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ABSTRACT

INDUSTRY 5.0, the latest industrial revolution, advances the Smart Factory concept
by emphasizing Human-Machine collaboration and sustainability. It incorporates

the human aspect into industrial processes, promoting critical thinking, personaliza-
tion, and adaptability, while leveraging technologies like IoT and AI for increased
efficiency and productivity. However, this era also introduces a complex landscape
of cyber threats. As machines, systems, and humans become interconnected, ensur-
ing cybersecurity in smart factories becomes crucial to balance innovation and effi-
ciency with robust security and privacy preservation measures. In response to these
challenges, this doctoral research contributes innovative solutions that address the
security and privacy vulnerabilities inherent in the Industry 5.0 scenario.

The first contribution of this doctoral research revolves around federated learning
methodology (FL) for malware detection based on network analysis. This contribu-
tion introduced a cost-effective and efficient approach to deep-learning-based mal-
ware detection using FL methodology. This methodology addresses computational
overhead and privacy concerns by leveraging network traffic data balancing emerg-
ing technologies with security and privacy to mitigate large-scale malware attacks
that could undermine Industry 5.0’s core principles.

The second contribution puts forth a novel privacy-preserving secure framework
called PPSS, integrating blockchain with energy-efficient Proof-of-Federated Deep
Learning (PoFDL) consensus protocol to optimize the process of FL in terms of pre-
serving data privacy, enhancing system reliability, and promoting transparency. PPSS
adeptly tackles the challenges associated with cyber threat detection and data privacy,
specifically within the context of resource-constrained and heterogeneous industrial
systems.
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The third contribution focuses on developing an efficient, robust, federated cy-
ber threat detection framework for Industrial IoTs. The approach leverages feder-
ated learning and generative adversarial networks (GANs) to enhance IDS efficiency,
privacy protection, and resilience against adversarial attacks. A federated genera-
tive model was employed for data augmentation to limit the attack surface, thereby
improving cyber threat detection reliability in the face of zero-day and adversarial
threats.

The performance evaluation of the proposed approaches was conducted using a
new cyber security dataset named Edge-IIoTset. Specifically designed for cyber threat
detection in Industrial IoTs. The results showcase the efficiency and reliability of cyber
threat detection under various data distribution modes.

Combining the insights from these contributions, this thesis proposes a compre-
hensive approach to safeguard Industry 5.0 from cybersecurity threats. Federated
deep learning techniques optimize the process of knowledge sharing among par-
ticipants while protecting data privacy in a resource-efficient manner. Integrating
blockchain-enabled intrusion detection systems ensures the integrity and security
of data exchanged among IoT-based devices. Deploying generative adversarial net-
works fortifies the system’s resilience against zero-day and adversarial attacks.

Keywords : Cybersecurity, Industrial Internet of Things, Blockchain, Federated Learning,
Privacy-Preserving, Intrusion Detection System, Cyber Threat Detection



 خصـــــــمل

  

 التركيز على ة معالضوء على مفهوم المصانع الذكي 5.0صر التحولي الذي نشهده في صناعة الجيل الخامس الع  سلطي    

التعاون بين البشر والآلات من أجل الاستدامة. هذا التكامل يشجع على التفكير النقدي والتخصيص والقدرة على التكيف، مع 

والذكاء الصناعي لتحقيق الكفاءة وز�دة الإنتاجية. ومع ذلك، تقدم هذه الفترة أيضًا منظراً  إنترنت الأشياء تكنولوجيامن ستفادة الا

ً� لتحقيق توازن ن السيبراني في المصانع الذكية ضرور والأنظمة والبشر، يصبح ضمان الأممعقدًا للتهديدات السيبرانية. مع اتصال الآلات 

من خلال حلول مبتكرة تتعامل مع طروحة هم هذه الأاتس .إجراءات أمان قوية وحفظ الخصوصيةطبيق بين الابتكار والكفاءة مع ت

 .5.0قضا� الأمان والخصوصية المترتبة على منظومة صناعة 

    المشترك العميق التعلم�ستخدام  ،نظمة الكشف عن التسللجديدة لأ المساهمة الأولى تدور حول منهجية

(FDL) لخبيثة بناءً على الاكتشاف البرمجيات الخبيثة. هذه المساهمة قدمت �جًا فعالاً من حيث التكلفة والكفاءة لاكتشاف البرمجيات

تعالج هذه المنهجية العبء الحسابي ومخاوف الخصوصية، محققة توازً� بين التقنيات الناشئة والأمان والخصوصية للحد من  .التعلم العميق

 .�5.0دد مبادئ صناعة التي يات الخبيثة هجمات البرمج

، حيث يتم دمج التكنولوجيا PPSS المساهمة الثانية تقدم إطاراً آمنًا مبتكراً للحفاظ على الخصوصية يُسمى

  .من حيث الحفاظ على خصوصية البيا�ت وز�دة موثوقية النظام وتعزيز الشفافية FDLلتحسين عملية   Blockchainالسلسلة

التحد�ت المتعلقة �لكشف عن �ديدات السيبراني والخصوصية للبيا�ت، وبشكل خاص ضمن سياق أنظمة  PPSSعالج يكما 

  .الصناعة المحدودة الموارد والمتنوعة

فيد هذه فعّال وقوي لاكتشاف �ديدات السيبراني لأنظمة الإنترنت الصناعية. تستحماية المساهمة الثالثة تركز على تطوير إطار 

في  .الالكترونيةجمات الهلتعزيز كفاءة حماية الخصوصية، وز�دة التحمل ضد  (GANs) وشبكات المولدة FDLعملية طريقة من ال

لكشف عن ، مما يعزز موثوقية امعروفةات الغير مالهج احتماليةز�دة البيا�ت للحد من لتوليدي موحد  تم استخدام نموذجطار هذا الإ

  .الجديدةالتهديدات السيبرانية في وجه التهديدات 

اف التهديدات لاكتشوالتي صممت خصيصًا تم إجراء تقييم الأداء للطرق المقترحة �ستخدام مجموعة بيا�ت أمنية جديدة  

 .نوعةتتحد�ت معن التهديدات السيبرانية تحت  الكشففي  FDL السيبرانية في أنظمة الإنترنت الصناعية. تظهر النتائج كفاءة وموثوقية

من �ديدات الأمان السيبراني.  5.0صناعة ال�جًا شاملاً لحماية الأطروحة المستفادة من هذه المساهمات، تقترح هذه  من خلال الأفكار

مج مع الحفاظ على خصوصية البيا�ت بطريقة فعّالة من حيث الموارد. د المستخدمينتحسن عملية مشاركة المعرفة بين  FDLتقنيات 

أنظمة الكشف عن التسلل التي تعتمد على التكنولوجيا السلسلة يضمن نزاهة وأمان البيا�ت المتبادلة بين أجهزة الإنترنت الصناعية. 

 .الجديدة والهجمات المعاديةشبكات المولدة يعزز متانة النظام ضد التهديدات ال�لإضافة إلى ذلك، نشر 

 



Résumé : 

 

La dernière révolution industrielle 5.0 met l'accent sur le concept d'usines intelligentes, en 

mettant l'accent sur la collaboration entre les êtres humains et les machines pour la durabilité. Cette 

intégration favorise la réflexion critique, la personnalisation et l'adaptabilité, tout en tirant parti de 

technologies telles que l'IoT et l'IA pour l'efficacité et la productivité. Cependant, cette ère introduit 

également un paysage complexe de menaces cybernétiques. À mesure que les machines, les 

systèmes et les êtres humains se connectent, garantir la cybersécurité dans les usines intelligentes 

est crucial pour équilibrer l'innovation et l'efficacité avec des mesures de sécurité robustes et la 

préservation de la vie privée. Cette recherche doctorale propose des solutions novatrices pour 

aborder les problèmes de sécurité de la vie privée dans le paysage de l'Industrie 5.0. 

Cette recherche doctorale se concentre sur trois principales contributions : la première 

concerne l'apprentissage profond (FL) pour la détection de logiciels malveillants basée sur 

l'analyse réseau, la deuxième porte sur un nouveau cadre sécurisé appelé PPSS, qui intègre la 

blockchain avec le protocole Proof-of-Federated Deep Learning (PoFDL) pour optimiser les 

processus FL tout en préservant la confidentialité des données, en améliorant la fiabilité du système 

et en favorisant la transparence. PPSS aborde les défis liés à la détection des menaces 

cybernétiques et à la confidentialité des données, en particulier dans les systèmes industriels 

hétérogènes et gourmands en ressources. 

La troisième contribution se concentre sur le développement d'un cadre de détection des 

menaces cybernétiques fédéré, efficace et robuste, spécifiquement conçu pour les objets connectés 

industriels (IIoT). L'approche exploite l'apprentissage fédéré et les réseaux génératifs (GANs) pour 

améliorer l'efficacité des systèmes de détection des intrusions (IDS), la protection de la vie privée, 

et la résilience contre les attaques adverses. Un modèle génératif fédéré a été utilisé pour 

l'augmentation des données afin de limiter la surface d'attaque, améliorant ainsi la fiabilité de la 

détection des menaces cybernétiques face aux menaces zero-day et adverses. 

Les performances de ces approches ont été évaluées à l'aide d'Edge-IIoTset, un nouvel 

ensemble de données conçu spécifiquement pour la détection de menaces IoT. Les résultats 

démontrent l'efficacité et la fiabilité de ces approches dans divers scénarios de distribution de 

données. En combinant ces enseignements, cette recherche propose une approche globale pour 

protéger l'Industrie 5.0 contre les menaces de cybersécurité. 
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CHAPTER 1

INTRODUCTION

”Security is a process, not a product. Products provide some protection, but

the only way to effectively do business in an insecure world is to put processes

in place that recognize the inherent insecurity in the products”

— Bruce Schneier

INDUSTRY 5.0, the latest phase of the industrial revolution, represents a significant

shift in the manufacturing landscape that emphasizes Human-Machine collabo-

ration and sustainability. It builds upon the Smart Factory concept, introducing tech-

nologies like Cloud computing, the Internet of Things (IoT), Artificial Intelligence

(AI), and Big Data analytics, and further complements these advances by facilitating

human intervention when necessary. It leverages critical thinking, personalization,

and adaptability to enhance efficiency and productivity.

However, Industry 5.0 also brings about a complex landscape of security chal-

lenges. The interconnected nature of machines, systems, and humans, combined with

extensive data exchange, opens the door to a range of cyber threats and privacy intru-

sions [1]. In response to these challenges, researchers are developing new cybersecu-

rity strategies to protect privacy and secure industrial networks and control systems

from large-scale cyber threats.
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Federated learning (FL) has recently emerged as a decentralized and privacy-

preserving computing paradigm, offering a viable solution to mitigate security and

privacy risks in IIoT environments. FL facilitates the local training of machine-learning-

based (ML) and deep-learning-based (DL) detection models on edge devices, wherein

only model updates are shared for global optimization, sparing the transmission of

raw sensitive data [2]. By adopting this approach, the privacy of sensitive information

is upheld, fostering a secure environment for data processing.

Cross-silo federated learning, an extension of the FL paradigm, further advances

the capabilities of IIoT systems by enabling different industrial organizations to ex-

change intrusion events, incident logs collaboratively, and reported alert data about

cyber attacks. The participating entities share knowledge and insights through trans-

fer learning without compromising data privacy, bolstering the collective defense

against cyber threats.

Despite the promising advantages of FL and cross-silo FL, the security landscape

remains dynamic and challenging. Adversarial attacks, including data poisoning and

inference attacks, have demonstrated the potential to exploit vulnerabilities in IIoT

systems, posing significant threats to the integrity and reliability of model updates.

Additionally, trace information within model updates may inadvertently disclose pri-

vate and sensitive data, necessitating robust audit gateways and enhanced security

measures to thwart potential leaks.

This doctoral thesis aims to delve into the intricacies of the security and privacy

challenges that impede the widespread adoption of IIoT technologies. By investi-

gating the potential of federated learning and cross-silo federated learning, the re-

search seeks to develop novel and practical strategies to enhance the security, privacy,

and reliability of IIoT systems. Through empirical evaluations and rigorous exper-

imentation, this research endeavors to contribute to the advancement of secure and

privacy-preserving IIoT frameworks, fostering a resilient and trustworthy smart in-

dustry ecosystem.
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In the subsequent chapters, we will explore our proposed approaches’ theoret-

ical foundations, methodology, and implementation details. We will subsequently

present comprehensive analyses of experimental results, leading to valuable insights

and practical recommendations for industry stakeholders, cybersecurity profession-

als, and researchers. By fortifying the foundations of IIoT with robust security mea-

sures, we strive to accelerate the realization of the full potential of the smart industry,

heralding a new era of optimized productivity, reliability, and service quality.

1.1 Research Questions and Objectives:

Our research study concentrates on implementing an efficient and effective security

monitoring mechanism, Intrusion Detection Systems (IDS), to safeguard Industry 5.0

against emerging cyber threats. To achieve this objective, we will comprehensively

analyze the vulnerabilities and architectural characteristics of Industrial Internet of

Things (IoT) networks.

This analysis will serve as the foundation for developing IDS solutions that are re-

liable, robust, and tailored to the constraints inherent in Industrial IoT environments.

In particular, Table 1.1 outlines the specific research questions identified to address

those goals. These research questions will guide our investigation and contribute to

developing advanced IDS solutions for Industry 5.0, strengthening its cybersecurity

posture and enhancing its resilience against evolving cyber threats.

1.2 Research Methodology

We have adopted the Systematic Literature Review approach (SLR) to identify rel-

evant literature about our research interests. The primary objective is investigat-

ing cyber security solutions for IDS implementation in Industrial IoT. The research

methodology involved identifying, selecting, and evaluating proposed and related

studies. Specific research questions were formulated, and Scopus academic search
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Research Questions Objectives

RQ1: What are Industrial IoT networks’ vul-
nerabilities and architectural characteristics
in Industry 5.0?

To explore potential weaknesses and design flaws that
may pose security risks in IIoT infrastructures de-
ployed in smart industry settings. Understanding
these vulnerabilities and architectural characteristics is
crucial for developing effective security measures and
intrusion detection strategies.

RQ2: What are the systems architecture and
the technology type used by IDSs to se-
cure IIoT networks and their various com-
ponents?

To investigate and analyze the different systems ar-
chitectures and technology types employed by IDSs
specifically tailored for securing IIoT networks and
their constituent components. Subsequently, we aim
to provide insights into these systems’ key design
principles and implementation strategies.

RQ3: What are the used IDS detection
methodologies for IIoT?

To identify and assess the various IDS detection
methodologies specifically designed and applied for
IIoT environments. By assessing these methodologies’
efficacy, strengths, and limitations, we aim to gain a
thorough understanding of their capabilities in detect-
ing and mitigating cyber threats in IIoT networks.

RQ4: How are emerging technologies con-
solidated for effective and secure detection?

To explore integrating and consolidating emerging
technologies, such as ML and DL, Cloud/fog services,
Big data analytics, and Edge intelligence, to devise effi-
cient and secure detection mechanisms tailored to IIoT
systems. We enhance privacy preservation and the
overall resilience and reliability of IIoT security

RQ5: What are the used IDS evaluation per-
formance and the experimental datasets?

To investigate and evaluate the performance metrics
commonly employed to assess the effectiveness of
IDSs in IIoT settings. We aim to explore the exper-
imental datasets utilized for comprehensive testing
and validation of IDS functionalities in realistic IIoT
scenarios.

TABLE 1.1: Research Questions and Objectives.

queries were conducted in the "Title," "Keywords," and "Abstract" fields of relevant

publications. The search results were confined to publications from 2015 to 2021. The

study selection process was refined by focusing on practical studies that align with

the research questions described in Table 1.1. By leveraging the SLR methodology, we

aim to contribute to the understanding and advancement of cyber security measures
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within the Industrial Internet of Things.

Furthermore, we formulate our research strategy using the PICO framework. we

ensure a structured and systematic approach to address the complex aspects of IDS

implementation in IIoT. We identify the PICO research question as follows :

• Population (P): Our research focuses on IDS-based cyber threat detection in In-

dustrial IoT.

• Intervention (I): We consider all the proposed works of IDS within the domain

of IIoT.

• Comparison (C): Our investigation compares various IDS methods based on cri-

teria and factors outlined in related studies and proposed solutions.

• Outcomes (O): The primary objectives of our study are to establish require-

ments, address challenges, and propose evaluation mechanisms for IDS-based

solutions to enhance the security of IIoT. These findings will serve as valuable

contributions to further research in this area.

This framework allows us to guide our investigation and enable valuable insights into

developing and improving IDS solutions for securing IIoT environments.

1.3 Main Contributions

The main contributions of this thesis are summarised as follows:

1. A systematic review of IDS-based cyber threat detection for Industrial IoT was

conducted, encompassing a comprehensive examination of deployment strate-

gies, detection approaches, methodologies, and data sources employed for eval-

uation. The findings of this review highlight significant insights for the field.

Furthermore, a critical analysis of well-selected literature reveals future direc-

tions and challenges that must be carefully navigated when designing robust

IDS solutions to enhance the security of IoT-enabled critical infrastructure within
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industrial sectors. This contribution was presented at the 2021 International

Conference on Theoretical and Applicative Aspects of Computer Science (IC-

TAACS 2021) [1].

2. A federated learning methodology for Android malware detection based on net-

work analysis was proposed. This contribution introduced the federated learn-

ing (FL) paradigm as a cost-effective deep-learning-based malware detection

using network traffic data. The aim is to overcome the computational overhead

and privacy concerns of conventional malware detection strategies while main-

taining the efficiency of detecting large-scale malware attacks. The performance

of our methodology was evaluated using the benchmark dataset AAGM-2017

across various FL settings, and its outcomes were compared against those of

centralized training methods. The results demonstrate the efficiency and ef-

fectiveness of Android malware detection in terms of detection accuracy and

computation cost while providing data privacy without any significant adverse

effects on the classification performance compared to conventional centralized

approaches. This contribution was published as a chapter in Springer’s Cyber

Malware [3].

3. A two-stage intrusion detection framework for IoT security was proposed. This

contribution introduced a dual-detector approach. An adversarial training strat-

egy was used as a robust optimization approach against the emergent adversar-

ial threats in the initial stage that employs the first detector. Subsequently, a

DL model was employed for the second detector, focused on intrusion identifi-

cation. The performance evaluation of this framework is conducted using the

recently published Edge-IIoTset dataset, we conducted evaluations in terms of

detection accuracy and resilience against adversarial attacks. The experimental

results underscore the proposed methodology’s effectiveness in detecting intru-

sions and persistent adversarial examples. This contribution was presented at

the 2023 International Conference [4].
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4. A Privacy-Preserving Secure Framework (PPSS) using Blockchain-enabled Fed-

erated Deep Learning for Industrial IoT. The framework introduces a blockchain-

based scheme designed to enhance the security of cross-organization Federated

Learning (FL), ensuring the process remains secure while minimizing adverse

effects on learning performance. A novel lightweight and energy-efficient proof

of learning, PoFDL, is proposed for effective model validation and storage. Ad-

ditionally, integrating differential privacy training enhances the privacy protec-

tion of model updates. The performance evaluation of the PPSS framework is

conducted using the recently published Edge-IIoTset dataset, employing convo-

lutional neural networks (CNNs) as deep networks across various FL settings.

The experimental results demonstrate clear evidence of the framework’s effi-

ciency and effectiveness. Notably, the proposed framework’s capabilities are

shown in handling heterogeneous datasets and addressing non-IID data dis-

tribution. Moreover, the framework’s robustness against common blockchain

attacks, including Byzantine attacks, Sybil attacks, and honest-but-curious at-

tacks, is thoroughly assessed to ensure security and reliability. This contribution

was published in Elsevier’s Pervasive and Mobile Computing [5].

5. A distributed learning paradigm has been proposed leveraging FL and gen-

erative adversarial networks (GANs). The aim is to improve privacy protec-

tion, facilitate effective training, and enable robust detection of large-scale cy-

ber threats and emergent adversarial attacks. This contribution introduces a

three-model framework incorporating Wasserstein-Conditional-GANs for data

augmentation and a DL-classifier for cyber threat classification. First, a dis-

tributed deep generative model was trained on highly imbalanced and non-IID

distributed data under the FL paradigm. This model generates qualified and di-

verse synthetic data. Subsequently, this augmented data undergoes validation

using our proposed data curation method before being employed to train a fed-

erated learning classifier. This process enhances resilience and enables efficient

detection of novel cyber threats not initially in the training data.
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The performance evaluation of this framework is conducted using the recently

published Edge-IIoTset dataset. The evaluations encompass detection efficiency

against recent state-of-the-art adversarial attacks and zero-day cyber threats.

Furthermore, we assess the effectiveness of incorporating differential privacy

training as an additional technique for improved privacy preservation and its

impact on model performance. The experimental results demonstrate the valid-

ity and diversity (multi-class) of the augmented data generated using the dis-

tributed generative model. Additionally, the results highlight enhanced cost-

effectiveness when utilizing the proposed data augmentation approach in con-

trast to implementing DP training, particularly regarding privacy preservation.

This contribution was published in Elsevier’s Internet of Things [6].

1.4 List of Publications

Journal papers

• Hamouda, D., Ferrag, M. A., Benhamida, N., & Seridi, H. (2022). PPSS: A

privacy-preserving secure framework using blockchain-enabled federated deep

learning for Industrial IoT. Pervasive and Mobile Computing, 88, 101738. https:

//doi.org/10.1016/j.pmcj.2022.101738

• Hamouda, D., Ferrag, M. A., Nadjette, B., Hamid, S & Ghanem, M. C. (2024).

Revolutionizing intrusion detection in industrial IoT with distributed learning

and deep generative techniques. Internet of Things, 1-15. https://doi.org/10.

1016/j.iot.2024.101149

Conference papers

• Hamouda, D., Ferrag, M. A., Benhamida, N., & Seridi, H (2021, November),

Android Malware detection based on network analysis and deep convolutional

https://doi.org/10.1016/j.pmcj.2022.101738
https://doi.org/10.1016/j.pmcj.2022.101738
https://doi.org/10.1016/j.iot.2024.101149
https://doi.org/10.1016/j.iot.2024.101149


9

neural network. The 4th International Hybrid conference on Informatics and

Applied Mathematics (IAM’21).

• Hamouda, D., Ferrag, M. A., Benhamida, N., & Seridi, H. (2021, December).

Intrusion detection systems for industrial internet of things: a survey. In 2021

International Conference on Theoretical and Applicative Aspects of Computer

Science (ICTAACS) (pp. 1-8). IEEE. https://doi.org/10.1109/ICTAACS53298.

2021.9715177

• Hamouda, D., Ferrag, M. A., Benhamida, N., & Seridi, H (2022, November),

Network-based Intrusion Detection Using Generative Adversarial Networks.

The 5th International Hybrid Conference on Informatics and Applied Mathe-

matics (IAM’22).

• M. A. Ferrag, D. Hamouda, M. Debbah, L. Maglaras and A. Lakas, "Generative

Adversarial Networks-Driven Cyber Threat Intelligence Detection Framework

for Securing Internet of Things," 2023 19th International Conference on Dis-

tributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT),

Pafos, Cyprus, 2023, pp. 196-200, https://doi.org/10.1109/DCOSS-IoT58021.

2023.00042.

Book Chapter

• Hamouda, D., Ferrag, M.A., Benhamida, N., Kouahla, Z.E., Seridi, H. (2024).

Android Malware Detection Based on Network Analysis and Federated Learn-

ing. In: Almomani, I., Maglaras, L.A., Ferrag, M.A., Ayres, N. (eds) Cyber

Malware. Security Informatics and Law Enforcement. Springer, Cham. https:

//doi.org/10.1007/978-3-031-34969-0_2

https://doi.org/10.1109/ICTAACS53298.2021.9715177
https://doi.org/10.1109/ICTAACS53298.2021.9715177
https://doi.org/10.1109/DCOSS-IoT58021.2023.00042
https://doi.org/10.1109/DCOSS-IoT58021.2023.00042
https://doi.org/10.1007/978-3-031-34969-0_2
https://doi.org/10.1007/978-3-031-34969-0_2
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Co-authored papers

• Ferrag, M. A., Friha, O., Hamouda, D., Maglaras, L., & Janicke, H. (2022). Edge-

IIoTset: A new comprehensive, realistic cyber security dataset of IoT and IIoT

applications for centralized and federated learning. IEEE Access, 10, 40281-

40306. https://doi.org/10.1109/ACCESS.2022.3165809

• Ferrag, M. A., Shu, L., Djallel, H., & Choo, K. K. R. (2021). Deep learning-

based intrusion detection for distributed denial of service attack in agriculture

4.0. Electronics, 10(11), 1257. https://doi.org/10.3390/electronics10111257

• Ferrag, M. A., Friha, O., Kantarci, B., Tihanyi, N., Cordeiro, L., Debbah, M.,

Hamouda, D.,... & Choo, K. K. R. (2023). Edge Learning for 6G-enabled Internet

of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses.

in IEEE Communications Surveys & Tutorials. https://doi.org/doi:10.1109/

COMST.2023.3317242.

1.5 Thesis Organisation

The remaining parts of this thesis are organized as follows: Chapter 2 on page 12, ex-

plores an IDS-oriented security solution for IoT-enabled critical industrial infrastruc-

ture. It examines its architecture, vulnerability to threat models, and security require-

ments. The chapter reviews adaptive IDS implementations, deployment strategies,

machine learning techniques, and blockchain technologies for privacy-preserving and

secure IDS. The study emphasizes the necessity for efficient and sophisticated privacy-

preserving IDS systems comparable to centralized approaches while addressing chal-

lenges and security requirements.

In Chapter 3 on page 38, an innovative federated learning (FL) paradigm and net-

work behavior analysis for malware detection are proposed. The focus is on preserv-

ing privacy, minimizing computation costs, and enhancing detection efficiency. The

https://doi.org/10.1109/ACCESS.2022.3165809
https://doi.org/10.3390/electronics10111257
https://doi.org/doi: 10.1109/COMST.2023.3317242
https://doi.org/doi: 10.1109/COMST.2023.3317242
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chapter explores malware detection using network layer features. It presents an ef-

ficient detection methodology using FL with a CNN approach and compared with

conventional centralized methods, highlighting advantages regarding computation

cost and privacy protection.

In Chapter 4 on page 50, an innovative and privacy-preserving secure frame-

work named PPSS is proposed. This chapter explores the development and exper-

imental aspects of the PPSS framework. Topics covered include component inter-

action, blockchain-enabled federated learning, secure communication, key manage-

ment, proof of federated deep learning, and blockchain security analysis. The chap-

ter also discusses how PPSS enables cyber threat detection, considering various sce-

narios and experimental settings, including data distribution, global model accuracy,

convergence time, differential privacy training, energy costs, and blockchain perfor-

mance.

In chapter 5 on page 85, an improved federated generative framework named

FedGen-ID is proposed. This framework addresses imbalanced and private data

challenges by employing distributed data augmentation techniques. It aims to en-

hance efficiency and robustness against cyber threats. The chapter discussed using

data augmentation methods to support a synthetically enhanced federated learning

scheme, leading to improved detection efficiency and resilience against zero-day at-

tacks. Three models are discussed: one refines local Critics to strengthen resilience,

the second focuses on improving cybersecurity, and the third serves as a cyber threat

classifier.

In conclusion, Chapter 6 on page 113 summarizes the key findings from this re-

search and presents recommendations for future work.
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CHAPTER 2

CONCEPTS AND LITERATURE REVIEW

”The art of war teaches us to rely not on the likelihood of the enemy’s not

coming, but on our own readiness to receive him; not on the chance of his not

attacking, but rather on the fact that we have made our position unassailable”

— Sun Tzu, The art of war

Introduction

The above quotes resonate with the essence of our research endeavor, emphasizing

the paramount importance of preparedness and resilience in the face of potential

threats. In the realm of cybersecurity, this principle becomes ever more relevant as

we navigate the dynamic landscape of Industry 5.0 and the integration of technolo-

gies such as the Internet of Things (IoT), cloud/fog computing, artificial intelligence

(AI), and collaborative robotics to boost productivity and business. The industrial

landscape has evolved into heightened interconnectivity and increased complexity.

However, the evolution of this landscape has heightened its vulnerability to cyber

intrusions, mainly due to the inherent security challenges embedded in the develop-

ment of sophisticated technologies and their increased connectivity and exposure to

public networks. Furthermore, the lack of worldwide-adopted technical standards
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for IIoT security and interoperability expands the sensitivity of this ecosystem to cy-

ber security risks [7]. More than ever, cybersecurity breaches pose significant threats

to enterprises across varying scales and sectors. The escalation of cybercrime has dra-

matically increased and has made businesses much more likely to suffer from finan-

cial and reputational damage due to cyber attacks, with damage related to cybercrime

projected to hit $10 trillion annually by 2025 [8].

The role of cyber security in safeguarding Industry 5.0, including those in smart

factory technologies and beyond, is crucial for ensuring confidentiality, integrity, and

protection of shared information among interconnected components. To this end,

security professionals and researchers recommend using and developing a proficient

Intrusion Detection System (IDS) solution. This system serves as a robust security

monitoring mechanism to identify ongoing potential security threats and safeguard

industrial networks and control systems [1]. However, the prevalence of information

and operational technologies in Industry 4.0 and 5.0 has changed the appearance of

cyber threats and how we deal with them, as it also requires addressing challenges

related to reliability, complexity, security, and data privacy [9].

In the following section, we explore the gap between the development of tradi-

tional IDSs and the design of adequate IDS schemes for the unique challenges of

Industrial IoT ecosystems. Our study comprehensively addresses this deficiency, ex-

amines the most pertinent and effective detection strategies, and sheds light on the

challenges and requirements of securing Industry 5.0 from emerging cyber threats.

We intend to provide a comprehensive foundation for developing robust and future-

proof intrusion detection solutions, fostering the continued growth and security of

Industry 5.0.
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2.1 Industrial IoT Architecture, Threat Models, and Se-

curity Requirements

In this section, we aim to explore potential weaknesses and design flaws that may

pose security risks in Industrial IoT infrastructures deployed in the smart industry.

Understanding these vulnerabilities and architectural characteristics is crucial for de-

veloping effective security measures and detection strategies.

The architectural framework of Industrial IoT architectures differs slightly from

the conventional IoT and Cyber-Physical Systems (CPS) systems with additional crit-

ical control systems and security challenges. A typical IIoT architecture can be illus-

trated by hierarchical layers of various networking technologies and communication

protocols that establish interconnections between hardware devices, control software,

and end-users. Figure 2.1 illustrates the network model, including layers, threat mod-

els, and defensive mechanisms within the context of industrial IoT.

• Physical layer: This layer is designed to collect data about the physical envi-

ronment or to act on it, using Sensors, actuators, and meters. Devices of these

layers are usually resource-constrained. At this stage, communication protocols

and technologies were designed to operate at limited bandwidth, constrained

CPU and memory capacity, and low energy consumption [10].

• Middle-ware layer: This segment manages field devices to facilitate the inte-

gration and communication between physical objects and supervisory control

systems. This layer includes applications like Programmable Logic Controller

(PLC), Remote Terminal Unit (RTU), and Intelligent Electronic Device (IED). It

also contains limited computation resources with heterogeneous communica-

tions infrastructures, including wired and wireless connections that intercon-

nect objects with control systems.
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• Control layer: Designed to manage automation and intelligent control of the

industrial infrastructure. It enables real-time processing of data collected from

substations system control of the previous layer. This layer includes control sys-

tems such as Supervisory Control and Data Acquisition (SCADA), Distributed

Control System (DCS), HMI, and other applications such as data historian, Man-

ufacturing Execution Systems (MES), and Enterprise Resource Planning (ERP).

• DMZ Zone: Contains critical devices that must be exposed to the outer network,

such as an App server, web server, etc. At this stage, internet connectivity and

standard IT protocols interconnect OT with IT and users across longer distances.

• Application layer: Includes processing and management tools that require costly

computation and storage resources. Application at this layer is mainly based on

cloud services and used to process the collected data to obtain valuable insights

and information about the physical environment. Using AI approaches, these

applications may make or reach decisions based on this information to control

physical objects.

This architectural composition of IIoT, using diverse networking technologies and

communication protocols, presents significant challenges for IDS and exacerbates the

complexity of detection. Incorporating distinctive insecure-by-design protocols and

various communication infrastructures, such as wireless networks, complicate cyber

threat detection [11]. Furthermore, improving the security level while simultaneously

ensuring the availability of IIoT systems faces essential challenges due to resource

restrictions [12].

2.1.1 Industrial IoT Threat Models

Figure 2.1 and Table 2.1 highlight the various ways in which IIoT networks can be

compromised, emphasizing the need for robust security measures and continuous

monitoring to mitigate these risks.
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Threat Model Description

Data Poisoning This involves injecting malicious or inaccurate data into
the IoT system, leading to incorrect decisions or actions
by connected devices [13].

Sybil Attacks In this type of attack, an attacker creates multiple fake
identities to overwhelm the system or gain unautho-
rized access to IoT devices [14].

Data Privacy Intrusion IoT devices often collect and transmit sensitive data. At-
tackers may attempt to intercept or access this data, vio-
lating users’ privacy [13].

Malware Injections Attackers can inject malware into IoT devices, compro-
mising their functionality and potentially using them for
malicious purposes [3].

Byzantine Attacks These attacks involve compromised or malicious nodes
within a network that intentionally provide conflict-
ing information, leading to system failures or incorrect
decision-making [14].

Protocol Exploitation IoT devices communicate using various protocols. At-
tackers can exploit vulnerabilities in these protocols to
gain unauthorized access or manipulate device behav-
ior [10].

AI Associated Threats As AI is integrated into IoT devices, attackers could tar-
get vulnerabilities in AI algorithms to manipulate or dis-
rupt device behavior and decision-making [15].

External Threats External attackers can target IoT devices by exploiting
vulnerabilities in the devices’ software, firmware, or
communication channels.

TABLE 2.1: Threat Models Against IoT Network Architecture.

In light of these multiple issues, it becomes more evident that a comprehensive

strategy comprising improved security monitoring, proactive threat detection, and

resource-efficient defensive mechanisms is important for adaptable IDS security solu-

tions in IIoT environments.
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2.2 Adaptive Intrusion Detection System (IDS) for Se-

curing Industrial IoT

Cyber threat detection plays a pivotal role in addressing substantial security requisites

within the context of complex technological landscapes of IIoT environments. An IDS

is a crucial component in this endeavor by actively monitoring system operations and

network activities, investigating data patterns, and identifying anomalous behaviors

that could potentially signify malicious or unauthorized activities [16]. Recently, ma-

chine learning (ML) and deep learning (DL) have emerged as a recent advancement

within the field of IDS, providing the means to identify novel effective, and continu-

ally evolving forms of cyber attacks [17].

However, given the heterogeneous and distributed nature of data sources in con-

junction with the inherent resource limitations pertaining to storage, energy, and com-

putational capabilities of end-point IIoT devices, it becomes imperative to meticu-

lously incorporate considerations of resource utilization efficiency during the design

and implementation of IDS security mechanisms [18]. Several studies have been con-

ducted to tackle the deployment of IDS across diverse components within the IIoT.

This includes the examination of communication protocols [19] and the inclusion of

Infrastructure Control Systems (ICS) sectors [20]. Furthermore, the application of IDS

has expanded to encompass pivotal sectors like transportation [21], critical infrastruc-

tures such as gas pipelines [22], and sophisticated domains like smart grids [23].

To gain a comprehensive insight into the distinctions between traditional IDS-

based security systems implemented for information systems and the envisaged IDS

systems tailored for Industrial IoT deployments, we present a comprehensive IDS

taxonomy founded upon detailed categorizations 2.2.
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Taxonomy of IDS Solutions for Industrial IoT

Deployment
Strategy

Detection
Strategy Data Source

Centralized

Decentralized

Distributed

Detection
Methodology

ML/DL-based
Detection

Federated
Learning

Network-based

Host-based

State-based

Hybrid

FIGURE 2.2: Taxonomy of IDS Solutions for Industrial IoT.

2.2.1 Taxonomy of IDS Deployment Strategies in IIoT Environments

Implementing an IDS necessitates considering several aspects, including system ar-

chitecture, deployment strategy, monitoring methodologies, and detection strategies

[24]. Within the realm of Industry5.0, the convergence of IoT solutions within the

frameworks of both Cloud and fog paradigms highlights the potential deployment

strategies for IDS architectures. Moreover, the success of ML and DL techniques has

significantly contributed to enhancing the capabilities of IDS systems. Driven by these

advancements, researchers have advanced proficient IDS models tailored for the IoT

domain. Figure 2.2 presents a taxonomy of IDS implementation for Industrial IoT.

• IDS Deployment Strategy : It largely depends on locations and data flow dy-

namics within the IIoT framework. Depending on whether data aggregation

is centralized or distributed, the IDS can be established within the same node

responsible for data collection or be distributed across multiple nodes to cover

a broader span of the network landscape effectively. This deployment facili-

tates the monitoring and analyzing IIoT components, thereby fortifying plant

networks against diverse cyber threats [1].
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– Centralized/Decentralized IDS : Aydogan et al. [19], studied the effective-

ness of a centralized IDS in promptly detecting attacks, owing to its com-

prehensive data aggregation, outperforming those of individual IDS agent

nodes. Leveraging Cloud and Fog computing, a centralized approach could

be adept and overcome the constraints posed by the limited resources of

the IIoT. Within this context, both data aggregation and the execution of

resource-intensive processing are hosted by Cloud services [25]. However,

addressing concerns about data privacy in this environment is important.

Another study proposed by Ioannou et al. [26], demonstrated that decen-

tralized IDS offers the distinct advantage of operating as a fault-tolerant

system. Moreover, deploying multiple detection models within the hetero-

geneous landscape of the IIoT holds the promise of effectively identifying

large-scale attacks while mitigating data privacy concerns [26, 27].

– Distributed IDS: integrating IDS across multiple agent nodes, collectively

contributing to global decision-making based on gathered data. Lever-

aging Edge Computing, distributed IDS offers benefits such as reduced

observed data volume and energy-efficient task execution. For instance,

Zhang et al. [28] propose a multi-layer data-driven IDS approach, expand-

ing attack detection coverage. Khan et al. [22] introduce a multi-level

anomaly detection strategy with distinct detection methods at each level.

Shu et al. [21] demonstrate the efficacy of distributed IDS using both Inde-

pendent Identically Distributed (IID) and non-IID data sources.

• IDS Detection Strategy: The chosen detection strategy is vital for enhancing

IDS performance and robustness. This involves a critical selection not only of

the overall detection methodology—ranging from anomaly-based, signature-

based, to hybrid systems—but also the effective inclusion of Machine Learning

(ML) and Deep Learning (DL) approaches to ensure efficient and real-time de-

tection capabilities. Moreover, the evolving landscape of IDS training paradigms
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introduces the concept of federated learning in a new era of collaborative and

decentralized model refinement over distributed IoT networks.

– Detection Methodology : This includes distinct approaches. Signature-

based detection involves storing known attack signatures to quickly iden-

tify and validate future attacks, offering real-time and cost-effective detec-

tion. However, it falls short against unknown and polymorphic attacks, ne-

cessitating ongoing updates, human intervention, and secure connections.

Anomaly-based detection relies on User Behavior Analysis (UBA) to create

a dynamic detection model based on software, hardware, or human inter-

actions. While efficient and self-adaptive for identifying unfamiliar attacks,

it tends to produce more false alarms and requires increased computational

resources [1].

Specification-based detection establishes legitimate behavior models through

protocol or system analysis, detecting deviations from specifications with-

out a training phase [29]. Although effective in spotting attacks, it falters

against attacks conforming to the specification model. Combining these

methodologies yields higher accuracy, lower false alarms, and real-time de-

tection. For instance, Otoum et al [30]. proposed a hybrid IDS framework

using IoT gateways, integrating signature-based and anomaly-based ap-

proaches for enhanced effectiveness. Feng and Chana [31] presented a com-

parable method, augmenting their IDS with a baseline signature database

for time-series anomaly detection, thereby bolstering system efficiency.

– ML and DL-based detection: ML algorithm techniques have proven effec-

tive in safeguarding IIoT networks and their physical entities [22, 25, 28].

The application of these algorithms is particularly well-suited to the con-

text of IIoT due to its inherently task-oriented nature and the consistency

of data distributions. These attributes serve to enhance both traffic pre-

dictability and the efficiency of intrusion detection [1]. In this context, DL
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encompassed as a subset of ML, manifests as a collection of sophisticated

ensembles of operations that proficiently acquire multi-layered representa-

tions [17]. However, the distinctive potential of DL-based IDS comes up-

front when confronted with enormous quantities of training data. Various

DL approaches are adeptly equipped to manage and counteract the diverse

spectrum of intrusions and cyber-attacks. This encompasses varying de-

grees of intricacy, complexity, and distribution levels [32].

Although the application of ML-based and DL-based detection approaches

has shown success in enhancing the security of IIoT through IDS, it is im-

portant to recognize certain limitations that require careful consideration.

Both ML and DL models are sensitive to slight changes in data, which can

significantly decrease detection and attack classification performance. The

lack of interpretability and the limited transparency of decision-making

processes present challenges in understanding the origins of attacks and

conducting further forensic analyses. Additionally, the computational de-

mands for data processing and learning exceed the capacities of available

IIoT resources [1].

Equally important are adversarial attacks aimed at undermining the ef-

fectiveness of model learning, resulting in the evasion of the detection of

malicious activities. This emerging challenge holds significance for both

ML-based and DL-based IDS, [4]. Addressing these complexities is cru-

cial for establishing strong and dependable security measures within IIoT

environments.

– Federated Learning-based IDS (FL-IDS): In light of the challenges above,

FL is proposed as a promising training approach for ML and DL-based IDS

for IIoT [27]. Its distributed and privacy-preserving approach aligns well

with the characteristics of IIoT environments, offering a pathway to im-

proved detection accuracy, data privacy, and resource efficiency [33]. More

about this paradigm is in the following sections.
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• IDS Data Source : Input data are essential characteristics to detect large-scale

attacks effectively. Various dimensions offer insights into their sources, charac-

teristics, and analytic potential.

– Data source: Includes two principles; Network-Based Data and Host-Based

Data. Industrial IoT also deploys physical information known as state-

based IDS. Generally, a hybrid approach is often employed to achieve com-

prehensive detection results in time [34]. An example of hybrid-based IDS

is proposed by Zhang et al. [28] to robustly detect intrusions that may

not be detectable by monitoring network and host system data, such as

command tampering and false data injection attacks by an insider in ICSs.

Zhou et al. [34] proposed multiple data models to represent the general

knowledge of Industrial Process Control Systems (PCS) to facilitate the im-

plementation of hybrid anomaly-based IDS.

– Data Granularity : Refers to the level of detail at which data is collected,

processed, or stored in an information system. It could be raw packet-

level data or aggregated flow-level data, or any equivalent level of data

aggregation [35].

2.3 Privacy Preserving Intrusion Detection in Industrial

IoT Network

An IDS security system aims to safeguard against security breaches by analyzing

monitored data and detecting potential cyber threats. However, its implementation

introduces a challenge to users’ privacy, leading to the need for sophisticated IDS

mechanisms that prioritize privacy preservation. This development has roots in ear-

lier research, such as Park et al. [36], who employed cryptographic techniques to

enhance the security of log files. In contemporary times, characterized by the deploy-

ment of ML and DL in various industries, major privacy concerns have been raised
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where the handling of sensitive proprietary data is a prominent issue. This concern

extends to the domain of IDS development within the context of IIoT security, which

consequently stimulated a demand for innovative conceptual frameworks that ac-

commodate privacy preservation and security.

2.3.1 Federated Learning-based IDS

Federated Learning (FL) introduces an innovative way to collaboratively learn and

distribute computations for applications based on ML and DL. Instead of sending

client data to a central server, FL sends models from the server to specific clients.

These clients then train the models using their local data and conventional ML meth-

ods. This approach ensures privacy and security by keeping data on the client’s side

[37].

In safeguarding Industrial IoT, an FL-based IDS emerges as a dependable security

strategy. It addresses the security needs and challenges of IIoT by enabling decen-

tralized decision-making for IDS across diverse IIoT setups. To visualize, Figure 2.3

depicts an overview of the Industrial IoT network model and the organizational struc-

ture of an FL-based IDS system. Algorithm 1 outlines the core process of the FL-based

IDS for securing IIoT environments. This algorithm enables collaborative learning

and distributed computations across client devices while maintaining data privacy.

As demonstrated, the workflow started with the Server component initializing the

model and orchestrating the FL process over several rounds. Each round randomly

selects a subset of clients from the total client pool. These clients then participate in

parallel computations to update their local models. The algorithm aggregates these

client model updates to refine the global model at the server.

On the client side, represented by the Client (i.e., device) component, each client

operates independently. They split their local dataset into batches and perform local

training epochs on their data batches. These local model updates are communicated

back to the server for aggregation. Thus ensuring data privacy preservation.
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FIGURE 2.3: The Industrial IoT Network Model with an Organizational
Chart of an FL-Based IDS System.

In a recent study [21], Shu et al. developed a collaborative IDS for Vehicular Adhoc

Networks (VANETs) within a distributed SDN environment, utilizing multiple SDN

controllers to train a single IDS model. The unique aspect is that they achieve this

without directly sharing their sub-network data flows. Another approach, proposed

by Fan et al. [38] revolves around an FL-based IDS framework and combining cloud

and edge computing services to maintain privacy and coordinate the FL process. In

a different study, Nguyen et al. [39] introduced an FL-based IDS, where a distinct

detection model is developed for each IoT device, with security gateways building

local models using unlabeled crowd-sourced traffic.

Although the FL-based IDS training paradigm ensures privacy-preserving and

knowledge sharing and boosts efficient cyber threat detection that works well even

with limited and dispersed IIoT data sources, specific challenges have emerged with

its adoption. These include communication costs in extensive distribution, selecting
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Algorithm 1: Federated Learning-based Intrusion Detection [37].
1 Server (K : Number of Selected Clients, C : Total Clients, R : Total Rounds)
2 Initialize model1
3 for t = 1, .., R do
4 St ← Randomly select K clients from C
5 Parallel.for k ∈ St do
6 modelk

t+1← Client(modelt, k)
7 end
8 modelt+1← 1

K ∑K
k=1 modelk

t+1
9 end
1 Client (i.e., device) (m : Model, k : Client ID)
2 Split the local dataset D into B local data batches
3 B ← Split(D, B)
4 for i = 1, .., E : Local epochs do
5 for b ∈ B do
6 m← m −η∇ fc(m, b)
7 end
8 end
9 Send m to the Server

suitable equipment for federation, uneven distribution of data and resources, ensur-

ing the security of FL audit gateways, and addressing issues related to adversarial

attacks [1].

2.3.2 Blockchain based IDS

Adopting blockchain technology can make intrusion detection systems in IoT more

secure. It offers a safe and decentralized way to store and share intrusion detec-

tion data, helping quickly identify and prevent manipulated data and injection at-

tacks [40]. It brings several key features. Firstly, it establishes a decentralized net-

work where data is stored across multiple nodes, eliminating central control and

enhancing security against attacks. Secondly, information recorded on a blockchain

is immutable, preventing alterations and safeguarding IDS data from manipulation.

Thirdly, transparency is fostered, allowing all network nodes to access the same data,
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and facilitating easier attack detection [41]. Additionally, using smart contracts auto-

mates the process of IDS, minimizing errors [42]. Furthermore, device authentication

ensures that only authorized IoT devices access the network, reducing attack risks.

Lastly, blockchain promotes collaboration among nodes, enabling shared data and

cooperative defense strategies, thereby improving threat identification and response

capabilities [43].

By combining blockchain and federated learning, a hybrid approach offers a secure

and effective solution for adaptive IDS in IIoT. For instance, Kumar et al. [44] pro-

posed an intelligent blockchain framework that integrates smart contracts for data

authentication and FL-based IDS to mitigate data poisoning attacks. Similarly, Wang

et al. [45] designed a blockchain-enabled decentralized FL to alleviate data falsifi-

cation issues and reduce communication costs between cloud and edge devices. The

PEFL framework uses two-level privacy-preserving modules: perturbation-based pri-

vacy, and DL-based intrusion detection.

Although this hybrid strategy establishes a decentralized network, ensuring pri-

vacy protection and secure FL automation, the integration of blockchain with differ-

ent aspects and settings of federated learning, particularly in resource-constrained

IIoT environments, remains a challenge.

2.3.3 Comprehensive Analysis Framework for Privacy-Preserving IDS

The interconnection of IoT-enabled industrial infrastructure using Cloud and Edge

paradigms and ML and big data analytics illustrates how a security framework can be

deployed to ensure secure data transmission and maintain privacy between Industry

5.0 components.

Several privacy-preserving and secure frameworks have recently been proposed

for various Industry 5.0 applications. Table 2.2 provides an overview of these propos-

als to advance privacy-preserving IDS.
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Main Idea Challenges Domain Pros Cons Cite*

A combination of secure
aggregation and differen-
tial privacy techniques en-
sures the protection of
data privacy while pre-
serving data utility

Sophisticated
privacy threats
and data utility

DL applica-
tion

Enhanced pri-
vacy protection

Additional com-
putational over-
head, and de-
crease in accu-
racy

[46]

A blockchain scheme that
uses smart contracts to
securely aggregate partic-
ipants’ local model up-
dates.

Privacy-
preserving
aggregation of
model updates,
contribution
evaluation and
reward mecha-
nisms in FL

DL applica-
tion

Secure commu-
nication and Se-
cure multi-party
computation

Additional com-
putational over-
head, and not
suitable for all
FL scenarios

[47]

Federated GAN training
involves the integration of
a least squares loss func-
tion to mitigate mode col-
lapse issues

High-quality
and diversified
data augmenta-
tion

Renewable
energy

Produce realis-
tic and diverse
data while pre-
serving the pri-
vacy of the data.

Training stabil-
ity and conver-
gence issues, in-
secure commu-
nication

[48]

Protecting the confiden-
tiality of sensitive data on
active learning by using
FL with homomorphic en-
cryption property

Protecting data
privacy while
preserving data
utility

Active
learning
application

Securely pre-
venting gra-
dient leakage
during FL while
preserving
model accuracy.

computational
overhead, scala-
bility concerns,
and privacy
and data utility
trade-offs.

[49]

GANs training within the
FL framework

non-IID clients Computer
vision

Improved per-
formance of FL

Training stabil-
ity and conver-
gence issues, in-
secure commu-
nication

[50]

Blockchain and FL inte-
gration involve clients
uploading model updates,
workers creating valid
blocks, and a trusted
committee verifying the
aggregated model through
an evolving verification
contract over training
iterations.

Ensuring the in-
tegrity and se-
curity of FL

Computer
vision

Enhanced se-
curity and
trustworthiness
of FL

increased com-
putational
complexity, Po-
tential security
threats against
the blockchain
network

[51]

Generating synthetic data
using FL and GAN while
ensuring differential pri-
vacy.

Data storage
and improved
privacy protec-
tion

Computer
vision

Efficient GAN
training and en-
hanced privacy
preservation

Assume that the
data is i.i.d., but
this assumption
may not hold in
real-world situ-
ations.

[52]

A decentralized approach
using blockchain to store
and share data among the
Edge nodes and local FL
training on these data.

Maintaining the
accuracy and se-
curity of health-
care data

Healthcare Secure and effi-
cient data shar-
ing

Computational
overhead, po-
tential sophis-
ticated privacy
threats against
blockchain net-
work

[53]

Blockchain and FL to im-
prove the accuracy and
precision of data mining
while ensuring informa-
tion privacy and security

Centralized
server, security
and privacy
threats

Railway in-
dustry

Incentive mech-
anism for
participating
devices, reliabil-
ity, and system
robustness.

Potential so-
phisticated
privacy threats
against the
blockchain net-
work

[54]

TABLE 2.2: Overview of Privacy-Preserving and Secure Frameworks in
Other Domains.
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Privacy-
preserving IDS

Hybrid Framework

Lakhan et al. 2022 [55]

Islam et al. 2022 [56]

Wei et al. 2022 [57]

Singh et al. 2022 [58]

Wan et al. 2021 [45]

Liu et al. 2021 [59]

Kumar et al. 2021 [44]

A.Basset et
al. 2021 [60]

Federated Learning-based

Rahman et al. 2020 [61]

Zhao et al. 2020 [62]

Ruzafa et al. 2021 [63]

Kumar et al. 2021 [64]

Attota et al. 2021 [65]

Friha et al. 2022 [66]

Li et al. 2022 [67]

Tabasum et al. 2022[68]

Blockchain-based

Bravo et al. 2019 [69]

Liang et al. 2020 [70]

Qiu et al. 2020 [71]

Peng et al. 2021 [51]

Rathee et al. 2022 [41]

Liu et al. 2022 [72]

FIGURE 2.4: Privacy preserving IDS for Industrial IoT.
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Main Idea Challenges Privacy
Technique

Pros Cons Dataset Cite*

FDL using federated av-
eraging aggregation after
several communication
rounds for botnet attack
detection

classification
performance,
and communi-
cation efficiency

FL Outperform
localized and
Distributed DL
methods in
memory and
communication
efficiency

Computation
overhead (long
training time)

Bot-IoT, N-
BaIoT

[73]

An ensemble multi-view
FL approach that trains on
multiple views of IoT net-
work data, using a combi-
nation of local and global
models

Data het-
erogeneity,
resource con-
straints

FL Improved accu-
racy, privacy-
preserving
distributed
learning

Insecure com-
munication and
potential for
model poison-
ing attacks

MQTT [65]

Distributing a GAN net-
work across IoT devices
to function as a classifier
and training it using lo-
cally augmented data

Data hetero-
geneity, non-IID
data and pri-
vacy concerns

FL + GAN Improved
model con-
vergence and
accuracy

Data reliability,
insecure com-
munication, and
communication
overhead.

KDD99,
NSL_KDD,
UNSW-
NB15

[68]

Robust FL using a GAN
approach to monitor the
global model aggregation
for detecting Android mal-
ware applications in IIoT

Dynamic poi-
soning attacks
against FL,
Integrity and
reliability of the
FL

FL + GAN Improved accu-
racy and data
privacy

Data reliability,
insecure com-
munication, and
communication
overhead.

Drebin,
Genome,
Contagio
(Android
malware)

[74]

FDL by deploying a deep
privacy-encoding mecha-
nism that perturbs the
data before sending it to
the server.

Privacy threats,
and data hetero-
geneity

FL + Data
Perturba-
tion

Enhanced pri-
vacy

Balancing be-
tween data
utility and pri-
vacy

ToN-IoT [64]

A new type of poison-
ing attack manipulates the
global model using GAN
and assesses its effective-
ness against existing de-
fense mechanisms

Poisoning at-
tacks against FL

FL Novel poison-
ing attacks that
can be manipu-
lated

Difficult to im-
plement in prac-
tice

N/A [75]

Homomorphic encryption
encrypts the IDS alerts and
performs clustering on the
encrypted data without re-
vealing the original data.

Inspect the
content of en-
crypted traffic,
Computational
overhead

Homomorphic
encryption

Perform clus-
tering on en-
crypted data

Not be suitable
for real-time de-
tection

N/A [76]

Deploy blockchain to
enable secure and decen-
tralized data sharing and
management in smart
transportation systems

data privacy, re-
liability, and se-
curity in a de-
centralized sys-
tem. Communi-
cation and com-
putation limita-
tions

Blockchain
+ FL

Improved scala-
bility and flexi-
bility

Complexity of
the system, po-
tential vulner-
abilities within
blockchain par-
ticipants

Ton-IoT [60]

Combining FL and fraud-
enabled blockchain,
providing data prove-
nance and permission
control of the participants
to enhance the security
and privacy of parameters
in FL

Security and
scalability of the
FL system

FL +
Blockchain

Provides data
provenance
and permission
control of FL
participants

Require signif-
icant computa-
tional resources
and may not
be feasible for
small-scale
healthcare orga-
nizations

N/A [55]

A decentralized and
differentially private FL-
based IDS

One point of
failure, privacy
threats

FL + Def-
erential pri-
vacy

Secure commu-
nication and im-
proved privacy

Decreased accu-
racy with higher
privacy regimes

EdgeIIoTset [66]

TABLE 2.3: Privacy-Preserving IDS Overview.
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This overview offers numerous advantages, including transferring privacy-preserving

techniques, insights into distinct privacy concerns across domains, scalability solu-

tions, enhanced robustness and security measures, and optimizing resources. By

leveraging knowledge and techniques from diverse domains, we can develop more

effective and comprehensive privacy-preserving IDS systems capable of addressing

the specific privacy challenges inherent to intrusion detection.

Figure 2.4 illustrates a taxonomy of recent advancements in privacy-preserving

IDS frameworks, categorized into three groups: blockchain-based IDS, federated learning-

based IDS, and hybrid approaches. This taxonomy highlights the growing research

on balancing threat detection with privacy protection.

Table 2.3 introduces a structured framework to explore privacy-preserving IDS

within the IIoT context. It aims to provide a concise yet comprehensive overview of

critical aspects of these systems, enabling scholars and researchers to systematically

assess and compare various IDS implementations. The selection of columns covers

essential dimensions of privacy-preserving IDS, clarifying core concepts, addressing

challenges, enhancing privacy strategies, and assessing pros and cons.

2.4 Performance Analysis of Intrusion Detection System

in Industrial IoT

Researcher commonly evaluate their proposed IDS solutions through validation strate-

gies such as Hypothetical, Empirical, Simulation, or Theoretical methods, as detailed

in [77]. A validation strategy ensures that the proposed IDS scheme suits its intended

purpose and meets all requirements. This evaluation assesses whether the IDS de-

tection strategy performs well according to predetermined objectives. The assessed

works performed evaluation using Empirical and Simulation validation methods. In

Empirical evaluation, real-world Industrial IoT (IIoT) data is used, while Simulation

evaluation utilizes real IIoT network traces. Through the literature review, we synthe-

size the key performance metrics that illustrate the overall efficiency and effectiveness
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of IDS for IIoT [1]. These metrics include [1]:

• Accuracy: This metric pertains to correctly identifying attacks and minimizing

false alarms. Precision, Recall, True Positive Rate, False Positive Rate, and True

Negative Rate are various Accuracy components.

• Complexity: This evaluates the resource expenditure (time, memory, energy,

bandwidth) during IDS operations, including model learning and audit event

processing. It measures real-time detection capabilities and the feasibility of

implementation on resource-constrained devices. Complexity metrics are often

omitted in proposed IIoT IDS solutions, hindering proper effectiveness and real-

time potential assessment.

• Completeness: This indicator assesses the ability of an IDS to reliably and effec-

tively detect known and unknown threats. In the context of IIoT, completeness

is measured by an IDS’s applicability to large-scale infrastructures and its capa-

bility to handle diverse data sources.

• Scalability: This indicates an IDS’s ability to maintain detection effectiveness as

the number of different behaviors grows due to IIoT advancements. Adaptive

and self-learning IDSs autonomously generate and store information or profiles

of previously encountered events, applying them to future detection scenarios.

2.4.1 Evaluation Datasets for IDS in Industrial IoT Networks

The imperative necessity of substantial online or offline voluminous datasets for the

rigorous evaluation and credibility of AI-driven IDS remains indisputable. The scarcity

of authentic, real-world data emanating from Industrial IoT contexts, primarily at-

tributable to concerns regarding privacy, has notably catalyzed a proactive response

from the research community. This proactive response materialized through endeav-

ors and efforts to provide practically oriented industrial datasets that accurately cap-

ture the complexities of real industrial scenarios. To this end, specific datasets have
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been simulated using various testbed setups incorporating relevant data from Indus-

trial Internet of Things (IIoT) components. These simulations are conducted to assess

and appraise ML-oriented IDS within IIoT. Examples of such datasets are N-BaIoT,

SWaT, TON_IoT, and EdgeIIoTSet datasets.

However, it is noteworthy that conventional network traffic IDS datasets, includ-

ing NSL-KDD, UNSW-NB15, and CICIDS2017, remain relevant within the IIoT land-

scape. In this context, these traditional datasets often serve as a collection that demon-

strates data heterogeneity and the complex behaviors of various cyber-attacks or demon-

strates the efficiency and effectiveness of particular ML-based detection approaches

that can be used in resource-constrained IIoT. Table. 2.4 describes the commonly used

datasets to validate IDS-based cyber security in IIoT.

2.5 Research Gaps

Drawing insights from a thorough review of relevant literature, designing a cost-

effective yet efficient detection methodology, including factors such as detection rate

and decision latency, stands as an open research issue within the domain of IDS-based

security solutions for Industrial IoT. Table 2.5 lists research gaps related to IDS deploy-

ment in Industrial IoT, grouped by key qualities. These gaps are crucial for advancing

IDS security in IIoT environments. Our thesis proposal has three key contributions

to address the challenges above and open issues. The first contribution, detailed in

Chapter 3 on page 38, presents a cost-effective and efficient IDS approach to detect

malware network attacks targeting industrial Android systems. We have addressed

computation efficiency and data privacy in this context by leveraging the FL training

framework.

The second contribution, detailed in Chapter 4 on page 50, presents a novel privacy-

preserving secure framework that incorporates blockchain-enabled federated learn-

ing. Within this context, we have addressed the detection of large-scale cyber-attacks
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Dataset* Year Description Limitations

NSL-KDD [78] 2009 An improved version of KDD 99. Used to evaluate
detection efficiency against huge network data but
not specific to IIoT

lacks real-world
IoT traffic

UNSW-NB15
[79]

2015 Benchmark dataset. Provided by the Australian cy-
bersecurity lab, contains real-world normal and at-
tack traffic scenarios for NIDS evaluation

lacks real-world
IoT traffic

SWaT [80] 2016 Collected from a water treatment testbed, contains
time series traffic data

Small size, Limited
scope

CICIDS2017
[81]

2017 Proposed by the Canadian Institute for Cybersecu-
rity. Contains network traffic flow with the most
common attacks

lacks real-world
IoT traffic

TON_IoT [82] 2020 Collected from heterogeneous data sources:
Telemetry datasets of IoT services, Windows and
Linux Operating systems, Network traffic datasets

Limited features
representation,
Lacks Industrial
IoT data.

N-BaIoT [83] 2018 Collected from a simulated IoT environment to
capture several normal and botnet events

Limited threat
model. Lacks
Industrial IoT data.

Bot-IoT [84] 2019 Comprises legitimate and malicious traffic from
IoT devices, including botnets on IoT networks.

Lacks Industrial
IoT data.

MQTTset [85] 2020 Utilizes MQTT protocol traffic and various attack
streams related to IoT devices.

Limited to only
MQTT traffic.

X-IIoTID [86] 2021 Encompasses connectivity and device-agnostic
data in the context of ML/DL-based IDS for both
IoT and Industrial IoT.

Convenient for cen-
tralized learning

WUSTL-IIOT-
2021 [87]

2021 Created using legitimate and malicious data gen-
erated by various IIoT and industrial devices to
mimic an actual industrial application.

lacks real-world
IoT traffic. Limited
attack data.

TABLE 2.4: Datasets Used for IDS Cybersecurity Evaluation in IoT/IIoT.
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key quality Related challenges and open issues

Data Sources Industrial data are large-scale and heterogeneous, stem-
ming from diverse origins, networking technologies,
and communication protocols, pose significant is-
sues. Addressing imbalanced and Non-Identically Dis-
tributed Data (Non-IID) within this context remains un-
explored research. Also, handling big data requires
expensive processing methods impacting IDS perfor-
mance dynamics. Conversely, some industrial scenar-
ios lack the data volume needed for effective anomaly-
based IDS. Lastly, the scarcity of authentic IIoT datasets
and suitable testbeds casts doubt on the credibility of
proposed IDS frameworks.

Detection Methodology Employing behavioral analysis for threat detection in
the context of IIoT pose a significant challenge. There
are numerous cases where normal behavior occurs in-
frequently, and it’s crucial to accurately differentiate be-
tween transient faults and potential threats or anoma-
lies. Anomaly-based detection approaches frequently
struggle with rising or diminished sensitivity, particu-
larly when confronted with a growing range of diverse
behavioral patterns.

System Deployment The limited resources in IIoT environments constrain the
availability of resources for implementing efficient IDS
solutions.

Performance The vulnerability stemming from inadequately secured
IIoT communication protocols introduces an element of
unpredictability to the spectrum of cyber threats while
concurrently escalating the prevalence of false posi-
tive instances. Pursuing cost-effective IDS solutions in-
evitably impinges on the trade-off between accuracy
and real-time detection, manifesting as a pivotal concern
for IIoT security.

Security risks associated
with IDS

Source data must be protected during acquisition
and subsequent processing by IDS nodes. Privacy-
preserving techniques such as differential privacy have
adverse effects on detection performance. Adversarial
attacks, such as data poisoning and evasion attacks, un-
dermine IDS performance

TABLE 2.5: Research gaps for IDS Deployment in Industrial IoT.
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in resource-constrained and heterogeneous industrial systems without exposing data

to privacy issues. Furthermore, we have investigated differential privacy-enhanced

FL and related security issues by deploying a novel blockchain design scheme. Em-

pirical validation of our framework employs a novel industrial IoT dataset (Edge-IIoT

dataset) to demonstrate the efficiency and effectiveness of our framework in terms of

detection accuracy, computation overhead, and energy cost. The results demonstrate

that our proposed secure system can efficiently detect and identify industrial IIoT at-

tacks with high classification performance even when subjected to distinct data distri-

bution modes (namely, Independent and Non-Independent Identically Distributed).

Our third contribution, detailed in Chapter 5 on page 85, presents a further inves-

tigation into the efficiency and robustness of IDS-based security in the IIoT. Specifi-

cally, we proposed a novel Distributed Learning and Deep Generative Model-Based

Intrusion Detection Technique. Within this paradigm, we addressed robust optimiza-

tion against zero-days and adversarial attacks and the challenges related to imbal-

anced and highly non-IID distributed data. Furthermore, we investigated differential

privacy-enhanced distributed learning against model performance degradation. Our

empirical validation on the same dataset demonstrated improved efficiency and reli-

ability against zero-day cyber threats.

These contributions consequently contribute to the continued growth and advance-

ment of the IIoT security landscape. The outcomes of our research have the potential

to enhance the overall efficiency and reliability of IDS-oriented security within the

domain of IIoT.of critical industrial systems.

2.6 Chapter Summary

This chapter aims to comprehend the fundamental concept of an IDS-oriented secu-

rity solution for IoT-enabled critical industrial infrastructure. The discourse unfolds

by investigating the Industrial IoT architecture, its vulnerability to threat models, and
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the associated security requirements. Subsequently, an in-depth review of adaptive

IDS implementation within the context of Industrial IoT is conducted.
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CHAPTER 3

FEDERATED LEARNING FOR ANDROID MALWARE

DETECTION

”If you think technology can solve your security problems, then you don’t

understand the problems and you don’t understand the technology ”

— Bruce Schneier

3.1 Introduction

Android is a popular open-source operating system with extensive traction in indus-

trial IoT deployments due to its ability to enhance convenience and operational effi-

ciency [88, 89]. However, this widespread adoption has inadvertently rendered these

systems attractive targets for cybercriminals. This heightened appeal arises from the

fact that industrial systems house valuable assets and store sensitive information es-

sential for the seamless functioning of operational technology. Consequently, mali-

cious actors are increasingly drawn to the potential of planting their malicious apps

to exploit vulnerabilities in Android systems, spread through networks, and conduct

devastating cyber attacks and privacy intrusions over a large network of connected

devices.
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This chapter introduces a novel, privacy-preserving, cost-effective, and efficient

approach to deep-learning-based malware detection, employing the emerging Feder-

ated Learning (FL) paradigm and network analysis. Specifically, we propose Feder-

ated Convolutional Neural Networks (FedCNN) to detect several types of malware

based on abnormal network behavior. By leveraging FL and network traffic data, this

methodology addresses computational overhead and privacy considerations, miti-

gating large-scale and sophisticated malware attacks that could undermine Industry

5.0’s core principles.

The remainder of this chapter is organized as follows: Section 3.2 provides an

overview of malware detection strategies. Section 3.3 details the development and

experimentation of the proposed FedCNN model for malware detection, including

data processing, training methodologies, and performance evaluation. Finally, Sec-

tion 3.4 presents the results and discussion on the proposed model’s efficacy in de-

tecting Android malware, compared with conventional centralized methods in terms

of computation cost and privacy protection.

3.2 Malware Detection Strategies

Malware Analysis Techniques

Static Analysis Dynamic Analysis

Cloud-based

Host-based

Machine Learning

Deep Learning
Application
Behaviour

Network
Behaviour

Malware Detection Strategy

 Parse Application

 source code

Placement strategy  Detection Approach

a) Taxonomy of Malware analysis techniques for feature
extraction b) Taxonomy of Malware detection techniques

FIGURE 3.1: A Taxonomy of Malware Analysis Techniques and Detection
Strategies.

Several studies have been conducted to detect malware, generally encompassing

two key phases: malware analysis and detection, as demonstrated in Figure 3.1 [90].
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The former entails techniques for analysis and processing to facilitate detection. Static

analysis involves scrutinizing malware code without executing it, leveraging reverse

engineering methods. However, these techniques have demonstrated efficacy against

known established malware; they fall short against novel variants and can be eas-

ily evaded by obfuscation techniques. Dynamic analysis, on the other hand, entails

observing and analyzing the runtime attributes of malware applications during code

execution. This approach assesses behaviors to decipher malware functionality, in-

cluding information flow tracking, function call monitoring, and instruction tracing

[91]. Virtual environments and emulators are commonly employed for dynamic anal-

ysis and data collection. Although this methodology effectively identifies unknown

malware, it is time-intensive and demands substantial computational resources. Dy-

namic analysis has also been extended to network traffic to identify malware that

executes attacks via network pathways towards remote targets [92]. Network traffic

traces can be detected by analyzing behavioral patterns in such cases.

Figure 3.1.b depicts malware detection strategies. This refers to the placement

strategy and detection approach for detecting and identifying malware. The place-

ment strategy determines whether the system is implemented on a host or in the

cloud, thereby determining its efficiency against complex code variants while uti-

lizing limited computational resources. Malware detection approaches describe the

methods and algorithms employed to detect and identify malware. However, their

efficiency relies on the availability of extensive and diverse datasets. Data privacy

concerns and shortages pose significant challenges when deploying cloud-based and

deep-learning-based security solutions.

Several studies on Android malware detection have been proposed and discussed

[92, 93, 94, 95, 96], encompassing a range of ML and DL approaches and utilizing

various malware analysis techniques and corresponding features. However, the dis-

course has not extensively explored the use of DL for malware detection, explicitly

exploiting the predictability of network behavior. Moreover, several additional con-

straints have been identified but are not commonly addressed in these discussions,
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such as limitations in computing resources, insufficient training data availability, and

privacy concerns [3].

3.3 Model Development and Experiments

Our approach involves three main steps: selecting and processing relevant network

data, training Federated Convolutional Neural Networks (FedCNN) to detect mal-

ware, and evaluating the results of this approach considering various performance

metrics and settings.

3.3.1 Dataset Selection and Processing :

Deep-learning-based malware detection relies significantly on the quantity and qual-

ity of training data. Increased availability of high-quality data leads to higher ac-

curacy and improved results. For this study, we opted for the AAGM dataset (An-

droid Adware and General Malware), renowned for its diverse collection of malware

samples [97]. This dataset encompasses 1500 benign app samples and 400 malware

samples categorized into 10 families, comprising 5 adware and 5 general malware

families. To capture significant network traffic behavior, the authors deployed these

samples on actual smartphones and executed user-interaction scenarios. The dataset

includes 471,597 instances of benign behavior and 160,358 instances of malware be-

havior, accompanied by 80 network traffic features encompassing flow-based, time-

based, and packet-based attributes. These features were employed to differentiate

Android malware behavior from benign applications.

An essential step before training involves exploratory analysis and data prepro-

cessing on the selected dataset to address various issues. Initially, we eliminated

five null features, namely ’flow_urg’, ’furg_cnt,’ ’burg_cnt,’ ’flow_ece,’ ’flow_cwr,’

and recognized their potential adverse impact on model performance. Additionally,

four nearly null features were removed: ’bAvgBulkRate,’ ’bAvgBytesPerBulk,’ ’bAvg-

PacketsPerBulk,’ and ’std_idle.’ Subsequently, we pruned redundant instances and
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those with missing values. Following this, the data underwent normalization. The

dataset was then divided using the hold-out validation strategy; the dataset was then

divided, allocating 80% for training and 20% for testing. In the Federated Learning

(FDL) context, a noteworthy portion (80%) of the training data was further distributed

to participating clients.

Figure 3.2 illustrates the dataset class distribution after the preprocessing step,

utilizing the t-SNE technique [98]. The t-SNE technique is paramount in visualizing

high-dimensional data in lower-dimensional space. It is particularly useful for un-

derstanding the underlying structure and relationships within complex datasets, as it

aims to preserve the pairwise similarity between data points during the dimension-

ality reduction process. By applying t-SNE, we can gain insights into how the pre-

processing steps have impacted the dataset’s distribution and separability of classes.

(A) Train data visualization (B) Test data visualization

FIGURE 3.2: Exploring the High-Dimensional AAGM2017 Dataset Using
the t-SNE Technique [98].
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3.3.2 FedCNN for Malware Detection

Our detection methodology employed Convolutional Neural Networks (CNNs), a

significant and specialized deep learning approach for data processing. These net-

works use a unique architecture that consists of multiple convolutional layers strate-

gically crafted to extract essential spatial features that are crucial for accurate decision-

making by the model. These features are pivotal in enabling the model to make well-

informed decisions. A notable aspect of CNNs is their composition, which involves a

sequence of convolutional layers using a mathematical operation called convolution.

This operation allows the network to capture intricate patterns within the data ef-

fectively. Additionally, the network encompasses processing perceptron layers adept

at effectively managing extensive-scale malware attacks. Table 5.2 demonstrates our

CNN model architecture.

Our FedCNN approach harnesses the capabilities of CNNs in conjunction with

the decentralized nature of Federated Learning (FL), enabling collaborative model

training across distributed data sources while ensuring privacy protection. To address

this, we formulate the FL optimization problem as follows:

• Device Sampling : This involves selecting participating Devices from a dis-

tributed network, each with its own private local dataset. In this study, these

datasets were derived by sampling from the training set of the main dataset. We

ensured these sampled datasets were identically distributed (IID), preserving

the same feature vector. Typically, the selection process ensures client diversity

and representation, considering factors like data distribution, device capabili-

ties, and connectivity.

• Local Training : After device sampling, we proceed with local model training

using the selected clients and their corresponding resources, including data and

computational capabilities. The objective is to update the parameters of indi-

vidual models to minimize the local loss function associated with their data.
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Mathematically, for each client k, the local training seeks to find the optimal

model parameters θk that minimize the local loss Lk(θk):

θ∗k = arg min
θk
Lk(θk) (3.1)

= arg min
θk
− 1

Nk

Nk

∑
i=1

[yi log ( f (xi; θk)) + (1− yi) log (1− f (xi; θk))] (3.2)

where: xi denotes the input data sample, yi is the associated true label (0 as

Benign or 1 as Malware), f (xi; θk) is the model output with parameters θk for

input xi, and Nk signifies the count of data samples within client k’s local dataset.

During this phase, clients utilize their local data to update their models, captur-

ing domain-specific patterns and information.

• Model Aggregation : The central server initiates the model aggregation step fol-

lowing the local training phase. The objective is to combine the knowledge from

individual clients’ models to create a global model that benefits from collective

intelligence while preserving data privacy. This involves weighted averaging of

the model parameters from the selected clients. The aggregation process can be

mathematically expressed as:

θglobal =
K

∑
k=1

Nk
N
· θ∗k

Where overall loss across all clients’ datasets can be expressed as:

min
θ

K

∑
k=1

Nk
N
· Lk(θ)

Here, Nk represents the size of the dataset at client k, and N is the total number

of samples across all clients. The resulting global model, θglobal, represents a

consensus reached by aggregating the insights from diverse sources.
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Figure 3.3 illustrates the organizational chart of our FDL-based Android malware

detection method, which comprises the following steps:

1. The Server takes the lead by initializing the global model’s architecture along

with essential global parameters, including the learning rate, the local training

epochs, and the local batch size

2. The server transmits this comprehensive information to pre-selected clients. These

clients are chosen based on their resource availability and the presence of suffi-

cient training data. The interaction between the server and the clients operates

asynchronously.

3. Each client independently engages in multiple local training epochs using the

provided model. Subsequently, the client computes updates specific to its dataset

and training progress. These computed updates, representing the new model

parameters, are then returned to the server.

4. Having gathered these updates, the server proceeds to update the global model.

Once this update is completed, the cycle repeats, encompassing steps 2, 3, and

4; as an iterative process, the global model converges to an optimal state.

5. The server evaluates and maintains the final version of the global model for

future optimized models intended for future deployment in malware detection.

Based on its individual performance, each participating client independently

preserves any relevant global model states throughout the FedCNN training

process.

3.4 Results and Discussion

The efficacy of the presented FedCNN approach for Android malware detection was

systematically evaluated within the controlled environment of Google Colaboratory,
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FIGURE 3.3: Flowchart: FDL-Based Detection of Android Malware.

using PyTorch library and GPU hardware accelerator for enhanced computational

efficiency. A detailed overview of our experimental setup is outlined in Table 5.2.

To validate the performance of the proposed FedCNN approach, a comparative

analysis was conducted against a centralized alternative. This alternative employed

the same CNN model architecture and training configurations. A series of experi-

ments were thoroughly conducted, during which hyper-parameters were fine-tuned

to ensure a detection model characterized by precision and generalization.

In the presented comparative analysis (Table 3.2), we examine the performance of

our proposed FedCNN for Android malware detection method in contrast to other

relevant works. The assessment is carried out on the AAGM2017 dataset, employing

key evaluation metrics such as Accuracy (Acc), Precision (Pr), Recall, F1-score, and

Support. Notably, the evaluation settings in the related works differed markedly, en-

compassing distinct validation strategies and variations in the distribution of train-

ing and test samples (Support). Considering the centralized CNN model, the re-

sults demonstrate varying levels of performance. In this regard, the centralized CNN

achieved an accuracy of 84% for malware detection, with precision and recall values
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Subject Parameters Values

CNN()

Conv1d-1 [1, 64, 70]
Conv1d-2 [1, 32, 70]
Conv1d-3 [1, 16, 70]
Linear-4 [1, 32]
Linear-5 [1, 2]

Learning rate η 0.001
Loss function CrossEntropyLoss

Activation function ReLU
Batch size 126

Classification function SoftMax

FedL()

Clients Sets [10, 20, 40]
Data Distribution IID

Local epochs [2, 3]
Total rounds 30

Local Batch size 32

TABLE 3.1: Experimental Settings for FedCNN.

Reference Classes Acc Pr Recall F1-score Support
lashkari et al. 2018 [97] Benign + Mal 0.91 0.91 N/A N/A N/A

Benign N/a 0.95 8000andresini et al. 2021 [99] Malware 0.89 0.66 0.71 2000
Benign N/Aacharya et al. 2022 [100] Malware N/A 0.97 0.96 0.97 1915
Benign 0.87 0.89 0.88 41877Centralized

Cnn Malware 0.84 0.78 0.76 0.77 22408
Benign 0.85 0.91 0.88 41877Proposed FedCNN

approach Malware 0.837 0.80 0.71 0.75 22408
Acc: Accuracy, Pr: Precision, Support : Number of test instances.

TABLE 3.2: Performance Comparison Between Our Proposed Detection
Method (FedCNN) and Other Related Approaches Using the AAGM2017

Dataset.

Total clients Round one Round 10
Best client Worst client Global model Best client Worst client Global model

K = 10 68.17 66.31 60.95 83.07 82.16 83.74
K = 20 69.01 66.45 68.27 82.14 81.74 82.27
K = 40 65.79 63.6 65.34 78.05 76.38 78.47

TABLE 3.3: Results of Accuracy Evaluation for the Proposed FedCNN
Approach.

of 78% and 76%, respectively, resulting in an F1-score of 0.77%. Similarly, for the pro-

posed FedCNN approach, the accuracy reached 83.7%, with a precision of 80% and
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CHAPTER 2

LITERATURE REVIEW

”The art of war teaches us to rely not on the likelihood of the enemy’s not

coming, but on our own readiness to receive him; not on the chance of his not

attacking, but rather on the fact that we have made our position unassailable”

— Sun Tzu, The art of war

Benign Malware

Benign 37949 3928

Malware 6530 15878

(A) Using the centralized CNN

Chapter 2. Literature review 3

Benign Malware

Benign 37270 4607

Malware 5377 17031

(B) Using proposed FedCNN

FIGURE 3.5: Confusion Matrix: Insights and Outcomes.

a recall of 71%, yielding an F1-score of 75%. Furthermore, FedCNN effectively clas-

sified instances of the "Benign" class, corresponding to normal applications, with a

recall rate of 92%. In contrast, the "Malware" class, including all 10 Android malware

families, achieved a detection rate of 71%.

The results highlight the efficiency of the FedCNN approach, as it achieves a per-

formance level nearly on par with the centralized approach. Nonetheless, it’s worth

noting that the outcomes of both detection methodologies fall short of meeting the

requirements for real-world application. This is primarily attributed to the elevated



Chapter 3. Federated Learning for Android Malware Detection 49

incidence of false positives and false negatives, as depicted in Figure 3.5.

Figure 3.4 compares model accuracy, loss, and time complexity across distinct

training approaches. The time complexity analysis highlights the effectiveness of

the proposed FedCNN approach. However, it’s noteworthy that with an increased

number of participating clients, the global model’s accuracy declined from 83.74% to

78.47%, as illustrated in Table 3.3.

3.5 Chapter Summary

This chapter examines the effectiveness of an FL paradigm and network behavior

analysis for malware detection, focusing on privacy preservation, computation cost,

and detection efficiency. The analysis employed network layer features of malware

samples to identify variations from their normal behavior. Experimental results demon-

strated the efficiency and effectiveness of the proposed FL using a CNN approach

compared with conventional centralized methods in terms of computation cost and

privacy protection. However, the detection efficiency was inadequate when consid-

ering only network-based statistical features. Additionally, this analysis is confined

to sets of malware that require network connectivity and exhibit abnormal network

behavior.

Future research in malware detection could incorporate diverse sources of mal-

ware behavior data and ensemble learning to enhance detection capacity. In contrast,

our primary focus centers on evaluating our proposed federated learning-based IDS

methodology using recent Industrial IoT datasets while addressing other significant

challenges and the associated security concerns, as discussed in Section 2.5.

Therefore, the next chapter will refine this approach by introducing an improved

privacy-preserving FL, incorporating non-identically distributed data (non-iid), and

establishing a secure IDS framework to counter the associated security risks.
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CHAPTER 4

PPSS: PRIVACY-PRESERVING SECURE SYSTEM FOR

INDUSTRIAL IOTS

"It is a capital mistake to theorize before one has data. Insensibly one begins to

twist facts to suit theories, instead of theories to suit facts"

— Sherlock Holmes

4.1 Introduction

Drawing upon the insights acquired from the preceding chapter, FL-based IDS of-

fers enhanced computation efficiency in deploying ML and DL approaches, outper-

forming centralized methods without compromising sensitive data to privacy issues.

However, FL trains the models locally and transfers the updates to the centralized

server for aggregation. Consequently, intruders or untrusted participants can com-

promise the quality of model updates and data privacy by exploiting inference attacks

[101]. Furthermore, the centralized aggregation point presents a significant vulnera-

bility as it functions as a single point of failure. This has given rise to new challenges,

including establishing a reliable framework for secure aggregation and validation of
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uploaded updates, addressing issues of system unreliability, and ensuring the safe-

guarding of privacy during the model uploading process.

To address these challenges, this chapter introduces an innovative and privacy-

preserving secure framework named PPSS, which leverages the potential of blockchain

technology by implementing a lightweight consensus protocol to optimize and se-

cure the process of FL across untrusted participants. The effectiveness of PPSS is

thoroughly assessed using a recent Industrial cyber security dataset (Edge-IIoT). A

comprehensive set of key metrics, including detection rate, accuracy, computational

efficiency, and energy consumption, is employed to evaluate the framework. Further-

more, this evaluation encompasses both non-IID and IID data distribution modes.

The remainder sections of this chapter are organized as follows: Section 4.2 pro-

vides an overview of the subject matter and the design objectives of PPSS. Section 4.3

discusses the development and experimental aspects of the PPSS framework, exam-

ining its components and algorithmic insights. It covers critical topics like component

interaction, blockchain-enabled federated learning, secure communication, key man-

agement, proof of federated deep learning, and blockchain security analysis. Section

4.3.3 discusses PPSS-enabled cyber threat detection, including dataset selection, meth-

ods, and experimental settings. Section 4.4 analyzes PPSS performance across various

scenarios, including class-specific, data distribution, global model accuracy, conver-

gence time, differential privacy training, energy cost, and blockchain performance.

Finally, Section 4.5 summarizes the chapter, providing a comprehensive overview of

key findings and insights on the Privacy-Preserving Secure System for Industrial IoT

and its multifaceted aspects.

4.2 Design Objectives of PPSS

The Industrial IoT brings numerous benefits to industries, such as increased efficiency,

predictive maintenance, and real-time monitoring. However, it also introduces signif-

icant security risks and data privacy challenges. Industrial organizations must adopt
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appropriate security mechanisms and strategies to effectively mitigate these potential

cyber threats. Collaborating to implement a security monitoring mechanism like an

IDS benefits industrial organizations by fostering shared threat intelligence, reducing

costs, improving incident response, and collectively enhancing the security posture

of the industry as a whole. In this context, cross-silo FL has emerged as a promis-

ing approach to address the unique challenges posed by the IIoT, including resource

constraints and data privacy issues. However, the potential for malicious activity

introduces concerns of model poisoning, privacy breaches, and intellectual property

theft, while unintended privacy leakage can occur during aggregation. Secure aggre-

gation protocols, model verification mechanisms, and trust-based systems must be

employed to address these issues.
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FIGURE 4.1: PPSS: An Overview of Our Proposed Blockchain and Feder-
ated Learning for Industrial IoT.

By navigating these challenges effectively, we designed a privacy-preserving se-

cure system named PPSS for collaborative IDS across industrial organizations. Our

PPSS security framework employs permissioned blockchain as a trust framework

that verifies the identities of participating organizations to secure FL and multi-party
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computation. Leveraging blockchain-distributed architecture, data is encrypted and

transmitted using authenticated and private peer-to-peer (P2P) channels, allowing

each organization to retain control over its data. This prevents unauthorized access,

even if communication channels are compromised. Furthermore, the blockchain’s

design is customized to facilitate model sharing among participants, using cryptocur-

rency to reward and host qualified models and to encourage participant involvement

and engagement in this collaborative environment.

PPSS incorporates two distinct federated stages for model aggregation to foster

cross-silo FL-based IDS. The initial stage involves aggregating models across devices

within an organization. Subsequently, the second stage occurs between participants,

facilitated by the blockchain’s utilization of model-containing blocks named the Learning-

Chain. This enables the secure exchange of threat intelligence, enhancing the collective

ability to detect and respond to emerging cyber threats.

At the core of PPSS, we incorporate a validation process for local training results,

acting as a consensus mechanism within the blockchain. This mechanism, termed

Proof-of-Federated deep learning (PoFDL), enhances privacy, reliability, and trans-

parency. Figure 4.1 demonstrates the blockchain-based learning process of the pro-

posed PPSS security framework, which enables secure communication and validation

of the model updates. The chart illustrates how the organizations collaborate and con-

tribute to the federated learning process while maintaining privacy and security :

1. Initiating Learning Task: Task publishers propose the learning process by creat-

ing a Smart Contract (SC) that defines the learning task (initial model, rewards,

terms and conditions).

2. Investor Applications: Investors interested in participating submit applications

to undertake specific tasks by providing proof of eligibility.

3. Allocation of Terms: Administrators review applications and assign predefined

terms and conditions to eligible investors.
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4. Delegated Federated Learning (FL): Selected investors become delegated par-

ticipants and initiate Federated Learning (FL) tasks. Importantly, FL tasks are

carried out without sharing raw data.

5. Prover Supervision: Each investor, acting as a Prover, moderates the FL task for

their respective devices. They ensure the integrity of aggregation, transaction

verification, and block generation processes.

6. Global Update Transmission: Provers share global updates with their devices,

prompting subsequent rounds of federation. The focus here is on continuing the

process, not yet on resolving the Proof-of-Federated deep learning (PoFDL).

7. PoFDL Resolution and Block Generation: The PoFDL challenge is resolved

once conditions are met. The Provers create a new block containing the validated

information and broadcast it to Validators, whose role is to validate the block’s

contents and reach a consensus.

8. Learning-Chain Inclusion: Upon consensus, the validated block becomes part

of the Learning-Chain, ensuring a secure and tamper-proof record of the learn-

ing process. Both Provers and Validators are rewarded proportionally for their

contributions. This mechanism encourages secure transfer learning among all

participants.

It’s worth noting that the task publishers and the Provers may either be intrinsic com-

ponents of the blockchain system or external entities. In contrast, the Validators repre-

sent the trusted blockchain maintainers.

4.3 Framework Development and Experiments

This section presents the design scheme of our proposed PPSS security model. Fig-

ure 4.2 showcases the workflow of PPSS, illustrating its application in collaborative

model training within Industrial IoT networks. The primary objective of this system
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is to facilitate the training of a DL model using a federated approach. This process

involves two distinct stages: local aggregation and global aggregation, referred to as

off-chain and learning-chain aggregation. These stages are overseen by the Prover

and Validator nodes, respectively.

Validator nodes

a) Decentralized Federated learning b) Proposed Blockchain-enabled Federated learning

Aggregate

 clients updates
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FIGURE 4.2: PPSS Security Model for Industrial IoT Networks: Overview
of Architectural Framework and System Components.

Operating at the edge layer, Figure 4.2.a demonstrates the off-chain FL, which in-

volves local model training within each participating organization, overseen by au-

thorized representatives known as Provers (P). The aggregated local model that re-

sults from this process is then sent back to the clients for more communication rounds

if the model does not meet the criteria for global aggregation.

In contrast, the Learning-Chain operates within the fog layer and employs the permissioned-

blockchain technology to facilitate the sharing of models and updates among organi-

zations. The blockchain functions as a distributed ledger, recording model updates

in blocks encompassing parameters and additional information like the origin orga-

nization and timestamp. In this paradigm, Validator entities (V) play a pivotal role

as trusted maintainers of the Learning-Chain, ensuring the integrity of the in-chain

FL process as demonstrated in Figure 4.2.b. Furthermore, a consensus mechanism is
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implemented among V nodes to validate block data, ensuring coherence across the

blockchain’s distributed ledger. A detailed discussion about blockchain integration

in Section 4.3.2

This approach ensures the security and transparency of model updates, establish-

ing a trustworthy and auditable account of the federated learning process.

4.3.1 Overview of Component Interaction and Algorithmic Insights

Notation Description

C Gradient norm bound
I Identity matrix
D Local dataset
E Local training epochs
k Global security parameter
m Message
W Model weights
σ Digital signature
SC Smart Contract
shk Ephemeral symmetric key
Psk Prover secret key
P pk Prover public key
Csk Client secret key
Cpk Client public key
α Learning rate
φ Noise scale
(ε, δ) Privacy cost
g(xi) Gradient computed on xi
GM Global model
Txs Transactions building the global model
aggregate(.) Aggregate models by averaging (FedAvg)
SC.aggregate(.) Aggregate models using smart contract
Sign(.) Digital signature function
Veri f y(.) Verify digital signature function
Encrypt(.) Symmetric encryption function
Decrypt(.) Symmetric decryption function
Tx Transaction
Proof Performance metric (e.g., Accuracy)
TestSet Cross-validation dataset

TABLE 4.1: Notation for Algorithm Discussion.
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Algorithm 2: Secure Aggregation in PPSS.
1 Validator Nodes : Function validate_Blocks (Learning− Chain)
2 Validate submitted new model-containing blocks
3 Achieve consensus and add model-containing blocks to Learning-Chain

(refer to Algorithm 3)
4 Prover Nodes : Function offChain_FL (Learning− Chain, TestSet)
5 Initialize model W from Learning− Chain
6 for each round t = 1 to R do
7 St ← Random subset of clients k
8 m← Encrypt(W, shk)
9 for k ∈ St in parallel do

10 mt, σ← Edge_client (m, Sign(m,Psk))
11 if Verify(mt, σ) then
12 Wk

t+1 ← Decrypt(mt.wt, shk)

13 end
14 end
15 Wt+1 ← aggregate(W1

t+1, W2
t+1, . . . , Wk

t+1)

16 Proo f ← predict(Wt+1,TestSet)
17 if Proof ≥ Learning− Chain.Proo f then
18 GM, Txs← SC.aggregate(m1, m2, . . . , mk)
19 Submit new_Block(GM, Txs)
20 end
21 end
22 Edge-clients : Procedure local_Training (m, σ, Params)

Input: α, E, φ, C
Output: Privacy-preserved, signed, and encrypted model update

23 if Verify(m, σ) then
24 Wk ← Decrypt(m.w, shk)
25 end
26 for batch of samples Bj in D do
27 Compute gradient g
28 for i ∈ Bj do
29 Compute gj(xi)← ∂wjג(wj, xi)

30 Clip ǧ← g

31 ǧj(xi)←
gj(xi)

max(1,
‖gj(xi)‖2

C )

32 Add noise
33 ǧj ← 1

|B| ∑i(ǧj(xi) +N (0, φ2, C2I))
34 Descent
35 wi+1 ← wi − αǧj
36 end
37 end
38 m← Encrypt(WE, shk)
39 Send (m, Sign(m, Csk)) to corresponding Prover node
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Figure 4.2.a illustrates the procedural dynamics of blockchain-enabled decentral-

ized FL (DFL), demonstrating comprehensive interaction among components through-

out process interaction. Table 4.1 provides a comprehensive notation guide for algo-

rithmic discussions. Algorithm 2 demonstrates the operational framework for how

various entities interact to achieve secure model aggregation within the context of

DFL:

• Validator Nodes (V): As depicted in Function 1 of Algorithm 2, V nodes play

a pivotal role as trusted authorities, dedicated to ensuring the integrity of the

blockchain while facilitating the efficient storage of novel models within the

Learning-Chain. They rely on the PoFDL algorithm (Section 4.3.2.2) to attain con-

sensus regarding including new models. Once consensus is achieved, relevant

participants are promptly notified, thereby initiating the transfer learning pro-

cess by utilizing recently incorporated models. Moreover, the V nodes can also

take on additional responsibilities as provers, leveraging their inherent data and

computing resources to execute outstanding tasks.

• Prover nodes (P) : Function 4 of Algorithm 2 illustrates the role of P nodes

in orchestrating a decentralized FL (DFL) process and showcases P nodes’ dual

function of coordinating localized FL updates and underscoring their contribu-

tion to efficient collaborative learning and Learning-Chain integration. Through

iterative rounds, P nodes engage a subset of clients, encrypting and processing

their model updates. These updates are aggregated and used for prediction,

with P nodes checking if the predictive Proof meets a preset threshold. Upon

meeting this criterion, a smart contract aggregates the encrypted updates into a

global model, which is subsequently packaged into a new block for submission.

• Edge-clients : Function 22 of Algorithm 2 illustrates the role of Edge-clients in

contributing to secure, collaborative learning through sophisticated privacy-

preserving and local_Training techniques. The procedure includes input and

output specifications, verification and decryption, gradient computation and



Chapter 4. PPSS: Privacy-Preserving Secure System for Industrial IoTs 59

clipping, privacy-preserving gradient manipulation, parameter updating, and

secure encryption and transmission. Input parameters like α, E, φ, and C gen-

erate a privacy-ensured, signed, and encrypted model update. The procedure

guarantees the authenticity of the received encrypted model and decrypts it us-

ing the shared key "shk," resulting in the localized model "Wk."

Gradient computation and clipping occur for each batch of training samples,

yielding individual gradients for each data sample. The privacy-preserving

technique of gradient clipping involves scaling the gradient by a factor deter-

mined by the gradient norm bound C. To enhance privacy, Gaussian noise is

added to the clipped gradients, employing a zero-mean Gaussian distribution

with a variance of φ2 scaled by C2I. The aggregation of gradients is performed

by calculating the average of locally adjusted gradients across all samples in the

batch.

The process continues with the update of parameter weights using the aggre-

gated gradient ǧj, effectively updating the model’s weights as wi+1 = wi − αǧj.

Lastly, the model is encrypted using the encryption algorithm E and the shared

key ”shk”, after which the encrypted model is sent to the corresponding P node,

authenticated through the client’s private key.

Our proposed PPSS secure system presents a sophisticated framework combining

FL concepts and cryptographic principles to accomplish privacy-preserved, secure

model aggregation. By outlining responsibilities, maintaining validation consensus,

and prioritizing data privacy at every stage, PPSS serves as a promising strategy for

enhancing collaborative machine learning within decentralized networks while safe-

guarding the sensitive nature of individual data points.
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FIGURE 4.3: PPSS Learning-Chain Data Structure: Encapsulation of In-
formation within Blocks.

4.3.2 Blockchain-enabled Federated Learning

Figure 4.3 illustrates the core architecture of the PPSS Learning-Chain. Each block con-

tains essential components such as the Block Index and Block Header (Hash, Times-

tamp, Proof, Previous Block). The Block Data section houses a Signature with the

client’s ID and block data, Transactions timestamped and hashed using registered

client IDs, and the Global Model. Building transactions for the global model are metic-

ulously time-stamped and linked to registered client IDs, enhancing transparency. A

cryptographic Signature fortifies data integrity. This data structure ensures secure,

accountable information storage in the PPSS framework.

In the Learning-Chain network model, P nodes possess digital identities and ac-

cess to the Learning-Chain for moderating local training and proposing new blocks to

V nodes for inclusion in the Learning-Chain. To accomplish this, P nodes utilize confi-

dential smart contracts to securely aggregate updates from their respective clients. As

elaborated in [102], this approach leverages Trusted Execution Environments (TEEs)

to ensure the aggregation process’s security against unauthorized node manipula-

tion. Then, P nodes generate blocks containing the approved model and necessary

information resulting from successful smart contract execution. Subsequently, these
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blocks are incorporated into the Learning-Chain during the subsequent global aggre-

gation phase.

During the global aggregation phase overseen by V nodes, blocks containing mod-

els, as provided by P nodes, are incorporated into the Learning-Chain. This inclusion

is accomplished through a consensus mechanism named Proof-of-Federated Deep

Learning (PoFDL, Section 4.3.2.2). Once integrated, any authorized participant with

access to the blockchain can request the latest model stored within the Learning-Chain.

This model can then be utilized for deployment or further refinement purposes.

4.3.2.1 Secure communication and Key management To establish secure end-to-

end communication between proposed PPSS system nodes, we propose a combina-

tion of asymmetric and symmetric encryption methods. AES is used for data encryp-

tion with a shared ephemeral key, while RSA handles authentication using private-

public key pairs. A central entity, the "Trust Authority" (A), manages the key genera-

tion, distributing public keys as identities and retaining private keys. In the second-

stage aggregation, A establishes a secure AES key between the P and V nodes. In the

first stage, P nodes secure communication among corresponding edge clients using

AES-based data encryption. This comprehensive approach safeguards the Learning-

Chain’s integrity, protecting transmitted models from eavesdropping and cyber threats.

The establishment of Learning-Chain framework consists of the following algo-

rithms:

• PSetup(1k): This algorithm takes 1k where k is the security parameter of the

system and returns the description of bilinear groups E = (p, G1, G2, GT, e).

• KeyGen(E): This algorithm selects two generators g1 ∈ G1 and g2 ∈ G2 with a

random scalar x ← Zp. It produces a public/private key pair (pki, ski) for the

party invoking it, where pki = (g1, g2, X̃, z), X̃ ← gx
1 , z← e(g1, g2), and ski = x.

• KeyAgGen(E ,A): This algorithm selects a sequence of public keys A and then

produces an aggregate public/private key pair (Apki,Aski).
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• Sign(ski, m): This signature algorithm takes a message m ∈ [WR, TS, AUX], a

private key ski, and produces a signature σ ← g1/(x+m)
1 , where AUX includes

the training information (e.g., hyper-parameters), TS is an optional collection of

test data samples to evaluate model updates, and WR is a collection of interme-

diate model weights registered during the training process.

• Veri f (m, pubi, σ): This verification algorithm takes a signature σ, a message m ∈

[WR, TS, AUX], and a public key pubi. The algorithm tests e(σ, X̃ · gm
2 ) = z and

returns true or false.

Definition 1 (Learning-Chain correctness). Let O be a t-Learning-Chain scheme ini-

tialized with E ← PSetup(1k), KeyGen(E), and KeyAgGen(E ,A), where E = (p, G1

, G2, GT, e). Let (pk1, sk1), . . . , (pki, ski) be a sequence of keys generated via KeyGen(E).

Let (Apki,Aski) be an aggregate public/private key pair generated via KeyAgGen(E ,A).

Let m ∈ [WR, TS, AUX] be a message, and let (pk1, σ1), . . . , (pki, σi) be any sequence

of key/signature pairs, where σ ← g1/(x+m)
1 . The O scheme is valid if, for every

message and sequence, the following criteria are satisfied:

• When the Veri f (m, pubi, σi) algorithm tests e(σi, X̃ · gm
2 ) = z, the result is true for

all i.

The integration of Learning-Chain with FL comprises four distinct phases: 1) Ini-

tialization phase, 2) agreement phase, 3) Model-Containing Block Generation Phase,

and 4) PoFDL) Consensus Enabling Phase.

• Initialization phase : This involves a process where the Trust authority (A)

registers various types of nodes within the system: V nodes, which are trusted

parties capable of validating and adding new blocks to the system; P nodes,

which have limited capabilities and can only query the Learning-Chain and cre-

ate new blocks; and Edge-clients owned by P nodes, serving as model trainers

without querying capabilities. Each entity is provided a unique ID for authen-

tication and a security parameter k for key generation. Additionally, P nodes



Chapter 4. PPSS: Privacy-Preserving Secure System for Industrial IoTs 63

receive the initial model state W0, learning parameters, and a data partition for

constructing the Proof of Federated Learning (PoFDL) from the "Learning-Chain.

Key generation operations, including KeyGen(E) → (pki, ski) for V nodes and

Edge-clients and KeyAgGen(E ,A)→ (Apki,Aski) for P nodes using Edge-clients

public keys, are performed. Furthermore, it’s important to note that P nodes

risk losing their credentials and permissions if they fail to submit qualified mod-

els according to smart contract conditions.

• Agreement phase: When a participant publishes a learning task by provid-

ing the initial information and conditions (i.e., initial model state W0, labeled

test_dataset TestSet, parameters) for P nodes who want to join the federated

learning task. P must provide proof of eligibility, such as training performance

using its resources, to adhere to the smart contract terms to contribute to the

Learning-Chain. The selected eligible P nodes must register all corresponding

Edge-clients to ensure authentication.

• Model-Containing Block Generation Phase: A Prover P generates a block

with corresponding Edge-clients’ updates. These updates are verified using the

tamper-proof ledger of the Learning-Chain as a reference to identify malicious

clients. Only valid updates are encapsulated as transactions (Tx). Given two dif-

ferent hash functions: H1 : Θ× {0, 1} → {0, 1} and H2 : {0, 1} × {0, 1}∗ → Ω.

Given a secret key xi, yi ∈ Z∗p and a block Bloci ∈ {0, 1}∗, P picks: g1 ∈ G1,

a random number ri ∈ Z∗p and computes σi = H1(g(xi+Bloci+yi+ri)
−1

1 ) ∈ {0, 1}.

Then P computes bi = H2(σi, Bloci, ri) ∈ Ω and sets the time intervals of a block

generation as T. The signature of a block Bloci is (σi, bi, ri). Finally, P broadcasts

transaction data combined with the signature to the blockchain V nodes.

• PoFDL Consensus Enabling Phase: discussed in the following section 4.3.2.2

4.3.2.2 Proof of Federated Deep Learning for Consensus Establishment : Inspired

by the Proof-of-Authority (PoA) consensus mechanism, we develop the PoFDL to
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complete verification and add new blocks to the Learning-Chain. However, in contrast

to relying solely on pre-selected reputable nodes, we empower each P to become a V

node in the PoFDL by staking a deposit of cryptocurrency or staking their reputation.

This approach enhances trust levels among participants and strengthens blockchain

immutability. Algorithm 3 describes PoFDL consensus-driven procedures, whereby

a requisite number of V nodes confirm the validity of added blocks.

Specifically, V nodes maintain the Learning-Chain by adding new blocks. After

a P generates a new block, it submits it to the corresponding mining authority for

verification. This authority operates as the "Leader" for the subsequent block in the

Learning-Chain. To equitably distribute the responsibility of block creation among

validators, PoFDL implements a time-based mining rotation scheme, ensuring the

selection of a single elected Leader at each time-step, as specified by the smart contract

[103]. If the current leader fails to transmit a block within the allotted time, they must

submit an empty block to uphold their reputation.

Figure 4.4 illustrates the consensus process and message exchanges for block pro-

posals based on PoFDL. The Leader broadcasts the received block to other validators

for block acceptance. Each (V) evaluates the received model-containing block, broad-

casts the results, and compares them with those of other validators to decide on block

acceptance. The block validation process and consensus mechanism are depicted in

Algorithm 3. The block is added to the chain if: (1) the Leader is the one anticipated

to be the current leader, and (2) at least N
2 + 1 Validators received the same block and

confirmed its acceptance.

In contrast to prior proof of learning concepts [104], our proposed PoFDL uses the

inference phase to validate learned models, ensuring computational efficiency and

data privacy. This approach involves:

(i) Each Prover P receives the same TestSet of labeled data to prove new models.

(ii) Each Validator Vi ∈ N is allocated a distinct partition of labeled data Di ∈

ValidationSet during the initialization phase.

The following relationships constrain these conditions:
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FIGURE 4.4: Consensus Process and Message Exchanges in PoFDL.

Algorithm 3: Validators: Validate and Add New Block.
1 Validators Function ValidateAndAddBlock(Block, previous_hash, D∗)

Input : Block, previous_hash, Dependent Validation data: D∗

Output: Add valid block: Success or Fail
2 for Validator V ∈ N do
3 if Sender is current Leader then
4 if Authenticated and Valid (Block.signatures) then
5 Valid_proo f ← predict(Block.model, D∗)
6 if Average(Valid_proo f , Block.Proof) ≥ Block[previous_hash].Proof

then
7 V Broadcast m(Block.hash, Success) to Validators

8 else
9 Broadcast to all (Block.hash, Fail)

10 else
11 Broadcast to all (Block.hash, Fail)

12 if Each V ∈ N upon receiving at least N/2 + 1 m(Block.hash, Success) then
13 Reaches consensus and confirms adding full Block data to Leader
14 else
15 Sends a penalty to Leader

16 if Leader upon receiving at least N/2 + 1 Confirm adding (Block.hash) then
17 It stores the current block

TestSet∩ ValidationSet = ∅ (4.1)

ValidationSet = (D1, D2, . . . , DN) (4.2)

∀(Di)i∈I ⊂ ValidationSet; with Card I =
N
2

;
⋂
i∈I

Di = ∅ (4.3)
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To maintain integrity, at least N/2 validation data partitions are required to be

mutually exclusive. This requirement is to avoid fraudulent actions by Provers and

Byzantine nodes. As depicted in Figure 4.4, P functions as the current Leader node,

and if qualified, as V in subsequent rounds. The Leader proposes model-containing

blocks to V nodes. After evaluating and broadcasting results, the system reaches

consensus with at least N
2 + 1 agreeing V . Validated blocks are stored in the Learning-

Chain, and both Leader and P receive cryptocurrency rewards.

This innovative approach consensus safeguards against malicious activities, en-

hances efficiency, and guarantees the systematic incorporation of validated model

updates into the collaborative learning process.

4.3.2.3 Blockchain Security Analysis

1. Sybil attack: This attack undermines the decentralized nature of the network by

creating a large number of pseudonymous identities to gain influence. Then, the

attacker can manipulate consensus mechanisms or execute malicious actions by

leveraging their extensive control over these fake identities. To oppose these

nodes, our PPSS design only admits Prover nodes with positive reputations

earned by contributing positively to the learning environment. This ensures that

only trusted and reliable participants can participate in the federated learning

process.

2. Byzantine attacks: Referred to as Byzantine nodes, these entities intentionally

deviate from the established protocol to disrupt consensus mechanisms and

compromise the integrity of the blockchain. To prevent attacks, our PPSS de-

sign allows trusted Validator nodes to collaboratively detect malicious nodes

during their leadership using a voting mechanism. A leader node can be voted

as malicious and subsequently removed based on the following scenarios:

(i) failing to propose any blocks; (ii) overstepping the expected number of pro-

posed blocks (Denial of Service attacks); or (iii) presenting varying blocks to

different authorities.
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3. Model inversion and membership inference attacks: To mitigate these attacks,

especially in honest-but-curious scenarios, our PPSS framework incorporates a

differential privacy-enhanced training mechanism. By differentiating parame-

ter gradients of client models during training, our PPSS framework ensures that

sensitive information about individual data records cannot be inferred from the

model parameters. Furthermore, our framework employs encryption and au-

thentication mechanisms to protect model sharing from the public. This further

enhances the privacy and security of the FL, preventing unauthorized access to

the models and reducing the risk of inference attacks.

4. Model theft attacks: This pertains to the scenario where a consensus node

pilfers a trained model upon receipt for validation from other Provers, subse-

quently asserting ownership by re-broadcasting it to other consensus nodes, like

with a replay attack. To prevent these attacks, we impose two security mea-

sures. Firstly, we require that a Prover node incorporate updates from inter-

mediate clients into building transactions for the global model within the block

data (Figure 4.3). These transactions are provided with timestamps and hashed

using matching registered client IDs on the blockchain. Secondly, we require

that a Prover include a signature in the block data containing their ID and the

block data itself. This makes it difficult for an adversary to falsify block data and

rebroadcast it. Moreover, this approach alleviates the communication overhead

from messages between Prover nodes and Validator nodes during investiga-

tions.

By integrating these measures, the PPSS framework fortifies the security and in-

tegrity of the model-sharing process, rendering it resilient against various attack sce-

narios.
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4.3.3 PPSS-enabled Cyber Threat Detection

To safeguard industrial networks against large-scale and emergent cyber threats, such

as cloud security weaknesses exposing sensitive data, ransomware attacks encrypting

critical data, DDoS attacks causing operational disruptions, IoT device vulnerabili-

ties leading to unauthorized access, insider threats, and Advanced Persistent Threats

(APTs) maintaining stealthy network access and privacy breaches, we propose the

implementation of a two-tiered security approach. This approach combines the PPSS

framework with an anomaly and deep learning-based IDS, bolstering the network’s

overall security posture.

The PPSS framework serves not only to enhance privacy and security but also

facilitates a decentralized deployment of the IDS system. In this arrangement, detec-

tion nodes receive frequent updates of efficient and reliable detection models. These

models are trained across extensive networks with minimal cost. This improves the

scalability and efficiency of the IDS.

4.3.3.1 DataSet Selection and Processing: Our study employs the recently pro-

posed EdgeIIoTSet dataset for evaluation [33]. This dataset comprises a realistic repre-

sentation of Industrial IoT environments, a comprehensive feature set, diverse attack

scenarios, and suitability for FL-based IDS evaluation.

The following considerations illustrate why this dataset is an appropriate candi-

date for assessment of our proposed PPSS-enabled IDS :

1. Realistic Environment Representation : The dataset is specifically tailored for

IoT and IIoT security research. it was created by modeling and emulating ac-

tual industrial systems in real-world IIoT environments, imparting a realistic

representation.

2. Comprehensive Feature Set : The dataset encompasses extensive features from

diverse sources, including alerts, system resources, logs, and network traffic.

These features provide a rich source of information for training and enhancing
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an FL-based IDS. The dataset contains over 10 million normal records, 9 million

malicious, and 67 features. These records are collected from device and alert

logs across a network of seven interconnected layers, which include the cloud/-

fog computing layer, Blockchain layer, SDN layer, edge layer, and IoT/IIoT per-

ception layer. The dataset also covers a range of related protocols, including

industrial protocols like Modbus and MQTT.

3. Variety of Attacks : The dataset encompasses attacks relevant to IIoT connectiv-

ity protocols, systematically categorized into five threat categories as depicted

in Table 4.2. These threats encompass a wide range of 15 class attack types,

comprehensively representing the cybersecurity challenges in IoT and IIoT ap-

plications.

Attack Category Description

Malware Attacks These attacks involve the installation of backdoors or malicious
programs on IoT devices or edge servers. This category covers
attacks like Ransomware attacks and Backdoor attacks.

DoS/DDoS Attacks These attacks are intended to render the victim’s IoT edge server
inaccessible to legitimate requests. This category encompasses at-
tacks such as TCP SYN Flood DDoS attack, UDP flood DDoS at-
tack, HTTP flood DDoS attack, and ICMP flood DDoS attack.

Information Gathering These attacks involve the analysis of IoT data packets to identify
vulnerabilities in IoT devices and edge servers. This category en-
compasses attacks like Port Scanning, OS Fingerprinting, and Vul-
nerability Scanning Attacks.

Man-in-the-Middle These attacks involve the interception of communications be-
tween IoT devices and edge servers. This category includes at-
tacks such as ARP Spoofing attacks and DNS Spoofing attacks.

Injection Attacks These attacks involve sending malicious scripts to unsuspecting
users, allowing the attacker to gain access to sensitive information.
This category encompasses Cross-site Scripting (XSS) attacks and
SQL Injection.

TABLE 4.2: EdgeIIoTSet: Attack Categories and Descriptions.
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These alignments are with the focus of our research on an FL-based IDS for IIoT

as a reliable and representative dataset when evaluating IDS within the complex and

dynamic settings of IIoT applications.

The processing of the EdgeIIoTSet dataset involves detecting and rectifying cor-

rupt or inaccurate records by eliminating duplicates and missing values. Main flow

features, such as IP addresses, ports, timestamps, and payload information, are ex-

cluded. Furthermore, categorical variables undergo conversion into one-hot encoded

feature variables [33].

4.3.3.2 PPSS Detection Method : In our IDS detection methodology, we’ve chosen

anomaly-based detection. This method allows IDS to continuously monitor and cat-

egorize various behaviors, enabling timely identification of potential cyber threats.

Moreover, this method has proven effective in identifying unknown attacks, includ-

ing Zero-day attacks.

We leverage this method by employing convolutional neural networks (CNNs) as

the foundational detection module [105]. Within the domain of DL, CNNs occupy

a significant position as a distinctive model. Figure 4.5 depicts our proposed CNN

model adopted within the Privacy-Preserving Secure System (PPSS) framework. The

architecture of CNNs comprises interconnected convolutional layers that serve as in-

formation extraction modules. These layers employ learnable filters denoted as pa-

rameters W; these layers employ learnable filters denoted as W, applied to input data

X, resulting in feature maps F through convolution represented as F = W ∗ X. Subse-

quently, pooling operations reduce feature map dimensionality. For instance, the max

pooling is defined by :

Pmax(F)i,j = max
(m,n)∈Ri,j

Fm,n (4.4)

. After a convolutional layer with pooling and activation, denoted as :

Fout = σ(P(W ∗ Fin)) (4.5)
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CNNs effectively identify localized patterns, capturing intricate details often over-

looked by conventional neural networks. Additionally, CNNs incorporate fully con-

nected layers for flattened feature maps, making them well-suited to identify several

types of cyber attacks.
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FIGURE 4.5: Structure of the CNN Model Adopted by the PPSS Frame-
work.

4.3.3.3 Experimental Settings : The performance evaluation of the presented PPSS-

enabled cyber threat detection was systematically evaluated within the controlled

environment of Google Colaboratory, using the PyTorch library and Tesla-T4 GPU

hardware accelerator for enhanced computational efficiency. The experiments were

conducted in two distinct aggregation stages.

In the first stage, we instantiated localized Federated Learning (CFL) using mul-

tiple edge Provers, often called FL servers, each equipped with dedicated data re-

sources and clients. Several scenarios were explored within this stage, including

variations in the number of participating clients per Prover and the integration of

differential privacy training via DP-SGD. These explorations assessed the initial ag-

gregation phase’s performance when dealing with limited data resources and privacy

preservation concerns.
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Subsequently, in the second aggregation stage, we introduced the PPSS-enabled

decentralized FL (DFL) mechanism, leveraging the proposed PoFDL consensus mech-

anism (Section 4.3.2.2). This stage facilitated knowledge transfer among all partici-

pating Provers. During this phase, DFL executed a restricted federated aggregation

exclusively incorporating validated models stored within the Learning-Chain. The

evaluation encompassed assessing the global model’s performance, accounting for

different data distribution characteristics (namely IID/Non-IID) and exploring data

augmentation concerning the number of participating Provers.

Within the differential privacy settings, we employed the Opacus library [106] for

implementation, introducing a noise multiplier parameterized by (ε, δ) and imposing

a maximum gradient norm value of C = 1.2. Table 4.3 shows the experimental con-

figurations and learning parameters adopted in this study, while Tables 4.5 and 4.6

provide summaries of the evaluation outcomes for both localized and decentralized

(CFL, DFL) across diverse settings.

Various metrics were employed to evaluate the efficiency and effectiveness of IDS

(Intrusion Detection System) detection within CFL and DFL to assess the impact of

security constraints on the learning process. These metrics encompassed Accuracy,

Precision, Detection Rate, Time Complexity, and Energy Cost.

• Time Complexity: This metric represents the time complexity associated with

the convergence of the global model. It encompasses several key factors, in-

cluding the individual client’s training time, the computational overhead of the

model aggregation, and the time required for consensus inference under the

PoFDL. Notably, this calculation does not incorporate the computational costs

of secure communication and data transmission.

• Energy Cost: The term ’energy cost’ pertains to the energy consumption in-

curred during training the global model. It is quantified by the following ex-

pression [107]:
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Θ(e,N ,R) =
R
∑
r=1

N
∑
i=1

1{ni,r}(tni , eni) Kwh (4.6)

Here, e signifies the energy power consumption across N devices, R corresponds

to the total federated rounds, tni represents the wall clock time of a device ni

during round r, eni signifies the energy consumption of device ni during round

r, and 1{ni,r} serves as an indicator function assessing whether a device ni is

chosen for FL training during round r. It is important to note that ni can denote

either a client or a server. The energy cost is expressed in Kilowatt per hour

(Kwh) and is estimated using the Carbontracker library [108].

• Heterogeneity in data distribution : Experiments were conducted between In-

dependent and Identically Distributed (IID) and Non-Independent and Non-

Identically Distributed (Non-IID) data sets to evaluate training performance in

diverse data distributions. In the IID scenario, the training dataset was parti-

tioned into independent subsets with identical distributions, allocated to client

groups, and overseen by a Prover node. This strategy maintained data homo-

geneity among clients, ensuring they had a comparable dataset. In contrast, a

label partitioning approach was implemented in the Non-IID scenario, assign-

ing each client group a randomly selected subset of labels associated with the

same feature vectors in the training data. This setup assumed each Prover node

had partial knowledge of the entire set of classes within the problem. The Non-

IID configuration introduced data heterogeneity among clients, deviating from

the uniformity observed in the IID scenario.

4.4 Results and Discussion

Numerous experiments have been systematically executed to assess the efficacy of the

proposed PPSS-enabled Decentralized Federated Learning (DFL) framework. These
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Parameter Values

Number of Clients [20, 40, 80]Federated Learning Global Rounds 15

Epsilon (ε) [0.1, 1, 2]
Delta (δ) 1.5e-5Differential Privacy
Gradient Norm Bound (C) 1.2

Model Architecture CNN() (Refer to Figure 4.5)
Learning Rate 0.01-0.001
Optimizer Adam
Local Batch Size 100
Local Epochs 1
Loss Function CrossEntropyLoss()

*

Learning Rate 0.01

TABLE 4.3: Experimental Configurations for PPSS-enabled IDS.

experiments were designed to investigate the influence of security constraints on the

FL learning process.

4.4.1 Class-Specific Performance Across Different Scenarios :

The examination of per-class performance using various models within the PPSS

framework reveals several key findings, Table 4.4.

Both CFL and PPSS-enabled Decentralized FL exhibit exceptional precision and

detection rates when identifying normal network traffic, underscoring their effective-

ness in benign traffic detection.

In the context of attack identification, both Non-IID and IID data training ap-

proaches yield similar results in terms of precision and detection rates for both CFL

and PPSS, demonstrating the efficient transfer learning enabled by federated aggre-

gation in Non-IID data scenarios. However, utilizing Differential Privacy training via

DP-SGD demonstrates a trade-off between privacy preservation and model perfor-

mance, negatively impacting attack detection, especially for less-represented classes.

PPSS excels over CFL in attack identification due to an additional aggregation phase

using exclusively qualified models stored in the Learning-Chain, reducing training it-

erations. Nevertheless, certain attack classes, such as Fingerprinting and Ransomware,
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IID Non-IID
Metrics Precision % Detection rate% Precision% Detection rate% SupportClasses Settings CFL PPSS CFL PPSS CFL PPSS CFL PPSS
No-DP 100 100 100 100 100 100 100 100Normal DP 100 100 100 100 100 100 100 100 323129

No-DP 72 74 90 89 68 76 95 88Backdoor DP 72 72 89 89 40 00 92 00 4972

No-DP 93 94 85 85 94 94 85 85Vulnerability_scan DP 93 93 85 77 93 93 84 84 10022

No-DP 100 100 100 100 100 100 97 100DDoS_ICMP DP 100 94 97 100 100 90 69 100 23287

No-DP 43 100 83 07 100 10 07 07Password DP 14 36 01 100 00 00 00 00 10031

No-DP 65 65 09 09 29 65 92 09Port_Scanning DP 00 00 00 00 32 00 10 00 4513

No-DP 98 98 100 100 98 98 100 100DDoS_UDP DP 93 100 100 99 58 98 100 100 22007

No-DP 59 57 39 37 31 100 83 15Uploading DP 00 100 00 00 00 00 00 00 7527

No-DP 71 70 99 99 71 75 97 94DDoS_HTTP DP 70 67 99 99 70 70 98 99 9982

No-DP 54 41 17 90 42 39 28 100SQL_injection DP 37 00 98 00 37 37 100 100 10241

No-DP 00 00 00 00 00 77 00 14Ransomware DP 00 00 00 00 00 00 00 00 2185

No-DP 69 68 100 100 00 69 00 100DDoS_TCP DP 37 68 100 100 00 53 00 100 10012

No-DP 92 100 05 02 65 52 10 28XSS DP 00 100 00 00 33 00 00 00 3183

No-DP 100 100 100 93 100 100 100 93MITM DP 00 00 00 00 00 00 00 00 80

No-DP 00 00 00 00 13 00 57 00Fingerprinting DP 00 00 00 00 00 00 00 00 200

CFL : Centralized FL IDS; PPSS : PPSS-enabled decentralized FL IDS;
No-DP : No differentially private training; DP : with differentially private training;

Support : number of test samples; IID, Non-IID : data distribution

TABLE 4.4: Per-class performance using different models.

are prone to misclassification, emphasizing the limitations of transfer learning in cases

of data insufficiency, notably within the FL framework.

These results underscore the PPSS framework’s efficacy in normal traffic detection

and attack identification while shedding light on the nuanced influence of differential

privacy and the constraints of transfer learning in specific scenarios.
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4.4.2 Evaluation Results of PPSS under IID Data Distribution :

Table 4.5 presents a comparative analysis of global model accuracies within the PPSS

framework across various configurations, including client distribution and differen-

tial privacy settings. Test accuracy was used to assess Prover’s performance.

In IID data distribution, the best Prover accuracy reaches 93.71% Expanding the

Prover count to six, the best Prover accuracy attains 93.83% in the IID mode, and the

global model accuracy reaches 93.98% with K = 20. In differential privacy settings,

the best Prover accuracy is 93.46% with K = 40, while the global model accuracy

achieves 93.72% at K = 80.

Finally, with eight Provers contributing to global model updates, the best Prover

accuracy reaches 93.86% at K = 20, and the global model accuracy attains 94.01%

with K = 40 in the IID scenario. However, under differential privacy constraints, the

best Prover accuracy stands at 93%, with the worst at 90.92%.

These findings offer valuable insights into the performance of the PPSS frame-

work across various settings, highlighting the influence of Prover count, differential

privacy, and data distribution on model accuracy.

4.4.3 Evaluation Results of PPSS under NonIID Data Distribution :

Similarly, Table 4.6 compares global model accuracies within the proposed PPSS frame-

work under NonIID Data Distribution. The best Prover accuracy attains 92.45% at a

hyperparameter value of K = 80, while the worst Prover accuracy registers at 81.36%

with K = 40. The global model achieves an accuracy of 92.52% at K = 80 when

subjected to differential privacy constraints.

Expanding the Prover count to six, the best Prover accuracy achieves 93.27% in

the Non-IID mode, with the worst accuracy declining to 83.22% at K = 20. The global

model exhibits an accuracy of 93.75% with K = 40. In differential privacy, the best

Prover accuracy is 92.11%
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FIGURE 4.6: Temporal Evolution of Global Model Accuracy with Varying
Numbers of Provers and Clients in DP-CFL and DP-PPSS.

With eight Provers contributing to global model updates, the best Prover accuracy

attains 93.40% at K = 80, while the global model’s accuracy reaches 93.74% at K = 20

within the Non-IID scenario. In differential privacy settings, the best Prover accuracy

is 91.71%, with the worst at 80.84%. The global model’s performance in this scenario

reaches an accuracy 92.63% at K = 80.

Overall, we demonstrate that the number of participating clients had a minimal

impact on the accuracy of the global model. Moreover, we can demonstrate that in-

corporating a certain number of Provers can alleviate the adverse effects of differential

privacy on model accuracy.
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Provers Clients 1st round 15th round

Without DP With DP Without DP With DP

B W G B W G B W G B W G

K = 20 90.12 86.43 90.12 75.44 73.21 75.44 93.44 92.80 93.99 92.65 91.71 93.40
K = 40 90.03 89.71 90.03 73.21 73.21 73.21 93.71 93.35 93.85 91.66 90.97 92.26P = 3
K = 80 87.89 85.49 87.89 73.21 73.21 73.21 93.70 93.67 93.90 92.38 90.31 92.09

K = 20 92.81 78.92 92.81 78.57 36.75 78.57 93.83 93.55 93,98 89.30 82.76 91.47
K = 40 91.02 83.12 91.02 73.21 73.21 73.21 93.79 93.42 93.97 93.46 91.30 93.46P = 6
K = 80 90.94 88.13 90.94 73.21 73.21 73.21 93.80 93.67 93.97 93.14 92.01 93.72

K = 20 93.21 55.39 93.21 86.98 73.21 86.98 93.86 75.26 93.92 90.92 82.46 92.23
K = 40 91.30 75.47 91.30 75.18 73.21 75.18 93.84 93.20 94.01 93.00 88.33 93.36P = 8
K = 80 93.25 81.93 93.25 73.21 73.21 73.21 93.84 93.33 93.90 91.98 90.04 92.90

(W): Worst prover ; (G): Global model ; (B): Best prover;

TABLE 4.5: Accuracy results of PPSS under IID Data Distribution.

Provers Clients 1st round 15th round

No-DP DP No-DP DP

B W G B W G B W G B W G

K = 20 87.46 78.56 87.46 73.21 73.21 73.21 92.41 81.39 92.44 89.55 80.00 91.74
K = 40 87.78 79.52 87.78 73.21 73.21 73.21 92.32 81.36 92.48 89.15 80.06 89.80P = 3
K = 80 88.87 80.91 88.87 73.21 73.21 73.21 92.45 81.42 92.52 87.89 80.06 88.75

K = 20 90.69 73.86 90.69 84.60 71.29 84.60 90.79 83.22 93.28 89.59 78.52 91.83
K = 40 91.32 78.94 91.32 78.20 73.21 78.20 93.27 81.50 93.75 90.18 80.06 92.27P = 6
K = 80 86.64 80.07 86.64 80.33 73.21 80.33 93.19 81.36 93.55 92.11 80.29 93.18

K = 20 92.61 73.65 92.61 73.21 73.21 73.21 91.92 73.90 93.74 90.68 80.16 92.45
K = 40 91.06 81.25 91.06 75.03 73.21 75.03 93.35 81.51 93.69 90.94 80.05 92.38P = 8
K = 80 92.58 78.46 92.58 73.41 73.21 73.41 93.40 81.10 93.69 91.71 80.84 92.63

(W): Worst prover ; (G): Global model ; (B): Best prover;

TABLE 4.6: Accuracy results of PPSS under Non-IID Data Distribution.

The findings of this study underscore the potency of the proposed PPSS frame-

work as a viable and privacy-preserving solution for Intrusion Detection Systems in

the realm of Industry 5.0. By skillfully merging blockchain and federated deep learn-

ing technologies, PPSS contributes to the fortification of cyber security in the context

of Industrial IoT, laying the groundwork for enhanced protection against cyber threats

while maintaining the integrity of sensitive data and critical industrial operations.
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4.4.4 Global Model Accuracy and Convergence Time

Figure 4.6 visually represents the global model’s accuracy evolution over time, con-

sidering varying numbers of Provers and clients. Notably, the PPSS approach demon-

strates superior global model convergence time performance, particularly when em-

ploying DP-SGD for training. This advantage stems from PPSS’s utilization of fewer

training iterations and more intensive model aggregation operations than CFL. For

instance, when deploying N clients in CFL, PPSS allocates N/P clients per Prover

(where P is the number of Provers) for training, ensuring knowledge transfer for all

N clients through aggregation. We can demonstrate that the computational over-

head associated with model aggregation is significantly lower than individual client

training. Additionally, DP training within PPSS can be improved by introducing ad-

ditional Provers, thereby mitigating the adverse effects of Differential Privacy and

enhancing overall training efficiency.
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High Privacy Regimes Employing DP-SGD.
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4.4.5 The Impact of Differential Privacy Training via DP-SGD on

Global Model Accuracy:

Training using Differential Privacy Stochastic Gradient Descent (DP-SGD) to protect

data privacy aligns with the principles of the strong composition theorem. This theo-

rem asserts that the degree of privacy breach, quantified by standard (ε, δ)-differential

privacy, tends to grow at an approximate rate of
√

K under conditions of stringent pri-

vacy requirements. Here, K represents the number of training iterations in the learn-

ing process. Figure 4.8 and 4.7 provides an insight into the influence of differential

privacy parameters (ε, δ) on global model performance across distinct data distribu-

tion modes IID and Non-IID. We conducted experiments using varying epsilon values

(ε = 0.1, ε = 1, ε = 2), representing the introduced noise level while maintaining a

fixed δ value of 1.5e − 5 for both CFL and PPSS training methodologies. This was

done to illustrate the trade-off between data privacy and model performance and es-

tablish the practicality of applying DP in non-IID settings. Notably, we fixed δ due to

the observation that as per [109], both ε and δ have similar effects on the introduced
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noise, with ε having the more pronounced impact on training performance.

The results indicate a notable decrease in CFL’s performance under the influence

of DP. For instance, with ε = 1, CFL’s accuracy decreased from 93.98% to 92.69%,

and further to 91.14% for ε = 0.1. Conversely, PPSS also experienced a reduction in

accuracy, decreasing from 94.01% to 92.38% for ε = 1, and to 92.18% for ε = 0.1. This

decline in accuracy is a well-recognized consequence of the introduced noise and un-

derscores the inherent trade-off between model performance and data privacy preser-

vation. However, our proposed PPSS exhibits greater privacy preservation than CFL,

leveraging transfer learning and reducing the number of training iterations. Further-

more, our experiments demonstrate the practicality of employing PPSS in non-IID

settings, showcasing its efficacy in preserving data privacy across varying scenarios.

4.4.6 PPSS Energy Cost:
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FIGURE 4.9: Average Energy Consumption of PPSS-Enabled Decentral-
ized Federated Learning (DFL) on Tesla-T4 GPU Devices.

Figure 4.9 illustrates the average energy consumption of the proposed PPSS-enabled

DFL framework over a single round of Federated Learning (FL). Both CFL and DFL,

with and without the PoFDL consensus mechanism, are evaluated, considering DP-

training (DP-SGD).
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In the absence of DP-SGD, CFL demonstrates higher energy efficiency than PPSS

due to additional model evaluation operations in PPSS. However, when DP-SGD was

introduced, both CFL and PPSS experienced substantial increases in energy consump-

tion. CFL’s energy costs surge nearly tenfold, while PPSS’s increase by around three-

fold. Consequently, PPSS proves more energy-efficient, particularly in multi-round

FL scenarios with DP-training, thanks to cost-effective model aggregation, which re-

duces the number of training rounds compared to CFL. Notably, the energy costs

of model aggregation and PoFDL consensus remain significantly lower compared to

training.

Overall, we can demonstrate that PPSS excels in energy efficiency, especially in

multi-round FL with DP-training, due to its efficient model aggregation and reduced

training rounds compared to CFL.

4.4.7 Blockchain performance and storage overhead

Metric 3 Provers 6 Provers 8 Provers

Nb_Blocks 6 9 5
Nb_transactions 195 226 159
Storage (MB) 43.48 50.84 35.48

TABLE 4.7: The Average Data Generation Rate and Storage Overhead of
the Learning-Chain.

We comprehensively evaluated our blockchain scheme, focusing on throughput,

latency, and storage overhead. Latency was quantified as the between transaction tx

submission and block confirmation. Throughput, on the other hand, which measures

the rate at which transactions tx are confirmed, was assessed in terms of computa-

tional load and message exchanges during block confirmation. Computationally, our

proposed PoFDL consensus algorithm was employed for validation, utilizing model

inference with inference costs dependent on model size and the specified ValidationSet.

In terms of message exchanges, our PoFDL orchestrates 2(N
2 + 1) message rounds,

where N represents the number of Validator nodes.
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Furthermore, based on empirical data from our experiments, we examined the

storage overhead of the resulting Learning-Chain. Table 4.7 presents the average rate

of block data generation across various Prover nodes. We calculated the storage capac-

ity of each block based on the data it contained, as illustrated in Figure 4.3, without

factoring in the storage overhead from validation, which is contingent on the size of

the employed ValidationSet. For context, the size of the trained model used in our

experiments was approximately 0.21 MB, while the average block size stood at 6.46

MB. Although the maximum storage overhead of the Learning-Chain for the presented

learning task amounted to 50.84 MB, we anticipate that this figure may escalate with

additional tasks.

Nonetheless, these findings hold relevance for real-world permissioned blockchain

applications operating within the fog computing layer.

4.5 Chapter Summary

In this chapter, we proposed a novel security framework, PPSS, designed to for-

tify Industry 4.0/5.0 against privacy breaches and emerging cyber threats. PPSS

encompasses two core components: a blockchain-enabled FL system and a privacy-

preserving cyber threat detection mechanism. Within the blockchain networked model,

PPSS facilitates cross-silo FL through the involvement of specific roles: Validator nodes

(V) serve as trusted blockchain maintainers, Prover nodes (P) moderate localized FL

processes and provide efficient and precise models added to the Learning-Chain, and

Edge-clients, which are connected to multiple P nodes, engage in differential privacy-

enhanced model training. On the other hand, the cyber threat detection mechanism

capitalizes on PPSS’s secure features to enhance the effectiveness, reliability, and effi-

ciency of the Intrusion Detection System (IDS) in industrial IoT networks.

We comprehensively evaluated PPSS’s reliability and efficiency under various sce-

narios and experimental settings. The findings demonstrate that our proposed frame-

work fortifies the security and integrity of the model-sharing process, rendering it
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resilient against multiple attack scenarios. Moreover, the results notably confirm that

the PPSS framework exhibits adept classification skills across a wide range of attacks,

considering the unique challenges posed by industrial IoT and the influence of secu-

rity constraints on the FL learning process.
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CHAPTER 5

FEDGEN-ID: FEDERATED DEEP GENERATIVE MODEL

FOR INTRUSION DETECTION

"The five most efficient cyber defenders are Anticipation, Education,

Detection, Reaction, and Resilience."
— Stephane Nappo

5.1 Introduction

Drawing upon the insights acquired from the preceding chapter, blockchain technol-

ogy offers a robust framework for facilitating secure federated learning (FL) processes

and enhancing the validation approach through proof of learning. However, the chal-

lenges of differential privacy training and non-IID data in cyber threat detection limit

the effectiveness of FL-based models. Striking a balance between preserving privacy

and maintaining model accuracy is a delicate task, especially when dealing with het-

erogeneous data sources with distinct threat profiles. Addressing these challenges

requires innovative techniques and strategies to adapt FL to the unique characteris-

tics of the cybersecurity domain.
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Furthermore, recent studies have shown that ML and DL models are vulnerable

to zero-day attacks, which exploit unknown vulnerabilities in software or hardware.

These attacks create unique behaviors and attack patterns, posing a challenge in de-

tection and identification, especially in situations with limited training data [110].

In addition, federated ML and DL models exhibit a distinct vulnerability to ad-

versarial attacks. These attacks, which compromise model integrity and privacy, can

exploit vulnerabilities during the training and inference stages. They are primarily at-

tributed to the inaccessibility of data, which further compounds the challenges faced

in securing these models [111]. During training, adversaries employ poisoning at-

tacks to manipulate the model’s learning process and compromise performance. Dur-

ing inference, adversaries employ evasion attacks to deceive trained models, leading

to incorrect cyber threat detection.

In the preceding chapter (4.2), our proposed Privacy-Preserving Secure System

(PPSS) addressed vulnerabilities within the training stages. It offered secure aggre-

gation and authentication schemes to ensure the reliability of the aggregated model.

This chapter focuses on the inference stage and aims to develop a highly efficient fed-

erated cyber threat detection framework that identifies zero-day cyber attacks while

preserving data privacy and enhancing adversarial robustness against evasion at-

tacks.

In this chapter, we introduce an innovative security framework named "Feder-

ated Generative Intrusion Detection" or "FedGen-ID," which addresses challenges re-

lated to privacy-preserving training and non-IID data distribution, contributing sig-

nificantly to the robustness of cyber threat detection. Specifically, FedGen-ID is de-

signed to enhance the security of Industrial IoT networks, which are known for their

complexity and require specialized intrusion detection solutions. This framework

employs FL and generative AI capabilities to address privacy concerns during model

training by facilitating collaborative model development without sharing sensitive

raw data. Additionally, FedGen-ID recognizes the challenges posed by non-IID data
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distribution, where individual devices may have unique threat patterns. By utiliz-

ing generative techniques, the framework adapts to the specific data characteristics of

each device, promoting a more consistent and effective threat detection process across

the entire network. Moreover, in response to the evolving threat landscape, FedGen-

ID contributes to cyber threat detection resilience by generating synthetic data that

covers a broader range of potential attack scenarios, thereby improving its ability to

detect previously unseen zero-day attacks, a significant concern in cybersecurity.

The remainder sections of this chapter are organized as follows: Section 5.2 dis-

cusses the design objectives of FedGen-ID, outlining its development goals and pur-

poses. Section 5.3 delves into framework development, covering training procedures,

learning objectives, and the quality of generated IDS data. Section 5.4 presents results

and discussions, including the evaluation of augmented IDS data, the effectiveness

of FedGen-ID in detecting adversarial attacks, and its overall performance in cyber

threat detection. Finally, Section 5.5 summarizes the key takeaways and findings of

FedGen-ID and its practical application in intrusion detection.

5.2 Design Objectives of FedGen-ID

Recently, Generative Adversarial Networks (GANs) have emerged as a promising

approach for enhancing the robustness of optimization techniques in DL-based IDS.

This advancement enables IDS to effectively detect and counter adversarial attacks

without making predetermined assumptions about the capabilities of potential ad-

versaries. Moreover, GANs can serve as a valuable tool for data augmentation, partic-

ularly in addressing the challenges associated with imbalanced and private datasets.

However, the practicality and effectiveness of deploying federated GANs for threat

detection and bolstering resilience against adversarial attacks are still in their early

stages. Additionally, assessing the generated data’s consistency, reliability, and suit-

ability, particularly in handling IDS source data, necessitates further exploration.
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FIGURE 5.1: FedGen-ID Design Scheme: The Proposed Federated Con-
ditional Wasserstein Generative Adversarial Network.

To address these challenges, we introduce an innovative security framework named

"FedGen-ID" to enhance the efficiency of IDS, ensuring privacy protection and forti-

fying resilience against adversarial attacks. Simultaneously, FedGen-ID seeks to opti-

mize the sharing of security knowledge among participating entities, contributing to

a more robust and secure cyber landscape.

Figure 5.1 illustrates the workflow of our framework. Specifically, we employ FL

to address privacy concerns and the computation efficiency of industrial IoT, allow-

ing models to train on distributed data locally on user devices while only exchanging

model updates. In addition, we propose a generative framework to overcome limited

data, imbalanced, and non-IID data challenges and enhance adversarial resilience, al-

lowing robust and efficient cyber threat detection. We have designed a three-model
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system that includes a federated generative model (i.e., cGAN-Generator), a Discrim-

inator model (i.e., cGAN-Critic), and a Classifier model. The federated generative

model creates a variety of artificial samples, the Discriminator (D) is trained to dif-

ferentiate between artificially generated and real samples, and the Classifier (C) is

trained on both original and artificially generated data to efficiently and robustly

identify cyber threats.

In the federation process of FedGen-ID, we suggest that both the cGAN Genera-

tor and Classifier models be shared among clients, while the cGAN Discriminator is

kept on the client side. This setup is driven by the need to improve the stability and

privacy protection of distributed GAN training, which is also vulnerable to adver-

sarial attacks. By using the cGAN Discriminator locally, clients can identify and flag

potential adversarial attacks for further investigation. This also enhances the commu-

nication efficiency and privacy aspects of federated learning. By sharing the Genera-

tor, clients can locally produce a variety of artificial samples and enhance their local

datasets, aiding in the detection of zero-day and sophisticated adversarial attacks.

Alternatively, the global Classifier, which is shared among clients, updates that

are also influenced by the synthetic samples generated using the global Generator

instead of only relying on local updates contributed by individual participants. This

enables the classifier to be trained on extensive and diverse datasets. As a result, the

classifier can generalize well and excel in identifying a variety of attacks based on

their features, offering crucial insights for threat analysis and response. Furthermore,

this approach is designed to enhance the model’s overall resilience and reduce the

potential risks associated with learning patterns induced by attackers from poisoned

updates.
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5.3 Framework Development and experiments

5.3.1 Training Objectives and Algorithmic Insights

Our training goal is to reach a balance where the generator creates a variety of re-

alistic samples. Concurrently, the critic accurately differentiates between real and

generated data, offering valuable feedback to the generator to produce samples that

meet the specified condition (that is, the target class label). Our implementation of

the Conditional-GAN leverages the power of deep convolutional neural networks

(CNNs) to efficiently extract significant features from the conditioning input samples.

This approach ensures that our model is well-equipped to handle a variety of scenar-

ios and challenges:

• The Discriminator model (D): As shown in Figure 5.2, this model consists of

four convolutional layers, each with a rectified linear unit (ReLU) activation

function. It accepts both generated and real data samples and calculates the es-

timated Wasserstein distance between the fake and real data distributions. This

serves as a loss function for training objectives, offering enhanced feedback to

the generator and guiding it to produce samples that closely mimic the real data

distribution while aligning with the specified conditions on target classes. Addi-

tionally, D undergoes fine-tuning for predicting adversarial attacks in the post-

GAN training phase. To facilitate this, we integrate a Dense layer that applies a

binary cross-entropy loss with a Sigmoid function to its outputs. This quantifies

the discrepancy between the predicted and actual values of real and generated

data samples. By adopting this approach, we aim to bolster the Critic’s capacity

to effectively discern and classify adversarial attacks.

• The Generator model (G): As shown in Figure 5.2, this model consists of four

transposed convolutional layers, each with batch normalization and a ReLU

activation function. G accepts random samples drawn from a uniform latent

space, denoted as z ∈Rd where d represents the dimension of the feature. It also
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Symbol Explanation

K The set of clients involved
I The number of local iterations
E The number of global epochs
m The size of the local batch
αG The learning rate for the Generator
αD The learning rate for the Critic
λ The penalty factor
G The Global Generator
D The Global Critic
Pz The distribution of noise
D(·|·) The function of the Critic
G(·|·) The function of the Generator
Pr The distribution of real data
x A sample of real data
z A vector of noise
y A randomly selected label
x̃ An interpolated sample
∇x̃D(x̃|y) The gradient of the output of the Critic with respect to x̃
Lgen The loss of the Generator
Ldisc The loss of the Critic

TABLE 5.1: Notation for Algorithm Discussion.

takes a condition vector of class labels, denoted as y. The goal is to generate the

necessary labeled examples. In accordance with the distribution of real data, the

output of the generator is passed through a Sigmoid activation function. This

maps the generated features into normalized values ranging between 0 and 1.

• The Classifier Model (C): This is a standalone CNN model that is specifically

engineered for tasks involving multi-class classification. By using augmented

data during the training phase, C is able to effectively grasp the complex vari-

ations and intricacies inherent in real-world data. As a result, C exhibits a high

degree of skill in identifying a diverse array of attack classes, thereby demon-

strating its robustness and resilience, even in the face of adversarial attempts.

Consequently, C demonstrates proficiency in identifying a wide range of attack

classes, showcasing its robustness and resilience when manipulated with adver-

sarial attempts.

• Federated Learning Objective: The aim of Federated Learning (FL) is to update
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the global generator model G, and the global Classifier C, using K local models

from respective clients. To accomplish this, we implement an averaging algo-

rithm, which can be expressed as follows:

G ← 1
K

K

∑
k=1

Gk, C ← 1
K

K

∑
k=1

Ck (5.1)

Averaging allows for consolidating knowledge from multiple clients. This fos-

ters collaborative learning in a distributed environment, which in turn boosts

the performance of the model and its ability to generalize.

Algorithm 4 outlines the federated training procedure of FedGen-ID. This pro-

cess involves several clients concurrently training their local generators and crit-

ics. Following this, they collectively update a global generator. The use of a

convergence threshold can potentially decrease the training time for each client,

especially if a certain level of convergence is reached early on.

Algorithm 4: FedGen-ID cGAN Training.
Input : Set of clients K, Local iterations I, global epochs E, local batch size m,

Critic’s learning rate αD, Generator’s learning rate αG, gradient
penalty factor λ

Output: Trained Critic D and Generator G
1 Initialize Generator G with random weights
2 for r = 1 to R do
3 Parallel. For each client k ∈ K for t = 1 to E do
4 Train Local Critic Dn on client n using Algorithm 6
5 Train Local Generator Gn on client n using Algorithm 5
6 if distance between fake and real predictions ≤ 0.1 then
7 break // Convergence threshold

8 end
9 Update Global Generator G by averaging local generators:

10 G ← 1
|K| ∑

|K|
n=1 Gn

11 return Trained Generator G to Clients
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• Local Training Objective: The training goal for the client-side cGAN involves

a process of alternating updates between the critic and generator networks. We

incorporated the Wasserstein loss function into the objectives of both models

[112], which serves as an approximation function that quantifies the similarity

between the distributions of real and generated data, based on the amount of

movement required to transform one distribution into the other. The aim is to

stop the generator from falling into a single mode and to ensure that the samples

it generates are realistic. The definition of the Wasserstein loss is as follows:

min
G

max
D

(Ex∼Pr [D(x|y)]−Ez∼Pz [D(G(z|y))]) (5.2)

where Pz represents the noise distribution and generates synthetic data samples.

D(·|·) the critic function, also known as the critic, which evaluates and distin-

guishes between real data samples x drawn from the real data distribution Pr

and the generated samples produced by the generator function G(·|·).

In simple terms, the critic’s goal is to differentiate between a variety of real data

and fake data, given the labels. Concurrently, the generator aims to deceive

the critic by generating data that is as realistic as possible, based on the target

labels. To enhance the stability of cGAN, we incorporated the gradient penalty

(GP) into the previous loss equation. This serves as an approximation for enforc-

ing the 1-Lipschitz continuity, ensuring that the critic’s gradient norm is almost

always one. The implementation of GP is as follows:

min
G

max
D

(
5.2 + λ · 1

n

n

∑
i=1

[
‖∇x̃i D(x̃i|yi)‖2 − 1

]2) (5.3)

Where, λ is the hyper-parameter controlling the strength of the gradient penalty,

x̃i is a sample randomly interpolated between real data xi and generated data

G(zi|yi), and ∇x̃i D(x̃i|yi). It represents the gradient of the critic’s output con-

cerning x̃i.

Furthermore, for better performance, the critic independently applies the binary
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FIGURE 5.2: The Proposed Three-Model Approach for Efficient and Ro-
bust Cyber Threat Detection.

cross-entropy loss expressed as:

min
D

(
1
n

n

∑
i=1

[log(D(xi|1)) + log(1− D(G(zi|yi)|0))]
)

(5.4)

Where D(.|1) and D(.|0) represent the D’s prediction for the input data sample

as real or fake, respectively, compared to the ground truth values (0,1).

On the other hand, for updating the classifier for multi-class classification, the

objective can be formulated as:

min
C

(
− 1

n

n

∑
i=1

C

∑
c=1

yi,c log(C(xi))

)
(5.5)

where C is the classifier, xi is the augmented data sample, yi,c is the ground

truth label for class c, and C(xi) is the predicted probability distribution over

the classes.
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Algorithm 5: Training of FedGen-ID Generator.
Input : Number of local iterations I, size of local batch m, Generator’s

learning rate αG, penalty factor λ
Output: The trained Generator G

1 Download Generator G from the Server
2 for i = 1 to I do
3 Draw m noise vectors {z1, z2, . . . , zm} from the noise distribution Pz
4 Obtain m random labels {y1, y2, . . . , ym} from the clients
5 Create synthetic samples:
6 {G(z1|y1), G(z2|y2), . . . , G(zm|ym)}
7 Determine the generator loss using the Wasserstein loss:
8 Lgen = 1

m ∑m
i=1 D(G(zi|yi))

9 Adjust the weights of the Generator using gradient descent:
10 G ← G − αG · ∇GLgen

11 return The trained Generator G

Algorithm 6: Training of FedGen-ID Critic.
Input : Number of local iterations I, size of local batch m, Critic’s learning

rate αD, penalty factor λ
Output: The trained Critic D

1 Start by initializing the Critic D with weights chosen randomly
2 for i = 1 to I do
3 Collect m real data samples {x1, x2, . . . , xm} from the clients
4 Draw m noise vectors {z1, z2, . . . , zm} from a uniform distribution Pz
5 Obtain m random labels {y1, y2, . . . , ym} from the clients
6 Create synthetic samples: {G(z1|y1), G(z2|y2), . . . , G(zm|ym)}
7 Draw m random interpolation factors {α1, α2, . . . , αm} from a uniform

distribution
8 Calculate interpolated samples:
9 {x̃1, x̃2, . . . , x̃m} = αixi + (1− αi)G(zi|yi)

10 Determine the critic loss using the Wasserstein loss with gradient penalty:
11 Ldisc =

1
m ∑m

i=1
[
D(xi|yi)− D(G(zi|yi)) + λ ·

(
‖∇x̃i D(x̃i|yi)‖2 − 1

)2 ]
12 Adjust the weights of the Critic using gradient descent:
13 D ← D− αD · ∇DLdisc

5.3.2 FedGen-ID: Quality of Generated IDS Data

The data produced by the conditional GAN necessitates further processing and val-

idation to comply with the constraints and traffic feature boundaries of the original
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Algorithm 7: Refinement of Generated Data.
Input : Original dataset O with n instances and d attributes, synthetic dataset

S with the same dimensions as O and d attributes, indices R of
attributes that need correction for out-of-range values, indices B of
binary attributes that need correction for incorrect values, indices C
of one-hot encoded attributes that need correction for incorrect values

Output: Refined synthetic dataset S′ with the same dimensions as S
1 Procedure RefineData (O, S, R, B, C)
2 S′ ← S // Make a copy of synthetic data
3 for i ∈ R do

// Correct out-of-range values
4 vmin,i ← min(O:,i)
5 vmax,i ← max(O:,i)
6 S′:,i ← max(min(S:,i, vmax,i), vmin,i)

7 for i ∈ B do
// Correct binary values

8 S′incorrect,i ← (S:,i 6= 0) ∧ (S:,i 6= 1) // Identify incorrect values

9 S′corrected,i ← bSincorrect,ie // Round incorrect values to closest integer

10 S′corrected,i ← Scorrected,i · S′incorrect,i + S:,i · (¬S′incorrect,i) // Substitute
incorrect values with corrected values

11 for i ∈ C do
// Correct one-hot encoded values

12 hi ← argmax(S:,i) // Determine index of maximum value
13 S′:,i ← ehi // Set all values except the maximum to 0

14 return S′ // Return refined synthetic data

data. Algorithm 7 is designed to verify the accuracy of generated data that might

contain errors or inconsistencies, especially in certain traffic feature categories. We

take into account features that have out-of-range values, incorrect values for binary

features, and incorrect values for one-hot encoded features. For features that are out-

of-range, we identify instances where the synthetic data exceeds the valid range de-

fined by the original data and adjust their values to fit within this range. For binary

features, we correct these values by rounding them to the nearest integer. Lastly, for

one-hot encoded features, the algorithm identifies the index of the highest value in

the one-hot encoded feature vector and sets all other values to 0. This strategy ef-

fectively guides researchers in addressing errors and inconsistencies in synthetic data
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Out-Of-Range Features (Example : mqtt.conflags Min = 0, Max = 1) 
Real sample 0.1 0.2 0.0 0.188 0.1

Artificial sample 0.001 0.2 0.01 0.2 0.01
Corrected 0.001 0.2 0.01 0.2 0.01

One-Hot Encoded Features (Example : Http.Request)

Get Options PropFind Put Search Trace
Real sample 0 0 0 1 0 0

Artificial sample 0.001 0.2 0.01 0.2 0.0001 0.001
Corrected  0 1 0 0 0 0

 Binary Features 

http.response tcp.flags.ack
Real sample 0 1

Artificial sample 0.04 0.7
Corrected  0 1

FIGURE 5.3: Example of Data Refinement for Generated Network Traffic
Data.

produced by GANs for network traffic data, facilitating the creation of more consis-

tent and reliable synthetic datasets for network-based cyber threat detection. Figure

5.3 provides a visual representation of how artificial samples are refined based on

chosen features. For example, a feature such as ‘mqtt.conflags’ is expected to only

take on the values of 0 or 1. Similarly, a feature like ‘Http.Request’ should fall into

one of six categories. It’s also important to note that features that are within the range

of actual examples are kept as they are.

5.3.3 Experimental Settings

We carried out the experiments of our proposed FedGen-ID security framework on

Google Collaboratory, utilizing PyTorch and Tesla-T4 GPU accelerators. The partic-

ipating clients were provided with non-iid datasets, as depicted in Figure. 5.5. We

initially established the federated cGAN training. Subsequently, we leverage the fed-

erated generative model to augment the training of the federated classifier model by

supplying it with augmented data. Following this, we implemented DP training for

the federated classifier model and evaluated the extent to which the augmented data
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could alleviate the negative effects of DP. This approach ensures privacy while effec-

tively detecting and identifying zero-day cyber threats.

It is important to note that each client retains its own critic model, which serves as

a discriminator for identifying adversarial examples. The specifics of the experimen-

tal settings and learning parameters used in this study are detailed in Table 5.2. To

evaluate the impact of security constraints on the learning process, we have employed

a variety of metrics to evaluate both detection efficiency and effectiveness and gain

insights into the performance and robustness capabilities of our proposed framework

for detecting zero-day cyber threats.

In addition, we aim to explore the effects of security constraints, including dis-

tributed learning and differential privacy training, on the effectiveness of our frame-

work.

Parameter Values

cGAN Generator Refer to 5.2
cGAN Critic Refer to 5.2
Local cGAN epochs 10
Critic repeats for one epoch 2
Learning rate 0.0002
Local Batch_size 32

Federated cGAN

Global rounds 5

Classifier CNN 15-class
Local Batch_size 64
Global rounds 15Federated Classifier

Learning rate 0.001
Epsilon (ε) 1
Delta (δ) 1.5e-5Differential privacy
Gradient norm bound (C) 1.2

* Optimizer Adam

TABLE 5.2: Experimental settings for FedGen-ID.

5.3.3.1 Dataset Processing: This framework is also the new Edge-IIoTset [33] pre-

viously discussed in Section 4.3.3.1, which exhibits characteristics of both imbalanced

and non-IID. This dataset comprises fourteen labeled network attacks. The initial dis-

tribution of the dataset after the holdout split is depicted in Table 5.3. To emulate data
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FIGURE 5.4: Flowchart of FedGen-ID Framework Training, Aggregation,
and Evaluation.

heterogeneity, we partitioned the training set into non-IID partitions and distributed
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Classes Original Train Count Original Test Count

Normal 1046926 323129
Backdoor 19890 4972

Vulnerability_scanner 40088 10022
DDoS_ICMP 93149 23287

Password 40122 10031
Port_Scanning 18051 4513

DDoS_UDP 88027 22007
Uploading 30107 7527

DDoS_HTTP 39929 9982
SQL_injection 40962 10241
Ransomware 8740 2185
DDoS_TCP 40050 10012

XSS 12732 3183
MITM 320 80

Fingerprinting 801 200

TABLE 5.3: Edge-IIoTset Data Distribution.

them among ten clients. We employed a label partition method for this purpose, en-

suring that each client receives a random subset of labels with the identical feature

vector of the training data. This approach is based on the assumption that each client

possesses partial knowledge of the total classes involved in the problem, as shown in

Figure 5.5.

5.4 Results and Discussion

5.4.1 Evaluating Convergence of Federated cGAN Training

A comprehensive set of experiments were carried out to determine the optimal hy-

perparameter configuration for the stability of the training process in our proposed

federated cGAN scheme. Our results indicate that the stability improves when multi-

ple local epochs are used with a fewer number of federated rounds. Figures 5.9 show-

cases the local training loss of the Federated cGAN, which uses the Wasserstein dis-

tance with gradient penalty (Wass-GP), reported at specific training steps. The Critic

loss, which is directly related to the Wasserstein distance in both cGAN models, rep-

resents an approximation of the negative of the Wasserstein distance. As shown, the
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FIGURE 5.5: Non-IID Data Distribution.

Wass-GP, unlike standard loss functions, is unbounded and can produce any value.

This characteristic enhances the critic without encountering the vanishing gradient

issue.

Interestingly, we observe that the critic’s loss begins at a relatively high value and

gradually diminishes over time, indicating an enhancement in the Critic’s capability

to differentiate between real and generated samples. On the other hand, the generator

loss starts at a lower value and slightly escalates over time. This can be attributed

to the improved performance of the Critic, which sets a more challenging adversarial

goal for the generator. Importantly, as the training advances, a pattern of convergence

becomes apparent, where the losses associated with both the generator and Critic tend

to converge towards each other.
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5.4.2 Evaluating FedGen-ID for Adversarial Attack Detection

In order to reinforce the robustness and adaptability of our framework against the

constantly evolving adversarial attacks, we have enhanced the ability of local crit-

ics to detect adversarial examples by adjusting their decision threshold through the

application of the Sigmoid function.
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FIGURE 5.6: Loss history of fine-tuning client critics for adversarial attack
detection.

It’s worth noting that the Critic models were trained using the Wasserstein loss,

which maximizes the distance between real and fake inputs. Therefore, if we ap-

plied an activation function, we could predict adversarial examples and evaluate

them against a corresponding ground truth value. However, our cGAN-Critic mod-

els showed limitations in generalizing to other attack techniques, thereby reducing

the practicality of the defense mechanism in real-world scenarios. To address this, we

further fine-tuned the Critic models using data from the global generator and data

from other advanced attack techniques to enhance adversarial variety.

More specifically, we added a linear layer and trained it using authentic data from

the clients’ datasets, combined with data from the global generator and more sophis-

ticated attack methods, including FGSM adversarial attacks. Figure 5.6 depicts the
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fine-tuning history of the Clients Critic over 15 epochs. The results are reported in

Table 5.4.

5.4.3 Evaluating FedGen-ID for Data Augmentation

Notably, our proposed federated generative model (FGM) approach incorporates class-

conditioned labels, which, although not immune to ensuring label accuracy, signifi-

cantly contributes to enhancing data diversity. Our investigation produced a dataset

comprising 50,000 instances for each distinct attack class. However, following the

application of our data refinement methodology, which introduces marginal modi-

fications to feature values, a mismatch was detected between the initially specified

target classes and the resulting predicted labels upon employing the FedID classifier.
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FIGURE 5.7: An Examination of Validation Accuracy in FedGen-ID Com-
pared to Standalone FedID with and without Differential Privacy Train-

ing on the Original Test Data.

Figure 5.8 demonstrates the class distribution of generated Dataset. The results

demonstrate that the approach successfully captures the underlying patterns and fea-

tures of classes such as Normal, Password, Fingerprinting, XSS, and Portscanning as

indicated by their relatively high sample counts.

It is worth mentioning that our approach utilizes conditioning during the gen-

eration process to label the generated samples by employing specific class targets;
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FIGURE 5.8: Confusion Matrix Depicting the Class Distribution of Gen-
erated Traffic, Labeled Using the FedID Classifier.

we observed numerous misalignments between the generated data and the intended

ground truth target class. This analysis is conducted using a pre-trained classifier. In

the scope of our research, we proceed with this labeling technique using the FedID

classifier with 96% accuracy on the original train data to rectify the labeling discrep-

ancies. However, it is worth noting that techniques such as self-supervised learning

could be investigated in prospective studies.

These results highlight the Wasserstein conditional GAN’s ability to generate syn-

thetic data that faithfully exhibits the distinct characteristics associated with each

class. However, it is worth noting that certain classes, including Backdoor, HTTP, and

DDoS_UDP, exhibit relatively low counts, suggesting the presence of fewer distinc-

tive patterns or features, posing challenges for an accurate generation. Nevertheless,

by integrating these generated samples into the local training process of participating

clients, we aim to enhance robustness and classification efficiency against adversarial

and zero-day cyber attacks.

Table 5.4 showcases the effectiveness of our proposed individual detector against

three different adversarial attacks. The table reveals that the performance of individ-

ual critics varies against different adversarial attacks. Some clients have shown high
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Attacks Clients Accuracy % DR % FPR %

FGSM Worst client : 2 92.05 98.64 15.76
Best client 8 96.74 97.29 04.57

BIM Worst client : 10 92.97 98.96 18.52
Best client : 9 98.04 98.92 04.01

DeepFool Worst client : 2 92.12 98.82 15.76
Best client: 9 98.79 100 04.01

TABLE 5.4: Assessing the effectiveness of our proposed individual detec-
tor compared to three different adversarial attacks.

accuracy and detection rates while maintaining relatively low false positive rates. For

example, under the FGSM attack, the most effective client (Client 8) achieved a de-

tection rate of 97.29% and a false positive rate of only 4.57%. On the other hand, the

least effective client (Client 2) had a false positive rate of 15.76%. Across all evaluated

attacks, Client 9 consistently performed the best, demonstrating high detection rates

and accuracy.

These results highlight the capability of our proposed method of refining individ-

ual critics to effectively identify complex adversarial attacks, rather than depending

on a single model for defense against all attacks. Our approach stands out from tra-

ditional methods as it employs an additional classifier detection model to examine

adversarial inputs that went undetected, thereby improving the overall robustness of

the system. This approach underscores the importance of diversity and adaptability

in building resilient defense mechanisms against adversarial attacks..

In evaluating the computational efficiency of our proposed federated generative

framework (FedGen-ID), Figure 5.7 offers a comparative analysis of the training accu-

racy between FedGen-ID and FedID over time. This comparison considers both sce-

narios - with and without Differential Privacy (DP), and uses the Original Real-TestSet

for the evaluation. The figure clearly shows that FedGen-ID achieves performance

levels nearly equivalent to FedID without DP. Interestingly, FedGen-ID outperforms

FedID in terms of performance when DP training conditions are implemented. This

underscores the effectiveness and efficiency of our proposed FedGen-ID framework.



Chapter 5. FedGen-ID: Federated Deep Generative Model for Intrusion Detection106

0 200 400 600 800 1000

Training steps

−0.2

0.0

0.2

0.4

0.6

0.8

L
o
ss

Client 1

Gen W-Loss

Disc W-Loss

(A)

0 200 400 600 800 1000

Training steps

−0.2

0.0

0.2

0.4

0.6

0.8

L
o
ss

Client 2

Gen W-Loss

Disc W-Loss

(B)

0 100 200 300 400 500

Training steps

−0.2

0.0

0.2

0.4

0.6

0.8

L
os

s

Client 3

Gen W-Loss

Disc W-Loss

(C)
0.8 T T T

Client 4
Gen W-Loss
Disc W-Loas

L0.0

0.4

E
3 0.5 !

;

-4-4----Ao.o r i l

-0.2

0 1000 1250250 500 750
Training steps

(D)

0 100 200 300 400

Training steps

−0.2

0.0

0.2

0.4

0.6

0.8

L
os

s

Client 5

Gen W-Loss

Disc W-Loss

(E)

0 100 200 300 400 500 600

Training steps

−0.2

0.0

0.2

0.4

0.6

0.8

L
os

s

Client 6

Gen W-Loss

Disc W-Loss

(F)

0 100 200 300 400

Training steps

−0.2

0.0

0.2

0.4

0.6

0.8

L
os

s

Client 7

Gen W-Loss

Disc W-Loss

(G)

0 100 200 300 400

Training steps

−0.2

0.0

0.2

0.4

0.6

0.8

L
os

s

Client 8

Gen W-Loss

Disc W-Loss

(H)

0 100 200 300 400

Training steps

−0.2

0.0

0.2

0.4

0.6

0.8

L
os

s

Client 9

Gen W-Loss

Disc W-Loss

(I)

0 100 200 300 400 500

Training steps

−0.2

0.0

0.2

0.4

0.6

0.8

L
os

s

Client 10

Gen W-Loss

Disc W-Loss

(J)

FIGURE 5.9: Training Local cGAN: Loss versus Training Steps.

Additionally, our analysis reveals that incorporating DP incurs a training over-

head for both frameworks, with FedGen-ID displaying a comparatively lower in-

crease in computational time attributable to its data augmentation approach. We
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can demonstrate that our proposed FedGen-ID exhibits significantly enhanced cost-

effectiveness in contrast to the implementation of DP training when considering pri-

vacy preservation. Even when both strategies boost privacy protection, FedGen-

ID continues to exhibit efficacy. This further substantiates the robustness and effi-

ciency of our proposed framework, emphasizing its practical applicability in privacy-

sensitive settings.

Moreover, our examination indicates that the inclusion of DP results in a train-

ing overhead for both frameworks. However, FedGen-ID shows a relatively smaller

increase in computational time, attributable to its data augmentation strategy. It’s evi-

dent that our proposed FedGen-ID demonstrates considerably improved cost-effectiveness

compared to the implementation of DP training, particularly in terms of privacy

preservation. Even when both methods enhance privacy protection, FedGen-ID main-

tains its effectiveness. This further validates the robustness and efficiency of our pro-

posed framework, underlining its practical use in settings where privacy is a priority.

These results underscore the potential of FedGen-ID as a valuable tool for privacy-

preserving FL in security-sensitive contexts. However, while FedGen-ID demon-

strates promising results in accuracy, resilience, and generalization, there are specific

classes where further refinement may enhance precision and recall.

Indeed, these findings highlight the potential of FedGen-ID as a valuable asset

for privacy-preserving FL in contexts that are sensitive to security. However, while

FedGen-ID shows encouraging outcomes in terms of accuracy, resilience, and general-

ization, there are certain areas where additional refinement could potentially improve

precision and recall. This suggests that while FedGen-ID is a robust and efficient tool,

there is always room for further enhancement to optimize its performance in various

scenarios.

5.4.4 Evaluating FedGen-ID for Zero-day Attack Detection

Similarly, to determine the detection accuracy and resilience against zero-day threats.

Our non-IID setup mimics the unpredictability of these threats by omitting certain
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attack classes from the datasets of specific clients. Furthermore, we simulate these at-

tacks by augmenting the TestSet to incorporate variations and new instances, utilizing

the global generator. We maintained the integrity of test by ensuring that there were

no duplicate records. The generated samples of zero-day attacks were labeled with

their corresponding known attack labels. Figure 5.10 showcases the performance re-

sults in detecting and identifying these Zero-day attacks. Furthermore, we evaluated
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FIGURE 5.10: Classification Analysis: Visualizing Zero-Day attack detec-
tion.

the combined original TestSet and the generated samples of zero-day attacks, which

were referred to as the "Augmented TestSet". Figure 5.11 presents a comparative anal-

ysis between FedGen-ID and FedID, taking into account the impact of DP training

on the classification accuracy of both frameworks across both test sets. The findings

underscore the potential of our proposed FedGen-ID and its capacity to uphold com-

petitive accuracy levels across various TestSets. Specifically, FedGen-ID achieves an

accuracy of 92.72% without DP-training and 92.47% with DP-training on the origi-

nal TestSet. Even with a minor decrease in accuracy with DP-training, FedGen-ID

maintains impressive performance. Notably, it surpasses FedID in the "Augmented-

TestSet" by 14% without DP training and by 10% with DP training. These results

further highlight the robustness and efficiency of FedGen-ID, particularly in privacy-

sensitive settings. These findins advocate for our FedGen-ID as a robust and adapt-

able privacy-preserving IDS capable of tackling the ever-evolving challenges of cyber
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FIGURE 5.11: Comparative Analysis of Cyber Threat Detection Perfor-
mance and Robustness using our proposed Federated Generative Intru-
sion Detection (FedGen-ID) and Standalone Federated Intrusion Detec-

tion (FedID).

threat detection in privacy-sensitive IoT environments.

5.4.5 Overall Evaluation of FedGen-ID for Cyber Attack Detection

Table 5.5 showcases the performance results for each class to evaluate the effective-

ness of FedGen-ID in improving the precision and recall of detecting and identifying

various cyber threats, as well as its robustness against zero-day attacks. Both FedID

and FedGen-ID achieve high precision and recall without DP in detecting ’Normal’

traffic for threat detection. With DP, there is a slight decrease in precision, while recall

remains competitive across all experiments.

When it comes to specific attack categories, the precision and recall scores of FedGen-

ID and FedID show significant differences across various privacy settings. In scenar-

ios such as ’MITM,’ ’DDoS_UDP,’ ’DDoS_ICMP,’ and ’Password,’ FedGen-ID achieves

performance levels that are nearly equivalent to or better than FedID without DP.

When both privacy-enhancing strategies are combined, FedGen-ID exhibits strong

performance, particularly in scenarios involving zero-day attacks. This further em-

phasizes the robustness and adaptability of our proposed framework.
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Original TestSet Augmented TestSet
Metrics Precision % Detection rate% Precision% Detection rate%Classes Settings FedID FedGen-ID FedID FedGen-ID FedID FedGen-ID FedID FedGen-ID

Normal No-DP 1.00 0.99 1.00 1.00 0.91 0.99 0.96 1.00
DP 1.00 1.00 1.00 1.00 0.86 1.00 0.99 1.00

Backdoor No-DP 0.63 0.65 0.96 0.98 0.62 0.65 0.93 0.96
DP 0.72 0.73 0.89 0.89 0.72 0.73 0.86 0.89

Vulnerability_scan No-DP 0.89 0.60 0.70 0.98 0.33 0.60 0.64 0.92
DP 0.58 0.49 0.94 0.99 0.57 0.49 0.58 0.99

DDoS_ICMP No-DP 1.00 0.97 1.00 1.00 0.83 0.97 0.76 0.97
DP 0.97 1.00 0.98 0.99 0.90 1.00 0.73 0.99

Password No-DP 0.00 0.94 0.00 0.07 0.00 0.94 0.00 0.50
DP 0.00 1.00 0.00 0.07 0.00 1.00 0.00 0.07

Port_Scanning No-DP 0.00 0.86 0.00 0.00 0.00 0.86 0.00 0.70
DP 0.00 0.58 0.00 0.03 0.14 0.58 0.00 0.03

DDoS_UDP No-DP 0.98 1.00 1.00 1.00 0.83 1.00 0.98 0.99
DP 0.96 0.97 1.00 1.00 0.96 0.97 0.98 1.00

Uploading No-DP 0.54 0.76 0.39 0.38 0.36 0.76 0.34 0.54
DP 0.45 0.57 0.42 0.37 0.17 0.57 0.41 0.37

DDoS_HTTP No-DP 0.64 0.79 0.97 0.30 0.64 0.79 0.95 0.31
DP 0.75 0.87 0.52 0.25 0.49 0.87 0.51 0.25

SQL_injection No-DP 0.41 0.48 0.90 0.91 0.41 0.48 0.65 0.89
DP 0.40 0.41 0.82 0.90 0.40 0.41 0.59 0.90

Ransomware No-DP 0.00 0.85 0.00 0.11 0.00 0.85 0.00 0.57
DP 0.00 0.30 0.00 0.06 0.00 0.30 0.00 0.06

DDoS_TCP No-DP 0.71 0.71 0.99 0.99 0.25 0.71 0.92 0.97
DP 0.69 0.69 1.00 1.00 0.57 0.69 0.92 1.00

XSS No-DP 0.00 0.92 0.00 0.03 0.00 0.92 0.00 0.81
DP 0.99 1.00 0.02 0.02 0.56 1.00 0.01 0.02

MITM No-DP 0.00 0.92 0.00 1.00 0.00 0.92 0.00 0.81
DP 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

Fingerprinting No-DP 0.00 0.90 0.00 0.00 0.00 0.90 0.00 0.86
DP 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00

FedID: Federated Intrusion detection; FedGen-ID : Federated Generative Intrusion detection;
No-DP : No differentially private training; DP : with differentially private training.

TABLE 5.5: Evaluating performance across individual classes using vari-
ous assessment criteria.

Figure 5.12 visually presents the confusion matrices for various settings, showcas-

ing the performance of the FedGen-ID framework on the augmented-TestSet. These

results offer valuable insights into the model’s ability to classify different types of

attacks and normal traffic instances.

Overall, our proposed FedGen-ID framework presented a novel contribution to

federated generative intrusion detection. We demonstrated its effectiveness in tack-

ling the challenges associated with preserving privacy, defending against zero-day

and adversarial attacks, and confronting emerging cyber threats in industrial IoT ap-

plications. This underscores the potential of FedGen-ID as a robust and efficient tool
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(C) FedID on augmented Test-Set

No
rm

al

Ba
ck

Sc
an

IC
M

P

Pa
ss

Po
rt

UD
P

Up
lo

ad

HT
TP SQ

L

Ra
ns TC
P

XS
S

M
IT

M

Fin
g

Normal
Back
Scan
ICMP
Pass
Port
UDP

Upload
HTTP
SQL

Rans
TCP
XSS

MITM
Fing

1.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.000.960.000.000.000.000.020.000.000.000.000.020.000.000.00
0.000.000.700.000.000.000.000.000.300.000.000.000.000.000.00
0.000.000.001.000.000.000.000.000.000.000.000.000.000.000.00
0.000.030.000.000.000.000.000.130.000.830.000.000.000.000.00
0.000.090.000.000.000.000.040.000.000.000.000.870.000.000.00
0.000.000.000.000.000.001.000.000.000.000.000.000.000.000.00
0.000.000.000.000.000.000.000.390.000.610.000.000.000.000.00
0.000.000.030.000.000.000.000.000.970.000.000.000.000.000.00
0.000.000.000.000.000.000.000.100.000.900.000.000.000.000.00
0.000.910.000.000.000.000.060.000.000.000.000.030.000.000.00
0.000.010.000.000.000.000.000.000.000.000.000.990.000.000.00
0.000.010.200.000.000.000.000.000.790.000.000.000.000.000.00
0.000.000.000.000.000.000.210.540.000.250.000.000.000.000.00
0.000.230.000.570.000.000.070.000.000.000.000.130.000.000.00

(D) FedID on original Test-Set

FIGURE 5.12: Classification Analysis: Visualizing Confusion Matrices.

for enhancing security in the rapidly evolving field of IoT. Its adaptability and re-

silience make it particularly suited for real-world applications where privacy and se-

curity are paramount.

5.5 Chapter Summary

This chapter introduces a three-model paradigm (FedGen-ID) to enhance privacy

preservation and resilience against evolving cyber threats. The Federated Generative

Model’s primary model employs the GAN approach for data augmentation. Only

generator model updates are exchanged among clients, and we introduce a novel loss

function to diversify generated samples, addressing challenges posed by imbalanced

and distributed data.
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We also implement a data refinement method to align generated data with prede-

fined constraints. The second model refines local Critics to enhance resilience, while

the third model is a cyber threat classifier. We evaluate our FedGen-ID framework

using an industrial cybersecurity dataset, demonstrating its efficiency and robustness

in detection accuracy while maintaining data privacy. The results indicate that our

proposed data augmentation method supports a synthetically enhanced federated

learning scheme, improving detection efficiency and resilience against zero-day at-

tacks.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter introduces the principal findings derived from the thesis and offers rec-

ommendations for prospective research endeavors as inspiration for researchers to

embark upon novel academic investigations.

6.1 Conclusion

In this thesis, a privacy-preserving security framework was proposed for cyber threat

detection in the Industrial IoT infrastructure. This framework addresses the security

requirements and challenges posed by Industrial IoT ecosystems and proposes new,

effective, and robust detection strategies to secure Industry 5.0 from emerging cyber

threats.

First, we introduced a cost-effective and efficient federated learning methodol-

ogy for malware detection targeting, with a primary focus on privacy preservation,

computation cost, and detection efficiency. The results demonstrated the efficiency

and effectiveness of this methodology using a CNN approach in comparison with

conventional centralized methods in terms of computation cost and privacy protec-

tion. However, the detection efficiency proved inadequate when considering only
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network-based statistical features. Furthermore, the inherent insecurity of the FL pro-

cess, which encompasses challenges such as establishing a reliable framework for se-

cure aggregation and validation of uploaded updates, addressing issues related to

system unreliability, and ensuring the safeguarding of privacy during the model up-

loading process, has been a critical area of concern.

In the second part of our study, we introduced a privacy-preserving secure frame-

work, PPSS, which seamlessly integrates blockchain technology and the energy-efficient

Proof-of-Learning consensus protocol. This framework is designed to enhance the se-

curity and reliability of the FL process while promoting transparency, especially in

resource-constrained industrial systems. We thoroughly evaluated the effectiveness

of PPSS using a recent dataset focused on industrial cybersecurity (Edge-IIoT). Our

evaluation encompassed key metrics such as detection rate, accuracy, computational

efficiency, and energy consumption. The results highlight that PPSS substantially en-

hances the security and integrity of the model-sharing process, rendering it resilient to

vulnerabilities and potential exploit scenarios. Furthermore, PPSS demonstrated im-

pressive identification capabilities against a variety of attacks while effectively man-

aging security constraints within the FL learning process.

Lastly, the third contribution extended the scope of FL by employing federated

generative adversarial networks, FedGen-ID, and data augmentation techniques to

develop a robust cyber threat detection framework for Industrial IoTs. FedGen-ID

employs two approaches: the FL-based GAN approach and the FDL approach. It uses

the GAN approach with a Wasserstein loss function to produce high-quality and di-

versified IDS data, addressing challenges posed by imbalanced and distributed data.

FedGen also refines local GAN Critics to enhance resilience against adversarial at-

tacks. In the second approach, FedGen-ID uses GAN-based augmented data to sup-

port FDL, improving detection efficiency and resilience against zero-day attacks. The

results demonstrate that our proposed data augmentation method supports a syn-

thetically enhanced federated learning scheme, improving detection efficiency and

resilience against zero-day attacks.
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In summary, we effectively balanced the demands of emerging technologies with

the security and privacy concerns of IoT-enabled industrial infrastructure. These col-

lective efforts underscore the importance of innovative detection strategies for coun-

tering large-scale malware attacks and ensuring the resilience of critical industrial

systems against evolving cyber threats. The findings offer valuable insights to in-

dustry stakeholders, cybersecurity professionals, and researchers, enabling them to

maintain the stability and security of Industry 5.0 operations.

6.2 Future work

6.2.1 Deployment of Privacy-Preserving Secure System

Our future research agenda includes the implementation of the proposed Privacy-

Preserving secure framework (PPSS), broadening the scope of applicability and ro-

bustness testing on tangible IoT devices such as Raspberry Pi and other open-source

platforms. Moreover, we aim to explore alternative privacy protection measures,

such as homomorphic encryption, alongside other unsupervised learning methodolo-

gies. This diversified exploration promises to enrich our understanding of privacy-

preserving collaborative learning and strengthen the framework’s versatility in ac-

commodating various privacy paradigms.

6.2.2 Empowering Federated Learning with Generative-AI

Future studies will focus on improving our federated generative framework using

more promising approaches, such as ensemble learning for collective decision-making,

and self-supervised learning methodologies for enhancing generative model capabil-

ities.
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