الجمهورية الجزائرية الديمقراطية الشعبية REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université 8 mai 1945 Guelma

Faculté des Mathématiques et de l'Informatique et des Sciences de la Matière

Département des Sciences de la Matière

وزارة التعليم العالي و البحث العلمي جامعة 8 ماي 1945 قالمة كلية الرياضيات و الإعلام الآلي و علوم المادة قسم علوم المادة

THESE

PRESENTEE POUR OBTENIR LE DIPLOME DE DOCTORAT EN SCIENCES PHYSIQUES

Par:

BADREDDINE HANNACHE

Intitulée:

INFLUENCE DES METAUX DANS LA FORMATION DES CALCULS DE L'ARBRE URINAIRE

Soutenue le : 18 Décembre 2014 devant le jury composé de :

MEDDOUR Athmane	Président	Professeur	Université 08 Mai 1945 Guelma
BOUTEFNOUCHET Abdelatif	Rapporteur	M C A	Université Badji Mokhtar Annaba
TRIKI Abdelhafid	Examinateur	Professeur	Université Badji Mokhtar Annaba
MOUMENI Hayette	Examinateur	Professeur	Université 08 Mai 1945 Guelma
DJEMIL Taoufik	Examinateur	M C A	Université Badji Mokhtar Annaba
DAOUDI Mourad Ibrahim	Examinateur	M C A	Université 08 Mai 1945 Guelma

2014/2015

Résumé: La lithiase urinaire est une affection très répandue qui touche 4 à 18% de la population selon les pays. Cette pathologie nécessite beaucoup de recherches pluridisciplinaires. Le travail présenté dans cette thèse a pour objet de préciser la nature des calculs urinaires de l'Est Algérien et d'étudier ensuite le rôle de certains éléments traces ainsi que l'effet de guelques extraits de plantes médicinales sur la dissolution des calculs urinaires. Les techniques utilisées sont principalement les suivantes : la spectrophotométrie infrarouge à transformée de Fourier pour déterminer la composition chimique des calculs, la fluorescence X afin de déterminer la nature et la teneur des éléments traces et la microscopie électronique à balavage pour explorer la structure intime des cristallites à l'échelle mésoscopique. D'autres méthodes comme la microscopie optique ont été utilisées pour faire l'analyse morphoconstitutionnelle des calculs. Enfin, un modèle expérimental in vitro a été développé pour étudier l'effet des plantes médicinales. L'épidémiologie de la lithiase dans cette région de l'Algérie a été déterminée. Les calculs d'oxalate de calcium deviennent prépondérants en raison d'un changement des habitudes alimentaires avec toutefois une persistance des calculs d'origine infectieuse que l'infection soit urinaire ou digestive. Les données recueillies sur la distribution des éléments traces ne soulignent pas leur rôle catalytique mais sont en faveur d'un simple processus d'adsorption. Aucun des extraits de plantes testés, tous issus de la pharmacopée algérienne, n'a eu d'effet tangible pour dissoudre les calculs urinaires.

Mots clé: lithiase urinaire, analyse morpho-constitutionnelle, fluorescence X, phytothérapie.

Abstract: Urolithiasis is a widespread disease that affects 4-18% of the population according to the countries. This pathology requires a lot of multidisciplinary research. The work presented here aims firstly to clarify the nature of urinary stones in the eastern Algeria and then investigate the role of trace elements as well as the effect of some medicinal plants on the dissolution of urinary stones. The techniques used are mainly the following: Fourier transform infrared spectroscopy to determine the chemical composition of the calculi, X-ray fluorescence to determine the nature and content of trace elements and scanning electron microscopy to explore the inner structure of the crystallites at the mesoscopic scale. Other methods such as stereomicroscopy have been used for the morpho-constitutional analysis of the calculi and an experimental model was developed for the study of the effect of medicinal plants in vitro. The epidemiology of urolithiasis in this region of Algeria was determined. Calcium oxalate stones become predominant due to a change in eating habits but with a persistence of infection-induced calculi persist, whatever the urinary tract or gut origin of the infection. The acquired data do not underline a catalytic role of trace elements detected within the stones but are in favor of a simple adsorption process. None of the tested extracts from the Algerian pharmacopoeia has had a significant effect to dissolve the urinary stones.

Keywords: urolithiasis, morpho-constitutional analysis, X-ray fluorescence, phytotherapy.

ملخص:

الحصى البولي هو حالة مرضية شائعة تمس من 4 الى 18 بالمائة من السكان حسب البلدان. هذا المرض يتطلب الكثير من البحوث متعددة التخصصات.

لعمل المقدم في هذه الرسالة يهدف إلى تحديد طبيعة الحصى البولي في منطقة الشرق الجزائري ثم دراسة دور بعض المعادن أو العناصر النزرة و أيضا تأثير مستخلصات بعض النباتات الطبية على تذويب الحصى البولى.

التقنيات المستعملة هي أساسا التالية: القياس الطيفي بالأشعة تحت الحمراء بتحويل فورييه لتحديد التركيبة الكيميائية للحصى، الإستشعاع بالأشعة السينية من أجل تحديد طبيعة و كمية المعادن أو العناصر النزرة، المجهر الإلكتروني لاستكشاف البنية الجوهرية للبلورات على المستوى الميكروسكوبي. هناك طرق أخرى استخدمت مثل المجهر الضوئي لإجراء التحليل المورفولوجي والبنيوي. في الأخير، طورنا نموذج تجريبي في المخبر لدراسة تأثير النباتات الطبية.

تم تحديد وبائية الحصى البولي في هذه المنطقة من الجزائر، حصى أكسالات الكالسيوم أصبحت أكثر بروزا بسبب تغير في عادات الأكل ولكن مع استعصاء حصى من أصل تعفني سواء كان هذا التعفن بولي أو هضمي. البيانات التي تم جمعها حول توزيع العناصر النزرة لا تؤكد دورها التحفيزي ولكن هي في صالح عملية بسيطة للامتزاز. و لا مستخلص نباتي كان له تأثير كبير في تذويب الحصى البولي.

الكلمات الرئيسية: الحصى البولي، التحليل المورفولوجي والبنيوي، الإستشعاع (الفلورة) بالأشعة السينية، طب الأعشاب.

REMERCIEMENTS

Je remercie **ALLAH** le tout puissant pour m'avoir donné la force de tous les jours. A toute **ma famille** et étroitement mon **cher Père** et mes proches pour m'avoir donné l'esprit pour continuer. A **ma femme** pour tout ce qu'elle a fait pour que je puisse atteindre notre but.

A Monsieur le Docteur **Abdelatif BOUTEFNOUCHET** pour sa patience, sa direction de ce travail, son soutien, les facilités qu'il m'a offertes pour dépasser les moments difficiles et surtout son caractère fraternel.

Je voudrai remercier spécialement Docteur **Dominique BAZIN** de m'avoir accueilli dans son laboratoire pour la durée globale de 22 mois et pour son aide et sa collaboration effective.

Je remercie Monsieur le Docteur **Michel DAUDON** de m'avoir accueilli dans son laboratoire C.R.I.S.T.A.L et appris ce que je ne peux pas apprendre sans lui que ce soit la formation que j'ai faite sur l'interprétation des cristallurie ou les cours de DU sur la lithiase urinaire, toute son aide, ses conseils et la révision de cette thèse. Je remercie ainsi tous les techniciens et membres de ce laboratoire qui m'ont facilité l'utilisation du matériel pendant leurs heures de travail.

Je remercie vivement Monsieur le Professeur **Athmane MEDDOUR** d'avoir accepté la présidence de mon jury de soutenance et ce malgré ses nombreuses charges et préoccupations administratives.

Mes sincères remerciements pour Messieurs le Professeur **Abdelhafid TRIKI** et le Docteur **Taoufik DJEMIL** de l'Université de Annaba qui ont accepté d'évaluer ce mémoire et de faire le déplacement Annaba-Guelma pour participer à mon jury de soutenance.

Mes plus profonds remerciements pour mes collègues de l'Université de Guelma Madame la Professeur **Hayette MOUMENI** et Monsieur le Docteur **Mourad Ibrahim DAOUDI** pour leur soutien et encouragement tout au long de mon travail de recherche et enfin pour avoir bien accepté d'évaluer ce mémoire et participer à mon jury de soutenance.

Je remercie les membres du Laboratoire de Physique des Solides (Orsay) et sur leur tête la directrice du Laboratoire Mme Dominique CHANDESRIS ainsi que les chercheurs : Dr Jean-Paul POUGET, Dr Jean DOUCET, Dr Fatma BRIKI, Dr EMELIE, Dr Pascale LAUNOIS sans oublier le staff administratif et technique du Laboratoire : <u>Jeril DEGROUARD</u>, My-Anh DANG, Martine DELOR, Sophie TOURLET, Raphaël WEIL, Nadine MEHL, Véronique THIEULART, Sandrine ERMISSE et très spécialement Amélie LECCHI et Stéphane ROUZIERE qui m'ont aidé beaucoup à réaliser mes manips.

Je remercie pareillement l'équipe de Saclay CEA et précisément Eddy FOY, et les équipes de LBB et Soleil pour leurs contributions.

Enfin je voudrais adresser une pensée toute particulière à ma chère Mère et à Nabil MAKHLOUFI ...

TABLE DES MATIERES

Introduction		3
Chapitre I : Généralités et état de l'art		
I.1 Quelques rappels sur la lithiase urinaire		5
I.2 Epidémiologie de la lithiase urinaire		7
I.3 La lithogenèse		9
I.4 Les différents types de calculs		11
I.5 La prise en charge thérapeutique		12
and the state of t		
Chapitre II : Les techniques de caractérisation dans le contexte des calcifications		
pathologiques		18
II.1 Quelques généralités		18
II.2 Analyse morpho-constitutionnelle		19
II.2.1 Examen optique et typage morphologique		19
II.2.2 Spectrophotométrie infrarouge à transformé de Fourier		21
II.3 Microscopie électronique à balayage		29
II.4 Le microanalyseur à sonde électronique		35
II.5 Fluorescence X		36
II.6 La diffraction des neutrons.		41
II.7 Etude de l'effet de dissolution des plantes sur les calculs rénaux		43
11.7 Etude de l'effet de dissolution des plantes sur les calculs renaux		43
Chapitre III : Epidémiologie		51
III.1 Classification constitutionnelle		53
		53
III.2 Destribution selon la localisation dans l'appareil urinaire		
III.3 Composition globale des calculs		55 57
III.4 Composants majotiraires dans les calculs		57
III.5 Composition majoritaire dans les noyaux		59
III.6 Discussion		62
III.7 Conclusion préliminaire		67
		70
Chapitre IV : Les éléments traces		72
IV.1 Les éléments traces et le tissu biologique		72 72
IV.2 Résultats		73
IV.3 Discussion		75
		0.1
Chapitre V: Effet des plantes médicinales		81
V.1 Échantillonnage		81
V.2 Résultats		82
V.3 Discussion		88
V.4 Conclusion préliminaire		90
Chapitre VI : Discussion		95
Chapitre VII : Conclusion et perspectives		100
	465	
Liste des figures et des tableaux	102	
ANNEXE : Intérêt clinique de l'analyse morphoconstitutionnelle des calculs urinaires		104

INTRODUCTION

Dès l'aube de l'humanité, la présence de calculs rénaux est attestée. Le premier calcul urinaire a été découvert chez un garçon de 15-16 ans dont les restes datant de près de 7000 ans ont été exhumés du cimetière d'El-Amrah, en haute Égypte. De nos jours, la lithiase urinaire, ou " maladie de la pierre " (« lithos » signifiant en grec « pierre ») est une affection très répandue qui touche 4 à 18% de la population selon les pays. En progression dans tous les pays industrialisés, sa fréquence a presque doublé depuis un demi-siècle.

Cette pathologie s'accompagne parfois de douleurs extrêmement violentes, les coliques néphrétiques, provoquées par l'augmentation de la pression des urines dans le rein suite à l'obstruction de l'uretère par le calcul. En cas d'absence d'évacuation naturelle du calcul, différents types d'interventions médicales peuvent être proposés pour libérer les voies urinaires : lithotritie extracorporelle par ondes de choc, urétéroscopie, chirurgie percutanée, chirurgie laparoscopique, chirurgie ouverte, voire néphrectomie lorsque le rein a été détruit par infection en amont de l'obstacle lithiasique.

La lithiase étant une pathologie récidivante dans presque un cas sur deux, il convient de poser un diagnostic étiologique de manière systématique [1]. Celui-ci s'établit notamment sur la base d'une relation entre la nature physico-chimique du calcul et la pathologie [2]. Déterminer la nature physicochimique du calcul passe par une description concise de sa morphologie à l'échelle macroscopique couplée à la mise en œuvre de la spectrophotométrie infrarouge à transformée de Fourier. Une première difficulté émerge alors en raison d'une part de la nature multiphasique de ces échantillons biologiques et d'autre part de la diversité des phases chimiques présentes puisque plus de 100 constituants ont été identifiés à ce jour dans les calculs urinaires [3]. Les composés chimiques associés à la prévalence la plus grande sont les oxalates de calcium (mono ou dihydraté), les acides uriques (anhydre ou dihydraté), les phosphates calciques (apatites, brushite) et la struvite, ou encore la cystine. Chacun de ces constituants peut présenter différentes morphologies et couleurs qui peuvent être rattachées à des environnements biochimiques particuliers [1, 2], voire à des causes spécifiques [4]. Dans certains cas, la nature chimique particulière des calculs signe une étiologie très spécifique [4, 5]. Dans d'autres cas, malgré une composition chimique et cristalline banale, la morphologie du calcul oriente vers des patholgies ou des causes très particulières [6, 7], d'où l'importance clinique de pratiquer une analyse morpho-constitutionnelle des calculs.

L'objectif premier de cette thèse est de préciser l'épidémiologie des calculs de l'Est Algérien. Pour ce faire, 415 calculs ont été collectés dans des centres hospitaliers et cliniques de la région « Est algérien ». Cette collection a fait l'objet d'une analyse morphoconstitutionnelle, analyse qui a ensuite été intégrée à une étude plus large puis comparée à des données épidémiologiques provenant soit d'autres régions de l'Algérie soit d'autres pays. Cette analyse montre que l'épidémiologie des lithiases reflète le niveau socioéconomique ainsi que le degré de médicalisation des populations.

Nous avons ensuite complété cette approche classique par une partie plus exploratoire où l'on s'est attaché à mettre en évidence le rôle éventuel des éléments traces dans les processus lithogènes. En effet, de nombreux travaux de la littérature physicochimique et médicale soulignent cette propriété catalytique et il nous a paru important de l'aborder. Ce type de mesures permet aussi de proposer la fluorescence X comme outil de diagnostic en soulignant éventuellement la présence de substances néphrotoxiques (Hg, Cd, Pb, ...).

Enfin, pour les lithiases qui présentent une résistance vis-à-vis de la lithotripsie extracorporelle (LEC) comme la cystine, l'oxalate de calcium type Id et la brushite, nous avons évalué l'efficacité de certaines plantes utilisées en médecine traditionnelle. Cette alternative serait particulièrement intéressante pour des populations ayant un accès difficile aux soins hospitaliers.

Quelques références

- [1] M. Daudon, O. Traxer, P. Jungers, Lithiase Urinaire, 2ème ed., Lavoisier, Médecine Sciences, Paris, 2012, 672 pages.
- [2] M. Daudon, C.A. Bader, P. Jungers, Urinary calculi: review of classification methods and correlations with etiology, Scan. Microsc. 1993; 7:1081-1106.
- [3] D. Bazin, M. Daudon, C. Combes, C. Rey, Characterization and some physicochemical aspects of pathological microcalcifications, Chem. Rev. 2012; 112:5092-5120.
- [4] I. Ceballos-Picot, J.L. Perignon, M. Hamet, M. Daudon, P. Kamoun, 2,8-dihydroxyadenine urolithiasis, an underdiagnosed disease, The Lancet 1992; 339: 1050 1051.
- [5] M. Daudon, L. Estépa, J.P. Viard, D. Joly, P. Jungers, Urinary stones in HIV-1-positive patients treated with indinavir, The Lancet 1997; 349: 1294 1295.
- [6] M. Daudon, R. Reveillaud, P. Jungers, Piridoxilate- associated calcium oxalate urinary calculi: A new metabolic drug-induced nephrolithiasis, The Lancet 1985; 325: 1338-1339.
- [7] M. Daudon, P. Jungers, D. Bazin, Peculiar Morphology of Stones in Primary Hyperoxaluria. New England J. of Medecine 2008; 359: 100 102.

Chapitre I : Généralités et état de l'art

I.1 Quelques généralités sur la lithiase urinaire

Les calculs urinaires [1-6] sont des calcifications pathologiques, celles-ci se définissant comme toutes formes de dépôts minéraux anormaux, calciques ou non, dans un tissu, un organe ou sur un dispositif médical [7-9]. D'un point de vue médical, au moins trois familles de calcifications pathologiques existent. Une première se réfère aux calculs, qui se définissent comme des concrétions solides formées dans une cavité ou un canal excréteur (calculs rénaux, biliaires, salivaires, vésicaux...). Une deuxième s'associe aux calcifications tissulaires ou ectopiques localisées en dehors des canaux excréteurs (qui peuvent être liées parfois à des pathologies sévères comme les cancers du sein, de la thyroïde, des testicules ou encore de la prostate). Enfin, dans certains cas, des calcifications, au départ physiologiques comme l'os ou la dent, deviennent en partie des calcifications pathologiques suite à une maladie. La lithiase rénale peut être caractérisée soit par des calculs formés dans les voies excrétrices soit par des concrétions initiées à partir de calcifications tissulaires. En effet, les plaques de Randall [10], qui sont des calcifications tissulaires présentes au sommet de certaines papilles servent de centre nucléateur et sont donc à l'origine de certains calculs.

Sur le plan physicochimique [9, 11], les calcifications pathologiques sont des biomatériaux complexes comprenant une partie minérale et une partie organique associées à des éléments traces. L'ensemble exhibe une structure hiérarchique pour la partie minérale dans laquelle des nanocristaux s'assemblent pour former des microcristallites, l'agglomération de ces derniers constitue la calcification [12]. Les calcifications pathologiques (mais aussi physiologiques) sont issues d'une chimie douce [13] i.e. leur synthèse s'effectue à température et pression ambiantes pour des valeurs de pH qui s'inscrivent dans notre cas entre 5 et 8. On retrouve donc pour les calcifications pathologiques de nombreuses similitudes avec certaines notions de chimie douce (particules Janus, mise en forme par le tissu à l'échelle mésoscopique, ...). La cinétique et la thermodynamique ont des rôles clés dans la compréhension des processus de biochimie qui conditionnent la pathogenèse de ces calcifications. Ainsi dans le cas des calculs d'oxalate de calcium, la thermodynamique est prédominante lorsque l'on s'intéresse aux hyperoxaluries avec comme phase chimique générée la whewellite (CaC₂O₄.H₂O). Au contraire, la thermodynamique s'efface au profit de la cinétique de la réaction dans le cas des hypercalciuries avec cette fois la weddellite

(CaC₂O₄. 2H₂O) comme phase chimique des calculs. Enfin, deux types de processus de nucléation primaire existent dans une urine sursaturée. Si une proportion limitée de calculs se forme suivant un processus de nucléation homogène (i.e. une simple précipitation), on observe de plus en plus leur formation dans le cadre d'un processus de nucléation hétérogène liée notamment à la présence à la surface de l'épithélium papillaire d'une calcification appelée plaque de Randall [10].

La lithiase est présente dès l'aube de l'humanité, puisque le premier calcul urinaire a été découvert chez un garçon de 15-16 ans dont les restes ont été exhumés du cimetière d'El-Amrah, en haute Egypte [14]. La figure 1 retrace quelques étapes historiques associées à la lithiase durant les 19^{ème} et 20^{ème} siècles. Comme on peut le voir, la lithiase reflète le statut socioéconomique du pays [15]. Ainsi, au milieu du XX^e siècle, comme au siècle précédent, la lithiase des populations de faible niveau socioéconomique est fréquente et affecte généralement les enfants avec une très forte prédominance masculine. Les calculs ont surtout une localisation vésicale. Au niveau chimique, on note la prépondérance de l'urate d'ammonium et des phosphates calciques et magnésiens. Ainsi, leur composition rend compte à la fois d'une hygiène précaire et d'une alimentation à base de céréales et de végétaux, souvent pauvre en phosphore et en protéines animales. Avec l'élévation du niveau de vie, les caractéristiques physicochimiques et la localisation des calculs évoluent, l'oxalate de calcium devenant souvent le constituant majoritaire et la localisation des calculs étant rénale. De plus, la lithiase affecte désormais essentiellement les adultes [16].

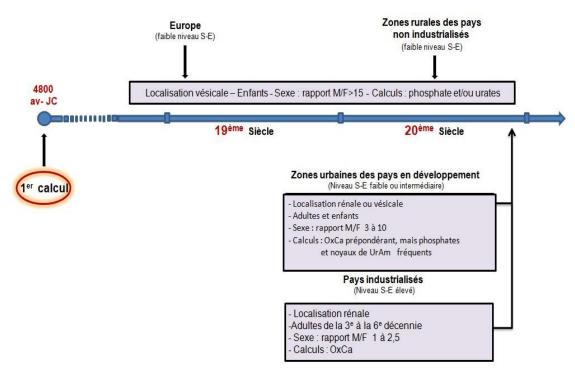
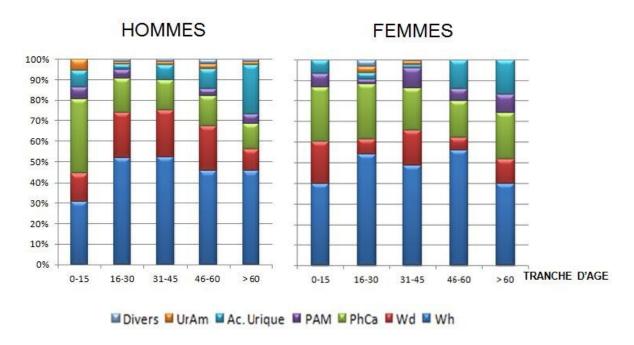


Figure 1. Evolution historique et géographique de la lithiase urinaire


I.2 Epidémiologie de la lithiase urinaire

La prévalence annuelle de la lithiase urinaire a presque triplé en quarante ans (Etats-Unis, Europe occidentale) [17-18-19-20-21-22]. Ces phénomènes s'expliquent par l'élévation du niveau socio-économique et la modification des habitudes alimentaires (majoration de la proportion de patients obèses, en surpoids ou diabétiques due à des apports plus caloriques et/ou une moindre dépense énergétique). Au cours du $20^{\rm ème}$ siècle, la consommation de sel a été multipliée par 3, celle de protéines par 5 et celle de sucres raffinés par 20. Durant la même période, on assiste à une baisse de la consommation des aliments végétaux riches en fibres et en potassium.

En Algérie, une série de 360 [23] puis de 1354 calculs urinaires de l'adulte [24] provenant de quatre grandes villes de l'ouest algérien a été étudiée. La fréquence de la lithiase vésicale est élevée puisqu'elle représente 45,5% des calculs d'origine masculine traités urologiquement. La composition cristalline montre que l'oxalate de calcium monohydraté (whewellite) est majoritaire dans 48,1% des calculs et dans 40,6% au niveau des noyaux. La carbapatite est le constituant principal dans 24,4% des calculs et dans 21,9% des noyaux. La carbapatite est présente dans 77,8% des calculs analysés, la whewellite dans 68,6%, la weddellite dans 56,4%, la struvite dans 20,6%, l'urate acide d'ammonium dans 12,2% et les acides uriques dans 9,4% [23]. Ces chiffres n'ont pas été repris dans l'étude élargie

comportant 1354 calculs publiée près de 10 ans plus tard. Cependant, en raison de sa signification pathologique forte, la présence de struvite a été réévaluée dans cette plus grande série [24]. Les données rapportées montrent que 28,8% de l'ensemble des calculs contenaient de la struvite, suggérant une forte implication des infections à germes uréasiques dans la formation ou le développement des calculs observés dans l'Ouest Algérien. L'analyse plus précise des résultats faisait ressortir une plus grande prévalence de la struvite chez la femme (37,8% des calculs) que chez l'homme (24,5%). Au total, la carbapatite et la whewellite étaient les principaux composants impliqués dans la lithogenèse des calculs de la région Ouest algérien [23,24]. Dans la même région, cette étude [24] a illustré l'évolution de la composition des calculs en fonction de l'âge (figure 2). Le pic de l'oxalate de calcium se situait dans la tranche 31-45 ans tandis que la carbapatite était plus fréquente après 60 ans. Il ressort de l'analyse des données que la lithiase urinaire dans l'Ouest algérien a tendance à évoluer dans le même sens que celle des pays industrialisés. Toutefois, les infections urinaires restent une cause fréquente de lithiase [23,24] par rapport à d'autres études effectuées en Europe [18, 19].

Aucune étude n'a été entreprise sur les calculs urinaires de la région Est algérien.

Figure 2. Composition des calculs en fonction de l'âge, sur une série de 1354 calculs provenant des services d'urologie de l'Ouest Algérien [24].

I.3 La lithogenèse

Nous avons rassemblé sur la figure 3 les principales étapes de la lithogenèse [25]. Cette figure 3 montre la complexité des processus physicochimiques associés ainsi que différents mécanismes biochimiques mis en action par l'organisme afin d'éviter la formation de calcul : variation du pH urinaire, dilution des urines, complexation de certains ions pour limiter la formation d'espèces moléculaires peu solubles, blocage des sites de croissance cristalline par des ions ou des macromolécules (inhibiteurs), protection de l'épithélium urinaire contre l'adhérence cristalline, etc. De ce fait, les principales causes biochimiques de sursaturation des urines, liées à une concentration excessive de calcium, d'oxalate, d'acide urique ou à une concentration insuffisante de citrate, sont contrebalancées par la présence d'autres substances qui vont exercer des effets sur les cristaux eux-mêmes (inhibition de croissance ou d'agrégation) ou leur interaction potentielle avec l'épithélium.

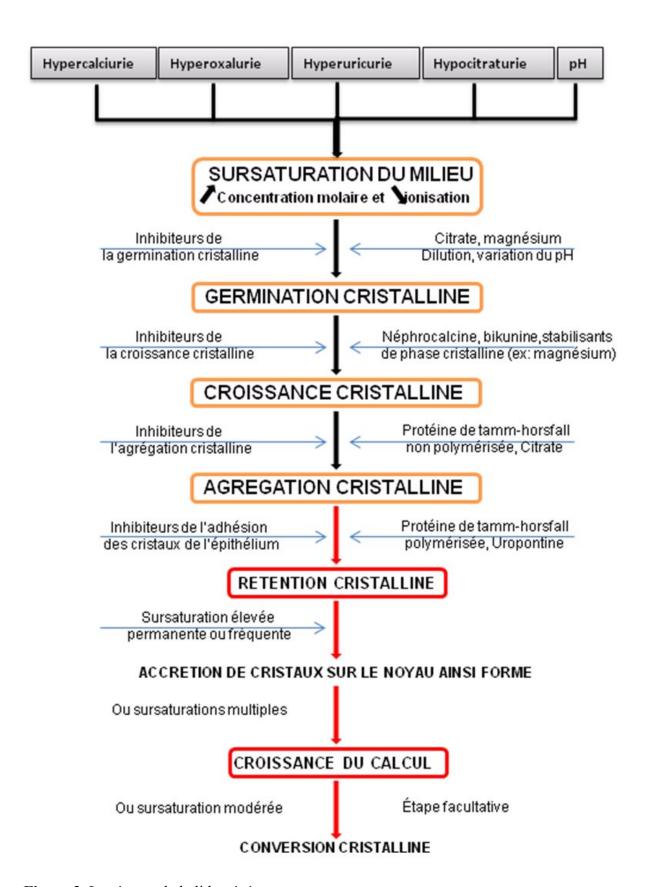


Figure 3. Les étapes de la lithogénèse.

Il existe normalement, dans les urines, un équilibre entre promoteurs et inhibiteurs de cristallisation [25]. Cet équilibre peut être rompu soit par un excès des promoteurs, soit par un déficit des inhibiteurs (Figure 4). Les ions qui participent à la formation des espèces insolubles sont appelés promoteurs de la cristallisation. Au nombre d'une dizaine, les promoteurs de la cristallisation peuvent agir conjointement ou isolément. Le plus souvent, 2 ou 3 composés sont mis en œuvre pour aboutir à la formation de ces espèces moléculaires peu solubles qui peuvent alors précipiter sous différentes formes cristallines. Ces dernières se forment dans des environnements biologiques différents dont elles témoignent, d'où l'intérêt de les prendre en considération pour identifier les facteurs étiologiques d'une maladie lithiasique.

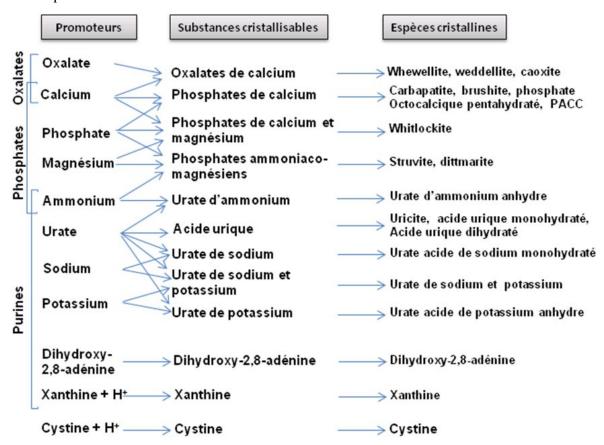


Figure 4 : Promoteurs, substances cristallisables et espèces cristallines

I.4 les différents types de calculs

L'analyse chimique des calculs a été remplacée par une analyse morphoconstitutionnelle fondée sur une description précise à l'échelle macroscopique complétée par une technique de caractérisation par spectroscopie vibrationnelle et plus précisément par spectroscopie infrarouge à transformée de Fourier [26,27]. A l'échelle macroscopique, il s'agit de préciser la forme, la taille, l'aspect de la surface, la texture, la forme et l'aspect des cristaux, la couleur, la dureté, l'organisation et les principales caractéristiques de la section et, chaque fois que cela est possible, d'identifier le noyau qui a servi de point de départ à la formation du calcul. La spectrophotométrie infrarouge est devenue la méthode de référence en raison de sa polyvalence, de sa rapidité, de sa mise en œuvre aisée et de sa capacité à identifier simultanément les espèces cristallines et non cristallisées, les composants minéraux et organiques, les espèces métaboliques et médicamenteuses (plus de 70 molécules différentes). En revanche, la spectrophotométrie infrarouge ne peut pas identifier un nouveau corps, non encore décrit dans les calculs, comme un nouveau médicament par exemple, même si elle est capable de le détecter. D'autres techniques d'analyse sont alors nécessaires, comme la diffraction X [28] pour identifier plus précisément la nouvelle substance détectée par l'analyse infrarouge. La spectrophotométrie infrarouge ne permet pas non plus de mettre en évidence la présence d'éléments traces.

Les calculs urinaires peuvent être rassemblés au sein d'une classification comportant 6 types et 21 sous types, qui permet de classer plus de 95% des calculs de l'arbre urinaire :

- Les oxalates de calcium [29] constituent la classe I pour la whewellite et la classe II pour la weddellite.
 - Les calculs d'acide urique et les urates [30] forment la classe III
- Les phosphates calciques et magnésiens, soit carbapatite, struvite, brushite, whitlockite [31,32] sont rassemblés dans la classe IV
- Les calculs de cystine (Classe V) sont liés à la cystinurie. Il s'agit d'une anomalie génétique qui entraîne l'excrétion d'une quantité excessive de cystine par les reins. Ce type de calcul peut survenir dès l'enfance [33-34].
 - Les calculs constitués de protéines sont rassemblés dans la Classe VI.

Notons l'existence de calculs de l'arbre urinaire d'autre nature comme les calculs d'origine médicamenteuse [35,36] ou les calculs constitués de purines rares liées à des maladies génétiques [37].

I.5 La prise en charge thérapeutique

Historiquement, l'une des premières prises en charge thérapeutique de la lithiase est dénoncée dans le serment d'Hippocrate. Elle s'associe à l'ouverture de la vessie afin d'en extraire les calculs vésicaux. Jusqu'au XVIII^e siècle, les calculs vésicaux étaient une cause

fréquente de souffrance, d'infection et de décès par urémie. Leur extraction par la taille vésicale (incision) était redoutée, jusqu'à l'invention par Claude-Nicolas Le Cat d'un instrument, le gorgeret-cystotomel, qui a permis de réduire la mortalité consécutive à l'ablation de ces calculs [38].

Malgré les progrès de la chirurgie dans les décennies suivantes, il a fallu attendre la fin des années 70 pour assister à une révolution de la prise en charge urologique des calculs. Depuis 1980, l'idée de casser un calcul dur dans un rein mou sans endommager ce dernier est, en effet, devenue une réalité [39]. La lithotripsie ou lithotritie extracorporelle (LEC) est une méthode non invasive très utilisée aujourd'hui. Après un repérage précis du calcul par radiographie ou échographie, elle conduit à la fragmentation du calcul (rénal ou biliaire) grâce à des ondes de choc générées par un lithotriteur [40,41]. Les fragments sont ensuite éliminés dans la majorité des cas par les voies urinaires dans un délai compris entre quelques jours et quelques semaines. Cette méthode ne s'accompagne donc pas d'ouverture chirurgicale.

Si le taux de succès relevé dans la littérature médicale est de 60 à 85%, cette technique n'est pas pour autant sans défaut [42]. Dans certains cas, les résidus des fragments du calcul peuvent rester en place dans l'appareil urinaire et donner lieu à des coliques néphrétiques. Eventuellement, un processus infectieux peut se déclencher [43] voire dans certains cas une hémorragie [44]. De ce fait, il est utile de chercher une alternative à ces moyens, par exemple en utilisant des plantes médicinales ou la phytothérapie qui pourrait aider à l'expulsion des fragments, voire à prévenir la formation de calculs.

Cette demande pour des traitements par les plantes est de plus en plus importante et il convient de souligner qu'il ne s'agit pas seulement d'une survivance de «pratiques populaires», mais qu'il existe à l'heure actuelle une phytothérapie prescrite sur ordonnance [45]. Selon l'organisation mondiale de la santé, 75% des patients ont recours à la médecine traditionnelle pour leurs soins de base [46]. De nombreuse plantes sont utilisées à plus ou moins bon escient dans plusieurs régions du monde pour le traitement de différentes pathologies [47,48,49]. En ce qui concerne la sphère urologique, de nombreux travaux concernent la phytothérapie [50,51,52], ce traitement par les plantes n'étant pas sans risque [53]. A titre d'exemple, une étude récente recense 61 plantes médicinales appartenant à 30 familles et réparties en 51 genres dans le cadre des maladies rénales [54]. Parmi les plantes utilisées, citons: *Paronychia argentea* [55-56], *Bergenia ligulata* [57], *Humulus lupulus* [58]. Les plantes sélectionnées dans cette étude font toutes parties de la pharmacopée Algérienne [56] et cette étude tente d'apporter des données physicochimiques aux propriétés

antilithiasiques supposées de ces plantes en les confrontant à des lithiases difficiles à traiter par la pharmacopée industrielle.

Références

- [1] P. Jungers, M. Daudon, A. Leduc, Lithiase urinaire, Ed. Médecine-Sciences, Flammarion 1989.
- [2] M. Daudon, Les différents types de calculs: apport de l'analyse morphoconstitutionnelle au diagnostic étiologique de la lithiase, In: Doré B (ed) Les Lithiases Rénales. Paris, Springer 2004 pp 49 77.
- [3] F.L. Coe, J.H. Parks, J.R. Asplin, The pathogenesis and treatment of kidney stones, N. Engl. J. Med. 1992; 327: 1141-1152.
- [4] P. Jungers, M. Daudon, P. Conort, Lithiase rénale, diagnostic et traitement, Ed. Médecine-Sciences, Flammarion 1999.
- [5] F.L Coe, A. Evan, E. Worcester, Kidney stone disease, J. Clin. Invest. 2005; 115: 2598 2608.
- [6] J.C. Williams, Unlock the Mysteries of Stone Analysis, B.J.U. Int. 2009; 104:8-12.
- [7] S.M. Krasovskaya, L.D. Uzhinova, M.Yu. Andrianova, A.A. Prischenko, M.V. Livantsov, M.V. Lomonosov, Biochemical and physico-chemical aspects of biomaterials calcification, Biomaterials 1991; 12:817-820.
- [8] E. Bonucci, Biological calcification: Normal and pathological processes in the early Stages, Ed. Springer Berlin Heidelberg 2007.
- [9] D. Bazin, M. Daudon, Pathological calcifications and selected examples at the medicine–solid-state physics interface, J. Phys. D : Appl. Phys. 2012; 45: 383001 383010.
- [10] A. Randall, The origin and growth of renal calculi, Ann. Surg. 1937; 105: 1009-1027.
- [11] http://www.synchrotron-soleil.fr/Soleil/ToutesActualites/2013/Les-calcifications-Pathologiques
- [12] J.D. Currey, Hierarchies in biomineral structures, Science 2005; 309: 253 260.
- [13] D. Avnir, T. Coradin, O. Lev, J. Livage, Recent bio-applications of sol-gel materials, J. Mater. Chem. 2006; 16: 1013 1030.
- [14] S.G. Shattock, Prehistoric or predynastic Egyptian calculus, Trans. Path. Sci. Lond. 1905; 56: 275 290
- [15] R. Asper, Epidemiology and socioeconomic aspects of urolithiasis, Urol. Res. 1984; 12:1-5.
- [16] M. Daudon, J.C. Doré, P. Jungers, B. Lacour, Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach, Urol. Res. 2004; 32: 241 247.
- [17] C.M. Johnson, D.M. Wilson, W.M. O'Fallon, R.S. Malek, L.T. Kurland, Renal stone epidemiology: a 25-year study in Rochester, Minnesota, Kidney Int. 1979; 16: 624 631.
- [18] W. Tschope, E. Ritz, M. Haslbeck, H. Mehnert, H. Wesch, Prevalence and incidence of renal stone disease in a German population sample, Klin. Wochenschr. 1981; 59:411-412
- [19] P. Jungers, M. Daudon, Epidemiology of the kidney stones, Presse Méd. 1990; 19: 1655 1657.
- [20] J.M. Soucie, M.J. Thun, R.J. Coates, W. McClellan, H. Austin, Demographic and geographic variability of kidney stones in the United States, Kidney Int. 1994; 46: 893 899.
- [21] A. Hesse, E. Brandle, D. Wilbert, K.U. Kohrmann, P. Alken, Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs 2000, Eur. Urol. 2003; 44: 709 713.
- [22] M. Daudon, O. Traxer, E. Lechevalier, C. Saussine, Épidémiologie des lithiases urinaires, Prog. Urol. 2008; 18:802 814.
- [23] D. Harrache, Z. Mesri, A. Addou, A. Semmoud, B. Lacour, M. Daudon, Analyse des calculs urinaires de l'adulte dans l'ouest algérien par spectroscopie infrarouge à transformée de Fourier, L'Eurobiologiste 1997; 31:69-74.
- [24] Z. Djelloul, A. Djelloul, A. Bedjaoui, Z. Kaid-omar, A. Attar., M. Daudon, A. Addou, Lithiase urinaire dans l'Ouest algérien: étude de la composition de 1354 calculs urinaires en relation avec leur localisation anatomique, l'âge et le sexe des patients, Prog. Urol. 2006; 16: 328 335.
- [25] M. Daudon, O. Traxer, E. Lechevallier, C. Saussine, La lithogenèse, Prog. Urol. 2008; 18:815 827.
- [26] M. Daudon, L'analyse morphoconstitutionnelle des calculs dans le diagnostic étiologique d'une lithiase urinaire de l'enfant, Arch. Pediatr. 2000; 7:855-865.
- [27] M. Daudon, Comment analyser un calcul et comment interpréter le résultat, L'Eurobiologiste 1993 ; 27 : 35 46.
- [28] A. Le Bail, M. Daudon, D. Bazin, A new compound in kidney stones? Powder X-ray

- Diffraction study of calcium glycinate trihydrate, Acta Cryst. 2013; C69: 734 737.
- [29] S.R. Khan, Pathogenesis of oxalate urolithiasis: lessons from experimental studies with Rats, Am. J. Kidney Dis. 1991; 17: 398 401.
- [30] B. Shekarriz, M.L. Stoller, Uric Acid Nephrolithiasis: Current Concepts and Controversies, The Journal of Urology 2002; 168:1307-1314.
- [31] M. Daudon, H. Bouzidi, D. Bazin, Composition and morphology of phosphate stones and their relation with etiology, Urol. Res. 2010; 38:459-467.
- [32] J.C. Williams, T. Hameed, M.E. Jackson, S. Aftab, A. Gambaro, Y.A. Pishchalnikov, H.E. Lingeman, J.A. McAteer, Fragility of Brushite stones in shock wave lithotripsy: Absence of correlation with computerized tomography visible Structure, The Journal of Urology 2012; 188: 996 1001.
- [33] A.P. Evan, F.L. Coe, J.E. Lingeman, Y. Shao, B.R. Matlaga, S.C. Kim, S.B. Bledsoe, A.J. Sommer, M. Grynpas, C.L. Philips, E.M. Worcester, Renal crystal deposits and histopathology of the kidney in cystinuria, Kidney Int. 2006; 69: 2227 2235.
- [34] H. Bouzidi, M. Daudon, Cystinurie : du diagnostique à la surveillance thérapeutique, Ann. Biol. Clin. 2007 ; 65 : 473 481.
- [35] M. Daudon, P. Jungers, Drug-induced renal calculi, Drugs 2004; 64: 245 275.
- [36] S. Chutipongtanate, V. Thongboonkerd, Ceftriaxone crystallization and its potential role in kidney stone formation, Biochem. and Biophysical Res. Com. 2011; 406: 396 402.
- [37] G. Bollée, C. Dollinger, L. Boutaud, D. Guillemot, A. Bensman, J. Harambat, P. Deteix, M. Daudon, B. Knebelmann, I. Ceballos-Picot, Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency, J. Am. Soc. Nephrol. 2010; 21: 679 688.
- [38] Ph. Grise, Claude-Nicolas Le Cat (1700-1768), un grand nom de la Chirurgie et de l'Urologie au 18ème siècle, Progrès en Urologie 2001; 11: 149 153.
- [39] C. Chaussy, W. Brendel, E. Schmidt, Extracorporeally induced destruction of kidney stones by shock waves, Lancet 1980; 2:1925 1930.
- [40] C. Chaussy, G. Fuchs, La lithotritie extracorporelle dans le traitement de la lithiase rénale, J. Urol. 1986; 92 : 339 343.
- [41] J.J. Rassweiler, C. Renner, C. Chaussy, S. Thüroff, Treatment of renal stones by extracorporeal shockwave lithotripsy, Eur. Urol. 2001; 39: 187 199.
- [42] J.A. McAteer, A.P. Evan, The acute and long-term adverse effects of shock wave Lithotripsy, Seminars in Nephrology 2008; 28: 200 213.
- [43] G. Reid, M.A. Jewett, J.C. Nickel, R.J. McLean, A.W. Bruce, Effect of extracorporeal shock wave lithotripsy on bacteria viability. Relationship to the treatment of struvite stones, Urol. Res. 1990; 18: 425 427.
- [44] G.M. Sare, F.R. Llyod, E.R. Strom, Life-threatening haemorrage after extracorporeal shockwave lithotripsy in a patient taking clopidrogel, B.J.U. Int. 2002; 90: 469 472.
- [45] H. Lamendin, G. Toscano, P. Requirand, Phytothérapie et aromathérapie buccodentaires, EMC-Dentisterie 2004; 1:179 192.
- [46] C. I. Bagnis, G. Deray, A. Baumelou, M. Le Quintrec, J. L. Vanherweghem, Herbs and the kidney, AJKD 2004; 44:1-11
- [47] H. Azimi, M. Fallah-Tafti, A.A. Khakshur, M. Abdollahi, A review of phytotherapy of acne vulgaris: Perspective of new pharmacological treatments, Fitoterapia 2012; 83:1306-1317.
- [48] K. Karunamoorthi, E. Tsehaye, Ethnomedicinal knowledge, belief and self-reported practice of local inhabitants on traditional antimalarial plants and phytotherapy, J. of Ethnopharmacology 2012; 141: 143 150.
- [49] P. Perrin, M. Auges, N. Rahhali, C. Taieb, PUK6 BPH patients treated with phytotherapy in Portugal: Results at Six Months, Value in Health 2011; 14: A331 A335.
- [50] F. Grases, G. Melero, A. Costa-Bauza, R. Prieto, J.G. March, Urolithiasis and phytotherapy, Int. Urol. Nephrol. 1994; 26: 507-511.
- [51] B. Ballabh, O.P. Chaurasia, Z. Ahmed, S. Bala Singh, Traditional medicinal plants of cold desert Ladakh used against kidney and urinary disorders, J. of Ethnopharmacology 2008; 118: 331-339.
- [52] F. Grases, R.M. Prieto, I. Gomila, P. Sanchis, A. Costa-Bauzá, Phytotherapy and renal stones: the role of antioxidants. A pilot study in Wistar rats, Urol. Res. 2009; 37:35-40.
- [53] Z. Sokar, C.A. Gadhi, A. Benharref, M. Jana, Toxic effect of Herniaria cinerea DC. on the stomach, intestine, lung, and kidney of rats, J. of Ethnopharmacology 2003; 88: 149 - 153.
- [54] A. Lengani, L. F. Lompo, I. P. Guissou, J.B. Nikiema, Médecine traditionnelle et

- maladies des reins au Burkina Faso, Nephrol. Ther. 2010; 6:5-10.
- [55] S. Bouanani, C. Henchiri, E. Migianu-Griffoni, N. Aouf, M. Lecouvey, Pharmacological and toxicological effects of Paronychia argentea in experimental calcium oxalate nephrolithiasis in rats, J. of Ethnopharmacology 2010; 129: 38-45.
- [56] A. Beloued, Plantes médicinales d'Algérie. OPU, Alger 1998 ; pp 74–84.
- [57] S. Bashir, A.H. Gilani, Antiurolithic effect of Bergenia ligulata rhizome: An explanation of the underlying mechanisms, J. of Ethnopharmacology 2009; 122, 106 116.
- [58] A. Frąckowiak, T. Koźlecki, P. Skibiński, W. GaweL, E. Zaczyńska, A. Czarny, K. Piekarska, R. Gancarz, Solubility, inhibition of crystallization and microscopic analysis of calcium oxalate crystals in the presence of fractions from Humulus lupulus L, J. of Crystal Growth 2010; 312: 3525 3532.

Chapitre II : Les techniques de caractérisation dans le contexte des calcifications pathologiques

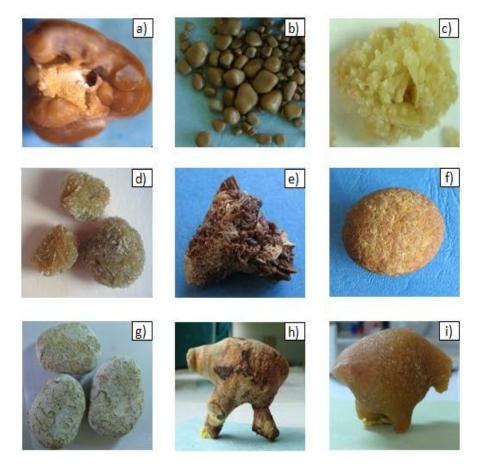
II.1 Quelques notions de physicochimie associées aux calcifications pathologiques

Nombreuses sont les techniques de caractérisation mises en œuvre afin de préciser les spécificités physicochimiques des calculs urinaires [1]. Parmi elles, nous pouvons distinguer les techniques de laboratoire comme la microscopie électronique à balayage qui en décrit la topologie [2,3], la spectrophotométrie infrarouge, qui en donne la composition chimique, la diffraction des rayons X qui en donne aussi la composition chimique à condition que la phase soit cristallisée et indique la taille des cristaux [4], la tomographie qui dévoile la répartition dans l'espace des différentes phases chimiques [5] ou encore la fluorescence X induite par des photons, des électrons ou des protons qui en établit la composition élémentaire [6,7].

Parmi cette première série de techniques de caractérisation, la spectrophotométrie infra rouge est particulièrement adaptée [8]. En effet, elle permet de mettre en évidence des phases chimiques dépourvues d'ordre à grande distance comme le phosphate amorphe de calcium carbonaté qui a une signification clinique importante [9]. Elle autorise aussi l'évaluation du taux de carbonatation des apatites qui au-delà d'une certaine valeur indique un processus infectieux [3]. Sur ces deux critères majeurs, elle s'avère donc bien supérieure aux autres techniques de laboratoire (y compris bien sûr les analyses chimiques) lorsque l'on s'intéresse à la lithiase.

Récemment, l'étude des calculs urinaires [10] et plus largement des calcifications pathologiques a bénéficié de techniques liées aux grands instruments comme le rayonnement synchrotron [11] ou le réacteur nucléaire de recherche [12]. Sur les centres de rayonnement synchrotron sont implantées les techniques de caractérisation utilisant donc le photon comme sonde de la matière. Parmi elles citons les techniques de diffusion-diffraction des rayons X [13], la fluorescence X [14,15] ou encore la spectrophotométrie infra rouge à transformée de Fourier (I.R.-T.F.) [16] mais aussi des techniques spécifiques comme la spectroscopie d'absorption X [17,18]. En ce qui concerne la fluorescence X et la diffraction des rayons X, ces deux techniques de caractérisation s'avèrent dans ces nouvelles conditions expérimentales aptes à décrire plus finement la matière puisque la taille du faisceau sonde est désormais de l'ordre du micromètre, le rapport signal/bruit étant lui aussi bien supérieur en raison de la brillance exceptionnelle de la source. Notons qu'en ce qui concerne la nouvelle source de

troisième génération française SOLEIL, Source Optimisée de Lumière d'Energie Intermédiaire du Lure, opérationnelle depuis 2006, la première expérience a été effectuée sur un calcul rénal [19].


Nous ne présenterons pas dans ce chapitre la physique sous-jacente à chacune des techniques dans la mesure où de nombreux excellents ouvrages existent. Seule une présentation succincte est effectuée au cours de laquelle la nature des informations structurales est discutée.

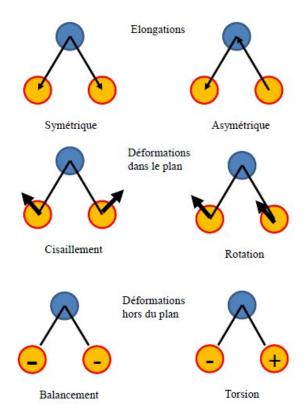
II.2 Analyse morpho-constitutionnelle des calculs

L'approche morpho-constitutionnelle comporte l'aspect morphologique qui consiste à déterminer le typage morphologique de chaque calcul par loupe binoculaire et l'aspect constitutionnel qui s'attache à déterminer sa composition chimique par spectrophotométrie infrarouge à transformée de Fourier. L'association de ces deux approches, morphologique et constitutionnelle, oriente vers des étiologies particulières et spécifiques de lithogenèse.

II.2.1 Examen optique et typage morphologique

La détermination du type morphologique du calcul (Figure 1) s'effectue à l'aide d'une loupe binoculaire éclairée par des fibres optiques (grossissement entre 10 et 40 fois) pour définir la structure du calcul en fonction des caractéristiques de sa surface (texture, aspect des cristaux, couleur, particularités morphologiques : ombilication avec une plaque de Randall). Le calcul peut être ensuite coupé afin d'examiner la section (noyau, couches profondes, couches médianes et couches périphériques du calcul) ce qui permet d'avoir une idée de son évolution temporelle. L'examen morphologique sert également à choisir les prélèvements qui seront analysés par spectrophotométrie infrarouge. Ils doivent être choisis judicieusement pour être représentatifs des différentes étapes de la formation du calcul.

Figure 1. Exemples de quelques types morphologiques de calculs urinaires collectés au niveau des hôpitaux et cliniques de l'Est Algérien :


- (a) Calcul d'oxalate de calcium monohydraté (whewellite) de type Ia présentant une ombilication d'origine papillaire avec un dépôt de carbapatite de type IVa₁ (plaque de Randall). Dimensions : 6x5x4 mm
- (b) Calcul d'oxalate de calcium monohydraté (whewellite) de type Id de surface lisse homogène. Dimensions moyennes : 7x5x5 mm
- (c) Calcul d'oxalate de calcium dihydraté (weddellite) de type IIa présentant des cristaux bipyramidaux aplatis. Dimensions : 11x9x8 mm
- (d) Calcul d'oxalate de calcium présentant un début de conversion cristalline weddellite whewellite par déshydratation in situ des cristaux de weddellite : cristaux aux angles plus ou moins émoussés. Dimensions : 12x10x8 mm (le plus gros)
- (e) Calcul d'oxalate de calcium présentant une conversion cristalline weddellite whewellite très avancée. Dimensions : 22x20x17 mm
- (f) Calcul d'acide urique de type IIIa. Dimensions : 26x24x18 mm
- (g) Calcul présentant en surface un dépôt d'urate d'ammonium de type IIIc (sur une structure sous jacente d'acide urique de type IIIa). Dimensions moyennes : 32x28x22 mm
- (h) Calcul coralliforme à surface hétérogène de type IVb composé de carbapatite et de struvite. Dimensions : 46x42x24 mm
- (i) Calcul coralliforme à surface cristalline homogène de type Va composé de cystine pure. Dimensions : 48x42x28 mm

II.2.2 Spectrophotométrie infrarouge à transformée de Fourier.

Découvert par Herschel [20], le rayonnement infrarouge signifie « en deçà du rouge » (du latin infra : « plus bas »). L'infrarouge, dont la longueur d'onde est comprise entre 780 nm et 1000 μ m, est une onde électromagnétique d'énergie inférieure à celle de la lumière rouge. L'infrarouge (IR) est subdivisé usuellement en trois régions, l'IR proche (PIR : de 0,78 μ m à 1,4 μ m), IR moyen (MIR : de 1,4 à 25 μ m) et IR lointain (de 25 μ m à 1000 μ m). En ce qui nous concerne, le domaine infrarouge (moyen) sur lequel sont réalisées les mesures correspond à des longueurs d'onde λ comprises entre 2,5 et 25 μ m (soit pour le nombre d'onde $\nu = 1/\lambda$ des valeurs comprises entre 4000 et 400 cm⁻¹). La plupart des spectrophotomètres utilisés en routine sont construits pour couvrir cette plage de longueurs d'ondes. La région comprise entre 1500 cm⁻¹ et 400 cm⁻¹ est usuellement appelée "empreinte digitale" et comprend un grand nombre de bandes. Dans la partie comprise entre 4000 cm⁻¹ et 1000 cm⁻¹ sont positionnées la plupart des bandes caractéristiques des groupes fonctionnels.

Par absorption d'un photon, l'énergie de vibration de la molécule peut s'accroître dans la mesure où cette énergie correspond à une différence d'énergie entre deux niveaux. On distingue alors des vibrations dites fondamentales et des transitions dites harmoniques ou de combinaison (qui s'associent à des nombres quantiques de vibration supérieurs ou égaux à 1). Dans ces transitions de combinaison, un photon excite deux ou plusieurs vibrations simultanément en augmentant le nombre quantique de chaque niveau énergétique. On explique ainsi pourquoi on obtient généralement un nombre de bandes plus important que celui prévu par la formule "3 N-6" avec N nombre d'atomes [21].

Chaque bande d'absorption correspond donc à un saut entre deux niveaux vibrationnels et à une vibration de certains groupements d'atomes (Figure 2). Les vibrations de valence s'associent préférentiellement à des élongations suivant les axes de liaisons (notées ν). D'autres sont plutôt reliées à des déformations d'angle de valence et sont dénommées " vibrations de déformation". Ces déformations peuvent avoir lieu dans le plan des deux liaisons concernées (notées δ) ou hors du plan (notées γ ou ρ). Les vibrations ne donnent pas lieu systématiquement à une absorption. Pour cela, il faut que la vibration donne lieu à une variation du moment dipolaire. Ainsi, pour une molécule linéaire ABA, seuls les modes antisymétriques sont actifs en IR.

Figure 2. Différents types de vibrations (élongations, déformations dans le plan, déformations hors du plan).

La majorité des vibrations fondamentales des molécules organiques se trouve dans le moyen IR. La position des bandes peut s'expliquer qualitativement en considérant la liaison chimique comme un ressort possédant une constante de raideur définie par la nature de la liaison (approche classique de la théorie vibrationnelle). Plus la liaison est forte (simple, double ou triple), plus la fréquence de résonance est grande. On définit alors la fréquence de vibration (ou de résonance) par :

$$v = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

Avec:

o k : constante de raideur,

μ : masse réduite des deux atomes.

On peut ainsi comprendre simplement la position relative dans le spectre d'absorption des liaisons C-C puisque ν est proportionnelle à k et donc ν C \equiv C > ν C=C > ν C-C. De même, on peut classer les différentes liaisons C-H, C-C, C-F, C-Cl, C-Br, C-I, puisque ν est inversement proportionnelle à la masse réduite μ [22]. Finalement, même si l'attribution des

fréquences de vibration dépend fortement de μ et k, de nombreux facteurs internes ou externes à la molécule ont une influence sur la fréquence de vibration. L'environnement et la conformation jouent un rôle sur la fréquence de la vibration. Ainsi, pour les calculs urinaires composés d'oxalate de calcium, il nous est possible de distinguer l'oxalate de calcium monohydraté du dihydraté, même si ces deux composés ont des formules stœchiométriques très proches.

L'analyse quantitative passe par les lois de Kirchhoff, de Beer-Lambert (pour les mesures réalisées en transmission) et de Kubelka-Munk (pour les mesures réalisées en réflexion diffuse). La loi de Kirchhoff, $T + \rho + A = 1$, relie simplement T la transmittance (I/I₀), ρ la réflectance (I_R/I₀), et A l'absorption. La densité optique d est associée à la transmittance par la relation $d=\log(1/T)$. La loi de Beer-Lambert permet de relier l'intensité d'une bande à la concentration c et peut s'écrire $Log(I_0/I) = a(absorptivité)*b(trajet optique de la cellule de mesure)*c(concentration). Dans le cas d'expériences réalisées en réflexion diffuse, la lumière diffusée est collectée par un jeu de miroirs paraboliques de grande dimension. La fonction de réémission appelée aussi fonction de Kubelka-Munk est alors proportionnelle à la concentration.$

Sur le plan expérimental, contrairement au spectromètre dispersif, le spectromètre IRTF ne contient aucun élément dispersif [23]. Toutes les longueurs d'onde sont détectées et mesurées simultanément grâce à l'intégration d'un interféromètre de Michelson dont le principe est schématisé sur la figure 3. Au sein d'un spectromètre IRTF, une lame séparatrice semi-transparente divise le faisceau issu de la source en deux faisceaux, l'un réfléchi vers un miroir fixe, l'autre transmis vers un miroir mobile. Le miroir mobile, perpendiculaire au miroir fixe, se déplace à une vitesse constante le long de son axe. Comme nous le verrons cidessous, plus la distance de déplacement du miroir mobile est grande, plus la précision de la mesure est élevée. En pratique, la résolution spectrale est largement suffisante pour des analyses de routine lorsque la distance de déplacement du miroir est de quelques millimètres, ce qui permet de faire des spectrophotomètres de faible encombrement conservant une grande précision de mesure. Les données collectées par le détecteur produisent un interférogramme. La référence utilisée pour la mesure est généralement l'air. On peut aussi, lorsque l'on travaille en pastille de bromure de potassium, utiliser pour la référence une pastille de KBr ne contenant pas d'échantillon.

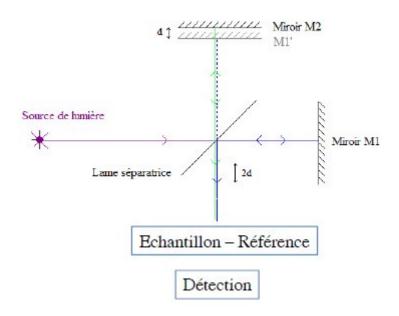


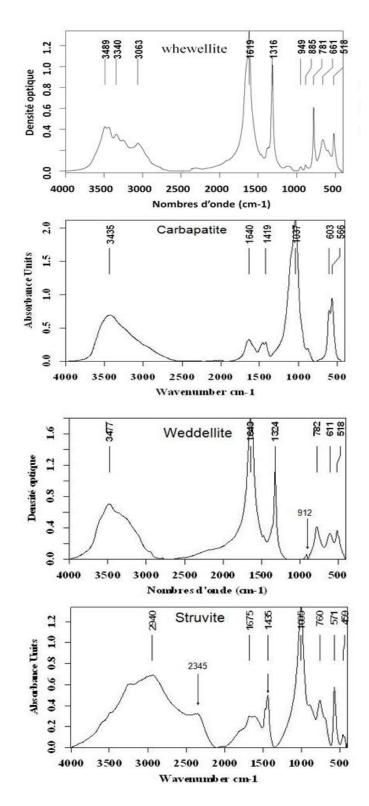
Figure 3. Schéma de principe d'un spectromètre infrarouge.

On définit le paramètre x comme le retard, c'est-à-dire la différence des parcours optiques de la partie réfléchie et de la partie transmise. Ainsi, l'intensité du rayonnement IR émis par la source est sujette, avant d'atteindre l'échantillon, à une transformation $S(\lambda) \longrightarrow I(x)$ au travers l'interféromètre. Une simple transformée de Fourier lie en fait $S(\lambda)$ et I(x). On conçoit ainsi que le processus de génération d'un spectre IR de l'échantillon comporte 4 étapes (enregistrement d'un interférogramme simple-faisceau de référence sur le support porte-échantillon, enregistrement d'un interférogramme simple-faisceau échantillon, transformation de Fourier inverse des interférogrammes et opérations post-Fourier, calcul du spectre d'absorbance (ou transmittance) à partir des spectres simple faisceau).

Résolution spectrale et parcours du miroir mobile sont deux paramètres complètement dépendants (le critère de Rayleigh). Ainsi, plus on augmente le parcours du miroir mobile, plus on augmente la résolution spectrale. A titre d'exemple, une résolution spectrale de 4 cm^{-1} demandera au minimum un retard x de 0,25 cm. La résolution spatiale est limitée à la fois par le rapport signal sur bruit et par la diffraction. En approximant la limite de résolution par la

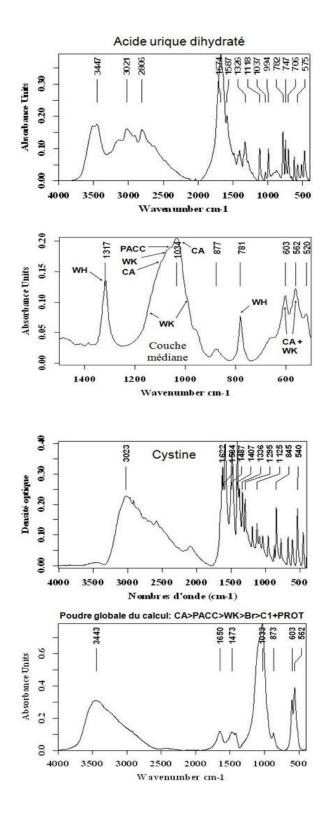
diffraction à $2\lambda/3$ [24], on obtient une valeur comprise entre 1.7 µm (à 4000 cm⁻¹) et 13 µm (à 500 cm⁻¹).

Finalement, il convient de souligner les avancées spectaculaires effectuées en spectroscopie infra rouge en substituant à la source interne le rayonnement synchrotron [25]. Le point de départ du rayonnement synchrotron est donné par un français, Alfred-Marie Lienard qui publie en 1898 le premier calcul correct donnant la puissance rayonnée par une charge en mouvement accélérée. Dans la mesure où l'on conçoit un dispositif avec une trajectoire fermée, le Pr Oliphant à Birmingham montre en 1943 qu'il faut synchroniser la fréquence de la tension accélératrice avec le moment de passage des particules. Sur le plan expérimental, ce sont des électrons qui, circulant à une vitesse proche de celle de la lumière dans un aimant de courbure, ont leur cheminement de ce fait modifié et génèrent une émission de lumière dite rayonnement synchrotron. Nombreux sont les anneaux de stockage dédiés à l'étude de la matière. En fait, il en existe aujourd'hui plus d'une cinquantaine à travers le monde, chacun étant doté d'une quarantaine de stations expérimentales fonctionnant 24h/24 et 7 jours sur 7 [26].


Ce changement de source permet des expériences de spectroscopie infrarouge avec une résolution spatiale limitée non par le rapport signal sur bruit mais par la diffraction [60-69]. Une partie significative de ces expériences de spectroscopie vibrationnelle (Spectroscopies infrarouge et Raman) porte sur le diagnostic médical. Comme le rapportent F. Draux [29] et C. Kendall et coll. [30], la sensibilité de la technique permet de travailler à l'échelle cellulaire ou de zones tissulaires de faibles dimension, ce qui a conduit à utiliser les outils de microspectroscopie vibrationnelle issus du rayonnement synchrotron pour l'étude des tissus cancéreux, en particulier dans le cas des cancers bronchique [31], de la sphère otorhinolaryngologique [32], du sein [33], de l'œsophage [34], du colon [35] ou de la prostate [36]. Les cancers ne sont pas les seules pathologies concernées [37]. De plus, dans certaines pathologies, le diagnostic s'effectue par le biais des calcifications [38].

Si ce type d'expériences n'est pas pertinent pour l'étude des calculs rénaux en routine, la caractérisation des calcifications ectopiques dans le tissu rénal par spectroscopie infrarouge implantée sur le rayonnement synchrotron a permis la mise en évidence d'une grande diversité chimique des calcifications tissulaires rénales [39]. De plus, ce type de montage permet un diagnostic précoce de certaines pathologies particulièrement sévères comme le déficit en Adénine PhosphoRibosylTransférase (APRT) [39] puisqu'il devient possible de caractériser des microcristaux. Les cartographies chimiques des différents composés basées

sur les raies d'absorption IR qui leur sont associées sont désormais réalisables à l'échelle de quelques micromètres ($\approx 5 \mu m$). Dès lors, il devient possible de combiner la physiologie et la physicochimie à une échelle subcellulaire. L'intégration de la génétique dans cette démarche ouvre alors des perspectives exceptionnelles dans la compréhension des processus biochimiques qui sous-tendent la pathogénèse des calcifications ectopiques.


En ce qui concerne cette étude sur les calculs rénaux, j'ai réalisé les spectres infrarouges à l'hôpital Necker sur un spectromètre de type Bruker IFS25 (Bruker Spectrospin) couvrant le domaine spectral de 4000 à 400 cm⁻¹, avec une résolution de 4 cm⁻¹. Le temps d'acquisition d'un spectre est de l'ordre de 0,5 s sachant qu'une trentaine de spectres sont collectés pour un échantillon inclus dans une pastille de KBr de 13 mm de diamètre obtenue de la manière suivante : un échantillon de 0,5 à 1 mg, parfois moins, représentant une zone d'intérêt d'un calcul (noyau, couches internes, surface...) est placé dans un mortier en agate et mélangé dans une proportion de 0,5 à 1% avec un support inerte transparent en infrarouge, le bromure de potassium. Le mélange, finement broyé et homogénéisé, est ensuite placé dans un moule métallique spécial auquel est appliquée une pression de 10 tonnes/cm² afin d'obtenir une pastille transparente d'environ 0,5 mm d'épaisseur. Celle-ci est alors placée sur le trajet du faisceau infrarouge à l'aide d'un support spécial et le spectre est enregistré contre l'air utilisé comme référence.

La figure 4 illustre les profils infrarouges obtenus pour les principaux constituants des calculs urinaires.

CA = carbapatite - PACC = phosphate amorphe de calcium caronaté - WH = whewellite - WK = whitlockite

Figure 4 (A). Différents spectres de calculs collectés à l'hôpital Necker Paris (France).

CA = carbapatite - PACC = phosphate amorphe de calcium caronaté - WH = whewellite - WK = whitlockite

Figure 4 (B). Différents spectres de calculs collectés à l'hôpital Necker Paris (France).

II.3 Microscopie électronique à balayage

Depuis son apparition, le microscope électronique à balayage (MEB) s'est révélée être un puissant outil de caractérisation texturale et chimique locale de matériaux massifs [40,41]. Basé sur l'interaction électron – matière, le terme "électronique" témoigne de l'utilisation d'électrons comme particule sonde et celui de "balayage" rappelle que c'est au cours du déplacement du faisceau d'électrons sur la surface de l'échantillon que se construit l'image de la surface de l'échantillon sur l'écran de visualisation.

Deux types d'interactions sont concevables lorsqu'un électron d'énergie E pénètre dans un échantillon. La diffusion « élastique » c'est-à-dire une interaction sans perte d'énergie mais avec un changement de direction de l'électron s'associe à l'interaction de l'électron avec le nuage électronique d'un atome. La section efficace de diffusion élastique varie en Z^2/E^2 . Pour un échantillon léger, la trajectoire de l'électron dans ces conditions est relativement linéaire, celui-ci progressant profondément dans le matériau. La diffusion inélastique c'est-à-dire une interaction avec perte d'énergie et sans changement de direction s'observe lorsque l'interaction s'effectue individuellement avec un électron du matériau. Dans ce cas, des électrons dits secondaires peuvent être éjectés et l'émission de photons, dont l'énergie est caractéristique des éléments composant le matériau, peut être observée. Notons que si l'angle de diffusion est supérieur à $\pi/2$, l'électron incident est susceptible de ressortir du matériau. Dans ces conditions, la collection des électrons rétrodiffusés permettra d'effectuer une analyse chimique. On désigne par « poire de diffusion » l'enveloppe de toutes les trajectoires des électrons primaires incidents au sein du matériau.

De manière simplifiée, on peut ainsi résumer les informations attendues. La texture est décrite en collectant les électrons secondaires. En effet, leur énergie est faible (<50.eV) et par conséquent leur libre parcours moyen est de l'ordre de quelques nanomètres. Le contraste des images provient ainsi du fait que la quantité d'électrons secondaires émis est minimale lorsque le faisceau électronique est perpendiculaire à la surface de l'échantillon et augmente proportionnellement suivant son inclinaison. La répartition des phases dans le matériau est décrite de manière qualitative par les images en électrons rétrodiffusés (contraste de numéro atomique). Une analyse élémentaire locale peut être conduite en mesurant l'énergie des photons de fluorescence émis par l'échantillon. La résolution des images est intimement liée à la zone sur laquelle le signal (associé aux électrons primaires rétrodiffusés, aux électrons secondaires ou aux photons de fluorescence X) est émis. Dans le cas des électrons primaires

rétrodiffusés, cette zone d'échappement est de l'ordre d'une centaine de nanomètres et dépend bien sûr du matériau. Pour les électrons secondaires (qui ont une faible énergie), cette zone d'émission est de l'ordre d'une dizaine de nanomètres. Enfin, pour des photons de fluorescence, cette zone d'échappement dépend fortement de leur énergie.

L'ensemble des observations a été réalisé au Laboratoire de Physique du Solide (LPS : Orsay) grâce au microscope Zeiss SUPRA55VP/Gemini (Figure 5). Les électrons sont produits par une pointe à effet de champ puis accélérés dans la première partie de la colonne. La première lentille appelée condenseur réduit la taille de la source, la seconde focalise le faisceau d'électrons primaires sur l'échantillon. Suite aux aberrations (aberration chromatique, sphérique, processus de diffraction électronique, astigmatisme) associées aux lentilles électroniques, on définit généralement une sphère de confusion qui rend compte de l'élargissement de la sonde électronique.

En raison du caractère isolant de nos échantillons, des électrons primaires de faible énergie (tension accélératrice de 2KV) ont été utilisés. On utilise ainsi le fait que l'équilibre des charges est effectif pour des tensions accélératrices oscillant entre 1 et 2 KV. En effet, le rendement total d'émission d'électrons secondaires créés par les électrons primaires σ varie avec leur énergie.

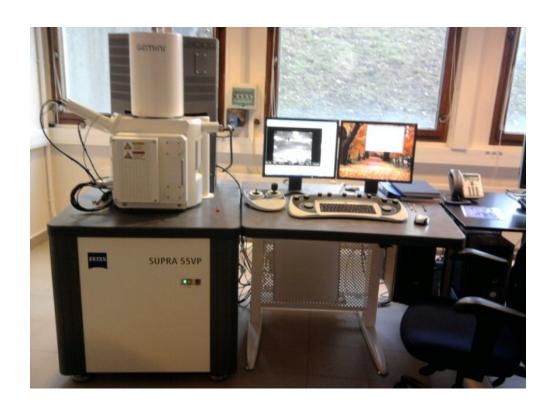
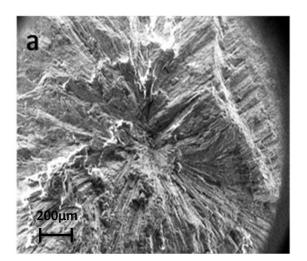
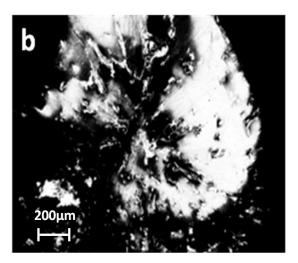




Figure 5. Microscope électronique à balayage (MEB) Zeiss SUPRA55VP/Gemini (LPS)

Pour ce qui est de la détection (Figure 6), le microscope implanté à Orsay comprend deux détecteurs d'électrons secondaires ; le premier est un détecteur de troisième génération situé dans la colonne : High Efficiency InLens detector (InLens), qui permet d'intercepter les électrons secondaires de basse énergie procurant un contraste de phase chimique, l'autre plus courant, un Everhert - Thornel Secondary Electron Detector (SE2), est situé au niveau de la chambre. La colonne est maintenue en ultravide grâce à une pompe turbo moléculaire et à deux pompes ioniques.

Figure 6. Deux photographies d'un calcul rénal oxalocalcique type *Ia* obtenues sur le microscope électronique à balayage du même site avec les deux détecteurs : a) est obtenue avec le détecteur SE2, b) est obtenue avec le détecteur InLens.

En raison de la géométrie particulière associée à ces deux détecteurs (Figure 5), le détecteur SE2 (*photo de gauche*) permet de mieux appréhender le relief de la structure tandis que le détecteur sur InLens (*photo de droite*) permet de visualiser des détails mais en ayant le contraste moins porté sur la topographie. Le détecteur InLens peut donner un contraste chimique et permet de visualiser les différentes arrêtes de l'échantillon avec plus de netteté (accumulation de charge).

Ce type de dispositif a été largement utilisé en médecine afin d'apprécier la calcification de dispositifs médicaux comme les stérilets [42], les implants mammaires [43],

les valves cardiaques [44], les implants oculaires [45], des stents vasculaires [46], les sondes urinaires [47]. De plus, nombreuses sont les calcifications pathologiques qui ont fait l'objet d'une étude reposant en partie sur cette technique d'imagerie [48,49].

Dans le cadre de ces observations à l'échelle mésoscopique, il convient de s'intéresser à l'une des propriétés physiques des cristaux : leur morphologie [50]. De nombreux cristaux se présentent sous la forme de polyèdres convexes limités par des faces planes. Notons que pour développer une morphologie typique, les faces du cristal doivent pouvoir croître sans entrave.

Il convient de rappeler certaines notions concernant la cristallographie morphologique i.e. l'étude des caractères géométriques des polyèdres cristallins [50]. Comme le présentent les auteurs [50], la forme des cristaux est régie par des lois inhérentes aux angles entre les faces ou entre les arêtes telles que la loi de constance des angles, la loi des indices rationnels simples et la loi de symétrie. La première, énoncée en 1669 indique que, dans les cristaux d'une même espèce cristalline, l'extension des faces n'est pas un caractère constant. Au contraire, les angles entre les faces ou les arêtes sont constants chez tous les individus de l'espèce. La loi de Haüy (1784) précise que les faces et les arêtes ne sont pas définies au hasard. Les faces des polyèdres sont représentatives des plans réticulaires denses. Si cette loi de Haüy limite les orientations possibles pour les faces, elle ne permet pas pour autant de prévoir celles qui se développent réellement. La troisième loi dite loi de symétrie semble évidente. Dans la mesure où les faces des polyèdres correspondent à des plans réticulaires, la symétrie morphologique est liée à la symétrie du réseau. Toutefois, cette symétrie morphologique peut être inférieure à la symétrie réticulaire. En fait, le groupe ponctuel morphologique n'est autre que le groupe ponctuel (moins les éléments de translation) des éléments de symétrie de la maille.

Dès lors, il est possible, à partir de la morphologie des cristaux, d'en déduire les caractéristiques cristallographiques des phases chimiques (Figure 7). Ainsi les cristaux de cystine ($C_3H_6NO_2S$, a = b = 5.412Å, c=55.956Å, groupe d'espace $P6_122$), exhibent une morphologie hexagonale, morphologie cohérente avec la structure cristallographique de ce composé [51].

De même, pour les cristaux de weddellite ($CaC_2O_4.2H_2O$, a = 12.30 Å, c= 7.34 Å groupe d'espace I4/m) qui s'observent sous la forme de bipyramide [52].

Pour les cristallites d'oxalate de calcium monohydraté (CaC₂O₄.H₂O₂, a=6.316 Å, b= 14.541 Å, c = 10.116 Å, groupe d'espace P2₁/c) [53], l'existence de plusieurs morphologies a été précédemment dévoilée [54]. L'un des points majeurs de ces observations est l'opportunité offerte par la microscopie électronique à balayage de poser le diagnostic dans le cas d'une pathologie sévère telle que l'hyperoxalurie primaire [55]. Cette approche par une technique de physicochimie est bien plus rapide que l'approche effectuée par la génétique et plus fiable dans la mesure où tous les gènes déficients n'ont pas encore été identifiés.

Les cristaux de brushite (CaHPO₄.2H₂O, a = 5,812 Å, b = 15,180 Å, c = 6,239 Å et β = 116°25, groupe d'Ia) [56] se présentent généralement en plaquettes et parfois en aiguilles [57]. Le phosphate octocalcique triclinique (OCP_t, Ca₈(HPO₄)₂(PO₄)₄×5H₂O, a = 19,692 Å, b = 9,523 Å, c = 6,835Å, α = 90,15°, β = 92,54° et γ = 108,65° groupe d'espace P1) se distingue par une morphologie particulière en rose des sables [58]. Il existe aussi un phosphate octocalcique apatitique Ca₈(HPO₄)_{2.5}(PO₄)_{3.5}(OH)_{0.5}.

Pour d'autres composés, ce sont des structures spécifiques à la surface des cristaux qui permettent d'identifier le composé chimique. Ainsi pour la struvite (MgNH₄PO₄.6H₂O, a = 6.941Å, b = 6.137Å, c = 11.199Å, groupe d'espace Pmn2₁), la surface des cristaux présente une structure spécifique en « patte d'oie » [58].

A l'opposé, la morphologie typique des phosphates de calcium de structure apatitique biologique $(Ca_{10-x+u}\square_{x-u}(PO_4)_{6-x}(CO_3)_xOH_{2-x+2u}\square_{x-2u}$, a=b=9.41844Å, c=6.88374Å, groupe d'espace $P6_3/m$) est sphérique [6]. Cette morphologie sphérique observée à l'échelle mésoscopique s'explique par l'agglomération de cristaux de phosphates de calcium de structure apatitique de taille nanométrique [59]. Pour cette phase chimique, il convient de rechercher à la surface de ces sphères des empreintes de bactéries, ces empreintes mettant en évidence un processus infectieux puisque l'arbre urinaire est supposé être stérile [60].

La figure 7 illustre différentes morphologies de cristaux observées dans les calculs de l'appareil urinaire. Les clichés ont été obtenus à partir des calculs dont la nature a été déterminée par spectrophotométrie infrarouge.

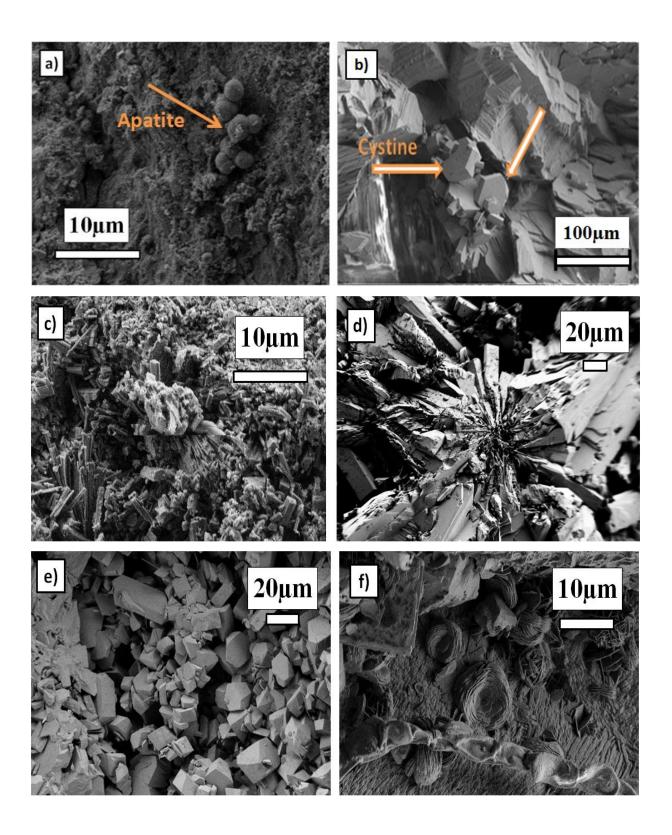
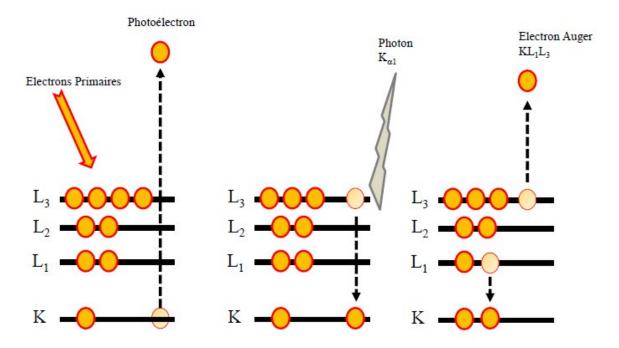


Figure 7. Différentes morphologies observées au MEB lors de ce travail :

- a) sphères d'apatite;b) cystine (+PACC);


- c) urate d'ammonium;
- d) brushite (avec apatite au centre);
- e) acide urique anhydre;
- f) whewellite (plus weddellite).

II.4 Le microanalyseur à sonde électronique

Présenté pour la première fois à la première conférence européenne sur la microscopie électronique à Delft par R. Castaing [61], le microanalyseur à sonde électronique conçu sous la direction d'A. Guinier constitue désormais une technique d'analyse chimique incontournable aussi bien en physique, en chimie ou bien encore en science des matériaux [62]. Dans la thèse de physique de R. Castaing, on retrouvera en détails les bases de la physique associées à cet outil de caractérisation [63]. Les photons de fluorescence X générés par l'impact des électrons du faisceau incident sont recueillis par un détecteur apte à déterminer précisément leur nombre pour une énergie donnée. L'analyse du spectre d'émission nous permet de déterminer la nature des éléments présents au sein du matériau ainsi que la concentration massique de l'élément sélectionné dans le volume analysé. Il est donc possible de procéder à des cartographies chimiques des différents éléments constitutifs de la zone sélectionnée.

On dénote aisément la similitude qui existe entre ce microanalyseur à sonde électronique et un dispositif de fluorescence X. La différence majeure entre ces deux techniques de caractérisation se situe bien sûr au niveau de la sonde mais aussi au niveau du seuil de détection des éléments. Ainsi, dans le cas des calculs urinaires (et des calcifications pathologiques et physiologiques en général), seuls les éléments majeurs c'est-à-dire ceux présents dans la formule stœchiométrique des phases chimiques présentes dans le matériau donnent un signal de fluorescence X mesurable. Les éléments traces tel que le Zn par exemple ne sont pas détectables. Cette différence majeure s'explique par la nature des interactions à la base de ces techniques.

Dans la notation de Siegbahn (Figure 8), les raies d'émission sont notées par des lettres grecques indexées par ordre d'intensité décroissante. Ces lettres indiquent la transition électronique accompagnant la désexcitation.

Notation de Siegbahn — notation générale

Couche de basse énergie	Couche de haute énergie	Préfixe de la raie
	L (n = 2)	Κα
K (n = 1)	M(n = 3)	Кβ1
	N (n = 4)	Kβ ₂
	M(n = 3)	Lα
L (n = 2)	N (n = 4)	Lβ
	O (n = 5)	Lγ
M (n = 3)	N (n = 4)	Μα
W (II = 3)	O (n = 5)	Мδ

Figure 8. Excitation et désexcitation d'un atome et correspondance entre le nom de quelques raies et les niveaux en question.

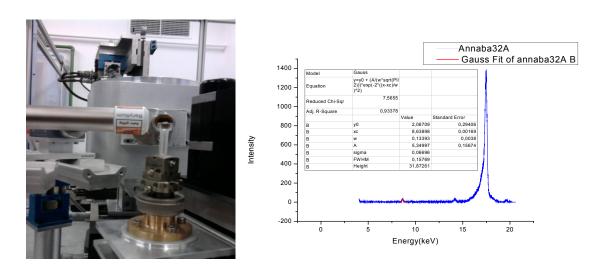
II.5 La fluorescence X

G. Sargnac découvrit en décembre 1896 le rayonnement de fluorescence X à la Sorbonne et c'est dans son laboratoire privé que M. de Broglie réalisa en mai 1914 le premier spectre de fluorescence X par dispersion de longueur d'onde [64].

La fluorescence X est une technique d'analyse élémentaire, c'est-à-dire qu'elle permet d'identifier les différents éléments présents au sein du matériau, y compris les éléments présents à l'état de trace. En éclairant notre échantillon avec des photons de haute énergie, des électrons de cœur du cortège électronique de l'atome sont éjectés [65]. L'atome est ainsi placé

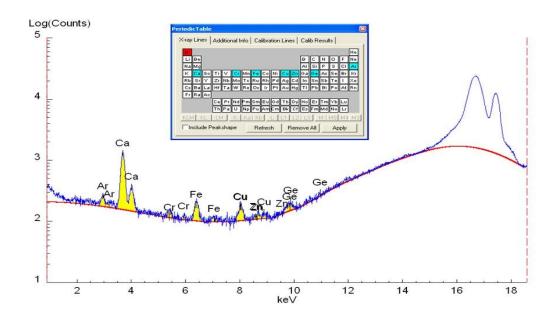
dans un état excité. Pour revenir à son état initial, le cortège électronique de l'atome se réarrange :

- soit par un mode non radiatif, correspondant à une émission d'électrons, c'est l'effet Auger ;
 - soit par un mode radiatif associé à une émission d'autres photons.


La fluorescence X se réfère à la voie radiative. La fluorescence dite primaire résulte directement de l'effet sur l'élément considéré du rayonnement primaire incident. Elle constitue donc la contribution principale à l'émission d'un élément dans un échantillon [66]. La fluorescence d'un des éléments de l'échantillon, excité par le faisceau incident, peut (si elle est assez énergétique) jouer à son tour le rôle de faisceau incident "excitateur" sur un autre élément de l'échantillon, et donc provoquer une fluorescence secondaire. Dans cette configuration, il est possible d'être confronté à un renforcement de l'intensité d'un élément.

Le retour de l'atome dans son état initial est un processus complexe qui dépend notamment du numéro atomique de l'élément et qui met en jeu plusieurs électrons du cortège électronique de l'atome. Il existe ainsi différentes désexcitations électroniques. Chacune d'elles est associée à l'émission de photons dont l'énergie est spécifique à cette désexcitation. On observe donc non pas des photons d'une seule énergie mais un ensemble de photons d'énergies différentes. Chaque énergie définit une raie d'émission caractéristique de l'élément présent dans le matériau. C'est l'analyse de cette collection de raies dénommée spectre d'émission qui permet de savoir quels sont les éléments présents au sein du matériau. L'énergie de la raie d'émission permet de connaître le numéro atomique de l'élément.

L'analyse quantitative n'est pas basée sur une simple mesure des aires des raies de fluorescence X. En effet, Friedmann et Birks ont montré que l'intensité de fluorescence X d'un élément n'est pas directement proportionnelle à la concentration [67]. Cette apparente contradiction est induite par des effets de matrice [68]. Comme le présente N. Broll [69], plusieurs méthodes d'analyse quantitative ont été testées avec succès, dont la mise en œuvre de composés étalons ou l'utilisation de la diffusion Compton comme standard interne. Toutes ces approches ne sont pas aussi fiables que celles basées sur les équations fondamentales de la fluorescence X traitées initialement par Von Hamos [70]. On se reportera aux travaux de Shiraiwa et Fujino [71] pour en avoir une expression correcte. Désormais, l'analyse quantitative s'effectue notamment par le biais de logiciels performants [72]. Soulignons que dans le cas des calculs urinaires où l'on s'attache à déterminer la nature d'éléments « lourds »


comme le zinc dans une matrice « légère » contenant toutefois des atomes de calcium, des analyses précises peuvent s'effectuer sans correction [73].

Deux dispositifs expérimentaux ont été mis en œuvre : Le premier montage est implanté au Laboratoire de Physique des Solides à Orsay (Figure 9), le second est une source portable localisée au CEA-Saclay (Figure 10). Pour le premier montage, le faisceau des rayons X de diamètre de 1 mm vient éclairer un échantillon placé sur un support dont la position est pilotée par ordinateur. Les photons de fluorescence sont collectés sur un détecteur refroidi par effet Peltier. Les données sont exploitées par le logiciel Origine 8.0 afin d'évaluer les concentrations des éléments.

Figure 9. Montage classique pour la fluorescence X localisé au LPS et spectre de fluorescence X tracé sous le logiciel Origine

La source portable est dotée d'un logiciel qui évalue les éléments traces et donne directement les concentrations sous format de tableaux Excel.

Figure 10. Exemple de spectre de Fluorescence X donné par le dispositif associé à la source portable.

De nombreux travaux soulignent l'importance des éléments traces dans différents contextes biologiques [74-76]. Les travaux inhérents aux calculs urinaires (on inclut ici la fluorescence X induite par les protons) [77-81] ou aux cristaux synthétiques [82-83] sont aussi nombreux et se focalisent sur le rôle éventuel des éléments traces sur la cinétique de croissance de différentes phases chimiques présentes dans les calculs ou encore sur l'influence de ces éléments traces sur la morphologie [84]. L'ensemble de ces travaux se contente généralement d'établir une liste plus ou moins exhaustive selon les conditions expérimentales des éléments (majeurs ou éléments traces) présents au sein de calcifications physiologiques ou pathologiques. Dans un article récent, une classification plus pertinente basée certes sur leur quantité mais surtout sur leur origine biologique a été proposée [6,85].

Précisant les conditions expérimentales (l'énergie des photons détectés est comprise entre 2 et 18 KeV), cette classification repose sur un jeu d'une centaine de calcifications pathologiques et distingue en premier lieu les éléments présents dans la formule stœchiométrique du calcul donnant lieu à un signal de fluorescence mesurable. Ainsi nous observons les contributions du calcium ($EK_{\alpha} = 3.692$ KeV, $EK_{\beta} = 4.013$ KeV) dans le cas de calculs formés de whewellite : $CaC_2O_4.H_2O$, de weddellite : $CaC_2O_4.2H_2O$) ou encore de carbapatite et le soufre ($EK_{\alpha} = 2.308$ KeV, $EK_{\beta} = 2.464$ KeV) pour les calculs formés de cystine ([S-CH₂-CH(NH₂)-COOH]₂).

On trouve ensuite des éléments traces d'origines très différentes. Ainsi le strontium $(EK_{\alpha} = 14.17 \text{ KeV}, EK_{\beta} = 15.84 \text{ KeV})$ et le sélénium $(EK_{\alpha} = 1.22 \text{ KeV}, EK_{\beta} = 12.50 \text{KeV})$ sont présents en raison notamment du fait que ces éléments partagent la même colonne du tableau périodique que des éléments majoritaires (le strontium pour le calcium, le sélénium pour le soufre) et donc sont associés à la même chimie. On peut aussi souligner le fait que le Sr^{2+} suit les mêmes voies métaboliques que le Ca^{2+} et qu'il s'y substitue dans un ensemble de composés comme l'apatite [86].

Pour le zinc ($EK_{\alpha} = 8.64 \text{ KeV}$, $EK_{\beta} = 9.57 \text{ KeV}$) et le cuivre ($EK_{\alpha} = 8.04 \text{ KeV}$, $EK_{\beta} = 8.90 \text{ KeV}$), ces deux éléments sont présents dans de nombreuses métalloprotéines. A noter le fait que le zinc est éliminé par le rein, mais que sa concentration dans l'urine est faible, de l'ordre de 0,1 ppm, alors qu'elle est sensiblement plus élevée dans le parenchyme en moyenne 20-30 ppm [87]. La présence du Fer fait probablement suite à des saignements.

Une autre famille d'éléments traces est occasionnellement retrouvée, cette fois-ci de manière pathologique, il s'agit du plomb et du cadmium qui sont deux néphrotoxiques bien connus. Notons que la teneur en plomb des milieux biologiques d'origine humaine, en particulier le sang, qui peut s'expliquer par une exposition chronique, notamment au travers de conduites d'eau potable en plomb, a diminué de manière significative en France lors de ces deux dernières décennies [88].

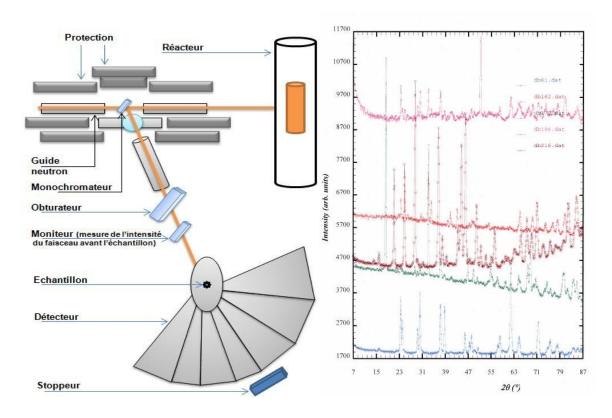
Enfin, des éléments lourds à visée thérapeutique comme l'iode [89] ou le platine [90] constituent la dernière famille d'éléments présents au sein des calculs rénaux. La présence d'iode a été relevée dans au moins un cas. Notons aussi la présence, encore inexpliquée, du brome.

Cet ensemble de résultats permet d'aborder l'une des controverses associées aux éléments traces, celle associée au rôle catalytique des éléments traces dans la pathogenèse des calculs urinaires. Nous nous limiterons ici au phosphate de calcium de structure apatitique. Lorsqu'ils sont synthétisés en milieu basique, les phosphates de calcium amorphes ne contiennent généralement pas de groupement phosphate acide et présentent la composition du phosphate tricalcique [91], avec un rapport atomique Ca/P proche de 1,5. Différentes investigations montrent que le magnésium, et le carbonate jouent un rôle essentiel dans la stabilisation du phosphate de calcium amorphe dans les milieux biologiques [57,91-93] tout en inhibant la croissance cristalline de la phase apatitique [94]. Notons que les ions fluorures favorisent la conversion de la phase amorphe en apatite [91]. D'autres paramètres physicochimiques comme le pH sont susceptibles d'influencer la conversion de la phase amorphe en

apatite, phosphate octocalcique et/ou brushite. Ainsi cette conversion est favorisée en milieu acide alors qu'en milieu basique la phase amorphe est au contraire stabilisée [57].

Ces résultats dévoilent que le zinc ne joue pas de rôle catalytique dans la formation d'un calcul et de ce fait les éléments traces ne peuvent être considérés comme des facteurs de risque. Sur le plan physicochimique, leur teneur s'explique par leur présence naturelle dans le corps humain (à titre indicatif, un corps humain de 70 Kg contient 1 Kg de Ca, 19g de Mg, 4-5g de Fer, 2-3 g de Zn). De plus, l'affinité des éléments traces pour les différentes phases chimiques constitutives du calcul suit les règles de Goldschmidt qui reposent sur la charge et le rayon ionique, la force de liaison et l'électronégativité [95]. En effet, les rayons atomiques associés à ces deux cations bivalents sont très proches (R(Ca²⁺) = 0.99 Å; R(Zn²⁺) = 0.74 Å). On remarque alors que dans les études de Bazin et coll. [6,85], la teneur moyenne en zinc des calculs variait selon leur contenu en calcium et selon la phase cristalline riche en calcium qui était présente. Ainsi, dans les calculs d'oxalate de calcium, la teneur en zinc était plus faible dans les calculs de whewellite (en moyenne 42 ppm) que dans ceux de weddellite (environ 290 ppm) et elle était beaucoup plus élevée dans les calculs de phosphates de calcium, en particulier de carbapatite (en moyenne 1059 ppm) [6].

II.6 La diffraction des neutrons.


En physique, en chimie et en science des matériaux, la mise en œuvre des sondes que constituent les faisceaux de photons, d'électrons ou de neutrons pour étudier la matière utilise le fait que la matière va émettre une réponse à cette excitation. Parmi les réponses, le phénomène de diffusion, qui s'associe à une onde diffractée, résulte d'une combinaison d'ondes cohérentes (même énergie et même phase) diffusées par chacun des atomes qui interfèrent. L'analyse de l'intensité du faisceau émergeant généré permet la description de l'agencement des atomes au sein de l'échantillon [4]. Une fois connues les structures cristallographiques des phases chimiques présentes, on peut accéder à la composition chimique de l'échantillon.

En ce qui concerne la diffraction neutronique ou PND (Powder Neutron Diffraction), elle constitue une technique non-destructive. L'établissement du diagnostic médical s'effectuant sur l'ensemble du calcul [96], il est essentiel de mesurer la taille moyenne des nanocristaux composant le calcul en prenant en compte l'ensemble de la masse du calcul (de dimension millimétrique) sans altérer son intégrité physico-chimique. Les diagrammes de

diffraction collectés indiquent alors (par le biais des largeurs des raies de diffraction) la dimension des nanocristaux. Deux caractéristiques de nos échantillons font de la PND un outil particulièrement adapté : la première est la présence de phases chimiques majoritairement constituées d'éléments légers (H,O,N,C) et la seconde est le fait que la mesure de la taille des nanocristaux peut s'effectuer sur l'ensemble de l'échantillon. L'excellente qualité des données obtenues au laboratoire Léon Brillouin [97] nous a permis d'effectuer une analyse quantitative en utilisant la méthode de Rietveld [98], le logiciel mis en œuvre étant FULLPROF [99].

Des expériences de diffraction neutronique ont été mises en œuvre précédemment pour des calculs d'oxalate de calcium monohydraté [54], d'acide urique [85], d'apatite [100], de struvite [60] et pour des calculs de cystine [101]. Parmi toutes ces phases chimiques, les cristaux d'apatite sont caractérisés par les plus petites tailles. L'ensemble de ces expériences de diffraction neutronique a permis de montrer que le polymorphisme des oxalates de calcium monohydraté en relation avec la pathologie ne s'exprime pas à l'échelle nanométrique. De plus, une explication basée sur la taille des cristaux a été proposée pour rendre compte de l'absence d'empreintes de bactéries à la surface de calculs de struvite. Enfin, nous avons pu aborder le mode d'action de différents médicaments dans le cas du traitement médical de la cystinurie. En ce qui concerne les calculs de l'Est Algérien, les mesures ont été réalisées et sont en cours sur une plus grande série de calculs.

Les diagrammes de diffraction neutronique ont été collectés sur la station expérimentale G4.1 (Figure 11) [102] implémentée sur la source froide du réacteur Orphée (Saclay, France), qui fait partie du laboratoire Léon Brillouin [103]. Ce dispositif est équipé d'un monochromateur en graphite pyrolytique et d'un multidétecteur deux axes comprenant 800-cellules couvrant un angle de 80° en 2θ (pas de 0.1° entre 2 cellules). Dans notre cas, les diagrammes sont collectés entre $2\theta = 7$ et 87° , la longueur d'onde étant égale à 2.4226 Å. Le temps d'acquisition est de l'ordre de quelques heures, les mesures s'effectuant à température et pression ambiantes. Ce dispositif particulièrement ingénieux permet de mesurer avec une grande précision des cristaux dont la taille oscille entre 5 et 200 nanomètres.

Figure 11. Montage de diffraction neutronique G4.1 et diagrammes de diffraction neutronique

II.7 Étude de l'effet de dissolution des plantes sur les calculs rénaux

Nous avons choisi trois types de calculs résistant à la lithotripsie : l'oxalate de calcium type Id, la cystine et la brushite. Ces types de calculs sont souvent difficiles à traiter et à prévenir par les procédures urologiques et médicales actuellement disponibles. L'oxalate de calcium type Id traduit des situations de stase avec confinement anatomique (obstruction, anomalies anatomiques post-papillaires, diverticules caliciels). La cystinurie est une affection autosomique récessive à l'origine d'une aminoacidurie responsable de la maladie lithiasique [104]. Bien que la prévalence de la cystinurie soit relativement faible en comparaison d'autres formes de lithiase, il est nécessaire de reconnaître précocement la maladie et de mettre en œuvre un traitement urologique et médical préventif car c'est une forme très récidivante de lithiase avec un risque d'altération de la fonction rénale. Finalement, la brushite, classée parmi les calculs phosphocalciques, est également une forme très récidivante qui a considérablement progressé chez la femme dans les pays industrialisés, notamment en France, passant de 0,4 à 1% (p < 0,05) en quelques décennies.

Pour étudier l'influence des plantes sur les différents types de calculs, nous avons préparé un extrait de chaque plante par infusion, pendant 30 minutes, de 3 g de plante sèche dans 100 ml de solution physiologique bouillante (9 g de NaCl par litre), la solution de NaCl de 9 g/L étant utilisée par ailleurs comme milieu témoin pour apprécier les modifications de masse et/ou de structure des calculs [105]. Après filtration, l'extrait a été reparti (60 ml) dans des erlenmeyers en verre (Figure 12).

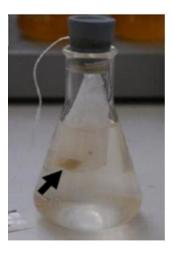


Figure 12. Calcul de cystine incubé dans une solution témoin de NaCl 9g/litre

Le calcul a été placé dans un sachet poreux en fibres tressées afin d'éviter tout contact avec le barreau magnétique et mis en suspension dans l'extrait. Ainsi, les calculs rénaux ont été isolés de tout effet mécanique. Chaque extrait a été mis sous agitation magnétique constante de 130 t/min pendant plusieurs semaines. Pour chaque expérience, le pH de la solution a été mesuré tous les 15 jours à l'aide d'un pH-mètre et la perte de masse des calculs rénaux évaluée par pesée du calcul après séchage dans une étuve à 40°C pendant 18 heures. Un suivi de l'état de la surface a été effectué par MEB [106]. Chaque expérience a été réalisée en triplicata. Le traitement statistique des données a été effectué avec le logiciel NCSS (NCSS statistical package, J. Hintz, Gainesville, FL).

Les plantes médicinales évaluées contre la lithiase d'oxalate de calcium type Id étaient : *Ammi visnaga*, racines non traitées de *Madélithiol IMRA 2000*, et racines de *Madélithiol IMRA 2000* délipidéées par CHCl₃. Les plantes médicinales évaluées contre la lithiase de cystine étaient : *Arenaria ammophila* (tiges et feuilles), les feuilles de *Parietaria officinalis*, les fleurs de *Parietaria officinalis*, et les fleurs de *Paronychia Argentea*. Le pH de la solution a été mesuré tous les 15 jours à l'aide d'un pH-mètre.

Les plantes médicinales testées contre la lithiase de brushite sont : les fleurs de *Paronychia Argentea*, les fleurs de *Parietaria officinalis*, *Arenaria ammophila* (tiges et feuilles) et Ammi Visnaga. Un extrait de chaque plante a été préparé par infusion et une seule solution témoin a été utilisée (la solution physiologique). Le pH de la solution a été mesuré tous les 15 jours à l'aide d'un pH-mètre.

Références

- [1] D. Bazin, M. Daudon, P. Chevallier, S. Rouzière, E. Elkaim, D. Thiaudière, B. Fayard, E. Foy, P. A. Albouy, G. André, G. Matzen, E. Véron, Les techniques de rayonnement synchrotron au service de la caractérisation d'objets biologiques : un exemple d'application, les calculs rénaux, Annales de Biologie Clinique 2006 ; 64 : 125 136.
- [2] S.R. Khan, B.K. Canales, Ultrastructural Investigation of Crystal Deposits in Npt2a Knockout Mice: Are They similar to human Randall's plaques? The Journal of Urology 2011; 186: 1107-1113.
- [3] X. Carpentier, M. Daudon, O. Traxer, P. Jungers, A. Mazouyes, G. Matzen, E. Véron, D. Bazin, Relationships between carbonation rate of carbapatite and morphologic characteristics of calcium phosphate stones and etiology, Urology, 2009; 73:968-975.
- [4] A. Le Bail, D. Loüer, Smoothing and validity of crystallite size distributions from X-ray line profile analysis, J. Appl. Cryst. 1978; 11:50 55.
- [5] A.N. Primak, J.G. Fletcher, T.J. Vrtiska, O. P. Dzyubak, J.C. Lieske, M.E. Jackson, J.C. Williams Jr, C. H. McCollough, Noninvasive differentiation of uric acid versus non–uric acid kidney stones using dual-energy CT, Academic Radiology 2007; 14: 1441 - 1447.
- [6] D. Bazin, P. Chevallier, G. Matzen, P. Junger, M. Daudon, Heavy elements in urinary Stones, Urol Res 2007; 35: 179-184.
- [7] M.A.B. Pougnet, M. Peisach, A.L. Rodgers, The application of a combined PIXE and XRD approach to the analysis of human stones, NIM B 1988; 35: 472 477.
- [8] L. Estepa, M. Daudon, Contribution of F.T. infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy 1997; 3:347 369.
- [9] M. Daudon, Comment analyser un calcul et comment interpréter le résultat. L'Eurobiologiste, 1993 ; 27 : 35 46.
- [10] S.D. Blaschko, J. Miller, Th. Chi, L. Flechner, S. Fakra, A. Kahn, P. Kapahi, M. L. Stoller, Microcomposition of Human urinary calculi using advanced imaging techniques, The Journal of Urology, 2013; 189: 726-734.
- [11] P.M. Bertsch, D.B. Hunter, Applications of synchrotron-based X-ray microprobes, Chem. Rev., 2001; 101:1809 1842.
- [12] R. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys B. 1993; 192: 55 69.
- [13] D. Bazin, D.A. Sayers, J.J. Rehr, Comparison between Xas, Awaxs, Asaxs & Dafs applied to nanometer scale metallic clusters, J. Phys. Chem. B 1997; 101:11040 11047.
- [14] P. Chevallier, P. Dhez, A. Erko, A. Firsov, F. Legrand, P. Populus, Hard X-ray microbeam production and application. Nuclear Instr. Meth. B 1996; 113:122-127.
- [15] F. Legrand, 1995. Mise au point d'une microsonde par fluorescence X excitée par le rayonnement synchrotron. Ph.D. Thesis, Université de Paris-Sud.
- [16] P. Dumas, N. Jamin, J.L. Teillaud, L.M. Miller, B. Beccard, Imaging capabilities of synchrotron infrared microspectroscopy. Faraday Discuss. 2004; 126: 289 302.
- [17] F.W. Lytle, D.A. Sayers, E.A. Stern, Extended x-ray-absorption fine-structure technique. II. Experimental practice and selected results, Phys. Rev. B 1975; 11: 4825 4835.
- [18] D. Bazin, X. Carpentier, I. Brocheriou, P. Dorfmuller, S. Aubert, Ch. Chappard, D. Thiaudière, S. Reguer, G. Waychunas, P. Jungers, M. Daudon, Revisiting the localisation of Zn²⁺ cations sorbed on pathological apatite calcifications made through X-ray absorption spectroscopy, Biochimie 2009; 91: 1294 - 1300.
- [19] D. Bazin, X. Carpentier, O. Traxer, D. Thiaudière, A. Somogyi, S. Reguer, G. Waychunas, P. Jungers, M. Daudon, Very first tests on SOLEIL regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy, J Syn. Rad 2008; 15: 506 509.
- [20] Herschel, W. and Dreyer, J.L.E. (1912) The Scientific Papers of Sir William Herschel, Royal Society and Royal Astronomical Society, London.
- [21] J. Lecomte, Le rayonnement infrarouge, Ed. Gauthier-Villar, 1948.
- [22] https://cours.espci.fr/site.php?id=26&fileid=689
- [23] P.R. Griffiths, J.A. Haseth, Fourier transform infrared spectroscopy in chemical analysis: a series of monographs on analytical chemistry and its applications.Ed. Wiley 1986; 38.
- [24] G.L. Carr, "Resolution limits for infrared microspectroscopy explored with synchrotron radiation Rev. Sci. Instrum. 2001; 72: 1613 1619.
- [25] G.P. Williams, Infrared synchrotron radiation instrumentation and applications, Rev. Sci. Instrum. 1992; 63:1535-1545.
- [26] http://www.synchrotron-soleil.fr/
- [27] L.M. Miller, M.J. Tobin, S. Srichan, P. Dumas, About the use of synchrotron radiation in

- infrared microscopy for biomedical applications. In Biomedical Applications of FTIR Spectroscopy, Edited by P. Haris IOS Press; 2008.
- [28] L.M. Miller, P. Dumas, From structure to cellular mechanism with infrared microspectroscopy, Current Opinion in Structural Biology 2010; 20: 649 656.
- [29] F. Draux, Analyse de la cellule tumorale et de son intéraction avec un agent anticancéreux : approche biophotonique par microspectroscopis RAMAN et infra rouge, PhD, Université de Reims Champagne-Ardenne, 2009.
- [30] C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, N. Stone, a Vibrational spectroscopy: a clinical tool for cancer diagnostics, Analyst 2009; 134: 1029 - 1045.
- [31] P.D. Lewis, K.E Lewis, R. Ghosal, S. Bayliss, A.J. Lloyd, J. Wills, R. Godfrey, Ph. Kloer, L.A.J. Mur, Evaluation of FTIR Spectroscopy as a diagnostic tool for lung cancer using sputum, BMC Cancer. 2010; 10: 640 646.
- [32] A.P. Oliveira, R.A. Bitar, L. Silveira, R.A. Zangaro, A.A. Martin, 'Near-infrared Raman spectroscopy for oral carcinoma diagnosis', Photomed Laser Surg. 2006; 24: 348-353.
- [33] R. Baker, K.D. Rogers, N. Shepherd, N. Stone, New relationships between breast microcalcifications and cancer, British J. of Cancer 2010; 5:1-6.
- [34] G. Shetty, C. Kendall, N. Shepherd, N. Stone, H. Barr, Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus, Br. J. Cancer 2006; 94: 1460-1464.
- [35] B. Rigas, S. Morgello, I.S. Goldman, P.T. Wong, Human colorectal cancers display abnormal Fourier-transform infrared spectra, Proc. Natl. Acad. Sci. 1990; 87:8140 8144.
- [36] M.J. Baker, E. Gazi, M.D. Brown, J.H. Shanks, N.W. Clarke, P. Gardner, Investigating FTIR based histopathology for the diagnosis of prostate cancer. J. Biophotonics 2009; 2:104-113.
- [37] F. Le Naour, Ch. Sandt, Ch. Peng, N. Trcera, F. Chiappini, A.-M. Flank, C. Guettier, P. Dumas, In situ chemical composition analysis of cirrhosis by combining synchrotron F.T. infrared and synchrotron X-ray fluorescence microspectroscopies on the same tissue section, Anal. Chem. 2012; 84: 10260 - 10266.
- [38] D. Bazin, J.-Ph. Haymann, E. Letavernier, J. Rode, M. Daudon, Pathological calcifications: a medical diagnosis based on their physico-chemical properties, La presse médicale, sous presse.
- [39] A. Dessombz, D. Bazin, P. Dumas, Ch. Sandt, J. Sule-Suso, M. Daudon, Shedding light on the chemical diversity of ectopic calcifications in Kidney Tissues: Diagnostic & Research Aspects, PLoS ONE 2011; 6: e28007 e28010.
- [40] K.C.A. Smith KCA, C.W. Oatley, The scanning electron microscope and its fields of Application, Br. J. Appl. Phys. 1955; 6:391-399.
- [41] F. Brisset, M. Repoux, J. Ruste, F. Grillon, F. Robaut, Microscopie électronique à balayage et Microanalyses, EDP Sciences, ISBN: 978-2-7598-0082-7.
- [42] F.C. Chrétien, J. Berthou, P.A. Driguez. Dégradation des DIU in utero en fonction du temps, le phénomène de calcification, étude radiocristallographique et au microscope électronique à balayage, Gyn. Obstet. Fertil. 2001; 30:1-13.
- [43] L.S. Paek, J.O. Tétreault-Paquin, S. St-Jacques, M. Nelea, M.A. Danino, Le microscope électronique à balayage environnemental est-il un outil pertinent pour l'analyse des capsules périprothétiques mammaires? Annales de chirurgie plastique esthétique 2012; 14:13-55.
- [44] D. Mavrilas, A. Apostolaki, J. Kapolos, P.G. Koutsoukos, M. Melachrinou, V. Zolota, D. Dougenis, Development of bioprosthetic heart valve calcification in vitro and in animal models: morphology and composition, J. of Crystal Growth 1999; 205: 554 562.
- [45] S.Y. Buchen, C.M. Cunanan, A. Gwon, J.I. Weinschenk III, L. Gruber, P.M Knight, Assessing intraocular lens calcification in an animal model, J. of Cataract & Refractive Surgery 2001; 27: 1473-1484.
- [46] L. Lei, X. Liu, Y.-Y. Shen, J.-Y. Liu, M.-F. Tang, Z.-M. Wang, S.-R. Guo, L. Cheng, Zero-order release of 5 fluorouracil from PCL-based films featuring trilayered structures for stent application, Eur. J. of Pharmaceutics and Biopharmaceutics 2011; 78:49 57.
- [47] M. Roupret, V. Hupertan, M. Daudon, S. Lebrun, Ph. Sebe, B. Gattegno, Ph. Thibault, O. Traxer, Intérêt de l'analyse morpho-constitutionnelle par spectrophotométrie infrarouge des incrustations des sondes double J pour la détermination indirecte de la composition des calculs urinaires, Progrès en Urologie 2005; 15: 411 415.
- [48] O. Söhnel, F. Grases. Fine structure of calcium oxalate monohydrate renal calculi, Nephron 1993; 63:176-182.
- [49] H.H. Dorian, P. Rez, G.W. Drach, Evidence for Aggregation in oxalate stone formation:

- atomic force and low voltage scanning electron microscopy, J. Urol 1996; 156: 1833 1837.
- [50] M. Van Meerssche, J. Feneau-Dupont, Introduction à la Cristallographie et à la Chimie Structurale. Louvain, Ed. Cesson: Vander, 1973.
- [51] S. Dahaoui, V. Pichon-Pesme, J. A. K. Howard, C. Lecomte, CCD charge density study on crystals with large unit cell parameters: the case of hexagonal L-cystine, J. Phys. Chem. A 1999; 103: 6240 - 6250.
- [52] V. Tazzoli, C. Domeneghetti, The crystal structures of whewellite and weddellite:re-examination and comparison, American Min. 1980; 65:327-334.
- [53] T. Echigo, M. Kimata, A. Kyono, M. Shimizu, T. Hatta, Re-investigation of the crystal structure of whewellite [Ca(C₂O₄) H₂O] and the dehydration mechanism of caoxite [Ca(C₂O₄).3H₂O], Mineralogical Magazine 2005; 69: 77 88.
- [54] M. Daudon, D. Bazin, P. Jungers, G. André, A. Cousson, P. Chevallier, E. Véron, G. Matzen, Opportunities offered by scanning electron microscopy, powder neutron diffraction in the study of whewellite kidney stones, J. App. Cryst. 2009; 42:109-115.
- [55] M. Daudon, P. Junger, D. Bazin, Peculiar Morphology of Stones in Primary Hyperoxaluria, N. Engl. J. of Med. 2008; 359: 100.
- [56] N.A. Curry, D.W. Jones, Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron diffraction investigation, J. Chem. Soc. A. 1971; 5: 3725 3729.
- [57] M. Banu, Mise en forme d'apatites nanocristallines : céramiques et ciments, Thèse de l'institut National Polytechnique, Toulouse, 2005.
- [58] M. Mathew, W.E. Brown,L.W. Schroeder, B. Dickens, Crystal structure of octacalcium bis(hydrogenophosphate) tetrakis (phosp) pentahydrate Ca₈(HPO₄)₂(PO₄)₄×5H₂O, J. Cryst. Spectrosc. Res. 1988; 18: 235 250.
- [58] J. Prywer, A. Torzewska, T. Plocinski, Unique surface and internal structure of struvite crystals formed by Proteus Mirabilis, Urol. Res. 2012; 40: 699 707.
- [59] T.J. White, Dong ZhiLi, Structural derivation and crystal chemistry of apatites, Acta Cryst. 2003; B59: 1-16.
- [60] D. Bazin, G. André, R. Weil, G. Matzen, E. Véron, X. Carpentier, M. Daudon, Absence of bacterial imprints on struvite–containing kidney stones: a structural investigation at the mesoscopic and atomic scale, Urology 2012; 79:786-790.
- [61] R. Castaing, A.Guinier, Sur l'exploration et l'analyse élémentaire d'un échantillon par une sonde électronique. In Proceedings of the 1st international conference on electron microscopy (pp. 60–63). Delft, 1949.
- [62] R. Castaing, G. Slodzian, Dispositif permettant d'obtenir différentes images ioniques de la surface d'un échantillon, et donnant séparément la distribution superficielle de chaque élément constitutif de l'échantillon à étudier. CNRS patent No. FR1240658. (1959).
- [63] R. Castaing, Application des sondes électroniques à une méthode d'analyse ponctuelle chimique et cristallographique. Thèse de doctorat d'état, Université de Paris, 1952, Publication ONERA N. 55(1951).
- [64] M. Quintin, Qui a découvert la fluorescence X, J. de Physique IV 1996; C4 6: 599 610.
- [65] J. Despujols, Spectrométrie d'émission des rayons X. Fluorescence X, Editions Weka.
- [66] http://www.emse.fr/spip/IMG/pdf/fluoresx.pdf
- [67] H. Friedman, L.S. Birks, Rev. Sci. Instr. 1948; 19: 3230.
- [68] P. Philippot, B. Menez, P. Chevallier, Absorption correction procedures for quantitative analysis of fluid inclusions using synchrotron radiation X-ray fluorescence, Chemical Geology 1998; 144: 121 136
- [69] N. Broll, Fluorescence X : de la découverte des rayons de Tötgen aux identités de Tertian, J. de Physique IV 1996 ; C4 6 : 583 597.
- [70] L. Von Hamos, Ark. Mat. Astron. Phys. 1945; 31:1-10.
- [71] T. Shiraiwa, N. Fujino, Theoretical calculation of fluorescent X-ray Intensities in fluorescent X-ray spectrochemical analysis. Jpn. J. Appl. Phys. 1966; 5:886 899.
- [72] J.X. Wang, D. Piccot, P. Chevallier, F. Legrand, K. Abbas, Viresyme: logiciel d'exploitation des spectres de Fluorescence X. Commissariat à l'Energie Atomique -CEA, Rapport 275,1995.
- [73] D. Bonvin, R. Yellepeddi, G. Matula, Analyse des éléments traces dans les matrices légères par fluorescence X: applications et perspectives. J. Phys. 2012, IV-12, 77 82.
- [74] S. Gomez, R. Rizzo, M. Pozzi-Mucelli, E. Bonucci, F. Vittur, Zinc mapping in bone tissues by histochemistry and synchrotron radiation induced X-Ray emission: correlation with the distribution of alkaline phosphatase Bone 1999; 25: 33-38.

- [75] R.A. Barrea, C.A. Pérez, A.Y. Ramos, H.J. Sanchez, M. Greno, Distribution and incorporation of zinc in biological calcium phosphates, X-Ray Spectrom. 2003; 32:387-395.
- [76] J. Aasetha, G. Boivin, O. Andersend, Osteoporosis and trace elements An overview, J. of Trace Elements in Medicine and Biology 2012; 26:149 152.
- [77] A.A. Levinson, M. Nosal, M. Davidman, E.L.Prien, E.L. Prien, R.G. Stevenson, Trace elements in kidney stones from three areas in the United States». Invest Urol 1978; 15: 270 280.
- [78] J. Hofbauer, I. SteVan I, K. Höbarth, G. Vujicic, H. Schwetz, G. Reich, O. Zechner, Trace elements and urinary stone formation: new aspects of the pathological mechanism of urinary stone formation, J Urol 1991; 145: 93 100.
- [79] I. Abugassa, S.B. Sarmani, S.B. Samat, Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method? Applied Radiation and Isotopes 1999; 50: 989 994.
- [80] X. Carpentier, D. Bazin, Ch. Combes, A. Mazouyes, S. Rouzière, P.A. Albouy, E. Foy,
 M. Daudon, High Zn content of Randall's plaque: A μ-X-ray fluorescence investigation,
 J. of Trace Elements in Medicine and Biology 2011; 25: 160 165.
- [81] S.D. Blaschko, J. Miller, Th. Chi, L. Flechner, S. Fakra, A. Kahn, P. Kapahi, M.L. Stoller, Microcomposition of human urinary calculi using advanced imaging techniques, The Journal of Urology, 2013; 189: 726-734.
- [82] A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, N. Roveri, Inhibiting effect of zinc on hydroxylapatite crystallization, J Inorg Biochem 1995; 58:49 58.
- [83] H.E. Lundager Madsen, Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO₄, 2H₂O) and its transformation to octacalcium phosphate and apatite. J Cryst Growth 2008; 50: 2602 2612.
- [84] L.A. Touryan, M.J. Lochhead, B.J. Marquardt, V. Vogel, Sequential switch of biomineral crystal morphology using trivalent ions, Nature Materials 2004; 3:239 243.
- [85] D. Bazin, M. Daudon, Nouvelles Méthodes d'étude des calculs et plaques de Randall, Actualités Néphrologiques Jean Hamburger, Ed. Flammarion Médecine (2012).
- [86] E. Rokita, C. Hermes, H.F. Nolting, et al.; Substitution of Ca by Sr within selected Ca phosphates, J. Crystal Growth 1993; 130: 543-552.
- [87] G. Komaromy-Hiller, K.O. Ash, R. Costa, K. Howerton, Comparison of representative ranges based on U.S. patient population and literature reference intervals for urinary trace elements. Clin Chim Acta 2000: 296: 71-90.
- [88] G. Huel, N. Frery, L. Takser et al. Evolution of blood lead levels in urban French population (1979–1995), Rev Epidemiol Sante Publique 2002; 50: 287-297.
- [89] C. Reiners, H. Hänscheid, M. Lassmann, M. Tiemann, M. Kreissl, J. Rendl, D. Bier, X-ray fluorescence analysis (XFA) of thyroidal iodine content (TIC) with an improved measuring system, Exp Clin Endocrinol Diabetes. 1998; 106: S31 S33.
- [90] M. Shimura, A. Saito, S. Matsuyama, T. Sakuma, Y. Terui, K. Ueno, H. Yumoto, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, M. Yabashi, K. Tamasaku, K. Nishio, Y. Nishino, K. Endo, K. Hatake, Y. Mori, Y. Ishizaka, T. Ishikawa, Element Array by Scanning X-ray Fluorescence Microscopy after Cis-idamminedichloro-Platinum(II) Treatment, Cancer Res 2005; 65: 4998 5002.
- [91] J.C. Heughebaert, Contribution à l'étude de l'évolution des orthophosphates de calcium précipités amorphes en orthophosphates apatitiques; Thèse d'état Institut National Polytechnique de Toulouse: Sciences Physiques, France (1977).
- [92] H. Fleisch, Inhibitors of calcium phosphate precipitation and their role in biological mineralization, J. of Crystal Growth 1981; 53: 120 134.
- [93] D.J. Greefield, J.D. Termine, E.D. Eanes, A chemical study of apatites prepared by hydrolysis of amorphous Ca phosphate in carbonate-containing aqueous solution; Calcif. Tis. Res. 1974; 14: 131-138.
- [94] J.W.L. Wilson, P.G. Werness, L.H. Smith, Inhibitors of crystal growth of hydroxyapatite: a constant composition approach; J. Urol. 1985; 134: 1255-1258.
- [95] V.M. Goldschmidt. In Geochemistry, Oxford University Press, London, 1954.
- [96] M. Daudon, Cinq calculs cinq photos cinq diagnostics cinq astuces, Prog. Urol. FMC 2012; 22: F87 F93.
- [97] http://www-llb.cea.fr/
- [98] R.J. Hill, Expanded use of Rietveld method in studies of phase abundance in multiphase Mixtures Powder Diffraction 1991; 6:74 77.
- [99] Powder diffraction file (PDF), International centre for diffraction data, 12 campus Blvd, Newton square, PA 19073-3273, USA, http://www.idd.com.

- [100] D. Bazin, C. Chappard, C. Combes, X. Carpentier, S. Rouzière, G. André, G. Matzen, M. Allix, D. Thiaudière, S. Reguer, P. Jungers, M. Daudon, Diffraction techniques and vibrational spectroscopy opportunities to characterize Bones, Osteoporos Int. 2009; 20: 1065 - 1075.
- [101] D. Bazin, M. Daudon, G. André, R. Weil, E. Véron, G. Matzen, Therapy modifies cystine kidney stones at the macroscopic scale. Does such alterations exist at the mesoscopic and nanometer scale? En cours de soumission
- [102] http://www-llb.cea.fr/spectros/pdf/g41-llb.pdf
- [103] R.J. Hill, C.J. Howard, Quantitative phase analysis from neutron powder diffraction data using the Rietveld method, J. Appl. Cryst. 1987; 20: 467 476.
- [104] E. Letavernier, O. Traxer, J.-P. Haymann, D. Bazin, M. Daudon, Cystinurie, Progrès en Urologie FMC 2012; 22: F119 F123.
- [105] B. Hannache, D. Bazin, A. Boutefnouchet, M. Daudon, Effet des extraits de plantes médicinales sur la dissolution des calculs rénaux de cystine in vitro : étude à l'échelle mésoscopique, Progrès en urologie 2012 ; 22 : 577 582.
- [106] E.A. Abdel-Aal, S.Daosukho, H. El-Shall, Effect of supersaturation ratio and Khella extract on nucleation and morphology of kidney stones, J. of Crystal Growth 2009; 311: 2673 2681

Chapitre III : Épidémiologie

Une multitude d'études épidémiologiques ont été publiées et l'analyse de cette littérature classée par ordre chronologique [1-65] permet de discerner différents types d'investigations suivant les critères retenus. Les investigations menées en fonction de la géographie concernent soit des continents, l'Europe [59], l'Afrique [6], soit différents pays l'Allemagne [43], l'Angleterre [39], l'Arabie Saoudite [3], l'Arménie [40], les États Unis [60], la France [47], l'Iran [12,62], le Japon [33], la Jordanie [17], le Pakistan [13], le Soudan [27], Taiwan [42] la Tunisie [44], ou encore des régions spécifiques de certains pays [4,14,19,28,35,41,49,65]. D'autres facteurs modulant les caractéristiques physicochimiques de la lithiase sont abordés comme la classe d'âge [45] ou encore le sexe [45, 50]. Ainsi de nombreuses études s'intéressent plus particulièrement à la lithiase de l'enfant [5,22,30,61]. Chez l'adulte, comme chez l'enfant, la plupart des études épidémiologiques mettent en évidence des différences significatives en fonction du sexe puisque l'homme et la femme s'avèrent très différents sur ce point [8,50]. Les hommes sont en effet environ deux fois plus touchés que les femmes (9% contre 4 %) et, chez l'enfant, un rapport garçon/fille élevé est généralement observé durant les premières années de vie, le ratio tendant à se réduire ensuite [34]. Enfin, ces études peuvent aussi établir des liens entre la lithiase et les habitudes nutritionnelles [49] ou encore les conditions socioéconomiques [8].

Quelques points clés se dégagent de l'ensemble de ces études. Ainsi, celles dont le sujet de recherche est la lithiase chez l'enfant soulignent l'importance des maladies héréditaires, des infections urinaires ou encore des carences nutritionnelles. Les formes héréditaires sont pour la plupart sévères, fréquemment associées à une néphrocalcinose et exposent au risque d'évolution vers l'insuffisance rénale en l'absence d'un traitement étiologique approprié et précocement institué. Chez les jeunes adultes, ces études soulignent l'importance prise par les calculs sur lesquels est présent un dépôt blanc dénommé plaque de Randall durant ces trois dernières décennies (Figure 1). Cette plaque de Randall sert en effet de centre nucléateur du calcul et est responsable d'une grande partie des coliques néphrétiques observées chez les jeunes [66]. Elle est fort probablement liée à une modification des habitudes alimentaires chez les enfants et pose des questions sur la prise de vitamine D [67].

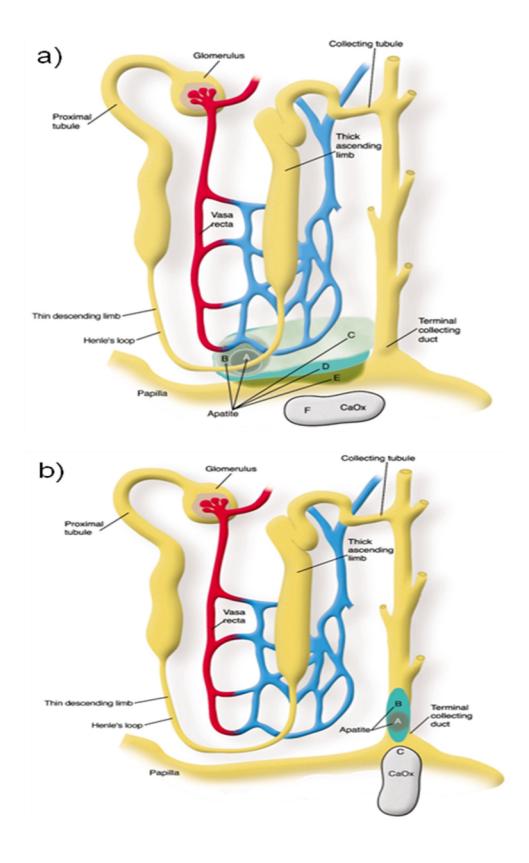


Figure 1 : Mécanisme de nucléation sur plaque de Randall

- a) Type I de Randall plaque calcique (nephrocalcinise)
- b) Type II de Randall calcifications intratibulaires

Chez les adultes, les lithiases rénales héréditaires sont moins importantes (2 % des calculs chez l'adulte contre 10 % chez l'enfant) et les habitudes alimentaires deviennent prépondérantes. Le manque d'exercice physique associé à une alimentation riche en sucres (glucose mais surtout de nos jours fructose) et en protéines expliquent un lien étroit entre la lithiase et l'un des problèmes de santé publique majeurs de notre société : le diabète de type 2. Ce lien s'exprime dans une séquence syndrome métabolique, diabète de type 2 et lithiase urique. L'impact sociétal est considérable dans la mesure où chez la moitié des transplantés rénaux dans les pays industrialisés, le diabète de type 2 est impliqué. On retrouve ainsi le fait que la lithiase fasse partie des grandes pathologies comme l'hypertension artérielle ou les maladies cardiovasculaires dans lesquelles les facteurs d'environnement ont un rôle majeur. De nos jours, il est à noter également un retour des lithiases d'origine infectieuse probablement lié à la baisse du niveau socioéconomique de la population qui engendre un accès au soin insuffisant.

Dans ce chapitre, nous étudierons les caractéristiques épidémiologiques tirées des calculs, sachant que leur portée est limitée par le nombre limité de calculs disponibles pour cette étude.

III.1 Classification constitutionnelle

Dans cette étude nous essayons à travers l'analyse d'une série de 415 calculs, collectés dans les centres hospitaliers de la région Est algérien, de faire le point sur la composition des calculs au niveau de cette région. L'analyse des calculs par spectrophotométrie Infrarouge à Transformée de Fourier (IRTF) nous a permis de déterminer en un premier temps la fréquence de présence des constituants lithiasiques les plus usuels. L'analyse quantitative de ces calculs nous a permis par la suite de déterminer la fréquence des constituants majoritaires aussi bien dans le calcul que dans le noyau. Les résultats obtenus vont nous permettre de se situer par rapport aux données collectées dans l'Ouest algérien et de contribuer à la constitution d'une base de données élargie sur la nature et la composition des calculs en Algérie.

III.2 Distribution selon la localisation dans l'appareil urinaire

Dans la série étudiée, la localisation des calculs au niveau du haut appareil urinaire est dans l'ensemble largement prédominante (86,8 %). La lithiase vésicale, minoritaire pour les

deux sexes, est largement plus fréquente chez l'homme (19,7%) que chez la femme (2,5%) (Tableau 1).

Tableau 1. Distribution selon la localisation anatomique des calculs

	Н	Fré	F	Fré F	Total	% Total
		Н%		%		
Haut Appareil urinaire	204	80,3	155	97,5	359	86,8
Vessie	50	19,7	6	2,5	56	13,2
Total	254		161		415	

L'analyse de la distribution selon le sexe et l'âge des patients, résumée dans le tableau II, fait ressortir pour l'ensemble des cas une prédominance masculine de la lithiase de l'arbre urinaire avec un ratio Homme /Femme de 1,58. La formation de lithiase urinaire chez la femme est assez régulière entre 20 et 70 ans avec une légère hausse pour la tranche d'âge 50–60 ans. Chez les sujets masculins, la formation de la lithiase de l'arbre urinaire varie sensiblement avec l'âge selon une « Gaussienne » bien marquée dont le maximum est situé au niveau de la tranche d'âge 40–50 ans. La lithiase vésicale chez l'homme présente une croissance plus ou moins régulière avec 1'âge, 2/3 des calculs étant vésicaux après 70 ans (Tableau 2).

Tableau 2 : Distribution selon la localisation anatomique, le sexe et l'âge des patients

C	T II d	Tranches d'âge											
Sexe	Localisation	<10	10 – 19	20 - 29	30 – 39	40 – 49	50 - 59	60 - 69	70≤	Tot			
	Haut appareil	02	04	26	43	58	45	18	08	204			
Н	Vessie	00	01	02	05	10	07	09	16	50			
	Total	2	5	28	48	68	52	27	24	254			
	H appareil	0	4	28	29	31	34	20	9	155			
F	Vessie	0	0	1	2	0	1	1	1	6			
	Total	0	4	29	31	31	35	21	10	161			
	Ratio H/F		1,25	0,96	1,55	2,19	1,48	1,29	2,4	1,58			
			1,06			1,71							

Concernant le ratio Homme / Femme, il est de 1,71 après 30 ans avec un maximum de 2,4 audelà de 70 ans. Ce ratio est voisin de 1 pour les moins de 30 ans avec une légère inversion entre 20 et 30 ans où sa valeur est de 0,96.

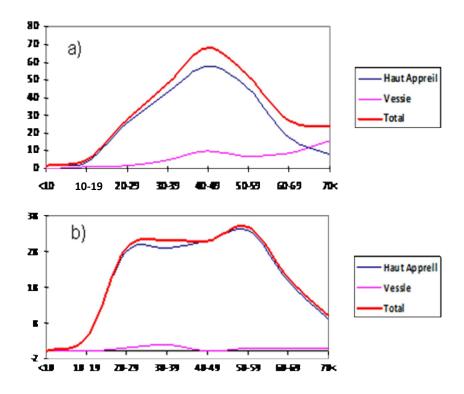


Figure 2 : Distribution des calculs selon la localisation le sexe et l'âge

- a) Prélèvements masculins
- b) Prélèvements féminins

III.3 Composition globale des calculs

L'analyse qualitative de l'ensemble des calculs par IRTF a révélé une composition hétérogène dans 90,1% des cas, les calculs pouvant contenir jusqu'à 06 composants lithiasiques différents (Tableau 3). Parmi les calculs purs (9,9%) ceux formés d'oxalate de calcium monohydraté (whewellite) sont les plus fréquents avec 3,4% des cas, suivis des calculs d'acide urique et de cystine avec une fréquence égale de 2,7%. En termes d'hétérogénéité et de diversité, les calculs à trois composants différents prédominent largement avec une fréquence de 41,2% contre 26,3% et 15,4% pour les calculs à deux et à quatre constituants respectivement. Les combinaisons les plus fréquentes sont observées pour les mélanges Wh+Wd+CA à 27,7%, Wh+Wd à 7%, Wh+Wd+CA+PACC à 5,8% et Wh+AU à 4,6%. Dans l'ensemble, le facteur sexe n'a pas une grande influence sur les associations entre composants lithiasiques.

La prédominance masculine de certains combinaisons s'observe nettement pour les calculs à trois composants lithiasiques avec les associations Wh + CA + AU, Wh + CA +

PAM et CA + PACC + UrAm. La prédominance féminine ne s'observe que pour l'association Wh + Wd + CA + UrAm.

Tableau 3 : Fréquence des calculs purs et des principales associations

Constituants/calcul	Hom 254	Fem 161	Total 415	Constituants/calcul	Hom 254	Fem 161	Total 415
Calculs à 1 constituant	9,4	10,6	9,9	Calculs à 4 constituants	14,6	16,8	15,4
Whewellite (Wh)	10	4	3,4	Wh + Wd + CA + PACC	12	12	5,8
Weddellite (Wd)	2	0	2,7	Wh + Wd + CA + prot	5	1	,
Carbapatite (CA)	0	1	2,7	Wh + Wd + CA + PAM	4	5	
Acide Urique (AU)	6	5		C1 + CA + PACC + PAM	3	1	
Cystine (Cy)	5	6		AU + UrAm + Wh + Wd	2	0	
Struvite (PAM)	1	1		Wh + Wd + CA + UrAm	0	03	
				Wh + Wd + CA + calcite	2	0	
				autres	9	05	
Calculs à 2 constituants	29,1	21,7	26,3	Calculs à 5 constituants	4,7	8,1	6,0
Wh + Wd	19	10	7,0	Wh + Wd + CA + PACC + prot	3	0	
Wh+ AU	14	05	4,6	Wh + Wd + CA + WK + PACC	2	2	
Wh + CA	11	05		Wh + Wd + CA + UrAm + PACC	2	2	
Wd + CA	10	03		Wh + Wd + CA + PAM + PACC	1	2	
AU + UrAm	09	04		autres	4	7	
CA + PAM	04	04					
autres :	07	04					
Calculs à 3 constituants	40,2	42,8	41,2	Calculs à 6 constituants	2,0	0	1,2
Wh + Wd + CA	66	49	27,7	Wh + CA + PAM + PACC + UrAm + prot	2		
Wh + Wd + AU	6	2		Wh + Wd + CA + PACC + WK + PAM	2		
Wh + Wd + UrAm	1	2		Wh + Wd + CA + PACC + WK + TRG	1		
Wh + CA + PACC	6	3					
Wh + CA + AU	4	1					
Wh + CA + PAM	4	0					
CA + PACC + UrAm	3	0					
autres	12	13					
Wh : Whewellite (oxalate de calciu Wd : Weddellite (oxalate de calciu CA : Carbapatite (carbonate apati	ım dihydr			UrAm : Urate d'ammonium PACC : Phosphate Amorphe de Calcium Carbonaté WK : Whitlockite			

Prot : Protéine

TRG : Triglycérides

Le Tableau 4 fait ressortir la fréquence de présence des différents constituants lithiasiques dans l'ensemble des calculs analysés. On constate que la whewellite est la plus fréquente avec 79,5% suivie de la carbapatite (68%) et de la weddellite (62,9%). Les purines sont présentes avec des fréquences de 19% pour l'acide urique et 12,5% pour l'urate d'ammonium. Elles sont suivies par la struvite et de la cystine avec des fréquences respectives de 11,6% et 3,1%. Les différences entre sexes sont plus marquées pour certains constituants que d'autres. On distingue des constituants a prédominance féminine comme l'urate d'ammonium, la carbapatite la cystine et des constituants à prédominance masculine tels que l'acide urique, le PACC et la brushite. La struvite, marqueur d'infection à germes uréasiques, présente des fréquences similaires pour les deux sexes.

Tableau 4: Fréquences des constituants dans les calculs									
selon	le sexe								
Constituants	Homme	Femme	Total						
	254	161	415						
Oxalates de Calcium									
- whewellite	78,7	80,7	79,5						
- weddellite	63,4	62,1	62,9						
Phosphates de calcium									
- carbapatite	66,5	70,2	68,0						
- Phosphate amorphe de	7,5	3,7	6,0						
calcium	1,6	0	0,96						
- brushite	3,5	2,5	3,1						
- whitlockite	0,79	0,62	0,72						
- autres									
Struvite (PAM)	11,4	11,8	11,6						
Purines									
- acide urique	20,1	17,4	19,0						
- urate d'ammonium	9,8	16,8	12,5						
- autres urates	0	1,2	0,48						
Cystine	2,4	4,3	3,1						
Triglycéride	2,8	2,5	2,7						
Divers	2,8	4,3	3,3						

III.4 Composants majoritaires dans les calculs

Les fréquences des constituants lithiasiques majoritaires dans les calculs de la sérié étudiée sont rassemblées dans le Tableau 5. Il ressort clairement que l'oxalate de calcium, est le composant majoritaire le plus fréquent avec 63,6% des cas, la whewellite étant trois fois plus fréquente que la weddellite. Le phosphate de calcium est majoritaire dans 15,9 % des cas, suivit par l'acide urique (12%), la struvite (4,3%) et la Cystine avec 3,1% des cas.

La répartition des constituants majoritaires dans le calcul selon le sexe des patients présente des différences notables pour certains composants lithiasiques en particulier pour la carbapatite, deux fois plus fréquente chez la femme. Concernant les oxalates de calcium, cette différence est assez marquée pour la weddellite avec une fréquence de 17,7% chez les hommes contre seulement 10,6% chez les femmes tandis que la whewellite présente des fréquences similaires entre les deux sexes. Cette différence reste aussi insignifiante pour

l'acide urique avec ses deux formes (anhydre et dihydraté) et la struvite. Enfin, la cystine semble légèrement plus fréquente chez la femme (4,3%) que chez l'homme (2,4%)

tableau 5 : fréquences des constituants majoritaires										
dans	le calcul selo	on le sexe								
Constituant	Fréquence	Fréquence	Fréquence							
majoritaire	Homme	globale								
Oxalate de	67, 3	57,8	63,6							
Calcium	49,6	47,2	48,7							
Whewellite	17,7	10,6	14,9							
Weddellite										
Phosphate de	11,8	22,4	15,9							
Calcium	11,0	22,4	15,4							
carbapatite	0,39	0	0,24							
Brushite	0,39	0	0,24							
PACC										
Struvite (PAM)	4,7	3,7	4,3							
acide urique	12,6	11,2	12,0							
urate	0	0,62	0,24							
d'ammonium										
Cystine	2,4	4,3	3,1							
Autres	1,2	0	0,72							

Une répartition, selon l'âge et le sexe des patients, des quatre premiers constituants majoritaires présentant les plus grandes fréquences dans nos prélèvements (Tableau 6) a permis de révéler certaines spécificités dans l'évolution de ces composants.

Pour les prélèvements masculins, on note en premier, une nette prédominance de la whewellite pour toutes les tranches d'âge à partir de la troisième décennie. Sa fréquence présente un pic de 58,3% pour les 30-39 ans puis elle diminue régulièrement mais modérément pour atteindre une valeur de 44,4% pour la tranche d'âge 60-69 ans. Cette diminution est interrompue au-delà de 70 ans où la fréquence de la whewellite atteint sa valeur maximale de 62,5%. Comme composant majoritaire dans le calcul, la weddellite s'impose particulièrement pour les tranches d'âge 20-29 ans (21,5%) et 40-49 ans (25%). Elle est cependant absente, en tant que tel, pour les moins de 20 ans et, contrairement à la

whewellite, elle diminue considérablement au-delà de 70 ans. La carbapatite est présente dans les prélèvements des jeunes sujets avec des fréquences importantes de 50% pour les moins de 10 ans et 40% entre 10 et 20 ans. Sa fréquence diminue régulièrement entre 20 et 50 ans et au delà de 60 ans alors qu'on observe une revalorisation de ce constituant au niveau de la tranche d'âge 50-59 ans où sa fréquence est de 15,4%. L'évolution de la fréquence de l'acide urique est assez remarquable par son absence en tant que constituant majoritaire pour les moins de 20 ans, sa présence avec une fréquence qui avoisine les 10% antre 20 et 40 ans et enfin une augmentation régulière de cette fréquence au delà de 40 ans pour atteindre une fréquence de 25% pour les plus de 70 ans.

Tableau 6 : Fréquences des constituants majoritaires dans le calcul selon le sexe et l'âge												
	i abieau	6 : Fre	quences	des consi		najoritaire nes d'âge		e caicui s	eion ie se	xe et i age		
še	Const											
Sexe		<10	10 – 19	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	$\geq 70 \text{ ans}$	Total: freq%		
	Whe	0	40	28,6	58,3	51,5	50	44,4	62,5	126/49,6		
me	Wed	0	0	21,4	12,5	25	17,3	18,5	8,3	45/17,7		
Homme	CA	50	40	14,8	10,4	8,8	15,4	7,4	0	28/11,0		
I	Ac Ur	0	0	10,7	10,4	7,3	15,3	18,5	25	32/12,6		
	Whe	0	25	55,2	48,4	51,6	37,1	52,4	30	76/47,2		
me	Wed	0	50	13,8	3,2	6,5	20	4,8	0	17/10,6		
Femme	CA	0	25	20,7	22,6	25,8	20	23,8	20	36/22,4		
Ц	Ac Ur	0	0	3,4	9,7	0	5,7	33,3	50	18/11,2		

Concernant les prélèvements d'origine féminine, la whewellite prédomine en tant que composant majoritaire entre 20 et 70 ans alors que la weddellite présente 50% des calculs pour les moins de 20 ans. Pour les autres tranches d'âge la fréquence de la weddellite présente des valeurs assez faibles avec un léger rebondissement pour la tranche 50-59 ans (20% des calculs). La fréquence de la carbapatite reste assez stable avec l'âge à partir de la deuxième décennie avec des valeurs comprise entre 20% (au-delà de 70 ans) et 25,8% (40-49 ans) et la fréquence de l'acide urique progresse dans l'ensemble avec l'âge des patientes avec une prédominance de ce constituant pour les plus des 70 ans (50%).

III.5 Composants majoritaires dans les noyaux

Les résultats donnant la fréquence des constituants majoritaires dans le noyau des calculs sont rassemblés dans le Tableau 7 où l'on constate que l'oxalate de calcium sous ses deux formes cristallines reste le composant majoritaire le plus fréquent. Il est suivi, dans l'ordre décroissant, des phosphates de calcium, des purines, de la struvite et finalement de la

cystine. L'écart de fréquences entre l'oxalate de calcium et les phosphates de calcium a beaucoup diminué dans le noyau par rapport à l'ensemble du calcul. En tenant compte de la forme cristalline des composants, et dans le cas des prélèvements masculins, la whewellite est le composant majoritaire le plus fréquent avec environ 41% des cas suivi de la carbapatite avec une fréquence de 23,6%. Dans le cas des prélèvements féminins, cette tendance est plutôt renversée avec une fréquence de la carbapatite majoritaire dans le noyau plus élevée (33,5%) que celle de la whewellite (31,1%). La weddellite, seconde forme cristalline de l'oxalate de calcium présente, pour les deux sexes, des fréquences plus faibles (11,8% chez l'homme et 8,1% chez la femme).

Tableau 7 : Fréquence des constituants majoritaires										
dans le noyau selon le sex	ке									
Constituant	% H	% F	Total							
majoritaire										
Oxalates de Calcium	52,7	39,2	47,5							
- whewellite	40,9	31,1	37,1							
- weddellite	11,8	8,1	10,4							
Phosphates de calcium	25,6	36,6	29,9							
- carbapatite	23,6	33,5	27,5							
- autres PhCa	2	3,1	2,4							
Struvite (PAM)	3,9	3,1	3,6							
acide urique	10,6	9,3	10,1							
urate d'ammonium	1,6	5,6	3,1							
Cystine	2,4	4,3	3,1							
Divers	3,1	1,8	2,7							

L'acide urique présente des fréquences comparables à celles de la weddellite égales à 10,6% pour les hommes et 9,3% pour les femmes. Dans le cas de la struvite les fréquences sont assez comparables entre les deux sexes contrairement à l'urate d'ammonium qui enregistre une fréquence de 5,6% chez femmes contre seulement 1,6 % pour les hommes. Dans les noyaux comme dans l'ensemble des calculs, la cystine semble légèrement plus fréquente chez la femme que chez l'homme

	Tableau 8 : Fréquence des constituants majoritaires dans le noyau selon l'âge et le sexe														
e	Const		Tranches d'âge												
Sexe		<10	10 – 19	20 - 29	30 - 39	40 – 49	50 - 59	60 - 69	$\geq 70 \text{ ans}$	Tôtal : freq %					
	Whe	0	40	14,3	39	44,6	50,9	42,9	58,3	104 :40,9					
me	Wed	0	0	28,6	14,6	15,4	5,6	7,1	4,2	30 : 11,8					
Homme	CA	50	20	25	24,4	27,7	28,3	17,9	12,5	60 : 23,6					
E	Ac Ur	0	0	7,1	7,3	6,2	13,2	21,4	20,8	27 : 10,6					
	Whe	0	0	25,8	45,5	40	31,3	28,6	10	50:31,1					
me	Wed	0	20	12,9	0	8	9,4	9,5	10	13:8,1					
emme	CA	0	20	45,2	22,2	36	31,3	28,6	40	54 : 33,5					
H	Ac Ur	0	0	3,2	3,2	0	9,4	28,6	40	15:9,3					

Le Tableau 8 présente l'ensemble des résultats donnant la répartition selon l'âge et le sexe des patients des composants majoritaires les plus fréquents dans le noyau. En ce qui concerne les sujets masculins, le noyau de whewellite s'impose dès la deuxième décennie avec une fréquence de 40% pour se minimiser au niveau de la troisième décennie avec une fréquence de14,3%. Au-delà de 30 ans, sa prédominance est enregistrée pour toutes les tranches d'âge avec des fréquences fluctuant aux alentours de 50% et dont le maximum est enregistré au-delà de 70 ans (58,3%). La weddellite s'impose comme constituant prédominant au niveau la tranche 20-29 ans (28,6%) alors que son noyau est absent pour les moins de 20 ans. On note aussi la stabilité de ce constituant autour d'une fréquence de 15% entre 30-49ans suivi d'une régression importante au-delà de 50 ans qui atteint une valeur minimale de 4,2% pour les plus de 70 ans. Comme constituant majoritaire dans le noyau, la carbapatite est bien présente dès l'enfance (50% pour les moins de 10 ans) et sa fréquence reste relativement importante et présente une légère progression avec l'âge entre 10 et 59 ans (de 20% à 28,3%). Au-delà de 60 ans le noyau de carbapatite régresse progressivement pour atteindre une fréquence de 12,5% pour les plus de 70 ans. Dans l'ensemble les proportions de la carbapatite dans le noyau sont plus importantes que celles dans le calcul pour toutes les tranches d'âge au-delà de 20 ans. L'évolution de l'acide urique avec l'âge dans le noyau est similaire à celle dans l'ensemble du calcul bien quantitativement les proportions de l'acide urique dans le noyau sont légèrement plus faible sauf pour la tranche d'âge 60-69 ans où on enregistre une fréquence de 21,4% dans le noyau contre 18,5% dans le calcul.

Pour les prélèvements féminins, l'influence de l'âge sur l'évolution des constituants majoritaires dans le noyau présente certaines spécificités notamment dans les répartitions des prédominances par tranches d'âge. En note en premier lieu, l'absence de la whewellite

comme constituant majoritaire pour les moins de 20 ans puis une progression notable de sa fréquence jusqu'à une valeur de 45,5% pour la tranche d'âge 30-39 ans suivie par une régression modérée mais continue jusqu'à une valeur de 10% pour les plus de 70 ans. En outre, le champ de prédominance de la whewellite s'est rétracté pour ne toucher que les tranches d'âge de 30 à 50 ans. La weddellite, absente pour les moins de 10 ans et aussi pour la tranche d'âge de 30 à 39 ans, présente une fréquence maximale de 20 % entre 20 et 30 ans qui se stabilise entre 8% et 10% au-delà de 40 ans. La carbapatite prédomine les noyaux des prélèvements féminins entre 20 et 30 ans et pour les plus de 70 ans avec des fréquences respectives de 45,2% et 40%. Sa fréquence reste relativement élevée mais présente une légère diminution entre 40 (36%) et 70 ans (28,6%). Ses plus faibles valeurs sont enregistrées au niveau de la deuxième et quatrième décennie avec des valeurs respectives de 20% et 22,2%. L'acide urique présente une évolution remarquable à partir de la sixième décennie (9,4%) et il s'impose particulièrement avec une fréquence maximale de 40% au-delà de 70 ans.

III.6 Discussion

a) Localisation et ratio H/F

L'étude réalisée porte sur un total de 415 calculs collectés aux niveaux des centres hospitaliers de la région Est algérien, englobant aussi bien son littorale que sa région sud, sur une période s'étalant de janvier 2007 à décembre 2012. La plus grande partie des prélèvements étudies ont été extraits par chirurgie classique témoignant ainsi du retard accusé dans ces centres hospitaliers quant aux méthodes urologiques modernes qui sont, pour la majorité, non ou peu invasives. A cela se rajoute une prise en charge relativement tardive de certains cas lithiasiques (notamment dans la région Sud-est) qui laisse supposer, par rapport à la composition du calcul, une formation de certains composants lithiasiques, induite soit par des complications infectieuses ou par des causes intermittentes secondaires.

En premier lieu, on note pour les deux sexes une prévalence de la lithiase du haut appareil urinaire par rapport à la lithiase vésicale dans des proportions comparables à ceux observés dans divers pays industrialisés [23] et dans la région du Maghreb [49]. La lithiase vésicale étant cependant huit fois plus fréquente chez les prélèvements masculins avec une tendance plus accrue pour les tranches d'âge avancées où plus de 60% des prélèvements d'origine vésicale sont enregistrés.

Le ratio Homme/Femme présente quant à lui une valeur moyenne de 1,58 qui est en déca de celles observées dans certaines régions du Maghreb [49] et en France [52] mais qui cadre

assez bien les observations faites aux Etats-Unis [50] et au Japon [1,33] témoignant de la diminution de ce ratio pendant les dernières décennies. L'évolution du ratio H/F avec l'âge fait ressortir une valeur maximale de 2,4 au-delà de 70 alors que pour les sujets de moins de 30 ans il n'est que de 1,06. L'égalité du risque lithiasique entre sexes pour les jeûnes sujets se conforte en particulier entre 20 et 30 ans où ce ratio est de 0,96 présentant ainsi un léger renversement de tendance. Ce genre de renversement dans le ratio H/F a été rapporté par Daudon et al [52] mais pour la tranche d'âge 15-20 ans avec un ratio H/F de 0,83.

b) Risque lithiasique

Pour la série des calculs analysés, le risque lithiasique chez l'homme se situe, dans une large mesure, entre 30 et 60 ans où l'on enregistre un taux 66,1% de l'ensemble des prélèvements masculins. Ce risque est cependant plus prononcé pour la tranche d'âge 40-49 ans avec un taux de 26,8% des prélèvements. Pour la femme, la formation de calcul est plus précoce et s'étale assez régulièrement entre 20 et 69 ans avec une légère augmentation pour la tranche d'âge 50 – 59 ans où elle représente 21,7% des prélèvements féminins. Dans l'ensemble, l'atténuation du risque lithiasique pour l'homme devient significative au-delà de la sixième décennie où l'on constate une forte diminution de la lithiase du haut appareil urinaire. La lithiase vésicale reste relativement élevée après 40 ans et devient deux fois plus importante que la lithiase du haut appareil urinaire pour les plus de 70 ans augmentant ainsi le risque de la lithiase vésicale avec l'âge. Pour la femme, l'atténuation du risque lithiasique est significative au-delà de la septième décennie en étant essentiellement rénale. On relève dans ce contexte que la formation du premier calcul en France se révèle essentiellement entre 30 et 60 ans pour les hommes avec un léger maximum à 54 ans et que l'atténuation du risque lithiasique ne devient évidente qu'au-delà de 55 ans dans les deux sexes [47].

c) Composition des calculs

L'approche constitutionnelle des calculs analysés nous a permis de déterminer aussi bien la fréquence de présence des composants lithiasiques, leur répartition dans le calcul ainsi que leurs associations en plus des composants lithiasiques majoritaires aussi bien dans l'ensemble du calcul que dans le noyau. Pour certains constituants une différence notable a été enregistrée entre leurs fréquences dans le noyau et dans l'ensemble du calcul ce qui confirme bien que le processus de nucléation de certains calculs diffère en partie du processus de leur croissance [69,70].

Ainsi, il ressort pour les deux sexes que les oxalates de calcium présentent de loin la fréquence de présence la plus élevée (plus de 85% des calculs). La whewellite, sa forme

monohydratée, constitue plus du tiers des composants à constituant unique est sa de fréquence de présence dans l'ensemble des calculs est de 79,5% (hommes : 78,5% et femmes : 80,7%) en étant majoritaire dans 48,7% des calculs (hommes : 49,6% et femmes : 47,2 %) et 37,1 % des noyaux (hommes : 40,9% et femmes : 33,1%) avec une légère prédominance masculine. La whewellite étant une forme essentiellement oxalo-dépendante [11] et sa présence ainsi que sa répartition dans le calcul sont favorisés par une hyperoxalurie modérée à caractère permanent ou intermittent sinon, et à moindre mesure, par une hyperoxalurie majeur endogène d'origine congénitale [71]. L'Aspect nutritionnel reste un facteur essentiel pour expliquer les proportions élevées des calculs de whewellite dans la région Est algérien. On peut estimer que certaines préparations culinaires locales à base de plantes vertes avec une utilisation abondante de poivre, de persil et d'épices (Sud Est algérien) et aussi une consommation excessive de viande rouge (généralement ovine) avec un apport calcique souvent faible peuvent constituer une cause sérieuse d'hyperoxalurie dans cette région [73,74].

La weddellite, la forme dihydratée de l'oxalate de calcium, est calcium dépendante [11,70]. Sa fréquence de présence dans l'ensemble des calculs analysés est assez importante pour les deux sexes (homme : 63,4% et femme 62,1%) et elle s'associe préférentiellement avec la whewellite et les phosphates de calcium. En tant que constituant majoritaire, elle présente des proportions comparables à certaines séries occidentales [7,72] et sa prédominance masculine s'observe aussi bien dans le calcul (rapport : 1,7) que dans le noyau (rapport 1,5).

La carbapatite qui est de loin le constituant prédominant parmi les phosphates calciques, se présente rarement comme constituant unique dans le calcul. Elle s'associe souvent avec l'oxalate de calcium, la struvite et à un degré moindre avec les purines. Sa fréquence de présence dans les calculs est de ce fait assez élevée, comme elle s'impose en tant que constituant majoritaire beaucoup plus dans le noyau (homme : 23,4% et femme 33,5%) que dans le calcul (homme : 11% et femme 22,4%). Contrairement à la weddellite, la carbapatite est de prédominance féminine avec un rapport de 2 au niveau du noyau et 1,41 dans le calcul. Les causes imputées aux calculs majoritaires en carbapatite sont souvent d'origine métabolique et/ou infectieuse. L'origine métabolique de la lithiase phosphocalcique est souvent attribuée à l'Hypercalciurie quelle qu'en sa cause alors que dans la lithiase d'infection à germes uréasiques la carbapatite présente souvent un taux de carbonatation élevé

(> 20%) et/ou associée avec la struvite qui est le marqueur incontesté de la l'infection urinaire à germes uréasiques [75,76].

Parmi les purines, l'acide urique se caractérise par sa présence comme constituant unique dans les calculs avec un taux de 2,7% et par son association dans la catégorie des calculs à deux constituants, avec la whewellite (4,4%) et l'urate d'ammonium (3,1%). On le retrouve avec une fréquence globale de 19% en étant majoritaire dans 12% des calculs et 10,1% des noyaux en moyenne sans différence notable entre les deux sexes. Les causes attribuées à la lithiase urique sont principalement l'hyperacidité urinaire permanente et l'hyper-uricurie [77]. Pour les calculs à localisation vésicale, les calculs d'acide urique sont souvent purs et ils sont classés parmi les lithiases de stase engendrée par une hypertrophie de la prostate (adénome prostatique). L'urate d'ammonium, observé principalement dans les populations de faible niveau socio-économique [78], présente des proportions assez faibles dans notre série. Sa fréquence de présence est de 12,5% mais et il n'est majoritaire que dans 0,24% des calculs contre 3,1% des noyaux avec une forte prédominance féminine (rapport de 4). Les associations de ce constituant avec l'acide urique (3,1%), les phosphates calciques et finalement les oxalates de calcium suggèrent des modes de formation assez diversifiés dont respectivement, l'hyper-uricurie (métabolique ou nutritionnelle), l'infection urinaire à germes uréasiques ou finalement des pathologies digestives en situation de carence phosphorée [29].

Pour ce qui est de la struvite, indicateur de l'infection urinaire à germes uréasiques, sa fréquence de présence est de 11,6% et elle n'est majoritaire que dans 3,6% des noyaux et 4,3% des calculs à fréquences égales pour les deux sexes. Ces résultats montrent que l'infection urinaire peut être une cause secondaire précédée par des causes de nucléation d'origines différentes.

d) Comparaison

Une comparaison de nos résultats avec ceux obtenus au niveau de la région Ouest algérien [49] et ceux d'une série à effectif plus étendue réalisée en France [47] nous a permis de dégager les observations suivantes (Tableau 9) :

Tableau 9 : Comparaison des Fréquences des constituants majoritaires dans le calcul et dans le noyau selon le sexe

		Est Algérien						Ouest Algérien					France					
							Djelloul et al 2006					Daudon 2005						
	ŀ	Homme			Femme			Homme		Femme		;	Homme			Femme		•
Constituant majoritaire	Cal	Noy	Δf	Cal	Noy	Δf	Cal	Noy	Δf	Cal	Noy	Δf	Cal	Noy	Δf	Cal	Noy	Δf
Oxalates de Calcium	67,3	52,7	14,6	57,8	39,2	18,6	69,3	38,4	30,9	61,9	29,5	31,4	75,7	40,6	35,1	59,6	29,3	30,3
Whewellite	49,6	40,9	8,7	47,2	31,1	16,1	50,5	38,1	12,4	49,8	21,6	28,2	50,4	29,0	21,4	45,6	22,6	23
Weddellite	17,7	11,8	5,9	10,6	8,1	2,5	18,8	10,3	8,5	12,2	7,9	4,3	25,3	11,6	13,7	14,2	6,7	7,5
Phosphates de Calcium	11,8	25,6	-13,8	22,4	36,6	-14,2	13,4	46,3	-32,9	22,5	53,9	-31,4	9,1	44,9	-35,8	24,0	54,1	-30,1
carbapatite	11,0	23,6	-12,6	22,4	33,5	-11,1	11,4	44,6	-33,2	20,0	50,8	-30,8	7,0	42,9	-35,9	22,1	51,3	-29,2
autres PhCa	0,8	2	-1,2	0	3,1	-3,1	1,6	1,7	-0,1	1,6	2,9	-1,3	2,1	2,1	0	1,9	2,8	-1,9
Struvite (PAM)	4,7	3,9	0,8	3,7	3,1	0,6	3,9	3,8	0,1	6,7	6,7	0	1,2	0,9	0,3	3,7	3,8	-0,1
Purines	12,6	12,2	0,4	11,8	14,9	-3,1	12,1	9,8	2,3	7,3	8,3	-1	10,8	9,1	1,7	7,5	7,3	0,2
acide urique	12,6	10,6	2	11,2	9,3	1,9	10,1	8,2	1,9	6,0	5,4	0,6	10,6	8,8	1,8	7,1	6,5	0,6
urate d'ammonium	0	1,6	-1,6	0,6	5,6	-5	2	1,6	0,4	1,3	2,9	-1,6	0,2	0,3	-0,1	0,4	0,8	-0,4
Cystine	2,4	2,4	0	4,3	4,3	0	0,9	0,9	0	0,3	0,3	0	1,0	1,0	0	1,0	1,6	-0,6
Autres	1,2	3,1	-1,9	0	1,8	-1,8	0,9	0,9	0	1,3	1,6	-0,3	0,7	3,5	-2,8	1,9	3,9	-2

Dans le cas de la lithiase oxalocalcique et la lithiase phosphocalcique on note la même évolution pour les trois séries avec une prédominance notable pour les oxalates de calcium. Les écarts de fréquences entre calculs et noyaux de whewellite plus marqués pour le sexe féminin à l'inverse de la weddellite et de carbapatite. L'écart relatif $\Delta f/f$ donné par le rapport de la différence de fréquences Δf et la plus grande fréquence enregistrée f (entre calcul et noyau), est moins prononcé dans notre série. Pour la carbapatite, cet écart relatif enregistre des valeurs importantes de l'ordre de 80% dans le cas de la série française et de 70% dans la série Ouest algérien alors qu'il n'est que de 53% dans notre série. En France, la nucléation des calculs rénaux sur la papille rénale à partir d'une plaque de Randall [69] constitue l'une des principales évolutions de la lithiase rénale ces 40 dernières années [47]. Cette plaque, composée dans 90% des cas de carbapatite, constitue un substrat favorable à la cristallisation d'autres espèces cristallines dont la plus fréquente est la whewellite. Les résultats obtenus, aussi bien dans notre série que celle dans l'Ouest algérien, témoignent que cette évolution caractérise aussi la lithiase rénale en Algérie.

Pour ce qui est de la lithiase d'infection par formation de struvite, sa fréquence de présence au niveau de la région Est algérien semble beaucoup plus faible que dans sa région Ouest (rapport de 0,4) et légèrement supérieur par rapport à la série Française (rapport de 1,3). En revanche les proportions de la struvite comme constituant majoritaire sont assez proches dans les deux séries algériennes avec une prédominance féminine au niveau de la région

Ouest algérien. Dans notre série, l'urate d'ammonium, 4 fois plus important dans les noyaux des prélèvements féminins peut, dans une certaine mesure, se cristalliser dans un contexte d'infection à germes uréasiques pour se substituer à la struvite dans ce type de lithiase. En France et dans les pays industrialisés, la struvite est à prédominance féminine et son évolution, depuis les années 70, a connu une diminution significative suite à un traitement précoce de l'infection urinaire [79]. Cette évolution semble aussi se concrétiser en Algérie où beaucoup de moyens ont été déployés pour le dépistage et le suivi de l'infection urinaire.

Les calculs majoritaires en purines au niveau de l'Est algérien se distinguent, dans le cas des femmes, par des fréquences relativement plus élevée. A cet effet, les calculs nucléés sur l'urate d'ammonium sont de 2 et 7 fois plus importants par rapport à la femme de l'Ouest algérien et en France respectivement. Cette tendance subsiste aussi pour l'acide urique mais avec des écarts plus faibles et une prédominance masculine moins marquée. Pour les prélèvements masculins les fréquences d'acide urique enregistrées restent cependant assez proches dans les trois séries.

La lithiase cystinique, qui est l'expression clinique de la cystinurie, est fortement élevée dans la région Est algérien (homme 2,4% et femme 4,3) par rapport aux deux autres séries et à ce qui est rapporté par la littérature [7, 72]. La consanguinité, fort présente dans plusieurs régions en Algérie, est un facteur favorisant de la cystinurie qui se transmet selon le mode autosomique récessif. Dans notre étude la prédominance féminine de la lithiase cystinique semble aussi évidente bien qu'aucune différence entre sexe n'a été encore mentionnée dans des études à grand effectif [7, 47, 72].

III.7 Conclusion

L'analyse par des méthodes physiques, dont la spectrophotométrie infrarouge à transformée de Fourier (IRTF), d'une série de 415 calculs de l'arbre urinaire de la région Est algérien a révélé des similitudes avec les pays industrialisés. L'oxalate de calcium prédomine en tant que composant majoritaire dans le calcul et, un degré moindre, dans le noyau. Les calculs nucléés sur les phosphates calciques présentent un taux assez important alors que la fréquence de la struvite reste relativement faible. La répartition des composants lithiasiques avec l'âge des patients est un autre aspect de cette similitude où l'on note, pour les deux sexes, l'âge avancé de la lithiase d'acide urique, la prédominance de la whewellite à partir de 30 ans pour l'homme et sa nette régression pour la femme au-delà de 70 ans alors que la

weddellite régresse fortement pour l'homme et la femme à partir de 70 ans et 60 ans respectivement. Les spécificités qui ont caractérisé cette étude se résument par un taux relativement élevé des noyaux d'urates d'ammonium des prélèvements féminins, aucune prédominance entre sexes pour les calculs de struvite et finalement une fréquence assez marquée des calculs de cystine dont la prédominance est à tendance féminine.

Références

- [1] T. Inada, Research on urolithiasis. Japan J. Urol. 1966; 57: 917 929.
- [2] A. Norlin, B. Lindell, P.O. Granberg, N. Lindvall, Urolithiasis. A study of its frequency. Scand. J. Urol. Nephrol. 1976; 10: 150 153.
- [3] S.A. Al-Rasheed, S.R. El-Faqih, I. Husain, M. Abdurrahamn, M.M. Al-Mugeirin, The aetiological and clinical pattern of childhood urolihiasis in Saudi Arabia. Int. Urol. Nephrol. 1995; 27: 349 355.
- [4] D.J. Barker, S.P. Donnan, Regional variations in the incidence of upper urinary tract stones in England and Wales. B.M.J. 1978; 1:67 70.
- [5] D. Remzi, Urolithiasis in Infancy Urology 1980; 15: 248 250.
- [6] R.G. Hendrickse, Epidemiology and prevention of kidney disease in Africa Transactions of the Royal Society of Tropical Medicine and Hygiene 1980; 74:8-16.
- [7] H.J. Schneider, C. Berg, Epidemiologische aussagen zum harsteinleiden auf der grundlage von 100 000 Harnteinanalysen. Unter besonderer berucksichtigung der rezidive. Fortschr Urol Nephrol 1981; 17:34 39.
- [8] R. Asper, Epidemiology and socioeconomic aspects of urolithiasis. Urol Res 1984; 12:1-5.
- [9] S. Ljunghall, B.G. Danielson, A prospective study of renal stone recurrences. Br. J. Urol. 1984; 56: 122 124.
- [10] H.-J. Schneider, Epidemiology of Urolithiasis: Etiology · Diagnosis, Handbook of Urology 1985; 17:137-184.
- [11] M. Daudon, R.J. Réveillaud, Whewellite et weddellite : vers des étiopathogénies différentes. Intérêt du typage morphologique des calculs. Nephrologie 1984 ; 5 : 195 201.
- [12] M.H. Kheradpir, T. Armbruster, Childhood urolithiasis in Iran: a comparative study on the calculi composition of 121 cases. Z. Kinderchir 1985; 40: 163-169.
- [13] S.A. Rizvi, S.A. Naqvi, Z. Hussain, S. Hahjehan, Renal stones in children in Pakistan. Br. J. Urol. 1985; 57: 618 621.
- [14] M.F. Najjar, F. Najjar, K. Boukef, A. Oueslati, J. Memmi, T. Bechraoui, La lithiase infantile dans la région de Monastir. Etude clinique et biologique. Le Biologiste 1986; 20: 253 261.
- [15] E. Takasaki, Chronological variation in the chemical composition of upper urinary tract calculi. J. Urol. 1986; 136: 5-9.
- [16] C. Economou, J. Thomas, G. Tobelem, G. Arvis, Prédominance gauche de la lithiase rénale. Sem. Hop. 1987; 63: 277 280.
- [17] A.M. Dajani, A.L. Abu Khadra, F.M. Baghdadi, Urolithiasis in Jordanian children. Br. J. Urol. 1988; 61: 482 486.
- [18] D.B. Leusmann, R. Blaschke, W. Schmandt, Results of 5035 stone analysis: a contribution to epidemiology of stone disease. Scand. J. Urol. Nephrol. 1990; 24: 205 214.
- [19] L. Borghi, P.P. Ferretti, G.F. Elia, F. Amato, E. Melloni, M.R. Trapassi et al. Epidemiological study of urinary tract stones in a northern Italian city. Br. J. Urol. 1990; 65: 231-235.
- [20] P. Jungers, M. Daudon, Epidemiology of the kidney stones. Presse Méd. 1990; 19: 1655 1657.
- [21] A. Ulmann, J. Clavel, D. Destree, C. Dubois, A. Mombet, J.M. Brisset, Histoire naturelle de la lithiase rénale calcique : données obtenues à partir d'une cohorte de 667 malades, Presse Med. 1991 ; 20 : 499 502.
- [22] Y.H. Ni, Y.K. Tsau, C.H. Chen, T.C. Hsu, J.D. Lee, W.S. Tsai, Urolithiasis in children. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1991; 32: 9-16.
- [23] C. Moesch, Donnes épidémiologiques, caractéristiques et évolution de la lithiase. Urinaire, Eurobiol. 1993 ; 203 : 21 28.
- [24] M. Daudon, L. Estépa, C. Hennequin, B. Lacour, P. Jungers, Evolution of urinary stone composition between 1980 and 1994 in France. In: Tiselius HG (ed) Renal stones. Aspects on their formation, removal and prevention. Akademitryck AB, Edsbruk, 1995, pp 128 130.
- [25] S. Ekane, T. Wildschutz, J. Simon, C.C. Schulman, Lithiase urinaire : épidémiologie et Physiopathologie, Acta Urol. Belg. 1997; 65:1-8.
- [26] A. Hesse, R. Siener, Current aspects of epidemiology and nutrition in urinary stone Disease, World Journal of Urology 1997; 15: 165 171.
- [27] A.A. Bala, A.M. Salah, A.H. Khattab, A. Kambal, D. Bongartz, B. Hope, A. Hesse, Mineral composition of renal stones from the Sudan. Urol. Int. 1998; 61:154-156.
- [28] C.S. Pundir, L. Goyal, M. Thakur, N.K. Kuchhal, A.K. Bhargava, S.P. Yadav, Chemical analysis of urinary calculi in Haryana. Indian J. Med. Sci. 1998; 52:16-21.
- [29] N. Rabasse, Lithiases urinaires au Laos : enquête épidémiologique à visée descriptive et étiologique.

Collection des ouvrages du Comité de Coopération avec le Laos, Paris, SEGIP, 1998.

- [30] A. Kamoun, M. Daudon; J. Abdelmoula, M. Hamzaoui, B. Chaouachi, T. Houissa, A. Zghal, S. Ben Ammar, C. Belkahia, R. Lakhoua, Urolithiasis in Tunisian children: a study of 120 cases based on stone composition. Pediatr. Nephrol. 1999; 13: 920 - 925.
- [31] M. Daudon, J. Amiel, Epidémiologie de la lithiase. Prog Urol 1999; 9:5-16.
- [32] A. Serio, A. Fraioli, Epidemiology of nephrolithiasis. Nephron 1999; 81: 26 30.
- [33] O. Yoshida, A. Terai, T. Ohkawa, Y. Okada, National trend of the incidence of urolithiasis in Japan from 1965 to 1995. Kidney Int. 1999; 56: 1899 1904.
- [34] M. Daudon, L'analyse morphoconstitutionnelle des calculs dans le diagnostic étiologique d'une lithiase urinaire de l'enfant, Arch. Péd. 2000; 7:855 865.
- [35] F.F. Angwafo III, M. Daudon, A. Wonkam, P.M. Kuwong, K.A. Kropp, Pediatric urolithiasis in sub Saharan Africa: A comparative study in two regions of Cameroon. Eur. Urol. 2000; 37: 106 111.
- [36] A. Trinchieri, F. Coppi, E. Montanari, A. Del Nero, G. Zanetti, E. Pisani, Increase in the prevalence of symptomatic upper urinary tract stones during the last ten years. Eur. Urol. 2000; 37:23-25.
- [37] M.H. Gault, L. Chafe, Relationship of frequency, age and sex, stone weight and composition in 15,624 stones: comparison of results for 1980 to 1983 and 1995 to 1998, J. Urol. 2000; 164: 302 311.
- [38] F.M. Alapont Perez, J. Galvez Calderon, J. Varea Herrero, G. Colome Borros, A. Olaso, J.R. Sanchez Bisono, Epidemiology of urinary lithiasis. Actas Urol Esp 2001; 25: 341 349.
- [39] W.G. Robertson, The changing pattern of urolithiasis in the UK and its causes. In: Kok DJ, Romijn HC, Verhagen PCMS, Verkoelen CF (eds). Eurolithiasis. Shaker, Maastricht, 2001, pp 9 15.
- [40] A. Sarkissian, A. Babloyan, N. Arikyants, A. Hesse, N. Blau, E. Leumann, Pediatric urolithiasis in Armenia: a study of 198 patients observed from 1991 to 1999. Pediatr. Nephrol. 2001; 16: 728 732.
- [41] M. Decoster, J.C. Bogot, J.L. Carre, J.F. Morin, J.L. Mah, T. Tanquerel, J. Cledes, H.H Floch, Etude épidémiologique des calculs urinaires dans l'ouest de la France. Presse Méd. 2002 ; 31 : 113 118.
- [42] Y.H. Lee, W.C. Huang, J.Y. WC, J.Y. Tsai, C.M. Lu, W.C. Chen, M.H. Lee et al. Epidemiological studies on the prevalence of upper urinary calculi in Taiwan. Urol. Int. 2002; 68: 172 177.
- [43] A. Hesse, E. Brandle, D. Wilbert, K.U. Kohrmann, P. Alken, Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur. Urol. 2003; 44: 709 713.
- [44] M. Jellouli, R. Jouini, M. Mekki, M. Belghith, M.F. Najjar, A. Nouri, Particularité de la lithiase urinaire du nourisson en Tunisie: A propos de 104 cas, Prog. Urol. 2004; 14: 376 379.
- [45] M. Daudon , J.C. Doré, P. Jungers, B. Lacour, Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach, Urol. Res. 2004 ; 32 : 241 247.
- [46] M. Daudon, P. Jungers, Drug-induced renal calculi Epidemiology, prevention and management, Drugs 2004; 64: 245 275.
- [47] M. Daudon, Épidémiologie actuelle de la lithiase rénale en France. Ann Urol 2005; 39: 209 231.
- [48] P. Jungers, D. Joly, F. Barbey, G. Choukroun, M. Daudon, Insuffisance rénale terminale d'origine lithiasique : fréquence, causes et prévention, Néphrologie & Thérapeutique 2005 ; 1 : 301 310.
- [49] Z. Djelloul, A. Djelloul, A. Bedjaoui, Z. Kaid-Omar, A. Attar, M. Daudon et al. Lithiase urinaire dans l'Ouest Algérien : étude de la composition de 1354 calculs urinaires en relation avec leur localisation anatomique, l'âge et le sexe des patients. Prog. Urol. 2006 ; 16 : 328 235.
- [50] C.D. Scales, L.H. Curtis, R.D. Norris, P. Springhart, RL Sur, K.A. Schulman et al Changing gender prevalence of stone disease. J. Urol. 2007; 177: 979 982.
- [51] J. E. Dallera MD, P.S. Chandhoke, Epidemiology and Incidence of Stone Disease Urinary Stone Disease, Current Clinical Urology 2007, 27 - 34
- [52] M. Daudon, O. Traxer, E. Lechevallier, C. Saussine, Epidémiologie des lithiases urinaires, Progrès Urol. 2008; 18:802 814.
- [53] S. Akoudad, M. Szklo, M.A. McAdams, T. Fulop, C.A.M. Anderson, J. Coresh, A. Köttgen, Correlates of kidney stone disease differ by race in a multi-ethnic middle- aged population: The ARIC study, Preventive Medicine 2010; 51: 416 420.
- [54] A.G. Wasserstein, Epidemiology and Natural History of Nephrolithiasis, Clinical Reviews in Bone and Mineral Metabolism 2011; 9:165 180.
- [55] F. Millán, S. Gracia, F.M. Sánchez-Martín, O. Angerri, F. Rousaud, H. Villavicencio, A new approach to urinary stone analysis according to the combination of the components: experience with 7,949 cases Actas Urológicas Españolas (English Edition), 2011; 35: 138 143.
- [56] E.S. Hyams, D. Nelms, W.S. Silberman, Z. Feng, B.R. Matlaga, The Incidence of urolithiasis among commercial aviation pilots, The Journal of Urology 2011; 186: 914-916.
- [57] T.Y. Tseng, M.L. Stoller, Medical and Medical/Urologic Approaches in Acute and Chronic Urologic

- Stone Disease, Review Article, Medical Clinics of North America 2011; 95: 169 177.
- [58] M. Daudon, K. Bertrand. Dossier : lithiase urinaire « Epidémiologie de la lithiase urinaire ». La revue du praticien. 2011 ; 61 : 371 394.
- [59] P. J. S. Osther, Epidemiology of Kidney Stones in the European Union, Urolithiasis 2012 pp 3 12
- [60] C.D. Scales Jr., A.C. Smith, J.M. Hanley, C.S. Saigal, Urologic Diseases in America Project Prevalence of Kidney Stones in the United States, European Urology 2012; 62:160-165.
- [61] M.E. Dwyer, A.E. Krambeck, E.J. Bergstralh, D.S. Milliner, J.C. Lieske, A.D. Rule Temporal Trends in Incidence of Kidney Stones Among Children: A 25-Year Population based study, The Journal of Urology 2012; 188: 247 252.
- [62] G. Pourmand, B. Pourmand, Epidemiology of Stone Disease in Iran, Urolithiasis 2012 pp 85 87.
- [63] B. J. Linder, L.J. Rangel, A.E. Krambeck, The effect of work location on urolithiasis in health care Professionals, Urolithiasis 2013; 41:327 331.
- [64] M.L. Giannossi, V. Summa, An Observation on the Composition of Urinary Calculi: Environmental Influence Medical Geochemistry 2013 : 5 : 67 90.
- [65] A. R. Aragón-Tovara, M. Á. Hernández-Farías, Crystallographic analysis of 475 urinary tract calculi at The Hospital San José Tec Salud in Monterrey, N. L., Rev Mex Urol 2013; 73: 130 135.
- [66] M. Daudon, D. Bazin, When the Synchrotron radiations highlight the Randall's plaques and kidney concretions. J Phys: Conf series 2013; 425: 022006
- [67] M. Daudon, Vitamine D, plaque de Randall et lithiase: existe-t-il un lien? Arch Péd 2013; 20: 336-340.
- [68] A. Randall. A hypothesis for the origin of renal calculus, N Engl J Med 1936;214:234—7.
- [69] BR. Matlaga, FL. Coe, AP. Evan, JE. Lingeman, The role of Randall's plaques in the pathogenesis of calcium stones. J Urol 2007;177:31—8.
- [70] JR. Asplin, J. Lingeman, R. Kahnoski, H. Mardis, JH. Parks, FL. Coe. Metabolic urinary correlates of calcium oxalate dihydrate in renal stones. J Urol 1998;159:664—8.
- [71] Cochat P. Nephrology forum: primary hyperoxaluria type I. Kidney Int 1999;55:2533—47.
- [72] Bataille P, Charransol G, Gregoire I et al. Effect of calcium restriction on renal excretion of oxalate and the probability of stones in the various pathophysiological groups with calcium stones. J Urol 1983; 130: 218-223
- [73] Berland Y, Olmer M, Grandvuillemin M, Calaf R. Restricted calcium diet and calcium oxalate urolithiasis. In: Schwille PO, Smith LH, Robertson WG, Vahlensieck W, Urolithiasis and Related Clinical research, New York, Plenum Press, 1985, 433-436
- [74] Jaeger P, Portmann L, Jacquet AF, Burckhardt P. Influence of the calcium content of diet on the incidence of mild hyperoxaluria in idiopathic renal stone formers. Am J Nephrol 1985; 5: 40-44.
- [75] Healy KA, Ogan K. Pathophysiology and management of infectious staghorn calculi. Urol Clin North Am 2007;34:363—74.
- [76] Barbey F, Cachat F, Halabi G, Jichlinski P, Daudon M. Lithiases d'infection. Rev Med Suisse Romande 2004;124: 465—9.
- [77] Pak C.Y.C., Sakhaee K., Peterson R.D., Poindexter J.R., Frawleyw.H. Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int., 2001; 60: 757-761.
- [78] Rieu Ph. Lithiases d'infection. Ann Urol 2005;39:16—29.
- [79] Miano R, Germani S, Vespasiani G. Stones and urinary tract infections. Urol Int 2007; 79 & (Suppl. 1):32—6.

Chapitre IV : Les éléments traces

IV.1 Les éléments traces et le tissu biologique

En raison de leur rôle majeur dans les processus biologiques, la présence d'éléments traces dans les tissus biologiques constitue le cœur de nombreuses recherches et ce depuis plusieurs dizaines d'années [1-5]. Certains de ces éléments sont à risque de carence chez l'homme comme le Fe (pour le transport et le stockage de l'oxygène) [6,7], l'iode (présent dans les hormones thyroïdiennes) [8] ou le zinc et le cuivre (présents dans de nombreuses enzymes) [9]. Ceux-ci sont donc étudiés dans le cadre de certaines pathologies comme l'hémochromatose pour le Fer [10]. D'autres éléments sont associés à des toxicités importantes comme le Pb ou le Cd qui s'avèrent être de puissants néphrotoxiques. Ceux- ci définissent donc l'étiologie de la pathologie. Suite au bulletin émis par l'UNESCO [11], il convient de souligner qu'il persiste un fort doute pour certains éléments dont l'activité cancérigène est, à présent, seulement suspectée (F, Fe, Pb, Al) ainsi que pour d'autres éléments traces qui pourraient exercer une action protectrice aussi bien à des teneurs physiologiques qu'à des doses inférieures ou supérieures à la normale (I, Ca, Mg, Se, Zn). Notons que certains de ces éléments traces permettent d'aborder aussi les processus d'inflammation [12], les relations entre tissus et infections virales [13], les maladies cardiovasculaires [14], l'ostéoporose [15], les mélanomes [16] ou encore l'asthme [17].

Sur le plan expérimental, de nombreuses techniques sont capables d'apporter des informations essentielles sur la teneur en éléments traces mais aussi les états d'oxydation de ces éléments et leur localisation [18-22]. Parmi ces travaux, certains reposent sur des expériences de fluorescence X induite soit par des photons [23-27] soit par des protons [28-31]. Comme nous l'avons détaillé précédemment, ce type d'expériences permet de mettre en évidence non seulement des modulations de concentrations, et/ou de répartition spatiale d'éléments traces et/ou de leur spéciation mais aussi des corrélations spatiales entre éléments traces au sein des tissus biologiques dans le cadre de différentes pathologies. Plus précisément, la présence d'éléments traces a été étudiée dans plusieurs organes [33-34] comme le sein [35-37], le placenta [38], le foie [39-42], les poumons [43], les cartilages [44], les yeux [45], la peau [46] les cheveux [47], le cerveau [48], et bien sûr le rein [49]. Dans le cas de la prostate [50-55], certains auteurs ont tenté de relier la teneur en zinc à la présence de tumeurs. Dans le cas du cerveau, le lien entre la teneur en fer et la maladie de Parkinson a été

envisagé [56,57]. Les derniers développements s'attachent à effectuer ces mesures in vivo à des échelles subcellulaires tout en les combinant à d'autres techniques au sein d'une plateforme [58-67].

Des mesures par fluorescence X ont aussi été effectuées sur différents types de concrétions notamment des calculs biliaires [68-72], des calculs salivaires [73], des calcifications buccales [74], des calcifications du système vasculaire [75]. Une analyse rapide de la littérature montre que la majorité des recherches s'est concentrée sur l'étude des calculs rénaux et bien que de tels travaux ont été initiés dès les années 70, cette thématique est encore largement couverte comme le montrent tout un ensemble de publications récentes [76-91].

Une partie de cette recherche tend à mettre en évidence le rôle éventuel des éléments traces dans la pathogenèse de ces concrétions. Sur le plan physicochimique, nous avons vu que ceux-ci étaient capables de modifier les cinétiques de croissance mais aussi les morphologies des cristaux. Nous allons maintenant exposer l'ensemble de nos résultats et les comparer à une étude récente menée sur une cohorte de patients français.

IV.2 Résultats

Les tableaux 1,2,3 rassemblent l'ensemble des mesures quantitatives obtenues par fluorescence X pour les éléments traces considérés (Cu, Zn, Se, Rb, Sr et Pb) sur 80 calculs provenant de l'est algérien. Sur le tableau 1, on remarque de suite que seuls le zinc, le strontium et le plomb sont associés à des teneurs supérieurs à l'incertitude de la mesure. Celle-ci est intrinsèque au dispositif et égale à $10\mu g/g$. De fait, la teneur des autres éléments (Cu, Se et Rb) n'est pas présentée dans les autres tableaux (tableaux 2 et 3).

Dans le tableau 1, deux familles de calculs en fonction de la présence ou non de calcium sont considérées. Pour les calculs contenant du calcium, le zinc $(238\pm35~\mu g/g)$ et le strontium $(165\pm56\mu g/g)$ constituent des éléments prépondérants, la teneur en plomb est faible et proche finalement du seuil de détection $(23\pm4~\mu g/g)$ versus $10\mu g/g$ p<0.05). Pour les calculs ne contenant pas de calcium, les teneurs en éléments traces sont dans l'ensemble bien plus faibles que pour les calculs contenant du calcium. Pour le Zn, on observe ainsi une teneur égale à $235\pm15\mu g/g$ pour les calculs contenant du calcium versus $15\pm73~\mu g/g$ pour les calculs n'en contenant pas (p<0.01).

Tableau 1: Éléments traces présents dans les calculs calciques et non calciques (en $\mu g/g \pm$ écart type)

Composant Principal	Nb	Cu	Zn	Se	Rb	Sr	Pb
Calculs calciques	62	29±3	238±35	<10	<10	165 ± 56	23±4
Calculs calciques [92]	43	<10	525±768	<10	<10	239±300	19±27
Calculs non calciques	14	24±6	15±73**	<10	<10	<10	<10±9*
Calculs non calciques [92]	35	<10	33±70	<10	<10	24±52	<10

* p<0.05; ** p<0.01 versus calcique

Parmi les calculs calciques, il convient de différencier les calculs formés d'oxalate et ceux formés de phosphates calciques (Tableau 2). Ces mesures montrent que les premiers contiennent nettement moins d'éléments traces que les seconds. Ainsi pour les teneurs de Zn, on mesure $123\mu g/g$ pour les oxalates de calcium versus 440 $\mu g/g$ pour les phosphates (p=0,0019). De même pour le Sr, dont la teneur atteint en moyenne 870 $\mu g/g$ dans les calculs phosphocalciques contre seulement 32 $\mu g/g$ pour les calculs oxalocalciques, p < 0,0001).

Tableau 2: Éléments traces présents dans les calculs urinaires calciques (en $\mu g/g \pm écart type$).

Composant Principal	Nb	Zn	Sr	Pb	
oxalate de Ca	37	123 ± 42	32 ± 74	17 ± 3	
oxalate de Ca [92]	19	95 ±176	74 ±56	12 ±9	
CA	9	$440 \pm 71^*$	870 ± 123**	11± 10	
CA [92]	18	1059 ± 934	455 ±364	31±39	
*p = 0.0019; ** p < 0,00001 vs oxalate de calcium					

Cette observation est valable pour l'ensemble des éléments traces. S'il existe quelques différences entre cette étude et l'étude précédente [92], l'un des points clés de ces mesures s'associe à la différence significative observée dans les deux études entre les deux oxalates de calcium i.e. monohydraté et dihydraté. En effet, comme le montre le tableau 3, la teneur en éléments-traces de la whewellite est significativement inférieure à celle observée pour la weddellite, aussi bien pour le plomb (13 \pm 4 μ g/g versus 31 \pm 8 μ g/g pour la weddellite, p = 0,05) que pour le zinc (66 \pm 24 μ g/g versus 440 \pm 53 μ g/g pour la weddellite, p < 0,00001) et, plus encore pour le strontium (7 \pm 8 μ g/g versus 138 \pm 18 μ g/g, p < 0,000001).

Tableau 3: Éléments traces présents dans les calculs urinaires calciques (en $\mu g/g \pm$ écart type).

Composant Principal	Nb	Zn	Sr	Pb
C1	25	66±24	7 ±8	13 ± 4
Whewellite [92]	15	42±38	61±41	12±10
C2	5	440± 53 ^{xx}	138 ± 18^{xx}	31 ± 8^{x}
Weddellite [92]	4	290±346	125± 82	14± 4
C1+C2	7	100 ± 80	46 ± 139	24±11
C1+C2+CA	8	520 ± 75**	$116 \pm 130^*$	71±10***
C1+CA	3	83 ± 122	14 ± 213	9±17
C2+CA	3	589 ± 122	81 ± 208	27±17

IV.3 Discussion

Dans le tableau 1, on compare les teneurs mesurées pour les éléments traces entre calculs calciques et calculs non calciques. On observe des teneurs plus élevées pour les calculs calciques. Ainsi, pour le Zn, on mesure une valeur égale à 238±35µg/g pour les calculs calciques et à 15±73µg/g pour les calculs non calciques (p<0.01). De même, pour le plomb, on mesure une valeur égale à 23±4µg/g pour les calculs calciques et à 10±9µg/g pour les calculs non calciques (p<0.05). Ces mesures sont cohérentes avec un schéma général où les éléments traces viennent se substituer simplement au calcium. Cette substitution s'effectue d'autant plus facilement que l'on respecte les règles de Goldschmidt. En effet, les éléments traces se présentent comme le calcium sous la forme de cations doublement chargés (Ca²⁺, Zn²⁺, Sr²⁺, Pb²⁺) avec des rayons ioniques relativement proches du calcium (R(Ca²⁺) = 0.099nm; $R(Zn^{2+}) = 0.074$ nm, $R(Sr^{2+}) = 0.113$ nm, $R(Pb^{2+}) = 0.132$ nm).

Dans le deuxième tableau, on distingue au sein des calculs calciques, les oxalates et les phosphates. Les teneurs s'avèrent très différentes entre ces deux types de calculs calciques pour le zinc et le strontium. Ainsi pour les oxalates de calcium et les phosphates calciques, la mesure donne respectivement pour le zinc $123 \pm 42 \mu g/g$ et $440 \pm 71 \mu g/g$, p = 0,0019) et pour le Sr $32 \pm 74 \,\mu\text{g/g}$ et $870 \pm 123 \,\mu\text{g/g}$, p < 0,00001). Cette différence est liée à l'une des particularités de la structure apatitique, sa capacité à former des solutions solides et à accepter un grand nombre de substituants. Ainsi, les cations bivalents Ca2+ de l'hydroxyapatite peuvent être remplacés par d'autres cations bivalents (Cd²⁺, Pb²⁺, Sr²⁺, Ba²⁺, Zn²⁺...) [93],

 $^{^{}x}$ p =0,05; xx p < 0,00001; xxx p < 0,000001 versus C1 * p<0.0001 versus C1; ** p<0.001versus C1+C2 ; **** p<0.05 versus C1

mais aussi par des cations monovalents (Na⁺, K⁺, Li⁺...), trivalents (La³⁺, Eu³⁺, Ga³⁺, Al³⁺...) ou des lacunes (\square).

Dans le troisième tableau, on retrouve le fait que la weddellite contient bien plus d'éléments traces que la whewellite. L'explication qui avait été avancée repose sur la conversion cristalline de la weddellite en whewellite au cours de laquelle un relargage des éléments traces est effectuée. Ce relargage réduit de facto la teneur des éléments traces dans les calculs composés de whewellite. Pour le strontium, une explication supplémentaire est possible puisque la weddellite est une espèce calcium dépendante associée à des hypercalciuries et l'on sait par ailleurs que les cations Sr^{2+} suivent les voies métaboliques du Ca^{2+} .

Finalement, pour le plomb, on remarque que les teneurs sont peu élevées, ce qui suggère que la population n'est pas particulièrement exposée à un environnement riche en plomb par le biais de canalisations en plomb.

Références

- [1] V. Hudnik, M. Marlot-Gomiscek, S. Gomiscek, The determination of trace metals in human fluids and tissues. Part 3. Anal, Chim. Actu. 1984; 157: 303-311.
- [2] W.H. Cherry, Data analysis of trace-element levels in human tissues. Tot. Environ. 1984; 34: 199 201.
- [3] J. Versieck, Trace elements in human body tluids and tissues. CRC Rev. Clin. Lab. Sci. 1985; 22:97-184.
- [4] S. Lugowski, D.C. Smith, J.C. VanLoon, Critical aspects of trace element analysis of tissue samples: A review, Clinical Mat. 1990; 6:91-104.
- [5] Y. Rayssiguier, A. Mazur, Trace Elements in Man and Animals in Trace Elements 2002, pp 97-103.
- [6] O. Loréal, É. Bardou-Jacquet, M.-L. Island, N. Fatih, M. Doyard, L. Detivaud, P. Brissot, Métabolisme du fer, Cahiers de Nutrition et de Diététique 2012; 47:117-124.
- [7] E. Bárány, I.A. Bergdahl, L.-E. Bratteby, T. Lundh, G. Samuelson, S. Skerfving, A. Oskarsson, Iron status influences trace element levels in human blood and serum, Env. Res. 2005; 98: 215 223.
- [8] M. Hansson, G. Berg, M. Isaksson, Chap. 3 Determination of Iodine In Vivo and In Vitro by X-Ray Fluorescence Analysis: Methodology and Applications, Comprehensive Handbook of I 2009 pp 29-37.
- [9] B. Bao, A.S. Prasad, F.W. Beck, et al. Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl. Res. 2008; 152: 67-80.
- [10] W. Osterode, G. Falkenberg, R. Höftberger, F. Wrba, Fe, Cu, Zn and Br mapping in cirrhotic liver slices from patients with hemochromatosis studied by microscopic S.R. X-ray fluorescence analysis in continuous scanning mode, Spectrochimica Acta Part B: Atomic Spectroscopy 2007; 62: 682 688.
- [11] Bulletin Unesco, 211-05 newsletter n°9 fran 5/04/05 12:28 Page 1.
- [12] X. Carpentier, D. Bazin, C. Combes et al. High Zn content of Randall's plaque : A μ-X-ray fluorescence investigation. J Trace Elements Med. Biol. 2011; 25 : 160 - 165.
- [13] M. N. Rashed, The role of trace elements on hepatitis virus infections: A review, J. of Trace Elements in Medicine and Biol. 2011; 25: 181-187.
- [14] E. Altekin, C. Çoker, A. Rıza Şişman, B. Önvural, F. Kuralay, Ö. Kırımlı, The relationship between trace elements and cardiac markers in acute coronary Syndromes, J. of Trace Elements in Medicine and Biol. 2005; 18: 235 242.
- [15] J. Aaseth, G. Boivin, O. Andersen, Osteoporosis and trace elements An overview J. of Trace Elements in Medicine and Biol. 2012; 26: 149 152.
- [16] M. Bergomi, G. Pellacani, M. Vinceti, S. Bassissi, C. Malagoli, D. Alber, S. Sieri, L. Vescovi, S. Seidenari, R. Vivoli, Trace elements and melanoma, J. of Trace El. in Med. Biol. 2005; 19: 69 73.
- [17] A. Kocyigit, F. Armutcu, A. Gurel, B. Ermis, Alterations in plasma essential trace elements selenium, manganese, zinc, copper, and iron concentrations and the possible role of these elements on oxidative status in patients with childhood asthma, Biological Trace Element Research 2004; 97:31-41.
- [18] P. Schramel, ICP and DCP emission spectrometry for trace element analysis in biomedical and environmental samples. Spectrochimica Acta Part B: Atomic Spectroscopy 1988; 43:881 896.
- [19] B. Smodiš, Investigation of trace element atmospheric pollution by nuclear analytical techniques at a global scale: Harmonised approaches supported by the IAEA, J. of Environmental Management 2007; 85: 121 128.
- [20] R.J.C. Brown, M. J.T. Milton, Analytical techniques for trace element analysis: an Overview Trends in Analytical Chem. 2005; 24: 266 274.
- [21] G. Vaggelli, A. Borghi, R. Cossio, C. Mazzoli, F. Olmi, Comparison between major and trace element concentrations in garnet performed by EPMA and micro-PIXE techniques, Spectrochimica Acta Part B: Atomic Spectroscopy, 2003; 58: 699 709.
- [22] E.B. González, A. Sanz-Medel, Chapter 4 Liquid chromatographic techniques for trace element speciation analysis, Comprehensive Analytical Chemistry 2000; 33:81-121.
- [23] M.F. Lubozynski, R.J. Baglan, G.R. Dyer, A.B. Brill, Sensitivity of X-ray fluorescence for trace element determinations in biological tissues, Int. J. of Applied Radiation and Isotopes 1972; 23: 487-491.
- [24] Ch. J Fahrni, Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals, Current Opinion in Chemical Biol. 2007; 11:121-127.
- [25] L. Benninghoff, D. von Czarnowski, E. Denkhaus, K. Lemke, Analysis of human tissues by total reflection X-ray fluorescence. Application of chemometrics for diagnostic cancer recognition, Spectrochimica Acta Part B: Atomic Spectroscopy 1997; 52: 1039 - 1046.
- [26] R. Lobinski, C. Moulin, R. Ortega, Imaging and speciation of trace elements in biological environment, Biochimie 2006; 88: 1591 1604.

- [27] R. Cesareo, Biomedical applications of photon-induced X-ray fluorescence, Biological Trace Element Res. 1987; 13:371 - 382.
- [28] M.L. Carvalho, T. Magalhães, M. Becker, A. von Bohlen, Trace elements in human cancerous and healthy tissues: A comparative study by EDXRF, TXRF, synchrotron radiation and PIXE, Spectrochimica Acta Part B 2007; 62: 1004 1011.
- [29] R.A. Kumar, V.J. Kennedy, K. Sasikala, A.L.C. Jude, M. Ashok, Ph. Moretto, Trace element analysis of blood samples from mentally challenged children by PIXE, NIM B 2002; 190: 449 452.
- [30] H. Oudadesse, G. Guibert, E. Chassot, J.L. Irigaray, S. Terver, G. Vanneuville, Y. Tessier, T. Sauvage, G. Blondiaux, Study by PIXE method of trace elements transferred from prostheses to soft tissues and organs, NIM B 2002; 190: 445 448.
- [31] S. Gödény, I. Borbély-Kiss, E. Koltay, S. László, G. Szabó, Determination of trace and bulk elements in plasma and erythrocytes of diabetic pregnant women by PIXE method Int. J. of Gynecology & Obstetrics 1986; 24: 201 207.
- [32] T. Magalhães, M.L. Carvalho, A. Von Bohlen, M. Becker, Study on trace elements behaviour in cancerous and healthy tissues of colon, breast and stomach: Total reflection X-ray fluorescence applications, Spectrochimica Acta Part B: Atomic Spectroscopy 2010; 65: 493 498.
- [33] D. von Czarnowski, E. Denkhaus, K. Lemke, Determination of trace element distribution in cancerous and normal human tissues by total reflection X-ray fluorescence analysis, Spectrochimica Acta Part B 1997; 52: 1047 1052.
- [34] W. Osterode, G. Falkenberg, R. Höftberger, F. Wrba, Iron, copper, zinc and bromine mapping in cirrhotic liver slices from patients with hemochromatosis studied by microscopic synchrotron radiation X-ray fluorescence analysis in continuous scanning mode, Spectrochimica Acta Part B 2007; 62:682-688.
- [35] M. Piacenti da Silva, O.L.A. D. Zucchi, A. Ribeiro-Silva, M. E. Poletti, Discriminant analysis of trace elements in normal, benign and malignant breast tissues measured by total reflection X-ray fluorescence Spectrochimica Acta Part B: Atomic Spectroscopy 2009; 64:587-592.
- [36] K. Geraki, M.J. Farquharson, An X-ray fluorescence system for measuring trace element concentrations in breast Tissue, Radiation Physics and Chemistry 2001; 61:603-605.
- [37] M.J. Farquharson, K. Geraki, G. Falkenberg, R. Leek, A. Harris, The localisation and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system, Applied Radiation and Isotopes 2007; 65:183-188.
- [38] Y. Özdemir, B. Börekci, A. Levet, M. Kurudirek, Assessment of trace element concentration distribution in human placenta by wavelength dispersive X-ray fluorescence: Effect of neonate weight and maternal age, Applied Radiation and Isotopes 2009; 67: 1790 1795.
- [39] K. Gurusamy, B.R. Davidson, Trace element concentration in metastatic liver disease A systematic review, J. of Trace Elements in Medicine and Biology 2007; 21:169 177.
- [40] F. Le Naour, Ch. Sandt, Ch. Peng, N. Trcera, F. Chiappini, A.-M. Flank, C. Guettier, P. Dumas, In Situ chemical composition analysis of cirrhosis by combining Synchrotron Fourier transform infrared and Synchrotron X-ray Fluorescence Microspectroscopies on the same tissue section, Anal. Chem. 2012; 84: 10260 - 10266.
- [41] R. Zeisler, R. R. Greenberg, S. F. Stone, Radiochemical and instrumental neutron activation analysis procedures for the determination of low level trace elements in human livers, J. of Radioanalytical and Nuclear Chemistry 1988; 124: 47-63.
- [42] A. Al-Ebraheem, M.J. Farquharson, E. Ryan, The evaluation of biologically important trace metals in liver, kidney and breast tissue, Applied Radiation and Isotopes 2009; 67:470-474.
- [43] A. Kubala-Kukuś, J. Braziewicz, D. Banaś, U. Majewska, S. Góźdź, A. Urbaniak, Trace element load in cancer and normal lung tissue, NIM B 1999; 150: 193 199.
- [44] A. Dessombz, Ch. Nguyen, H.-K. Ea, S. Rouzière, E. Foy, D. Hannouche, S. Réguer, F.-E. Picca, D. Thiaudière, F. Lioté, M. Daudon, D. Bazin, Combining μ X-ray fluorescence, μ XANES and μ XRD to shed light on Zn^{2+} cations in cartilage and meniscus calcifications, J. of Trace El. in Med. Biol. In Press.
- [45] T. R. Jones, T. W. Reid, Trace Elements in the Eye, Pharmacology of the Eye, Handbook of Experimental Pharmacology 1984; 69:667-685.
- [46] D. A. Bradley, M. J. Farquharson, X-Ray Fluorescence and the In Vivo Evaluation of Fe, Cu and Zn in Skin, J. of Radioanalytical and Nuclear Chemistry 2000; 244: 213 217.
- [47] N. Saitoh, T. Suzuki, T. Kishi, A. Iida, Y. Gohshi, Comparison of SR-excited X-ray fluorescence analysis with neutron activation analysis for hair and fiber, Biological Trace Element Research 1987; 12:211-220.
- [48] S.A. James, D. E. Myers, M.D. de Jonge, S. Vogt, C.G. Ryan, B.A. Sexton, P. Hoobin, D. Paterson, D. L. Howard, S. C. Mayo, Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue, Analytical and Bioanalytical Chemistry 2011; 401: 853 864.

- [49] X. Carpentier, D. Bazin, Ch. Combes, A. Mazouyes, S. Rouzière, P. A. Albouy, E. Foy, M. Daudon, High Zn content of Randall's plaque: A μ-X-ray fluorescence investigation J. of Trace Elements in Medicine and Biol. 2011; 25: 160 165.
- [50] V. Ye. Zaichick, T. V. Sviridova, S. V. Zaichick, Zinc in the human prostate gland:
 Normal, hyperplastic and Cancerous, Internat. Urology and Nephrology 1997; 29: 565 574.
- [51] A. Banas, W. M. Kwiatek, K. Banas, M. Gajda, B. Pawlicki, T. Cichocki, Correlation of concentrations of selected trace elements with Gleason grade of prostate tissues, J. of Biological Inorganic Chem. 2010; 15: 1147 - 1155.
- [52] A. Banas, K. Banas, W. M. Kwiatek, M. Gajda, B. Pawlicki, T. Cichocki, Neoplastic disorders of prostate glands in the light of synchrotron radiation and multivariate statistical analysis, J. of Biological Inorganic Chem.2011; 16: 1187 1196.
- [53] L.C. Costello, R. B. Franklin, Zinc is decreased in prostate cancer: an established relationship of prostate cancer, J. of Biological Inorganic Chemistry 2011; 16:3-8.
- [54] G.R. Pereira, H.S. Rocha, M.J. Anjos, I. Lima, R.T. Lopes, Elemental distribution images in prostate samples by X-ray fluorescence microtomography, Applied Radiation and Isotopes, 2012; 70:1379-1383.
- [55] R.G. Leitão, A. Palumbo Jr., P.A.V.R. Souza, G.R. Pereira, C.G.L. Canellas, M.J. Anjos, L.E. Nasciutti, R.T. Lopes, Elemental concentration analysis in prostate tissues using total reflection X-ray fluorescence, Radiation Physics and Chemistry, In Press.
- [56] E. Kienzl, L. Puchinger, K. Jellinger, W. Linert, H. Stachelberger, R. F. Jameson, The role of transition metals in the pathogenesis of Parkinson's disease, J. of the Neurological Sciences 1995; 134: 69-78.
- [57] J. Chwiej, The use of cluster and discriminant analysis in the investigations of the role of trace metals in the pathogenesis of Parkinson's disease,
 J. of Trace Elements in Medicine and Biol. 2010; 24:78 88.
- [58] B.M. Gordon, A.L. Hanson, K.W. Jones, J.G. Pounds, M.L. Rivers, G. Schidlovsky, P. Spanne, S.R. Sutton, The application of synchrotron radiation to microprobe trace -element analysis of biological samples, NIM B 1990; 45: 527 531.
- [59] V. Zaichick, N. Ovchjarenko, S. Zaichick, In vivo energy dispersive X-ray fluorescence for measuring the content of essential and toxic trace elements in teeth, Applied Radiation and Isotopes, 1999; 50: 283 293.
- [60] L. Gerhardsson, V. Englyst, N.-G. Lundström, S. Sandberg, G. Nordberg, Cadmium, copper and zinc in tissues of deceased copper smelter workers, J. of Trace Elements in Medicine and Biol. 2002;16:261-266.
- [61] P. Suortti, W. Thomlinson W, Medical applications of synchrotron radiation. Phys Med Biol 2003; 48: R1 R35.
- [62] M. Lankosz, M. Szczerbowska-Boruchowska, J. Chwiej, Research in quantitative microscopic X- ray fluorescence analysis, Spectrochimica Acta Part B 2004; 59: 1517 1521.
- [63] S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé, J. Susini, K. Double, Intracellular Chemical Imaging of the Developmental Phases of Human Neuromelanin Using Synchrotron X-ray Microspectroscopy, Anal. Chem. 2008; 80: 9557 - 9566.
- [64] R. McRae, P. Bagchi, S. Sumalekshmy, C.J. Fahrni, In Situ Imaging of Metals in Cells and Tissues, Chem. Rev. 2009; 109: 4780 4827.
- [65] B. Fayard, M. Salomé, K. Takemoto, H. Kihara, J. Susini, Some practical considerations about the effects of radiation damage on hydrated cells imaged by X-ray fluorescence microscopy. J Electron Spectrosc Related Phenomena 2009; 170: 19 - 24.
- [66] H.-Y. N. Holman, H.A. Bechtel, Z. Hao, M. C. Martin, Synchrotron IR spectromicroscopy: chemistry of living Cells, Anal. Chem. 2010; 82:8757 8765.
- [67] R.T. Lopes, I. Lima, G.R. Pereira, C.A. Perez, Synchrotron radiation X-ray microfluorescence techniques and biological Applications, Pramana 2011; 76: 271 279.
- [68] F. A. El-Amri, G. A. Barouni, Trace element concentration in human gallstones using instrumental neutron activation analysis, J. of Rad. and Nuclear Chemistry 1993; 174: 29 33.
- [69] K. Shizuma, K. Iwatani, H. Hasai, S. Hamanaka, X.Q. Wen, I. Horiuchi, G. Kajiyama, PIXE analysis of gallstones: trace element analysis and millibeam scanning of stone sections, NIM B 1997; 129: 401 409.
- [70] N. Ekinci, Y. Yusuf, Determination of calcium and iodine in gall bladder stone using

- energy dispersive X-ray fluorescence spectrometry Spectrochimica Acta Part B: Atomic Spectroscopy, 2002; 57:167-171.
- [71] M. Ashok, T. R. Rautray, Pranaba K. Nayak, V. Vijayan, V. Jayanthi, S.N. Kalkura, Energy dispersive X-ray fluorescence analysis of gallstones, J. of Radioanal. and Nuclear Chemistry 2003; 257: 333 335.
- [72] T. Kodaka, T. Sano, K. Nakagawa, J. Kakino, R. Mori, Structural and analytical comparison of gallbladder stones collected from a single patient: studies of five cases, Med. El. Mic. 2004; 37: 130 140.
- [73] O. A. Golovanova, L. V. Bel'skaya, N. Yu. Berezina, Quantitative spectral trace element analysis of pathogenic biominerals from residents of the Omsk region, J. of Applied Spectr. 2006;73:886-891.
- [74] J. Abraham, M. Grenon, H. J. Sanchez, C. A. Pérez, R. A. Barrea, Spectrochemical Analysis of Dental Calculus by S.R. X-ray Fluorescence, Anal. Chem. 2002, 74, 324 - 329.
- [75] C.L. Cheng, H.-H. Chang, P.-J. Huang, Y.-T. Chu, S.-Y. Lin, Composition and Distribution of Elements and Ultrastructural Topography of a Human Cardiac Calculus, Biological Trace Element Research 2013;152: 143 151.
- [76] I. Donev, S. Mashkarov, L. Maritchkova, G. Gotsev, Quantitative investigation of some trace elements in renal stones by neutron activation analysis, J. of Rad. Chem. 1977; 37:441-449.
- [77] R. Scott, B. W. East, J. Janczyszyn, K. Boddy, A. J. Yates, Concentration and distribution of some minor and trace elements in urinary tract stones: A preliminary study, Urological Research 1980; 8: 167 169.
- [78] S.M. Lin, C. H. Chiang, C. H. Huang, C. L. Tseng, M. H. Yang, Instrumental neutron activation analysis of urinary Calculi, J. of Radioanal. and Nuclear Chem. 1985; 96: 153 160.
- [79] S.M. Lin, C.L. Tseng, M.H. Yang, Determination of major, minor and trace elements in urinary stones by neutron activation analysis, Int. J. of Rad. Applications and Instrumentation. Part A. 1987; 38: 635-639.
- [80] S. Galassini, N.Q. Liu, G. Moschini, A. Tasca, G. Villi, V. Valkovic, Trace element variability in kidney stones, NIM B 1989; 43:556-559.
- [81] C. Paluszkiewicz, W.M. Kwiatek, M. Gazla, Trace element relations to renal stones Phases, NIM B 1990; 49: 234 237.
- [82] I. Durak, M. Akpoyraz, A. Sahin, Sodium, potassium and chloride concentrations in the inner nucleus and outer crust parts of urinary tract calculi, Int. Urology and Nephr. 1991; 23: 221 226.
- [83] I. Durak, Z. Kilic, A. Sahin, M. Akpoyraz, Analysis of calcium, iron, copper and zinc contents of nucleus and crust parts of urinary calculi, Urological Research 1992; 20: 23 26.
- [84] C. Koeberl, P. M. Bayer, K. Höbarth, Determination of rare earth and other trace element abundances in human kidney stones and brain tissue by instrumental neutron activation analysis, J. of Radioanalytical and Nuclear Chemistry 1993; 169: 269-276.
- [85] N. A. Pal'chik, T. N. Moroz, N. V. Maksimova, A. V. Dar'in, Mineral and microelement compositions of urinary Stones, Russian Journal of Inorganic Chemistry 2006; 51:1098 1105.
- [86] M. A. Chaudhri, J. Watling, F. A. Khan , Spatial distribution of major and trace elements in bladder and kidney Stones, J. of Radioanalytical and Nuclear Chemistry, 2007; 271:713-720.
- [87] M. Słojewski, B. Czerny, K. Safranow, M. Droździk, A. Pawlik, K. Jakubowska, M. Olszewska, A. Gołąb, E. Byra, D. Chlubek, Does smoking have any effect on urinary stone composition and the distribution of trace elements in urine and stones? Urological Research 2009; 37:317-322.
- [88] A. Srivastava, K. K. Swain, N. Ajith, D. N. Wagh, R. Acharya, A. V. R. Reddy, U. Mete, Trace element study of kidney stones from subjects belonging to stone belt region of India, J. of Radioanalytical and Nuclear Chemistry 2012; 294: 425 - 428.
- [89] A. Hesse, R. Siener, Trace Elements in Urolithiasis, Urolithiasis 2012, pp 227-230.
- [90] M. L. Giannossi, V. Summa, G. Mongelli, Trace element investigations in urinary stones: A preliminary pilot case in Basilicata (Southern Italy), J. of Trace Elements in Med. and Biology, 2013; 27: 91 97.
- [91] A. Zarasvandi, M. Heidari, M. Sadeghi, E. Mousapoor, Major and trace element composition of urinary stones, Khuzestan province, southwest, Iran, J. of Geochemical Exploration, 2013; 131: 52 58.
- [92] D. Bazin, P. Chevallier, G. Matzen, P. Jungers, M. Daudon, Heavy elements in urinary Stones, Urol Res 2007; 35:179-184.
- [93] D. Marchat, Thèse "Fixation du Cd par une hydroxyapatite phosphocalciques (Etude cinétique et thermodynamique), Université de Limoges, 2005.

Chapitre V : Effet des plantes médicinales

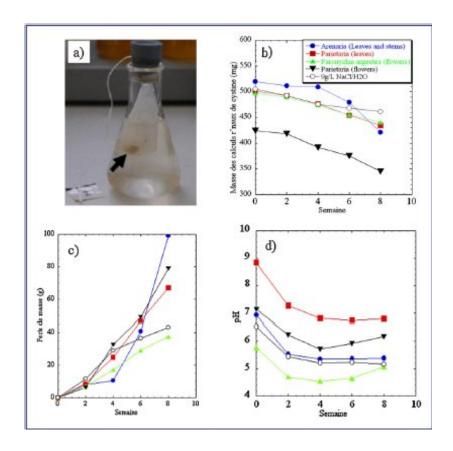
Ce chapitre reprend l'article publié dans Progrès en urologie [1] et se complète par des données supplémentaires obtenues récemment. Comme nous l'avons vu dans le chapitre IIIA, les données épidémiologiques montrent que plus de 80 % des calculs sont composés principalement d'oxalate de calcium (CaOx) et sont associés dans la plupart des cas à des désordres nutritionnels [2,3]. De ce fait, l'utilisation des extraits de plantes, essentiellement dirigées contre cette lithiase oxalocalcique, a fait l'objet de diverses publications [4,5]. En revanche, très peu de travaux se sont intéressés à des lithiases plus rares [6-9], posant souvent plus de problèmes de prise en charge, telles que la lithiase cystinique [10].

Nous avons choisi d'étudier l'effet d'extraits de plantes sur les calculs rénaux de cystine. Ces calculs, qui résultent d'une tubulopathie héréditaire, la cystinurie lysinurie [11-32], sont particulièrement récidivants et nécessitent de multiples interventions urologiques. Différents traitements sont utilisés pour lutter contre la formation de ces calculs [33-39] : cure de diurèse, alcalinisation des urines, médicaments porteurs d'un groupe thiol capables de former des complexes avec la cystine [40,41].

Cependant, un tel traitement médical est souvent mal toléré avec un taux élevé d'effets secondaires. En ce qui concerne les plantes médicinales proposées contre les calculs de cystine, une seule étude, publiée récemment dans cette revue, a montré in vitro que les extraits de *Zea mays, Ammi visnaga, Herniaria hirsuta* et *Opuntia ficus-indica* étaient capables de dissoudre les calculs de cystine en quelques semaines [7].

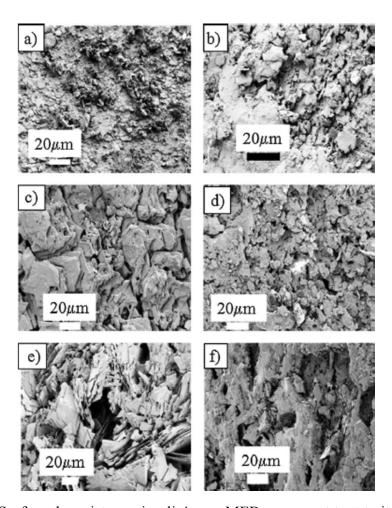
Le but de cette étude a été d'évaluer les effets solvants d'autres plantes incluant Arenaria ammophila (tiges et feuilles), les feuilles de Parietaria officinalis, les fleurs de P. officinalis, et les fleurs de Paronychia Argentea déjà utilisées en médecine traditionnelle contre la lithiase rénale. Pour ce faire, nous avons suivi ex vivo la variation de masse des calculs et les modifications structurales éventuelles à l'échelle mésoscopique par observation des calculs à l'aide d'un microscope électronique à balayage (MEB) au cours de la même période d'incubation que celle utilisée dans l'étude précédente, soit huit semaines [7]. Nous avons complété ces observations par des mesures du pH de la solution afin de discuter l'effet de ce paramètre sur une dissolution éventuelle.

V.1 Échantillonnage

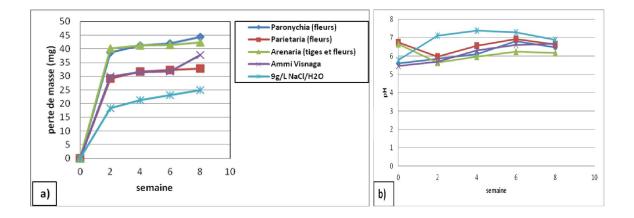

Quinze calculs rénaux de cystine pure provenant de la clinique rénale de Daksi-Constantine (Algérie) ont été sélectionnés par examen en microscopie binoculaire et après analyse par spectrophotométrie infrarouge à transformée de Fourier (FTIR). Leur taille était de 7 ± 1 mm et leur masse de 472 ± 52 mg.

Nous avons ainsi sélectionné deux autres séries de quinze échantillons pour ces calculs composés de Brushite et d'oxalate de calcium type Id provenant de l'hôpital Necker-enfants malades à Paris. Il s'agit d'un mélange de calculs entiers et fragments de Brushite de masse m_b (61,4 mg < m_b < 511,9 mg) et de calculs entiers d'oxalate de calcium type Id de masse m_d (323,9 mg < m_d < 725,7 mg).

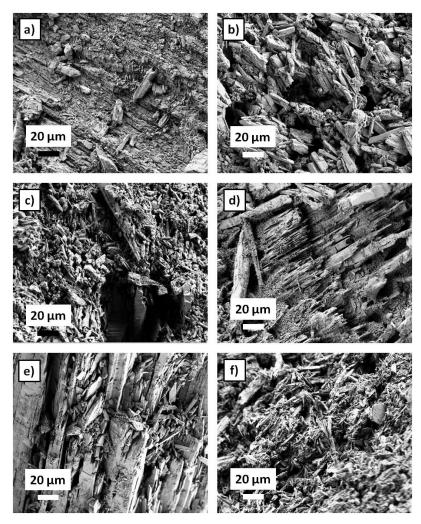
V.2 Résultats


La perte moyenne de masse des calculs de cystine pour l'ensemble des expériences a été de 64 ± 39 mg au bout de huit semaines. Les changements de masse des calculs de cystine pendant l'incubation avec chaque extrait ou la solution témoin sont présentés sur la Fig. 1b. Les cinétiques de dissolution semblent être différentes selon l'extrait de plante. Durant les deux premières semaines, la masse des calculs a peu varié. Entre deux et quatre semaines, le taux de dissolution est resté faible et a commencé à augmenter entre quatre et six semaines, en particulier pour Arenaria ammophila et les fleurs de P. officinalis.

Les résultats se sont confirmés après huit semaines, ces deux extraits de plantes montrant un effet sur la dissolution des calculs plus marqué que les autres, exprimé par une perte de masse importante par rapport aux autres extraits et surtout à la solution de NaCl. Toutefois, cette perte de masse (19,1 % vs 8,7 % pour la solution témoin) n'a pas atteint le seuil de significativité (p = 0,051) sur la période de huit semaines fixée pour l'expérience. Sur la Fig. 1c, est rapportée la perte moyenne de masse des calculs selon l'extrait. On peut constater que la perte de masse était de 99 mg à la fin de l'expérience (huit semaines) pour l'extrait d'Arenaria (p = 0,051) et de 80 mg pour les fleurs de P. officinalis (p = 0,11) versus 44 mg pour la solution de NaCl. En ce qui concerne le pH du milieu (Fig. 1d), la valeur initiale variait de 5,8 pour P. Argentea à 8,8 pour les feuilles de P. Officinalis (p < 0,001). Nous avons observé une diminution initiale du pH pendant les quatre premières semaines de l'expérience pour tous les extraits de plantes ainsi que pour la solution témoin.


Figure 1. a : fiole contenant le calcul inséré dans un sachet immerge ; b : évolution de la masse des calculs de cystine (cercles bleus pour *Arenaria* (fleurs et tiges), triangles verts pour *Paronychia* (*fleurs*), carrés rouges pour *Parietaria* (feuilles), triangles noirs pour *Parietaria* (fleurs), cercles blancs pour la solution aqueuse de NaCl 9 g/L) ; c : perte de masse des calculs de cystine (légendes identiques à celles de la Fig. 1b) ; d : évolution du pH durant l'expérience (légendes identiques à celles de la Fig. 1b).

Les Fig. 2a et b montrent les images MEB des cristallites de cystine respectivement avant et au stade final dans le cas de la solution aqueuse de NaCl 9 g/L comparées a celles des calculs de cystine en contact avec l'extrait d'*Arenaria* (Fig. 2c). Bien que des différences semblent exister à l'échelle mésoscopique entre les surfaces des calculs soumis à l'action des extraits de plantes par rapport à celle observée avant traitement, il est difficile de les quantifier. Le traitement parait avoir dissout en partie les petits cristaux de cystine, ne laissant bien visibles que les plus gros d'entre eux, séparés par des espaces vides plus ou moins larges. L'extrait de *P. officinalis* (Fig. 2e) exerçait un effet similaire à celui d'*Arenaria*, l'organisation des cristaux apparaissant feuilletée en raison, d'une orientation différente (Fig. 2c). En revanche, l'extrait de *Paronychia argentea* semble avoir eu peu d'effets sur la structure des calculs (Fig. 2d).


Figure 2. Surface des cristaux visualisés par MEB : a : avant tout traitement ; b : après traitement par la solution aqueuse de NaCl 9 g/L ; c : après traitement par la solution contenant Arenaria ammophila ; d : après traitement par la solution contenant Paronychia argentea ; e : après traitement par la solution contenant Parietaria officinalis (fleurs) ; f : après traitement par la solution contenant P. officinalis (feuilles).

Concernant les calculs de brushite, nous avons remplacé l'extrait de *Parietaria* (feuilles) par l'extrait d'Ammi *visnaga*. La perte de masse n'était pas considérable (perte de masse maximale n'excédant pas 10% (extrait de *Paronychia*)). La cinétique de la dissolution est présentée sur la Fig. 3a où on remarque que le processus de dissolution a commencé dès les premiers jours de l'expérience pour atteindre un maximum au bout de deux semaines. La perte de masse était quasiment nulle après la deuxième semaine pour les extraits de *Parietaria* et *Arenaria* et était dans les environs de 5 à 6 mg pour les autres extraits et la solution témoin pendant toutes les six dernières semaines. Nous avons ainsi remarqué que le processus de dissolution a repris durant les deux dernières semaines après avoir stagné dans l'intervalle deux à six semaines et ce seulement pour l'extrait de *Ammi visnaga*. En ce qui concerne le pH du milieu (Fig. 3b), la valeur initiale variait de 5,45 pour *Ammi visnaga* à 6,74 pour les fleurs de *P. Officinalis*. Pendant la durée de l'expérience le pH a connu plusieurs changements pour les différents extraits de plantes.

Figure 3. a : Perte de masse des calculs de Brushite (losanges bleues pour *Paronychia* (fleurs), carrés rouges pour *Parietaria* (fleurs), triangles verts pour *Arenaria* (fleurs et tiges), étoiles violettes pour *Ammi visnaga*, étoiles bleues pour la solution aqueuse de NaCl 9 g/L); b : évolution du pH durant l'expérience (légendes identiques à celles de la Fig. 1a).

La Fig. 4 montre l'état de surface des calculs de brushite observé sous MEB. La Fig. 4a montre l'état des cristallites avant le traitement comparé avec celui des calculs de brushite en contact avec les extraits de plantes et la solution témoin. Les dégradations observées au stade final sont les mêmes observées au cours de l'expérience où on remarque que les cristallites de brushite en forme de baguettes et aiguilles qui sont bien compactes ne le sont plus après le traitement avec les extraits des plantes avec apparition des espaces vides.

Figure 4. Surface des cristaux visualisés par MEB: a) avant tout traitement; b) après traitement par la solution contenant *Paronychia argentea*; c) après traitement par la solution contenant *Arenaria ammophila*; d) après traitement par la solution contenant *Ammi Visnaga*; e) après traitement par la solution contenant *Parietaria officinalis*; f) après traitement par la solution aqueuse de NaCl 9g/L

Par rapport aux calculs d'oxalate de calcium type Id, nous avons réalisé l'expérience avec d'autres extraits de plantes, il s'agit cette fois des plantes suivantes : *Ammi visnaga*, racines non traitées de *Madélithiol IMR 2000*, et racines traitées par CHCl₃ de *Madélithiol IMR 2000*. Nous avons considéré deux solutions aqueuses comme témoins (NaCl et citrate). La Fig. 5 montre les pertes de masse des calculs d'oxalate de calcium type Id dues à leur contact avec les extraits des plantes et les solutions témoins. Le processus de dissolution était très lent et continu avec une vitesse quasiment constante. La perte de masse la plus importante était de 32 mg pour la solution témoin de citrate.

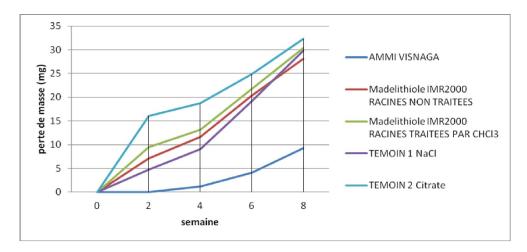
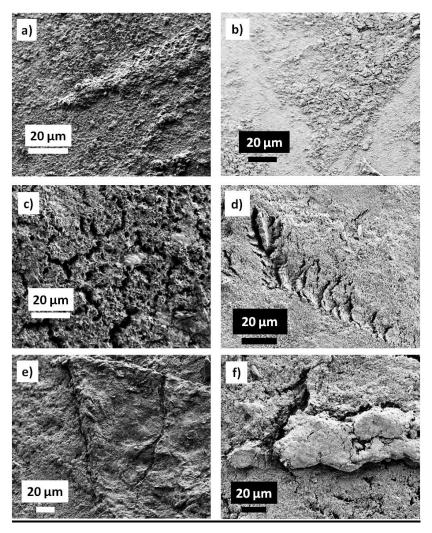



Figure 5. Perte de masse des calculs d'oxalate de calcium type Id

Les images MEB obtenues ne montrent pas une claire dégradation de l'état de surface (Fig. 6). Quelques craquelures sont observées sur la surface des calculs d'oxalate de calcium type Id en contact avec la solution du citrate et l'extrait de Madélithiol IMR2000 (racines non traitées) (Fig. 6c et Fig. 6f).

Figure 6. Surface des cristaux visualisés par MEB: a) avant tout traitement; b) après traitement par la solution contenant *Ammi Visnaga*; c) après traitement par la solution contenant Madélithiol IMR 2000 (racines non traitées); d) après traitement par la solution contenant Madélithiol IMR 2000 (racines traitées par CHCl₃); e) après traitement par la solution aqueuse de NaCl 9g/L; f) après traitement par la solution aqueuse de citrate.

V.3 Discussion

L'analyse de la littérature moderne montre que la médecine basée sur les plantes est en pleine expansion [42-45] celles-ci s'avérant apte à soigner un vaste spectre de pathologies comme le cancer [46], épilepsie [47], l'hypertension [48], diabète [49], Maladie de Parkinson [50] ou encore les infections [51]. Néanmoins, il convient de souligner d'une part que certaines études scientifiques ne confortent pas certaines pratiques médicales ancestrales [52] et d'autre part que l'utilisation des plantes dans le domaine médical n'est pas sans risque. En effet, plusieurs travaux soulignent la toxicité rénale de certaines plantes [53,54].

En ce qui concerne cette étude, les plantes sélectionnées pour notre étude n'ont pas été choisies aléatoirement. Elles sont utilisées actuellement en Algérie pour le traitement médical des calculs rénaux ou pour prévenir leur formation. Bien qu'en Algérie comme dans tous les autres pays, l'oxalate de calcium soit la forme cristalline la plus courante, nous avons choisi les calculs de cystine parce que ce type de calcul est souvent plus difficile à traiter et à prévenir par les procédures urologiques et médicales actuellement disponibles. De plus, il a été montré récemment que des plantes utilisées en médecine traditionnelle au Maroc contre les calculs en général étaient capables de dissoudre efficacement *in vitro* les calculs de cystine [7].

Nous avons donc étudié in vitro l'effet de quatre extraits de plantes sur la dissolution de calculs rénaux de cystine bien caractéristiques et nous avons choisi le MEB à effet de champ pour suivre les changements éventuels dans la morphologie des cristallites permettant d'affirmer l'existence d'interactions entre les extraits de plantes et les calculs. De nombreuses études basées sur les observations MEB des calculs rénaux [55,56] ont largement démontré que cette technique était bien adaptée à cette problématique. Avec un microscope moderne comme le FEI-Zeiss, il est possible d'observer les détails de la surface des cristallites sans avoir à recouvrir l'échantillon avec une couche conductible de carbone, ce qui permet de répéter les observations au cours de l'expérience sans modifier la surface des prélèvements par un traitement qui pourrait gêner l'action ultérieure des extraits de plante testés.

Nos résultats n'ont pas permis de voir une différence significative entre les extraits et la solution témoin en ce qui concerne la perte de masse des calculs de cystine sur la période expérimentale choisie. Cependant, l'examen de la Fig. 1c montre que la pente de la courbe de dissolution obtenue pour l'extrait d'A. ammophila s'accentuait fortement dans les dernières semaines par rapport aux courbes observées avec les autres extraits, suggérant que cette plante est probablement plus efficace que les autres pour dissoudre les calculs de cystine, mais demande sans doute plus de temps que les plantes testées dans l'étude marocaine précédemment publiée. A l'échelle mésoscopique, des changements à la surface des calculs rénaux ont été observés dès le premier examen, c'est-a-dire au bout de deux semaines d'expérimentation (données non montrées), mais ne sont devenus perceptibles, en terme de perte de masse cristalline, qu'après quatre à six semaines de contact avec les extraits ou la solution de contrôle. Notre protocole expérimental était un peu différent de celui décrit pour l'étude des plantes marocaines en ce sens que les calculs ont été enfermés dans un sachet poreux en fibres tressées pour éviter le contact avec le barreau magnétique.

Ce protocole a été choisi pour éviter une dissociation des cristaux de cystine à la surface des calculs par un effet mécanique et non par le seul effet chimique de la solution testée. Cette différence pourrait être à l'origine de l'efficacité retardée des extraits de plantes testés. Pour le vérifier, une nouvelle expérience sera réalisée, comparant les effets des plantes testées dans l'étude marocaine, en particulier *Zea Mays* et *Ammi Visnaga*, et de celles examinées dans le présent travail, notamment *A. Ammophila* et les fleurs de *P. Officinalis*. En ce qui concerne le pH du milieu la valeur initiale, apparait très différente selon les extraits, comprise entre 5,8 pour *P. Argentea* et 8,8 pour les feuilles de *P. Officinalis* (p < 0,001). La valeur élevée du pH suggère un effet d'alcalinisation sur la dissolution des calculs de cystine pour certains extraits. Cependant, si on compare la courbe de pH obtenue avec la solution saline à celle obtenue avec les extraits d'*A. Ammophila* ou des fleurs de *P. Officinalis*, on constate que les courbes sont très voisines, suggérant que les effets des extraits de plante sur la perte de masse des calculs ne sont pas liés au pH mais à la composition chimique de l'extrait de plante.

V.4 Conclusion préliminaire

L'effet de plusieurs plantes médicinales utilisées dans le traitement des calculs en médecine traditionnelle a été étudié in vitro à l'échelle mésoscopique par microscopie électronique à balayage. Les changements dans les caractéristiques ultrastructurales des calculs rénaux de cystine après traitement avec les plantes médicinales suggèrent que ces plantes exercent un effet sur les cristaux de cystine, mais l'évaluation des résultats par la perte de masse des calculs comparativement à une solution de référence de NaCl 9 g/L n'a pas permis de mettre en évidence un effet solvant significatif de ces extraits de plante sur la période expérimentale choisie. Au vu des courbes de perte de masse des calculs testes, ce manque de significativité s'explique probablement par une durée de contact insuffisante. De ce fait, malgré leur utilisation en médecine traditionnelle pour le traitement de la lithiase, on ne peut recommander, dans l'état actuel de nos connaissances, l'utilisation de ces plantes pour le traitement ou la prévention des calculs de cystine. Des essais complémentaires seront nécessaires pour objectiver un bénéfice scientifiquement démontre de certains des extraits testés sur la solubilisation de tels calculs.

Compte tenu des délais nécessaires pour observer un effet bénéfique in vitro, il parait difficile de recommander ces plantes chez les patients cystinuriques pour dissoudre des

calculs de cystine in situ. Cependant, ces plantes pourraient avoir un intérêt, qui reste à évaluer, pour la prévention des récidives.

Références

- [1] B. Hannache, D. Bazin, A. Boutefnouchet, M. Daudon, Effet des extraits de plantes médicinales sur la dissolution des calculs rénaux de cystine in vitro : étude à l'échelle mésoscopique, Progrès en urologie 2012 ; 22 : 577 582.
- [2] M. Daudon, Cinq calculs cinq photos cinq diagnostics cinq astuces, Progrès en Urologie FMC, 2012; 22: F87-F93.
- [3] A. Kamoun, A. Zghal, M. Daudon, S. Ben Ammar, L. Zerelli, J. Abdelmoula, B. Chaouachi, T. Houissa, C. Belkahia, R. Lakhoua, M. Daudon, La lithiase urinaire de l'enfant: contributions de l'anamnèse, de l'exploration biologique et de l'analyse physique des calculs au diagnostic étiologique, Archives de Péd. 1997; 4:629 638.
- [4] S. Bouanani, C. Henchiri, E. Migianu-Griffoni et al., Pharmacological and toxicological effects of *Paronychia argentea* in experimental calcium oxalate nephrolithiasis in rats. J Ethnopharmacol. 2010; 129: 38 45.
- [5] A. Frackowiak, T. Kozlecki, P. Skibinski et al. Solubility, inhibition of crystallization And microscopic analysis of calcium oxalate crystals in the presence of fractions from Humulus lupulus L.; J. Crystal Growth 2010; 312: 3525 3532.
- [6] J.P. Grunfeld, D. Joly, Maladies rénales héréditaires chez l'adulte. Rev. Prat. 1997; 47: 1566-1599.
- [7] M.C. Gubler, C. Antignac, Néphropathies héréditaires : de la lésion au gène. Actual. Nephrol. 2003 ; 33 : 233-248.
- [8] P. Jungers, D. Joly, A. Blanchard, M. Courbebaisse, B. Knebelmann, M. Daudon, Lithiases rénales héréditaires monogéniques: récents acquis diagnostiques et thérapeutiques, Néphrologie & Thérapeutique, 2008; 4:231-255.
- [9] D. Chauveau, D. Vanderperren, L. Tricot, J.P. Grünfeld, P. Rémy, D. Rabier et al. Manifestations rénales des maladies héréditaires du métabolisme chez l'adulte. Actual Nephrol 2004 ; 34 : 119-142.
- [10] F. Meiouet, S. El Kabbaj, M. Daudon M. Étude in vitro de l'activité litholytique de quatre plantes médicinales vis-à- vis des calculs urinaires de cystine. Prog Urol 2011; 21: 40-47.
- [11] M. Labeeuw, C. Gerbaulet, N. Pozet, P. Zech, J. Traeger, Cystine crystalluria and urinary saturation in cystine and non-cystine stone formers, Urological Research 1981; 9:163-168.
- [12] M.J. Calonge, P. Gasparini, J. Chillarón et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat. Genet. 1994; 6: 420 425.
- [13] E. Pras, N. Arber, I. Aksentijevich, et al. Localization of a gene causing cystinuria to chromosome 2p. Nat Genet 1994; 6: 415 419.
- [14] Å. Lindell, T. Denneberg, E. Hellgren, J. -O. Jeppsson, H. -G. Tiselius, Clinical course and cystine stone formation during tiopronin treatment, Urol. Res. 1995; 23:111-117.
- [15] S. Segal, Cystinuria. In: Scriver CR, Beaudet AZ, Sly WS, Valle D, editors. The metabolic and molecular bases of Inherited disease. 7e édition, New York: McGraw-Hill; 1995 pp 3581 3601.
- [16] A. Lindell, T. Denneberg, G. Granerus, Studies on renal function in patients with cystinuria. Nephron 1997; 77: 76 85.
- [17] F. Barbey, D. Joly, P. Rieu, N. N'Guessau, M. Daudon, P. Jungers, Traitement médical de la cystinurie : évaluation des résultats à long terme chez 30 patients. Presse Med. 2000 ; 29 : 528 532.
- [18] F. Barbey, D. Joly, P. Rieu et al. Medical treatment of cystinuria: Critical reappraisal of long-term results, J. Urol. 2000; 163: 1419 1423.
- [19] D.G. Assimos, S.W. Leslie, C. Ng, S.B. Streem, L.J. Hart, The impact of cystinuria on renal function. J Urol 2002; 168: 27-30.
- [20] L. Dello Strologo, E. Pras, C. Pontesilli et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol 2002; 13: 2547-2553.
- [21] M. Gürdal, A. Ayyıldız, E. Huri, H. Kanberoğlu, M. İhsan Karaman, A huge bladder cystine stone, Int. Urology and Nephrology 2003; 35: 497-499.
- [22] R. S Purohit, M.L Stoller, Laterality of symptomatic cystine calculi, Urology, 2003; 62, 421-424.
- [23] P.K. Pietrow, B.K. Auge, A.Z. Weizer et al. Durability of the medical management of Cystinuria, J Urol 2003; 169: 68-70.
- [24] M. Daudon, F. Cohen-Solal, F. Barbey, M.F. Gagnadoux, B. Knebelmann, P. Jungers, Cystine crystal volume, Determination: a useful tool in the management of cystinuric patients. Urol Res 2003; 31: 207-211.
- [25] E. Brauers, U. Vester, K. Zerres, T. Eggermann, Search for mutations in SLC1A5 (19q13) in cystinuria patients, J. of Inherited Metabolic Disease 2005; 28: 1169-1171.
- [26] M. Boutros, C. Vicanek, R. Rozen, P. Goodyer, Transient neonatal cystinuria.

- Kidney Int 2005; 67: 443-448.
- [27] E.M. Worcester, J.H. Parks ? A.P. Evan AP, et al. Renal function in patients with nephrolithiasis. J Urol 2006; 176: 600 603.
- [28] K. Martens, I. Heulens, S. Meulemans et al. Global distribution of the most prevalent deletions causing hypotonia- cystinuria syndrome. Eur J Hum Genet 2007; 15(10): 1029 1033.
- [29] H. Bouzidi, M. Daudon, Cystinurie : du diagnostic à la surveillance thérapeutique. Ann. Biol. Clin. 2007 ; 65 : 473 - 481.
- [30] P. Buisson, E. Haraux, M. Hamzy, J. Ricard, J.-P. Canarelli, B. Boudailliez, K. Braun, Cystinurie chez l'enfant : à propos de 4 observations, Archives de Pédiatrie 2011 ; 18 : 553 557.
- [31] E. Letavernier, O. Traxer, J.P. Haymann, D. Bazin, M. Daudon, Cystinurie, Progres en urologie FMC 2012; 22: F119 F123.
- [32] T. Eggerman, A. Venghaus, K. Zerres, Cystinuria: an inborn cause of urolithiasis, Orphanet J. of Rare Diseases 2012, 7:19 30.
- [33] R. Hautmann, Cystine-stone therapy with alpha-mercapto-propionylglycine, World J. of Urology 1983; 1:186-191
- [34] G. Egghart, H. -D. Marquardt, H. B. Kastert, F. Feizelmeier, Percutaneous nephrostomy and irrigation lithochemolysis a new concept for the treatment of cystine stones, International Urology and Nephrology 1983; 15: 131 136.
- [35] G. Katz, A. Shapiro, Z. Lencovsky, M. Caine, D. Pore, Place of extracorporeal shock-wave lithotripsy (ESWL) in management of cystine calculi. Urology 1990; 36, 124-128.
- [36] D.H. Adams, B.B. Abernathy, Laser ureterolithotripsy for cystine calculi. AORN 1996; 64: 924-930.
- [37] E. H. Landau, O.Z. Shenfeld, D. Pode et al., Extracorporeal Shock Wave Lithotripsy in Prepubertal Children: 22-Year Experience at a single institution with a single lithotriptor, The Journal of Urology, 2009; 182: 1835-1840.
- [38] A. Erozenci, Percutaneous Nephrolithotomy in Children with Cystine Stone: Long-Term Outcomes from a Single Institution, The Journal of Urology, 2013; 190: 234-238.
- [39] V. Estrade, K. Bensalah, J.-P. Bringer, E. Chabannes, X. Carpentier, P. Conort, E. Denis, B. Doré, J.R. Gautier, H. Hadjadj, J. Hubet, A. Hoznek, E. Lechevallier, P. Meria, P. Mozer, C. Saussine, L. Yonneau, O. Traxer, Comité lithiase de l'AFU, Place de l'urétérorénoscopie souple en première intention pour le traitement des calculs du rein. Résultats de l'enquête de pratique du comité lithiase de l'AFU réalisée en 2011, Progrès en Urologie, 2013; 23: 22-28.
- [40] A. Tekin, S. Tekgul, N.A. Atsu et al. Cystine calculi in children: the results of a metabolic evaluation and response to medical therapy. J Urol 2001; 165: 2328-2330.
- [41] P. Parvex, R. Rozen, A. Dziarmaga, P. Goodyer, Studies of urinary cystine precipitation in vitro: ontogeny of cysteine Nephrolithiasis and identification of meso-2,3-dimercaptosuccinic acid as a potential therapy for cystinuria. Mol Genet Metab 2003; 80: 419-425.
- [42] Ş. Kültür, Medicinal plants used in Kırklareli Province (Turkey), J. of Ethnopharm. 2007; 111, 341-364.
- [43] M.J. Macía, E. García, P. J. Vidaurre, An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia, J. of Ethnopharmacology 2005; 97: 337-350.
- [44] B. Ballabh, O.P. Chaurasia, Z. Ahmed, S. Bala Singh, Traditional medicinal plants of cold desert Ladakh-Used against kidney and urinary disorders, J. of Ethnopharmacol. 2008; 118: 331 339.
- [45] A. Lengani, L. Fulbert Lompo, I. P. Guissou, J. B. Nikiema, Médecine traditionnelle et maladies des reins au Burkina Faso, Néphrologie & Thérapeutique, 2010; 6:35-39.
- [46] W. R. Sawadogo, M. Schumacher, M.-H. Teiten, M. Dicato, M. Diederich, Traditional West African pharmacopeia, plants and derived compounds for cancer therapy review article, Biochemical Pharmacol. 2012; 84, 1225 1240.
- [47] C. Marchetti, P. Gavazzo, G. I. Stafford, J. Van Staden, South African plants used in traditional medicine to treat epilepsy have an antagonistic effect on NMDA receptor currents, J. of Ethnopharmacology, 2011; 137: 382 388.
- [48] R.L. Cai, M. Li, S.H. Xie, Y. Song, Z.M. Zou, C.Y. Zhu, Y. Qi, Antihypertensive effect of total flavone extracts From Puerariae Radix, J. of Ethnopharmacol. 2011; 133:177-183.
- [49] C. Gumy, C. Thurnbichler, E. M. Aubry, Z. Balazs, P. Pfisterer, L. Baumgartner, H. Stuppner, A. Odermatt, J. M. Rollinger, Inhibition of 11β-hydroxysteroid dehydrogenase type 1 by plant extracts used as traditional antidiabetic medicines, Fitoterapia, 2009; 80: 200-205.
- [50] Y.H. Wang, V. Samoylenko, B. L. Tekwani, I. A. Khan, L. S. Miller, N. D. Chaurasiya, M. Rahman, L. M. Tripathi, S. I. Khan, V. C. Joshi, F. T. Wigger, I. Muhammad, Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson's disease, J. of Ethnopharmacology, 2010; 128: 662-671.

- [51] H. De Wet, V.N. Nzama, S.F. Van Vuuren, Medicinal plants used for the treatment of sexually transmitted infections by lay people in northern Maputaland, KwaZulu–Natal Province, South Africa? South African J. of Botany 2012; 78: 12 20.
- [52] N.W. Vogel, A.P.D. Taschetto, R. Dall'Agnol, L. Weidlich, E.M. Ethur, Assessment of the antimicrobial effect of three plants used for therapy of community-acquired urinary tract infection in Rio Grande do Sul (Brazil). J. of Ethnopharmacology 2011; 37: 1334 1336.
- [53] C.R.D. Colson, M. E. De Broe, Kidney injury from alternative medicines Advances in Chronic Kidney Disease 2005; 12: 261 275.
- [54] V. Jha, M. Rathi, Natural Medicines Causing Acute Kidney Injury, Seminars in Nephrology 2008; 28:416-428.
- [55] E.A. Abdel-Aal, S. Daosukho, H. El-Shall, Effect of supersaturation ratio and Khella extract on nucleation and morphology of kidney stones. J. Crystal Growth 2009; 311: 2673 2681.
- [56] H.H Dorian, P. Rez, G.W. Drach, Evidence for aggregation in oxalate stone formation: atomic force and low voltage scanning electron microscopy. J. Urol. 1996; 156: 1833 1850.

Chapitre VI: Discussion

Différents articles soulignent l'ubiquité des calcifications pathologiques [1,2] dans le corps humain, leur caractère bénin ou malin ainsi que le large spectre de pathologies associées avec parmi elles le cancer, les maladies infectieuses, les maladies environnementales et génétiques évoquées précédemment. Bien que la littérature sur le sujet soit vaste (de nombreux journaux lui sont dédiés cf. par exemple [3]) et ce en raison des différents problèmes de santé majeurs abordés, une analyse rapide de la bibliographie montre que cette recherche dédiée aux calcifications pathologiques est des plus dynamiques. Cette recherche rend compte ainsi non seulement des enjeux de société mais aussi de la complexité de ce sujet de recherche dans la mesure où de multiples facteurs cellulaires (maladie génétique), bactériens (infections), environnementaux (toxicité de certains éléments ou de certaines molécules) ou une modulation de l'alimentation (simple déshydratation, alimentation trop riche en protéines) sont susceptibles d'enclencher la formation de dépôts minéraux anormaux, calciques ou non, dans un tissu, un organe ou sur un dispositif médical.

Parmi ces calcifications pathologiques, concrétions et calcifications ectopiques inclues et en considérant tous les organes, les concrétions rénales ou calculs rénaux constituent la classe de calcifications pour laquelle la compréhension des processus biochimiques responsables de leur pathogenèse et leur lien à la pathologie sont les plus aboutis. La classification des calculs basée sur leur morphologie à l'échelle macroscopique et leur composition chimique effectuée par spectroscopie infra rouge à transformée de Fourier proposée trois décennies plus tôt est désormais à la base de la pose d'un diagnostic médical [4]. Elle constitue donc l'un des changements profonds de la pratique médicale en urologie et en néphrologie au coté de la mise en œuvre de la lithotripsie ou encore de l'urétéroscopie. De nos jours, l'absence d'une analyse précise du calcul constitue donc une aberration qui peut avoir des conséquences graves sur le plan clinique.

Au cœur de cette nouvelle approche, le patient bénéficie donc désormais sur la base de ces résultats de physicochimie de la pose d'un diagnostic adéquat et donc d'une meilleure prise en charge. Plus précisément, pour les patients qui présentent une dégradation significative de la fonction rénale, ces mesures de physicochimie ont permis de la stabiliser, leur évitant ainsi la dialyse et donc la greffe. Deux conséquences majeures sont donc associées à ces mesures de physicochimie, une amélioration sans ambigüité du mode de vie de certains patients et une économie financière conséquente réalisée par la société puisque

plusieurs ordres de grandeur séparent le coût d'une telle mesure de physicochimie (estimée à une centaine d'euros) du coût d'une dialyse (65000 euros/an) et d'une greffe rénale (65000 euros/an sans compter le surcoût engendré par le traitement médical lié au rejet possible de la greffe). D'autre part, la prise en charge clinique se base de plus en plus sur des outils d'investigations qui sont désormais présents au sein des hôpitaux et centre spécialisés. A ce propos, plusieurs de ces centres de part le monde commencent à s'équiper d'imageurs infra rouge de dernière génération capable de collecter plus de 100000 spectres infra rouge en une dizaine de minutes. L'étude physicochimique de biopsies rénales peut donc s'intégrer pleinement dans le processus classique des analyses effectuées en routine à l'hôpital.

Cet accomplissement majeur a été rendu possible en substituant aux techniques d'analyse chimique permettant uniquement la connaissance de la composition ionique des calculs rénaux des techniques de physicochimie bien plus instructives. Ceux-ci contiennent en effet à la fois une partie minérale et une partie organique et possèdent une structure ordonnée à différentes échelles (de l'échelle macroscopique à l'échelle nanométrique). Si le nombre d'éléments chimiques est faible (Ca, P, C, O, N, H), le nombre de composés (cristallisés et amorphes) est élevé puisque plus d'une centaine de composés a été identifié au niveau des calculs.

Ces techniques de physicochimie de laboratoire et notamment la spectroscopie infra rouge à transformée de Fourier ont joué un rôle de premier plan dans la réalisation de ces avancées scientifiques majeures. En fait, si l'on intègre les connaissances cliniques et physicochimiques inhérentes à la lithiase, parmi toutes les techniques de physicochimie, seule la spectroscopie infra rouge à transformée de Fourier s'avère apte à mettre en évidence des composés amorphes, à évaluer le taux de carbonatation d'une apatite ou encore à différencier les différents phosphate de calcium.

La recherche exposée dans ce manuscrit s'inscrit dans cette démarche globale en abordant différents aspects de physicochimie associés à la lithiase. Grâce à ces techniques, nous avons apporté quelques éléments de réponse concernant l'épidémiologie actuelle de la lithiase en Algérie et plus précisément dans l'Est de l'Algérie, le rôle des éléments traces dans la genèse des calculs rénaux et l'évaluation des plantes médicinales.

En ce qui concerne l'épidémiologie, bien que le nombre de calculs de notre série soit faible, les résultats obtenus témoignent de ce qui est observé sur le plan socioéconomique, l'évolution de l'Algérie vers le niveau des pays industrialisés. Cette évolution sociétale se traduit par le changement de composition chimique des calculs rénaux et plus précisément par

l'observation de l'oxalate de calcium sous la forme de whewellite comme phase chimique prépondérante. Désormais, près de 50% des calculs sont formés majoritairement de whewellite (50,7% en France contre 50,3 % pour l'Ouest Algérien et 48,7% pour l'Est Algérien). Néanmoins, le nombre de calculs d'origine infectieuse semble encore relativement élevé et l'accès au soin est, comme dans les pays industrialisés suite à la dépression économique qui sévit actuellement, un problème qui reste d'actualité. De ce point de vue, la présence toujours élevée d'urate d'ammonium à la fois au niveau des calculs (12,4 % pour l'Est Algérien versus 4.8% en France) et des noyaux (Chez la femme 5.3% dans l'Est Algérien versus 2.9% dans l'Ouest Algérien et 0.8% en France) témoignent de contextes infectieux digestifs ou urinaires encore fréquemment à l'origine des calculs même si la lithiase vésicale endémique de l'enfant semble en régression comme dans tous les pays. Rappelons que seulement 54 % des calculs associés à une infection clinique contiennent de la struvite [5-12]. Dans 23% des cas, on trouve un mélange de phosphates de calcium sans struvite mais avec une teneur en protéines supérieure à 5 % et dans 5 %, des cas le calcul est composé d'urate d'ammonium. Enfin dans 3% une matrice protéique représente la principale composante du calcul.

Par ailleurs, on note une proportion de lithiase urique plus élevée que dans la série publiée en 2006 dans l'ouest Algérien (12 % pour l'Est Algérien contre 7.3 pour l'Ouest Algérien p<0.05). Or, depuis plus d'une décennie, on assiste à une progression dramatique de l'obésité, du syndrome métabolique et du diabète de type II, la prévalence de ce dernier dépassant 10% de la population algérienne aujourd'hui (Cette prévalence globale est de 15,3 % en milieu urbain et de 12,9 % en milieu rural) [13]. Par comparaison, on dénombre en France environ 3,5 % de diabétiques (soit 1 600 000 diabétiques connus et 400 000 diabétiques qui s'ignorent). Le lien entre le diabète de type II et la lithiase urique a été clairement démontré dans plusieurs études [14-16] et pourrait expliquer l'augmentation de la proportion de lithiase urique dans notre cohorte par rapport à celle de l'Ouest Algérien publiée il y a plus de 10 ans.

Le rapport H/F égal à 1.58 pour un rapport égal à 2.1 en France est dans la moyenne des chiffres de la littérature. L'évolution de ce rapport H/F en fonction de l'âge montre que le sujet masculin est plus exposé à la lithiase aux extrémités de la vie. On retrouve ainsi l'explication donnée précédemment pour l'augmentation de la lithiase urique avec l'âge en raison de l'accroissement de la prévalence du syndrome métabolique et au diabète de type II,

ce dernier affectant plus souvent les hommes que les femmes dans la population Algérienne [5].

Pour les éléments traces, les résultats sont cohérents avec des études antérieures [17-21] qui soulignent l'absence de processus catalytiques et envisagent une simple adsorption d'éléments traces comme origine de leur présence dans les calculs rénaux. Les modulations des teneurs en Zn, en Sr ou en Pb en fonction de la nature des phases chimiques composant le calcul sont directement reliées aux propriétés physicochimiques de ces phases. Néanmoins, la différence entre la whewellite et la weddellite expliquée préalablement par une conversion cristalline reste à approfondir. En effet, dans ce cas la conversion cristalline est censé induire un relargage identique pour tous les éléments et les mesures contredisent cette hypothèse puisque les rapports Zn(C2)/Zn(C1), Sr(C2)/Sr(C1) et Pb(C2)/Pb(C1) sont très différents respectivement égaux à 6.7, 19.7 et 2.4. Ces différences peuvent s'expliquer si l'on intègre le contexte biologique. Ainsi, pour le Sr, la whewellite (C1) est associée à une hyperoxalurie alors que la weddellite est associée à une hypercalciurie. Dans la mesure où le Sr suit les voies métaboliques du Ca, on s'attend à ce que la teneur en Sr de la weddellite soit supérieure à celle observée pour la whewellite ce qui est le cas. Pour le Zinc, le C2 est bien plus inflammatoire en raison de la morphologie particulière de ces cristaux qui présentent des arêtes tranchantes, cette inflammation induisant la présence de métalloprotéines riche en Zn. Quant au plomb, les teneurs sont tres voisines et peu différentes de celles observées dans l'étude Française précédente. Le fait que le plomb soit un contaminant externe suggère un environnement lui-même tres pauvre en plomb qui fait suite au remplacement des conduites de plomb du réseau d'adduction d'eau urbain par des canalisations en PVC.

Enfin, aucun des extraits de plantes utilisés en médecine traditionnelle contre la lithiase et testés *in vitro* n'a eu d'effet tangible pour dissoudre les calculs de cystine, de brushite ou d'oxalate de calcium (de type Id). Pour les calculs de cystine, le seul qui a semblé avoir un effet solvant non lié au pH était l'extrait d'*A. Ammophila*. Si ces résultats peuvent être en première approximation décevants sur le plan de la pharmacologie, ils sont en fait très importants dans la mesure où l'utilisation de plantes médicinales n'est pas sans danger.

Références

- [1] E.Bonucci, Biological Calcification: Normal and Pathological Processes in the Early Stages, Ed. Springer, 2007, Berlin.
- [2] D. Bazin, M. Daudon, C. Combes, C. Rey, Characterization and some physicochemical aspects of pathological microcalcifications, Chem. Rev. 2012; 112: 5092 5120.
- [3] Calcified Tissue International, Ed. Springer.
- [4] M. Daudon, C.A. Bader, P. Jungers, Urinary calculi: review of classification methods and correlations with etiology, Scan. Microsc. 1993; 7:1081-1106.
- [5] B. Hess, Prophylaxis of infection-induced kidney stone formation, Urological Research 1990: 18: S45 S48.
- [6] M. Daudon, L'analyse morphoconstitutionnelle des calculs dans le diagnostic étiologique d'une lithiase urinaire de l'enfant, Arch. Pediatr. 2000; 7:855 865.
- [7] K.-H. Bichler, E. Eipper, K. Naber, V. Braun, R. Zimmermann, S. Lahme, Urinary infection stones, Int. J. of Antimicrobial Agents 2002; 19:488-498.
- [8] P. Rieu, Lithiases d'infection, Annales d'Urologie 2005; 39: 16-29.
- [9] F. Bruyere, O. Traxer, C. Saussine, E. Lechevallierd, Infection et lithiase urinaire, Prog. Urol. 2008; 18: 1015 1020.
- [10] A.E. Krambeck, J.C. Lieske, Infection-Related Kidney Stones, Clinical Reviews in Bone and Mineral Metabolism 2011; 9:218-228.
- [11] J. Colli, R. Thomas, infection stones, Urolithiasis 2012, pp 231 235.
- [12] K.M. Englert, J.A. McAteer, J.E. Lingeman, J.C. Williams Jr, High carbonate level of apatite in kidney stones implies infection, but is it predictive? Urolithiasis in press.
- [13] S. Zaoui, Ch. Biemont, K. Meguenni, Approche épidémiologique du diabète en milieux urbain et rural dans la région de Tlemcen (Ouest algérien) Santé 2007; 17:15-21.
- [14] M. Daudon, O. Traxer, P. Conort, B. Lacour, P. Jungers, Type 2 diabetes increases the risk for uric acid stones, J. Am. Soc. Nephr. 2006; 17: 2026 2033.
- [15] M. A. Cameron, N. M. Maalouf, B. Adam-Huet, O.W. Moe, K. Sakhaee, Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis, J. Am. Soc. Nephr. 2006; 17: 1422 – 1428.
- [16] M. Daudon, B. Lacour, P. Jungers, High prevalence of uric acid calculi in diabetic stone Formers, Nephrol. Dial. Transplant. 2005; 20: 468 469.
- [17] I. Durak, Z. Kilic, A. Sahin, M. Akpoyraz, Analysis of calcium, iron, copper and zinc contents of nucleus and crust parts of urinary calculi.

 Urological Research 1992; 20:23-26.
- [18] D. Bazin, P. Chevallier, G. Matzen, P. Junger, M. Daudon, Heavy elements in urinary Stones, Urol Res 2007; 35: 179-184.
- [19] M. Slojewski, B. Czerny, K. Safranow, K. Jakubowska, M. Olszewska, A. Pawlik, Microelements in stones, urine, and hair of stone formers: A new key to the puzzle of lithogenesis? Biological Trace Element Research 2010; 137: 301-316.
- [20] M. Slojewski, Major and trace elements in lithogenesis. Central European J. of Urology 2011; 64: 58 - 61.
- [21] J. Kuta, J. Machat, D. Benova, R.C. Ervenka, J. Zeman, P. Martinec, Association of minor and trace elements with mineralogical constituents of urinary stones: A hard nut to crack in existing studies of urolithiasis, Env. Geochem. Health 2013; 35:511 522.

Chapitre VII: Conclusion et perspectives

Les résultats présentés dans cette thèse s'inscrivent dans le cadre de projets de recherche situés à l'interface entre la physique, la chimie, la biologie et la médecine. Ils s'attachent à décrire par des techniques de physicochimie les processus biochimiques responsables de la genèse de calcifications pathologiques et plus précisément de concrétions rénales. Les expériences ont donc été réalisées à la fois dans des laboratoires de physique et dans des services de l'assistance publique. Les problématiques, définies par la communauté médicale, sont associées à l'épidémiologie inhérente à cette pathologie, aux rôles des éléments traces dans la formation des calculs et à la pertinence de certaines plantes médicinales qui font partie de la pharmacopée utilisée en Algérie.

En vue d'aborder de manière la plus précise possible la lithiase en Algérie, une cohorte de 415 calculs a été considérée et a fait l'objet d'une classification constitutionnelle. Cette étude, est venue combler un vide important portant sur l'approche épidémiologique da la lithiase de l'arbre urinaire au niveau de la région Est algérien. La lithiase des pays en développement était considérée, jusqu'à une période encore récente comme une lithiase particulière, affectant principalement le jeune garçon de moins de 5 ans et caractérisée par des calculs localisés préférentiellement dans la vessie et de composition prédominante en urates et/ou phosphates. Les résultats obtenus tranchent plûtot vers un profil épidémiologique similaire des pays industrialisés. Certains caractéristiques telles que la localisation des calculs, la prédominance de la whewellite, les fréquences de certains constituants majoritaires aussi bien dans le calcul que dans le noyau ainsi que leur répartition selon l'âge viennent confonrter cette tendance.

Le deuxième volet de cette thèse aborde la présence des éléments traces dans les calculs puisque certains travaux montrent l'influence possible de certains cations comme le Zn²⁺ sur la vitesse de croissance de phases présentes dans les calculs rénaux. Des expériences de fluorescence X ont été effectuées afin de déterminer la nature et la teneur de ces éléments traces, ces informations permettant d'établir leur rôle catalytique possible. Les données acquises sur l'ensemble de la cohorte ne soulignent pas un tel processus catalytique mais sont en faveur d'un simple processus d'adsorption. Les règles de Goldschmitt qui régissent l'insertion d'éléments dans des matrices, les teneurs mesurées pour les différents cations (Zn²⁺, Sr²⁺ et Pb²⁺) qui sont cohérentes avec celles mesurées dans l'organisme ou encore les

propriétés physicochimiques des différentes phases chimiques identifiées au sein des calculs constituent un ensemble cohérent.

Enfin, le succès grandissant des plantes médicinales en général et leur mise en œuvre pour éviter les crises de coliques néphrétiques en particulier n'étant pas sans danger puisque dans certains cas, la fonction rénale peut être altérer, il nous a paru nécessaire de conforter ces pratiques médicales par des mesures de physicochimie. Aucun des extraits testés issus de la pharmacopée algérienne (*Arenaria ammophila* (tiges et feuilles), les feuilles de *Parietaria Officinalis*, les fleurs de *Parietaria Officinalis*, les fleurs de *Paronychia Argentea, Ammi visnaga,* racines non traitées de *Madélithiol IMR 2000*, et racines traitées par CHCl₃ de *Madélithiol IMR 2000*) n'a eu d'effet tangible pour dissoudre les calculs de cystine, de brushite ou d'oxalate de calcium (de type Id).

De nombreux travaux restent à effectuer sur ces différents points. Au niveau de l'épidémiologie, la fréquence des calculs d'origine infectieuse est certainement un paramètre qu'il convient de surveiller au travers d'une étude plus large. On sait que dans les pays industriels, ces calculs d'origine infectieuse témoignent d'un accès au soin rendu difficile en raison de la crise économique. L'importance des éléments traces reste d'actualité mais plutôt dans les tissus. Un nouvel axe de recherche possible est donc donné par des mesures de fluorescence X sur des tissus rénaux afin d'aborder différentes thématiques (cancer, maladies engendrées par des néphrotoxiques ...). Enfin la mise en œuvre de plantes médicinales reste un axe de recherche majeur qui devrait s'accomplir au travers de nouvelles collaborations notamment en pharmacologie.

Liste des figures et des tableaux

Chapitre I : Généralités et état de l'art

Figure 1. Evolution historique et géographique de la lithiase urinaire

Figure 2. Composition des calculs en fonction de l'âge, sur une série de 1354 calculs provenant des services d'urologie de l'Ouest Algérien.

Figure 3. Les étapes de la lithogénèse.

Figure 4 : Promoteurs, substances cristallisables et espèces cristallines

Chapitre II: Les techniques de caractérisation dans le contexte des calcifications pathologiques

Figure 1. Exemples de quelques types morphologiques de calculs de l'arbre urinaire.

Figure 2. Différents types de vibrations (élongations, déformations dans le plan, déformations hors du plan).

Figure 3. Schéma de principe d'un spectromètre infrarouge à transformée de Fourier.

Figure 4. Différents spectres de calculs collectés à l'hôpital Necker.

Figure 5. Microscope électronique à balayage (MEB) Zeiss SUPRA55VP/Gemini (LPS)

Figure 6. Deux photographies d'un calcul rénal oxalocalcique type Ia obtenues sur le microscope électronique à balayage du même site avec les deux détecteurs : a) est obtenue avec le détecteur SE2, b) est obtenue avec le détecteur InLens.

Figure 7. Différentes morphologies observées au MEB a) annaba 135 (Sphère d'apatite); b) annaba 214 (Cystine); c) annaba 163 (urate d'ammonium); d) annaba 170 (brushite avec apatite au centre); e) annaba 222 (struvite); f) annaba52 (whewellite plus weddellite).

Figure 8. Excitation et désexcitation d'un atome.

Figure 9. Montage classique pour la fluorescence X localisé au LPS et spectre de fluorescence X tracé sous le logiciel Origine.

Figure 10. Exemple de spectre de Fluorescence X donné par le dispositif associé à la source portable.

Figure 11. Montage de diffraction neutronique G4.1 et diagrammes de diffraction neutronique.

Figure 12. Calcul de cystine incubé dans une solution témoin de NaCl 9g/litre

Chapitre III : Epidémiologie

Tableau 1: Distribution selon la localisation anatomique des calculs

Tableau 2: Distribution selon la localisation anatomique, le sexe et l'âge des patients

Tableau 3: Fréquence des calculs purs et des principales associations

Tableau 4: Fréquence des constituants dans les calculs selon le sexe

Tableau 5 : fréquence des constituants majoritaires dans le calcul selon le sexe

Tableau 6 : Fréquences des constituants majoritaires dans le calcul selon le sexe et l'âge

Tableau 7: Fréquence des constituants majoritaires dans le noyau selon le sexe

Tableau 8 : Fréquence des constituants majoritaires dans le noyau selon l'âge et le sexe

Tableau 9 : Comparaison des Fréquences des constituants majoritaires dans le calcul et dans le noyau selon le sexe

Figure 1 : Mécanisme de nucléation sur plaque de Randall

Figure 2 : Distribution des calculs selon la localisation le sexe et l'age

Chapitre IV : Les éléments traces

Tableau 1: Eléments traces présents dans les calculs calciques et non calciques (en $\mu g/g \pm$ écart type).

Tableau 2: Eléments traces présents dans les calculs urinaires calciques (en $\mu g/g \pm$ écart type).

Tableau 3: Eléments traces présents dans les calculs urinaires calciques (en $\mu g/g \pm$ écart type).

Chapitre V : Effet des plantes médicinales

- **Figure 1.** a : fiole contenant le calcul inséré dans un sachet immerge ; b : évolution de la masse des calculs de cystine (cercles bleus pour *Arenaria* (fleurs et tiges), triangles verts pour *Paronychia* (*flowers*), carres rouges pour *Parietaria* (feuilles), triangles noirs pour *Parietaria* (fleurs), cercles blancs pour la solution aqueuse de NaCl 9 g/L) ; c : perte de masse des calculs de cystine (légendes identiques à celles de la Fig. 1b) ; d : évolution du pH durant l'expérience (légendes identiques à celles de la Fig. 1b).
- **Figure 2.** Surface des cristaux visualisés par MEB : a : avant tout traitement ; b : après traitement par la solution aqueuse de NaCl 9 g/L ; c : après traitement par la solution contenant Arenaria ammophila ; d : après traitement par la solution contenant Paronychia rgentea ; e : après traitement par la solution contenant Parietaria officinalis (fleurs) ; f : après traitement par la solution contenant P. officinalis (feuilles).
- **Figure 3.** a : Perte de masse des calculs de Brushite (losanges bleues pour *Paronychia* (fleurs), carrés rouges pour *Parietaria* (fleurs), triangles verts pour *Arenaria* (fleurs et tiges), étoiles violettes pour *Ammi visnaga*, étoiles bleues pour la solution acqueuse de NaCl 9 g/L) ; b : évolution du pH durant l'expérience (légendes identiques à celles de la Fig. 1a).
- **Figure 4.** Surface des cristaux visualisés par MEB: a) avant tout traitement; b) après traitement par la solution contenant *Paronychia argentea*; c) après traitement par la solution contenant *Arenaria ammophila*; d) après traitement par la solution contenant *Ammi Visnaga*; e) après traitement par la solution contenant *Parietaria officinalis*; f) après traitement par la solution aqueuse de NaCl 9g/L.
- Figure 5. Perte de masse des calculs d'oxalate de calcium type Id
- **Figure 6.** Surface des cristaux visualisés par MEB: a) avant tout traitement; b) après traitement par la solution contenant *Ammi Visnaga*; c) après traitement par la solution contenant Madélithiole IMR 2000 (racines non traitées); d) après traitement par la solution contenant Madélithiole IMR 2000 (racines traitées par CHCl₃); e) après traitement par la solution aqueuse de NaCl 9g/L; f) après traitement par la solution aqueuse de citrate.

ANNEXE

INTERET CLINIQUE DE L'ANALYSE MORPHOCONSTUTIONNELLE DES CALCULS URINAIRES

1) Approche morpho-constitutionnelle dans l'analyse des calculs urinaire

1.1) Classification morphologique des calculs de l'arbre urinaire

Le calcul urinaire est un élément clé du diagnostique étiologique de la maladie lithiasique puisqu'il est le témoin au long cours des désordres biochimiques lithogènes de sa formation. Il renferme des informations irremplaçables sur les conditions de nucléation (homogènes et hétérogènes) de croissance et finalement de son émergence et sa constitution finale. Les méthodes d'analyses des calculs urinaires devraient donc permettre non seulement de préciser la nature des composants lithiasiques mis en jeu dans la formation des calculs mais de préciser aussi leur importance relative dans le processus de lithogénèse.

Plusieurs hypothèse ont été proposé pour comprendre le processus de lithogenèse dont :

- La sursaturation urinaire en espèces chimiques (au-delà de la limite de solubilité)
- Présence d'inducteur de cristallisation
- Déficit en inhibiteur de cristallisation
- L'existence d'une trame protéique favorisant la formation d'autres espèces chimiques
- L'existence de corpuscules papillaires calcifiés permettant ou favorisant la formation d'autres composants lithiasiques
- L'existence de corps étranger agissant comme substrat facilitant le dépôt d'autres espèces chimiques

La lithogénèse peu intervenir selon des mécanismes généraux dont l'alimentation, le pH urinaire, l'infection urinaire voir aussi une faible diurèse, comme elle peut intervenir selon des mécanismes spécifiques comme le diabète de type II, la goutte ou bien le syndrome polymétabolique.

A la lumière de ces données, l'approche morpho-constitutionnelle dans l'analyse des calculs de l'arbre urinaire s'avère d'une importance capitale dans l'orientation étiologique et l'établissement d'un diagnostique assez précis de la maladie lithiasique.

Cette approche permet en premier de relevé les caractères organoleptiques caractérisant chaque calcul par examen avec une loupe binoculaire. A ce stade on doit faire ressortir :

- l'aspect du calcul : homogène hétérogène, mamelonné, spiculé, bosselé, rugueux, finement rugueux, poreux, fissuré etc ..

- le caractère cristallin, microcristallin, amorphe
- la présence ou non de particularité structurales : dépôts, ombilication, cavités, faces d'accolements etc...
- la couleur des différentes zones
- La dureté, le caractère cassant ou friable
- L'aspect de la section du calcul : compacte, lâche, concentrique, radiale, inorganisée, alternance de couches etc ...
- Présence ou non d'une zone de nucléation diffuse ou de noyaux individualisé

La classification morphologique des calculs de l'arbre urinaire repose sur le relevé des caractères organoleptiques superficiels et internes des calculs. Ainsi, la prise en compte des divers critères dont la forme, l'aspect de la surface, la texture et l'organisation de la surface a permis de dégager une classification comprenant en tout six types morphologiques incluant un total de vingt et un sous types. Le type morphologique d'une espèce cristalline pure est référencé par un chiffre romain suivi d'une lettre minuscule (Tableau 1).

Le type I: Dont le constituant principal est l'oxalate de calcium monohydraté (whewellite) comporte quatre sous-types Ia, Ib, Ic et Id

Le type II : caractérise la weddellite sous ces différents aspects représentés avec les sous types IIa, IIb et IIc

Le type III : Englobant les oxypurines avec les sous-types IIIa et IIIb pour l'acide urique et les sous-types IIIc et IIId pour les urates.

Le type IV : Englobes les phosphates calciques et les phosphates magnésiens et comporte cinq sous-types dont IVa1 et IVa1 majoritaire en carbapatite, la IVb formé de carbapatite et de struvite, le IVc majoritaire en struvite et le IVd majoritaire en brushite.

Le type V : comporte deux sous-types est attribué aux calculs de cystine

Le type VI : comporte trois sous types attribué aux calculs majoritaire en protéines

Table	eau 1 : Classification m	orphologique des calculs de l'arbre urinaire	
Type morphologique	Composition usuelle	Caractéristique	
, 5,		Type I	
Ia	C1 : Whewellite	. Surface lisse ou mamelonnée ou bourgeonnant, d'aspect parfois finement ridé . Section concentrique compacte à cristallisation radiale . Couleur brun plus ou moins foncé . Calculs souvent petits. On observe fréquemment une ombilication unique qui correspond au point de fixation sur la papille rénale	
Ib Ic	//	. Surface rugueuse et mamelonnée . Section compacte cristalline inorganisée, parfois lacunaire . Couleur brun foncée à brun-noire . Surface lisse ou bourgeonnante de couleur claire . Section cristalline finement granuleuse inorganisée . Couleur brun claire à crème	
Id	//	. Surface lisse . Section concentrique compacte microcristalline sans organisation radiale . Couleur brun-jaune clair à grège	
IIa	C2 : Weddellite	Type II . Surface spéculée (cristaux brillants, translucides aux angles	
IIb	C2 + C1 : Conversion cristalline	et arêtes vifs) . Section cristalline radiale plus ou moins lâches à zone de convergence diffuse . Couleur brun-jaune clair à grège . Surface spéculée (cristaux ternes, opaques, épais aux angles plus ou moins émoussés) . Section cristalline compacte inorganisée . Couleur grège à crème	
IIc	C2:	Surface finement rugueuse microcristalline, à concentricité périphérique diffuse Couleur beige à grège foncé	
		Type III	
IIIa IIIb	AU0 : Acide urique anhydre AU2 : Acide urique dihydraté +/- AU0	Surface homogène lisse ou très légèrement bosselée, grège, jaunâtre, ocre ou orange Section concentrique compacte à cristallisation radiale, ocre, orange ou rouge brique Surface hétérogène cristalline et/ou microcristalline rugueuse, localement poreuse	
IIIc	Urates divers	Crème à brun-rouge Section plus ou moins compacte, cristalline inorganisée, orange ou rouge brique Surface homogène rugueuse microcristalline plus ou moins	
		poreuse. . Section compacte microcristalline généralement inorganisée . Couleur crème à gris-brun	
		107	

IIId	UrAm :Urate acide	. Surface hétérogène, microcristalline, rugueuse et très poreuse
	d'ammonium	. section microcristalline concentrique poreuse plus ou moins
		lâche
		. Couleur grisâtre, grège ou brunâtre
		Type IV
IVa ₁	CA : Carbapatite +/-	. Surface homogène cristalline blanchâtre, grège ou brun-
- · ····1	struvite	jaune, rugueuse ou bosselée
		. Section concentrique plus ou moins nette, blanchâtre à beige
		· · · · · · · · · · · · · · · · · · ·
IVa ₂	CA+ un peu de	. Surface homogène, cristalline, d'aspect vernissé, plus ou
	protéine (+/-	moins lisse avec des irrégularités de forme évoquant parfois
	whewellite, faible)	un morceau de silex ; la couleur est homogène brun-jaune
	,	. La couche superficielle peut être parcourue de fines
		craquelures
		. Section concentrique plus ou moins feuilletés en couches
		cristallines brun-jaune épaisses et microcristallines beiges
		fines
IVb	Carbapatite + PAM	. Surface hétérogène bosselée et rugueuse, voire poreuse,
	whewellite urate acide	blanchâtre et grège à brun
	d'ammonium	. Section concentrique en couches alternées cristallines ou
		microcristallines blanchâtres épaisses, et grèges fines
IVc	Struvite (PAM)	. Surface homogène cristalline granuleuse en gros cristaux peu
	(la struvite étant rarement pure chez l'homme, la	anguleux plus ou moins soudés les uns aux autres, ou
	structure interne a souvent	simplement rugueuse
	un caractère hétérogène)	. Section cristalline radiale ou simultanément concentrique et
		radiales lâche
		. Couleur blanchâtre
IVd	Br : Brushite	Curfo co homo gòno origitallino ruguouso ou nominalós
Iva	Dr : Drusilite	Surface homogène cristalline rugueuse ou pommelée Section concentrique compacte à cristallisation radiale
		. Couleur crème à grège
		Type V
Va	Cystine	. Surface homogène, cristalline granuleuse en cristaux peu
, 	Cystine	anguleux ou simplement bosselée, aspect plus ou moins
		translucide, cireux
		. Section homogène cristalline radiale diffuse
		. Couleur jaunâtre à brun-jaune clair
		Jan and an Jan an Jan and an Jan an Jan and an Jan an J
Vb	Cystine + CA (traces)	. Surface homogène microcristalline plus ou moins lisse,
		crème à jaunâtre
		. Section hétérogène compacte, concentrique et
		microcristalline crème en périphérie ; cristalline, inorganisée,
		jaunâtre, au centre
		Type VI
VIa	Protéines	. Calculs mous non structurés plus ou moins translucides
		homogènes blanchâtres à brun clair
VIb	Protéines + composé	. Calculs peu ou non mous hétérogènes, plus ou moins
	métabolique	structurés, à surface à la fois rugueuse et écaillable
		. Section lâche, rugueuse, plus ou moins feuilletée
		. Couleur brun-noir
VIc	Protéines +/- C1	Non renseigné

1.2) Analyse constitutionnelle des calculs urinaires

La détermination de la composition moléculaire des calculs (composants lithiasiques) s'effectue de préférence par spectrophotométrie infrarouge à transformée de Fourier (IRTF). Pour l'analyse qualitative, les prélèvements s'opèrent sur des zones structuralement caractéristiques de la surface et de la section. Leur nombre dépend, de ce fait, du degré d'hétérogénéité du calcul bien qu'en pratique on procède on se contente souvent d'un prélèvement au niveau de la surface, un deuxième au niveau de la section et un troisième au niveau de la zone de nucléation. Dans l'analyse quantitative, juste un fragment représentatif de la composition globale du calcul est considéré. Le spectre obtenu est représentatif de la composition globale du calcul et sur lequel sont déterminées les proportions des divers constituants (Figure 1)

N: Ia +IVa Sc: IVa+IIb+Ib Sf: Ib + IIb

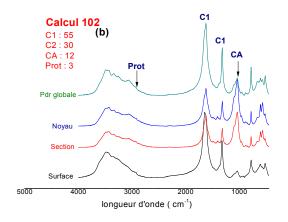


Figure 1 : Analyse du calcul selon l'approche morpho-constitutionnelle

- (a) Détermination du typage morphologique par loupe binoculaire
- (b) Analyse séquentielle de la surface au noyau et sur poudre globale par IRTF

2) Analyse morpho-constitutionnelle des calculs et corrélation biologique

La conjugaison des deux méthodes, morphologique et constitutionnelle, dans l'analyse des calculs de l'arbre urinaire permet non seulement de reconstituer la formation de ces derniers mais de comprendre aussi les mécanismes de lithogénèse mis en jeu et d'établir des corrélations entre le type morphologique et la pathologie en cause.

Dans le tableau 2 on retrouve une interprétation de la morphologie des calculs mettant en relief les causes probables de leur lithogénèse.

Tableau II : L	es principaux facteurs li	thiasiques favo	risants dégagés de l'approche morphoconstititionnelle
Morphologie	Composition	Particularité	Facteurs favorisants
Ia	Whewellite (C1):	Plaque de	. Hyperoxalurie de débit ou de concentration
	lithiase de structure	Randall	. Maladie de Cacchi-Ricci
	oxalo-dépendante		. Alimentation riche en oxalate et en protéines animales
			. Diurèse insuffisante
			. Nucléation hétérogène sur plaque de Randall au niveau
			de la papille rénale
Ib	Whewellite		. Hyperoxalurie de débit ou de concentration
			. Alimentation riche en oxalate et en protéines animales
			. Stase par anomalie urologique
			. Diurèse insuffisante
IC	Whewellite		Oxalose, hyperoxalurie primaire
Id	Whewellite		. Hyperoxalurie de débit ou de concentration
			. Alimentation riche en oxalate et en protéines animales
			. Diurèse insuffisante
			. Stase, lithiases multiples, confinement anatomique,
			anomalie urologique
I actif	Whewellite		Syndromes de malabsorption (maladie de Crohn, maladie
			coeliaque)
IIa	Weddelite (C2):		Hypercalciurie quelle qu'en soit l'origine
	lithiase de structure		
	calcium-dépendante		
IIb	C1 + C2		. Hypercalciurie associée à une hyperoxalurie modérée ou
	Par perte d'H2O ou		intermittente
	cristallisation mixte		. Stase urinaire
			. Alimentation riche en protéines animales, produits laitiers
			ou oxalate
			. Diurèse insuffisante
II c	Weddelite (C2)		. Hypercalciurie
			. Stase, confinement anatomique
III a	Acide urique		. pH urinaire acide
	anhydre (AU0):		. Hyperuricurie intermittente
	lithiase de structure		. Stase
	urico-dépendante		
III b	Acide urique	Si lithiase	. pH urinaire acide
	dihydraté (AU2) +/-	vésicale :	. Hyperuricurie +/- hyperuricémie
	acide anhydre (AU0)	lithiase	. Diathèse goutteuse
		urique de	. Consommation d'aliments riches en purines
		_	

		stase	. défaut d'ammoniogénèse rénale
			. Candidose urinaire
			. Troubles hydro électrolytiques
III c	Urates divers		Hyperuricurie avec alcalinisation des urines soit
			thérapeutique, soit d'origine infectieuse
III d	Urate acide		. Hyperammoniogénèse rénale ou urinaire
	d'ammonium		. Infection urinaire à germes ammoniogènes
			. Malnutrition
			. Anorexie mentale
			. Perte de bases digestives (diarrhées infectieuses, abus de laxatifs)
		Enfant de	. Hyperammoniogénèse rénale ou urinaire
		0 à 3 ans	. Infection urinaire à germes ammoniogènes
			. Malnutrition
			. Perte de bases digestives (diarrhées infectieuses)
IV a 1	Carbapatite (CA) +/-	Sans	. Infection urinaire à germes non uréasiques
	oxalate:	struvite	. Hypercalciurie
	lithiase de structure		. Diabète phosphaté
	phosphatique		. Trouble de l'acidification tubulaire
			. Hyperparathyroïdie primaire
IV a 2	Carbapatite		. Acidose tubulaire congénitale ou acquise (syndrome de
			Gougerot-Sjögren, acidose d'Albright, infections urinaires
			chroniques parenchymateuses, hépatites chroniques actives
)
			. Trouble focal de l'acidification rénale (maladie de
			Cacchi-Ricci)
IV b	Carbapatite	Sans	Hyperparathyroïdie primaire
		struvite	
	Carbapatite	Avec struvite	. Hyperparathyroïdie primaire . Infection urinaire chronique à germes uréasiques
IV c	Struvite (PAM)	SHUVILL	. Infection de l'arbre urinaire par des germes uréasiques
	, ,		. Diurèse insuffisante
13.7.1	D 11:	Animal	Infection urinaire à germes uréasiques
IV d	Brushite		. Hyperparathyroïdie primaire . Hypercalciurie
			. Diabète phosphaté
			. Anomalie urologique
**			Sarcoïdose
V VI a	Cystine		Cystinurie - Lysinurie Pyálonánhritas chroniques
via	Pritéines		Pyélonéphrites chroniques

Exemples des rapports de l'analyse morpho-constitutionnelle qu'on délivre au patient pour leur suivi clinique (ci-dessous) :

COMPTE RENDU D'ANALYSE MORPHOLOGIQUE ET INFRAROUGE DE CALCUL URINAIRE

PATIENT

Nom Prénom : **Femme** N° Service : Urologie

Date et lieu de Naissance : 49 ans Lieu de résidence : Oued Zenati (Guelma)

N° d'enregistrement labo physique : 656 ANTCD : HTA,

PRELEVEMENT .

Date d'élimination du calcul : Mars 2014 Médecin prescripteur : CHU Annaba

Date de réception : Mars 2014

Localisation du calcul : L Pyélique Gauche Mode d'élimination : Chirurgical

Nombre d'éléments : 02

Dimensions (en mm): 15x10x05 mm et 05x05x03 mm

ASPECT GLOBAL CARACTERISTIQUES MORPHOLOGIQUES

Forme irrégulière Surface : Finement rugueuse μ cristalline

Couleur Beige + voile blanchâtre **Section**: Compacte concentrique et radiale (Cristalline)

Dureté ++ **Noyau**: Compacte (cristalline)

	TYPAGE MORPHOLOGIQUE	SPECTROPHOTOMETRIE INFRAROUGE
Surface	μcristaux d'acide urique sur la	Dépôt (AU0 + AU2) sur C1
Section	C. Périph : la	C1
Noyau	Masse centrale : la + IIb	C1

COMPOSITION DE LA POUDRE GLOBALE

Oxalate de calcium monohydraté C1:70

Acide urique anhydre AU0 : 17 Acide urique dihydraté AU2 : 3

CONCLUSION: Lithiase mixte oxalocalcique et urique d'origine métabolique

CAUSES HABITUELLES:

- Hyperoxalurie de débit ou de concentration
- Consommation excessive d'aliment riche en oxalate
- Consommation excessive d'aliment riche en purine
- Hyper-uricurie avec ou sans hyper-uricémie
- Hyperacidité urinaire
- Diurèse insuffisante

COMPTE RENDU D'ANALYSE MORPHOLOGIQUE ET INFRAROUGE DE CALCUL URINAIRE

PATIENT -

Nom Prénom : **Femme**N° Service : Urologie

Date et lieu de Naissance : 45 ans

Lieu de résidence :

N° d'enregistrement labo physique : 663

ANTCD : RAS

PRELEVEMENT _

Date d'élimination du calcul : Janvier 2014 Médecin prescripteur : CHU Annaba

Date de réception : Avril 2014

Localisation du calcul : L Rénale Droite Mode d'élimination : **Chirurgicale**

Nombre d'éléments : 01

Dimensions (en mm): 13x11x4

ASPECT GLOBAL CARACTERISTIQUES MORPHOLOGIQUES

Forme Irrégulière à tendance Surface : Rugueuse μ cristalline

coralliforme

Couleur Beige à marron **Section**: Blanchâtre cristalline et µcristalline

Dureté + **Noyau**: Excentrique Blanchâtre cristallin et μcristallin

	TYPAGE MORPHOLOGIQUE	SPECTROPHOTOMETRIE INFRAROUGE
Surface	IVb	CA > PAM
Section	IVb + IVc	PAM > UrAm
Noyau	IVb	PAM

COMPOSITION DE LA POUDRE GLOBALE

Struvite PAM: 74%

Urate d'Ammonium UrAm : 12%
Carbapatite CA : 15 %

CONCLUSION: Lithiase d'origine infectieuse

CAUSES HABITUELLES:

Infection urinaire chronique à germes uréasiques

COMPTE RENDU D'ANALYSE MORPHOLOGIQUE ET INFRAROUGE DE CALCUL URINAIRE

PATIENT

Nom Prénom : **Homme** N° Service : Urologie

Date et lieu de Naissance : 45 ans Lieu de résidence : Guelma

N° d'enregistrement labo physique : 665 ANTCD :

PRELEVEMENT .

Date d'élimination du calcul : Mars 2014 Médecin prescripteur : Dr A. Boukahil

Date de réception : Avril 2014

Localisation du calcul : L. Rénale Mode d'élimination : Chirurgical

Nombre d'éléments : 01Dimensions (en mm) : 5x3x2

ASPECT GLOBAL CARACTERISTIQUES MORPHOLOGIQUES

Forme Irrégulière Surface : Cristalline (Spicules + spicules émoussées)

Couleur Beige + Brun **Section**:

Dureté + Noyau :

	TYPAGE MORPHOLOGIQUE	SPECTROPHOTOMETRIE INFRAROUGE		
Surface	Elément représentatif	Elément représentatif		
Section		C2 > C1		
Noyau	lla + llb + la(par conversion)			
COMPOSITION DE LA POUDRE GLOBALE				

COMPOSITION DE LA POUDRE GLOBAL

Oxalate de calcium dihydraté C2 : 80 Oxalate de calcium Monohydraté C1 : 18

Protéine : 2

CONCLUSION: Lithiase oxalocalcique calcium dépendante

CAUSES HABITUELLES:

Hypercalciurie quelle qu'en soit l'origine

Consommation excessive d'aliments riches en calcium (fromage laitage .. ;)

Consommation excessive de sel

Hypervitaminose D

Cause associée: Hyperoxalurie modérée ou intermittente

Diurèse insuffisante

Références partie annexe

Daudon M. Comment analyser un calcul et comment interpréter le résultat. Eurobiol 1993 ; 27 : 3546

Daudon M, Réveillaud RJ. Typage morphologique des calculs oxalocalciques et données Etio-pathogéniques. Sem Hôp Paris 1986 ; 62: 31593168

Daudon M, Réveillaud RJ. Whewellite et weddellite: vers des étiopathogénies différentes. Intérêt du typage morphologique des calculs. Néphrol 1984; 5:195201

Daudo M, Baders C.A, Jungers P, urinary calculi: review of classification methods and correlation with etiology; Scanning Microsc; 1993; 7: 1081-1106

Pierratos AE, Khalaff H, Cheng PT, Psihramis K, Jewett MA. Clinical and biochemical differences in patients with pure calcium oxalate monohydrate and calcium oxalate dihydrate kidney stones. J Urol 1994; 151:571-574

Parent X, Boess G, Brignon P. Lithiase oxalocalcique. Relation entre facteurs de risque biochimiques et phase cristalline du calcul. Prog Urol 1999;9:10511056

Daudon M, Bader CA, Jungers P. Urinary Calculi: Review of classification methods and correlations with etiology. Scanning Microsc 1993; 7: 10811106 10

Öhman S, Larsson L, Tiselius HG. Clinical significance of phosphate in calcium oxalate renal stones. Ann Clin Biochem 1992; 29: 5963 Gault MH, Chafe LL, Morgan JM, Parfrey PS, Harnett JD, Walsh EA, Prabhakaran VM,

Dow D, Colpitts A. Comparison of patients with idiopathic calcium phosphate and calcium oxalate stones. Medicine 1991;70:345359

Pak CYC, Poindexter JR, AdamsHuet B, Pearle MS. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med 2003; 115: 2632

Maurice Estepa L, Levillain P, Lacour B, Daudon M. Crystalline phase differentiation in urinary calcium phosphate and magnesium phosphate calculi. Scand J Urol Nephrol 1999; 88: 299305

Daudon M, Estépa L, Lacour B, Jungers P. Unusual morphology of calcium oxalate calculi in primary hyperoxaluria. J Nephrol 1998; 11: S1, 5155

CohenSolal F, Lacour B, Jungers P, Daudon M. Particularités morphologiques et composition des calculs urinaires induits par des maladies inflammatoires du tube digestif. In: Rein et tube digestif, XXIIème Symposium Gambro, Gambro, 2001, pp. 9097

CifuentesDelatte L, MinonCifuentes J, Medina JA. New studies on papillary calculi. J Urol 1987; 137:10241029

Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M. Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 2003; 111:607616