we need to

explain to them that this is not true. In the C language, if we exceed the last index (n-1),

we will simply access the memory area beyond the space allocated for the array. This

could potentially modify other variables if that memory area belongs to the currently

running program or result in a segmentation fault if that memory area does not belong to

the program (the same thing happens when you use a negative index, but in that case,

you access the memory area before the allocated space for the array). The following

example should help address this question.

7. If we replace the expression « i < n » in both loops with « i < 10 » and execute the

code, it might lead to issues depending on the actual size of the array T and how it was

declared. Expect to see different behaviors in each example. The problems we are likely

to encounter are as follows:

• Segmentation fault during execution.

• Infinite loop because the value of i unintentionally changes when accessing indices

greater than (n - 1).

• Values can be read, but during display, you get different values or symbols.

• and so on.

In all cases, no issues are reported during compilation; memory management is the

responsibility of the programmer.

8. To compute the sum of the elements in the array, we enhance the program by

introducing a dedicated variable for accumulating the sum, and adding a loop

accomplishing this accumulation. Before the accumulation loop, this variable is initialized

to zero. Within the loop, each element is iteratively added to the sum, ensuring a

cumulative total. Below is the refined version of the program:

#include <stdio.h>

int main() {

 #define n 4

 int T[n],i, s;

 //Input values into the array

 printf("Please fill the array\n");

 for (i = 0; i < n; i++) {

 printf("T[%d] = ", i);

 scanf("%d", &T[i]);

 }

 //Initialize the sum variable to zero

 s = 0;

 //Calculate the sum of the elements

 for (i = 0; i < n; i++)

 s = s + T[i];

 // Display the sum

 printf("The sum of the array is : %d", s);

 return 0;

}

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 73 Dr. Abderrahmane Kefali

9. To tailor the program for a 4x3 matrix, involving two dimensions (rows and columns),

crucial adjustments are required in the array declaration, input process, and sum

calculation. This entails the addition of a second constant (representing the columns), as

the initial constant (n) signifies the number of rows. Moreover, the introduction of an

additional variable (j), becomes essential to traverse the columns of the matrix during

input and sum calculation. The utilization of nested loops is pivotal for handling the matrix

elements. Here's the modified program:

#include <stdio.h>

int main() {

 //Constants for the number of rows (n) and columns (m)

 #define n 4

 #define m 3

 //Declare a 2D array A with n rows and m columns

 int A[n][m];

 //Declare variables i (row index),j (column index),s (sum)

 int i, j, s;

 //Prompt the user to fill the matrix

 printf("Please fill the matrix\n");

 //Input values into the matrix using nested loops

 for (i = 0; i < n; i++) {

 for (j = 0; j < m; j++) {

 printf("Row %d, Column %d: ", i, j);

 scanf("%d", &A[i][j]);

 }

 }

 //Initialize the sum variable to zero

 s = 0;

 //Calculate the sum of elements using nested loops

 for (i = 0; i < n; i++) {

 for (j = 0; j < m; j++) {

 s = s + A[i][j];

 }

 }

 // Display the sum of the matrix

 printf("The sum of the matrix is: %d", s);

 return 0;

}

3.2) Activity 2 : Strings

Consider the following program:

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 74 Dr. Abderrahmane Kefali

#include <stdio.h>

int main() {

 #define n 10

 char s[n]; int i;

 printf("Enter a string of characters : ");

 gets(s);

 i = 0;

 while (s[i] != '\0') {

 i = i + 1;

 }

 printf("The string \"%s\" contains %d characters", s, i);

 return 0;

}

1. Create a new project and type the above code.

2. Compile and run, what does this program do?

3. What does the format "%s" mean in the « printf » statement?

4. Considering the previous code:

a) What is the maximum length of the string that can be entered without

encountering problems?

b) Test the code with a string of length 10. Is there an issue? Explain.

c) Test the code with a string length greater than 10. What do you observe?

5. Modify the code to count the number of spaces in the string entered by the user.

Solution:

1. Creation of a new project.

2. This C program prompts the user to enter a string of characters and then calculates and

displays the length (number of characters) of the entered string.

3. In the printf statement, the format specifier "%s" is used to indicate that a string of

characters should be inserted at that position in the formatted output. It is similar to "%d"

for integers or "%f" for floating-point numbers

4. Considering the previous code:

a) The maximum length of the string that can be entered without encountering

problems is 9 characters. Students are very likely to answer 10. We need to explain

to them that the last character is reserved for the special character '\0'. The

following questions should help explain the phenomenon.

b) When tested with a string of length 10, the program displays a value different from 10

for the length, with improperly encoded characters at the end of the string. The

problem arises because the program struggles to recognize the end of the string

when the end character '\0' is not properly encoded.

c) Testing the code with a string length greater than 10 using the gets function leads

to buffer overflow issues. Thus, we should observe a behavior similar to the previous

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 75 Dr. Abderrahmane Kefali

question (incorrect value for the length, improperly encoded characters at the end of

the string).

5. To modify the code to count the number of spaces in the string entered by the user, we

should introduce a counter variable called nbSpaces and iterate through the characters

of the string to check for spaces. The counter is first initialized to zero. Then we use a

while loop to iterate, and at each iteration an if statement checks whether the

current character is a space (' '). If a space is encountered, the nbSpaces is

incremented. After iterating through the entire string, the program prints the count of

spaces it contains. Here's the modified code:

#include <stdio.h>

int main() {

 #define n 10

 char s[n];

 int i, nbSpaces;

 //Prompt the user to enter a string

 printf("Enter a string of characters: ");

 //Read the string from the user

 gets(s);

 //Initialize variables

 i = 0;

 nbSpaces = 0;

 //Iterate through each character in the string

 while (s[i] != '\0') {

 //Check if the current character is a space

 if (s[i] == ' ') {

 //Increment the space count

 nbSpaces = nbSpaces + 1;

 }

 //Move to the next character

 i = i + 1;

 }

 //Display the count of spaces in the entered string

 printf("The entered string contains %d spaces", nbSpaces);

 return 0;

}

In this implementation, a while loop is employed for traversing the string due to the

absence of prior knowledge about the length of the string entered by the user. Although the

maximum allowable length is set at 10 characters, the actual input may be shorter.

Therefore, the while loop iterates dynamically until it encounters the null character '\0',

signifying the end of the string.

4) Application exercises

Embark on a deeper exploration of your C programming skills with the following application

exercises. These exercises are designed to challenge and reinforce your understanding of

arrays, strings, and their practical applications.

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 76 Dr. Abderrahmane Kefali

4.1) Exercise 1: Exam Grades and Statistics

Write a program that enables a teacher to enter the exam marks of a group of 30 students,

stores them in an array, calculates the group's average, and determines the minimum and

maximum scores. Additionally, the program should count the number of scores equal to or

higher than the group's average.

Solution :

To address this problem, the solution employs loops to handle both the input of marks and

the subsequent calculation of statistical measures from the array. Dedicated variables,

including min and max to monitor the minimum and maximum marks, sum and avg to

manage the cumulative sum of scores and their average, and nbHighAvg to track the

count of marks equal to or surpassing the group's average, are instrumental in this process.

The initial loop, a for loop, guides the user in entering individual marks for each student

and store them in the array. Following this, a second loop dynamically calculate the sum of

the marks while adjusting the min and max variables. Prior to entering this loop, sum,

min and max are initialized with the first element of the array. This second loop iterates

through the array starting from the second mark (because the first one has already been

visited), updating sum, min and max based on the encountered elements.

Upon concluding the second loop, the average (avg) is computed as usual. A third loop is

then deployed to determine the number of scores equal to or exceeding the group's average

(avg). Here, the counter nbHighAvg is initialized to zero before the loop. During each

iteration the current mark is compared to avg and the counter nbHighAvg is updated

accordingly. The concluding step involves displaying the calculated statistics.

The requested program is the following:

#include <stdio.h>

int main() {

 //Define the size of the array

 #define n 30

 //Declare an array of size n to store marks

 int T[n];

 //Variables for statistics and counters

 float min, max, sum, avg;

 int i,nbHighAvg;

 //Input scores for each student

 printf("Please enter the exam scores for 30 students:\n");

 //Loop to read marks into the array

 for (i = 0; i < n; i++) {

 printf("Enter score for student %d: ", i + 1);

 scanf("%f", &T[i]);

 }

 //Initialize variables for statistics

 //with the first mark in the array

 sum = T[0];

 min = T[0];

 max = T[0];

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 77 Dr. Abderrahmane Kefali

 //Loop to calculate sum, min, and max

 for (i = 1; i < n; i++) {

 //Add the current mark to the sum

 sum = sum + T[i];

 //Check if the current element is smaller

 //than the current min, update min

 if (T[i] < min) min = T[i];

 //Check if the current element is larger

 //than the current max, update max

 if (T[i] > max) max = T[i];

 }

 //Calculate average

 avg =sum / n;

 //Count scores higher than or equal to average

 nbHighAvg = 0;

 for (i = 0; i < n; i++) {

 if (T[i] >= avg) {

 nbHighAvg = nbHighAvg + 1;

 }

 }

 // Display calculated statistics

 printf("Statistics:\n");

 printf("Minimum score: %.2f\n", min);

 printf("Maximum score: %.2f\n", max);

 printf("Average score: %.2f\n", avg);

 printf("Number of scores >= average: %d\n", nbHighAvg);

 return 0;

}

4.2) Exercise 2: Array Value Search and Occurrences

a. Write a program that asks the user to fill an array T of size n, and then provide a value x.

The program should then indicate whether x belongs to T.

b. Modify the program to display the number of occurrences of x, and the index of its first

and last occurrence if it belongs to T.

Solution :

In this exercise, two programs are expected.

a. For the first part of the exercise, the solution entails reading an array from the user, akin

to the approach employed in the previous exercise, utilizing a for loop. Given that the

exercise does not specify the size of the array, a size of n=10 is proposed. Following

this, the program prompts the user for a value, denoted as x. Subsequently, a while

loop is introduced to search through the array and determine the presence of x. To

facilitate this, a Boolean variable (called found) is declared to ascertain whether the

value x exists in the array. Initially, found is set to False. The while loop iterates as

long as the array is not terminated and the value is not yet found. In each iteration, the

program checks if the current value matches the sought-after x. If affirmative, the search

concludes, and found transitions to True. If not, the program proceeds to the next

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 78 Dr. Abderrahmane Kefali

element and continues this process until the value is located or the array is traversed

without finding x. After exiting the loop, the program displays whether x is found or not

based on the value of the Boolean variable found. In C, the boolean variable is declared

as an int since the boolean type does not exist. Below is the implementation of the

program:

#include <stdio.h>

int main() {

 //Define the size of the array

 #define n 10

 //Declare the variables

 int T[n];

 int i, x, found;

 //Prompt the user to fill the array

 printf("Please fill the array\n");

 //Loop to input values into the array

 for (i = 0; i < n; i++) {

 printf("T[%d] = ", i);

 scanf("%d", &T[i]);

 }

 //Prompt the user to enter a value to search for

 printf("Enter a value: ");

 scanf("%d", &x);

 //Initialize the 'found' variable to 0 (False)

 found = 0;

 //Loop to search for the value in the array

 for (i = 0; i < n; i++) {

 //Set 'found' to 1 (True) if the value is found

 if (T[i] == x) {

 found = 1;

 }

 }

 // Display whether the value is found or not

 if (found==1) {

 printf("The value %d is in the array", x);

 } else {

 printf("The value %d is not in the array", x);

 }

 return 0;

}

b. In the second part of the exercise, we diverge from using a Boolean variable, as the

objective is not only to determine the existence of a value in the array and stop the

search as soon as it is found. Instead, the goal is to compute the number of occurrences

of a value x and identify the indices of its first and last occurrences in the array. In this

modified program, additional variables are introduced, including a counter (count) to

tally the number of occurrences, and two indices (firstIndex and lastIndex) to

store the positions of the first and last occurrences of x.

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 79 Dr. Abderrahmane Kefali

As the program iterates through the array, it uses a for loop and increments the

counter for each occurrence of x and updates the indices accordingly. If x is found at a

given index, the program checks whether this index is the first occurrence

(firstIndex), and if so, it records the index. Subsequently, as the program continues

its traversal, it updates the lastIndex with each subsequent occurrence of x. After

completing the loop, the program then displays the count of occurrences along with the

indices of the first and last occurrences of x in the array.

The modified program enabling this logic is as follows:

#include <stdio.h>

int main() {

 #define n 10

 int T[n];

 int i, x, count, firstIndex, lastIndex;

 //Prompt user to fill the array

 printf("Please fill the array\n");

 for (i = 0; i < n; i++) {

 printf("T[%d] = ", i);

 scanf("%d", &T[i]);

 }

 //Prompt user to enter a value to search for

 printf("Enter a value: ");

 scanf("%d", &x);

 //Initialize the occurrences counters

 count = 0;

 //Initialize the variables for tracking indices

 firstIndex = -1;

 lastIndex = -1;

 //Iterate through the array to find occurrences

 for (i = 0; i < n; i++) {

 if (T[i] == x) {

 //If it's the first occurrence, record the index

 if (count == 0) {

 firstIndex = i;

 }

 //Update the index for the last occurrence

 lastIndex = i;

 //Increment the count of occurrences

 count = count + 1;

 }

 }

 // Display results based on occurrences

 if (count > 0) {

 printf("The value %d appears %d times\n", x, count);

 printf("Its first index is %d\n", firstIndex);

 printf("Its last index is %d\n", lastIndex);

 } else {

 printf("The value %d is not in the array\n", x);

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 80 Dr. Abderrahmane Kefali

 }

 return 0;

}

4.3) Exercise 3: Array normalization

Write a program to input an array of 10 non-zero real elements, normalize it, and display the

normalized array.

Normalization of an array involves dividing all its elements by the largest element, ensuring

that all numbers fall within the range of 0 to 1.

Example :

In the array described in the figure below, the maximum value is 8.

Initial array

0 1 2 3 4 5 6 7 8 9

3 1 8 1 2 8 0 5 4 4

 Normalized array (The elements are divided by)

0 1 2 3 4 5 6 7 8 9

0.375 0.125 1 0.125 0.25 1 0 0.625 0.5 0.5

Figure 5.3. Example of the normalization of an array

Solution:

To address the requested task, the solution involves a three-step process. Firstly, the

program employs a for loop to prompt the user for input, allowing entry of ten non-zero

real numbers that are stored in an array. Moving to the second step, the program identifies

the maximum element within the array using another loop, similar to the approach used in

exercise 1. In the third step, the program iterates through the array, dividing each element by

the identified maximum. This process ensures normalization, scaling all elements

proportionally to fit within the range of 0 to 1. Finally, the normalized array is displayed,

providing a clear representation of the results.

Below is the implementation of the program:

#include <stdio.h>

int main() {

 #define n 10

 //Declare variables

 float T[n];

 float max;

 int i;

 //Step 1: Input ten non-zero real numbers into the array

 printf("Enter ten non-zero real numbers:\n");

 for (i = 0; i < n; i++) {

 printf("T[%d] = ", i);

 scanf("%f", &T[i]);

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 81 Dr. Abderrahmane Kefali

 }

 //Step 2: Find the maximum element in the array

 //Initialize max with the first element of the array

 max = T[0];

 for (i = 1; i < n; i++) {

 //Update max if a larger element is found

 if (T[i] > max) {

 max = T[i];

 }

 }

 //Step 3: Normalize the array

 for (i = 0; i < n; i++) {

 //Divide each element by the maximum

 T[i] = T[i] / max;

 }

 //Display the normalized array

 printf("Normalized Array:\n");

 for (i = 0; i < n; i++) {

 printf("%.3f ", T[i]);

 }

 return 0;

}

4.4) Exercise 4: Capturing State Changes in a Binary Array

Consider an array of 20 binary values (0 or 1) representing the states of a physical object at

20 different moments. We define a transition as the change of state between two consecutive

moments, in other words, the shift from 0 to 1 or from 1 to 0.

Write a program to fill the array and calculate the number of transitions in the array. The

program should ensure that the array is filled only with 0s and 1s.

Example:

The number of transitions in the following array is: 5

1 1 0 0 1 0 1 0 0

Transitions

Figure 5.4. Example of transitions in a binary array

Solution:

The current problem involves capturing the states of a physical object over time in an array of

binary values (0 or 1) and detecting transitions, defined as shifts between consecutive

moments (from 0 to 1 or 1 to 0).

To address this challenge, the solution begins by prompting the user to input binary states

and storing them in the designated array using a conventional for loop. A distinct aspect of

this exercise is ensuring that only valid binary inputs are accepted. This is achieved by

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 82 Dr. Abderrahmane Kefali

implementing a do…while loop within each iteration for reading each element of the array.

Following the completion of input collection, the program calculates the transition count via a

second for loop. An integer counter (nbTrans) is employed to track the number of

transitions, initialized to zero before the loop. In each iteration, the current state is compared

with the previous one. If they are different, the counter is incremented. Note that the last loop

iterates starting from the second element and not from the first, as the first element lacks a

previous one for comparison. Finally, the program outputs the total number of detected

transitions.

Here is the program:

#include <stdio.h>

int main() {

 #define n 20

 //Declare variables

 int t[n], i, nbTrans;

 //Prompt user to fill the array with binary states

 printf("Please fill the array:\n");

 for (i = 0; i < n; i++) {

 //Ensure only 0 or 1 is entered

 do {

 printf("Enter the state (0 or 1) at instant %d: ", i);

 scanf("%d", &t[i]);

 } while (t[i] != 0 && t[i] != 1);

 }

 nbTrans = 0;

 // Count transitions by comparing current state with the

previous one

 for (i = 1; i < n; i++) {

 if (t[i] != t[i - 1]) {

 nbTrans = nbTrans + 1;

 }

 }

 // Display the number of transitions

 printf("The number of transitions is: %d", nbTrans);

 return 0;

}

4.5) Exercise 5: Sieve of Eratosthenes

We want to create a program to find all prime numbers between 1 and a certain maximum

value N using the Sieve of Eratosthenes method.

Eratosthenes was an ancient Greek scholar who led the great Library of Alexandria two and

a half centuries before Christ. He became famous for the sieve method that bears his name,

which provides a list of all prime numbers below a given value.

The principle of the sieve is straightforward. Given an integer N, we initially create a list of

integers from 1 to N. The process involves marking (sifting) all numbers that are not prime in

the following manner:

• Eliminate 1, as 1 is not a prime number.

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 83 Dr. Abderrahmane Kefali

• Move to the next number, which is 2, and eliminate all its multiples.

• Move to the next number (3) and eliminate all its multiples.

• Continue this process for all numbers up to N .

Thus, the sieve, the structure containing the sequence of integers, is usually represented by

an array. However, the array elements can be simply booleans, as only the presence or

absence of the number in the sieve is significant.

Solution:

To implement the Sieve of Eratosthenes we have first to fix the value of N as a constant (N

= 100 in the following program). The solution employs an array of boolean values

representing the sieve. Initially, all elements are set to true to indicate that every number

is potentially prime. The algorithm then iterates through the array, starting from the first prime

number (2), and marks its multiples as non-prime. This process continues until the square

root of N is reached.

The algorithm involves nested loops. The outer loop iterates through the numbers from 2 to

the square root of N. For each number, the inner loop marks its multiples in the array as

false. After completing the sieve, the algorithm scans the array, and the numbers with

true values are identified as prime.

The program implementing the sieve of Eratosthenes is as follows:

#include <stdio.h>

#include <math.h>

int main() {

 //Set the maximum value

 #define N 100

 int isPrime[N+1];

 int i, j;

 //Initialize the Sieve (array)

 //To simplify, assume the number 0 and 1 as not prime

 isPrime[0] = 0;

 isPrime[1] = 0;

 //Assume all other numbers are prime initially

 for (i = 2; i <= N; i++) {

 isPrime[i] = 1;

 }

 // Apply the Sieve of Eratosthenes

 for (i = 1; i <= sqrt(N); i++) {

 //If the current number is prime,

 //marks its multiples in the array as false.

 if (isPrime[i]==1) {

 for (j = i+1; j <= N; j++) {

 if(j%i==0){

 isPrime[j] = 0;

 }

 }

 }

 }

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 84 Dr. Abderrahmane Kefali

 //Display prime numbers

 printf("Prime numbers up to %d are:\n", N);

 for (i = 0; i < N; i++) {

 if (isPrime[i] == 1) {

 printf("%d ", i);

 }

 }

 return 0;

}

4.6) Exercise 6: Sparse Matrix Detection

Consider a scenario where you are overseeing a logistics company with 5 different

transportation routes and 4 types of vehicles. Create a program to read a matrix representing

the usage of each vehicle on specific routes. The matrix, having 5 rows (routes) and 4

columns (vehicle types), should be examined to determine if it qualifies as sparse.

In this context, a matrix is deemed sparse if over two-thirds (2/3) of its elements are zero.

This analysis can provide insights into routes where specific vehicle types may not be

frequently utilized, aiding in strategic decision-making for resource allocation.

Solution:

To determine whether a given matrix is sparse, the solution begins by prompting the user to

input the matrix elements. This process involves the use of nested loops for efficient traversal

of the matrix. Subsequently, the solution utilizes nested loops again to traverse the matrix,

counting the number of zero elements. A counter variable is initialized to zero before the

loop, and during each iteration, the current element's value is compared to zero. The counter

is updated based on this comparison.

The program then compares this counter with the predefined threshold for sparsity, set at

two-thirds of the total number of elements in the matrix. Finally, the program outputs the

result, indicating whether the matrix is considered sparse based on the comparison results.

The program enabling this processing is as follows:

#include <stdio.h>

int main() {

 //Define the number of rows and columns

 #define n 5

 #define m 4

 //Declare the matrix A and the other variables

 int A[n][m];

 int i,j,nbZeros;

 // Prompt the user to input the matrix elements

 printf("Please enter the matrix elements:\n");

 // Nested loops to input matrix elements

 for (i = 0; i < n; i++) {

 for (j = 0; j < m; j++) {

 printf("A[%d][%d] = ", i, j);

 scanf("%d", &A[i][j]);

 }

 }

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 85 Dr. Abderrahmane Kefali

 //initialize the zero counter

 nbZeros = 0;

 //Count the number of zero elements

 for (i = 0; i < n; i++) {

 for (j = 0; j < m; j++) {

 //Check if the entered element is zero

 if (A[i][j] == 0) {

 nbZeros++;

 }

 }

 }

 // Output whether the matrix is sparse or not

 if (nbZeros > (2 * n * m) / 3) {

 printf("The matrix is sparse");

 } else {

 printf("The matrix is not sparse");

 }

 return 0;

}

4.7) Exercise 7: Image thresholding

You are tasked with implementing a program for image thresholding, a fundamental

technique in image processing. In this context, the image is represented as a matrix, where

each element signifies the gray level of a pixel within the range of 0 to 255.

Image thresholding involves setting matrix elements (pixels) to 0, representing black, if their

value is less than a defined threshold. Conversely, if their value is equal to or above the

threshold, they are set to 255, representing white. The threshold for this exercise is

determined as the average of all gray levels in the image.

The program should read a matrix corresponding to an image, calculate the threshold, apply

thresholding, and finally display the resulting image (matrix). For simplicity, it is assumed that

the values entered by the user are correct, and thus, there is no need to ensure their validity.

Solution:

To implement image thresholding based on the average gray level, the solution involves

several steps. First, the program reads a matrix representing the image from the user using

nested for loops. Subsequently, it calculates the average gray level by traversing the

matrix and summing up all the gray levels. Thus, Other nested loops are employed to

traverse the matrix and calculate the sum of its elements. The sum is initialized to zero

before entering the loops. Once the loops are complete, the threshold is determined as the

average of the gray levels.

Once the threshold is established, the program iterates through the matrix again using

nested loops. For each pixel, an if statement checks the gray level of the pixel (the value

of the element). If it is less than the threshold, it is set to 0 (black); otherwise, it is set to 255

(white). Finally, the resulting image matrix is displayed.

Below is the corresponding program in C:

#include <stdio.h>

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 86 Dr. Abderrahmane Kefali

int main() {

 //Constants for matrix size

 #define n 3 // Number of rows

 #define m 3 // Number of columns

 // Matrix representing the image

 int A[n][m];

 //Other variables

 int i,j,sum,th;

 //Read the matrix elements from the user

 printf("Enter the matrix elements (gray levels):\n");

 for (i = 0; i < n; i++) {

 for (j = 0; j < m; j++) {

 printf("Pixel (%d,%d): ",i,j);

 scanf("%d", &A[i][j]);

 }

 }

 //Calculate the sum of gray levels

 sum = 0;

 for (i = 0; i < n; i++)

 for (j = 0; j < m; j++)

 sum=sum + A[i][j];

 //Calculate the threshold as the average gray level

 th = sum / (n * m);

 //Apply thresholding to the image matrix

 for (i = 0; i < n; i++) {

 for (j = 0; j < m; j++) {

 //Set pixel to black (0) or white (255)

 //based on the threshold

 if(A[i][j] < th)

 A[i][j] = 0;

 else A[i][j] = 255;

 }

 }

 //Display the resulting image matrix

 printf("Resulting Image Matrix:\n");

 for (i = 0; i < n; i++) {

 for (j = 0; j < m; j++) {

 printf("%d ", A[i][j]);

 }

 printf("\n");

 }

 return 0;

}

4.8) Exercise 8: Diagonal Permutation

Write a program to input a square matrix of size N × N and swap its two diagonals. Finally,

display the resulting matrix.

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 87 Dr. Abderrahmane Kefali

Example:

The following figure illustrates an example of such permutation:

Original matrix Matrix after permutation

 0 1 2 3 4 5 0 1 2 3 4 5

0 7 3 1 5 3 5 0 5 3 1 5 3 7

1 9 11 25 9 4 0 1 9 4 25 9 11 0

2 8 8 0 1 6 1 2 8 8 1 0 6 1

3 4 7 1 0 3 4 3 4 7 0 1 3 4

4 27 15 4 6 5 2 4 27 5 4 6 15 2

5 9 2 4 5 27 3 5 3 2 4 5 27 9

Figure 5.5. Example of a matrix before and after diagonal permutation

Solution :

To implement the diagonal permutation of a square matrix, the solution involves user input

for the initial matrix. Nested loops are employed to traverse the matrix, facilitating the entry of

values. After obtaining the matrix, the program proceeds with swapping its two diagonals.

The algorithm for the diagonal permutation is executed using a loop that iterates through

each row. Within each row, the algorithm swaps the elements that correspond to both

diagonals. In a square matrix, the main diagonal consists of elements where the row index

(i) equals the column index (i). The secondary diagonal consists of elements where the

sum of the row and column indices equals one less than the matrix size (N - 1). For each

row (i), the algorithm exchanges the element at position (i,i) with the element at position

(i,N-1-i) by using a temporary variable.

Finally, the resulting matrix, after the diagonal permutation, is displayed to the user.

The permutation processing is implemented by the following program:

#include <stdio.h>

main(){

 //Set the size of the square matrix

 #define N 5

 //Declare the square matrix and the other variables

 int M[N][N];

 int i,j,x;

 //Input the initial matrix

 printf("Please enter the matrix:\n");

 for(i=0;i<N;i++){

 for(j=0;j<N;j++){

 printf("Element [%d,%d]: ",i,j);

 scanf("%d",&M[i][j]);

 }

 }

 //Swap the diagonals

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 88 Dr. Abderrahmane Kefali

 for(i=0;i<N;i++){

 x=M[i][i];

 M[i][i]=M[i][N-1-i];

 M[i][N-1-i]=x;

 }

 //Display the resulting matrix after diagonal permutation

 printf("The matrix after diagonal permutaion:\n");

 for(i=0;i<N;i++){

 for(j=0;j<N;j++){

 printf("%d\t",M[i][j]);

 }

 printf("\n");

 }

 return 0;

}

4.9) Exercise 9: Business Sales Analysis

Envision a dynamic business landscape with 15 strategically located branches offering nine

distinct product categories. Tracking daily sales for each product category at every branch is

critical for informed decision-making.

Your mission is to develop a program to efficiently input daily sales data for all product

categories across all 15 branches. To manage this complex dataset, the most fitting data

structure is a matrix. Here, the matrix's rows correspond to individual branches, while its

columns represent various product categories. Consequently, the matrix entry [i, j]

encapsulates the daily sales of product category j for branch i.

Following the input phase, the program will undertake key calculations:

• Total Sales Breakdown: Compute and showcase the total sales for each branch and

product category. Notably, these totals will be strategically stored, with the last column

containing the total sales for each branch, and the last row encapsulating the total sales

for each product category.

• Performance Peaks: Uncover and print valuable insights by identifying the branch and

product category with the highest total sales. This provides a snapshot of the most

successful facets of the business.

Solution:

To address the challenge of efficiently managing and analyzing daily sales data for a

business with 15 branches and nine product categories, the proposed solution employs a

matrix-based approach. Here, rows correspond to individual branches, and columns signify

distinct product categories. It's worth noting that during the declaration, an additional row and

column are added, resulting in a matrix of size 16 * 10. These extra rows and columns are

dedicated to storing the total sales.

The initial phase of the program involves user input, where nested for loops prompt for

daily sales figures for each product category at every branch. This data is systematically

organized in the matrix, providing a structured representation of the business's sales

landscape.

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 89 Dr. Abderrahmane Kefali

Following data input, the program proceeds with crucial calculations. To compute the total

sales for each branch, the program utilizes a for loop to iterate through each row (branch),

summing up daily sales and storing the sum in the last entry of the row. Similarly, the

program iterates through each column (product category), summing up daily sales and

storing the result in the last entry of the column.

To identify the branch and product category with the highest total sales, the solution involves

iterating through the last row of the matrix (total sales for each product category) and through

the last column (total sales for each branch). This is achieved using the same logic as the

maximum determination in Exercise 1. The final step is to print all calculated values.

The program is the following:

#include <stdio.h>

int main() {

 //The maximum number of branches and product categories

 #define nbBran 4

 #define nbCat 3

 //Declare a matrix to store daily sales and results

 int A[nbBran + 1][nbCat + 1];

 int i,j;

 //Variables for branch and category with the highest total

 int maxBra, maxCat;

 //Initialize matrix elements to zero

 for (i = 0; i <= nbBran; i++) {

 for (j = 0; j <= nbCat; j++) {

 A[i][j] = 0;

 }

 }

 //Fill in daily sales for each branch and category

 for (i = 0; i < nbBran; i++) {

 for (j = 0; j < nbCat; j++) {

 printf("Sales for Branch %d,Category %d: ",i+1,j+ 1);

 scanf("%d", &A[i][j]);

 }

 }

 //Calculate and store total sales for each branch

 for (i = 0; i < nbBran; i++) {

 A[i][nbCat] = 0;

 for (j = 0; j < nbCat; j++) {

 A[i][nbCat] = A[i][j]+A[i][nbCat];

 }

 }

 //Calculate and store total sales for each category

 for (j = 0; j < nbCat; j++) {

 A[nbBran][j] = 0;

 for (i = 0; i < nbBran; i++) {

 A[nbBran][j] = A[i][j]+A[nbBran][j];

 }

 }

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 90 Dr. Abderrahmane Kefali

 //Identify the branch and category with the highest total

 maxBra = 0;

 maxCat = 0;

 for (i = 1; i < nbBran; i++) {

 if (A[i][nbCat] > A[maxBra][nbCat]) {

 maxBra = i;

 }

 }

 for (j = 1; j < nbCat; j++) {

 if (A[nbBran][j] > A[nbBran][maxCat]) {

 maxCat = j;

 }

 }

 // Display the calculated values

 printf("\nTotal sales for each branch:\n");

 for (i = 0; i < nbBran; i++) {

 printf("Branch %d: %d\n", i + 1, A[i][nbCat]);

 }

 printf("\nTotal sales for each product category:\n");

 for (j = 0; j < nbCat; j++) {

 printf("Category %d: %d\n", j + 1, A[nbBran][j]);

 }

 printf("\nBranch with the highest total: %d\n",maxBra+1);

 printf("Product with the highest total: %d",maxCat+1);

 return 0;

}

4.10) Exercise 10: Palindrome Checker

A word is called a "palindrome" if it reads the same from left to right or from right to left.

Write a program that asks the user to provide a word of maximum 10 characters and then

determines whether the word is a palindrome.

You are not allowed to use predefined functions for this challenge.

Example:

“radar”, “level”, “redder”, “racecar” are palindromes.

Solution:

This exercise involves creating a program to determine whether a given word is a

palindrome. The solution starts by prompting the user to input a word with a maximum length

of 10 characters. This input is obtained similarly to any other values and doesn't require a

loop.

The program then checks whether the provided word is a palindrome by comparing

characters from both ends of the word towards the center. Before this check, the program

calculates the actual length of the entered word using a while loop, as demonstrated in

Activity 2. Subsequently, another while loop is used to iterate through the characters of

the word, starting from the first character and the last character located at the position

(length-1) and moving towards the center.

Algorithmics and Data Structures 1 Lab No 5. Arrays and Strings

1st Year Mathematics – University of Guelma 91 Dr. Abderrahmane Kefali

If, at any point, the characters do not match, the word is not a palindrome, and the loop is

interrupted. On the other hand, if the loop completes without finding a mismatch, the word is

confirmed to be a palindrome. To achieve this, a Boolean variable is used, initialized to

true before the loop. This variable controls the loop, switching to false in the case of a

mismatch, leading to an exit from the loop.

Here is the requested program:

#include <stdio.h>

#include <string.h>

int main() {

 #define n 10 //Maximum length of the word

 //Declare variables

 char W[n]; //The word

 int i,j,length,isPalindrome;

 //Prompt user for input

 printf("Enter a word (maximum length %d): ", n);

 gets(W);

 //Calculate the actual length of the entered word

 i = 0;

 while(i < n && W[i]!='\0')

 i++;

 length = i;

 //Initialize the flag for palindrome check

 isPalindrome = 1;

 //Check if the word is a palindrome

 i = 0;

 while (i < length / 2 && isPalindrome==1) {

 if (W[i] != W[length - 1 - i]) {

 isPalindrome = 0;

 }

 i = i + 1;

 }

 //Display the result

 if (isPalindrome == 1) {

 printf("%s is a palindrome", W);

 } else {

 printf("%s is not a palindrome", W);

 }

 return 0;

}

Lab No 6. Custom Types
(Structures and enumeration)

1) Objectives

This lab focuses on custom types, particularly structures and enumerations, in the C

programming language. Students will engage in hands-on activities to develop a strong

understanding of these concepts. The emphasis is on practical learning, allowing students to

become proficient in creating, initiating, and managing these user-defined types. The goal is

to help students grasp the syntax and meaning of custom type declarations, enabling them to

build personalized data structures for various programming needs.

Through practical exercises, students will seamlessly integrate structures and enumerations

into their programs. Exploring structures will teach students how to consolidate diverse data

elements into a unified type for improved data organization. Simultaneously, the usage of

enumerations will be explored to provide a clear representation of named constant values,

contributing to enhanced code readability.

The ultimate objective of the lab is to equip students with both practical skills in working with

custom types and strategic insights to identify optimal use cases for structures and

enumerations in real-world programming scenarios.

2) Recap: Key Concepts in custom types

Beyond the predefined types, the C language provides the flexibility to define custom types,

also known as user-defined types, using the typedef keyword. This capability allows

programmers to create their own types tailored to specific needs.

Example:

typedef int number;

//defines a new custom type called number whose values are those of the predefined int

type.

In this lab, we delve into two primary types of custom types: enumerations and structures.

2.1) Enumerations

Enumerations offer a convenient way to define named constant values in a program. By

assigning names to integral constants, enumerations enhance code clarity and

maintainability.

2.1.1) Declaration of an enumeration

The declaration of an enumeration involves defining a set of named constants enclosed

within curly braces. Each constant is assigned an integer value, starting from zero by default,

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 93 Dr. Abderrahmane Kefali

and subsequent values increment by one. The typedef keyword allows creating a custom

type for the enumeration, facilitating its use in the program.

Example:

typedef enum {

 Red,

 Green,

 Blue

} Colors;

//Defines an enumeration named Colors with constants Red, Green, and Blue.

2.1.2) Manipulation of an enumeration

Manipulating enumerations in C involves various operations, including reading, writing,

assigning, comparing, and utilizing these symbolic constants within the program.

Enumerations in C are read and written using standard input functions (scanf and

printf). The format code "%d" is used to read enumeration values, treating them as

integer variables.

Enumerations can also be easily assigned and compared like any other integral data type.

Assigning values to enumeration variables is straightforward. Simply use the assignment

operator (=) with the desired enumeration constant.

For comparisons, enumerations can be compared using standard relational operators (==,

!=, <, >, <=, >=). This allows for conditional operations based on enumeration values.

Examples:

Colors color1; //Declare an enumeration variable.

scanf("%d", &color1); //Read an enumeration value.

color1 = Blue; // Assign an enumeration value.

printf("Selected color: %d",color1); // Display the enumeration value.

if (color1 == Red) {

 …………

}

else {

 …………

}

2.2) Structures

A structure in the C language is a data structure that enables the aggregation of data,

whether of the same or different types, into a single entity associated with a particular object.

This composite record consists of individual elements known as fields, where each field

represents a distinct piece of data.

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 94 Dr. Abderrahmane Kefali

2.2.1) Declaration of a structure

In C, defining a structure involves using the struct keyword in two-step process. There are

two ways to declare a structure. The first way, without using typedef.

The syntax of declaration is as follows:

struct <name_Structure>{

 <type_Fields1> <name_Fields1>;

 <type_Fields2> <name_Fields2>;

 ...

 <type_Fieldsn> <name_Fieldsn>;

};

Where: <name_Structure> is the name of the defined structure, <type_Fieldsi> is the

type of the ith field of the structure, and <name_Fieldsi> is the name of the ith field of the

structure.

This way of declaration requires using struct along with the structure name for variable

declarations.

struct <name_Template> <name_Variable>;

Example:

struct Person{

 char firstName[30];

 char lastName[30];

 int age;

};

struct Person pers;

// Declaration of a structure variable named “pers”

The second way, with typedef, allows creating an alias for the structure, making variable

declarations cleaner and more readable. The syntax for defining a structure type in C is as

follows:

typedef struct {

 <type_Field1> <name_Field1>;

 <type_Field2> <name_Field2>;

 ...

 <type_Fieldn> <name_Fieldn>;

} <name_Type>;

Where: <name_Type> is the name of the defined type.

In this second method, you can directly declare a variable using the alias without the need for

struct :

<name_Type> <name_Variable>;

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 95 Dr. Abderrahmane Kefali

Example:

typedef struct {

 char firstName[30];

 char lastName[30];

 int age;

} Person;

Person pers;

// Declaration of a structure variable named “pers”

2.2.2) Accessing Structure Fields

To access the fields within a structure, the dot (.) operator is employed. Thus, field access

follows the following syntax:

<name_Structure>.<name_Field>

Example:

Pers.age; //access to the field age of the structure pers

2.2.3) Manipulation of a structure

Manipulating a structure in the C language involves various operations, facilitating the

interaction with data encapsulated within the structure. These operations encompass

reading, writing, modifying, and utilizing the structure's fields.

In fact, the only possible instruction to manipulate a variable of record type (in its entirety)

without accessing its fields is assignment. However, the fields of a record can be

manipulated individually like any other variable of a similar type. They can be read, written,

assigned values, and used in conditions, loops, etc.

Example:

Person pers1,pers2;

scanf("%s",&pers1.lastName); //read the ‘lastName’ field

pers1.age=19; //assign the value 19 to the ‘age’ field

printf("%s",firstName); //print the ‘firstName’ field

pers2=pers1; //Assign the values of 'pers1' to 'pers2'

3) Practice activities

In this section, you will apply your understanding of custom types, specifically structures and

enumerations, through a series of hands-on practice activities that will enhance your

proficiency in declaring, initializing, and manipulating these user-defined types in the C

programming language.

3.1) Activity 1: Enumerations

Imagine you are developing a straightforward program to manage different days of the week.

Enumerations can be a helpful way to represent the days in a structured manner. The

following program, when completed, is designed to deliver appropriate messages based on

the current day entered by the user, utilizing a switch statement. For instance, it might output

messages like "It's the weekend, relax," "Weekend, do not forget the Jumu'ah prayer," or "It’s

a working day".

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 96 Dr. Abderrahmane Kefali

#include <stdio.h>

int main() {

 //Declare the enumeration type for Days

 enum Days {

 Saturday,Sunday,Monday,Tuesday,Wednesday,Thursday,Friday

 };

 //Declare a variable of type Days

 enum Days today;

 //Input the current day

 //Switch statement to provide messages based on the day

 switch (......) {

 case:

 break;

 default:

 break;

 }

 return 0;

}

1. Fill in the above program to complete the enum-based day management system.

2. Test the program by changing the value of today and observing the different outputs

based on the day.

Solution:

1. To fulfill the specified task, we need to incorporate the reading instruction to prompt the

user for input regarding the current day. Additionally, we must augment the switch

statement with the selector (the today variable), enumerate all the cases within the

switch, and define the corresponding processing for each case. In this scenario, the

processing involves displaying an informative message based on the current day entered

by the user. The comprehensive program is outlined below:

#include <stdio.h>

int main() {

 //Declare the enumeration type for Days

 enum Days {

 Saturday,Sunday,Monday,Tuesday,Wednesday,Thursday,Friday

 };

 //Declare a variable of type Days

 enum Days today;

 //Input the current day

 printf("Enter the current day (0:Saturday,...,6:Friday):");

 scanf("%d",&today);

 //Switch statement to provide messages

 switch (today) {

 case Saturday:

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 97 Dr. Abderrahmane Kefali

 printf("It's the weekend, relax!\n");

 break;

 case Sunday:

 printf("Start your week with enthusiasm!");

 break;

 case Monday:

 printf("It's a Working day");

 break;

 case Tuesday:

 printf("It's Working day");

 break;

 case Wednesday:

 printf("It's Working day");

 break;

 case Thursday:

 printf("It’s a Working day");

 break;

 case Friday:

 printf("Weekend,do not forget the Jumu'ah prayer");

 break;

 default:

 printf("Input error");

 break;

 }

 return 0;

}

2. When testing the program with various values for the today variable, the system

responds by displaying one of four messages, each corresponding to a specific day of

the week entered by the user. This functionality allows users to observe the program's

dynamic behavior, showcasing its ability to provide tailored messages based on different

inputs.

3.2) Activity 2: Structures

The following program is supposed to calculate the sum of two durations entered by the user.

Duration is considered here as a structure type composed of three fields: h, m, and s de

type int, describing respectively: hours, minutes, and seconds.

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 98 Dr. Abderrahmane Kefali

#include <stdio.h>

int main() {

 struct Duration{

 int h,m,s;

 };

 struct Duration d1;

 struct Duration d2;

 struct Duration ds;

 printf("Please enter the first duration: \n");

 printf("Hours: ");scanf("%d",&d1.h);

 printf("Minutes: ");scanf("%d",&d1.m);

 printf("Seconds: ");scanf("%d",&d1.s);

 printf("Please enter the second duration: \n");

 printf("Hours: ");scanf("%d",&d2.h);

 printf("Minutes: ");scanf("%d",&d2.m);

 printf("Seconds: ");scanf("%d",&d2.s);

 printf("The sum is: %dh %dm %ds",ds.h,ds.m,ds.s);

 return 0;

}

1. Create a new project and type the code above.

2. Complete this code to perform the desired task.

3. How can you avoid the repetition of the struct keyword when declaring variables d1,

d2, and ds?

Solution:

1. Creation of a new project.

2. To achieve the intended objective, the chosen approach involves converting both

durations into seconds, computing their sum, and then converting the total seconds back

into hours, minutes, and seconds. These conversions utilize integer division (/) and

modulo operations (%). The program declares three integer variables: one for the first

duration in seconds, another for the second duration in seconds, and the last one for the

sum of durations in seconds.

Here is the provided program:

#include <stdio.h>

int main() {

 // Structure definition for Duration

 struct Duration {

 int h, m, s;

 };

 //Declare variables for two durations and the result

 struct Duration d1, d2, ds;

 //Input for the first duration

 printf("Please enter the first duration:\n");

 printf("Hours: ");

 scanf("%d", &d1.h);

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 99 Dr. Abderrahmane Kefali

 printf("Minutes: ");

 scanf("%d", &d1.m);

 printf("Seconds: ");

 scanf("%d", &d1.s);

 //Input for the second duration

 printf("Please enter the second duration:\n");

 printf("Hours: ");

 scanf("%d", &d2.h);

 printf("Minutes: ");

 scanf("%d", &d2.m);

 printf("Seconds: ");

 scanf("%d", &d2.s);

 //Convert durations to seconds

 int secondsD1 = d1.h * 3600 + d1.m * 60 + d1.s;

 int secondsD2 = d2.h * 3600 + d2.m * 60 + d2.s;

 //Calculate the sum in seconds

 int sumInSeconds = secondsD1 + secondsD2;

 //Convert the sum in seconds to hours,minutes,and seconds

 ds.h = sumInSeconds / 3600;

 ds.m = (sumInSeconds % 3600) / 60;

 ds.s = sumInSeconds % 60;

 //Display the sum

 printf("The sum is: %dh %dm %ds\n", ds.h, ds.m, ds.s);

 return 0;

}

3. To avoid the repetition of the struct keyword when declaring variables d1, d2, and d4,

we can use the typedef keyword to create an alias for the structure Duration. Here's

the modification:

 typedef struct{

 int h,m,s;

 }Duration;

 Duration d1;

 Duration d2;

 Duration ds;

4) Application Exercises

Thes exercises of this section are designed to reinforce your skills in utilizing custom types

effectively. Work through each exercise, applying the concepts learned in the previous

sections, and enhance your problem-solving abilities in real-world scenarios.

4.1) Exercise 1: Geometric Shape Calculator

Design an enumeration named Shape to represent geometric shapes such as circle,

square, and triangle. Write a program that allows the user to choose a shape, then calculates

and prints the area of the selected shape.

You can use simple switch statements for this.

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 100 Dr. Abderrahmane Kefali

Solution:

The problem addressed in this exercise is the computation of the area of a geometric shape

selected by the user. We assume here the availability of only three types of shapes: circle,

square, and triangle.

To tackle this problem, the solution utilizes an enumeration named Shape to represent

three geometric shapes: CIRCLE, SQUARE, and `TRIANGLE`. The program initiates by

prompting the user to input a number corresponding to its desired shape (0 for Circle, 1 for

Square, 2 for Triangle). A switch statement is then used to handle each case, where the

program prompts the user for relevant dimensions (e.g., radius, side length, base, and

height) and calculates the area accordingly. The area calculation is performed within each

switch case, storing the result in a variable named area. Subsequently, the program

prints the calculated area with a message specifying the area of the selected shape. In the

event of an invalid choice, the program displays an error message.

The program implementing this functionality is presented as follows:

#include <stdio.h>

int main() {

 //Enumeration for geometric shapes

 enum Shape {

 CIRCLE,

 SQUARE,

 TRIANGLE

 };

 enum Shape choice;

 float radius,base,height,side,area;

 // Prompt the user to choose a shape

 printf("Choose a shape (0:Circle,1:Square,2:Triangle): ");

 scanf("%d",&choice);

 switch (choice) {

 case CIRCLE: {

 printf("Enter the radius of the circle: ");

 scanf("%f", &radius);

 //Area of a circle: π * r * r

 area = 3.14159 * radius * radius;

 break;

 }

 case SQUARE: {

 printf("Enter the side length of the square: ");

 float side;

 scanf("%f", &side);

 // Area of a square: side * side

 area = side * side;

 break;

 }

 case TRIANGLE: {

 printf("Enter the base and height of triangle: ");

 scanf("%f%f", &base, &height);

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 101 Dr. Abderrahmane Kefali

 // Area of a triangle: 0.5 * base * height

 area = 0.5 * base * height;

 break;

 }

 default:

 printf("Invalid choice.\n");

 }

 printf("The area of the selected shape is: %.2f\n", area);

 return 0;

}

4.2) Exercise 2: Traffic Light Controller

In this exercise, you are requested to simulate a simple traffic light controller using

enumerations. The traffic light can be in one of three states: RED, YELLOW, or GREEN. The

objective is to create a program that prompts the user to input the current state of a traffic

light, and based on that input, it cycles through these states, mimicking the behavior of a

real-world traffic light.

Solution:

This exercise involves creating a program to simulate a traffic light controller using C

enumerations. The traffic light is modeled with three states: Red, Yellow, and Green. The

solution employs an enumeration named TrafficLight to represent these states. A

variable, currentLight, is initialized to indicate the current state of the traffic light. The

program then enters a loop to cycle through the traffic light sequence: Red → Green →

Yellow → Red. During each iteration, the program displays the current state of the traffic

light. To mimic real-world timing, the sleep function is used to introduce delays between

state changes, making the simulation more realistic. The program repeats this sequence a

specified number of times, providing a visual representation of a functioning traffic light.

Here is the program:

#include <stdio.h>

#include <unistd.h> //RequiRed for sleep function

int main() {

 //Enumeration for Traffic Light States

 enum TrafficLight {

 Red, Yellow, Green

 };

 //Variable to represent the current state of traffic light

 enum TrafficLight currentLight;

 //Input the current state of the traffic light

 printf("Enter the current state of the traffic light ");

 printf("(0 for Red, 1 for Yellow, 2 for Green): ");

 scanf("%d", ¤tLight);

 //Validate the user's input

 if (currentLight < 0 || currentLight > 2) {

 printf("Invalid input");

 }

 else{

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 102 Dr. Abderrahmane Kefali

 //Simulate the traffic light sequence in a loop

 for (int i = 0; i < 10; ++i) {

 //Display the current state of the traffic light

 //and Update the state based on the current state

 printf("Traffic Light is ");

 switch (currentLight) {

 case Red:

 printf("Red\n");

 currentLight = Green;

 break;

 case Yellow:

 printf("Yellow\n");

 currentLight = Red;

 break;

 case Green:

 printf("Green\n");

 currentLight = Yellow;

 break;

 }

 //Simulate a delay

 sleep(2); //Sleep for 2 seconds

 }

 }

 return 0;

}

4.3) Exercise 3: Population Statistics

Consider a population of 100 persons, and each person can fall into one of the following

categories: student, worker, unemployed, or retired.

Design a C program that uses an enumeration named Category to represent these

categories. Create an array to store the category of each person, and allow the user to input

the category for each of the 100 persons. After entering the data, display statistics about the

distribution of categories, including the count of persons in each category. Ensure to handle

input validation to ensure that the user enters a valid category.

Solution :

The solution involves the use of an enumeration named Category to represent the four

categories: student, worker, unemployed, and retired. An array is established to store the

category assigned to each of the 100 persons. The program utilizes a for loop to prompt

the user to input the category for each person. Within each iteration, a do...while loop

ensures input validation, guaranteeing that the user enters a valid category.

Following the data input phase, the program proceeds to compute the count of individuals in

each category. This is achieved by utilizing four integer variables as counters, initialized to

zero. A subsequent for loop traverses the array, comparing the category of each person

and incrementing the appropriate counter based on the current category. The comparison is

facilitated by a switch statement.

The program, structured as described, is as follows:

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 103 Dr. Abderrahmane Kefali

#include <stdio.h>

int main() {

 #define n 100

 //Enumeration for person categories

 enum Category {

 Student,

 Worker,

 Unemployed,

 Retired

 };

 //Array to store the category of each person

 enum Category T[n];

 int nbStudents,nbWorkers,nbUnemployed,nbRetired;

 //Enter the category for each person

 printf("Enter the category for each person ");

 printf("0:Student,1:Worker,2:Unemployed,3:Retired):\n");

 for (int i = 0; i < n; ++i) {

 //Input validation

 do {

 printf("Person %d: ", i + 1);

 scanf("%d",&T[i]);

 } while (T[i] < Student || T[i] > Retired);

 }

 //Count of persons in each category

 nbStudents=0;nbWorkers=0;nbUnemployed=0;nbRetired=0;

 for (int i = 0; i < n; ++i) {

 switch (T[i]) {

 case Student:

 nbStudents=nbStudents+1;

 break;

 case Worker:

 nbWorkers=nbWorkers+1;

 break;

 case Unemployed:

 nbUnemployed=nbUnemployed+1;

 break;

 case Retired:

 nbRetired=nbUnemployed+1;

 break;

 }

 }

 //Display statistics

 printf("\nStatistics:\n");

 printf("- Students: %d persons\n",nbStudents);

 printf("- Workers: %d persons\n", nbWorkers);

 printf("- Unemployed: %d persons\n", nbUnemployed);

 printf("- Retired: %d persons", nbRetired);

 return 0;

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 104 Dr. Abderrahmane Kefali

4.4) Exercise 4: Deck of Cards

We want to create a deck of 32 cards. The deck is represented by an array of 32 distinct

elements, each of the type Card. This type is characterized by a suit and a number.

In the cards, there are four suits: clubs, diamonds, spades, and hearts. Similarly, there are 8

numbers: seven, eight, nine, ten, jack, queen, king, and ace.

Write a program to:

• Define the types for describing a suit, a number, and a card.

• Construct the deck of 32 cards, where each card is the result of the combination of a suit

and a number.

• Display the deck of cards

Solution:

The solution involves the creation of a deck of 32 cards, each represented by a combination

of a suit and a number. To accomplish this, enumerations are utilized to define types for suits

(enum Suit) and numbers (enum Number), and the card is declared as a structure

(struct Card). The deck is implemented as an array of cards (struct Card D[32]).

The deck initialization process involves the use of two nested loops, systematically

combining each suit with each number to populate the array. Additionally, the program

declares arrays of strings for suits and numbers, directly incorporating string representations

within the code.

In the final step, the program traverses the deck using a loop to display the entire set of

cards. For each card, it prints the corresponding number and suit names.

Here is the program:

#include <stdio.h>

int main() {

 //Enumeration for card suits

 enum Suit {

 CLUBS,

 DIAMONDS,

 SPADES,

 HEARTS

 };

 //Enumeration for card numbers

 enum Number {

 SEVEN,

 EIGHT,

 NINE,

 TEN,

 JACK,

 QUEEN,

 KING,

 ACE

 };

 //Structure representing a card

 struct Card {

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 105 Dr. Abderrahmane Kefali

 enum Suit suit;

 enum Number number;

 };

 //Create an array to represent the deck of 32 cards

 struct Card D[32];

 //Other variables

 int i;

 enum Suit suit;

 enum Number number;

 //Arrays of strings for suits and numbers

 char suits[][10] = {"Clubs","Diamonds","Spades","Hearts"};

 char num[][10]= {"Seven","Eight","Nine","Ten","Jack","Queen",

"King","Ace"};

 //Initialize the deck: combine each suit with each number

 i = 0;

 for (suit = CLUBS; suit <= HEARTS; ++suit) {

 for (number = SEVEN; number <= ACE; ++number) {

 D[i].suit = suit;

 D[i].number = number;

 i++;

 }

 }

 // Display the deck of cards

 printf("Deck of Cards:\n");

 for (i = 0; i < 32; ++i) {

 printf("%s of %s\n", num[D[i].number], suits[D[i].suit]);

 }

 return 0;

}

4.5) Exercise 5: Point Distance Calculator

Consider a point in space as an object characterized by three values: x, y, and z.

Write a program that allows to:

• Define the most suitable data structure to describe a point.

• Enter two points from the keyboard and calculate the distance between them.

Solution:

The solution involves creating a program that deals with points in space, each characterized

by three values: x, y, and z. To represent a point, a structure named Point is introduced,

with three members (x, y, and z) to store the coordinates of a point in space.

The program prompts the user to input two points from the keyboard. It then calculates and

display the distance between these two points in 3D space using the Euclidean distance

formula. The Euclidean distance between two points (x1, y1, z1) and (x2, y2, z2) is given by

the formula:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥2 − 𝑥1)2 + (y2 − y1)2 + (z2 − z1)²

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 106 Dr. Abderrahmane Kefali

The program allowing this calculation is as follows:

#include <stdio.h>

#include <math.h>

int main() {

 //Structure representing a point in space

 typedef struct {

 float x;

 float y;

 float z;

 }Point;

 //Declare two points and the distance

 Point p1, p2;

 float dis;

 //Prompt the user to enter coordinates for two points

 printf("Enter coordinates for Point 1 (x y z): ");

 scanf("%f %f %f", &p1.x, &p1.y, &p1.z);

 printf("Enter coordinates for Point 2 (x y z): ");

 scanf("%f %f %f", &p2.x, &p2.y, &p2.z);

 //Calculate and display the distance between the 2 points

 dis=sqrt(pow(p2.x-p1.x,2)+pow(p2.y-p1.y,2)+pow(p2.z-p1.z,2));

 printf("Distance between the 2 Points: %.2f\n", dis);

 return 0;

}

4.6) Exercise 6: Age Comparison

Write a program that allows entering information about two individuals, then displays which

person is older between the two and the age difference. Each person is defined by their

name and age.

Solution:

The solution involves the creation of a simple program to compare the ages of two

individuals based on user input. The program defines a structure named Person to

represent each individual, with attributes for the name and age. It prompts the user to input

information for two persons, including their names and ages. Subsequently, it compares the

ages and calculates the age difference. Finally, it displays the results, indicating which

person is older and providing the age difference.

The program implementing this solution is the following:

#include <stdio.h>

#include <stdlib.h>

int main() {

 //Define a structure named Person

 typedef struct {

 char name[20];

 int age;

 } Person;

 //Declare variables to store information about two persons

 Person pers1, pers2;

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 107 Dr. Abderrahmane Kefali

 char p;

 //Input information for the first person

 printf("Please enter information for the 1st person:\n");

 printf("\tName: ");

 gets(pers1.name);

 printf("\tAge: ");

 scanf("%d", &pers1.age);

 scanf("%c", &p);

 //Input information for the second person

 printf("Please enter information for the 2nd person:\n");

 printf("\tName: ");

 gets(pers2.name);

 printf("\tAge: ");

 scanf("%d", &pers2.age);

 //Compare ages and display the results

 if (pers1.age > pers2.age) {

 printf("%s is older.\n", pers1.name);

 printf("The age difference is %d",pers1.age-pers2.age);

 } else if (pers2.age > pers1.age) {

 printf("%s is older.\n", pers2.name);

 printf("The age difference is %d",pers2.age-pers1.age);

 } else {

 printf("Both persons have the same age.\n");

 }

 return 0;

}

4.7) Exercise 7: Complex Number Operations

A complex number 𝑍 is represented by its real part 𝑎 and imaginary part 𝑏 in the form 𝑍 = 𝑎 +

𝑖𝑏.

Develop a program using structures that reads two complex numbers 𝑍1 and 𝑍2, and calculate

and display their modulus, sum, and conjugate, defined as follows:

• The modulus of a complex number 𝑍 is defined by:

• The conjugate of a complex number 𝑍 = 𝑎 + 𝑖𝑏 is the complex number 𝑍′ = 𝑎 − 𝑖𝑏.

• The sum of two complex numbers 𝑍1 = 𝑎1 + 𝑖𝑏1 and 𝑍2 = 𝑎2 + 𝑖𝑏2 is the complex

number 𝑍 = (𝑎1 + 𝑎2) + 𝑖 (𝑏1 + 𝑏2).

Solution:

The program presented here focuses on the manipulation of complex numbers, each

characterized by its real part 𝑎 and imaginary part 𝑏 in the form 𝑍 = 𝑎 + 𝑖𝑏.

Utilizing a structure named Complex, the program prompts the user to input the real and

imaginary parts of two complex numbers, Z1 and Z2. Following this input phase, the

program proceeds to execute the prescribed operations using the specified formulas from the

exercise.

²² baZ +=

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 108 Dr. Abderrahmane Kefali

Subsequent to these computations, the program displays the results to the user.

Here is the program:

#include <stdio.h>

#include <math.h>

int main() {

 //Structure representing a complex number

 struct Complex {

 float a;

 float b;

 };

 //Declare complex numbers using structures

 struct Complex Z1, Z2;

 //Enter real and imaginary parts of Z1

 printf("Enter real and imaginary parts of Z1 (a b): ");

 scanf("%f%f", &Z1.a, &Z1.b);

 //Enter real and imaginary parts of Z2

 printf("Enter real and imaginary parts of Z2 (a b): ");

 scanf("%f%f", &Z2.a, &Z2.b);

 //Calculate and display modulus of Z1

 float modZ1 = sqrt(Z1.a * Z1.a + Z1.b * Z1.b);

 printf("Modulus of Z1: %.2f\n", modZ1);

 //Calculate and display conjugate of Z1

 struct Complex conjZ1;

 conjZ1.a = Z1.a;

 conjZ1.b = -Z1.b;

 printf("Conjugate of Z1: %.2f+i%.2f\n",conjZ1.a,conjZ1.b);

 //Calculate and display modulus of Z2

 float modZ2 = sqrt(Z2.a * Z2.a + Z2.b * Z2.b);

 printf("Modulus of Z2: %.2f\n", modZ2);

 //Calculate and display conjugate of Z2

 struct Complex conjZ2;

 conjZ2.a = Z2.a;

 conjZ2.b = -Z2.b;

 printf("Conjugate of Z2: %.2f+i%.2f\n",conjZ2.a,conjZ2.b);

 //Calculate and display the sum of Z1 and Z2

 struct Complex sum;

 sum.a = Z1.a + Z2.a;

 sum.b = Z1.b + Z2.b;

 printf("Sum of Z1 and Z2: %.2f + i %.2f\n", sum.a, sum.b);

 return 0;

}

4.8) Exercise 8: Invoice Calculation

Suppose that an invoice is an array of 10 elements. Each element of this invoice is an item

with fields unitPrice and quantity.

Write a program that declares an invoice, reads invoice data from the keyboard, and

calculates and displays the total amount of the invoice.

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 109 Dr. Abderrahmane Kefali

Solution:

This program is designed to handle invoice data, considering an invoice as an array of 10

elements, where each element represents an item with attributes such as unitPrice and

quantity.

The solution begins by defining a structure called InvoiceItem to encapsulate the details

of each item, incorporating fields for the cost per unit (unitPrice) and the quantity of units

(quantity). Subsequently, an array named invoice is declared to represent the entire

invoice, consisting of 10 elements of the InvoiceItem structure. The program then enters

a loop, prompting the user to input specific data for each item in the invoice, namely the unit

price and quantity. Following the data input phase, another loop iterates through the items in

the invoice, calculating the total amount by multiplying the unit price with the quantity for

each item and accumulating the results. Finally, the program displays the calculated total

amount of the invoice.

The aforementioned program is as follows:

#include <stdio.h>

int main() {

 #define n 3

 //Define the structure for an invoice item

 typedef struct {

 float unitPrice;

 int quantity;

 }InvoiceItem;

 //Declare an array to represent the invoice

 InvoiceItem invoice[n];

 //Other variables

 int i;

 float total;

 // Read invoice data from the keyboard

 for (i = 0; i < n; ++i) {

 printf("Enter details for item %d:\n", i + 1);

 //Input unit price

 printf("Unit Price: ");

 scanf("%f", &invoice[i].unitPrice);

 //Input quantity

 printf("Quantity: ");

 scanf("%d", &invoice[i].quantity);

 }

 //Calculate and display the total amount of the invoice

 total = 0;

 for (int i = 0; i < n; ++i) {

 total= total+invoice[i].unitPrice*invoice[i].quantity;

 }

 printf("Total Amount of the Invoice: %.2f\n", total);

 return 0;

}

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 110 Dr. Abderrahmane Kefali

4.9) Exercise 9: Family Information

Consider the type Person as a structure composed of two fields: lastName and firstName.

Also, consider the type Family, allowing to describe a real-world family, characterized by the

following fields:

• father: of type Person. Represents the father of the family.

• mother: of type Person. Represents the mother of the family.

• nbChildren: of type Integer. Indicates the number of children in the family.

• children: an array of children. Represents the list of children in the family.

Write a program to:

• Define the types Person and Family.

• Read information about a list of families and then display them.

Solution:

This exercise manages information about families by defining two structure types: Person

and Family. The Person structure represents an individual, while the Family structure is

employed to depict a real-world family.

The accompanying program follows a straightforward structure, commencing with the

declaration of an array of Family structures to store information about a list of families. After

defining the types and declaring variables, the program utilizes a loop to prompt the user for

information about each family. For each family, various details, including the last name and

first name of each family member, the number of children, and the names of the children, are

input. Subsequently, another loop is employed to display the entered family information.

The program is as follows:

#include <stdio.h>

#include <string.h>

int main() {

 //Define a constant for the number of families

 #define n 3

 //Define a structure for a person

 typedef struct {

 char lastName[20], firstName[20];

 }Person;

 // Define a structure for a family

 typedef struct {

 Person father, mother;

 int nbChildren;

 Person children[7];

 //Assuming the number of children does not exceed 7

 } Family;

 // Declare an array of Family structures

 Family T[n];

 int i, j;

 // Input information for each family

 for (i = 0; i < n; i++) {

 printf("Enter information for family %d:\n", i + 1);

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 111 Dr. Abderrahmane Kefali

 //Input father's information

 printf("\tFather:\n");

 printf("\t\tLast Name: ");

 gets(T[i].father.lastName);

 printf("\t\tFirst Name: ");

 gets(T[i].father.firstName);

 //Input mother's information

 printf("\tMother:\n");

 printf("\t\tLast Name: ");

 gets(T[i].mother.lastName);

 printf("\t\tFirst Name: ");

 gets(T[i].mother.firstName);

 //Input the number of children

 printf("\tNumber of Children: ");

 scanf("%d", &T[i].nbChildren);

 getchar(); // Clear the buffer

 // Input information for each child

 printf("\tList of Children:\n");

 for (j = 0; j < T[i].nbChildren; j++) {

 printf("\t\tChild %d: ", j + 1);

 //Copy the last name of the father for the child

 strcpy(T[i].children[j].lastName,T[i].father.lastName);

 gets(T[i].children[j].firstName);

 }

 }

 // Display the entered families

 printf("The entered families are:\n");

 for (i = 0; i < n; i++) {

 printf("Family %d:\n", i + 1);

 printf("\tFather: ");

 printf("%s ",T[i].father.lastName);

 printf("%s\n",T[i].father.firstName);

 printf("\tMother: ");

 printf("%s ",T[i].mother.lastName);

 printf("%s\n",T[i].mother.firstName);

 printf("\tNumber of Children: %d\n", T[i].nbChildren);

 //Display names of each child

 for (j = 0; j < T[i].nbChildren; j++) {

 printf("\t\t%s\n", T[i].children[j].firstName);

 }

 }

 return 0;

}

4.10) Exercise 10: Car Park Management

Consider a car park consisting of N cars, each represented by its: Registration number,

Brand, Maximum speed, and Color.

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 112 Dr. Abderrahmane Kefali

In order to model the problem, we consider the car park as an array of records, where each

record represents a car.

a) Write a program that allows to enter information for all the cars in the park and then

display the registration number and calculate the number of cars registered in Guelma.

b) Modify the program to calculate and display the number of cars registered by Wilaya

(province).

Solution:

The exercise comprises two parts, each involving the creation of a program that facilitates

user input for a set of cars in a park and subsequently presents pertinent statistics. In both

programs, a shared data structure named Car is utilized to encapsulate details about

individual cars, and an array of cars named park is employed to store all the car details.

a) The first program concentrates on presenting the number of cars registered in a specific

location, in this case, Guelma. To achieve this, an integer variable is employed as a

counter to track this information. The program begins with the declaration section,

followed by a loop that prompts the user to enter information about all the cars in the

park. Subsequently, the counter is initialized to zero, and a second loop is utilized to

traverse the array for counting the relevant cars. For each car, the last two digits of its

registration number are extracted using the modulo operator (%), representing the

wilaya’s code. If the code equals 24 (the code for Guelma), the counter is incremented,

and the registration number of the car is displayed. After exiting the loop, the program

displays the counter contents. Here is the program:

#include <stdio.h>

#include <string.h>

//Define constants

int main() {

 #define n 4

 //Define structure for a car

 typedef struct {

 int RegNb;

 char Brand[30];

 char Color[30];

 float MaxSpeed;

 }Car;

 //Define an array of cars (Park)

 Car Park[n];

 //Other variables

 int i, num, nbGuelma;

 //Input information for each car in the park

 for (i = 0; i < n; ++i) {

 printf("Enter information for car %d\n", i + 1);

 printf("Registration Number: ");

 scanf("%d",&Park[i].RegNb);

 printf("Brand: ");

 scanf(" %s",&Park[i].Brand);

 printf("Max Speed: ");

 scanf("%f", &Park[i].MaxSpeed);

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 113 Dr. Abderrahmane Kefali

 printf("Color: ");

 scanf(" %s",&Park[i].Color);

 }

 //Count and display cars registered in Guelma

 nbGuelma = 0;

 for (i = 0; i < n; ++i) {

 num = Park[i].RegNb % 100;

 if (num == 24) {

 printf("%d\n",Park[i].RegNb);

 nbGuelma=nbGuelma+1;

 }

 }

 // Display the number of cars registered in Guelma

 printf("Number of cars registered Guelma: %d", nbGuelma);

 return 0;

}

b) For the second part of the exercise, which involves computing the number of cars

registered in each wilaya, we have modified the previous program by incorporating an

array of integers to act as counters for all wilayas. Following the input phase, all

elements of the array are initialized to zero using a loop. Subsequently, another loop is

employed to traverse the park, extract the wilaya's code, and increment the

corresponding element in the counters array. Finally, we display all elements of the

counters array.

The modified program is as follows:

#include <stdio.h>

#include <string.h>

//Define constants

int main() {

 #define n 4

 #define nbWilayas 58

 //Define structure for a car

 typedef struct {

 int RegNb;

 char Brand[30];

 char Color[30];

 float MaxSpeed;

 }Car;

 //Define an array of cars (Park)

 Car Park[n];

 int W[nbWilayas];

 //Other variables

 int i, num;

 //Input information for each car in the park

 for (i = 0; i < n; ++i) {

 printf("Please enter information for car %d\n", i + 1);

 printf("Registration Number: ");

 scanf("%d",&Park[i].RegNb);

 printf("Brand: ");

Algorithmics and Data Structures 1 Lab No 6. Custom types

1st Year Mathematics – University of Guelma 114 Dr. Abderrahmane Kefali

 scanf(" %s",&Park[i].Brand);

 printf("Max Speed: ");

 scanf("%f", &Park[i].MaxSpeed);

 printf("Color: ");

 scanf(" %s",&Park[i].Color);

 }

 //Count and display cars registered in Guelma

 for(i=0;i<nbWilayas;i++)

 W[i] = 0;

 for (i = 0; i < n; ++i) {

 num = Park[i].RegNb % 100;

 W[num-1]= W[num-1] + 1;

 }

 //Display the number of cars registered per wilaya

 printf("The number of cars registered per wilaya:\n");

 for(i=0;i<nbWilayas;i++)

 printf("Wilaya %d: %d cars", i+1, W[i]);

 return 0;

}

References

[1] N. Flasque, H. Kassel, F. Lepoivre, B. Velikson, "Exercices et problèmes

d'algorithmique", Dunod, 2010.

[2] C. Delannoy, "Programmer en langage C", Eyrolles, 1996.

[3] R. Malgouyres, R. Zrour, F. Feschet, "Initiation à l’algorithmique et à la programmation

en C - Cours avec 129 exercices corrigés", DUNOD, 2nb edition, 2015.

[4] M. Amad, "Algorithmique et Structures de Données", Support de Cours et Travaux

Dirigés, st and 2nd year License, Abderrahmane Mira University of Bejaia, 2016.

[5] T Slimani, Programmation et structures de données avancées en langage C: cours et

exercices corrigés", Lulu.com Edition, 2014.

[6] L. Baba Hamed, S, Hocine, "Algorithmique et structure de données statiques: cours et

exercices avec solutions", University Publications Office, Algiers, 2006.

[7] Joyce Farrell, "Programming logic and design: comprehensive version", 8th Edition.

Cengage Learning, 2015.

[8] M. Belaid, "Algorithmique & Programmation en Pascal, Cours, Exercices, Travaux

Pratiques, Corrigés", Eurl Pages Bleues Internationales, Bouira - Algeria, 2008.

[9] B. Bessaa, "Exercices corriges d’Algorithmique", The LMD Booklets, Blue Pages,

Algiers, 2018.

[10] D. Bouchicha, "Initiation à l'algorithmique et à la programmation en Pascal", Rached

Edition, Sidi Bel Abbes - Algeria, 1st edition, 2019.

[11] T. H. Cormen, "Algorithmes Notions de base", DUNOD, 2013.

[12] J. Tisseau, "Initiation à l’algorithmique", University Press - National School of Engineers

Brest, 2009.

[13] D. Zegour, "Apprendre et enseigner l’algorithmique (Tome 1): Cours et annexes",

European University Editions. 2013.

