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Abstract 

 

 
       In this dissertation, we aim to predict the evolution of the various physical properties of the binary 

semiconductor SrS after its doping with iron (Fe) and sp-type metals. In this context of study, we 

consider ternary compounds (SrS mono-doped with iron) and quaternary compounds (SrS co-doped 

with iron and sp-type alkali metals), some of which are studied in volume (3D) and others in monolayer 

form (2D). Properties calculations are based on the Full Potential Linearized Augmented Plane Wave 

(FP-LAPW) method and on the PBE and PBE + mBJ approximations implemented in the WIEN2K 

simulation program. The work involves assessing the impact of elements added to the SrS 

semiconductor host matrix on the properties of final compounds produced by doping and co-doping. 

       Initially, we investigated the structural, mechanical, electronic and magnetic properties of single-

doped Sr1-xFexS compounds in the rock-salt structure, considering the following Fe concentrations: 0%, 

12.5%, 25%, 50% and 75%. The study is carried out at 3D and the main objective is to investigate new 

potential half-metallic ferromagnets (HMF) for spintronic applications. The results obtained show that 

the compounds containing 12.5%, 25% and 50% iron are half-metallic ferromagnets with a total 

magnetic moment value equal to 4µB, and are thermodynamically and mechanically stable; nevertheless, 

the iron-rich compound (75% Fe) is metallic. 

       We then turned our attention to co-doping the SrS matrix to produce quaternary compounds. The 

latter are realized by doping the ternary compound (12.5% Fe) with alkali metals (Li, Na and K). The 

aim is to see the effect of the sp metals on the properties of the ternary compounds. The study of these 

new compounds, also in 3D, is based on density functional theory (DFT) and semi-classical Boltzmann 

theory (BT), and covers structural, electronic, magnetic, optical and thermoelectric properties. The 

results obtained show that the incorporation of alkali metals into the SrS: 12.5% Fe compound renders 

them half-semiconducting (HSC) with narrower energy gap values than those of HMF ternary 

compound (SrS: Fe). The Curie temperature (Tc) values obtained are higher than room temperature. In 

addition, the magnetic moment of quaternary compounds is higher than that of ternary compounds, 

having a value of 5µB. Examination of the optical properties revealed a shift of the spectra towards the 

visible region, accompanied by a broadening of the compounds' absorption band. Investigation of the 

thermoelectric properties of p-type compounds showed that their figure of merit (ZT) values are greater 

than unity at 1200K, underlining their exceptional transport efficiency and making them highly 

promising candidates for optoelectronics and high-temperature thermoelectric applications. 

       The 2D study focused on the structural, electronic and magnetic properties of ternary compounds. 

The calculations are based on a plane-wave pseudopotential (PAW) method using the PBE and 
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PBE+HSE06 functionals, integrated into the VASP simulation software. The effect of dimensionality 

reduction was mainly observed at the level of electronic structures, where the character of ternary 

compounds becomes HSC instead of HMF observed in their 3D counterparts. This result has a positive 

impact on the optical and transport properties of ternary compounds. Under these conditions, the total 

magnetic moment resulting from p-d hybridization is 4µB per unit cell. 

 

 

 

Keywords: Ab-inito calculations, SrS, Half-metallic ferromagnetic, Alkali co-doping, 3D-bulk 

materials, 2D-monolayers, Spintronics, Optical properties, Thermoelectric properties. 
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Résumé 
 

        

       Dans cette thèse, nous visons à prédire l’évolution des différentes propriétés physiques du semi-

conducteur binaire SrS après son dopage au fer (Fe) et aux métaux de type sp. Dans ce contexte d’étude, 

nous considérons des composés ternaires (SrS mono-dopé au fer) et des composés quaternaires (SrS co-

dopé au fer et aux métaux alcalins de type sp) dont certains composés sont étudiés en volume (3D) et 

d’autres sous forme de monocouche (2D). Le calcul des propriétés est basé sur la méthode d'ondes planes 

augmentées linéarisées à potentiel plein (FP-LAPW) ainsi que sur les approximations PBE et PBE+mBJ 

implémentées dans le programme de simulation WIEN2K. Le travail consiste à évaluer l'impact des 

éléments ajoutés à la matrice semi-conductrice SrS sur les propriétés des composés finaux réalisés par 

dopage et par co-dopage.  

        Dans un premier temps, nous nous sommes intéressés aux propriétés structurales, mécaniques, 

électroniques et magnétiques des composés mono-dopés de type Sr1-xFexS dans la structure rock-salt en 

considérant les concentrations de Fe suivantes : 0 %, 12,5 %, 25 %, 50 % et 75 %. L’étude est faite à 

3D et l'objectif principal est d'investiguer de nouveaux ferromagnétiques semi-métalliques (HMF) 

potentiels pour des applications dans le domaine de la spintronique. Les résultats obtenus ont montré 

que les composés contenant 12,5%, 25% et 50% de fer sont demi-métalliques ferromagnétiques avec 

une valeur du moment magnétique total égale à 4µB et sont thermodynamiquement et mécaniquement 

stables ; néanmoins, le composé riche en fer (75% Fe) s’avère métallique.  

       Dans un deuxième temps, nous nous sommes intéressés au co-dopage de la matrice SrS pour réaliser 

des composés quaternaires. Ces derniers sont réalisés par le dopage du composé ternaire (12,5% Fe) par 

les métaux alcalins (Li, Na et K). Le but est de voir l’effet des métaux sp sur les propriétés des ternaires. 

L’étude de ces nouveaux composés, toujours à 3D, repose sur la méthode de la théorie de la fonctionnelle 

de la densité (DFT) et sur la théorie semi-classique de Boltzmann (BT) et concerne les propriétés 

structurales, électroniques, magnétiques, optiques et thermoélectriques. Les résultats obtenus montrent 

que l'incorporation des métaux alcalins dans le composé SrS : 12,5% Fe les rend demi-conducteur (HSC) 

avec des valeurs du gap énergétique plus étroites que celles du composé ternaires HMF (SrS : Fe). Les 

valeurs de la température de Curie (Tc) obtenues sont supérieures à la température ambiante. En outre, 

la valeur du moment magnétique des composés quaternaires est supérieure à celle des composés 

ternaires, elle vaut 5µB. L'examen des propriétés optiques a révélé un décalage des spectres vers la région 

du visible accompagné d’un élargissement de la bande d’absorption des composés. L’étude des 

propriétés thermoélectriques des composés de type p a montré que les valeurs de leurs figures de mérite 

(ZT) sont supérieures à l'unité à la température 1200K, soulignant l'efficacité exceptionnelle de leur 
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transport et faisant d’eux des candidats très prometteurs pour l'optoélectronique et pour les applications 

thermoélectriques à haute température. 

       L’étude à 2D a concerné les propriétés structurales, électroniques et magnétiques des composés 

ternaires. Les calculs effectués reposent sur une méthode de pseudo-potentiel à ondes planes (PAW) en 

utilisant les fonctionnelles PBE et PBE+HSE06, intégrées dans le logiciel de simulation VASP. L'effet 

de la réduction de la dimensionnalité a été principalement observé au niveau des structures 

électroniques, où le caractère des composés ternaires devient HSC au lieu de HMF observé dans leurs 

homologues à 3D. Ce résultat impacte positivement les propriétés optiques et de transport des composés 

ternaires. Dans ces conditions, le moment magnétique total résultant de l'hybridation p-d, vaut 4µB par 

cellule unitaire. 

 

 

 

Mots-clés : Calculs ab-inito, SrS, Demi-métaux Ferromagnétiques, Co-dopage alcalin, Matériaux en 

bulk-3D, Monocouches-2D, Spintronique, Propriétés optiques, Propriétés thermoélectriques. 
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 الملخص                                                                    
 

 

بعد تطعيمها بالحديد  SrSفي هذه الأطروحة، نهدف إلى التنبؤ بتطور الخصائص الفيزيائية المختلفة لأشباه الموصلات الثنائية        

(Fe والمعادن من النوع )spفي سياق هذه الدراسة، ناخذ . ( بعين الاعتبار المركبات الثلاثيةSrS  والمركبات )أحادي المطعم بالحديد

( والبعض الآخر في 3D( والتي تتم دراسة بعض المركبات في الحجم )spالمطعمة بالحديد والمعادن القلوية من نوع  SrSالرباعية )

( FP-LAPWصاعدة الخطية الكاملة المحتملة )(. يعتمد حساب الخصائص على طريقة الموجة المستوية ال(2Dشكل طبقة أحادية 

. يتمثل العمل في تقييم تأثير العناصر المضافة إلى WIEN2Kالمطبق في برنامج محاكاة  PBE + mBJو  PBEوكذلك على تقريب 

 على خصائص المركبات النهائية الناتجة عن المركبات الاحادية والمركبات المشتركة. SrSمصفوفة أشباه الموصلات 

في بنية  SxFex-1Srأولا، ركزنا على الخواص الهيكلية والميكانيكية والإلكترونية والمغناطيسية للمركبات أحادية التطعيم من نوع        

والهدف الرئيسي  3D. تتم الدراسة في ٪75و  ٪50و  ٪25و  ٪12.5و  ٪0التالية:  Feالملح الصخري من خلال النظر في تركيزات 

. أظهرت النتائج التي spintronics( للتطبيقات في مجال HMFsهو التحقيق في المغناطيسات الحديدية شبه المعدنية الجديدة المحتملة )

من الحديد هي أشباه معدنية مغناطيسية حديدية ذات قيمة عزم  ٪50و  ٪25و  ٪12.5تم الحصول عليها أن المركبات التي تحتوي على 

 ( معدني.Fe ٪75وهي مستقرة ديناميكيا، حراريا وميكانيكيا. ومع ذلك، تبين أن المركب الغني بالحديد ) B4μ غناطيسية إجمالية تساويم

لإنتاج مركبات رباعية. يتم إجراء هذا الأخير عن طريق تطعيم  SrSفي الخطوة الثانية، ركزنا على المركبات المشتركة لمصفوفة        

على خصائص الثلاثيات.  spدن ا(. الهدف هو رؤية تأثير المعKو  Naو  Li( بواسطة المعادن القلوية )Fe ٪ 12.5ثي )المركب الثلا

( وعلى نظرية بولتزمان شبه الكلاسيكية DFT، على طريقة نظرية الكثافة الوظيفية )3Dتعتمد دراسة هذه المركبات الجديدة، دائما في 

(BT)  وتتعلق بالخصائص الهيكلية والإلكترونية والمغناطيسية والبصرية والكهروحرارية. أظهرت النتائج التي تم الحصول عليها أن

 HMF( بقيم فجوة طاقة أضيق من قيم مركب HSCيجعلها نصف أشباه موصلات ) SrS: 12.5٪ Feدمج الفلزات القلوية في مركب 

( التي تم الحصول عليها أعلى من درجة حرارة الغرفة. بالإضافة إلى ذلك، فإن قيمة cTوري )قيم درجة حرارة ك (.SrS: Feالثلاثي )

. كشف فحص الخصائص البصرية عن B5μمقدر ب  بإجماليالعزم المغناطيسي للمركبات الرباعية أعلى من قيمة المركبات الثلاثية، 

اص المركبات. أظهرت دراسة الخواص الكهروحرارية للمركبات انزياح الأطياف نحو المنطقة المرئية مصحوبا بتوسيع نطاق امتص

كلفن، مما يسلط الضوء على الكفاءة الاستثنائية لنقلها  1200( أكبر من الوحدة عند درجة حرارة ZTأن قيم أرقام الجدارة ) pمن النوع 

 جة الحرارة العالية. ويجعلها مرشحة واعدة للغاية للإلكترونيات الضوئية وللتطبيقات الكهروحرارية ذات در

بالخصائص الهيكلية والإلكترونية والمغناطيسية للمركبات الثلاثية. تستند الحسابات التي تم إجراؤها إلى طريقة  2Dتتعلق دراسة        

. لوحظ VASP، المدمجة في برنامج محاكاة PBE + HSE06و  PBE( باستخدام وظائف PAWالجهد الزائف للموجة المستوية )

التي  HMFبدلا من  HSCتأثير خفض الأبعاد بشكل رئيسي على مستوى الهياكل الإلكترونية، حيث تصبح طبيعة المركبات الثلاثية 

. هذه النتيجة لها تأثير إيجابي على الخصائص البصرية والنقل للمركبات الثلاثية. في ظل هذه الظروف، 2Dلوحظت في نظيراتها  

 لكل خلية وحدة.  B4μهو  d-pلمغناطيسي الناتج عن تهجين يكون إجمالي العزم ا

 

، مركبات نصف معدنية، دمج الفلزات القلوية، مواد ثلاثية الأبعاد، طبقات ثنائية SrS حسابات المبادئ الاولى، الكلمات المفتاحية:

 الخواص البصرية، الخواص الكهروحرارية. رونيك،الأبعاد، سبينت
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General Introduction  

 

he inception of the transistor in 1947 sparked a pivotal turning point in the evolution of 

communication and technology [1]. With the ability to digitize information on-chip, the world 

entered the information age, where knowledge and communication became the driving forces 

of economic prosperity, surpassing dependence on physical effort and natural resources. In today's 

world, we witness persons communicating through cell phones, working on laptops, and utilizing the 

World Wide Web for various tasks. Integrated circuits and high-performance electronics have become 

integral to our lives, powering applications in drones, recording devices, contemporary cars, and 

manufacturing machinery, and more. This remarkable growth and evolution of technology has 

revolutionized the global economy, profoundly affecting all aspects of everyday life, science, industry, 

and technology.    

       The continuous growth of technology-based semiconductors has been driven by the ever-growing 

data processing capabilities, rapid integration density, and faster speeds. Advancements in magnetic 

materials and optical have further facilitated the seamless transmission, processing, and storage of vast 

amounts of information. Despite these impressive achievements, the semiconductor-based technology 

is now facing significant challenges. According to the International Technology Roadmap for 

Semiconductors (ITRS), further downsizing and power reduction will be hindered as the miniaturization 

of elements size and operational speed approach their limits [2]. Additionally, electronics inherently 

generate waste heat during switching, leading to higher power consumption in electronic devices. To 

overcome these obstacles, the focus is on developing innovative particle-less technologies to handle the 

growing information demands. Simultaneously, researchers are exploring new ways to efficiently 

manage and organize information in this rapidly evolving technological landscape. 

       Exploring alternative integrated circuits presents a promising path forward, and one such example 

is the realm of all-optical devices utilizing photons as information carriers - the fundamental quanta of 

electromagnetic waves. This exciting field has given rise to photonic crystals, a subset of optical 

materials characterized by their periodically adjusted refractive index [3–5]. Just as a semiconductor's 

periodic atoms lattice creates energy bands and bandgaps for electrons, photonic crystals introduce 

frequency bands and bandgaps for electromagnetic waves, known as photonic bandgaps. When light (or 

photons) falls within these bandgaps, the photonic crystals efficiently reflect it, regardless of the incident 

angle. What makes photonic crystals truly fascinating is their ability to control and manipulate their 
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properties. By modulating physical parameters such as the dielectric constant or lattice parameters, the 

characteristics of the photonic bandgaps can be finely tuned. This unique selectivity has resulted in 

various applications, from photonic waveguides to integrated circuits, unleashing the potential for 

advanced optical devices [6–10]. 

       In recent times, nano-magnetism and magnetization dynamics [11] have emerged as compelling 

subfields within the realm of spintronics [12], capturing significant attention by virtue of their promise 

in revolutionizing nanoscale signal processing and information exchange mechanisms [13–15], like 

filters, transistors, and storage elements [16–18]. Spintronics, originally abbreviated as "SPIN Transport 

Electronics," revolves around transmiting, processing, and storing informations hinged on the 

magnetization state of a given system. A pivotal breakthrough in spintronics occurred with the discovery 

of the giant magnetoresistance (GMR) effect in Fe/Cr multilayered systems by Fert and Grunberg [19, 

20], for which they were honored with the Nobel Prize in 2007. The GMR effect, dependent on the 

relative orientation of two ferromagnetic layers when subjected to a spin-polarized current, 

revolutionized magnetic hard disk drives and paved the way for novel non-volatile magnetic memories 

like Magnetoresistive Random Access Memory (MRAM) [13]. Since then, additional discoveries, such 

as Spin Transfer Torque (STT) [21], facilitating current-assisted magnetization switching, and the 

(Inverse) Spin Hall Effect ((I)SHE) [22], enabling the generation and detection of spin currents, have 

further propelled the field. The Spin Pumping Effect [23], the Spin Seebeck Effect (SSE) [24], and the 

Dzyaloshinskii-Moriya Interaction (DMI) [25] have also introduced fascinating possibilities to the world 

of spintronics. 

       Besides spintronics, the SSE gives rise to the nascent scientific field of so-called spin-caloritronics, 

in which transport design methodologies have been considered as future independent power sources 

since they enable the generation of electricity from waste heat in magnetic materials, thus positioning 

it supplementary to the well established domains of spintronics and thermoelectricity [26]. The 

field of spin-caloritronics, derived from the term "calor" (Latin for heat), and which came into existence 

following the significant discovery of the spin Seebeck effect (SSE) in 2008 by Uchida, Saitoh, and their 

colleagues [24] emerges from the intricate coupling of spin, charge, entropy, and energy transport in 

predominantly magnetic structures and devices [27]. This quickly developing sector finds several uses 

in coolers, power generators, and thermometers [28].  

       In light of these compelling factors, the pursuit of advanced and efficient spintronic, photonic and 

thermoelectric materials gains even greater significance for the emergence of eco-friendly energy 

devices in the realm of materials science and technology. Diluted Magnetic Semiconductors (DMSs) 

that are semiconducting materials doped with magnetic impurities, typically transition metals (TM), and 

that demonstrate room temperature ferromagnetism, are widely employed in spintronics due to their 



                                                                                                                     General Introduction 

 

 

3 

 

remarkable half-metallic ferromagnetic nature (HMF), exhibiting a 100% spin-polarization in both their 

bulk form (3D) and monolayer form (2D) [29]. Interest in the utilization of DMSs is further fueled by 

the prospect of finely tuning the bandgap through different processes such as doping, co-doping, 

alloying, etc., thereby providing the ability to precisely control light absorption at specific energy levels, 

tailored to suit the desired application [30]. Another important feature is the high carrier mobility 

resulting from the quantum confinement [30], which is widely desirable for thermoelectric devices.  

       The extensive findings and in-depth comprehension of the physical characteristics of these materials 

owe much to ab-initio calculations utilizing Density Functional Theory (DFT). This computational 

approach minimizes the time, risks, and expenses associated with experimental studies. Furthermore, 

the results obtained through ab-initio calculations generally align with experimental observations. At 

the very least, such calculations can predict material properties, thus providing valuable guidance for 

experimental investigations. A notable example is in the field of spintronics, where the captivating 

property of half-metallicity, as documented in the literature [29], was initially revealed through ab-initio 

calculations [29], subsequently confirmed through experimental validation [31]. In the realm of photonic 

and optoelectronic materials, the groundbreaking concept of "valleytronics" in 2D materials, which 

enables precise control of light emission and absorption through manipulation of the valley degrees of 

freedom, has also taken the same path [32]. In recent times, ab-initio calculations have experienced 

remarkable advancements, primarily due to significant progress in computational techniques and 

computing power. 

       Given the significance of DMSs materials and their potential applications in the various desired 

domains, we employ, in this dissertation, ab-initio calculations to systematically investigate spin-

dependent structural, mechanical, electronic, magnetic, optical, and thermoelectric properties of selected 

host matrix semiconductor SrS-based DMSs using different processes. 

       The layout of the dissertation is structured as follows: 

Chapter 1 entitled “Literature Background”, serves as concise introduction to the domains of 

spintronics and spin caloritronics, providing an overview of diluted magnetic semiconductors (DMSs) 

that includes a diverse array of materials, spanning from 3D bulk semiconductors to low-dimensional 

2D materials. Additionally, the chapter delves into a comprehensive bibliographic research on the 

fascinating realm of doped and co-doped structures, where elements ranging from alkali to transition 

metals are integrated into the host SrS to amplify the different physical properties of the materials under 

investigation. 
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Chapter 2 entitled “Theoretical and Computational Formulation”, is dedicated to an in-depth 

exploration of the Density Functional Theory (DFT), which forms a fundamental basis for the ab-initio 

calculations. It delves into the PAW (Projector Augmented Wave), LAPW (Linearized Augmented 

Plane Wave), and FP-LAPW (Full Potential Linearized Augmented Plane Wave) methods, elucidating 

their significance in our research. Various approximations used in our study are thoroughly examined 

and discussed. Moreover, this chapter provides a comprehensive overview of the functionalities of the 

WIEN2K and VASP codes, both of which were crucial tools employed in our research. 

Chapter 3 and 4 

       In each of chapters 3 and 4, a comprehensive compilation of the calculation parameters, the obtained 

results, and their insightful interpretations is presented.  

 Chapter 3 entitled “Effect of Doping and CO-Doping on the SrS Bulk Properties”, focuses on 

investigating the spin-resolved structural, mechanical, electronic, and magnetic properties of bulk rock-

salt Sr1-xFexS at various concentrations, namely x = 0, 0.125, 0.25, 0.50, and 0.75. Additionally, the 

chapter delves into the structural, electronic, mechanical, magnetic, optical, and thermoelectric 

properties of bulk SrS: Fe co-doped with alkali metals Li, Na, and K, while maintaining a fixed 

concentration of x = 0.125. The chapter further compares the properties of these co-doped materials to 

those of singly doped Sr0.875Fe0.125S.   

Chapter 4 entitled “Effect of Dimensionality Reduction on Fe-Doped SrS Properties”, deals with the 

structural, electronic, and magnetic properties of monolayers Sr1-xFexS at various concentrations, 

including x =0, 0.125, 0.25, 0.50, 0.75, and 1. The chapter further compares the properties of these 

doped-monolayers to their bulk counterparts. 

       Finally, the dissertation concludes with a comprehensive summary covering the most important 

findings and future perspectives. 
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Chapter 1 

Literature Background 

 

his chapter provides a concise yet comprehensive introduction to the fields of spintronics and 

spin caloritronics as well as dilute magnetic semiconductors (DMS), which include various 

3D bulk semiconductor groups as well as low-dimensional 2D materials. Furthermore, it 

explores the fascinating area of doped/codoped structures, in which alkali to transition metals are 

incorporated to improve structural, mechanical, electronic, magnetic, optical and thermoelectric 

properties. By exploring the fascinating properties and diverse uses of these materials, this chapter helps 

in selecting suitable compounds for this dissertation. 

1.1   Introduction  

       The ever-increasing energy demand of human activities has become an urgent global problem and 

requires the introduction of advanced techniques for research and development of sustainable and 

environmentally friendly energy resources. The scientific and industrial community is extremely curious 

to find an ideal renewable energy source that can be practically translated into the development of useful 

products and mitigate the harmful effects of anthropogenic carbon emissions on the global climate. 

Among the various options, the thermoelectric phenomenon stands out as an excellent source of 

renewable energy. As electronic devices continue to shrink toward the nanometer and their operating 

speed increases, dissipating heat or waste energy has become a critical issue. To achieve energy savings 

and improve the performance and reliability of electronic devices, it is imperative to either reduce or 

effectively utilize wasted energy. In this context, spintronics proves to be a promising path to 

significantly lower energy consumption [1]. On the other hand, thermoelectrics explores the direct 

conversion of waste heat into electrical power and represents a fascinating avenue for research and 

development. A fascinating and novel research area known as spin caloritronics is currently gaining 

significant attention as it combines the strengths of spintronics and thermoelectrics [2]. Semiconductor 

materials, whether in their bulk form or as 2D counterparts, with their intrinsic properties and well-

suited electronic structures emerge as perfect candidate bases for this purpose. Based on their energy 

bandgap, semiconductor materials are divided into three different categories, of which we are interested 

and will only discuss the wide bandgap semiconductor (WBG) category. 

T 
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1.2   Spintronics and Related Devices 

1.2.1   Definition and Historical Development of Spintronic Phenomena 

       Spintronics (or spin electronics) has revolutionized electronic data storage by actively manipulating 

the spin degrees of freedom of electrons interacting with their orbital moments, ushering in a new era of 

possibilities [3]. Magnetic layers act as spin polarizers or analyzers and determine spin polarization 

through spin-orbit coupling. This complicated interaction leads to the generation of a spin current, which 

is further driven by fascinating spin waves. 

       Every electron possesses two possible states known as spin-up            and spin-down           , meaning 

they can rotate either clockwise or counterclockwise. These majority-up and majority-down domains 

are randomly distributed. However, when an external magnetic field is applied, it aligns the domains in 

the direction of the electric field. This phenomenon enables precise control and manipulation of electron 

spins and forms the basis for various fast and energy-efficient spintronic applications and innovations 

in electronic data storage and processing [4]. 

       The attractive field of spintronics began in 1922 with the discovery of the magnetic moment of 

electrons [5]. Wolfgang Pauli's groundbreaking research validated the quantization of electron spin and 

introduced the idea of Pauli matrices. A crucial moment came in 1973 when the conversion of electron 

spin to spin current between ferromagnetic films was observed [6] and shortly afterwards D'yakonov 

and Perel predicted the spin Hall effect [7], which was later confirmed experimentally.  

       In 1975, Julliere and his team conducted the first experiment on the tunneling magnetoresistance 

effect (TMR), revealing the fascinating phenomenon of electron tunneling between two ferromagnets 

separated by a thin insulator [8].  

       In 1976, the concept of generating spin-polarized current in a semiconductor by passing a current 

through a ferromagnet/semiconductor junction was first proposed [9]. 

       In the 1980s, the idea of spintronics emerged, which explores spin-dependent electron transport in 

solid-state devices. The journey continued with the discovery of spin-polarized electron injection from 

one ferromagnetic metal to another by Johnson and Silsbee [10]. This was followed by the independent 

giant magnetoresistance (GMR) breakthrough, observed in ferro/metal/ferro multilayer structures, 

reported by Fert et al. and Grünberg et al. Their pioneering work earned them the Nobel Prize in Physics 

in 2007 [11, 12]. 

       A milestone in the practical application of spintronics was the introduction in 1997 of spin valve 

sensors in read heads of hard disk drives, which were developed by an IBM researcher [13]. This 
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breakthrough enabled an impressive storage capacity of 16.8 GB, setting the stage for other 

manufacturers to follow suit and continually improve performance and storage capacities. 

       However, despite remarkable progress, spintronics has faced several challenges. The search remains 

for low-cost, abundant, and lightweight ferromagnetic materials with 100% spin-polarized current, 

longer spin lifetime, high magnetic anisotropy, and easy manipulation of spin currents. Furthermore, it 

is important to consider the influence of strain and temperature on spin properties to exploit the full 

potential of spintronic devices [14].  

       During the late 20th century, heavy transition metals such as iron (Fe), nickel (Ni), and cobalt (Co) 

gained recognition as important components of spintronic materials due to their high Curie temperatures 

(TC) and intrinsic ferromagnetic (FM) nature. These properties make them ideal for generating and 

controlling spin polarization, which is fundamental to various spintronic applications. Due to their 

remarkable contributions, these materials have laid the foundation for remarkable advances in this field 

[15].  

       As a result, the field of spintronics experienced rapid growth, driven by the growing interest and 

contributions of numerous research groups. This trend can be seen in the significant increase in 

publication numbers over the years, as shown in Figure 1. 

 

 

Figure 1. Annual publications on spintronics over the past decade. 
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      1.2.2   Spin Devices  

       Figure 2 provides a comprehensive and insightful overview of spintronic devices, which can be 

conveniently divided into two distinct categories: Mott-type and Dirac-type, with each category 

characterized by its unique use of electron spins, spin waves, and spin/orbit moments. In the Mott-type 

devices, the most important phenomena are giant magnetoresistance (GMR) and tunneling 

magnetoresistance (TMR), while the Dirac-type devices exploit the fundamental spin-orbit interactions 

[16].  

       To better understand the evolutionary progress of these spintronic devices, we can divide them into 

three generations, each with a notable leap in their capabilities and applications. The first generation 

revolves around spin transport, with electrical spin generation playing a central role. The second 

generation includes devices that exploit spin dynamics, making skilful use of spin-orbit effects, electric 

fields and electromagnetic wave applications. These advances have significantly expanded the horizons 

of spintronics and led to transformative functionalities and innovative possibilities. Finally, the 

groundbreaking developments of the third generation pushed the boundaries of spintronics even further 

to include three-dimensional structures and quantum technology. This development has catapulted 

spintronics into the realm of quantum computation and promises a revolutionary paradigm shift in the 

field. 

 

 

Figure 2. Catalog of spintronics devices. After Ref [16]. 
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       1.2.3   Spin Generation  

       The generation of spin-polarized electrons in non-magnetic (NM) materials can be achieved by 

various methods [16]. These techniques include spin injection from ferromagnetic (FM) materials, 

application of magnetic or electric fields, introduction of electromagnetic waves, Zeeman splitting, spin 

driving force, thermal gradients, and mechanical rotation (see Figure 3). A commonly used approach is 

spin injection through FM materials such as conventional FM metals (Fe, Co, and Ni), half-metallic 

ferromagnets (HMF), and dilute magnetic semiconductors (DMS).  

       Besides, spin-polarized electrons in an NM material may exhibit a population difference due to a 

stray field near the edge of an FM. Electromagnetic waves such as circularly polarized light and 

microwaves can also excite spin-polarized electrons in SC materials, where the optical selection rule 

plays a crucial role. Conversely, a spin-polarized electron current can produce circularly polarized light 

emission. These principles can be extended to spin generation by other electromagnetic waves, including 

spin pumps and high-frequency spin induction.  

       Furthermore, the application of a thermal gradient due to the spin-Seebeck and Nernst effects has 

been shown to be effective in generating spin-polarized carrier currents and offers valuable opportunities 

for energy harvesting and other potential applications. 

 

 Figure 3.  Methods for generating spin-polarized electrons in non-magnetic media. After Ref [16]. 
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1.3 Opportunities at the Frontiers of Spintronics 

       As mentioned in the previous section, an effective method for generating spin-polarized electrons 

is through the application of a thermal gradient, which leads to the emergence of a new field at the 

forefront of spintronics, known as “spin caloritronics”.  

       Spin caloritronics deals with the study of thermoelectric transport effects in material systems in 

which magnetic spin moments are introduced. The inclusion of additional spin degrees of freedom not 

only opens up a wealth of conceptually innovative mechanisms and functionalities, but also ushers in a 

new era of transformative breakthroughs in the conversion of thermal to electrical energy in solids. In 

Figure 4 we present a clear representation of the concept of spin caloritronics. 

 

 

 

             

 

          

 

 

            

         Figure 4. An illustrative depiction of the concept of spin caloritronics. 

       Since its founding in 2009 through an international workshop, the field of spin caloritronics has 

attracted considerable attention. Annual meetings of specialists in the field have become the norm as the 

research topic attracts more and more researchers. In particular, the twelfth “Spin Caloritronics” 

workshop took place in 2023 [17].  

       The German Physical Society (DFG) has recognized the importance of this emerging field and 

initiated a priority program to support further research [18]. In addition, the US Department of Energy 

has provided funding for the SHINES (Spins and Heat in Nanoscale Electronic Systems) research 

cluster, which includes 14 research groups from 7 different institutions across the country.  

       The interdisciplinary nature of spin caloritronics, combining magnetism, thermoelectrics and 

microelectronics, ensures that it will continue to captivate the global scientific community and generate 

immense interest in cutting-edge research [19]. 

SPIN 

HEAT CHARGE 

Spin 

Caloritronics Spintronics 

Thermoelectrics 

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.4.047001
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       Before continuing our discussions in this new area, it is first necessary to look at the history of 

thermoelectricity to better understand the role of spin in our study. 

       1.3.1   Thermoelectric Effects 

       Thermoelectricity is an intrinsic property of materials that gives them the ability to convert thermal 

energy into electrical energy. Over time, this fascinating area has experienced two significant periods of 

development: 

       The first stretched from 1821 to 1851, the second lasted from the late 1930s to the early 1960s. In 

1821, the pioneering German physicist Thomas Johann Seebeck made a significant discovery, revealing 

one of the fundamental thermoelectric effects [20]. His observation involved a metal needle placed 

between two different metal conductors connected at their ends by junctions at different temperatures, 

resulting in a noticeable deflection. He originally incorrectly attributed this phenomenon to a magnetic 

field induced by the temperature differences at the metal junctions and suggested that this could explain 

the earth's magnetic field. 

       However, in 1825, Oersted corrected this misunderstanding by showing that the effect was due to 

the emergence of a potential difference at the junction of two materials with temperature contrast. This 

discovery became known as the “Seebeck effect.” Consequently, this effect allows the use of a 

temperature gradient to generate an electric current, as described by the equation:                                              

                                                                      ∆𝑽 = 𝑺𝑨𝑩. ∆𝑻                                                              (eq.1) 

With 𝑺𝑨𝑩 being the Seebeck coefficient or thermoelectric power of the two materials A and B, typically 

expressed in µV.K-1, and ∆𝑉 representing the electric potential difference generated by the temperature 

difference ∆𝑇.    

       In 1834, physicist and watchmaker Jean-Charles Peltier made the groundbreaking discovery that a 

temperature difference occurs at the junctions of two different materials when they are exposed to an 

electric current [21]. However, it took until 1838 for Lenz to fully explain the phenomenon [22]. 

Through a convincing experiment, Lenz showed that the direction of heat transfer depends on the 

direction of current flow. He crystallized water around a bismuth-antimony compound and by reversing 

the direction of the current; he managed to melt the ice. This phenomenon became known as the “Peltier 

effect.”  
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       Since each material has its own Peltier coefficient 𝜋, flowing a current through the junction results 

in an interruption in the flow of heat at that point. For example, as current flows from material 𝑎 to 

material 𝑏, the junction heats up (if 𝜋𝑎 > 𝜋𝑏) or cools (if 𝜋𝑎 < 𝜋𝑏), as described by the equation:    

                                                                           𝑸 = 𝛑𝑨𝑩. 𝑰                                                               (eq.2) 

With 𝑄 representing the generated thermal power, 𝐼 denoting the electric current, and 𝛑𝑨𝑩 being the 

Peltier coefficients of the two materials.  

       In 1840, a crucial breakthrough occurred when James Prescott Joule revealed his groundbreaking 

discovery. He showed that whenever an electric current flows through a material, an amount of heat is 

generated that is directly proportional to the intensity of that current [23]. This remarkable phenomenon 

became known as the “Joule effect” and its expression is captured by the following equation: 

                                                                    𝒒𝑱 = 𝝆. �⃗�𝟐                                                         (eq.3) 

With 𝜌 representing the electrical resistivity of the material. 

       It is obvious that the square of the current flux density and the positive nature of the electrical 

resistivity contribute to the inevitable positivity of the amount of heat, 𝑞𝐽. Unlike the reversible Peltier 

and Seebeck effect, the Joule effect is irreversible as it merely produces the production of heat without 

the ability to absorb it. In addition, the physicist William Thomson established the crucial connection 

between the Seebeck and Peltier effects in 1851 [24]. Consequently, when a temperature difference and 

an electric current are applied at the same time, a dynamic heat exchange with the environment occurs. 

Conversely, a material exposed to a thermal gradient and with heat flowing through it produces an 

electric current, a process known as the “Thomson effect.”  

       The heat output or absorbed per unit volume can be expressed using the following formula: 

                                                           𝑸𝑻 = −𝝉. 𝑱.⃗⃗⃗ �⃗⃗⃗�𝑻                                                          (eq.4) 

 𝜏 denotes the Thomson coefficient. The Thomson coefficient is closely linked to the Seebeck and Peltier 

coefficients, as expressed in the following relationship:                                              

                                                                            𝛑𝑨𝑩 = 𝐒𝑨𝑩.𝑻                                                           (eq.5) 

                                                               𝝉 = 𝝆.
𝒅𝐒𝑨𝑩

𝒅𝑻
                                                             (eq.6) 
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       The Peltier, Seebeck and Thomson effects have a fundamental difference: the latter phenomenon 

manifest itself within a single material, eliminating the need for a connection between different 

materials, as in the case with other two. 

       The timeline of discovery of these various thermoelectric effects by their respective pioneers is 

shown in Figure 5(a), along with schematic representations of each effect (Figure 5(b)). 

 

 

Figure 5. (a) Key pioneers in thermoelectricity. (b) The representation of Seebeck, Peltier, and 

Thomson effects, respectively. 

      1.3.2    Transport Equations 

       Thermoelectric devices are based on the connection of two pairs of materials, one of type p with S 

> 0 and the other of type n with S < 0. When electric current is applied, charge carriers move from the 
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cold to the hot source. More specifically, electrons in the n-type branch migrate toward the hot source, 

while holes in the p-type branch also migrate toward the same heat reservoir. This concerted action 

results in both charge carriers transporting entropy from the cold source to the hot source, ultimately 

inducing a heat flow that actively counteracts heat conduction [25].  

       Within each branch, the total flow is expressed by: 

                                                     𝑸𝒑 = 𝑺𝒑𝑰𝑻 − 𝛋𝒑𝑨𝒑
𝒅𝑻

𝒅𝒛
                                                          (eq.7) 

                                                       𝑸𝒏 = 𝑺𝒏𝑰𝑻 − 𝛋𝒏𝑨𝒏
𝒅𝑻

𝒅𝒛
                                                        (eq.8) 

Where 𝛋𝒑 and 𝛋𝒏 are the thermal conductivities of the p-type and n-type materials, Ap and An are their 

respective cross-sectional areas, Sp and Sn are the Seebeck coefficients, and z represents the spatial 

coordinate.  

       Heat is dynamically transported from the cold source to the hot source, resulting in a total flux 𝑄𝑡 

[25]: 

                                                                   𝑸𝒕 =  (𝑸𝒑 +  𝑸𝒏)|
𝒛=𝟎

                                                      (eq.9) 

       At the same time, the Joule effect comes into play in the circuit due to the flow of the electrical 

current I. The heat generated by this effect is given by ρI²/A. Conservation of energy can be aptly 

described for both branches of the circuit, taking into account the balance achieved by a non-constant 

thermal gradient: 

                                                           𝛋𝒑𝑨𝒑
𝒅𝟐𝑻

𝒅𝒛𝟐 =
𝑰𝟐𝝆𝒑

𝑨𝒑
                                                          (eq.10) 

                                                                𝛋𝒏𝑨𝒏
𝒅𝟐𝑻

𝒅𝒛𝟐 =
𝑰𝟐𝝆𝒏

𝑨𝒏
                                                          (eq.11) 

       When analyzing the system, we must carefully consider the boundary conditions. Let Ln and Lp 

denote the lengths of the individual branches. At the cold source (z = 0), the temperature remains the 

same as the cold source, ensuring a consistent thermal interface. Similarly, at the hot source (z = Lp or 

z = Ln), the temperature is maintained at the hot source level, thereby maintaining thermal equilibrium.  

       The boundary conditions can therefore be formulated precisely as follows [25]: 

                                                              𝑻 = 𝑻𝒄  at    𝒛 = 𝟎                                                                     (eq.12) 
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                                                              𝑻 = 𝑻𝒉  at   𝒛 = 𝑳𝒏  𝒐𝒓 𝒛 = 𝑳𝒑                                                   (eq.13) 

       The eq.10 and eq.11 yield: 

                                                         𝛋𝒑𝑨𝒑
𝒅𝑻

𝒅𝒛
= −

𝑰𝟐𝝆𝒑(𝒛−
𝟏

𝟐
𝑳𝒑)

𝑨𝒑
+

𝛋𝒑𝑨𝒑(𝑻𝒉−𝑻𝒄)

𝑳𝒑
                                         (eq.14) 

                                                     𝛋𝒏𝑨𝒏
𝒅𝑻

𝒅𝒛
= −

𝑰𝟐𝝆𝒏(𝒛−
𝟏

𝟐
𝑳𝒏)

𝒏
+

𝛋𝒏𝑨𝒏(𝑻𝒉−𝑻𝒄)

𝑳𝒏
                                          (eq.15) 

       By substituting these formula into eq.7 and eq.8 and employing eq.9, we reveal the comprehensive 

expression for the total thermal flux 𝑄𝑡:   

                                                            𝑸𝒕 = (𝑺𝒑 − 𝑺𝒏)𝑰𝑻𝒇 − 𝛋∆𝐓 −
𝟏

𝟐
𝑰𝟐𝑹                                              (eq.16) 

Where 𝛋 is the thermal conductivity and R is the electrical resistance of the circuit, both defined as 

follows: κ 

                                                                          𝛋 =
𝛋𝒑𝑨𝒑

𝑳𝒑
+

𝛋𝒏𝑨𝒏

𝑳𝒏
                                                              (eq.17)  

                                                                           𝑹 =
𝐋𝒑𝝆𝒑

𝑨𝒑
+

𝐋𝒏𝝆𝒏

𝑨𝒏
                                                              (eq.18) 

       The combined Joule and Seebeck effectsplay a crucial role in determining the dissipated power W 

[26]: 

                                                         𝑾 = 𝑰. [(𝑺𝒑 − 𝑺𝒏). ∆𝐓 + 𝐈𝐑]                                                       (eq.19) 

       The efficiency εc of the thermoelectric cooler is defined as the ratio between the extracted heat 𝑄𝑡 

and the dissipated electrical power W. By utilizing equations eq.16 and eq.19, it follows [26]:  

                                                        𝜺𝒄 =
𝑸𝒕

𝑾
=

(𝑺𝒑−𝑺𝒏)𝑰𝑻𝒇−𝛋∆𝐓−
𝟏

𝟐
𝑰𝟐𝑹

𝑰.[(𝑺𝒑−𝑺𝒏).∆𝐓+𝐈𝐑]
                                                            (eq.20) 

       In addition, it is possible to determine the efficiency of a p-n device specifically designed for 

electricity generation from a temperature difference. The efficiency εc is defined as the ratio of the useful 

electrical power delivered to a load resistance r and the thermal flux through the device:   
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                                                𝜺𝒆 =
𝑾useful

𝑸
=

𝑰.[(𝑺𝒑−𝑺𝒏).∆𝐓+𝐈𝐑]

(𝑺𝒑−𝑺𝒏)𝑰𝑻𝒇−𝛋∆𝐓−
𝟏

𝟐
𝑰𝟐(𝑹+𝒓)

                                                  (eq.21) 

       This profound expression provides a way to discover the electrical current that maximizes 

efficiency. Both cooling and power generation have two different values of electrical current I, each 

optimizing either the conversion efficiency or the electrical energy generated by using heat. 

       When both efficiencies reach their peak, an interesting observation occurs that shows their 

dependence exclusively on the temperatures Tc and Th and the dimensionless figure of merit Zpn.TA 

[27]. Here TA = (Tc + Th)/2 represents the average temperature, a crucial parameter in this thermoelectric 

context. The figure of merit factor Zpn.TA is a critical factor that is defined specifically for the particular 

pair of materials used in the device. The Zpn.TA formulation includes the intrinsic absolute parameters 

of the materials constituting the thermoelectric couple [27]: 

                                                                  𝒁𝒑𝒏𝑻 =
(𝑺𝒏−𝑺𝒑)𝟐

(√𝛋𝒑𝝆𝒑+√𝛋𝒏𝝆𝒏)𝟐 𝑻                                                             (eq.22) 

The maximum occurs when the efficiency reaches its peak. 

       Similarly, individual p-type and n-type materials each have their own intrinsic factor, commonly 

known as the figure of merit: 

                                                        𝒁𝑻 =
𝑺𝟐

𝛒𝛋
𝑻 =

𝑺𝟐𝝈

𝛋
𝑻 = 

𝑺𝟐𝝈

𝛋𝒆+𝛋𝒍
𝑻                                          (eq.23) 

       The figure of merit factor 𝑍𝑇 is of utmost importance when assessing the thermoelectric properties 

of a material and serves as a crucial indicator of its suitability for thermoelectric applications. This 

dimensionless factor plays a critical role in whether a material has desirable thermoelectric properties 

or does not meet the criteria. In order to achieve the greatest possible efficiency of thermoelectric 

conversion, a maximum value of 𝑍𝑇 must be aimed [28]. This requires maximizing the Seebeck 

coefficient and achieving the highest possible electrical conductivity and hence the numerator S2σ, 

called the power factor, while at the same time minimizing the denominator, which represents the sum 

of the electronic contribution to thermal conductivity, κe , and the lattice contribution, κl. 

       1.3.3   Optimization Parameters for 𝑍𝑇 

       We have just seen the importance of the quality factor in identifying high-performance 

thermoelectric materials, whether they belong to the n-type or p-type semiconductors. To realize the 

greatest potential of 𝑍𝑇, these materials must have distinct and precise thermal and electrical transport 

properties. However, we face a challenge because these transport phenomena have strong correlations. 
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Notably, a material with excellent thermal conductivity often also has exceptional electrical conductivity 

[29].  

       The insightful Figure 6 illustrates the overall evolution of thermoelectric properties with respect to 

carrier concentration and provides valuable insights into the complex relationship between thermal and 

electrical properties in thermoelectric materials. 

 

 

Figure 6. Evolving thermoelectric parameters with charge carrier concentration, n, at 300 K. After Ref 

[30]. 

       This figure provides a compelling insight into the complex interdependence of thermoelectric 

parameters on carrier concentration. As the concentration of charge carriers varies, a delicate 

equilibrium is created in which the Seebeck coefficient decreases while the electrical and thermal 

conductivity increases. It becomes clear that there is an optimal carrier concentration that maximizes the 

figure of merit typically found in heavily doped semiconductors. Remarkably, this optimal concentration 

is in the range of 1019 to 1020 cm-3, although each semiconductor has its own optimum.  

       When exploring the fascinating material properties described in the literature, a promising 

thermoelectric material should manifest itself as a glass due to its low thermal conductivity to phonons 

and as a crystal to electrons due to its exceptional electrical properties [31]. Achieving peak performance 

requires a complex crystal structure that hinders the propagation of phonons. Cutting-edge research has 

identified numerous degrees of freedom, allowing researchers to influence the figure of merit and shape 

material performance [32]. These critical factors are illustrated in Figure 7. 
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Figure 7. Degrees of freedom affecting the figure of merit. After Ref [30]. 

       These four degrees of freedom make it possible to optimize the quality factor. These mechanisms, 

which are crucial for charge carrier transport, are the key to understanding the complex interactions 

between charge, orbitals, spin, and lattice structure [33]. For example, by manipulating the crystal 

complexity of the semiconductor, the proportion of optical phonons increases compared to acoustic 

phonons. Since acoustic phonons mainly transport heat, a more complex structure leads to reduced 

thermal conductivity [34]. The incorporation of impurities or point defects increases phonon scattering 

and effectively reduces thermal conductivity [35]. At the same time, doping improves the electrical 

properties of the semiconductor [36]. Furthermore, heat transport through dimensionality reduction to 

limit the phonon mean free path and approximate the interatomic distance follows a mode of random 

thermal diffusion known as Einstein's model [37]. Furthermore, dimensionality reduction leads to 

significant fluctuations in electron density, favoring a high Seebeck coefficient without affecting the 

electrical conductivity of the material [38]. 

       1.3.4   Boltzmann Transport Theory 

       The simulation of electrical conductivity and the Seebeck coefficient can be achieved by applying 

first principles calculations alongside the use of the Boltzmann transport equation. Charge transport 

occurs in the presence of an electric field and/or a temperature gradient. This phenomenon is described 

in the following equation [39]:                                                  

                                                                    𝑱 = 𝒆 ∑ 𝒇. 𝝊 = 𝝈𝑬                                                     (eq.24) 
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In this context, 𝑱 represents the flow of charge; 𝒆 stands for the electronic charge; 𝒇 denotes the charge 

distribution; 𝝈 denotes the electrical conductivity; 𝑬 represents the electric field, and 𝝊 corresponds to 

the charge velocity.  By understanding the temporal and spatial distribution of charges, we can 

determine the flow of charges. The temporal development of the charge distribution can be illustrated 

as follows [40]: 

                                                          
𝝏𝒇

𝝏𝒕
+

𝒅𝒓

𝒅𝒕
. 𝛁𝒓𝒇 +

𝒅𝒑

𝒅𝒕
𝛁𝒑𝒇 = (

𝝏𝒇

𝝏𝒕
)𝒄                                                   (eq.25) 

Here, 𝒓 represents the electron's position; 𝒑 signifies momentum, and 𝒄 denotes collision index. More 

specifically, eq.25 illustrates the change in charge distribution after a collision. 

                                                                          
𝝏𝒇

𝝏𝒕
=

𝒇−𝒇𝟎

𝝉
                                                                    (eq.26) 

                                                                       𝒇 − 𝒇𝟎 = 𝑪𝒆
−𝒕

𝝉    𝝉                                                              (eq.27) 

       By utilizing eq.25, eq.26, and eq.27, we can derive: 

                                                                𝒇 = 𝒇𝟎 + 𝒆 (−
𝝏𝒇𝟎

𝝏𝜺
) 𝝉𝝊. 𝑬                                                          (eq.28) 

       Upon substituting eq.24 with the expression provided in eq.28, the conductivity can be effectively 

described as follows:  

                                                         𝝈 = 𝒆𝟐 ∑ −(
𝝏𝒇𝟎

𝝏𝜺
)𝝊𝟐𝝉                                                         (eq.29) 

       This equation can be reconfigured into tensor form as part of electronic structure calculations: 

                                           𝝈(𝜺) =
𝒆𝟐

𝑵Ω
∫ 𝒅𝜺 − (

𝝏𝒇𝟎

𝝏𝜺
) ∑ 𝝉𝒏,𝒌 �⃗⃗⃗�𝒏,𝒌 �⃗⃗⃗�𝒏,𝒌𝜹(𝜺 − 𝜺𝒏,𝒌)𝒏,𝒌                           (eq.30) 

In this context, Ω signifies the volume of the unit cell; 𝒆 denotes the charge of the carrier; 𝜺 represents 

the energy of the group; N stands as the count of k-points employed in the computation; 𝒇𝟎 corresponds 

to the Fermi-Dirac distribution function; τ denotes the relaxation time, which represents the average 

time elapsed between two collisions; 𝝊 signifies the charge group velocity, and δ is the delta function 

[41]. The indices k and n refer to the crystal momentum and band index, respectively.  

       The velocity,𝝊, can be estimated from the band structure through the following relationship:     
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                                                         �⃗⃗⃗�𝒏,𝒌 =
𝟏

ℏ

𝝏𝜺𝒏,𝒌

𝝏𝒌
                                                                          (eq.31) 

Here, ℏ is the reduced Planck constant. 

       In the presence of a temperature gradient, the total electric field deviates from the expression in 

eq.24 due to the influence of the Seebeck effect.  This change results in the adjusted formulation of eq. 

24 as shown below: 

                                                              𝑱 = 𝝈𝑬 − 𝝈𝑺𝛁𝑻                                                      (eq.32) 

       Moreover, the heat flux (Q) generated from the temperature difference can be defined as follows: 

                                                        𝑸 = 𝑻𝑱𝒔 = 𝑺𝑻𝑱 − 𝜿𝛁𝑻                                                    (eq.33) 

Where Js represents the entropic flow. Eq. 32 and eq. 33 are recognized as Onsager relationships [42].  

       Using the Onsager equations, we can derive the Seebeck coefficient and electronic thermal 

conductivity from band structure calculations: 

                                      𝑺 =
𝒆𝒌𝑩

𝑵Ω
𝝈−𝟏 ∫ 𝒅𝜺 − (

𝝏𝒇𝟎

𝝏𝜺
)(

𝜺−𝝁

𝒌𝑩𝑻
) ∑ 𝝉𝒏,𝒌 �⃗⃗⃗�𝒏,𝒌�⃗⃗⃗�𝒏,𝒌𝜹(𝜺 − 𝜺𝒏,𝒌)𝒏,𝒌                      (eq.34) 

                               𝜿𝒆 =
𝒌𝑩

𝟐 𝑻

𝑵Ω
𝝈−𝟏 ∫ 𝒅𝜺 − (

𝝏𝒇𝟎

𝝏𝜺
) (

𝜺−𝝁

𝒌𝑩𝑻
)

𝟐
∑ 𝝉𝒏,𝒌 �⃗⃗⃗�𝒏,𝒌�⃗⃗⃗�𝒏,𝒌𝜹(𝜺 − 𝜺𝒏,𝒌)𝒏,𝒌 − 𝑻𝝈𝑺𝟐     (eq.35) 

Here, µ denotes the chemical potential, and kB stands for the Boltzmann constant. 

       Based on the above equations, we can define electrical conductivity, Seebeck coefficient and 

electronic thermal conductivity. The two unknown parameters are the lattice thermal conductivity and 

the value of the relaxation time. How to determine them is already discussed in Chapter 3. 

 

       1.3.5   Spin-Powered Thermoelectrics 

       With thermo-spin effects, energy transfer is controlled by the spin current instead of the 

conventional charging current. This fascinating phenomenon has revealed several novel thermo-spin 

conversion processes in magnetic materials and their complex interconnecting structures. Notably, 

notable phenomena such as the spin-dependent Seebeck-Peltier effect [43, 44] have come to the fore, 

offering enormous potential for revolutionizing spintronics and applications in thermal energy 

conversion. 
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       The spin-dependent Seebeck-Peltier effect is a fascinating thermo-spin conversion phenomenon in 

ferromagnetic materials (FMMs). Its essence arises from the inequality of the Seebeck-Peltier 

coefficients between electrons with spin-up and spin-down orientation. To understand the transport 

phenomena within FMMs, a two-current model that treats spin-up and spin-down electrons as different 

entities is required [45]. The electron density of states (DOS) within FMMs depends on spin, leading to 

spin-sensitive variations in transport properties, including thermopower, electrical conductivity, and 

electronic thermal conductivity.  

       Using the two-current model, a comprehensive picture of the transport properties is created, which 

includes the entire electrical conductivity, the Seebeck coefficient and the electronic part of the thermal 

conductivity. This is achieved by combining the relevant information from the two spin channels, as 

given in the following equations [45]:  

       For electrical conductivity, the formula is as follows: 

                                                                       𝝈 =  𝝈 ↑  + 𝝈 ↓                                                       (eq.36) 

       Accounting for the complicated nature of the spin-Seebeck coefficient requires careful 

consideration of the up- and down-spin coefficients in relation to their respective electrical 

conductivities: 

                                           𝑺 =  (𝝈 ↑  𝑺 ↑  + 𝝈 ↓  𝑺 ↓) / (𝝈 ↑  + 𝝈 ↓)                                          (eq.37) 

       The electronic part of thermal conductivity can be expressed by the following simple summation: 

                                                               𝜿𝒆 =  𝜿𝒆 ↑  + 𝜿𝒆 ↓                                                           (eq.38) 

       However, the lattice thermal component works independently of spin considerations. We use a 

separate model to calculate this aspect. Further details will be explained in a later discussion.  

       In today's applications, the Peltier and Seebeck effects are of central importance for power 

generation and cooling. Semiconductors are playing a pioneering role in exploiting these phenomena. 

At absolute zero temperature (0 K), these materials exhibit electrical properties similar to those of 

insulators. However, as temperature increases, electrons acquire significant ability to generate electric 

currents [46]. Essentially, semiconductors occupy an intermediate position, having electrical 

conductivity levels that span the spectrum between metals and insulators. A semiconductor is classified 

as intrinsic if it maintains a pure state, although achieving absolute purity is virtually unattainable. In 

such cases, charge carriers arise exclusively from crystal defects and thermal excitation [29]. 

Consequently, these semiconductors have minimal electrical conductivity and have limited application 
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in thermoelectric scenarios. To address this challenge, doping becomes a crucial technique by 

introducing impurities into the intrinsic semiconductor matrix. In addition, the semi-metallic property, 

which is vital for spintronics, can only be realized through the process of doping semiconductors. 

       Subsequently, our goal will shift to the classification of wide bandgap semiconductors, a special 

category that is the focus of our research and piques our great interest. 

1.4  Wide Bandgap Semiconductors : Host Base for Different Applications 

       Wide-gap (WBG) semiconductors are a fascinating class of semiconductor materials characterized 

by their relatively large energy band gap (Eg > 2 eV). Due to their exceptional properties, these materials 

have become essential components of today's electronic devices and energy applications. They feature 

adjustable electrical conductivity, controlled carrier concentration and high optical transparency, 

making them extremely versatile and desirable. Among the prominent wide bandgap semiconductors, 

transparent conductive oxides (TCOs) have been intensively studied since the 1950s [47]. Materials 

such as tin-doped indium oxide (ITO) and amorphous In-Ga-Zn-O (IGZO) are extensively used in 

display technologies and solar cells [48]. These TCOs exhibit a remarkable combination of transparency 

and conductivity, allowing their use as transparent electrodes, enabling efficient light transmission while 

enabling effective electrical conduction.  

       While much of the research and device integration efforts have been directed toward wide bandgap 

oxide materials, it is important to note that the scope of transparent semiconductors extends beyond 

oxides. Since the early 20th century, numerous classes of non-oxide semiconductors have been 

experimentally demonstrated to exhibit both transparency and conductivity. In this context, the 

following classes have acquired particular importance: 

• Carbides with group IV anions [49] such as silicon carbide (SiC) and nitrides with group V anions 

[50] such as gallium nitride (GaN) have revolutionized power electronics due to their excellent 

electronic properties. SiC and GaN offer significant advantages, including high breakdown voltages, 

excellent thermal stability, and impressive electron mobilities. These properties make them ideal for 

power conversion and control applications, enabling more efficient energy management and improved 

performance in a range of electronic systems. 

• Halides like γ-CuI with anions from group VII [51] and IV two-dimensional (2D) materials [52] 

like graphene have shown great promise in various optoelectronic devices. These materials have unique 

properties that can be exploited for applications such as advanced sensors, ultra-fast electronics, and 

next-generation photonic devices. Their exploration opens up exciting possibilities for the development 

of innovative and powerful optoelectronic technologies. 
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• Furthermore, extensive research efforts have been dedicated to group-based VI chalcogenide (Ch = S, 

Se, Te) semiconductors, encompassing various material compositions. This includes binary II-VI MCh 

semiconductors, such as ZnS [53], and CdS [54], as well as other binary MxChy semiconductors (e.g., 

SnS2, In2S3, where M represents a metal). Ternary chalcopyrite I-III-Ch2 semiconductors, predominantly 

based -copper, have also received significant attention. Examples of this class include CuAlS2 [55], as 

well as other ternary compounds like α-BaCu2S2 [56] and Cu3TaS4 [57]. Moreover, multinary-layered 

mixed-anion compounds, such as LaCuOCh [58], have been investigated for their unique properties. 

Additionally, research has extended to 2D chalcogenides, both binary and ternary materials, including 

MoS2, further broadening the scope of exploration in this field. 

       The particular chemistries and properties of WBG chalcogenide semiconductors distinguish them 

from other compounds, particularly their oxide counterparts, and offer specific advantages for 

optoelectronic applications and as p-type semiconductors. This distinction can be understood by 

considering factors such as the covalency of metal−VI (M−VI) bonds, which tend to increase as we 

move down group VI in the periodic table. This increase in covalency leads to larger orbital overlaps 

and lower hole effective masses. Heavier chalcogenides, with elements such as sulfur (S), selenium (Se), 

and tellurium (Te), possess higher-lying p orbitals (S-3p, Se-4p, Te-5p) that can hybridize with metal 

(M) orbitals, such as copper (Cu) 3d orbitals. This hybridization results in the formation of more disperse 

and delocalized valence bands compared to oxides [59]. Consequently, p-type chalcogenides exhibit the 

potential for achieving higher mobilities than their oxide counterparts. For example, Cu-based 

chalcogenides have demonstrated p-type mobilities of up to 20 cm2 V−1 s−1 [56], while Cu-based wide 

bandgap oxides typically exhibit mobilities lower than 1 cm2 V−1 s−1.  

       Figure 8 provides a comprehensive network diagram architecture highlighting various WBG 

material classes, with particular emphasis on chalcogenides, which are clearly shown in a brown 

gradient. The classes are systematically organized and sorted according to their respective anion groups. 
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Figure 8. A network topology diagram illustrating the diverse material categories within WBG 

semiconductors. After Ref [60]. 

       On the other hand, the simplest class of WBG chalcogenide semiconductors in terms of their 

respective cation groups consists of binary divalent metal chalcogenides designated M+2Ch-2 (Ch = S, 

Se, Te). Among these, the II-VI chalcogenide materials (referred to as II-Ch) are the most commonly 

used binary materials for electronic and optical applications. They typically contain cations of groups 

IIA and IIB, including elements such as Mg, Ca, Sr, Ba, Zn or Cd, among others. 

       The family of strontium chalcogenides SrX (X = S, Se, Te) has recently attracted considerable 

attention in both experimental and theoretical studies due to their intriguing physical properties [61, 62, 

63]. Their chemical composition leads to a number of fascinating properties, including the ability to tune 

their band gaps, exhibit high electrical conductivity, exhibit exceptional thermal stability, and display 

excellent optical properties spanning a wide spectrum of electromagnetic waves. In addition, strontium 

chalcogenides offer significant advantages compared to other materials, making them extremely 

attractive for scientific research and technological applications. Their abundance in nature, cost-

effectiveness and environmental friendliness contribute to the growing interest in harnessing their 

potential for various advances in science and technology. 
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      Furthermore, the versatile SrX chalcogenide family offers a compelling opportunity for extrinsic 

doping with both isostructural and non-isostructural binary systems. This opens up a wealth of 

possibilities that enable the exchange of cations and anions as well as the formation of ternary and/or 

quaternary compounds within the common crystal structure. A particular focus in research on SrX 

chalcogenides is the addition of extrinsic elements to the matrix in different concentrations [64–68]. 

This has become a fascinating area of research with the aim of modifying the inherent indirect nature of 

the electronic band gap and improving the optical absorption properties. By reducing the large band gap, 

these materials can be individually tailored to the specifications of optoelectronic devices. This trend 

was inspired by the successes observed in related technologies such as CIGS (copper indium gallium 

selenide) and CdTe (cadmium telluride), where the integration of extrinsic species to passivate intrinsic 

defects, the introduction of flat dopants, and the use of substitution doping (alloying) for band gap 

technology has led to impressive solar cell efficiencies of over 22% [69]. The integration of extrinsic 

species into the SrX chalcogenide family also offers exciting prospects for state-of-the-art spintronic 

devices and efficient spin caloritronic systems [70–72]. 

       From revolutionizing and advancing various fields to enabling efficient energy storage and 

facilitating the right path to energy conservation, research into strontium-based chalcogenides promises 

to address critical challenges and promote innovation in multiple areas.  

       For this dissertation we chose strontium monochalcogenide (SrS). Recognizing the importance of a 

comprehensive review, the following section delves into an in-depth study of both pure and SrS-based 

dilute magnetic semiconductors (DMS). In particular, we investigate their properties and applications in 

three-dimensional (3D) bulk structures as well as two-dimensional (2D) monolayer structures to 

highlight their importance in the fields of spintronics, optoelectronics, and thermoelectronics. 

1.4.1  Bulk SrS Monochalcogenide 

       Strontium sulfide (SrS), a promising member of the alkaline earth sulfide (AES) family, has proven 

to be a highly sought-after phosphor in various fields. Extensive research efforts have been devoted to 

exploring its applications in various fields, revealing its extraordinary potential. SrS has demonstrated 

superior performance and versatility in both bulk form and thin films, making it an attractive material 

for numerous practical applications. One of the main strengths of SrS lies in its luminescence properties, 

which have been extensively studied and exploited. Its indirect wide bandgap of 4.32 eV in bulk form 

[73] makes it an ideal choice for luminescence applications. This band gap allows SrS to create suitable 

luminescence centers and emit visible light without the undesirable effect of self-absorption [74]. This 

property ensures efficient light emission and improves the overall performance of SrS as a phosphor. 

The remarkable versatility of SrS phosphor is evident in its wide range of applications. In the field of 

optoelectronics, SrS is used in the development of efficient blue-emitting diodes (LEDs), displays and 
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radiation dosimetry. In addition, SrS is used in medical imaging to improve image quality and precision 

and enable more accurate diagnoses and treatments. 

       In addition, SrS has applications in various other areas, such as lighting technology, where it 

contributes to energy-efficient and long-lasting lighting solutions. SrS's versatility extends to quantum 

technologies and advanced sensing systems, where its luminescence properties play a critical role in the 

development of next-generation devices. SrS exhibits polymorphism, meaning it can crystallize in 

different phases depending on temperature and pressure conditions. At room temperature and ambient 

pressure, SrS adopts a rock salt crystal structure, also known as B1 structure (Figure 9(a)). Alternatively, 

it can be represented as a regular face-centered cubic (FCC) lattice arrangement of anions, with cations 

occupying the octahedral holes in the lattice. Both types of ions (strontium cations Sr2+ and sulfide 

anions S2-) have a coordination number of 6 with an overall compactness of 74%. This makes it an open 

structure and offers the possibility of introducing both light and heavy atoms. Figure 9(b) also presents 

a comprehensive representation of the Brillouin zone belonging to the FCC Bravais lattice. In this figure, 

the irreducible part of the Brillouin zone is highlighted and surrounded by prominent orange lines. 

          

Figure 9. a) The Unit-cell of the semiconductor SrS, which adopts a rock-salt structure. Green spheres 

represent the Sr atoms, while orange spheres depict the S atoms. The image was generated using VESTA 

software [76]. b) The first brillouin zone of an FCC crystal, with the irreducible wedge enclosed by 

orange lines. The special points within the brillouin zone are identified by their common names, and the 

reciprocal base vectors are labeled as b1, b2, and b3. After Ref [77]. 

       In the B1 structure, each strontium cation is surrounded by six sulfide anions and vice versa, 

resulting in six-fold coordination. The FCC lattice ensures a symmetrical and densely packed structure 

and gives the crystal stability. This arrangement of atoms enables efficient charge transport and 

favorable electronic properties and contributes to the usefulness of SrS as a semiconductor material. The 
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six-fold coordination in the rock salt structure ensures the optimal balance between electrostatic 

interactions and the packing efficiency of the atoms within the crystal lattice, contributing to optimized 

electrical conductivity. This coordination arrangement influences the mechanical, optical, electronic and 

thermoelectric properties of the material and plays a crucial role in determining its behavior in various 

applications. 

       However, fascinating phenomena occur in SrS under high pressures. Syassen et al. conducted X-

ray diffraction experiments and discovered a pressure-induced structural phase transition in SrS at 

around 18 GPa [73]. This transition involves a transformation from the NaCl-type structure (B1) with 

six-fold coordination to the CsCl-type structure (B2) with eight-fold coordination. 

       Furthermore, it was predicted that after the B1-B2 phase transition, the non-metallic nature of SrS 

would give way to metallic behavior at even higher pressures. This transition from a non-metallic to a 

metallic state is attributed to a mechanism known as bandgap overlap [75]. 

1.4.2 Tuning the Properties of SrS Monochalcogenide  

        The properties of bulk SrS can be fine-tuned and optimized using a variety of methods, allowing 

properties to be tailored to specific applications. Doping [64-68], co-doping [78, 79], alloying [80], 

defect engineering [81], dimensionality reduction [82, 83] and external stimuli [84] are powerful 

techniques for manipulating and improving the properties of these binary connection.  

• Doping: involves the introduction of foreign atoms into the SrS lattice to change its properties. By 

selectively adding dopants, we can change the electronic and optical properties of SrS. Doping can 

influence the band gap, carrier concentration and conductivity, enabling the optimization of SrS for 

applications in optoelectronics, photovoltaics, thermoelectrics and sensing. 

• Co-doping: refers to the simultaneous introduction of two or more dopants into SrS. This technique 

allows for more precise control of material properties by combining the effects of multiple dopants.  

• Alloying: Solid solutions are created by alloying SrS with other materials, which expands the range of 

properties that can be achieved. By incorporating different elements, researchers can change the lattice 

structure, band gap and physical properties of SrS. 

 • Defect engineering: involves the targeted manipulation of defects within the SrS crystal lattice. By 

controlling the concentration and type of defects, researchers can fine-tune the electrical, optical and 

mechanical properties of SrS. Defect engineering plays a crucial role in improving the thermoelectric 

efficiency, luminescence properties and mechanical strength of SrS.  
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• Dimensional reduction: refers to the reduction of bulk dimensionality of SrS into low dimensional 

structures such as 2D monolayers and their derivatives, i.e. nanotubes (1D), nanoribbons (1D) and 

nanoflakes (0D). At low dimension, SrS exhibits unique properties due to quantum confinement effects 

and an increased surface area to volume ratio. Reducing the dimensionality of SrS provides improved 

electronic and optical properties, improved charge transport, and increased surface reactivity, making it 

valuable for applications in nanoelectronics, catalysis, and energy storage. 

 • External stimuli: such as temperature, pressure and electric fields can be used to modify the 

properties of SrS. By exposing SrS to certain environmental conditions, its physical properties can be 

changed. External stimuli also enable exploration of SrS behavior under different conditions. 

       Although a lot of work has been done using these methods, especially in the area of doping and 

alloying, there is still a need for a systematic study of this compound and its derivatives using different 

approaches. In this dissertation, we chose doping, co-doping and dimensionality reduction as the primary 

techniques to tune the properties of rock salt SrS. These techniques have proven effective in improving 

material performance in optoelectronics, spintronics, spin caloritronics and nanoelectronics, which are 

indeed the future technological trends. The basic building blocks of spintronics, dilute magnetic 

semiconductors (DMS), were selected by doping with transition metals and studied in both 3D bulk 

configurations and 2D monolayers. Alkaline metals were also selected as co-dopants due to their three-

dimensional volume structure. 

       Figure 10 provides a representation of the extrinsic elements examined in this dissertation. The 

binary host elements are marked in green, the dopant elements in red, and the elements that form 

substitutional co-dopants are shown in blue. Certain elements such as Sr, S and Fe are considered for 

both 3D and 2D doping scenarios (in yellow). 
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Figure 10. Visualizing the covered elements in this dissertation within the periodic table. 

       Moving forward, we will continue our discussion about DMS and alkali-substituted elements, 

highlighting their specific and exceptional properties as well as their applications. 

1.4.2.1 Diluted Magnetic Semiconductors (DMSs) 

       Magnetic semiconductors are unique materials with both intrinsic semiconductor properties and 

magnetic properties. These substances provide a rich platform for theoretical and experimental 

investigations, allowing researchers to explore core ideas in condensed matter physics. The focus of 

magnetic semiconductor research is the complex interplay between semiconductor band electrons, such 

as charge carriers or impurity states, and the magnetic moments of the constituent ions. This unique 

interaction leads to a variety of electronic phenomena, including giant magnetoresistance, robust 

magneto-optical rotation, magnetically driven semiconductor-metal transitions, and fascinating 

magnetic polaron effects, among others [85]. These phenomena are missing from conventional 

semiconductors, making magnetic semiconductors a fascinating subject of research. 

       While rare earth chalcogenide compounds, particularly those containing europium, have attracted 

considerable attention, the initial fascination with these materials stemmed from the discovery of EuO, 

a structurally simple semiconductor ferromagnet. At that time, EuO was only the second known 

semiconductor ferromagnet [86]. The ferromagnetic behavior of these compounds was explained by the 



Chapter 1                                                                                                   Literature Background 

 

32 

 

indirect coupling between local moments on the europium ions and the conduction band states. 

Nevertheless, the reported Curie temperature (TC) of about 170 K, which is the temperature at which the 

metal loses its spontaneous magnetization - that is, the temperature at which the ferromagnetic phase 

changes to the paramagnetic phase - remains well below room temperature when it is endowed with Gd. 

This represents a significant obstacle in the search for improvements in this regard.  

       Subsequent studies have focused their attention primarily on dilute magnetic semiconductors 

(DMS), which are currently among the most extensively studied systems. These DMSs are composed 

of alloys in which transition metal ions, including Cr2+, Mn2+, Fe2+, Co2+, etc., are randomly incorporated 

in place of specific group II elements in II-VI semiconductor compounds, as explained in Figure 11. 

      

Figure 11. Shematic illustration of different types of semiconductors based on their magnetic 

properties: (a) Magnetic semiconductor, (b) Diluted magnetic semiconductor, and (c) Non-magnetic 

semiconductor. Green circles represent the magnetic ion. After Ref [87]. 

       On the semiconductor side, the multicomponent nature of DMS allows continuous tuning of 

structural and electronic parameters by adjusting the composition. On the magnetic side, they exhibit 

phenomena such as spin-glass transitions, antiferromagnetic short-range ordering, and anisotropic 

exchange interactions, making them fascinating random magnetic systems. Beyond their scientific 

appeal, DMSs hold promise for various technological applications. The ability to grow DMS in 

multilayer form with atomic precision using methods such as molecular beam epitaxy (MBE) opens 

opportunities for the integration of these materials into II-VI based integrated semiconductor structures 

[88]. This not only promotes their scientific research, but also enables practical advances in areas such 

as optoelectronics, spintronics, magnetoelectronics and spin caloritronics. 

       The main goal of doping conventional semiconductors with magnetic ions is to make them 

ferromagnetic at room temperature without changing their semiconductor properties, and thus make 

them usable in spintronics. Although almost all materials have some degree of magnetism, only three 

are capable of maintaining permanent magnetization with TC above 600 K: Fe, Ni and Co. These 

materials have high magnetic susceptibility, about 200 for Fe, and are called ferromagnetic. On a 
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microscopic scale, they consist of tiny regions in which each atom exhibits the characteristics of 

magnetic dipoles that are naturally oriented in a uniform direction. When exposed to an external 

magnetic field, these areas align with the field, resulting in significant overall magnetization of the 

material. Furthermore, this magnetization persists even when the external excitation is removed, a 

phenomenon known as hysteresis [89]. 

       In fact, these materials represent typical ferromagnetic metals, but with a unique twist as they 

manifest as new semi-metallic ferromagnetic materials (HMF). The prediction of such materials dates 

back to 1983, when de Groot et al. [90] conducted a theoretical study on the band structure of the half-

Heusler alloy NiMnSb. This alloy exhibited an intriguing property at the Fermi level (EF), where it had 

a zero electronic density of states for minority spins and a nonzero density of states for majority spins. 

Consequently, it conducts electricity for one spin direction (up), while for the other spin direction 

(down), it behaves like a semiconductor or insulator. This fascinating behavior allows achieving a 

remarkable 100% spin polarization, as indicated by the following relationship: 

                                                               𝑷 =
𝑵𝑬𝑭

↑ +𝑵𝑬𝑭
↓

𝑵𝑬𝑭
↑ −𝑵𝑬𝑭

↓                                                         (eq.39) 

Where: 𝑵𝑬𝑭
↑

 and 𝑵𝑬𝑭
↓  are the values of electronic density of states at the EF for spin-up and spin-down 

electrons, respectively.  

       The difference in density of states between a non-magnetic metal, magnetic metal, non-magnetic 

semiconductor, and half-metal is schematically depicted in Figure 12. 

 

Figure 12.  Schematic representation of the difference in density of states between a non-magnetic 

metal, magnetic metal, non-magnetic semiconductor, and half-metal. After Ref [91]. 
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       In certain DMS, interactions between electrons tend to align adjacent atomic magnetic dipoles 

antiparallel, resulting in two sublattices with opposite magnetization. The French physicist Louis Néel 

developed the first relevant model of this “anti-ferromagnetism” in 1936 [92]. In a “ferrimagnetic” 

material, neighboring atoms, due to their different natures, form magnetic dipoles with opposite 

orientations but different amplitudes (e.g. an Fe2+ ion and an Fe3+ ion), resulting in incomplete 

compensation. The spontaneous magnetization of such materials is non-zero below their Curie 

temperature [92]. Another visualization can be found in Figure 13. 

 

 

 

 

 

 

         

 Figure 13. Alignment of the magnetic spin of each individual iron atom. 

       It is generally accepted that the presence of partially filled d or f bands is a prerequisite for a material 

to exhibit magnetism. These partially filled bands lead to complex exchange interactions that are crucial 

for the emergence of magnetic order. The exchange interaction, a cornerstone of quantum mechanics, 

plays a crucial role in determining the long-range magnetic order in ferromagnets [93]. However, its 

influence extends beyond ferromagnets and profoundly affects ferrimagnets and antiferromagnets, 

where neighboring magnetic ions are subjected to forces that align their individual moments into parallel 

or antiparallel configurations. This profound interaction results from the delicate interplay of Coulomb 

forces and the Pauli exclusion principle. Their effects can be effectively captured and are given by the 

Hamiltonian of the Heisenberg exchange as follows: 

                                                                     𝑯𝒆𝒙 = −𝟐𝑱 ∑ 𝑺𝒊. 𝑺𝒋𝒊≠𝒋                                                                 (eq.40) 

In this context, 𝑺𝒊 represents the spin operator of the ith atom, and the parameter 𝑱 is commonly referred 

to as the exchange integral. The above equation may be expressed as follows in the continuum model, 
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which takes into account the exchange interaction only between nearest neighbors inside the cubic 

lattice:  

                                                                  𝑬𝒆𝒙= 𝑨𝒆𝒙 ∫(𝛁𝒎)𝟐dV                                                       (eq.41) 

Where, m = M/MS is the continuous vector of reduced magnetization. The parameter 𝑨𝒆𝒙, referred to as 

the exchange stiffness constant for the cubic lattice of spins, assuming the following form:  

                                                                  𝑨𝒆𝒙 =
𝟐𝑱𝑺𝟐

𝒂
                                                                          (eq.42) 

Where a is the lattice constant. 

       The previously mentioned interaction is referred to as direct exchange interaction, which 

encompasses the interaction of electrons between magnetic atoms and their closest neighbors. However, 

this exchange can also take place indirectly, linking magnetic moments across relatively greater 

distances. There are several noteworthy types of indirect exchange mechanisms, such as the Ruderman–

Kittel–Kasuya–Yosida (RKKY) exchange, which involves the coupling of metallic ions through itinerant 

electrons; super-exchange, occurring through various nonmagnetic ions mediating the exchange; and 

anisotropic exchange interaction (also known as Dzyaloshinskii-Moriya interaction) [94], where the 

spin-orbit interaction exerts significant influence and often results in a slight canting of neighboring 

spins. Additionally, there is the double exchange that arises between ions in different oxidation states. 

       Other important interactions are the s-d and p-d exchange interactions, which refer to the interaction 

between the conduction and the valence bands, respectively, with the d electron states of the magnetic 

atom in a material. This interaction is crucial in confirming and reinforcing the ferromagnetic order in 

DMSs. 

       The s-d and p-d exchange interactions in DMSs, arises from intentional doping of magnetic 

impurities (TM ions) into a non-magnetic semiconductor matrix. The s and p electrons of the host atoms 

interact with the d electrons of the magnetic impurities, creating local magnetic moments in the material. 

       The Heisenberg exchange Hamiltonian in this case can be written as follow:  

                                                        𝑯𝒆𝒙 = ∑ 𝑱 (𝒓 − 𝑹𝒊). 𝑺𝒊. 𝒔𝒊                                               (eq.43) 

Where 𝑺𝒊 and 𝒔 represent the spin of the localized electrons and the delocalized carriers at 𝑅𝑖 and 𝑟 

belonging to the magnetic ions and the semiconductor matrix, respectively.   

       With the mean field approximation [95], the Hamiltonian exchange can be expressed in two forms:  
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For the symmetry s electrons in the conduction band and those localized on the magnetic ion: 

                                                             𝑯𝒆𝒙  =  −𝒙𝑵𝟎𝜶 <  𝑺 >  𝒔                                                            (eq.44) 

For the symmetry p electrons in the valence band and those localized on the magnetic ion: 

                                                           𝑯𝒆𝒙  =  −𝒙𝑵𝟎𝜷 <  𝑺 >  𝒔                                                         (eq.45) 

𝑵𝟎𝜶 and 𝑵𝟎𝜷 are the exchange constants corresponding to the s-d and p-d exchange interactions, 

respectively. In the case of a positive exchange constant, the interaction between the spins is 

ferromagnetic else, it is antiferromagnetic. 

       During the past ten years, these DMSs have been extensively studied, but there have been limited 

experimental investigations conducted, in contrast to the existing theoretical works available in the 

literature. Some notable examples include Ca0.75Cr0.25S and Ca0.75V0.25Se [96], Zn1-xCrxS and Cd1-xCrxS 

[97], Mg1-xVxSe [98], Be0.75Mn0.25X (X = S, Se, Te) [99], and Sr0.75TM0.25S (TM is 3d transition metals) 

[100]. More remarkably, Fe-based DMSs have garnered considerable attention as ferromagnetic 

semiconductors because of their high Curie temperatures, low power consumption, and suitability for 

high-speed spin devices [101]. Researchers have been inspired by these intriguing characteristics and 

have dedicated efforts to unraveling the ferromagnetic mechanism in Fe-based DMSs. Several notable 

studies have contributed to our understanding of these materials. We mention, Fe-doped ZnO by Zhang 

et al. [102], Fe-doped CdS by Bourouis et al. [103], Fe-doped CdSe by Singh et al. [104], Fe-doped 

ZnTe by Mahmood et al. [105], Fe-doped ZnSe by Li et al. [106], and Fe-based CaS by Amari et al. 

[107]. The results of these studies showed that the materials exhibited their highest strength when 

incorporated with the Fe impurity, exhibited ferromagnetic behavior at room temperature, and allowed 

tuning of mechanical, magnetic, and optical properties through different Fe dopant concentrations. 

       The co-doping process has shown even greater improvement in such DMS, as it has been 

demonstrated that the addition of other impurities besides the Fe atoms not only improves the physical 

properties but also introduces new properties different from those obtained by single doping can be 

achieved. An example of this is the addition of Fe alongside Mn in CdTe [108], which not only improves 

the magneto-optical properties but also changes the DMS type from n-type to p-type. Another example 

is the co-doping of CdS with (Cu, Fe) [109], which results in a transformation of its character from 

metallic to semi-metallic in nature with an increase in magnetic moment value, making it useful for 

spintronic applications. Furthermore, unlike other transition metals such as Cr and Co, the addition of 

Fe to CdxHg1 – xSe [110] results in a significant change in thermoelectric properties, which could be 

manipulated by adjusting the composition. 
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       On the other hand, the presence of TM clustering, the complexity of controlling stoichiometry, and 

the challenges associated with d-d transitions make the use of both TM- co-dopants difficult [111]. 

Nowadays, co-doping with other substituents such as non-magnetic elements, called d0, has emerged as 

a viable approach to improve and tailor the properties of DMS materials and offers exciting opportunities 

for advancements in various technological applications. Further discussion of this type of material can 

be found in the following section. 

           1.4.2.2   d0 vs. Conventional Magnetism 

       d0 magnets include a category of materials that lack magnetic ions with d or f orbitals and should 

theoretically not exhibit ferromagnetic properties. However, these materials often exhibit 

ferromagnetism with a Tc of over 300 K [112]. In this fascinating category of materials, the first 

materials discovered were doped non-magnetic oxides, thin films of HfO2, non-stoichiometric CaB6 and 

irradiated graphite, with observation revealing that these materials exhibit small ferromagnetic moments 

and possess Curie points well above room temperature despite the absence magnetic atoms [113]. The 

magnetism in these materials has been attributed to the interaction between localized magnetic moments 

and traveling charge carriers. Even though d0 elements do not have partially filled d or f electron shells, 

they can still exhibit ferromagnetism due to the double exchange mechanism discussed previously. 

       In some cases, the formation of resonant donor levels in d0 ferromagnets can also contribute to their 

magnetic properties. These resonant donor values can be controlled by varying the composition of the 

solid solution, allowing tuning of the magnetic behavior [114]. From now on, a significant part of the 

work was devoted to the study of ferromagnetism, which arises from the incorporation of non-magnetic 

elements into wide bandgap semiconductors [115–117]. This increase in interest can be attributed to the 

remarkable effects of metal-free magnetism, which offers the potential for the further development of 

lightweight, biocompatible and environmentally friendly magnetic materials [118]. A widely discussed 

scenario for d0-based DMSs involves magnetic polarization of valence states by doping with sp-type 

impurities. To maximize HM ferromagnetism and improve structural and optoelectronic properties, for 

example, to increase luminance, facilitate charge injection, and achieve better energy band alignment, 

the most promising approach is to selectively dope the cation sites with the s-type, also known as p0 

elements from the first row of the periodic table, such as Li+, Na+ and K+ [119]. 

       The alkali metals Li+, Na+ and K+ have one valence electron and are therefore electron donors when 

incorporated into a host material. This means that they provide the host material with additional charge 

carriers (electrons), effectively increasing its electrical conductivity. Doping with alkali metals can 

improve the electrical and thermal properties of the material, making it more suitable for various 

electronic and energy applications. In addition to changing the electrical conductivity, doping with alkali 

metals can also influence the optical properties of the material. For example, there may be changes in 
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the bandgap, allowing the material to absorb and emit light of different wavelengths. This property is 

crucial for the development of optoelectronic devices such as LEDs and solar cells. The monovalent 

elements Li+, Na+ and K+ are also in close proximity to the position of Sr in the periodic table. Due to 

their similar atomic size, they are well suited for incorporation into the rock-salt SrS lattice, which 

represents a high probability for co-doping with transition metals (TM) and has a significant influence 

on its properties. Surprisingly, investigations into alkali doping at the Sr site are relatively new. In an 

experimental study by Chang et al. Na+-doped SrS phosphor has been shown to produce high-quality 

solid-state light-emitting diodes (SS-LEDs) with improved emission intensity over the wavelength range 

of 430–700 nm [120]. Furthermore, the ferromagnetism in the compound (Sr0.75 K0.25 )2MnGe2S6O was 

increased by replacing Sr2+ with K+, as theoretically predicted [121], resulting in a Tc of 300 K. Studies 

by Yang et al. [122] proved the effectiveness of cation doping in Li+-ion and Na+-ion batteries and 

showed promising results for large-scale electrical energy storage. 

       While extensive experimental and theoretical studies have been carried out on the co-doping of 

alkali elements with transition metals in other matrices [123–126], the study of the SrS matrix provided 

with both co-dopings is completely missing. Therefore, it is crucial to study in depth the co-doping 

process within these elements and its effects on various SrS properties.  

       After explaining the basic methods used in this dissertation to tune SrS bulk properties, we now 

provide a brief summary of dimensionality reduction, focusing on the 2D monolayer configuration. 

1.5  Low-Dimensional Materials 

       Changing material properties on the way to the nanoscale is a field of intensive research. With its 

focus on materials and structures ranging in size from 1 to 100 nm, nanotechnology opens up a world 

of possibilities [127]. While the term “nanomaterial” may only conjure up thoughts of size, it 

encompasses much more. Nanotechnology deals with the manipulation of structures at the atomic and 

molecular levels and the development of materials that are precisely tailored to specific applications 

[128]. The advanced application of nanomaterials highlights that dimensions and shapes are critical 

aspects that have a profound impact on performance [129]. Nanomaterials are categorized based on their 

dimensions: zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-

dimensional (3D) nanostructured materials (see Figure 14) [130]. This emphasis on precise design and 

careful structuring is motivated by the goal of overcoming challenges in various areas. Whether in 

wastewater treatment, energy production, conversion or storage, the targeted manipulation of these 

materials holds the potential to bring about transformative advances. 
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Figure 14. Taxonomy of nanoscale dimensions. (Source: Tallinn University of Technology). 

       Among the diverse families of nanomaterials, 2D nanomaterials have emerged as a particularly 

fascinating class characterized by a variety of fascinating properties. In short, this category is discussed 

in the following section. 

1.5.1 Two-Dimensional (2D) Materials 

       2D materials include a specific class of substances in which one dimension operates at the nanoscale, 

while the remaining two dimensions exceed this threshold. Over the past 16 years, intensive study of 

these materials has increased significantly, particularly those composed of layered compounds 

characterized by robust intralayer bonds and sensitive van der Waals forces between layers. As the 

electronics field experiences rapid growth mainly due to advances in silicon technology [131], scientists 

have been working hard to develop new materials that could revolutionize the technology of electronic 

devices while solving the complex problems of heat dissipation.  

       In 2004, A.K. Geim and K.S. Novoselov of the University of Manchester reached a significant 

milestone with the successful isolation of graphene, the groundbreaking 2D material [132]. Their 

groundbreaking efforts earned them the Nobel Prize in 2010. Graphene, a crystalline carbon allotrope, 

has a zero bandgap and a two-dimensional atomic structure with a hexagonal arrangement at the atomic 

scale. In this structure, each carbon atom forms four bonds: three σ bonds (sp2 hybridized) with its 

neighboring atoms and one π bond oriented perpendicular to the plane. This fundamental structural unit 

serves as the basis for other carbon allotropes, including graphite, fullerene, nanotubes, and nanocones, 

making graphene the precursor to all carbon-based nanomaterials. 
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       The discovery of graphene has sparked an explosion of research in the field and opened a new 

chapter in the study of other 2D materials. Scientists have created monolayers, bilayers, and materials 

with some layers that resemble graphene [133]. Along with other inventions, they have also created 

nanoribbons [134], single-walled and multi-walled nanotubes [135] and more. The unique ability of 

these materials to adjust their energy bandgap has enabled their use in a wide range of fields including 

electronics, optoelectronics, semiconductors, batteries, composite industries, solar energy, 

communications and more.  

       The 2D materials space experienced even greater expansion with the introduction of Ti3C2Tx, a 

notable member of the MXenes family. This groundbreaking development took place at Drexel 

University in 2011. Subsequently, similar to graphene, silicene formed as the first member of the 

MXenes group in 2012 [136]. This was the beginning of a series of discoveries that revealed various 

MXenes materials, which now include a diverse range of over 30 different 2D types. A quick 

examination of the dimensional database confirms the significant increase in research into 2D materials 

in recent years (Figure 15). 

 

Figure 15. Annual publications on 2D nanomaterials over the past decade. 

       The important surface-to-volume ratio of 2D materials as well as the exceptional occurrence of 

electron confinement enable precise modification of properties. High thermal conductivity, remarkable 

charge carrier mobility even at ambient temperature, and atomically thin properties are all found in 2D 

materials, which also enable simplified processing techniques. Due to their exceptional mobility, 2D 

materials are more sensitive to conductivity. This is because surface-generated supports respond 

dynamically to photoeffects. This intriguing property positions them at the forefront of high-gain 
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photodetector applications, spanning areas such as optical communications, optoelectronic devices, and 

biomedical imaging. 

        Furthermore, their wide electromagnetic absorption range, ranging from infrared to ultraviolet 

[137] makes 2D materials central components in high-performance photonics and optics. Their ability 

to maintain low absorption (<10%) yet exhibit high conductivity makes them invaluable for transparent 

electronic applications, including solar cells and liquid crystal devices [138]. Beyond their remarkable 

electrical and photonic properties, 2D materials exhibit outstanding mechanical properties. These 

materials are characterized by their remarkable flexibility and have a breaking strength 200 times higher 

than that of steel [139], making them crucial for reinforcing polymers in composites. 

       1.5.2   Synthesis Approaches for 2D Materials 

       Two approaches are used in the synthesis of 2D materials: the top-down and the bottom-up approach 

[140]. A comprehensive overview of various top-down and bottom-up approaches is shown in Figure 

16. In the coming discussion, we will briefly examine these approaches and highlight their specific 

features. 

              1.5.2.1 Top-Down Approach 

        In the top-down approach, the process begins with bulk materials, layers of which are carefully 

stripped or peeled away using various techniques to obtain atomically thin 2D layers. A notable example 

of this approach is peeling off layers of graphite using adhesive tape, creating the ultra-thin monoatomic 

layer called graphene, which is made up of graphitic carbon atoms. In addition to the methods shown in 

Figure 16, the transition from 3D bulk structures to 2D structures is achieved through a variety of other 

strategies. These include, in particular, liquid phase peeling [141], ion intercalation/peeling [142] and 

physicochemical peeling [143]. Among these, chemical exfoliation stands out as a widely preferred top-

down approach to producing materials with small dimensions. Several other top-down techniques are 

used, including mechanical milling [144] and lithography, including techniques such as ion beam 

lithography, electron beam lithography and photolithography [145]. In parallel to these methods, 

approaches such as sputtering [146], the arc discharge process [147] and laser ablation [148] are used.  

          1.5.2.2 Bottom-up Approach 

       In the bottom-up approach, atoms are cleverly joined together, similar to sewing, to create 

atomically thin 2D material structures. Numerous bottom-up techniques are used, including molecular 

beam epitaxy, chemical vapor deposition (CVD), physical vapor deposition (PVD), hydrothermal and 

solvothermal methods, and template-based methods [149]. Bottom-up approaches are known for their 
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ability to produce high-quality 2D structures and find application across a spectrum of 2D materials. In 

particular, they play an important role in the design of two-dimensional metal-organic frameworks 

(MOFs), coordination polymers (CPs), and covalent organic frameworks (COFs) [150]. 

 

Figure 16. Widely utilized top-down and bottom-up approaches to synthesize the 2D materials. After 

Ref [151]. 

       1.5.3   Categorization of 2D Materials 

       Due to their finely tunable energy bandgap and remarkable intrinsic properties, 2D materials have 

become key players in a spectrum of innovative fields, including electronics, optoelectronics, 

semiconductors, spintronics, spin caloritronics, batteries, composite industries, solar energy utilization 

and communication systems, and a range of other applications [152]. Numerous subclasses within this 

material category, such as silicene [153], germanene [154], hexagonal boron nitride (h-BN) [155], 

stanene [156], phosphorene [157] and single-layer transition metal dichalcogenides (SL-TMDs) [158] 

were included Focus of intensive and extensive research efforts.  

      These 2D materials form the elementary building blocks for critical components in low-dimensional 

devices. Based on this, we can divide 2D materials into three main families accordingly: the graphene 

family, a large class that includes graphene, h-BN, BCN, fluorographene, graphene oxide, and more; the 

2D chalcogenide family, an ensemble that includes MoS2, WSe2, ZrS2, NbSe2, Bi2Se3, etc.; and finally 

the family of 2D oxides, a broad category that includes hydroxides such as Eu(OH)2 and layered Cu 

oxides, MoO3, WO3 and others, making a fascinating representation as shown in Figure 17. 
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Figure 17.  Schematic illustration of the different 2D nanomaterials families. After Ref [151]. 

       The group of 2D chalcogenides containing group VIA elements is currently one of the most 

important groups and offers a wide range of materials, crystal structures and properties. This has 

attracted increasing attention due to their large bandgap, abundance, and special properties, including 

high mobility and efficient absorption in the visible and ultraviolet regions. 2D chalcogenides, either in 

their monolayers, bilayers, or multilayers, can be further categorized based on their chemistry and 

stoichiometry, as shown in Figure 18. These materials are made up of atomic planes, which are self-

contained units with no dangling bonds present on surfaces. This special property facilitates the isolation 

of individual layers from the main material and shows the remarkable potential of these compounds 

[159].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Categorization of 2D chalcogenides. After Ref [159]. 
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       A significant subgroup within the chalcogenide family are the AX monochalcogenide monolayers, 

essentially the II-VI group, which have also attracted considerable attention from researchers in recent 

years. This lattice arrangement has a honeycomb structure consisting of A-X bonds (where A means a 

cationic element from the group of II elements and X is the chalcogen elements (S, Se and Te), and is 

endowed with the D3h point group symmetry. Each atom forms a vertex through sp hybridization.  

       In Figure 19 we show a visualization of the hexagonal structure of SrS, a prototype of the II-VI 

family. This symmetry is similar to other known monolayers, including graphene, silicon and BN. 

        

Figure 19. a) The Unit cell of the monolayer SrS, which adopts a hexagonal structure. Green spheres 

represent the Sr atoms, while orange spheres depict the chalcogen S atoms. The image was generated 

using VESTA software [76]. b) The first brillouin zone of a hexagonal crystal, with the irreducible 

wedge identified by their common names, and the reciprocal base vectors labeled as b1, and b2. 

       Similar to their traditional 3D II-VI compounds, density functional theory (DFT) was also used to 

predict the novel 2D counterparts. For example, the 2D monolayers BeO, MgO, CaO, ZnO, CdO, CaS, 

SrS, SrSe, BaTe and HgTe were found to have strong dynamic and thermal stability and are suitable for 

use in UV optoelectronics [160]. The CdO monolayer has also shown promising optoelectronic 

capabilities suitable for visible light photocatalysis [161]. Recently, Abdullah et al. [162] showed that 

the combination of Be with O results in different thermal and optical properties, including high heat 

capacity and an active optical response observed in the UV. Interestingly, SrS and SrSe showed good 

thermal and dynamic stability and exhibited shallow valence bands that became highly spin polarized 

when doped with holes, making them excellent options for realizing Stoner ferromagnetism [160]. More 

recently, Yari et al. [163] found that doping the SrS monolayer with Cr induces a pronounced HMF 

character and increases the thermoelectric quality factor (ZT) to 0.9 at temperatures above 500 K, 

making this monolayer suitable for spintronic and spin caloritronic nanodevices.  
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       Reviewing the existing literature, the need to develop a diluted SrS monolayer-based magnetic 

semiconductor appears to be extremely promising. If we focus our attention on SrS as the original 

compound, the study of dimensionality reduction becomes extremely compelling. The aim of this study 

is to understand the unique influence of dimensionality reduction on various properties of SrS, 

particularly in the context of Fe doping compared to co-doping process.  

       Therefore, a bibliographic review of bulk SrS, monolayer SrS and their doped or co-doped 

structures is required. 

1.6  An Overview of Bibliography  

       In the last decade, spintronics and its derivatives, including spin caloritronics, have come to the 

forefront of research and include both bulk (3D) and two-dimensional (2D) structures. In particular, the 

group of II-VI semiconductors based on transition metals (TM) proves to be a central component. With 

the ability to cover the properties of metalloids and semiconductors, these materials have a wide range 

of properties and applications by simply changing their composition. Their characterization, structural 

phase transition, synthesis techniques, magnetic behavior, electrical and optical responses, 

thermoelectric characteristics, and a variety of other properties have all been the subject of extensive 

research [164, 165]. 

       In the following discourse, we discuss some of the groundbreaking work carried out on the TM-

based II-VI semiconductor SrS, highlighting both the 3D and 2D forms. 

 

 The binary compound SrS has been subject to thorough investigation, both experimentally and 

theoretically, in which it is confirmed that this compound shows p-type semiconductor 

properties with an indirect bandgap in both its 3D bulk structure and its 2D monolayer 

counterpart [73, 75, 82, 166-172].  

 

 Xiao et al. [173] have examined the thermoelectric characteristics of bulk SrS, while Yari et al. 

[174] and Rajput et al. [175] have directed their attention towards examinining the 

thermoelectric quality at the monolayer level. The collective findings underscored the promising 

potential of SrS for application in thermoelectric devices, with the ZT value approaching unity. 

 

 The electronic structure, half-metallicity, and ferromagnetic properties of doped-SrS have been 

subject to theoretical investigations by Bourega et al. [176], Doumi et al. [64, 65], and Hamidane 

et al. [177] utilizing an ab-initio study. The combined results have demonstrated a large half-

metallic bandgap and a stabilization of the ferromagnetism through exchange interactions 

between the host and magnetic dopants. These results underline how well these compounds 

might work as spintronic device materials. 
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 Hamidane et al. [66] conducted ab-initio calculations on the Sr1-xMnxS bulk systems 

(0.25≤x≤0.75). Their study revealed that the introduction of Mn into the host SrS induced 

alterations in the band structure and density of states. Interestingly, these changes enhanced the 

optical characteristics with increasing Mn concentrations, induced a significant magnetic 

moment, and preserved the material's semiconducting nature. 

 In his research, Hoat [100] explored the electro-magnetic properties of SrS doped with first-row 

transition metals, maintaining a constant concentration of x = 0.25. His findings indicated that 

among all materials, only five, including Sr0.75Fe0.25S, could potentially serve as candidates for 

spintronics, primarily due to the presence of a considerable half-metallic bandgap. 

 

 The hole doping at the anion site (with P and As) and cation site (with Al and Ga) of SrS 

monolayer was first investigated by Lin et al. [172], where they observed that the doping 

strategy resulted in an increase in the magnetic moment and the spin-polarization. 

 

 In a recent study, Yari et al. [164] demonstrated the existence of magnetism in SrS monolayer 

through hole doping with Cr. Through a comprehensive exploration of its electronic, magneto-

optical, and thermoelectric properties via a DFT approach, he confirmed the suitability of this 

monolayer for applications in spintronics, spin caloritronics, and spin-based optoelectronics 

devices. 

 

Besides these, diverse nanostructures involving doping magnetic elements into SrS have been grown 

experimentally using different techniques such as sol-gel route [178], electrochemical deposition 

[179], solid-state diffusion [180], and others [181-183]. 

 

1.7  Simulation Studies and Their Scope 

       Broadly speaking, the study of structures involves two main approaches: theoretical and 

experimental. However, the advancement of computing capabilities has led to a distinct path known as 

Computational Condensed Matter Physics. This innovative approach acts as a mediator and connects 

the areas of theory and experiment. The development of computational resources has greatly facilitated 

deeper exploration of matter across different dimensions and length scales. Computer simulations are 

becoming increasingly common in condensed matter physics, both at the macroscopic and mesoscopic 

scales. Macroscopic systems are systems that are both measurable and observable, while mesoscopic 

systems deal with systems ranging from nanometers to micrometers. 
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       Computer simulations are sometimes referred to as computer experiments because they share many 

similarities with laboratory experiments. The beginning of a computer simulation involves constructing 

an idealized model of a particular physical system. An algorithm or method is then defined to implement 

this model on a computing platform. By executing a computer program, the physical system is simulated 

and the basic ideas of the computer experiment are summarized. This digital experiment serves as a link 

between theoretical models and laboratory studies. 

1.7.1 Possible Simulation Approaches 

       A variety of simulation methods have proven invaluable in gaining insight into the field of 

condensed matter physics, generally categorized as follows: 

 Classical Molecular Dynamics: This method employs classical (Newtonian) mechanics [184], 

enabling the dynamic representation of systems. 

 Quantum Monte Carlo: Characterized by a stochastic approach, Quantum Monte Carlo stands 

as an almost exact method for determining the many-body wavefunction [185], providing a 

robust avenue for exploration. 

 Ab-initio Method: Grounded in computer simulation, this approach adresses the quantum 

mechanical Schrödinger equation [186], providing a complete solution. 

       Based on independent electronic structure computations, classical molecular dynamics is a 

powerful and well-established technique for studying many-body condensed matter systems [184]. 

The interatomic potential approximation is a fundamental question in any molecular dynamics 

scheme. Typically, the molecular dynamics method entails predetermining these potentials. 

       Quantum Monte Carlo (QMC) is revealed as a stochastic technique for calculating the ground 

state parameters of quantum systems by solving the Schrödinger wave equation. The QMC 

technique has shown promise in a number of fields with Schrödinger-like Hamiltonians, including 

solids, quantum liquids, nuclear matter, spin systems, and ab-initio quantum chemistry. Using 

significant sampling techniques is a key component of QMC approaches. This involves using a trial 

vector, based on "zero-variance property", which indicates that faster convergence toward the exact 

eigenvector is caused by a tighter alignment between the trial vector and the exact one, resulting in 

less statistical fluctuations [185]. 

       Finally, ab-initio methods utilize first-principles to compute material properties by numerically 

solving the quantum mechanical Schrödinger equation [186]. These methods serve as primary tools 

for conducting research in condensed matter physics, materials science, quantum chemistry, and 

molecular chemistry. The level of accuracy predominantly depends on how accurately one can solve 
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the electronic problem. Among the most accurate based-methods, the Density Functional Theory 

(DFT). Density Functional Theory (DFT)-based methods include techniques that directly solve the 

eigenvalues and eigenfunctions of the molecular electronic Hamiltonian (H) using basis set methods.  

       In Chapter 2, a detailed study of the DFT approach and the techniques used in this dissertation 

is presented. The application of DFT has proven crucial for studying a wide range of ground state 

properties, spanning both bulk and low-dimensional structures. Therefore, in this context, we 

adopted a theoretical approach to thoroughly investigate the systems selected for our study. 

 

1.8  Conclusion 

       Finally, this chapter provides an introduction to II-VI bulk 3D materials and their corresponding 2D 

monolayer derivatives, followed by a detailed literature review of their properties and applications. Due 

to their remarkable electronic properties, characteristic structures, dimensionality, high carrier mobility, 

and tunable band gaps, these materials have attracted great interest as potential alternatives in various 

fields. Advances in storage technology and the constant pursuit of environmentally friendly solution 

materials provide the scientific community with numerous new opportunities to explore phenomena, 

concepts and technologies in the fields of spintronics, spin caloritronics and spin-based optoelectronics. 

Dilute magnetic semiconductors (DMS), obtained by incorporating transition metals into II-VI 

semiconductors, hold enormous potential for development into small-sized, low-power, and high-

capacity memory systems. Through its comprehensive discussions, this chapter contributed significantly 

to the selection of suitable host semiconductors and dopants for our dissertation. We specifically chose 

to focus on Fe-doped SrS, using two different strategies to improve its properties: co-doping in the 3D 

form and dimensionality reduction to the 2D monolayer form. These approaches aim to improve a wide 

range of properties including structural, electronic, magnetic, mechanical, optical and thermoelectric 

properties. 



50 

 

References for Chapter 1 

[1] Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnár, V. S., Roukes, M. 

L., & Treger, D. M. (2001). Spintronics: a spin-based electronics vision for the 

future. Science, 294(5546), 1488-1495. 

[2] Petsagkourakis, I., Tybrandt, K., Crispin, X., Ohkubo, I., Satoh, N., & Mori, T. (2018). 

Thermoelectric materials and applications for energy harvesting power generation. Science and 

technology of advanced materials, 19(1), 836-862. 

[3] Linder, J., & Robinson, J. W. (2015). Superconducting spintronics. Nature Physics, 11(4), 307-315. 

[4] Misiorny, M., Hell, M., & Wegewijs, M. R. (2013). Spintronic magnetic anisotropy. Nature 

Physics, 9(12), 801-805. 

[5] Gerlach, W., & Stern, O. (1922). Der experimentelle nachweis der richtungsquantelung im 

magnetfeld. Zeitschrift für Physik, 9(1), 349-352. 

[6] Tedrow, P. M., & Meservey, R. (1973). Spin polarization of electrons tunneling from films of Fe, 

Co, Ni, and Gd. Physical Review B, 7(1), 318. 

[7] Dyakonov, M. I., & Perel, V. I. (1972). Spin relaxation of conduction electrons in 

noncentrosymmetric semiconductors. Soviet Physics Solid State, USSR, 13(12), 3023-3026. 

[8] Vorob'ev, L. E., Ivchenko, E. L., Pikus, G. E., Farbshteǐn, I. I., Shalygin, V. A., & Shturbin, A. V. 

(1979). Optical activity in tellurium induced by a current. Soviet Journal of Experimental and 

Theoretical Physics Letters, 29, 441. 

[9] Aronov, A. G., & Pikus, G. E. (1976). Spin injection into semiconductors. Soviet Physics 

Semiconductors-Ussr, 10(6), 698-700. 

[10] Johnson, M., & Silsbee, R. H. (1985). Interfacial charge-spin coupling: Injection and detection of 

spin magnetization in metals. Physical review letters, 55(17), 1790. 

[11] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., & Chazelas, J. (1988). 

Giant magnetoresistance of (001) Fe/ (001) Cr magnetic superlattices. Physical review letters, 61(21), 

2472. 

[12] Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1989). Enhanced magnetoresistance in 

layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39(7), 4828. 

[13] Parkin, S., Wolf, S. A., Harris, J. S., Zhang, S., & Smith, D. J. (1997). The Application of 

Spintronics. 

[14] Hu, J., & Wu, R. (2014). Giant magnetic anisotropy of transition-metal dimers on defected 

graphene. Nano letters, 14(4), 1853-1858. 

[15] Choudhuri, I., Bhauriyal, P., & Pathak, B. (2019). Recent advances in graphene-like 2D materials 

for spintronics applications. Chemistry of Materials, 31(20), 8260-8285. 

[16] Hirohata, A., & Takanashi, K. (2014). Future perspectives for spintronic devices. Journal of 

Physics D : Applied Physics, 47(19), 193001. 



51 

 

[17] The 12th international workshop on Spin Caloritronics "Spin Caloritronics XII", (2023), Tsukuba 

center for institues, Japan. 

[18] The German Physical Society (DPG), (1845), Bad Honnef, Germany. 

[19] The Spin and Heat In Nanoscale Electronic System (S.H.I.N.E.S), (n.d.), US.  

[20] Seebeck, T. J. (1822). Magnetic polarization of metals and minerals. Abhandlungen der Deutschen 

Akademie der Wissenschaften zu Berlin, 265, 1822-1823. 

[21] Peltier, J. C. A. (1834). Nouvelles expériences sur la caloricité des courans électriques.  

[22] Lenz, E. (1838). Einige versuche im gebiete des galvanismus. Annalen der Physik, 120(6), 342-

349.  

[23] Joule, J. P. (1841). XXXVIII. On the heat evolved by metallic conductors of electricity, and in the 

cells of a battery during electrolysis. The London, Edinburgh, and Dublin Philosophical Magazine and 

Journal of Science, 19(124), 260-277. 

[24] Thomson, W. (1857). 4. on a mechanical theory of thermo-electric currents. Proceedings of the 

Royal society of Edinburgh, 3, 91-98. 

[25] Slack, G. A., & Rowe, D. M. (1995). CRC handbook of thermoelectrics. 

[26] Tritt, T. M. (2002). Thermoelectric materials: Principles, structure, properties, and applications. 

[27] Ioffe, A. F. (1957). Semiconductor Thermoelements, and Thermoelectric. Cool-ingInfosearch Ltd.: 

London, UK. 

[28] Snyder, G. J., & Snyder, A. H. (2017). Figure of merit ZT of a thermoelectric device defined from 

materials properties. Energy & Environmental Science, 10(11), 2280-2283. 

[29] Lenoir, B., Michenaud, J. P., & Dauscher, A. (2010). Thermoélectricité : des principes aux 

applications. Technique de l’ingénieur. 

[30] Guazzagaloppa, J. (2019). Matériaux super-isolants thermiques à propriétés thermoélectriques 

intégrées (Doctoral dissertation, Université Montpellier). 

[31] Jund, P., Viennois, R., Tao, X., Niedziolka, K., & Tédenac, J. C. (2012). Physical properties of 

thermoelectric zinc antimonide using first-principles calculations. Physical Review B, 85(22), 224105. 

[32] He, J., & Tritt, T. M. (2017). Advances in thermoelectric materials research: Looking back and 

moving forward. Science, 357(6358), eaak9997. 

[33] Wang, Y., Rogado, N. S., Cava, R. J., & Ong, N. P. (2003). Spin entropy as the likely source of 

enhanced thermopower in Na x Co2O4. Nature, 423(6938), 425-428. 

[34] Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., & Gogna, P. (2007). 

New directions for low‐dimensional thermoelectric materials. Advanced materials, 19(8), 1043-1053. 

[35] Yang, J., Xi, L., Qiu, W., Wu, L., Shi, X., Chen, L., & Singh, D. J. (2016). On the tuning of electrical 

and thermal transport in thermoelectrics: an integrated theory–experiment perspective. NPJ 

Computational Materials, 2(1), 1-17. 

[36] Zebarjadi, M., Joshi, G., Zhu, G., Yu, B., Minnich, A., Lan, Y., & Chen, G. (2011). Power factor 

enhancement by modulation doping in bulk nanocomposites. Nano letters, 11(6), 2225-2230. 



52 

 

[37] Biswas, K., He, J., Blum, I. D., Wu, C. I., Hogan, T. P., Seidman, D. N.,& Kanatzidis, M. G. (2012). 

High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489(7416), 

414-418. 

[38] Cahill, D. G., Watson, S. K., & Pohl, R. O. (1992). Lower limit to the thermal conductivity of 

disordered crystals. Physical Review B, 46(10), 6131.  

[39] Pizzi, G., Volja, D., Kozinsky, B., Fornari, M., & Marzari, N. (2014). BoltzWann: A code for the 

evaluation of thermoelectric and electronic transport properties with a maximally localized Wannier 

functions basis. Computer Physics Communications, 185(1), 422-429. 

[40] Nolas, G. S., Sharp, J., & Goldsmid, J. (2001). Thermoelectrics: basic principles and new materials 

developments (Vol. 45). Springer Science & Business Media.  

[41] Oh, M. W., Wee, D. M., Park, S. D., Kim, B. S., & Lee, H. W. (2008). Electronic structure and 

thermoelectric transport properties of AgTlTe: First-principles calculations. Physical Review B, 77(16), 

165119.  

[42] Snyder, G. J., & Ursell, T. S. (2003). Thermoelectric efficiency and compatibility. Physical review 

letters, 91(14), 148301. 

[43] Slachter, A., Bakker, F. L., Adam, J. P., & van Wees, B. J. (2010). Thermally driven spin injection 

from a ferromagnet into a non-magnetic metal. Nature Physics, 6(11), 879-882. 

[44] Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K., & Van Wees, B. J. (2012). Direct observation 

of the spin-dependent Peltier effect. Nature nanotechnology, 7(3), 166-168.  

[45] Sharma, S., & Pandey, S. K. (2015). Applicability of two-current model in understanding the 

electronic transport behavior of inverse Heusler alloy: Fe2CoSi. Physics Letters A, 379(38), 2357-2361. 

[46] Ioffe, A. F., Stil'Bans, L. S., Iordanishvili, E. K., Stavitskaya, T. S., Gelbtuch, A., & Vineyard, G. 

(1959). Semiconductor thermoelements and thermoelectric cooling. Physics Today, 12(5), 42-42. 

[47] Zhang, K. H., Xi, K., Blamire, M. G., & Egdell, R. G. (2016). P-type transparent conducting 

oxides. Journal of Physics: Condensed Matter, 28(38), 383002. 

[48] Facchetti, A., & Marks, T. J. (2010). Transparent electronics. From Synthesis to Applications. 

[49] Pierson, H. O. (1996). Handbook of refractory carbides and nitrides: properties, characteristics, 

processing and applications. William Andrew. 

[50] Markoc, H. (2008). Handbook of Nitride Semiconductors and Devices. Wiley-Vch Verlag GmbH 

& Co. KGaA, 155(156), 10. 

[51] Grundmann, M., Schein, F. L., Lorenz, M., Böntgen, T., Lenzner, J., & von Wenckstern, H. (2013). 

Cuprous iodide–ap‐type transparent semiconductor: History and novel applications. physica status 

solidi (a), 210(9), 1671-1703. 

[52] Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: a review of 

graphene. Chemical reviews, 110(1), 132-145.  

[53] Cheng, J., Fan, D., Wang, H., Liu, B., Zhang, Y., & Yan, H. (2003). Chemical bath deposition of 

crystalline ZnS thin films. Semiconductor science and technology, 18(7), 676. 



53 

 

[54] Choi, J. Y., Kim, K. J., Yoo, J. B., & Kim, D. (1998). Properties of cadmium sulfide thin films 

deposited by chemical bath deposition with ultrasonication. Solar energy, 64(1-3), 41-47. 

[55] Liu, M. L., Wang, Y. M., Huang, F. Q., Chen, L. D., & Wang, W. D. (2007). Optical and electrical 

properties study on p-type conducting CuAlS2+ x with wide band gap. Scripta Materialia, 57(12), 1133-

1136. 

[56] Han, Y., Siol, S., Zhang, Q., & Zakutayev, A. (2017). Optoelectronic properties of strontium and 

barium copper sulfides prepared by combinatorial sputtering. Chemistry of materials, 29(19), 8239-

8248. 

[57] Newhouse, P. F., Hersh, P. A., Zakutayev, A., Richard, A., Platt, H. A. S., Keszler, D. A., & Tate, 

J. (2009). Thin film preparation and characterization of wide band gap Cu3TaQ4 (Q= S or Se) p-type 

semiconductors. Thin Solid Films, 517(7), 2473-2476.  

[58] Hiramatsu, H., Kamioka, H., Ueda, K., Ohta, H., Kamiya, T., Hirano, M., & Hosono, H. (2006). 

Opto‐electronic properties and light‐emitting device application of widegap layered oxychalcogenides: 

LaCuOCh (Ch= chalcogen) and La2CdO2Se2. Physica status solidi (a), 203(11), 2800-2811.  

[59] Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., & Hosono, H. (1997). P-type 

electrical conduction in transparent thin films of CuAlO2. Nature, 389(6654), 939-942.  

[60] Woods-Robinson, R., Han, Y., Zhang, H., Ablekim, T., Khan, I., Persson, K. A., & Zakutayev, A. 

(2020). Wide bandgap chalcogenide semiconductors. Chemical reviews, 120(9), 4007-4055. 

[61] Sedighi, M., Nia, B. A., Hamad, A. H., & Othman, M. S. (2020). Electronic and optical properties 

of SrS nanosheet in 001 and 101 directions. Computational Condensed Matter, 22, e00445. 

[62] Hou, X. Y., Cheng, Y., Hu, C. E., Piao, C. G., & Geng, H. Y. (2020). Thermoelectric properties of 

strontium sulfide via first-principles calculations. Solid State Communications, 305, 113755.  

[63] Yazdanmehr, M., Sadeghi, H., Tehrani, M. K., Hashemifar, S. J., & Mahdavi, M. (2018). Effects 

of nanostructuring on luminescence properties of SrS: Ce, Sm phosphor: an experimental and 

phenomenological study. Optical Materials, 75, 304-313. 

[64] Doumi, B., Mokaddem, A., Dahmane, F., Sayede, A., & Tadjer, A. (2015). A novel theoretical 

design of electronic structure and half-metallic ferromagnetism in the 3d (V)-doped rock salts SrS, SrSe, 

and SrTe for spintronics. RSC advances, 5(112), 92328-92334. 

[65] Doumi, B., Mokaddem, A., Temimi, L., Beldjoudi, N., Elkeurti, M., Dahmane, F., ... & Ishak-

Boushaki, M. (2015). First-principle investigation of half-metallic ferromagnetism in octahedrally 

bonded Cr-doped rock-salt SrS, SrSe, and SrTe. The European Physical Journal B, 88, 1-9.  

[66] Hamidane, N., Baaziz, H., Baddari, K., & Charifi, Z. (2020). First-principles investigation of the 

structural, electronic, magnetic, thermodynamic and optical properties of the cubic Sr1-xMnxS ternary 

alloys. Computational Condensed Matter, 23, e00458. 

[67] Khare, A., Mishra, S., Kshatri, D. S., & Tiwari, S. (2017). Optical properties of rare earth doped 

SrS phosphor: a review. Journal of Electronic Materials, 46, 687-708. 



54 

 

[68] Kim, J., Choi, J., & Kang, Y. (2023). First-principles study of SrTe and BaTe: Promising wide-

band-gap semiconductors with ambipolar doping. Current Applied Physics, 48, 90-96. 

[69] Salome, P. M., Vermang, B., Ribeiro‐Andrade, R., Teixeira, J. P., Cunha, J. M., Mendes, M. J., ... 

& Sadewasser, S. (2018). Passivation of interfaces in thin film solar cells: Understanding the effects of 

a nanostructured rear point contact layer. Advanced Materials Interfaces, 5(2), 1701101. 

[70] Yogeswari, M., & Kalpana, G. (2012). Half-metallic ferromagnetism in alkaline earth selenides by 

first principles calculations. Computational materials science, 54, 219-226.  

[71] Zeng, L., Zhang, J., You, L., Zheng, H., Liu, Y., Ouyang, L., & Luo, J. (2016). Enhanced 

thermoelectric performance in PbSe-SrSe solid solution by Mn substitution. Journal of Alloys and 

Compounds, 687, 765-772.  

[72] Mera, A., Mahmood, Q., & Rouf, S. A. (2022). Quantum ferromagnetism in transition metals doped 

II-VI semiconductors for spintronic applications: A merging technology. Solid State 

Communications, 352, 114835. 

[73] Syassen, K. (1985). Pressure-induced structural transition in SrS. Physica Status Solidi. A, Applied 

Research, 91(1), 11-15. 

[74] Janotti, A., & Van de Walle, C. G. (2009). Fundamentals of zinc oxide as a semiconductor. Reports 

on progress in physics, 72(12), 126501. 

[75] Syassen, K. (1986). Ionic monochalcogenides under pressure. Physica B+ C, 139, 277-283. 

[76] Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, 

volumetric and morphology data. Journal of applied crystallography, 44(6), 1272-1276.  

[77] Setyawan, W., & Curtarolo, S. (2010). High-throughput electronic band structure calculations: 

Challenges and tools. Computational materials science, 49(2), 299-312.  

[78] Li, W. M., Ritala, M., Leskelä, M., Lappalainen, R., Soininen, E., Niinistö, L., & Benoit, J. (1999). 

Improved blue luminescence in Ag-codoped SrS: Ce thin films made by atomic layer epitaxy and ion 

implantation. Applied physics letters, 74(16), 2298-2300.  

[79] Dos Santos, D. O. A., Giordano, L., Barbará, M. A. S. G., Portes, M. C., Pedroso, C. C. S., Teixeira, 

V. C., & Rodrigues, L. C. V. (2020). Abnormal co-doping effect on the red persistent luminescence SrS: 

Eu2+, RE3+ materials. Dalton Transactions, 49(45), 16386-16393.  

[80] Labidi, S., Labidi, M., Meradji, H., Ghemid, S., & Hassan, F. E. H. (2011). First principles 

calculations of structural, electronic, optical and thermodynamic properties of PbS, SrS and their ternary 

alloys Pb1− xSrxS. Computational Materials Science, 50(3), 1077-1082.  

[81] Chen, Y., Fan, S. W., & Xu, P. (2022). Defect induced ambipolar conductivity in wide-bandgap 

semiconductor SrS: Theoretical perspectives. Applied Physics Letters, 121(25).  

[82] Zheng, H., Li, X. B., Chen, N. K., Xie, S. Y., Tian, W. Q., Chen, Y., Hong, X., Zhang, S.B., & Sun, 

H. B. (2015). Monolayer II-VI semiconductors: A first-principles prediction. Physical Review B, 92(11), 

115307.  



55 

 

[83] Fang, M., Wang, H., Tan, X., Cheng, B., Zhang, L., & Xiao, Z. (2008). One-dimensional hollow 

SrS nanostructure with red long-lasting phosphorescence. Journal of alloys and compounds, 457(1-2), 

413-416.  

[84] Uğur, Ş. U. L. E., Güler, E., Güler, M., Özdemir, A. L. P. T. U. Ğ., & Uğur, G. Ö. K. A. Y. (2022). 

Analyzing the electronic and optical properties of bulk, unstrained, and strained monolayers of SrS2 by 

DFT. Physica E: Low-dimensional Systems and Nanostructures, 143, 115403.  

[85] Jain, M. K. (1991). Diluted magnetic semiconductors. World Scientific. 

[86] Oliver, M. R., Kafalas, J. A., Dimmock, J. O., & Reed, T. B. (1970). Pressure dependence of the 

electrical resistivity of EuO. Physical Review Letters, 24(19), 1064. 

[87] Janisch, R., Gopal, P., & Spaldin, N. A. (2005). Transition metal-doped TiO2 and ZnO—present 

status of the field. Journal of Physics: Condensed Matter, 17(27), R657.  

[88] Asahi, H., & Horikoshi, Y. (Eds.). (2019). Molecular Beam Epitaxy: Materials and applications 

for electronics and optoelectronics. John Wiley & Sons.  

[89] Jiles, D. A. D. C., & Atherton, D. (1983). Ferromagnetic hysteresis. IEEE Transactions on 

magnetics, 19(5), 2183-2185.  

[90] De Groot, R. A., Mueller, F. M., van Engen, P. V., & Buschow, K. H. J. (1983). New class of 

materials: half-metallic ferromagnets. Physical review letters, 50(25), 2024.  

[91] GOUS, M. H. (2018). Calcul des propriétés structurales, élastiques, électroniques et magnétiques 

des semi-conducteurs magnétiques dilués à base de MgS et des alliages demi-heusler demi-métalliques 

CoVTe et RuVTe (Doctoral dissertation).  

[92] Néel, L. (1952). Antiferromagnetism and ferrimagnetism. Proceedings of the Physical Society. 

Section A, 65(11), 869.  

[93] Morrish, A. H. (2001). The physical principles of magnetism (p. 696).  

[94] Moriya, T. (1960). Anisotropic superexchange interaction and weak ferromagnetism. Physical 

review, 120(1), 91.  

[95] Peterson, C. (1987). A mean field theory learning algorithm for neural network. Complex 

systems, 1, 995-1019.  

[96] Kumar, R., Rani, A., & Alshaikhi, A. A. (2023). Electronic and Magnetic Properties of Cr and V 

Doped CaZ (Z= S, Se). Crystals, 13(7), 1069.  

[97] Ghazal, W., Mamoun, S., Kanoun, M. B., Goumri-Said, S., & Merad, A. E. (2023). Electronic, 

magnetic and optical properties of Cr and Fe doped ZnS and CdS diluted magnetic semiconductors: 

revised study within TB-mBJ potential. Optical and Quantum Electronics, 55(4), 310.  

[98] Sajjad, M., Zhang, H. X., Noor, N. A., Alay-e-Abbas, S. M., Younas, M., Abid, M., & Shaukat, A. 

(2014). Theoretical investigation of structural, electronic, and magnetic properties of V-doped MgSe 

and MgTe semiconductors. Journal of Superconductivity and Novel Magnetism, 27, 2327-2336.  



56 

 

[99] Li, J., Xu, X., Zhou, Y., Zhang, M., & Luo, X. (2013). First-principles investigation on the 

electronic and magnetic properties of cubic Be0. 75Mn0. 25X (X= S, Se, Te). Journal of alloys and 

compounds, 575, 190-197.  

[100] Hoat, D. M. (2020). DFT prediction of structural, electronic and magnetic properties of Sr0. 

75TM0. 25S (TM is 3 d transition metals). Philosophical Magazine Letters, 100(3), 95-104.  

[101] Shinya, H., Fukushima, T., Masago, A., Sato, K., & Katayama-Yoshida, H. (2018). First-

principles prediction of the control of magnetic properties in Fe-doped GaSb and InSb. Journal of 

Applied Physics, 124(103902).  

[102] Zhang, H. W., Wei, Z. R., Li, Z. Q., & Dong, G. Y. (2007). Room-temperature ferromagnetism in 

Fe-doped, Fe-and Cu-codoped ZnO diluted magnetic semiconductor. Materials Letters, 61(17), 3605-

3607. 

[103] Bourouis, C., & Meddour, A. (2012). First-principles study of structural, electronic and magnetic 

properties in Cd1− xFexS diluted magnetic semiconductors. Journal of magnetism and magnetic 

materials, 324(6), 1040-1045.  

[104] Singh, J., & Verma, N. K. (2012). Synthesis and characterization of Fe-doped CdSe 

nanoparticles as dilute magnetic semiconductor. Journal of superconductivity and novel 

magnetism, 25, 2425-2430. 

[105] Mahmood, Q., Javed, A., Murtaza, G., & Alay-e-Abbas, S. M. (2015). Study of the Zn0. 75M0. 

25Te (M= Fe, Co, Ni) diluted magnetic semiconductor system by first principles approach. Materials 

Chemistry and Physics, 162, 831-838. 

[106] Li, T., Wang, W., Shi, Q., Zhang, J., & Zhao, L. (2022). Transition from ferromagnetism 

to superparamagnetism in diluted magnetic Fe (II)-doped ZnSe microspheres. Journal of 

Magnetism and Magnetic Materials, 543, 168625. 

[107] Amari, S. (2021). Physical properties of Mn-and Fe-doped CaS: A DFT insights. Computational 

Condensed Matter, 27, e00559. 

[108] Raiss, A. A., Sbai, Y., Bahmad, L., & Benyoussef, A. (2015). Magnetic and magneto-optical 

properties of doped and co-doped CdTe with (Mn, Fe): Ab-initio study. Journal of Magnetism and 

Magnetic Materials, 385, 295-301. 

[109] Sukkabot, W. (2020). Theoretical Investigation of Electronic and Magnetic Optical 

Properties of CdS Doped and Co Doped With Transition Metals (Mn, Fe, and Cu): Spin Density 

Functional Theory. IEEE Transactions on Magnetics, 56(9), 1-6. 

[110] Paranchich, S. Y., Paranchich, L. D., Andriichuk, M. D., Makogonenko, V. N., Mel’nichuk, T. 

A., Tanasyuk, Y. V., & Romanyuk, V. R. (2007). Effect of Fe, Co, and Cr impurities on the 

thermoelectric properties of Cd x Hg 1− x Se. Inorganic Materials, 43, 338-343.  

[111] Yogeswari, M., & Kalapana, G. (2011). Ab initio electronic structure calculations of half-metallic 

ferromagnetism in calcium chalcogenides doped with B, C and N. Modern Physics Letters B, 25(18), 

1537-1548.  



57 

 

[112] Singh, R. (2013). Unexpected magnetism in nanomaterials. Journal of Magnetism and 

Magnetic Materials, 346, 58-73.  

[113] Coey, J. M. D. (2005). d0 ferromagnetism. Solid State Sciences, 7(6), 660-667.  

[114] Ghose, S., Rakshit, T., Ranganathan, R., & Jana, D. (2015). Role of Zn-interstitial defect 

states on d0 ferromagnetism of mechanically milled ZnO nanoparticles. Rsc Advances, 5(121), 

99766-99774.  

[115] Peng, H., Xiang, H. J., Wei, S. H., Li, S. S., Xia, J. B., & Li, J. (2009). Origin and enhancement 

of hole-induced ferromagnetism in first-row d 0 semiconductors. Physical review letters, 102(1), 

017201.  

[116] Yu, D., Liu, Y., Sun, L., Wu, P., & Zhou, W. (2016). Density functional study on the hole doping 

of single-layer SnS 2 with metal element X (X= Li, Mg, and Al). Physical Chemistry Chemical 

Physics, 18(1), 318-324.  

[117] Lu, Y. L., Dong, S., Zhou, W., Zhao, H., & Wu, P. (2016). Nonmagnetic 2p-block elements (B, 

C, N, and O)-doped AgCl for potential halide spintronic applications: A first-principles 

perspective. Physics Letters A, 380(37), 2968-2973.  

[118] Ando, K. (2006). Seeking room-temperature ferromagnetic semiconductors. Science, 312(5782), 

1883-1885.  

[119] Tabassum, M., Zia, Q., Zhou, Y., Reece, M. J., & Su, L. (2021). A review on advances in doping 

with alkali metals in halide perovskite materials. SN Applied Sciences, 3, 1-15. 

[120] Chang, S., Fu, J., Sun, X., Bai, G., Liu, G., Wang, K., & Tang, M. (2021). Tailoring Luminescent 

Properties of SrS: Ce by Modulating Defects: Sr-Deficiency and Na+ Doping. ArXiv preprint arXiv: 

2111.11622.  

[121] Yang, H. C., Gong, B. C., Liu, K., & Lu, Z. Y. (2018). The melilite-type compound (Sr1-x, Ax) 

2MnGe2S6O (A= K, La) being a room temperature ferromagnetic semiconductor. Science 

bulletin, 63(14), 887-891.  

[122] Yang, L., Li, X., Liu, J., Xiong, S., Ma, X., Liu, P., ... & Chen, H. (2019). Lithium-doping 

stabilized high-performance P2–Na0. 66Li0. 18Fe0. 12Mn0. 7O2 cathode for sodium ion 

batteries. Journal of the American Chemical Society, 141(16), 6680-6689.  

[123] Krithiga, R., Sankar, S., & Subhashree, G. (2014). Room temperature diluted magnetism in Li, 

Na and K co-doped ZnO synthesized by solution combustion method. Superlattices and 

Microstructures, 75, 621-633.  

[124] Pazhanivelu, V., Selvadurai, A. P. B., Kannan, R., & Murugaraj, R. (2016). Room temperature 

ferromagnetism in Ist group elements codoped ZnO: Fe nanoparticles by co-precipitation 

method. Physica B: Condensed Matter, 487, 102-108.  

[125] Gu, H., Jiang, Y., & Yan, M. (2012). Defect-induced room temperature ferromagnetism in Fe and 

Na co-doped ZnO nanoparticles. Journal of alloys and compounds, 521, 90-94.  



58 

 

[126] Yakout, S. M. (2018). Pure and Gd-based Li, Na, Mn or Fe codoped ZnO nanoparticles: insights 

into the magnetic and photocatalytic properties. Solid State Sciences, 83, 207-217.  

[127] Napagoda, M., Jayathunga, D., & Witharana, S. (2022). Introduction to nanotechnology. 

In Nanotechnology in Modern Medicine (pp. 1-17). Singapore: Springer Nature Singapore.  

[128] Masciangioli, T., & Zhang, W. X. (2003). Environmental technologies at the nanoscale, En-

viron. Sci. Technol, 37(5).  

[129] Xuejing, L., Fulai, Z., Yu, W., Yichao, Z., Yaling, W., Yiyu, F., & Wei, F. (2021). Preparation 

and photoelectric properties of germanium sulphoselenide photodetector. CHEMICAL JOURNAL OF 

CHINESE UNIVERSITIES-CHINESE, 42(8), 2661-2667.  

[130] Pedireddy, S., Lee, H. K., Tjiu, W. W., Phang, I. Y., Tan, H. R., Chua, S. Q., ... & Ling, X. Y. 

(2014). One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced 

methanol electrooxidation performance. Nature Communications, 5(1), 4947.  

[131] Sze, S. M., & Ng, K. K. (1981). Physics of semiconductor devices, John wiley & sons. New 

York, 68.  

[132] Zhou, H., Yu, W. J., Liu, L., Cheng, R., Chen, Y., Huang, X., & Duan, X. (2013). Chemical vapour 

deposition growth of large single crystals of monolayer and bilayer graphene. Nature 

communications, 4(1), 2096.  

[133] Celis, A., Nair, M. N., Taleb-Ibrahimi, A., Conrad, E. H., Berger, C., De Heer, W. A., & Tejeda, 

A. (2016). Graphene nanoribbons: fabrication, properties and devices. Journal of Physics D: Applied 

Physics, 49(14), 143001.  

[134] Mousa, M. S. (2018, February). Comparison between single-walled CNT, multi-walled CNT, and 

carbon nanotube-fiber pyrograf III. In IOP Conference Series: Materials Science and Engineering (Vol. 

305, p. 012025). IOP Publishing.  

[135] Streetman, B. G., & Banerjee, S. (2000). Solid-state electronic devices (Vol. 4). New Jersey: 

Prentice hall. 

[136] Springborg, M., & Sarkar, P. (2003). Structural and electronic properties of thin chains of 

Ag. Physical Review B, 68(4), 045430.  

[137] Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., & Barsoum, M. W. (2011). Two‐

dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced materials, 23(37), 4248-4253.  

[138] Rubab, A., Baig, N., Sher, M., & Sohail, M. (2020). Advances in ultrathin borophene 

materials. Chemical Engineering Journal, 401, 126109.  

[139] Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., & Kong, J. (2009). Large area, few-

layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 9(1), 30-35.  

[140] Gupta, A., Sakthivel, T., & Seal, S. (2015). Recent development in 2D materials beyond 

graphene. Progress in Materials Science, 73, 44-126.  

[141] Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and 

intrinsic strength of monolayer graphene. Science, 321(5887), 385-388.  



59 

 

[142] Parvez, K. (2019). Two-dimensional nanomaterials: Crystal structure and synthesis. In Biomedical 

Applications of Graphene and 2D Nanomaterials (pp. 1-25). Elsevier.  

[143] Zhang, P., Zhao, F., Long, P., Wang, Y., Yue, Y., Liu, X., & Feng, W. (2018). Sonication-assisted 

liquid-phase exfoliated α-GeTe: a two-dimensional material with high Fe 3+ 

sensitivity. Nanoscale, 10(34), 15989-15997. 

[144] Eng, A. Y. S., Ambrosi, A., Sofer, Z., Simek, P., & Pumera, M. (2014). Electrochemistry of 

transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and 

exfoliation method. Acs Nano, 8(12), 12185-12198.  

[145] Gao, E., Lin, S. Z., Qin, Z., Buehler, M. J., Feng, X. Q., & Xu, Z. (2018). Mechanical exfoliation 

of two-dimensional materials. Journal of the Mechanics and Physics of Solids, 115, 248-262. 

[146] Deepika, Li, L. H., Glushenkov, A. M., Hait, S. K., Hodgson, P., & Chen, Y. (2014). High-efficient 

production of boron nitride nanosheets via an optimized ball milling process for lubrication in 

oil. Scientific reports, 4(1), 7288. 

[147] Winter, A., Ekinci, Y., Gölzhäuser, A., & Turchanin, A. (2019). Freestanding carbon 

nanomembranes and graphene monolayers nanopatterned via EUV interference lithography. 2D 

Materials, 6(2), 021002. 

[148] Servalli, M., Celebi, K., Payamyar, P., Zheng, L., Položij, M., Lowe, B., & Schlüter, A. D. (2018). 
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Chapter 2 

Theory and Computational Techniques 

 

his chapter presents a fundamental theoretical formulation to address the challenges of the 

many-body problem through the application of density functional theory (DFT) and a 

computational formulation for ab-initio calculations. It also describes the software and 

methods used in the calculations carried out as part of our study for this dissertation. 

 

2.1   Introduction 

       The host material investigated in this work is a semiconductor. The study of a semiconductor or 

any solid begins with the study of an ideal crystal at the atomic level at a temperature of 0°C. This crystal 

is made up of a series of atoms (or ions) that occupy precise positions and repeat periodically to form 

the material. The study is based on the interaction between electrons themselves and with nuclei. Due 

to the nature of particles (electrons and nuclei), their study requires the use of quantum mechanics, which 

requires solving the Schrödinger equation to determine the total energy of the system. All properties of 

materials can be determined by using appropriate computational tools to solve their quantum mechanical 

problem. This theory governs the electronic structure, which is responsible for other solid-state 

properties such as optical, electrical, magnetic, mechanical properties, etc. Electrons and nuclei form a 

highly complex N-body system, which makes solving the Schrödinger equation extremely difficult or 

even impossible. Various methods have been proposed to solve this problem. The method that has 

proven to be extremely successful and is the most widely used is density functional theory (DFT). With 

the introduction of density functional theory (DFT), it becomes possible to describe the particle system 

(nuclei and electrons) on the basis of fundamental data: lattice parameters and atomic numbers of the 

elements. 

       This theory allows us to gain insights into the composition of materials and predict their potential 

applications, thereby helping experimentalists develop novel devices. The study of the fundamental 

properties of atoms, molecules, solids and systems with reduced dimensions in their ground states forms 

T 
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a central focus in the field of condensed matter physics. The fundamental understanding of the electronic 

structure of materials depends on solving the Schrödinger wave equation. This equation effectively 

illustrates the behavior of uncomplicated systems (such as the hydrogen atom problem), and numerical 

solutions are only possible for a limited number of atoms and molecules. However, when complex 

systems are involved, solving this equation and then estimating physical properties becomes extremely 

challenging. Although we know how to solve the problem, we still lack powerful tools to find the 

solution. Over the past century, there have been significant changes in the way we solve the Schrödinger 

wave equation for systems with many particles. The first breakthrough came in 1928 when Hartree 

approximated the wave function for many particles and gave an exact energy value for the hydrogen 

atom (-13.6 eV) [1]. Thereafter, efforts were made to find a better wave function using Slater 

determinants, but dealing with large systems remained difficult due to the need for extensive 

computational resources. The real progress came when three-dimensional electron density theories and 

energy function methods were introduced. This approach not only reduced computational effort but also 

proved remarkably accurate. 

       This chapter examines the development of this theory and provides a detailed explanation of the 

Kohn-Sham approach and the approximations used for exchange and correlation. 

2.2   Theoretical Formulation 

       2.2.1   Many Body Problem within Schrödinger Wave Equation 

       Here we introduce the basics of many-body quantum mechanics. We begin by explaining the basic 

principles of quantum mechanics and the properties of wave functions. These ideas will later help us 

reformulate the problem in terms of electron density. We start with the Born-Oppenheimer 

approximation and other simplifications to solve the Schrödinger wave equation for systems with many 

particles. Finally, we examine how density functional theory (DFT) is formulated and applied to study 

various properties of materials in different dimensions, from bulk materials to low-dimensional 

structures. In their solid state, materials are composed of electrons, which have tiny mass and negative 

charge, and nuclei, which carry significant mass and positive charge compared to electrons. The 

macroscopic properties of materials are determined solely by the positions of these electrons and nuclei. 

As a result, electrons in materials exhibit quantum behavior and their interactions are closely linked by 

quantum mechanics. The complexity of the quantum mechanical system under consideration increases 

significantly as the number of electrons increases, resulting in the so-called many-body problem. 

       To put it more precisely: If there are N nuclei/electrons, there are a total of N+ZN interacting 

particles. These particles come into contact with each other through electromagnetic forces. Due to the 

tiny size of these interacting components, the system under study must be viewed from a quantum 
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mechanical perspective. Traditionally, the properties of a quantum mechanical system are determined 

by solving the time-independent Schrödinger wave equation, which is given as follows [2]: 

                                         �̂�𝝍(𝒓𝟏⃗⃗⃗⃗ , 𝒓𝟐,⃗⃗⃗⃗  ⃗ … 𝑹𝟏,⃗⃗⃗⃗⃗⃗  𝑹𝟐,⃗⃗⃗⃗⃗⃗ … ) =  𝑬𝝍(𝒓𝟏⃗⃗⃗⃗ , 𝒓𝟐,⃗⃗⃗⃗  ⃗ … 𝑹𝟏,⃗⃗⃗⃗⃗⃗  𝑹𝟐,⃗⃗⃗⃗⃗⃗ … )                           (eq.1)  

Here, the variables 𝒓𝒊⃗⃗  ⃗, 𝑹𝒊
⃗⃗⃗⃗  represent the position vectors of electrons and nuclei, respectively, �̂� 

denotes the many-body Hamiltonian, E is the eigenvalue of energy and 𝝍 represents the eigen 

wave function.      

       The Hamiltonian (�̂�) in connection with many-body problems is based exclusively on electrostatic 

interactions (electron-electron, electron-nucleus, nucleus-nucleus) and kinetic energies. This essential 

quantity can be described with the following equation: 

                     �̂� = −
ħ𝟐

𝟐𝒎𝒆
 ∑ 𝜵𝒊

𝟐⃗⃗⃗⃗  ⃗
𝒊 − ∑

ħ𝟐

𝟐𝒎𝑰
𝜵𝑰

𝟐⃗⃗⃗⃗  ⃗
𝑰 − ∑

𝒁
𝑰𝒆𝟐

|𝒓𝒊−𝑹𝑰|⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝒊,𝑰 +
𝟏

𝟐
∑

𝒆𝟐

|𝒓𝒊−𝒓𝒋|
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝒊≠𝒋 +

𝟏

𝟐
∑

𝒁𝑰𝒁𝑱𝒆
𝟐

|𝑹𝑰−𝑹𝑱|⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑰≠𝑱              (eq.2) 

The indices i and j are used for electrons and I and J for nuclei. On the left side of the equation provided, 

the first two terms represent the kinetic energy of electrons and nuclei, respectively. The remaining three 

terms characterize the energies associated with interactions: electron-nucleus, electron-electron, and 

internuclear Coulomb interactions. If we assume atomic units denoted as (ħ2 = e2 = m = 4πε0 =

1), the Hamiltonian is further simplified to: 

                        �̂� = −
𝟏

𝟐
 ∑ 𝜵𝒊

𝟐⃗⃗⃗⃗  ⃗
𝒊 − ∑

𝟏

𝟐𝒎𝑰
𝜵𝑰

𝟐⃗⃗⃗⃗  ⃗
𝑰 − ∑

𝒁𝑰

|�⃗� 𝒊−𝑹𝑰|
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝒊,𝑰 +

𝟏

𝟐
∑

𝟏

|�⃗� −�⃗� 𝒋|
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝒊≠𝒋 +

𝟏

𝟐
∑

𝒁𝑰𝒁𝑱

|𝑹𝑰−𝑹𝑱|⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑰≠𝑱                 (eq.3) 

       In terms of the operators, Eq.3 can be formulated as follows:                         

                                              �̂� = �̂�𝒆  + �̂�𝑵  + �̂�𝒆𝑵 + �̂�𝒆𝒆  + �̂�𝑵𝑵                                               (eq.4) 

Our goal is to investigate the many-body Schrödinger wave equation for a complex system using various 

techniques and approximations. To simplify this Hamiltonian, we use the Born-Oppenheimer 

approximation, which separates electronic and nuclear motions. 

       2.2.1.1   The Born-Oppenheimer Approximation (1927) 

       The forces on electrons and nuclei due to their electrical charge are comparably strong, leading to 

similar changes in their momenta due to these forces. This means that their impulses are comparable in 

size. Due to the significant difference in mass between nuclei and electrons, the velocities of the nuclei 

are significantly slower than those of the electrons. Consequently, we can assume that the nuclei are 

essentially stationary. This allows us to first solve the Hamiltonian for the electronic ground state and 
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determine the energy of the system in this configuration before dealing with nuclear motion. This 

separation between electronic and nuclear motion is called the Born-Oppenheimer (BO) approximation 

[3]. The separation between electronic and nuclear motion allows us to represent the complete wave 

function as a multiplication of electronic and nuclear wave functions, like this: 

                                                    𝝍(�⃗� , �⃗⃗� )  =  𝝋(�⃗� , �⃗⃗� )𝝌(�⃗⃗� )                                                               (eq.5) 

Where 𝝌(�⃗⃗� ) represents a nuclear wave function and 𝝋(�⃗� , �⃗⃗� ) represents an electronic wave function 

that corresponds to certain nuclear positions. As a result, the Schrödinger wave equation for an electronic 

Hamiltonian takes the following form:  

                   �̂�𝑒(�⃗⃗� )𝝋(�⃗� , �⃗⃗� )  =  (�̂�𝒆  + �̂�𝒆𝒆 (�⃗� )  +  �̂�𝒆𝑵 (�⃗� , �⃗⃗� ) )𝝋(�⃗� , �⃗⃗� ) =  𝜺𝒏(�⃗⃗� )𝝋(�⃗� , �⃗⃗� )             (eq.6) 

       This produces a series of normalized eigenfunctions 𝝋(�⃗� , �⃗⃗� ) and eigenvalues 𝜺𝒏(�⃗⃗� ) that depend 

on the kernel positions �⃗⃗� . For each solution, there is a kernel eigenvalue equation: 

                                           (�̂�𝑵  +  �̂�𝑵𝑵 (�⃗� ) + 𝜺𝒏(�⃗⃗� )) 𝝌(�⃗⃗� )=E 𝝌(�⃗⃗� )                                       (eq.7) 

Since many of the desired properties can be derived from the ground state wave function and the energy 

of the system, our focus is on finding a technique to determine the ground state corresponding to the 

lowest energy state of the system. The variational principle provides a method of reaching the ground 

state by minimizing the total energy of the system. 

       2.2.1.2   Variational Principle: Ground State of the System 

       Using the variational principle, the energy calculation derived from an approximate wave function 

𝝍(�⃗� ) acts as an upper bound on the true ground state energy Eo. Let us consider a system that exists in 

a state |𝝍 >. The energy is estimated by evaluating the expectation value of the Hamiltonian and is 

represented as follows:       

                                                         𝑬(𝝍)  =
⟨𝝍|�̂�|𝝍⟩

⟨𝝍|𝝍⟩
                                                                 (eq.8) 

     By using the estimated value of the energy expectation (𝑬) in the state |𝝍 >, it becomes possible to 

approximate the eigenvalue and eigenfunction of energy using the variational principle. 

                                                                𝜹𝑬(𝝍) = 𝟎                                                                       (eq.9) 
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       The variational principle helps approximate the ground state energy of a system. Therefore it is 

important for ground state calculations. However, the techniques for implementing this principle can 

vary depending on the approach used to estimate the wave function and associated energy for the system. 

Numerous approximations have been developed to find the optimal wave function that corresponds to 

the antisymmetry property and includes various electron interactions within the system. To estimate the 

desired wave function, the Hartree and Hartree-Fock approximations are used, which will be discussed 

in more detail below. 

       2.2.1.3   Independent Electrons Approximations 

       a)  Hartree Approach (1928) 

       The Born-Oppenheimer approximation simplified the complexity of the Schrödinger wave 

equation, but the challenge remained due to electron-electron interactions. Hartree addressed this 

complexity by treating electrons as separate entities, resulting in the Hartree approximation [1]. In this 

approach, the overall wave function is represented as a product of individual one-electron wave 

functions. Consequently, 

                                         𝝋(�⃗� , �⃗⃗� ) = 𝝋1(�⃗� 1, �⃗⃗� )𝝋2(�⃗� 2, �⃗⃗� )… 𝝋𝑀(�⃗� 𝑀, �⃗⃗� )                                           (eq.10) 

                                                           = ∏ 𝝋𝑘(�⃗� 𝑘, �⃗⃗� )
𝑀

𝑘=1
                                                               (eq.11) 

       This is known as the Hartree product. Here the functions 𝝋𝑘(�⃗� 𝑘, �⃗⃗� ) are also called orbitals and 

must satisfy the condition of being orthonormal to each other, which can be expressed as 

∫𝑑𝑟 𝝋𝑘
∗ (𝑟)𝝋𝑘

′ (𝑟) = 𝜹𝑘𝑘′. This approximation does not satisfy the antisymmetry principle, also 

known as Pauli's exclusion principle [4]. This principle states that the wave function describing fermions 

must exhibit antisymmetry when exchanging any set of spatial and spin coordinates. Therefore, Hartree 

theory requires adjustments, a role that Hartree-Fock theory takes on.   

       b)  Hartree-Fock Approach (1930)  

       The emergence of the Pauli exclusion principle led to the development of the Hartree-Fock method, 

which allowed the representation of the overall Hamiltonian for an N-electron system (H) as the sum of 

individual electron Hamiltonians (Hi), meaning = ∑ 𝑯𝒊𝒊  . Furthermore, the overall wave function is 

expressed as a Slater determinant, which consists of individual electron wave functions. In the case of 

an N-electron system, the wave function can be formulated as follows:  
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                                    𝝋 =
1

√𝑁!
|

𝝌1(𝑥1) 𝝌2(𝑥2) ⋯ 𝝌𝑁(𝑥𝑁)

𝝌1(𝑥1)
⋮

𝝌2(𝑥2)
⋮

⋯
⋮

𝝌𝑁(𝑥𝑁)
⋮

𝝌1(𝑥1) 𝝌2(𝑥2) ⋯ 𝝌𝑁(𝑥𝑁)

|                                                    (eq.12) 

       The prefactor of 
1

√𝑁!
 guarantees the fulfillment of the normalization requirement for the wave 

function 𝝋. The determinant represented in Eq. 12 is recognized as a Slater determinant [5]. In the 

equations provided previously, we switched our notation from using spatial orbitals (𝝋 (r)) to 

introducing spin orbitals (χ(x)). Therefore, a spin orbital is essentially the result of multiplying a spatial 

orbital by a spin function, represented as χ(x) = 𝝋 (�⃗� ) σ. Here x = {�⃗� , σ}  denotes the combined set of 

space-spin coordinates, where r stands for the space coordinate and σ stands for a spin coordinate. This 

spin coordinate can take one of two possible values: σ1(↑) or σ2(↓). This approximation gives the full 

energy as the Hartree-Fock energy (EHF), which is represented as follows:    

       This approximation gives the full energy as the Hartree-Fock energy (EHF), which is represented 

as follows: 

                          𝑬𝑯𝑭 = ⟨𝝌𝒊|𝒉|𝝌𝒊⟩ +
𝟏

𝟐
∑ ⟨𝝌𝒊𝝌𝒋|

𝟏

𝒓𝒊𝒋
|𝝌𝒊𝝌𝒋⟩𝒊𝒋 −

𝟏

𝟐
∑ ⟨𝝌𝒊𝝌𝒋|

𝟏

𝒓𝒊𝒋
|𝝌𝒊𝝌𝒋⟩𝒊𝒋                       (eq.13) 

       In the context of the first term, h represents the one-electron operator and can be formulated as 

follows:  

                                            𝒉(𝒊) = 𝑻𝒆 + 𝑽𝒆𝒆 = −
𝟏

𝟐
𝛁𝒊

𝟐 − ∑
𝒁𝑨

𝑹𝑨𝒊
𝑨                                                       (eq.14) 

       The second term refers to a two-electron system and its integral form is as follows: 

⟨𝝌𝒊𝝌𝒋|
𝟏
�⃗� 𝒊𝒋

|𝝌𝒊𝝌𝒋⟩ = ∑𝒅𝒙𝒅𝒙′
𝝌𝒊

∗(𝒙)𝝌𝒋
∗(𝒙′)𝝌𝒊(𝒙)𝝌𝒋(𝒙

′)

|�⃗� − �⃗� ′|
𝒊,𝒋

 

         = ∑ ∫𝒅𝒙𝒅𝒙′
|𝝌𝒊(𝒙)|𝟐|𝝌𝒋(𝒙′)|𝟐

|�⃗� −�⃗� ′|𝒊,𝒋  

                                                           = ∑ 𝑱𝒊𝒋𝒊,𝒋                                                                    (eq.15) 

       Where 𝑱𝒊𝒋 is called the Coulomb integral. The third term also refers to a two-electron system and its 

integral form is as follows:  

⟨𝝌𝒊𝝌𝒋|
𝟏
𝒓𝒊𝒋

|𝝌𝒋𝝌𝒊⟩ = ∑𝒅𝒙𝒅𝒙′
𝝌𝒊

∗(𝒙)𝝌𝒋
∗(𝒙′)𝝌𝒋(𝒙)𝝌𝒊(𝒙

′)

|�⃗� − �⃗� ′|
𝒊,𝒋

 

                                                            = ∑ 𝑲𝒊𝒋𝒊,𝒋                                                                  (eq.16) 
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Where 𝑲𝒊𝒋 is identified as Exchange Integral.  

       This approximation misses the Coulomb correlation, causing the total electronic energy to deviate 

from the exact solution. Consequently, the Hartree-Fock energy constantly exceeds the exact energy, 

and this deviation is called the correlation energy [6]. In addition to the Coulomb correlation, solving 

the Schrödinger wave equation presents another major challenge, known as the 3N variable problem. 

These problems of correlation energy and complexity due to 3N variables have been addressed by an 

innovative method called density functional theory (DFT), which is examined in the next subsection. 

       2.2.1.4   Early Density Functional Theories: The Thomas-Fermi Model  

       First, in 1927, Thomas and Fermi (TF) suggested that atoms could be imagined as uniformly 

distributed clouds of negatively charged electrons surrounding nuclei in a six-dimensional phase space 

that includes momentum and coordinates. This represented a significant simplification of the 

complicated many-body problem. It is instructive to explore the basic concepts of the TF approximation 

before delving into a more precise theory, namely density functional theory (DFT). The Thomas Fermi 

method [7] takes a different approach based on the electron density within the system. This method 

assumes that electrons move in an external potential. The main goal is to calculate the potential 𝑽(�⃗� )and 

the electron density 𝒏(�⃗� ). Electrons are assumed to be uncorrelated and their kinetic energy is estimated 

using a local approximation based on the behavior of free electrons. The potential can be found by 

solving the Poisson equation, and the requirement for a constant chemical potential leads to the Thomas-

Fermi equation for 𝒏(�⃗� ). Although this method is not successful for real systems, it serves as a prototype 

for density functional theory because it focuses on the electron density 𝒏(�⃗� ), which is expressed as:                                 

                                           𝒏(�⃗� ) = 𝑵∫𝒅�⃗� 𝟐 ………𝒅�⃗� 𝑵|𝝍(𝒓,⃗⃗  𝒓 ⃗⃗  𝟐, ……… 𝒓𝑵⃗⃗ ⃗⃗  |𝟐                              (eq.17) 

The resulting energy functional includes classical expressions for nucleus-nucleus and electron-electron 

potentials, which were represented as follows: 

                      𝑬𝑻𝑭[𝒏(�⃗� )] =
𝟑

𝟏𝟎
(𝟑𝝅𝟐)

𝟐

𝟑 ∫𝒏
𝟓

𝟑(�⃗� )𝒅�⃗� − 𝒁∫
𝒏(�⃗� )

�⃗� 
𝒅�⃗� +

𝟏

𝟐
∬

𝒏(𝒓𝟏)𝒏(𝒓𝟐)

�⃗� 𝟏𝟐
𝒅�⃗� 𝟏𝒅�⃗� 𝟐           (eq.18) 

       This model provides a good solution to the Schrödinger equation, but a clear relationship between 

𝒏(�⃗� ) and 𝝍(�⃗� ) is required. A refined version of the Thomas-Fermi model was introduced by 

incorporating exchange effects via an exchange functional. However, this theory still gave inaccurate 

results for systems with many particles. The problem was finally solved when Hohenberg and Kohn 

showed that knowledge of the ground state electron density 𝒏(�⃗� ) for any electronic system, independent 

of interactions, uniquely defines the system. 
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       2.2.1.5    Density Functional Theory: An Ab-initio Approach (1964) 

       This model provides a good solution to the Schrödinger equation, but a clear relationship between 

n(�⃗� ) and 𝝍(�⃗� ) is required. A refined version of the Thomas-Fermi model was introduced by 

incorporating exchange effects via an exchange functional. However, this theory still gave inaccurate 

results for systems with many particles. The problem was finally solved when Hohenberg and Kohn 

showed that knowledge of the ground state electron density n(�⃗� ) for any electronic system, independent 

of interactions, uniquely defines the system. 

 Theorem I: In a system of interacting particles under an external potential 𝑽𝒆𝒙𝒕(�⃗� ), the ground 

state density 𝒏𝟎(�⃗� ) uniquely determines the external potential.   

 Theorem II: Using the electron density n(�⃗� ), a universal functional for the energy E[n] can be 

set up that is applicable to any external potential Vext. For a given Vext, the ground state energy 

of the system is the minimum value of the energy functional, and the corresponding electron 

density n(�⃗� ), which minimizes this functional, is the exact ground state density. Thus, the total 

energy of the system can be expressed as:  

                                               𝑬[𝒏] = 𝑭[𝒏] + ∫𝒅𝟑�⃗�   𝑽𝒆𝒙𝒕(�⃗� )𝒏(�⃗� )                                            (eq.19) 

The function 𝑭[𝒏] = 𝑻[𝒏] + 𝑽𝒆𝒆[𝒏] includes both the kinetic energy and all electron-electron 

interactions. This functional is universal and independent of external potential. Therefore, ideally it 

should remain consistent across all systems. However, the theorems do not provide a method to 

determine the exact structure of this functional. Therefore, practical applications require approximations 

where the functional must be approximated for feasible calculations. 

       2.2.1.6   The Kohn-Sham Formalism (1965) 

           The Kohn-Sham equation [10] represents the Schrödinger wave equation for a fictitious system 

consisting of non-interacting particles, typically electrons. This constructed system yields the same 

density as any given set of interacting particles. The Kohn-Sham equation is characterized by a locally 

effective (imaginary) external potential in which the non-interacting particles move. This potential is 

usually referred to as VKS(�⃗� ) or Veff(�⃗� ) and is called the Kohn-Sham potential. Since the particles in the 

Kohn-Sham system are non-interacting fermions, the Kohn-Sham wave function becomes a single Slater 

determinant formed from a collection of orbitals. The practical implementation of DFT was proposed 

by Kohn and Sham. The concept of the Kohn-Sham approach is to replace the interacting many-body 

system with a complementary system of non-interacting particles that have the same ground state. 

Consequently, the total energy functional can be expressed as: 
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                       𝑬[𝒏] = ∫𝒅𝟑�⃗�   𝑽𝒆𝒙𝒕(�⃗� ) 𝒏(�⃗� ) + 𝑻𝒔(𝒏) +
𝟏

𝟐
∫𝒅𝟑�⃗� 𝒅𝟑�⃗� ′

𝒏(�⃗� )𝒏(�⃗� ′)

|�⃗� −�⃗� ′|
+ 𝑬𝒙𝒄                       (eq.20) 

Where Vext is the external potential; Ts is the kinetic energy term of the hypothetical non-interacting 

electrons; The third term is the classical electrostatic energy (Hartree) of the electrons and all the many 

body effects are summarized in the exchange correlation energy term Exc. By minimizing the Kohn-

Sham energy function with respect to the electron density 𝒏(�⃗� ), a Kohn-Sham equation is derived that 

is similar to the Schrödinger equation:  

                                                         𝑯𝑲𝑺(�⃗� )𝝍𝒊(�⃗� ) = [−
𝟏

𝟐
𝛁𝟐 + 𝑽𝑲𝑺(�⃗� )]𝝍𝒊(�⃗� ) = 𝜺𝒊𝝍𝒊(�⃗� )                                 (eq.21) 

       The potential 𝑽𝑲𝑺, in the above equation is an effective potential that includes the external potential 

Vext, the Hartree potential 𝑽𝑯, which is represented by the integral of ∫𝒅𝟑�⃗� ′
𝒏(�⃗� )

|�⃗� −�⃗� ′|
 and the exchange 

correlation potential 𝑽𝑿𝑪 =
𝜹𝑬𝑿𝑪[𝒏]

𝜹𝒏(�⃗� )
, where electrons move independently of each other. 𝝍𝒊 represents 

the eigenfunctions corresponding to the eigenvalues 𝜺𝒊. Consequently, the Kohn-Sham Hamiltonian in 

Eq.21 can be expressed as:             

                                                         𝑯𝑲𝑺(�⃗� ) = −
𝟏

𝟐
𝛁𝟐 + 𝑽𝒆𝒙𝒕(�⃗� ) + 𝑽𝑯(�⃗� ) + 𝑽𝑿𝑪(�⃗� )                                         (eq.22) 

       This  𝑯𝑲𝑺 is related to the functional derivative of energy as follows: 

                                                            
𝜹𝑬

𝜹𝝍𝒊
∗(�⃗� )

= 𝑯𝑲𝑺𝝍𝒊(�⃗� )                                                              (eq.23) 

       The Kohn-Sham equations are theoretically precise. However, the functional form of 𝑬𝑿𝑪[𝒏(�⃗� )]  

remains unknown and requires further approximations. The total energy contribution is made up of four 

terms (Eq. 22): the kinetic energy (−
𝟏

𝟐
𝛁𝟐), and the called the effective potential (𝑽𝒆𝒇𝒇(�⃗� )), that 

englobes the classical Coulomb potential (𝑽𝒆𝒙𝒕(�⃗� )), the Hartree potential (𝑽𝑯(�⃗� )) and the exchange 

correlation potential (𝑽𝑿𝑪(�⃗� )). The exchange correlation potential (𝑽𝑿𝑪(�⃗� )) includes a variety of many-

body and quantum effects. Let us briefly discuss these terms one by one.         

 Kinetic Energy  

       Kohn and Sham introduced a series of orbitals from which electron density can be calculated. It is 

important to note that these Kohn-Sham orbitals generally do not directly represent actual electron 

density. However, the connection between the Kohn-Sham orbitals and real electronic wave functions 

is that both give the same charge density. To calculate the kinetic energy term, the Kohn-Sham orbitals 

are used, as shown below: 
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                                           𝑻𝒔[𝒏] = ∑ ∫𝒅�⃗�  . 𝝍𝒊
∗(�⃗� 𝑵

𝒊=𝟏 )(−
𝟏

𝟐
𝛁𝟐)𝝍𝒊(�⃗� )                                            (eq.24) 

 

 Coulomb Potential: Substituted with a Pseudopotential  

       The 𝑽𝒆𝒙𝒕(�⃗� ) term characterizes the interaction of the electron with various atomic nuclei present, 

which essentially boils down to the Coulomb potential. To deal with this aspect, a technique is used in 

which the Coulomb potential is replaced by a pseudopotential [10]. It is generally accepted that core 

electrons are minimally involved in bond formation and most material properties depend primarily on 

valence electrons. Therefore, it is more practical to focus on valence electrons. These valence electrons 

experience the Coulomb potential, which is exerted by an inert ionic nucleus (pseudonucleus, consisting 

of core and core electrons). Consequently, the system is simplified to handle fewer electrons, as shown 

in Figure 1(a). Essentially, a pseudopotential serves as an approximation for the total nuclear potential. 

The effectiveness of a pseudopotential depends on how closely it reproduces the actual results. When 

creating a pseudopotential, it is necessary to ensure that the all-electron wave function agrees with the 

pseudowave function within a certain limiting radius, as shown in Figure 1(b). 

                                    

      

(a)  Pseudopotential model: The 

movement of external electrons occurs 

within a stable configuration of 

chemically inert ionic nuclei that 

include both core and core electrons 

[11]. 

 

 

(b) Schematic representation of an atomic 

all-electron wave function (solid line) 

next to the corresponding atomic 

pseudo-wave function (dashed line), 

accompanied by its corresponding 

external Coulomb potential and 

pseudopotential [11]. 

Figure 1. Pseudo potential approach – pseudo wave function and pseudo potential representation.
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 Hartree Potential  

       The Hartree potential describes the Coulomb repulsion experienced by the electron (at position �⃗� ), 

as shown in the Kohn-Sham equations. This repulsion is determined by the total charge density 

encompassing all electrons (positioned at �⃗� ′) within the given scenario. The expression for the Hartree 

potential is as follows:  

                                                               𝑽𝑯 = ∫𝒅𝟑 �⃗� ′
𝒏(�⃗� )

|�⃗� −�⃗� ′|
                                                      (eq.25) 

       To solve the KS equation we need the Hartree potential, which is closely linked to the charge 

density of the system. To determine the charge density, we rely on single-particle wave functions, which 

can only be obtained by solving the KS equations. This leads us to a challenge of solving a set of self-

consistent equations. This process involves one iteration starting with an initial set of single-particle 

wave functions to derive the effective potential. The solution obtained using this method is called a self-

consistent solution. The approach to solving this complicated equation is systematically shown in Figure 

2. 

                  

Figure 2. Flowchart illustrating the various steps within the Kohn-Sham iterative loop in Density 

Functional Theory (DFT) codes. 
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 Exchange-Correlation Potential  

       The most important potential term in KS equations is VXC, which is used to account for exchange 

and correlation effects. In the following sections, we first deal with the elucidation of exchange and 

correlation. We then move on to discussing various approximations that are essential for estimating 

exchange and correlation. 

       2.2.1.7   Exchange and Correlation 

                    2.2.1.7.1 Exchange-correlation Hole  

       The principle of orbital antisymmetry dictates that electrons with the same spin must inhabit 

different orthogonal orbitals, requiring spatial separation between them. This results in a reduced 

electron density called an exchange hole, which results in reduced repulsion and consequently reduced 

system energy. This phenomenon causes the electrons to move away from each other, effectively 

eliminating the self-interaction inherent in the Hartree energy. Consequently, the exchange energy refers 

to the interaction between an exchange hole and the electron density over a certain range. Electrons with 

different spins can share the same orbit, but their mutual negative charge forces them to stay at a distance 

from each other. This electronic adjustment results in reduced electron density around each electron, 

resulting in lower attraction energy. This phenomenon is called the correlation hole [12]. The XC hole 

is predominantly determined by the exchange component at higher electron densities because of the 

Pauli exclusion principle, which is more pronounced when electrons are close to each other. However, 

at lower electron densities, the correlation component becomes more important and becomes 

comparable to the exchange component. Since a significant portion of the kinetic energy and the long-

range Hartree energy are treated separately, the remaining XC energy can be reasonably approximated 

as a local or semi-local function of electron density. Furthermore, the shape of the XC hole is assumed 

to be spherically symmetric in three dimensions. The local XC energy per electron is therefore the 

electrostatic interaction energy between an electron at position �⃗�   and the XC hole density at position �⃗� ′ 

expressed as:  

                                                   𝑬𝒙𝒄[𝒏] =
𝟏

𝟐
∫𝒏(�⃗� )𝒅�⃗� ∫

𝒏𝒙𝒄(�⃗� ,�⃗� 
′)

[�⃗� −�⃗� ′|
𝒅𝒓⃗⃗⃗⃗  ⃗                                                    (eq.26) 

Where 𝒏𝒙𝒄(�⃗� , �⃗� 
′) denotes the average coupling factor of the exchange correlation hole, 

                                                       𝒏𝒙𝒄(�⃗� , �⃗� 
′) = ∫ 𝒏𝒙𝒄

𝝀 (�⃗� , �⃗� ′)𝒅𝝀
𝟏

𝟎
                                                          (eq.27) 

Here 𝝀 is the range –separation parameter. 
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       Consequently, it becomes possible to define the exchange correlation density as follows: 

                                                        𝜺𝒙𝒄[𝒏(�⃗� )] =
𝟏

𝟐
 ∫

𝒏𝒙𝒄(�⃗� ,�⃗� 
′)

|�⃗� −�⃗� ′|
𝒅�⃗� ′                                                             (eq.28) 

       The exchange-correlation hole can be divided into two parts: the exchange hole (Fermi hole) and 

the correlation hole (Coulomb hole), 

                                                     𝒏𝒙𝒄(�⃗� , �⃗� 
′) = 𝒏𝒙(�⃗� , �⃗� 

′) + 𝒏𝒄(�⃗� , �⃗� 
′)                                                     (eq.29) 

       The exchange hole, 𝒏𝒙 can be characterized using the Hartree-Fock expression for energy,  

                                                     𝑬𝒙[𝒏(�⃗� )] =
𝟏

𝟐
∫𝒏(�⃗� )𝒅�⃗� ∫

𝒏𝒙(�⃗� ,�⃗� 
′)

|�⃗� −�⃗� ′|
𝒅�⃗� ′                                             (eq.30) 

      Therefore, the exchange-correlation functional can be formulated as follows: 

                                                       𝑬𝒙𝒄[𝒏(�⃗� )] = ∫𝒏(�⃗� )𝜺𝒙𝒄[𝒏(�⃗� )]𝒅�⃗�                                                   (eq.31) 

       By clearly understanding the specific structure of the exchange-correlation density, we can approach 

the exact ground state. In the next section, we will examine various approximations aimed at estimating 

the effects of exchange and correlation. 

                 2.2.1.7.2   Exchange-Correlation Energy Approximation 

       In order to determine the exact ground state of a system, knowledge of the exact exchange 

correlation functional is crucial. Unfortunately, obtaining the exact formula is a difficult task. To fill this 

gap, various approximations have been developed, including the local density approximation (LDA), 

the generalized gradient approximation (GGA), the hybrid GGA, the meta-GGA, the Tran-Blaha 

modified Becke-Johnson function (TB- mBJ) and more. In the following subsection, we will discuss 

LDA, GGA, TB-mBJ and HSE approximations in detail. 

a) Local Density Approximation (LDA) 

       The local density approximation (LDA) [13] is considered one of the oldest, simplest and yet most 

important exchange-correlation functionals. In this approach, the actual exchange-correlation energy of 

a system is approximated by the exchange-correlation energy of a uniform electron gas with the same 

density. This uniform gas represents the only system for which the exact form of the exchange-

correlation energy is known. The LDA relies solely on local density, resulting in a total energy 

expression: 

                                                𝑬𝒙𝒄
𝑳𝑫𝑨[𝒏(�⃗� )] = ∫𝒏(�⃗� )𝜺𝒙𝒄

𝒉𝒐𝒎[𝒏(�⃗� )]𝒅�⃗�                                                      (eq.32) 
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In this context, 𝜺𝒙𝒄
𝒉𝒐𝒎 denotes the exchange-correlation energy density of a homogeneous electron gas 

characterized by the electron density 𝒏(�⃗� ), while the exchange-correlation potential is obtained as an 

energy functional derivative, as shown below:   

                                                      𝑽𝒙𝒄
𝑳𝑫𝑨[𝒏(�⃗� )] =

𝜹𝑬𝒙𝒄
𝑳𝑫𝑨[𝒏(�⃗� )]

𝜹 𝒏(�⃗� )
                                                            (eq.33) 

       LDA has been extended to include spin-polarized systems through the local spin-polarized density 

approximation (LSDA), which is expressed as follows: 

                                   𝑬𝒙𝒄
𝑳𝑫𝑨[𝒏↑(�⃗� ), 𝒏↓(�⃗� )] = ∫𝒏(�⃗� )𝜺𝒙𝒄

𝒉𝒐𝒎[𝒏↑(�⃗� ), 𝒏↓(�⃗� )]𝒅�⃗�                                       (eq.34) 

       As already mentioned, the energy associated with the exchange hole 𝒏𝒙 can be obtained from the 

exact analytical formula of Dirac [14]: 

                                             𝑬𝒙[𝒏(�⃗� )] =  −
𝟑

𝟒
(

𝟗

𝟒𝝅𝟐)
𝟏

𝟑
𝟏

𝒓𝒔
≈

−𝟎.𝟒𝟓𝟖𝟐

𝒓𝒔
                                                      (eq.35) 

Where 𝒓𝒔 is the Seitz radius.  

       The local density approximation (LDA) provides a reasonably accurate estimate of the exchange 

energy and typically remains within a 10% margin of error. However, the correlation energy, which is 

usually much smaller, is often overestimated by a factor of two. Interestingly, these two errors partially 

compensate for each other. LDA is found to be quite reliable in predicting ionization energies of atoms, 

dissociation energies of molecules, and cohesion energies, with accuracy ranging between 10% and 

20%. Surprisingly, LDA achieves an astonishingly precise accuracy of about 2% for bond lengths in 

both molecules and solids. Nevertheless, there are cases where LDA is inadequate, for example in 

systems that are strongly influenced by electron-electron interactions, such as heavy fermions. To 

overcome the limitations of LDA, the next natural progression is to include not only the density 𝒏(�⃗� )  

at a given point r but also the charge density gradient 𝛁𝒏(�⃗� ) to account for inhomogeneous nature of 

true electron density. This advance leads to the development of the generalized gradient approximation 

(GGA) for exchange-correlation energy, a more sophisticated approach that increases the accuracy of 

the calculations. 

b) Generalized Gradient Approximation (GGA) 

     Hohenberg and Kohn proposed an improvement to LDA [15, 16] by incorporating a higher-order 

density gradient expansion term, called the gradient expansion approximation (GEA). However, the 

GEA is unable to reproduce the essential features of the exchange correlation hole associated with the 

LDA and loses its physical meaning. This is evident in the violation of the sum rules and the lack of 
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restrictions on the negative exchange gap [17]. Despite these shortcomings, it provides a way to 

construct the exchange correlation hole for GGA [15] by using a real space cutoff of the GEA exchange 

hole. By introducing an analytical function called gain function 𝑭𝒙𝒄 [𝒏(�⃗� ),𝛁𝒏(�⃗� )], one can modify the 

LDA energy density to obtain the GGA exchange-correlation energy:   

                                  𝑬𝒙𝒄
𝑮𝑮𝑨[𝒏(�⃗� )] = ∫𝒏(�⃗� )𝜺𝒙𝒄

𝑮𝑮𝑨[𝒏(�⃗� )]𝑭𝒙𝒄 [𝒏(�⃗� ), 𝛁𝒏(�⃗� )]𝒅�⃗�                                    (eq.36) 

       When the energy functional is expressed in integral form, the general expression for 

𝑬𝒙𝒄
𝑮𝑮𝑨[𝒏(�⃗� )] takes the following form: 

                                     𝑽𝒙𝒄
𝑮𝑮𝑨[𝒏(�⃗� )] =

𝜹𝑬𝒙𝒄
𝑮𝑮𝑨

𝜹 𝒏(�⃗� )
= 𝒏(�⃗� )

𝒅𝜺𝒙𝒄
𝑮𝑮𝑨[𝒏(�⃗� )]

𝒅𝒏(�⃗� )
+ 𝜺𝒙𝒄

𝑮𝑮𝑨[𝒏(�⃗� )]                                  (eq.37) 

       If we include the consideration of spin variables, the expression for the energy functional in the 

framework of the generalized gradient approximation (GGA) becomes: 

                        𝑬𝒙𝒄
𝑮𝑮𝑨[𝒏↑(�⃗� ), 𝒏↓(�⃗� )] = ∫𝒏(�⃗� )𝜺𝒙𝒄

𝑮𝑮𝑨[𝒏↑(�⃗� ), 𝒏↓(�⃗� ), 𝛁𝒏↑(�⃗� ), 𝛁𝒏↓(�⃗� )]𝒅�⃗�                      (eq.38) 

       Perdew and Wang introduced a diverse set of GGA methods, one of which stood out and was later 

simplified to become known as the PBE functional, which bears the names of its creators: Perdew, 

Burke, and Ernzerhof [18]. GGA methods represented a significant advance over LDA because they 

took into account not only the local electron density but also its gradients. PBE in particular gained 

widespread recognition due to its simplicity and impressive accuracy. Its main features include 

considerations of the local electron density, its gradient and second-order gradients within the gain 

factors F(x) and F(c). This multifaceted approach has made PBE the first choice for researchers in 

various fields due to its ability to accurately describe a wide range of materials and their properties. 

However, it is important to recognize the limitations of LDA and GGA. Despite their advances, these 

methods are often inadequate when attempting to predict the band gaps in semiconductors or to capture 

the complicated electronic structures of highly correlated systems such as Mott insulators. In the field 

of DFT, the exchange-correlation energy plays an indispensable role. It encompasses the complex 

quantum mechanical effects arising from electron-electron interactions, an aspect not explicitly 

considered in LDA and GGA. Therefore, accurate estimation of this energy component is of paramount 

importance for ensuring the reliability of DFT calculations. 

       In addition, a revised version of the PBE function, known as revPBE [19], emerged to address 

specific cases where improvements were required. It simplifies the mathematical formulation of the 

exchange energy while maintaining the accuracy of the original PBE function. Recently, a new GGA 

approximation for the exchange energy functional was introduced by Wu and Cohen aptly called it the 

WC approximation [20]. This innovation has made significant progress in improving the calculation of 
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structural properties in solid materials. What sets WC apart is its commendable computational efficiency 

and its unique property of being parameter-free, which represents a significant advance in the field of 

DFT. These developments highlight ongoing efforts to refine exchange-correlation functional in DFT, 

with a focus on improving its accuracy and applicability in the study of a variety of materials and 

phenomena in the fields of condensed matter physics and materials science. 

c) Modified Becke and Johnson Potential (mBJ) 

       While the two previously detailed approximations provide accurate predictions for structural 

properties, their performance deteriorates when it comes to electronic properties, particularly bandgap 

widths. The gaps calculated using LDA or GGA are often significantly underestimated. To resolve this 

discrepancy, an approach was developed in 2006 by Becke and Johnson that aims to correct the energy 

gap values calculated by LDA and GGA [21]. A later development by Tran and Blaha in 2007 led to the 

modified Tran-Blaha potential (TB-mBJ), an adaptation of the Becke-Johnson exchange potential [22]. 

This change has the form: 

                                          𝑽𝒙,𝝈
𝒎𝑩𝑱(�⃗� ) = 𝒄𝑽𝒙,𝝈

𝑩𝑹(�⃗� ) + (𝟑𝒄 − 𝟐)
𝟏

𝝅
√

𝟓

𝟏𝟐
√

𝟐𝒕𝝈(�⃗� )

𝒏𝝈(�⃗� )
                                          (eq.39) 

Where, 

𝒏𝝈(�⃗� ) = ∑ |𝝍𝒊|
𝟐𝑵

𝒊=𝟏  is the electron density. 

𝒕𝝈(�⃗� ) =
𝟏

𝟐
∑ |𝝍𝒊

∗𝛁𝝍𝒊|
𝟐𝑵

𝒊=𝟏  is the kinetic energy density. 

And                                      𝑽𝒙,𝝈
𝑩𝑹(�⃗� ) = −

𝟏

𝒃𝝈(�⃗� )
(𝟏 − 𝒆−𝒙𝝈(�⃗� ) −

𝟏

𝟐
𝒙𝝈(�⃗� )𝒆

−𝒙𝝈(�⃗� ))                                       (eq.40) 

is the Becke-Roussel potential [23], which was proposed to model the Coulomb potential arising from 

exchange holes. 

       The term in Eq.40 is determined using the following equation: 

                                                        
𝒙𝝈(�⃗� )𝒆−𝟐𝒙𝝈(�⃗� )/𝟑

𝒙𝝈(𝒓⃗⃗  ⃗)−𝟐
=

𝟐

𝟑
𝝅

𝟐

𝟑
𝒏𝝈

𝟓/𝟑
(�⃗� )

𝑸𝝈(�⃗� )
                                                       (eq.40) 

Where  

                                                   𝑸𝝈(�⃗� ) =
𝟏

𝟔
(𝛁𝟐𝒏𝝈(�⃗� ) − 𝟐𝜸𝑫𝜸(�⃗� ))                                                        (eq.41) 

With  
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                                                           𝑫𝝈(�⃗� ) = 𝟐𝒕𝝈(�⃗� ) −
𝟏

𝟒

|𝛁𝒏𝝈|𝟐

𝒏𝝈(�⃗� )
                                                        (eq.42) 

The 𝜸 parameter is empirically determined by the least squares fitting of the Hartree-Fock 

exchange energy.  

       The 𝒃𝝈 term is expressed by the following relationship: 

                                                             𝒃𝝈(�⃗� ) = (
𝒙𝝈
𝟑(�⃗� )𝒆−𝒙𝝈(�⃗� )

𝟖𝝅𝒏𝝈(�⃗� )
)
𝟏

𝟑                                                         (eq.43) 

Or 𝝈 represents the notation for spin. 

       The change is reflected in the inclusion of the parameter “c” in the functional formula. It is worth 

noting that setting c = 1 restores the Becke-Johnson function. The proposed representation for “c” has 

the following form: 

                                                         𝒄 = 𝜶 + 𝜷 (
𝟏

𝑽𝒄𝒆𝒍𝒍
 ∫

𝛁𝒏(�⃗� )

𝒏(�⃗� )
𝒅�⃗� )𝟏/𝟐                                               (eq.44) 

𝜶 and 𝜷 are parameters that can be adjusted (with the values 𝜶 = -0.012 and 𝜷 = 1.023 (Bohr)1/2 in the 

WIEN2K code [24]), while 𝑽𝒄𝒆𝒍𝒍 denotes the volume of the unit cell within the studied system.  

       It is important to highlight that the mBJ exchange potential involves the exchange of electron holes. 

This exchange potential has been self-consistently integrated into the WIEN2K code [24]. In addition, 

the correlation potential is given, which is determined using one of the GGA versions. In our calculations 

we used the PBE-GGA correlation potential.  

d) Heyd-Scuseria-Ernzerhof Functional (HSE) 

       Hybrid functionals belong to a class of approximations for the exchange-correlation energy 

functional within the DFT. They combine a portion of the exact exchange from Hartree-Fock theory 

with the remaining exchange-correlation energy from other sources, which can be either an “ab-initio” 

or empirical. The exact exchange energy functional is expressed in terms of Kohn-Sham orbitals rather 

than density and is therefore given the name implicit density functional. Axel Becke introduced the 

hybrid approach in 1993 [25]. Incorporating Hartree-Fock (HF) exchange, also known as exact 

exchange, provides a straightforward method to improve the accuracy of various molecular property 

calculations. These properties include atomization energies, bond lengths, and vibrational frequencies, 

which are often inadequately, represented using basic “ab-initio” functionals [26]. A widely used variant 

is the Heyd-Scuseria-Ernzerhof function (HSE) [27]. 
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       The Heyd-Scuseria-Ernzerhof (HSE) exchange-correlation function [27] uses a failure function-

tested Coulomb potential to calculate the exchange energy component with the aim of improving the 

computational efficiency. The HSE functionals are known for their ability to improve the precision of 

traditional semi-local functionals such as PBE, particularly when dealing with semiconductor bandgaps. 

In addition, they offer lower computational cost compared to other hybrid functions. The exchange- 

correlation energy has the following formula: 

                 𝑬𝒙𝒄
𝝎𝑷𝑩𝑬𝒉 = 𝜶𝑬𝒙

𝑯𝑭,𝑺𝑹(𝝎) + (𝟏 − 𝜶)𝑬𝒙
𝑷𝑩𝑬,𝑺𝑹(𝝎) + 𝑬𝒙

𝑷𝑩𝑬,𝑳𝑹(𝝎) + 𝑬𝑪
𝑷𝑩𝑬(𝝎)                   (eq.45) 

In this context, “𝜶” represents the mixing parameter, while “𝝎” serves as an adjustable parameter that 

determines the short-range nature of the interaction. Commonly used values of “𝜶 = 1/4” and “𝝎 = 0.2” 

(often referred to as HSE06) have shown favorable results for most systems. The HSE exchange-

correlation functional simplifies to the PBE0 hybrid functional when “𝝎 = 0”. Here "𝑬𝒙
𝑯𝑭,𝑺𝑹(𝝎)" stands 

for the short-range Hartree-Fock exact exchange functional, "𝑬𝒙
𝑷𝑩𝑬,𝑺𝑹

" and "𝑬𝒙
𝑷𝑩𝑬,𝑳𝑹

" denotes the short-

range or long-range components of the PBE exchange function and "𝑬𝑪
𝑷𝑩𝑬(𝝎)" represents the PBE [18] 

correlation function.     

       2.2.2   Augmented Plane Wave (APW) Basis Set  

       While the value of pseudopotentials in computing electronic structures is undeniable, there is a 

growing trend to explore alternative methods for certain specific reasons. While pseudopotentials are 

highly efficient, they have limitations in capturing information that is inherently encoded near the atomic 

nucleus. In this context, the concept of Augmented Plane Waves (APW) is gaining importance and is 

proving to be a promising alternative. In the coming sections, we begin by introducing the Augmented 

Plane Wave (APW) method. We will then examine its improvements, including the Linearized 

Augmented Plane Wave (LAPW) method, Augmented Plane Waves coupled with local orbitals 

(APW+LO), and the Full Potential Linearized Augmented Plane Wave (FP-LAPW) approach. 

              2.2.2.1   Augmented Plane Wave (APW) Method 

       The Augmented Plane Wave (APW) method, originally developed by Slater [28] in 1937 to solve 

the Kohn-Sham equations, is based on a fundamental concept: the division of space into two different 

regions, as shown in Figure 3. In the inner region we encounter non-overlapping spheres, each centered 

on atomic locations, affectionately known as “muffin tin” spheres (abbreviated as 𝑀𝑇 spheres). These 

spheres have a characteristic radius called Rmt. Within these limits, electrons assume a relatively free 

state that we can describe with plane waves. Here the potential exhibits spherical symmetry and the 

wave functions naturally assume radial shapes. Conversely, in the second region we are faced with what 

we call the “intermediate region”, which represents the unoccupied space woven between the muffin tin 
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balls. Within this region, electrons form strong bonds with the atomic nuclei, which resemble the 

behavior of free atoms. The potential remains constant and wave functions take the form of plane waves 

[29]. This fascinating duality in treatment allows the APW method to effectively capture the complex 

interplay between the behavior of free and bound electrons within a crystalline structure. 

 

Figure 3. Illustration of muffin tin spheres and the interstitial region where potential singularities occur 

at the core positions. The Augmented Plane Waves (APW), shown in red lines, must transition smoothly 

exactly at the boundaries of the spheres and coincide with the plane waves in the interstitial region, 

shown by the blue line. This image was taken from the FLEUR user manual [30]. 

       According to the Muffin-Tin approximation, the wave function 𝜓(𝑟)⃗⃗  ⃗ takes the following specific 

form:  

                               {
𝝍(�⃗� ) = ∑ 𝑨𝒍𝒎𝑼𝒍(�⃗� )𝒀𝒍𝒎(�⃗� )𝒍𝒎                            �⃗� < 𝑹𝒎𝒕  

𝝍(𝐫 ) =
𝟏

√𝜴
∑ 𝑪𝑮𝒆𝒊(�⃗⃗� +�⃗⃗� )𝐫 

𝑮
                                  �⃗� > 𝑹𝒎𝒕

                          (eq.46) 

Where 𝜴 is the volume of the unit cell, 𝑨𝒍𝒎 and 𝑪𝑮 are development coefficients, 𝒀𝒍𝒎(�⃗� ) is spherical 

harmonics and 𝑼𝒍(�⃗� ) is the regular solution of the radial part of the Schrödinger equation, given by:   

                                        {−
𝒅𝟐

𝒅�⃗� 𝟐
+

𝒍(𝒍+𝟏)

�⃗� 𝟐
+ 𝑽(𝐫 ) − 𝑬𝒍} 𝒓 𝑼𝒍(�⃗� ) = 𝟎                                                   (eq.47) 

       In this equation, 𝑽(𝐫 ) denotes the spherical component of the potential enclosed in the sphere, often 

referred to as the muffin tin potential. Meanwhile, 𝑬𝒍 represents the energy of linearization. These radial 

functions defined by this equation have orthogonality with respect to each nuclear eigenstate within the 

sphere. It is worth noting that this orthogonality property disappears at the spherical boundary [31], as 

explained by the following Schrödinger equation:          
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                                                 (𝑬𝟐 − 𝑬𝟏)𝐫 𝑼𝟏𝑼𝟐 = 𝑼𝟐
𝒅𝟐𝐫 𝑼𝟏

𝒅𝐫 𝟐
− 𝑼𝟏

𝒅𝟐𝐫 𝑼𝟐

𝒅𝐫 𝟐
                                            (eq.48) 

Where 𝑼𝟏 and 𝑼𝟐 are radial solutions corresponding to energies 𝐸1 and 𝐸2, respectively.  

       Slater's method introduces a key concept: plane waves serve as solutions to the Schrödinger 

equation when the potential remains constant, as it does in the interstitial region. In contrast, radial 

functions emerge as solutions when dealing with a spherical potential, and this is also true when 𝑬𝒍  

represents an eigenvalue. While this approximation proves to be extremely effective for materials with 

cubic or face-centered structures, its applicability for asymmetric materials is limited. To maintain the 

continuity of the function 𝝍(𝐫 ) at the surface of the MT sphere, the coefficients 𝑨𝒍𝒎 must be expressed 

as 𝑪𝑮 coefficients associated with plane waves within the interstitial region. These coefficients can be 

expressed explicitly as follows:                                

                                  𝑨𝒍𝒎 =
𝟒𝝅𝒊𝒍

√𝜴 𝑼𝒍(𝑹𝒎𝒕)
∑ 𝑪𝑮𝑮 𝑱𝒍 (|�⃗⃗⃗� + �⃗⃗� |𝑹𝒎𝒕)𝒀𝒍𝒎

∗ (�⃗⃗⃗� + �⃗⃗� )                                            (eq.49) 

       The reference point is set at the center of a sphere with a radius of RMT. Consequently, the 

coefficients are expressed as plane wave coefficients, denoted 𝑪𝑮. The energy parameters 𝑪𝑮 are 

referred to as coefficients of variation in the APW method. This alignment ensures that the functions 

indexed by G are compatible with the radial functions within the spheres, leading to the concept of 

Augmented Plane Waves (APW). These APW functions specifically serve as solutions to the 

Schrödinger equation for energies represented by 𝑬𝒍 alone. Therefore, it is imperative that the energy 

value 𝑬𝒍 matches that of the G-indexed energy band. This condition means that energy bands (for a 

given k-point) cannot be obtained by a simple diagonalization process. Instead, it becomes necessary to 

treat the secular determinant as a function of energy to decipher the complicated energy band structure.  

      The inherent challenge within the APW method arises from the presence of the parameter El in the 

denominator of the Ul function (RMT). This parameter can take the value zero at the surface of the MT 

sphere, resulting in a discontinuity between the radial functions and the plane wave functions. To address 

this problem, several modifications to the APW method have been introduced, the most famous being 

developed by Koelling [32] and Andersen [33]. Andersen's modification involves a novel approach. The 

aim is to represent the wave functions within the spheres by creating a linear combination of the radial 

functions 𝑼𝒍(�⃗� ) and their derivatives with respect to the energy El. This representation is formulated as 

follows: 𝑼𝒍(�⃗� ) =
𝒅𝑼𝒍

𝒅𝑬𝒍
, which gave rise to the LAPW (Linearized Augmented Plane Wave) method. 

This adjustment effectively bridges the gap and ensures a seamless transition between radial and plane 

wave functions, improving the overall accuracy and versatility of the method. 
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        2.2.2.2   Linearized Augmented Plane Wave (LAPW) Method 

       Once the fundamental functions and their derivatives are continuous and adapt to their status as 

radial functions with a fixed energy El, we introduce a more adaptable and precise framework for 

understanding the band structure of solids - the LAPW (Linear Augmented Plane Wave) method. The 

LAPW method was a remarkable success, especially after Andersen's refinements of linearization 

techniques. Below we outline some key principles of the LAPW method. More details can be found in 

the work of Singh [34]. Within the LAPW method, especially in the atomic MT region, wave functions 

take the form of a linear combination involving radial solutions 𝑈𝑙(𝑟 )𝑌𝑙𝑚(𝑟 ) and their derivatives, 

denoted as 𝑈𝑙
̇ (𝑟 )𝑌𝑙𝑚(𝑟 ), related to energy fluctuations. These functions U are defined according to Eq. 

48 from the APW method. In addition, it is important that the derivative functions �̇� satisfy a certain 

condition:  

                                            {−
𝒅𝟐

𝒅�⃗� 𝟐
+

𝒍(𝒍+𝟏)

�⃗� 𝟐
+ 𝑽(𝐫 ) − 𝑬𝒍} 𝒓 𝑼𝒍

̇ (�⃗� ) = 𝒓𝑼𝒍(�⃗� )                                   (eq.50) 

       LAPWs are plane waves in the intermediate zone of the unit cell that reach the numerical radial 

functions inside the spheres, under the condition that the functions and their derivatives are continuous 

at the boundary as described in Eq.51:  

                       𝝍(�⃗� ) = {
∑ [𝑨𝒍𝒎𝑼𝒍(�⃗� ) + 𝑩𝒍𝒎 𝑼𝒍

̇ (�⃗� )]𝒀𝒍𝒎(�⃗� )                             �⃗� < 𝑹𝒎𝒕𝒍𝒎

 
𝟏

√𝜴
∑ 𝑪𝑮𝒆𝒊(�⃗⃗� +�⃗⃗� )𝐫 

𝑮
                                                             �⃗� > 𝑹𝒎𝒕

                   (eq.51)      

Where the coefficients 𝑩𝒍𝒎 corresponding to the function 𝑼𝒍(�⃗� ) are of the same type as the 𝑨𝒍𝒎 

coefficients. 

       As with the APW method, LAPW functions are plane waves only in the interstitial region. Within 

spheres, LAPW functions are more suitable than APW functions. If 𝑬𝒍 differs slightly from the band 

energy E, a linear combination will actually reproduce the radial function better than APW functions 

consisting of a single radial function. Consequently, the 𝑼𝒍 function can be developed as a function of 

its derivative and the energy E:   

                                     𝑼𝒍(𝐸, �⃗� ) = 𝑼𝒍(𝑬𝒍, �⃗� ) + (𝑬 − 𝑬𝒍)𝑼𝒍(𝐸, �⃗� ) + 𝟎(𝑬 − 𝑬𝒍)
𝟐                            (eq.52) 

So that (𝑬 − 𝑬𝒍)
𝟐 represents the energy squared error. 

       While this approach in the LAPW method guarantees the continuity of the wave function at the MT 

sphere boundary, it is worth noting that these calculations may experience a reduction in precision in 
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terms of computational accuracy compared to the APW method. The LAPW method leads to an error 

in the wave functions on the order of (E-El)2 and another error in the band energies on the order of (E-

El)4. Despite these errors, the LAPW wave functions serve as a robust basis for capturing all valence 

bands within a relatively wide energy range, all with a single energy value El. In cases where this is not 

possible, splitting the energy window into two parts provides a significant simplification compared to 

the APW method. When 𝑼𝒍 takes a zero value at the surface of the MT sphere, its derivative 𝑼𝒍
̇  is 

generally non-zero, which effectively solves the continuity problem at the surface of the MT sphere 

within the LAPW method. Takeda and Kubler [35] introduced a generalized version of the LAPW 

method using N radial functions and their (N-1) derivatives. Each radial function is associated with its 

unique parameter Eli, effectively mitigating the error associated with linearization. The default LAPW 

method is called when N=2 and El1 is close to El2. However, for N>2 these errors can be further reduced. 

Unfortunately, using higher order derivatives to achieve convergence requires significantly longer 

computation times. Singh [36] modified this approach by introducing local orbitals into the basis set 

without increasing the plane wave energy limit, which provided a more efficient strategy to deal with 

convergence while maintaining computational efficiency. 

 Role of Linearization Energies El 

       The extended wave functions 𝑼𝒍 and 𝑼𝒍
̇  must satisfy the condition of orthogonality with respect to 

the core states within the MT sphere. However, this condition is only met if there are no nuclear states 

with the same quantum number “l”. Consequently, there is a risk of fusion of semi-nuclear states with 

valence states. The problem of non-orthogonality between certain nuclear states is still not addressed by 

the APW method, and the introduction of the LAPW method requires careful selection of the energy El. 

Therefore, an adjustment of El is required to facilitate the calculation. In such cases, the ideal solution 

is to apply local orbital expansion. However, it is important to note that this option may not be available 

in all software programs. In such cases, selecting the largest possible MT sphere radius is crucial. 

Ultimately, the different El values should be defined independently of each other. Energy bands 

correspond to different orbitals. For precise electronic structure calculations, El should be chosen as 

close as possible to the energy of the band when both have the same quantum number “l”. 

       2.2.2.3   Development of LAPW into Local Orbitals 

       The primary goal of the LAPW method is to obtain precise band energies close to the linearization 

energies El [33]. For most materials it is sufficient to choose these energies near the center of the band. 

However, this approach is not always feasible because there are materials for which a single El value is 

not sufficient to calculate all energy bands. This is particularly relevant for materials with 4f orbitals 

[37, 38] and transition metals [39, 40]. It highlights the fundamental problem of the semi-nuclear state, 



Chapter 2                                                                                      Theory and Computational Techniques 

 

 

85 

 

which lies between the valence and the nuclear state. To address this challenge, multiple energy 

windows are often used or, alternatively, local orbital expansion is used. 

       2.2.2.3.1   LAPW+LO Method  

       The development of the LAPW method to local orbitals involves modifying the orbitals within their 

basis set to eliminate the need for multiple energy windows. This is achieved by introducing a third 

category of basic functions. The underlying principle is to treat all energy bands within a single energy 

window. Singh [36] articulated local orbitals as a linear combination of two radial functions 

corresponding to two different energies, along with the derivative of one of these functions with respect 

to the energy: 

          𝝍(𝐫 ) = {
[𝑨𝒍𝒎𝑼𝒍(𝒓,⃗⃗  𝑬𝒍,𝟏) + 𝑩𝒍𝒎 𝑼𝒍

̇ (𝒓,⃗⃗ 𝑬𝒍,𝟏) + 𝑪𝒍𝒎𝑼𝒍(𝒓,⃗⃗  𝑬𝒍,𝟐)]𝒀𝒍𝒎(�⃗� )      �⃗� < 𝑹𝒎𝒕

𝟎                                                                                                                    �⃗� > 𝑹𝒎𝒕

           (eq.53) 

The coefficients 𝑪𝒍𝒎 have the same nature as the previously defined coefficients 𝑨𝒍𝒎 and 𝑩𝒍𝒎.  

       A local orbital is defined for a given l and m and also for a particular atom, since within the unit 

cell all atoms must be taken into account, not just the inequivalent ones. In addition to addressing the 

half-core states, local orbitals can also be used to improve the basis set for conduction bands. This 

improvement to the LAPW method has been crucial to its widespread success, as it extends the 

applicability of this linearization approach to a significantly broader range of compounds. 

       2.2.2.3.2   APW+LO Method  

       The problem encountered with the APW method was the energy dependence of the entire basis set. 

While the LAPW+LO method managed to eliminate this energy dependence, it came with the 

disadvantage of using a larger base, which imposed significant limitations on both the APW and 

LAPW+LO methods. Sjösted, Nordström, and Singh [41] achieved a significant improvement by 

developing a hybrid basis that combines the advantages of the APW and LAPW+LO methods. This 

approach is referred to as APW+LO and requires only a slightly higher plane wave cutoff energy 

compared to the APW method. A standard APW basis is used and 𝑼𝒍(�⃗� ) is taken into account for a fixed 

energy El, thereby retaining the advantages of linearizing the eigenvalue problem. However, since a 

fixed energy basis does not provide a satisfactory description of the eigenfunctions, local orbitals are 

introduced to ensure variational flexibility in the radial basis functions.  

       An APW+LO basis is defined by the combination of two types of wave functions: 

 Plane waves (APW) with a set of fixed energies El: 
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                   𝝍(𝐫 ) = {

∑ [𝑨𝒍𝒎𝑼𝒍(�⃗� ) + 𝑩𝒍𝒎 𝑼𝒍
̇ (�⃗� )]𝒀𝒍𝒎(�⃗� )                             �⃗� < 𝑹𝒎𝒕𝒍𝒎

 
𝟏

𝟏

√𝜴
∑ 𝑪𝑮𝒆𝒊(�⃗⃗� +�⃗⃗� )𝐫 

𝑮

                                                                     �⃗� > 𝑹𝒎𝒕
             (eq.54) 

 Local orbitals different from those of the LAPW+LO method, defined as: 

                  𝝍(𝐫 ) = {
∑ [𝑨𝒍𝒎𝑼𝒍 (𝒓,⃗⃗  𝑬𝒍) + 𝑩𝒍𝒎 𝑼𝒍

̇ (𝒓,⃗⃗  𝑬𝒍)]𝒀𝒍𝒎(�⃗� )                  �⃗� < 𝑹𝒎𝒕𝒍𝒎

 𝟎                                                                                                  �⃗� > 𝑹𝒎𝒕

        (eq.55) 

       A mixed basis can be used in calculations, including both LAPW and LAPW+LO components, 

taking into account different atoms and even different values of the quantum number 'l'. Typically, this 

approach assigns orbitals that exhibit slower convergence with the number of plane waves, such as the 

3d-states in transition metals or atoms with a smaller MT sphere size to the APW+LO basis. Meanwhile, 

the remaining components are described on the LAPW basis [42]. 

2.2.2.4   FP-LAPW Method 

       The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method [43] does not make any 

approximations regarding the shape of the potential or the charge density. Instead, they are developed 

into lattice harmonics within individual atomic spheres and represented as a Fourier series in the 

interstitial regions. This property is the origin of the method's name, “full-potential”. In particular, this 

approach ensures the continuity of the potential at the surface of the MT sphere and can be expressed in 

the following comprehensive form:                    

                                 𝑽(𝐫 ) = {
∑ 𝑽𝒍𝒎( 𝐫 )𝒀𝑰𝒎(𝐫 )                                          �⃗� < 𝑹𝒎𝒕𝒍𝒎

∑ 𝑽𝑲𝑲 𝒆𝒊𝒌𝐫 →                                                            �⃗� > 𝑹𝒎𝒕 
                   (eq.56) 

       Likewise, the charge density develops in the following way: 

                               𝒏(𝐫 ) = {
∑ 𝒏𝒍𝒎(𝐫 )𝒀𝑰𝒎(𝐫 )                                            �⃗� < 𝑹𝒎𝒕𝒍𝒎

∑ 𝒏𝑲𝑲 𝒆𝒊𝒌𝐫 →                                                              �⃗� > 𝑹𝒎𝒕

                    (eq.57) 

       In addition to the basic principles of the APW method, several variants and extensions have been 

developed. These include the Soler-Williams formulation of the LAPW [44], ELAPW [45, 46] and 

QAPW [47, 48] methods, each of which provides improved accuracy, flexibility, precision and 

computational efficiency compared to the standard LAPW method. This makes them valuable tools for 

electronic structure calculations for various types of materials and systems. 

       Furthermore, when dealing with low-dimensional systems, it is possible to extend the division of 

the unit cell to explicitly include semi-infinite vacuum regions, each with tailored plane wave 
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amplification [49]. This approach enables efficient calculations for low-dimensional systems such as 

surfaces and thin films. In addition, an extension to one-dimensional setups was developed for 

addressing atom chains [50]. A large number of software projects have been developed to implement 

the LAPW method and its many variants. Some notable examples of these software codes are: Elk [51], 

Exciting [52], Flair [53], FLEUR [30], HiLAPW [54] and WIEN2k [42]. These software packages 

provide valuable resources for researchers working on the calculation of electronic structures. They 

provide a comprehensive toolbox for exploring the properties and behaviors of various materials, 

increasing the versatility and effectiveness of computational investigations in this area. Software 

programs such as VASP [55] and Quantum Espresso [56] adopt the pseudopotential approach alongside 

plane wave and projector-augmented waves (PAW). This approach is characterized by its user-friendly 

properties, requires fewer user control parameters and provides a streamlined development process. The 

use of plane waves also contributes to the simplicity of the code by simplifying various expressions in 

the software. A basic description of this method follows. 

       2.2.3   Projector Augmented Wave (PAW) Method 

       Several approaches have emerged to solve the Schrödinger equation. Among the prominent 

electronic structure techniques, we can divide them into two main groups: (i) linear methods, 

exemplified by the previously discussed Augmented Plane Wave (APW) method by Andersen [28], and 

(ii) the pseudopotential method, which is based on norm-conserving pseudopotentials of the first 

principle, which were developed by Hamann, Schluter and Chiang [57]. The pseudopotential method, 

in combination with a plane wave basis set, offers the advantage of formal simplicity. However, when 

it comes to first-row elements or systems containing d or f electrons, even pseudopotentials can become 

very “hard”. In such cases, practicality requires the use of either extensive or complicated basis sets 

instead of plane waves. Furthermore, the treatment of semi-nuclear states as valence states, which is 

often required for early transition metal and alkaline earth metal elements, leads to the use of hard 

pseudopotentials, which limits their transferability.  

       Vanderbilt's ultrasoft pseudopotentials [58, 59] significantly alleviated this problem by relaxing the 

norm conservation condition typically imposed on the pseudopotential approach. This approach also 

allows economical treatment of first-row elements and transition metal.  

       Car and Parrinello introduced a combination of density functional theory and molecular dynamics 

techniques [60] in which both electronic structure and atomic dynamics are solved simultaneously using 

Newton's equations. This approach simplifies structure determination and facilitates the dynamic 

evolution of atomic structures. The Car-Parrinello method was originally used in the context of the 

pseudopotential for plane waves. However, there is growing interest in applying this technique to all-
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electron (AE) methods, which enable efficient handling of first-row elements and transition metals. AE 

methods provide insights into the behavior of the wave function near the nucleus, a feature not provided 

by the pseudopotential approach and which is crucial for various experimental techniques. Nevertheless, 

it is important to emphasize that up to this point, no low-energy molecular dynamics simulation [61] 

that rivals the quality of simulations using the pseudopotential approach has been performed.  

       In this context, the concept of “Projector Augmented Wave” (PAW) functions was developed. 

Blöchl introduced the “Projector Augmented Wave” (PAW) method [62], which combines and extends 

the advantageous aspects of pseudopotential and LAPW methods through the use of projector functions. 

Basically, the PAW method matches partial wave functions derived from isolated atoms with pseudo 

partial waves, using specially designed projector functions that closely mimic the all-electron solution. 

In this framework, PAW datasets are generated that allow the recovery of full core electron wave 

functions, similar to the LAPW approach but with significantly reduced computational effort, 

approaching the efficiency of pseudopotentials (the basic concept of the PAW method is schematically 

presented in Figure 4). In simpler terms, valence wave functions exhibit fast oscillations near ionic 

nuclei due to the need to maintain orthogonality to the core states. This presents a challenge because 

accurately describing these wave functions requires a large number of Fourier components or, in the 

case of grid-based methods, an exceptionally fine grid. The PAW method addresses this problem by 

converting these rapidly oscillating wave functions into smoother counterparts, making them more 

computationally tractable. In addition, it provides a way to calculate the properties of all electrons based 

on these smoothed wave functions. This approach is somewhat similar to a transition from the 

Schrödinger picture to the Heisenberg picture. 

 

Figure 4. A schematic representation of the PAW method is shown. (a) Pseudo-quantities are 

established using a uniform, flat wave grid covering the entire space. (b) Pseudowave functions are 

reconstructed inside spheres and the respective single-center terms are subtracted. (c) The all-electron 

wave functions are reconstructed and the corresponding single-center energies are included. After Ref 

[63]. 
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       In the Hilbert space, the wave functions (AE) are transformed into a new, so-called pseudo (PS) 

Hilbert space. The linear transformation denoted by 𝜻 converts the hypothetical pseudo wavefunction 

|�̃�⟩ into the real all-electron wavefunction |𝝍⟩: 

                                                               |𝝍⟩ = 𝜻|�̃�⟩                                                                    (eq.58) 

       The “all-electron” wave function, which represents a single-body Kohn-Sham wave function, 

should not be confused with the many-body wave function. To ensure that |�̃�⟩ and |𝝍⟩ differ mainly in 

the regions around the ion nuclei, we can express it as follows:  

                                                             𝜻 = 𝟏 + ∑ 𝜻�̃�𝑹                                                                   (eq.59) 

       The non-zero 𝜻�̃� values of are restricted to certain spherical augmentation regions 𝛀𝒓  surrounding 

the atom R. It is advantageous to represent the pseudowave function around each atom as an expansion 

of pseudopartial waves: 

                                                     |�̃�⟩ = ∑ |𝝓�̃�⟩𝒊 𝒄𝒊 within 𝛀𝒓                                                     (eq.60) 

       Due to the linearity of the operator 𝜻, the coefficients 𝒄𝒊 can be expressed as an inner product with 

a set of projector functions, denoted as |𝒑𝒊⟩:    

                                                        𝒄𝒊 = ⟨𝒑𝒊|�̃�⟩                                                                        (eq.61) 

Where ⟨𝒑𝒊|𝝓�̃�⟩ = 𝜹𝒊𝒋.  

       The all-electron partial waves, denoted as |𝝓𝒊⟩ = 𝜻|𝝓�̃�⟩, are usually chosen as solutions of the 

Kohn-Sham-Schrödinger equation for an isolated atom. The transformation 𝜻 is thus characterized by 

three components: a set of all-electron partial waves |𝝓𝒊⟩, a set of pseudo-partial waves |𝝓�̃�⟩,  and a set 

of projector functions |𝒑𝒊⟩, and so it can also be expressed explicitly as : 

                                                   𝜻 = 𝟏 + ∑  (𝒊 |𝝓𝒊⟩ − |𝝓�̃�⟩) ⟨𝒑𝒊|                                                (eq.62) 

       Using this transformation, we can derive the all-electron wave function (AE) from the pseudo wave 

function (PS) by:  

                                                     |𝝍⟩ = |�̃�⟩ + ∑  (𝒊 |𝝓𝒊⟩ − |𝝓�̃�⟩) ⟨𝒑𝒊|�̃�⟩                                          (eq.63) 

       Outside the augmentation regions, the pseudo partial waves agree with the all-electron partial 

waves. Within the spheres, they can take any smooth continuation, including linear combinations of 

polynomials or Bessel functions. 
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2.3   Computational Formulation  

       The main goal of practical DFT formulations is the numerical solution of the Kohn-Sham equations 

for systems consisting of multiple atoms. Density functional theory (DFT) calculations have quickly 

become a standard tool for a variety of materials modeling applications in physics, chemistry, materials 

science, and various engineering disciplines. The development of open-source electronic structure code 

packages, mainly based on the LAPW method or the pseudopotential method, has significantly enriched 

the toolbox for conducting detailed ab-initio materials studies. These joint efforts have produced well-

structured shared codes that incorporate numerous state-of-the-art methods. A crucial aspect of code 

development is the validation process, with most collaborative teams incorporating internal testing as 

an integral part of their development processes. Additionally, the availability of multiple independently 

developed codes provides opportunities for extensive testing and validation.  

       In this dissertation, we leverage the capabilities of two commercial software packages, WIEN2k 

[42] and VASP [55], to perform our DFT calculations. This section provides a detailed introduction to 

these two codes. 

       2.3.1    WIEN2k Code 

       The WIEN2K simulation code comes from the Institute of Materials Chemistry at the Vienna 

University of Technology and was first developed in 1990 by P. Blaha, K. Schwartz., P. Sorintin and 

S.B. Trickey [24, 64]. Since its inception, this code has been continually revised and updated multiple 

times, resulting in various versions known by their year of release, such as WIEN93, WIEN95, WIEN97, 

etc. In our work, we used the 2014 WIEN2K version to study the 3D bulk structures. 

 

       WIEN2K is a computational software for calculating the Schrödinger wave equation for periodic 

materials in three-dimensional (3D), two-dimensional (2D) and one-dimensional (1D) configurations. 

It is coded primarily in FORTRAN90 and runs on the LINUX operating system. It consists of a 

collection of standalone programs linked together via C-SHELL SCRIPT. These programs are 

responsible for performing electronic structure calculations in solid-state materials using the principles 

of density functional theory (DFT). WIEN2K supports a wide range of function types and uses the FP-
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LAPW method. It performs self-consistent calculations for all electrons, including both core and valence 

electrons, resulting in exceptionally accurate results. 

       The code's capabilities extend to fundamental electronic structure calculations, structure 

optimization methods, spin-polarized/spin-orbit-based systems, phonons, and the simulation of various 

spectroscopic methods. For applications such as X-ray absorption or electron energy loss spectroscopy, 

WIEN2K considers excitonic effects by introducing a core hole on the relevant atom, thus enabling the 

precise modeling of various spectral features. Furthermore, WIEN2K offers the opportunity to go 

beyond the limits of DFT by leveraging advanced many-body perturbation theories such as the GW 

approximation [65] and the Bethe-Salpeter approach (BSE) [66]. 

       2.3.2    VASP Code 

       VASP, or the Vienna Ab-initio Simulation Package, is a powerful computational tool written 

primarily in FORTRAN. It is designed to perform ab initio quantum mechanical molecular dynamics 

(MD) of essentially small atom systems (approximately up to 100-200 atoms) using Vanderbilt 

pseudopotentials [58, 59] or the PAW method [62] combined with a plane wave basis set. While the 

core methodology of atoms focuses on DFT, VASP also considers post-DFT corrections, including 

hybrid functionals (such as HSE [27], PBE0 [26] or B3LYP [67]) that integrate DFT with Hartree–Fock 

(RF) exchange as well as advanced techniques such as the GW method for many-body perturbation 

theory [65] and dynamic electronic correlations within the random phase approximation (RPA) [68]. 

 

       Originally, VASP was based on code developed by Mike Payne, which also laid the foundation for 

CASTEP [69]. Later, VASP was brought to the University of Vienna, Austria by Jürgen Hafner in July 

1989. The main program was created by Jürgen Furthmüller, who came to the Institute for Materials 

Physics in January 1993 together with Georg Kresse. The further development of VASP is currently 

being driven forward by Georg Kresse. Recent extensions include the adaptation of methods commonly 

used in molecular quantum chemistry for use in periodic systems. The latest version of VASP is version 

6.4.2, which became available on July 20, 2023. In our work, we used VASP version 6.2.1 to study the 

2D monolayer structures. 



Chapter 2                                                                                      Theory and Computational Techniques 

 

 

92 

 

       A more detailed description of the basic programs of the WIEN2K and VASP codes, step 

calculations, and possible properties can be found in Appendix B. 

       2.3.3   BoltzTraP2 Code 

       BoltzTraP2, an acronym for Boltzmann Transport Properties, is a widely used software package 

known for its ability to simulate and calculate the thermoelectric properties of materials. This code uses 

a contemporary approach that leverages smoothed Fourier interpolation of periodic functions and 

Onsager transport coefficients for extended systems and enables the careful calculation of a material's 

semi-classical Boltzmann transport equation (discussed in Chapter 1). It relies on crucial inputs 

including band- and k-dependent quasiparticle energies, intraband optical matrix elements, and 

scattering rates. BoltzTraP2 interfaces seamlessly with WIEN2K and VASP and provides versatile 

access through both a command line interface (via the btp2 command line interface) and a Python 

module [70]. 

       The approach is based on expressing the quasiparticle energies and their derivatives for each band 

as Fourier series representations: 

 Quasi-particle energies �̆�𝒌 are represented as follows:   

                                                         �̆�𝒌 = ∑ 𝒄𝚲 ∑ 𝐞𝐱𝐩 (𝒊𝒌. 𝑹)𝑹𝝐𝚲𝚲                                                            (eq.64) 

Where Λ represents sets of symmetry-equivalent lattice vectors. 

 Derivatives of quasi-particle energies 𝛁�̆�𝒌 are expressed as:   

                                         𝛁�̆�𝒌 = 𝒊∑ 𝒄𝚲 ∑ 𝐑 𝐞𝐱𝐩 (𝒊𝒌. 𝑹)𝑹𝝐𝚲𝚲                                                       (eq.65) 

       BoltzTraP was originally inspired by Shankland's concept [71], which proposed determining 

coefficients by minimizing a roughness function while ensuring accurate reproduction of the calculated 

quasiparticle energies. This requirement implies that the number of coefficients should exceed the 

number of calculated points. 

       The derivatives can also be derived from optical intraband matrix elements [72]: 

                                                             𝛁𝜺𝒌 = −⟨𝝍𝒌|𝒑|𝝍𝒌 ⟩                                                                       (eq.66) 
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       In BoltzTraP2, the Shankland algorithm [71] is extended to ensure that the coefficients reproduce 

not only the quasiparticle energies but also their derivatives, as expressed in Eq.66. This involves 

minimizing the Lagrangian: 

                                       𝑰 =
𝟏

𝟐
∑ 𝒄𝑹𝝆𝑹 + ∑ [𝝀𝒌(𝒌𝑹 𝜺𝒌 − �̆�𝒌) + ∑ 𝝀𝒂,𝒌𝛁𝒂(𝜺𝒌 − �̆�𝒌)]𝒂                     (eq.67) 

       The Fourier coefficients (𝒄𝑹) are adjusted according to the constraints and the Lagrange multipliers 

(𝝀𝒌 and 𝝀𝒂,𝒌) are chosen to satisfy these constraints. Here, the index α denotes the three Cartesian 

directions, indicating that each calculated derivative introduces three Lagrange multipliers, as in Eq. 66. 

𝜌𝑅 is defined by Pickett et al. [73] as roughness function as follows:   

                                                          𝜌𝑅 = (1 − 𝑐1
𝑅

𝑅𝑚𝑖𝑛
)2+𝑐2(

𝑅

𝑅𝑚𝑖𝑛
)6                                             (eq.68) 

       BoltzTraP2 uses the rigid band approximation (RBA) to calculate transport coefficients. This 

assumption implies that changes in temperature or doping level do not alter the underlying band 

structure. Furthermore, BoltzTraP2 is often associated with the Constant Relaxation Time 

Approximation (CRTA), which states that the Seebeck coefficient and the Hall coefficient are unaffected 

by the scattering rate [74]. This allows their determination on an absolute scale, taking into account 

doping and temperature fluctuations within a single analysis. However, it is important to note that under 

CRTA only electrical conductivity (σ) and electronic thermal conductivity (κe) are reported, both of 

which depend on relaxation time (τ) as a parameter. In order to accurately estimate κl and derive precise 

values for σ and κe independently of τ, alternative methods are examined in Chapter 3. 

 

2.4   Conclusion  

       In summary, density functional theory (DFT) is a powerful computational tool for solving electronic 

structures in many-body systems. In this chapter, we have introduced the theoretical foundations 

underlying density functional theory. This includes discussions of the various approximations 

commonly used to solve the Schrödinger equation, as well as descriptions of possible implementations. 

Additionally, we have provided a brief overview of various software codes designed to solve different 

types of problems.  
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Chapter 3 

Effect of Doping and CO-Doping on the SrS Bulk 

Properties 

 

The first part of this work has been published in Journal of Solid State Communications 361, 115060, 

(2023). The second part of this work has been published in Journal of Materials Science in 

Semiconductor Processing 165, 107684, (2023). 

 

 

n the first part of this chapter, we discussed the spin-resolved properties of pure bulk SrS (3D) 

doped with iron (Fe) at different concentrations: 0%, 12.5%, 25%, 50%, and 75% Fe. In the second 

part, we focused on the Fe concentration of 12.5%. Here, we conducted further investigations by 

co-doping the compound with three different alkali metals, namely Li, Na, and K. This allowed us to 

thoroughly investigate the optical and thermoelectric properties. We also compared the properties of the 

singly-doped and co-doped systems and evaluated the improvements achieved. 

3.1   Structural, Mechanical, Electronic, and Magnetic Properties of mono-doped SrS: Fe 

Alloys 

       3.1.1   Introduction  

       Against the backdrop of ever-increasing information needs and improved social connectivity in 

today's world, the 21st century has witnessed an unprecedented rise in technological advancement. This 

progress has been particularly evident in the significant development of high-performance computing 

systems and mobile devices. These advances have facilitated the seamless processing of large data sets, 

providing a robust response to the ongoing need for comprehensive data collection and storage methods 

[1]. 

       The discipline of spintronics, which utilizes both electronic charge and spin properties, is at the 

forefront of technological innovation. It has enormous potential to pave the way for a new era 

characterized by fast, logically controlled and energy efficient data storage solutions [2]. The fabrication 

of dilute magnetic semiconductors (DMSs) characterized by high Curie temperatures (TC), thereby 

I 
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enabling the control of magnetism at ambient conditions by carrier and gate voltages, represents a key 

milestone in the realization of an excellent candidate for semiconductor spintronic technology [3, 4]. 

Recently, Fe-based DMSs have attracted great scientific curiosity. They are at the forefront of research 

due to their tantalizing potential as ferromagnetic semiconductors, promising impressive properties such 

as elevated Curie temperatures, minimal power consumption, and suitability for high-speed spin-based 

devices [5]. This intriguing potential has led researchers to delve deeper into the intricacies of the 

ferromagnetic mechanism in Fe-based strain gauges. Their joint efforts reinforce the amazing promise 

of iron to not only achieve semimetallicity at room temperature, but also to exhibit significant magnetic 

moment and mechanical robustness - especially when integrated into the group of II-VI chalcogenides 

[6–12]. 

       As an archetypal member of the II-VI chalcogenide family, strontium sulfide (SrS) has attracted the 

attention of both the scientific community and the industrial sector alike due to its properties, which are 

discussed in detail earlier in Chapter 1. Various theoretical and experimental aspects work has been 

carried out on SrS alloyed with different proportions of magnetic transition elements (with 3d-orbitals) 

(see Section 1.6 of Chapter 1), but none has focused on conducting a detailed study on Fe-doped SrS at 

different concentrations. Furthermore, systematic studies on their elastic and mechanical properties are 

lacking. In this section of the chapter, we used a first-principles approach to investigate how doping 

concentration affects the structural, mechanical, electronic, and magnetic properties of Fe-doped rock- 

salt SrS. Our testing covers concentrations of 0%, 12.5%, 25%, 50% and 75% to ensure thorough 

analysis. 

       3.1.2   Computational Details 

       The computations discussed in this section were carried out using the Full-Potential Linearized 

Augmented Plane Wave (FP-LAPW) method [13] and the WIEN2k code [14]. The Generalized Gradient 

Approximation (GGA) as proposed by Perdew, Burke, and Ernzerhof (PBE96) [15] was utilized to 

address the exchange and correlation effects in order to determine the structural and mechanical 

properties. In addition to GGA-PBE, we optimized the results for electronic and magnetic properties by 

applying the Tran-Blaha modified Becke-Johnson (TB-mBJ) method [16], which is renowned for its 

excellent alignment with experimental data.   

       In the FP-LAPW method, two regions take up space. The atomic sites are surrounded by non-

overlapping spheres with muffin-tin radii (RMT) in the first region, and the interstitial region (IR) lying 

between the spheres is the second region. Spherical harmonics are used to extend the basis functions, 

electron densities and potentials within the spheres up to a maximum angular momentum of lmax=10. 

They are expressed in a Fourier series with a Fourier charge density in the interstitial region expanded 
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to Gmax=16 (a.u.) −1 and cutoff radius RMT.Kmax=8. The last parameter, Kmax, is the size of the largest 

wave vector used for the plane wave expansion of the eigenfunctions and controls the size of the basis 

set used. RMT stands for smallest muffin-tin radius. The studied Sr1-xFexS alloys (x = 0, 0.125, 0.25, 0.50 

and 0.75) have muffin-tin radii for the constituent atoms that are 2.4, 2.3 and 2.1 atomic units for Sr, Fe 

and S, respectively. We used the following electronic configurations to represent the valence states of 

these atoms in our calculations: Sr [5s2], Fe [3d6 4s2], and S [3s2 3p4]. Brillouin zone sampling for SrS 

and Sr1-xFexS, respectively, is performed using an (8 × 8 × 8) and (4 × 4 × 4) gamma-centered k-point 

mesh to ensure computational efficiency. In successive iterations, self-consistency is considered to be 

achieved when the integrated energy and charge difference is less than 10−4 Ry.     

       The elastic, mechanical and anisotropic properties of the compounds were investigated using the the 

Charpin method in conjunction with the WIEN2K code [17]. Using this method, it is possible to obtain 

the independent elastic constants C11, C12 and C44, which are suitable for describing the elastic behavior 

of compounds with cubic symmetry and help in determining other mechanical parameters. 

       3.1.3   Results and Discussion 

              3.1.3.1 Structural Properties  

       In an ab-initio calculation, determining the structural properties is a crucial step in gaining further 

insight into the microscopic properties of the material. This leads to the study of other physical properties 

such as electronic, magnetic, etc. To proceed with the calculation of structural properties for ternary 

alloys at different concentrations, we studied the properties of their bare SrS. This allows for a more in-

depth comparison and better understanding of the alloy properties. 

       As mentionned in Chapter 1, bare SrS crystallizes under ambient conditions in the cubic rock-salt 

structure (B1) with a space group Fm3̅m (N◦.225), in which the Sr atom occupies (0, 0, 0), and the S 

atom occupies (0.5, 0.5, 0.5) Wyckoff positions, respectively (see Figure 9(a) in Chapter 1).    

       For an investigation that captures both low and high concentrations, we used the supercell approach 

to construct a computationally economical and time-efficient (2 × 2 × 2) face-centered cubic (fcc) type 

supercell containing 16 atoms. This resulted in a series of rock-salt compounds, Sr1-xFexS (x = 0.125, 

0.25, 0.50 and 0.75), with one, two, four and six of the eight Sr atoms replaced by Fe atoms, which gave 

Sr7Fe1S8, Sr6Fe2S8, Sr4Fe4S8 and Sr2Fe6S8, configurations, respectively. All four of these compounds 

retain a cubic structure and each have one of three possible space groups. In particular, Sr7Fe1S8 (x = 

0.125) and Sr4Fe4S8 (x = 0.50) retain the fcc structure with space groups 225 (Fm3̅m) and 227 (Fd3̅m), 

respectively. On the other hand, both Sr6Fe2S8 (x = 0.25) and Sr2Fe6S8 (x = 0.75) adopt the primitive 

cubic system with space group 221 (Pm3̅m). We considered two possible couplings between atoms: 
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ferromagnetic (FM), in which the spins align in the same direction, and antiferromagnetic (AFM), in 

which the spins are opposite. In the case of the AFM configuration, a larger body-centered cubic (bcc) 

supercell with 32 atoms (2 × 2 × 2) was used. Figure 1(a-d) provides a visual representation of the crystal 

structure for the singly-doped SrS: Fe systems with the stable ferromagnetic phase (FM). 

   

    
 

Figure 1. Supercell models showing the cubic structure of Sr1-xFexS compounds with different x 

values (a) x = 0.125, (b) x = 0.25, (c) x = 0.50 and (d) x = 0.75. The Sr atom is shown in gray color, 

iron in red color, and sulfur in yellow color. 

       The procedure for determining the structural properties near equilibrium involves evaluating the 

total energy of the systems for different lattice parameter values using the empirical Birch-Murnaghan 

equation of state (EOS) [18] as described by:                              

                                  𝑬(𝑽) = 𝑬𝟎 + 𝑩𝟎𝑽𝟎 [
𝟏

𝑩𝟎
′ (𝑩𝟎

′ −𝟏)
 (

𝐕

 𝑽𝟎
)

𝟏−𝑩𝟎
′

+
𝟏

𝑩𝟎
′

𝐕

 𝑽𝟎
−

𝟏

𝑩𝟎
′ −𝟏

]                             (eq.1) 

Where 𝑬𝟎, 𝑩𝟎, 𝑩𝟎
′ , and 𝑽𝟎, respectively, stand for the minimum energy, bulk modulus, the first 

derivative of the bulk modulus, and volume at the equilibrium state.  

       The bulk modulus is determined at the minimum of the 𝑬(𝑽) curve by the following relationship:   

                                                                       𝑩 = 𝑽
𝝏𝟐𝑬

𝝏𝑽𝟐                                                                        (eq.2) 
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        The volume is determined as a function of pressure by: 

                                                           𝑽(𝑷) = 𝑽𝟎 (𝟏 +
𝑩𝟎

′ 𝑷

𝑩𝟎
)

−𝟏

𝑩𝟎
′

                                                                  (eq.3) 

       During the optimization process, we performed calculations in both spin-unpolarized and spin-

polarized states. The variation of the total energy with volume for the four ternary compounds in the 

three configurations—ferromagnetic (FM), anti-ferromagnetic (AFM), and non-magnetic (NM)—using 

the GGA-PBE is shown in Figure 2. Based on Figure 2, it is clear that the ferromagnetic phase is the 

most stable and therefore favorable for all compounds because it has a significantly lower total energy 

compared to the anti-ferromagnetic and non-magnetic phases.      

 

 

    
 

Figure 2. Change in total energy with volume for Sr1-xFexS compounds (x = 0.125, 0.25, 0.50, and 

0.75) in spin-polarized and unpolarized states. 
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       The results obtained from the E(V) curves - lattice parameters 'a' and bulk modulus 'B' of the 

equilibrium unit cell for our binary compound SrS as well as for the four ternary compounds in the FM 

stable phase are summarized in Table 1, which provides a comparison between our results and previous 

experimental and theoretical results for pristine SrS. It is worth noting that there are no results in the 

literature that can be compared with our results for the ternary compounds. Therefore, our results serve 

as a reference point for other theoretical investigations and highlight the need for experimental 

validation. 

Table 1 

The optimized lattice parameters a (Å), bulk moduli B (GPa), and formation energies 𝐸𝑓 

(eV/atom) for binary SrS and ternary Sr1-xFexS (x = 0.125, 0.25, 0.50, and 0.75) compounds. 

a  Ref [19], b Ref [20], c Ref [21], d Ref [22]. 

 

      Examination of the data from this table shows a slight deviation between the calculated lattice 

constant and bulk modulus of SrS compared to experimental values [19]. The PBE method shows a 

tendency to overestimate the cell parameter by about 0.5% and underestimate the bulk modulus by about 

18.3%. Such discrepancies are consistent with the well-known trend of the PBE method. However, our 

results show excellent agreement with theoretical literature values using the PBE exchange potential 

[20, 21]. Furthermore, the estimated values for the ternary compound Sr0.75Fe0.25S are largely in 

agreement with the theoretically proposed values by Hoat [22]. 

       Replacing strontium with iron results in a gradual reduction in the lattice constant as the 

concentration increases from 12.5% to 75%. This suggests a reduction in the size of the structure due to 

the smaller ionic radius of the substituted dopant Fe2+ (0.55 Å) compared to the bare cation Sr2+ (1.26 

Å). At the same time, there is an increase in the compression modulus, which means that the structures 

become harder as Fe concentration increases. This behavior is consistent with findings from a study of 

similar transition metal-doped SrS using the GGA-PBE function within the FP-LAPW approach [20].  

Compound                             a                                                    B                                              𝑬𝒇  

                            Our work      Exp       Others          Our work      Exp       Others       Our work        Exp      Others 

SrS                        6.059      6.024a     6.061b          48.273        58a            47.184b            -                 -             - 

                                                            6.050c                                                                  48.300c 

Sr0.875 Fe0.125S        5.949           -             -               50.244         -              -                -4.384           -             - 

Sr0.75 Fe0.25S           5.852           -         5.779d          52.410         -         59.522d          -4.324           -        1.558d                    

Sr0.50 Fe0.50S           5.612           -             -               60.329         -             -                 -4.301           -              - 

Sr0.25 Fe0.75S           5.336           -             -               73.687         -             -                 -4.422           -              -                                         
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       Thermodynamic process analysis allows us to assess the difficulties in doping ordered structures 

and obtain further information about the stability of the systems under consideration. Fe-doped SrS 

thermodynamic stability was evaluated by calculating the formation energy (𝑬𝒇) with the following 

formula: 

                                       𝑬𝒇 = 𝑬𝒅𝒐𝒑𝒆𝒅 − 𝒙𝑬𝒃(𝑺𝒓) − 𝒚𝑬𝒃(𝑭𝒆) − 𝒛𝑬𝒃(𝑺)                                            (eq.4) 

𝑬𝒅𝒐𝒑𝒆𝒅 denotes the total energy of the doped systems. 𝑬𝒃(𝑺𝒓), 𝑬𝒃(𝑭𝒆), and 𝑬𝒃(𝑺) refer to the per-atom 

energies of bulk Sr, Fe, and S, respectively. The variables "x," "y," and "z" represent the amounts of Sr, 

Fe and S atoms present in the unit cell. 

       The formation energy results are presented in Table 1, where a negative and lower value of 

𝐸𝑓 indicates a higher degree of stability and simplicity in the doping process. Notably, all compounds 

exhibit negative 𝐸𝑓 values, confirming their thermodynamic stability and suggesting their feasibility for 

synthesis under ambient conditions. The negative sign means that when these compounds form, thermal 

energy is released into the environment, indicating an exothermic reaction.  

       Regarding the 𝐸𝑓 values, the order is as follows: 𝐸𝑓 (Sr0.25Fe0.75S) < 𝐸𝑓 (Sr0.875Fe0.125S) < 𝐸𝑓 (Sr0.75 

Fe0.25S) <𝐸𝑓 (Sr0.50Fe0.50S), indicating that Sr0.25Fe0.75S is the easiest to synthesize, with the system 

appearing most stable at x = 0.75. Comparing our 𝐸𝑓 value for Sr0.75Fe0.25S (-4.324 eV) with the 

previously published value using GGA-WC (-1.558 eV) [22], we find that the estimated value using 

GGA-PBE is 21% lower. This discrepancy can be attributed to differences in both the XC energy 

function used and the computational inputs.    

                  3.1.3.2 Mechanical Properties      

       After examining the structural properties, we looked intensively at the mechanical properties. This 

step allowed us to not only verify the mechanical stability of the compounds but also investigate the 

elastic properties in the polycrystalline state and study their anisotropic responses. In our dissertation, 

all of the compounds we examined showed cubic symmetry. This property allowed us to rely on only 

three independent elastic constants (C11, C12, and C44) to thoroughly characterize their mechanical 

properties. Determining the elastic constant requires the establishment of three equations to be solved, 

which are generated by applying three different types of deformation: 

       The first step involves calculating the bulk modulus B: 

                                                           𝑩 =
𝟏

𝟑
(𝒄𝟏𝟏 + 𝟐𝒄𝟏𝟐)                                                         (eq.5) 
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       The second step involves applying a tetragonal stress tensor at constant volume to derive C11 - C12: 

                                                          𝜺 = (

𝝈 𝟎 𝟎
𝟎 𝝈 𝟎

𝟎 𝟎
𝟏

(𝟏−𝝈)𝟐 − 𝟏
)                                                            (eq.6) 

Where 𝜺 represents the strain and 𝝈 represents the applied stress.  

       Within this stress, the total energy is given by:  

                                           𝑬 (𝝈) =  𝑬 (𝟎) + 𝟑(𝑪𝟏𝟏 − 𝑪𝟏𝟐)𝑽𝟎𝝈𝟐 + 𝟎(𝝈)𝟑                                       (eq.7) 

Where: 

 𝑬 (𝟎): is the energy of the unstrained system. 

 𝑽𝟎    : is the volume of the unstrained system. 

 

       The third step involves applying a rhombohedral stress tensor at constant volume to calculate the 

C44 constant, which is given by the following expression 

                                                             𝜺 =
𝝈

𝟑
(

𝟏 𝟏 𝟏
𝟏 𝟏 𝟏
𝟏 𝟏 𝟏

)                                                               (eq.8) 

     The elastic constants can finally be determined and must satisfy the convergence criteria of Born-

Huang [23] to be in the mechanically stable states and are provided as follows:  

                                                 𝑪𝟏𝟏 − 𝑪𝟏𝟐 ≥ 0;                               𝑪𝟏𝟏 ≥ 0     

                                                 𝑪𝟏𝟏 + 𝟐𝑪𝟏𝟐 ≥ 0 ;                             𝑪𝟒𝟒 ≥ 0                                        (eq.9) 

 

       The obtained values for the elastic constants C11, C12 and C44 of our binary and ternary compounds 

with some theoretical comparison values for the binary compound are listed in Table 2. For the ternary 

compounds, the existing literature lacks experimental and theoretical studies for possible comparisons. 

       According to the results reported in Table 2 and the stability criteria of Born [23], we find that the 

studied compounds met all the criteria for mechanical stability, indicating that they are mechanically 

stable. 
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Table 2  

The calculated values of elastic constants Cij  (GPa), bulk modulus B  (GPa), shear modulus G  

(GPa), Young’s modulus E  (GPa), Pugh B/G ratio,  Poisson’s ratio 𝜈, Zener anisotropy factor A, 

longitudinal 𝑣𝑙  (m/s), transverse 𝑣𝑡  (m/s), and average 𝑣𝑚  (m/s) elastic sound velocities, Debye 

𝜃𝐷 (K) and melting 𝑇𝑚 (K) temperatures of SrS and Sr1-xFexS (x = 0.125, 0.25, 0.50, and 0.75) 

compounds. 

         e  Ref [24], f Ref [25],g  Ref [26].       

       Notably, C11, which refers to unidirectional compression along the [100] direction, is higher than 

C44 which represents shear deformation in the [010] direction. This suggests that these compounds are 

more susceptible to deformation under shear deformation than under unidirectional compressive 

deformation. The trend observed in the C11 values shows a decrease in the transition from the binary SrS 

compound to the ternary alloy with 12.5% Fe concentration. There is then a steady increase in the C11 

values as the Fe concentration increases from 12.5% to 75%. In contrast, C12 shows a steady increase 

with increasing concentration. On the other hand, when moving from SrS to 12.5% Fe, C44 initially 

decreases and then experiences an increase up to 50% Fe before decreasing from 50% to 75% Fe 

concentration. This highlights the significant influence of Fe concentration on the elastic constants of 

Parameters        SrS               Sr0.875 Fe0.125S     Sr0.75 Fe0.25S       Sr0.50 Fe0.50S       Sr0.25 Fe0.75S                          

C11                     110.817            93.703                   95.651               112.295            145.268 

                           100.4e   

                           113.9f                    -                            -                          -                       - 

C12                     19.049              28.448                  30.823                34.381              37.706 

                           17.2g 

                                          15.75e                               -                            -                         -                       - 

C44                     32.811              12.970                  16.509               26.983                8.396 

                           26.88e 

                                          30.3f                                 -                            -                          -                       - 

B                        49.638              50.201                  52.432                 60.352               73.671 

G                        37.535              18.959                  21.705                 31.268               19.576 

B/G                    1.322                2.647                    2.415                   1.930                 3.763              

E                        46.935              50.517                  57.219                 79.989               53.949 

𝝂                        0.198                0.332                    0.318                   0.279                 0.377        

A                        0.715                0.397                    0.509                   0.692                 0.156  

𝒗𝒍                       3281                 3227                      3326                    3631                  3466                                                                                                                                                       

𝒗𝒕                      1240                 1617                      1718                    2010                  1535   

𝒗𝒎                     1576                 1814                      1923                    2239                  1733 

𝜽𝑫                      251                   228                        246                      298                    243 

𝑻𝒎                     1198                 1107                      1118                    1217                  1412 
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the single crystal and implies that a higher Fe concentration reduces the shear along [010], which could 

affect the mechanical stability of the compounds. 

       Our analysis suggests that the non-monotonic fluctuation of C11 and C44 is due to the transition of 

fcc to primitive cubic symmetry. Yang et al. [27] observed a similar behavior in C44 when they studied 

the influence of 3d-4d element concentration on the elastic properties of an Mg solid solution using first-

principles calculations. However, they did not provide an explanation for the anomaly that accompanied 

the sudden increase in C44. 

       Understanding the mechanical properties of a compound not only allows assessment of its 

mechanical stability, but also enables comprehensive quantification of properties related to mechanical 

behavior, such as: hardness, brittleness, ductility, stiffness, chemical bonding and anisotropy. In 

practical applications, materials are often in a polycrystalline state. However, ab-initio studies typically 

focus on materials in their single crystal form. Voigt, Reuss, and Hill [28–30] have proposed 

approximations to predict the elastic behavior of polycrystalline materials based on the elastic constants 

calculated for single-crystal counterparts. 

       The hardness of a material is determined by its polycrystalline bulk moduli (B) and shear moduli 

(G). The compression modulus is estimated using Eq.5, while the shear modulus is defined by the 

following relationships using the Voigt-Reuss-Hill approximations [28-30]: 

                                                             𝑮𝑽 =
𝑪𝟏𝟏−𝑪𝟏𝟐+𝟑𝑪𝟒𝟒

𝟓
                                                                       (eq.10) 

                                                           𝑮𝑹 =
𝟓(𝑪𝟏𝟏−𝑪𝟏𝟐)𝑪𝟒𝟒

𝟒𝑪𝟒𝟒+𝟑(𝑪𝟏𝟏−𝑪𝟏𝟐)
                                                                  (eq.11) 

Here,  𝑮𝑽 represents the Voigt shear modulus corresponding to the upper limit of the values of G, and 

𝑮𝑹 represents the Reuss shear modulus for cubic crystals corresponding to the lower values.  

       The average of these two moduli represents the Hill shear modulus (𝑮𝑯) and is given by the 

following equation: 

                                                                       𝑮𝑯 =
𝑮𝑹+𝑮𝑽

𝟐
                                                                          (eq.12) 

       The values of B range from 49.638 to 73.671 GPa and G range from 18.959 to 37.535 GPa, as listed 

in Table 2. This indicates that the pristine SrS with the lower B modulus value is the softest and that 

Sr0.875Fe0.125S is less resistant to shear deformation compared to all other compounds. The trend for B is 

consistent and gradually increases with concentration. On the other hand, G can exhibit non-monotonic 

behavior, decreasing in the transition from pure to ternary alloy (from SrS to 12.5% Fe), increasing in 

the range of 12.5% to 50% Fe, and then decreasing sharply in the range of 50% up to 75% Fe. This 
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variation can be attributed to the non-monotonic elastic constants that contribute to such fluctuations. It 

is noteworthy that the B values calculated from the elastic constants agree closely with those obtained 

by the Birch-Murnaghan EOS fitting (see Table 1), confirming the accuracy of our calculations. 

       The brittle/ductile behavior can be predicted by the Pugh ratio (B/G) [31], which relates the bulk 

and shear moduli to a critical value of 1.75. The material is considered brittle if the B/G value is less 

than 1.75; otherwise, it is ductile. As indicated in Table 2, the B/G ratio for pristine SrS is below the 

critical value of 1.75, classifying it as a brittle material, while for our four alloys it is above the critical 

value, classifying them as ductile materials.  

       The stiffness of a material is quantified by the Young modulus (E), which establishes the 

relationship between the compression modulus and the shear modulus and is expressed as follows: 

                                                                      𝑬 =
𝟗𝐁𝐆

𝟑𝑮+𝑩  
                                                                            (eq.13) 

       As Table 2 shows, the Young modulus actually exhibits a pattern similar to the shear modulus due 

to their interdependence. The addition of Fe to the SrS host matrix leads to an increase in stiffness, 

highlighting the reinforcing capacity of iron. A high modulus of elasticity indicates a material's ability 

to withstand stress. Of the compositions examined, the one with 50% iron content is expected to have 

the highest stiffness and the one with 12.5% iron content is expected to have the lowest stiffness.  

       We also calculated Poisson's ratio (𝝂), a quantitative measure of the type of chemical bond present 

in the material. This relationship can be expressed in terms of volume and shear modulus using Eq.14.  

                                                                    𝜹 =
𝟑𝐁−𝟐𝐆

𝟐(𝟑𝑩+𝑮 ) 
                                                                              (eq.14) 

       If 𝜈 exceeds 0.25, the chemical bond is said to be ionic; if it falls below 0.25, it is considered 

covalent [32]. According to the 𝜈 values listed in Table 2, all ternary alloys have a 𝜈 value in the range 

of 0.3. This implies that the bonding in the compounds Sr0.875Fe0.125S, Sr0.75Fe0.25S, Sr0.50Fe0.50S and Sr0.25 

Fe0.75S is mainly ionic. On the other hand, the value for binary SrS is below 0.25, indicating its covalent 

nature.       

       The anisotropy of a material is determined using the Zener anisotropy factor (A). This factor gives 

a numerical indication of the extent to which a compound deviates from isotropy and is calculated using 

the following equation [33]: 

                                                                  𝑨 =
𝟐𝑪𝟒𝟒

𝑪𝟏𝟏−𝑪𝟏𝟐  
                                                              (eq.15) 
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       If the factor A is equal to one, this indicates perfect isotropy. When A is less than one, the material 

is harder in the [100] direction, and when A is greater than one, it is harder in the diagonal [111] direction 

[33]. As can be seen in Table 2, all compounds exhibit deviations from unity, showing their anisotropic 

nature with optimal stiffness in the diagonal direction [100]. The trend in A closely follows that of C44 

due to their interdependence. The greater the deviation from unity, the more pronounced the degree of 

anisotropy. This means that the iron-enriched compound (75% Fe) has the highest degree of anisotropy, 

while the 0% iron compound (SrS) has the lowest degree.  

       To provide a more comprehensive understanding of the elastic anisotropy in the studied compounds, 

we used three-dimensional (3D) surface representations. These plots provide a visual representation of 

the variation of the polycrystalline modules across the main crystal directions. The specific mathematical 

formulations are listed below [34, 35]: 

                                               
𝟏

 𝑩
= (𝑺𝟏𝟏 + 𝟐𝑺𝟏𝟐)(𝒍𝟏

𝟐+𝒍𝟐
𝟐 + 𝒍𝟑

𝟐)                                               (eq.16) 

                                                      
 𝟏

𝑮
= (𝑺𝟒𝟒 + 𝟒𝑺𝟎𝑱)                                                                (eq.17) 

                                     
𝟏

𝑬
= 𝑺𝟏𝟏 − 𝟐(𝑺𝟏𝟏 − 𝑺𝟏𝟐 −

𝑺𝟒𝟒

𝟐
)(𝒍𝟏

𝟐𝒍𝟐
𝟐+𝒍𝟐

𝟐𝒍𝟑
𝟐 + 𝒍𝟏

𝟐𝒍𝟑
𝟐)                                  (eq.18) 

Where 𝑺𝟏𝟏, 𝑺𝟏𝟐, 𝑺𝟒𝟒 are the elastic compliance constants; 𝒍𝟏
𝟐,  𝒍𝟐

𝟐, and 𝒍𝟑
𝟐 are the direction 

cosines; and 𝑱 is quantified by: 

                                           𝑱 = 𝒔𝒊𝒏𝟐𝜽. 𝒄𝒐𝒔𝟐𝜽 + 𝟎. 𝟏𝟐𝟓. 𝒔𝒊𝒏𝟒𝜽 (𝟏 − 𝐜𝐨𝐬 𝟒𝝋)                                       (eq.19)                

𝜽 and 𝝋 are Euler angles.  

       Figures 3(a-c) and Figures 4(a-c) illustrate the 3D contour plots of the bulk, shear and Young's 

moduli for SrS and Sr1-xFexS (x = 0.125, 0.25, 0.50 and 0.75), respectively. The obvious spherical shape 

in the 3D contour plots of linear compressibility of cubic systems, as shown in Figure 3(a) and Figures 

4(a1-a4) confirm their isotropic nature. When examining the shear and Young moduli in Figures 3(b-c) 

and 4(b1-b4)/ (c1-c4), their 3D representations deviate from a perfect sphere, indicating anisotropic 

properties. This anisotropy is more pronounced in the compound with the highest iron content (75%). 

Notably, the Young modulus for all compounds peaks in the [100] direction and reaches a minimum in 

the [110] direction, which is consistent with the Zener anisotropy factor observations. However, it is 

important to note that the directional dependencies of the shear modulus are opposite to those of the 

Young's modulus. 
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Figure 3. The directional dependencies of three-dimensional (3D) contour plots of (a) bulk modulus 

(B), (b) shear modulus (G), and (c) Young's modulus (E) for SrS pristine compound.                                                

 

 

 

 

 

    

 

 

 

 

Figure 4. The directional dependencies of three-dimensional (3D) contour plots of (a) bulk modulus 

(B), (b) shear modulus (G), and (c) Young’s modulus (E) for Sr1-xFexS compounds [(1) x=0.125, (2) 

x=0.25, (3) x=0.50 and (4) x=0.75]. 

       Since mechanical behavior and thermal properties are highly correlated, the identified elastic moduli 

are mostly used to describe the melting point (𝑇𝑚) and the Debye temperature (𝜃𝐷).  

       The highest frequency of oscillation is related to an important physical parameter called the Debye 

temperature. From this temperature, important thermophysical parameters such as entropy, melting 

temperature and heat capacity can be calculated. According to the harmonic approach, the vibration 

frequency and the square root of hardness are directly related, and the Debye temperature can be used 

(a) (b) (c) 
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to determine the hardness [36]. Using the data of the average speed of sound (𝑣𝑚) and the elastic 

constant, the Debye temperature (𝜃𝐷) can be calculated in a conventional way [37]: 

                                                               𝜽𝑫 =  
𝒉

𝒌𝑩
 [

𝟑𝒏

𝟒𝝅
(

𝑵𝑨𝝆

𝑴
)]

𝟏

𝟑
𝒗𝒎                                                             (eq.20)    

Here, 𝒉/𝒌𝑩 represents the ratio of Planck's constant to Boltzmann's constant; n stands for the number 

of atoms in the cell; 𝑵𝑨 is Avogadro's number; 𝝆 denotes the mass density; M represents the molecular 

weight. Additionally, 𝒗𝒎 encompasses both transverse (𝒗𝒕) and longitudinal (𝒗𝒍) velocities, outlined as 

[37]:                

                                                            𝒗𝒎 = [
𝟏

𝟑
 (

𝟐

𝒗𝒕
𝟑 +

𝟏

𝒗𝒍
𝟑)]

−
𝟏

𝟑
                                                       (eq.21) 

       By applying the Navier equation [37] to the mass density, shear modulus, and bulk modulus, the 

transverse velocity (𝒗𝒕) and longitudinal velocity (𝒗𝒍) can be obtained: 

                                                       𝒗𝒕 = √
𝑮

𝝆
 ;   𝒗𝒍 = √

𝑩+
𝟒

𝟑
𝑮

𝝆
                                                        (eq.22)         

       The heat sensitivity of a material is indicated by its melting temperature (𝑻𝒎). Because they are 

stable over a wide range of temperatures, materials with a high melting point are highly desirable. To 

estimate the melting temperature of these materials, the empirical equation of Fine [38] is used, taking 

into account the elastic constant C11.  

                                           𝑻𝒎(𝑲) = 𝟓𝟓𝟑𝑲 + (𝟓. 𝟗𝟏𝟏𝑲/𝑮𝑷𝒂) 𝑪𝟏𝟏 ± 𝟑𝟎𝟎𝑲                                 (eq.23)        

     The Debye temperatures and melting temperatures are shown in Table 2 and are graphically shown 

in Figure 5 for better visualization. It is obvious that the melting temperature has a nonlinear variation 

with the Fe concentration in the compounds and shows a similar trend with the elastic constant C11, 

reflecting the direct correlation between them, as presented in Eq.23. The 𝑇𝑚 values obtained for all 

compounds are high, indicating their resistance to high-temperature treatment and their ability to 

maintain their solid-state structures at elevated temperatures.  

       In contrast to the melting temperature, the Debye temperature shows a decrease with increasing 

concentration from 0% to 12.5%, followed by an increasing trend at 12.5% Fe and a subsequent 

decreasing trend at 50% Fe. This pattern is already evident in the elastic properties results, since the 

Debye temperature is an average of the sound velocity that correlates with the compression modulus 

and in particular with the shear modulus (see equations (20)–(22)). This suggests that the shear modulus 
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has a stronger influence on the variation of the Debye temperature. The compound Sr0⋅50Fe0⋅50S has the 

highest value, which indicates its relatively high intrinsic hardness. 

          Unfortunately, direct comparison of our thermal and mechanical results with previous 

experimental work on this doped chalcogenide is not possible. However, it is interesting to note that our 

results agree with most previous first-principles calculations [39–41]. 

 

Figure 5. The dependence of melting temperature (𝑻𝒎) and Debye temperature (𝜽𝑫) on Fe content for 

Sr1-xFexS Compounds (x = 0, 0.125, 0.25, 0.50, and 0.75).  

  

                   3.1.3.3  Electronic Properties   

                   3.1.3.3.1  Electronic Band Structure Analysis      

       After studying the effects of Fe doping on various properties and system stability, we will now 

consider how the introduction of Fe affects the electronic behavior of the SrS semiconductor. This is 

achieved through an analysis of spin-resolved band structures (BS), total density of states (TDOS) and 

partial density of states (PDOS). It is worth noting that previous studies have shown that bandgaps in 

materials are often slightly underestimated when using PBE-GGA, which is due to self-interaction errors 

[15]. An alternative is to use the mBJ exchange functional, which has been shown to provide reasonably 

accurate bandgap calculations that are close to experimental values. Figures 6 and 7 show the band 

structures along the high-symmetry points of the irreducible Brillouin zone for the host SrS and the 

ternary-doped Sr1-xFexS compounds (x = 0.125, 0.25, 0.5, and 0.75, respectively) , calculated based on 

their equilibrium lattice constants. 
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Figure 6. Electronic band structure of rock-salt SrS with mBJ-PBE method. 
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Figure 7. Spin-resolved electronic band Structures of Sr1-xFexS compounds (x = 0.125, 0.25, 

0.50, and 0.75) with mBJ-PBE. 

       According to Figure 6, SrS has a band structure typical of a semiconductor. In an mBJ calculation, 

the gap is indirect in the direction Γ-X with a value of 3.435 eV. Compared to other theoretical 

calculations, this value is closer to that of Hamidane et al. [20], with a difference of 0.135 eV, than that 

calculated by Kaneko and Koda [43], which has a deviation of 0.419 eV. The calculated gap value is 

underestimated compared to the experimentally measured value. It shows a difference of 26% compared 

to the experimental value of Sharma et al. [42]. However, this discrepancy arises from the use of 

different input parameters and the well-known tendency of DFT to underestimate energy gaps compared 

to experimental values. Our calculations compared to other theoretical and experimental results are 

summarized in Table 3. 

       From Figure 7, which shows the spin-majority and spin-minority band structures for the ternary 

compounds, it can be seen that the introduction of Fe into the SrS host matrix results in a significant 

transformation of the electronic structure. In fact, the addition of 12.5%, 25% and 50% Fe content 

changes the nature of pristine SrS from a non-magnetic semiconductor to a ferromagnetic half-metal 

(HMF) and from ferromagnetic half-metal to magnetic metal at a higher degree of concentration (75% 
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Fe ). The semimetallicity in the first three concentrations arises from the fact that the majority-spin (left 

image) maintains the semiconducting behavior of SrS, with the Fermi level (EF) lying within the 

generated bandgap. Conversely, the minority-spin (right image) shows metallic behavior due to the 

overlap of some valence bands with the EF, resulting in 100% spin-polarization. The Sr0.875Fe0.125S 

compound exhibits a direct bandgap with both the conduction band minima (CBM) and valence band 

maxima (VBM) located at the Γ symmetry point with a value of 3.401 eV. However, the scenario 

changes drastically with increasing concentration, with the direct bandgap transforming into an indirect 

bandgap located at Γ-X for Sr0.75Fe0.25S, with a transition energy gap of 1.864 eV and at L-Γ for Sr0.50 

Fe0.50S, with a transition energy gap of 3.539 eV. 

       The energy gap (Eg) is defined as the energy difference between the maximum of the valence band 

(VBM) and the minimum of the conduction band (CBM). Thus, the Eg is calculated for our compounds 

in the spin-up direction. The half-metallic gap (GHM) is another important parameter for characterizing 

half-metallic materials, which can be determined by the difference between the VBM and the EF in the 

spin-up channel. The Eg and GHM values for the three semimetallic ferromagnetic compounds are always 

given in Table 3. As indicated in Table 3, both Eg and GHM values show nonlinear behavior with 

increasing iron content. The trend over the entire concentration range follows a specific order: a decrease 

from 12.5% to 25% Fe, followed by an increase from 25% to 50% Fe, and finally a complete 

disappearance between 50% and 75% Fe. This changing trend is consistent with observations made on 

previously studied TM-doped II-VI compounds [44, 45]. This behavior is attributed to the introduction 

of impurity states by Fe doping into the SrS bandgap, resulting in a sudden and significant narrowing. 

       At a low Fe concentration (12.5%), the impurity states shift both the VBM and CBM slightly 

downward, resulting in a net bandgap reduction of 0.034 eV compared to pure SrS. This downward shift 

is attributed to the weakened interaction between the cation Sr and the anion S due to Fe doping. When 

the Fe concentration increases to 25%, the impurity states broaden, resulting in a significant downward 

shift in the CBM and a slight upward shift in the VBM. This results in a gradual reduction in the bandgap 

with a net reduction of 1.537 eV. The reduced bandgap value can be attributed to the combined effects 

of band modification due to the convergence of energy levels of the 3d bands of the Fe atom and the 3p 

bands of the S atom. This leads to an exchange interaction between these bands, as described in the 

following section, along with strain effects caused by the doping level. When the dopant concentration 

increases to 50%, the bandgap begins to increase gradually and reaches a maximum of 3.539 eV. The 

increased concentration of impurities leads to the formation of larger defects. Consequently, a higher 

defect concentration along with symmetry changes from fcc to primitive cubic may contribute to the 

observed broadening between the 3d-Fe and 3p-S bands (see the next section for more details). At 75% 

Fe, VBM and CBM follow a similar pattern to the band structure at 25% Fe, further reducing the 

bandgap until it finally disappears. In addition to the previously mentioned factors, the resulting 
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hybridization of 3d-Fe with 3p-S bands at the highest doping concentration could be a factor contributing 

to the sudden disappearance of the bandgap. 

       Note that our calculated Eg and GHM band gaps for Sr0.75Fe0.25S show an underestimation compared 

to the previous theoretical values [22], with deviations estimated at 0.253 eV for Eg and 0.571 eV for 

GHM. This underestimation is due to the differences in the approximation methods used (WC-based 

mBJ). An important point to consider is that both experimental [46] and theoretical [47] evidence have 

shown that a material's bandgap is directly correlated with its hardness. Consequently, the maximum 

bandgap observed in the Sr0.50 Fe0.50 S compound is consistent with the findings regarding its mechanical 

properties and Debye temperature. 

            3.1.3.3.2  Total and Partial Densities of States Analysis      

       To shed light on the role of atomic states in shaping semimetallic and metallic behavior and to 

further investigate the underlying reasons for the bandgap wobble, we performed comprehensive 

calculations of the TDOS and PDOS for pristine SrS and all Sr₁₋ₓFexS compounds (x = 0.125, 0.25, 0.50 

and 0.75). The resulting curves for both spin configurations are shown in Figures 8 and 9, respectively.  

       From the TDOS curves in Figure 8, it can be seen that there is no polarization between the electron 

densities of the states for up and down spin orientations of SrS. The density of states is symmetric and 

indicates the non-magnetic state of the compound, in contrast to the density of states for Sr1-xFexS, which 

is asymmetric (Figure 9). This is logically attributed to the doping effect with Fe. 

 

Figure 8. The Spin-resolved total and partial density of states of rock-salt SrS with mBJ-PBE method. 
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Figure 9. Spin-resolved total and partial densities of states of Sr1-xFexS compounds (x = 0.125, 0.25, 

0.50, and 0.75) with mBJ-PBE. 

       From the Sr curve (Figure 8), a significant bandgap is evident, indicating the semiconductor nature 

of this system. This is because the CB and VB do not intersect the Fermi level (EF), which is defined at 

0 eV. This bandgap arises mainly from the shift of the p-states of the S atom, which dominate the VBM, 

and the s-states of the Sr atom, which make a small contribution in both regions.   

       Upon closer inspection of the TDOS curves of the ternary HMF compounds (Figure 9), a clear 

pattern emerges. In particular, in majority-spin, the 3d-Fe states and 3p-S states of Sr0.875Fe0.125S, 

Sr0.75Fe0.25S, and Sr0.50Fe0.50S, hybridize with each other, leading to the formation of a bandgap near the 

EF. This configuration gives these materials a semiconductor-like character. Conversely, in minority-

spin, the 3d-Fe and 3p-S states intersect the EF, resulting in a distinct metallic character, confirming that 

these compounds are HMF with 100% spin-polarization at EF. In the Sr0.25Fe0.75S compound, both 

majority- and minority-spin channels exhibit metallic character that is due to the formation of 3d-Fe and 

3p-S states at the EF. This means that p-d hybridization is not particularly pronounced when the 

concentration of 3d-Fe electrons is relatively low. 

       Analysis of the PDOS curves shows that for both Sr0.875Fe0.125S, Sr0.75Fe0.25S compounds, the VB in 

the energy range from about ∼ − 4.14 eV to about ∼ − 1.63 eV is mainly derived from 3d-Fe states, with 

a small contribution from 3p-S states. In the subsequent energy range from about ∼-1.63 eV to about ∼ 

− 0.42 eV, the contribution comes predominantly from 3p-S states. When the Fe content exceeds 25%, 

the contribution of 3p-S states becomes prominent alongside that of 3d-Fe states in the energy range 

from about ∼ − 4.53 eV to about ∼ − 0.74 eV for Sr0.50Fe0.50S and significantly ∼ − 5.57 eV to about ∼ 

− 0.05 eV for Sr0.25Fe0.75S. However, the involvement of 5s-Sr states is negligible for all compounds.   

Conversely, in the minority-spin channel, the lower part of the CB is mainly dominated by 3d-Fe states. 

These states start at 1.35, 1.02, 0.99, and 0.48–6 eV, respectively, and follow the order 0.125 → 0.25 → 
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0.50 → 0.75. States at the EF in the PDOS are predominantly attributed to the 3d-Fe states, with minimal 

contribution from the 3p-S states. These states play a crucial role in producing the ferromagnetic 

properties observed in the resulting compounds. The calculated PDOS values at the EF for the studied 

cases are summarized in Table 3. It is generally accepted that lower densities of states at the EF are 

associated with greater material stability [42]. This suggests that the compound with the highest iron 

content (75%) has the highest stability, which is consistent with the conclusions from the enthalpy of 

formation and melting point calculations.   

Table 3  

The calculated spin-majority bandgaps Eg (eV), half-metallic bandgaps GHM (eV), and partial density of 

states (PDOS) at the Fermi level (states/eV) of Sr1-xFexS compounds (x = 0.125, 0.25, 0.50, and 0.75).  

 

            h  Ref [42],  b Ref [20], i Ref [43], d Ref [22]. 

 

       A more detailed understanding of the mechanism of interaction between the introduced Fe impurity 

states and the anion S states is provided by crystal field theory. The electron configuration of the Fe2+ 

cation is [Ar] 3d6. The Fe2+ ion forms six bonds with the ligand S atoms in an octahedral complex. 

According to Hund's rule and crystal field theory, each atom contributes two electrons, so a total of two 

electrons are added to the VB of the host semiconductor. The octahedral field created by the S anion 

after the introduction of Fe impurities splits the 3d-Fe states into two energy-different states: a triplet t2g 

(dxy, dyz and dxz) and a doublet eg (dz2 and dx2- dy2). Five of the six Fe electrons have majority-spin and 

occupy the states eg and t2g, which are below the EF. In contrast, at the lower end of the conduction band 

the unoccupied eg states are in minority spin, and third of the t2g minority states are filled and raised to 

the EF. Figure 10 shows a schematic diagram illustrating how the Fe2+ ion splits into its crystal fields in 

the octahedral environment. 

Compound      Nature     Location                     Eg                                          GHM                                          PDOS (EF) 

                               of gap                       Our work   Exp     Others          Our work     Exp    Others        3d (Fe)     5s (Sr)      3p (S)     

SrS                   indirect      [Γ-X]        3.435       4.32h    3.300b                  -                -            -                   -               -                - 

                                                                                         3.016i                   -               -            -                   -               -                -                                                                                

Sr0.875 Fe0.125S   direct         [Γ- Γ]        3.401         -           -                   0.431             -            -                5.322     2.806×10-4     0.005   

Sr0.75 Fe0.25 S     indirect      [X -Γ]       1.864         -        2.117d                    0.090             -        0.661d           2.142     3.626×10-4     0.008     

Sr0.50 Fe0.50 S     indirect      [L- Γ]        3.539        -             -                 1.059              -            -               0.647      9.056×10-4    0.086    

Sr0.25 Fe0.75 S        -                 -              -               -             -                     -                  -            -               0.432     1.848×10-4     0.001    
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Figure 10. Schematic diagram of the distribution of electrons in the eg and t2g levels of the Fe2+ ion 

situated in an octahedral crystal field. After Ref [50].  

 

       The main cause of the partially filled Fe-t2g states observed at the EF is the significant p-d 

hybridization. This hybridization also explains the two symmetrical states separation in the majority 

spin, which eventually causes ferromagnetism in the compounds under study to emerge and stabilize. 

The proposal of Zunger and Katayama [48, 49] on the ferromagnetism of octahedrally doped 

semiconductor systems with transition metals is similar to our observations. 

       Examination of the Fe:3d direct exchange splitting energy Δx(d), determined by the difference (Δd↓ 

- Δd↑) between the respective up and down peaks, provides additional evidence for the existence of 

ferromagnetic alignment. This interaction arises from overlapping electron wavefunctions of 

neighboring atoms, resulting in an energy reduction when the electron spins align in parallel. This 

reduction in energy is called the direct exchange splitting energy. The calculated values are listed in 

Table 4. The high Δx(d) values confirm the consolidation of ferromagnetic alignment across all 

compounds.   

   The spin-polarization P at the EF was determined and expressed by Eq.39 in Chapter 1. Table 4 

presents the results, which strongly validate the HMF nature of the compounds Sr1–xFexS (x = 0.125, 

0.25, and 0.50), showing a magnetic spin-polarization of 100%. On the other hand, the compound Sr1–

xFexS (x = 0.75) exhibits a 33% polarization. This is obtained from 8% of the majority-spin states and 

4% of the minority-spin states that are both present at the EF, strongly indicating that it is metallic. 
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Table 4 

Calculated values of exchange-splitting ∆𝑥(𝑑), majority-spin 𝑁↑(𝐸𝐹) and minority-spin 𝑁↓ (𝐸𝐹) states 

at EF, and the spin polarization 𝑃 of Sr1-xFexS (x=0.125, 0.25, 0.50, and 0.75) compounds.              

 

 

 

                    

 

 

                         

3.1.3.4   Magnetic Properties   

            3.1.3.4.1 Magnetic Moment 

       In this section, we calculated the total magnetic moment of Sr1-xFexS at different concentrations (x), 

as well as the local magnetic moments of Sr atom, S atom, Fe impurity and the interstitial magnetic 

moment to clarify the cause of the induced magnetism in pristine SrS. Table 5 rearranges the collected 

data. 

       The compounds Sr0.875Fe0.125S, Sr0.75Fe0.25S and Sr0.50Fe0.50S have been proven to be half-metallic 

ferromagnets because their total magnetic moment has an integer value of 4 μB per Fe atom. The unfilled 

3d-Fe states are responsible for this measured magnetic moment. In this case, S has 3s2 3p4 with two 

missing electrons in the outermost 3p shell, while Fe has an electronic valence configuration of 3d6 4s2. 

Two of the eight valence electrons are added to the dangling bonds of the anion (S) when incorporating 

Fe. The s of Fe electrons make no contribution to the magnetic moment because they are completely 

localized. The magnetic state is established by the remaining four d electrons of Fe, which are 

delocalized and fill the majority-spin while the minority-spin remains empty. The magnetic moment of 

the iron-rich compound (75% Fe) is characterized by a slight deviation from the expected integer value 

(4μB), a property that often occurs in metals. 

       Small permanent local magnetic moments, which show a positive sign and are indicative of parallel 

spin arrangements (FM), were produced on the non-magnetic sites of the Sr and S atoms as a result of 

pd-type electron transfer. Additionally, Table 5 indicates that the Fe atom has the largest values and 

contributes the most to the compounds' total magnetic moment, which decreases as concentration 

increases. The unfilled 3d electronic states of the magnetic atom Fe are responsible for this magnetic 

   Compound          ∆𝒙(𝒅)            𝑵↑ (𝑬𝑭)                𝑵↓ (𝑬𝑭)               𝑷    

                                      (eV)            (states/eV)            (states/eV) 

Sr0.875 Fe0.125S         4.829                 0                        0.06                  1 

Sr0.75 Fe0.25 S           4.819                 0                        0.05                  1 

Sr0.50 Fe0.50 S           6.748                 0                        1.33                  1 

Sr0.25 Fe0.75 S           5.726                0.08                    0.04                0.33 
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moment. This pattern is consistent with previous research on SrS doped with transition metals at 

different concentrations [44, 20]. Furthermore, the interstitial sites positively contribute to the supercell's 

overall magnetic moment. This suggests that ferromagnetic interaction occurs at these sites between the 

Fe-3d states and the corresponding 5s-3p states of Sr and Sr. When comparing the predicted magnetic 

moments of Sr0.75Fe0.25S in this study with those found in the body of existing literature presented in 

Table 5, we find consistent results [22]. 

       3.1.3.4.2 Exchange Constants 

       We have determined two important constants that shed light on the important role that the valence 

and conduction bands play in the spin-splitting exchange coupling observed in the electronic band 

structures of our compounds. These are the exchange constants for s-d and p-d, denoted 𝑁0𝛼 and 𝑁0𝛽, 

respectively, which relate to CB and VB. Assuming the standard Kondo interaction, both constants were 

found [60]:          

                                                                 𝑵𝟎𝜶 =
∆𝑬𝒄

𝒙<𝑺>
                                                                               (eq.24) 

                                                                 𝑵𝟎𝜷 =  
∆𝑬𝒗

𝒙<𝑺>
                                                                             (eq.25) 

In this context, ∆𝑬𝒄 = 𝑬𝒄
↓- 𝑬𝒄

↑ and ∆𝑬𝒗 = 𝑬𝒗
↓- 𝑬𝒗

↑, are the spin separation at the edges of the 

conduction and valence bands, respectively. The variable "x" denotes the percentage of Fe in the 

compound, while <S> signifies the average magnetization of the Fe atoms.  

       Table 5 shows the calculated values for ∆𝐸𝑐, ∆𝐸𝑣,  𝑁0𝛼, and 𝑁0𝛽 of the HMF compounds Sr1-xFexS 

(x = 0.125, 0.25 and 0.50). Notably, the s-d exchange coupling between the CB and d-Fe states 

consistently exhibits an anti-ferromagnetic nature at all concentrations, as evidenced by the negative 

sign of the 𝑁0𝛼 constant. Conversely, the 𝑁0𝛽 constant shows a positive value for x = 0.125 and 0.50, 

but a negative value for x = 0.25. This means a mixture of ferromagnetic and antiferromagnetic 

interactions in the p-d exchange between the VB and d-Fe levels. The overall increase in 𝑁0𝛼and 

fluctuations in 𝑁0𝛽 values with the increase in Fe content from 0.125 to 0.50 reinforce the targeted 

magnetic properties of these materials.  

       𝑁0𝛼 is generally found to be positive in most studies on half-metallic ferromagnetic/semiconductor 

compounds, while 𝑁0𝛽 is invariably negative [44, 61]. In our study, this pattern is completely reversed. 

Changes in symmetry and quantum confinement effects may be responsible for the reversal of the sign 

of 𝑁0𝛼 [62]. In contrast, in the DMS Zn1-x CrxSe, Mac and co-workers first predicted the positive sign 

of 𝑁0𝛽 and associated this significant shift with the d-state position of the valence band [63]. A 
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comparable pattern was also recently observed at low concentrations of the ternary compounds Cd0.937 

TM0.0625S (TM = Cr, V, Cu and Sc) [64].   

Table 5 

The calculated values of total magnetic moment Mtot (in µB) per Fe atom, local magnetic moments (in 

µB) of Fe (MFe), Sr (MSr), and S (MS), and magnetic moment in the interstitial sites Mi (µB), spin-splitting 

edges of conduction ∆𝐸𝑐 (eV) and valence ∆𝐸𝑣 (eV) bands, and exchange constants 𝑁0𝛼, and 𝑁0𝛽 of 

Sr1-xFexS compounds (x = 0.125, 0.25, 0.50, and 0.75). 

d Ref [22]. 

 

 

       3.1.4   Conclusion  

       In the first section of this chapter, we examined an in-depth study of the Fe-doped SrS 

semiconductor using rigorous first-principles calculations facilitated by the WIEN2K computational 

framework. This study involved a comprehensive investigation of the Sr1-xFexS compounds, where x 

takes values of 0, 0.125, 0.25, 0.50, and 0.75, with a focus on their behavior in the rock-salt phase. The 

key findings and conclusions from this endeavor are presented as follows: 

1. The results of the structural properties obtained with the PBE-GGA approximation showed that 

the ferromagnetic phase is the most stable in all Sr1-xFexS compounds and that the equilibrium 

lattice constant of the compounds decreases with increasing Fe concentration. The enthalpy of 

formation values confirmed the stability of the cubic structure, with Sr0.50Fe0.50S being the most 

stable.  

2. Analysis of mechanical and thermal properties confirmed that all the doped-compounds meet 

the criteria for mechanical stability. They exhibit ductility and anisotropy and are characterized 

by ionic bonding. In addition, they exhibit remarkable resistance to heat treatment. Among 

them, Sr0⋅50 Fe0⋅50S showed the highest stiffness, while Sr0⋅875Fe0⋅125S was found to be the most 

flexible. Furthermore, Sr0⋅25Fe0⋅75S exhibited the highest degree of anisotropy. 

 

 Compound             𝑴𝒕𝒐𝒕         𝑴𝑭𝒆            𝑴𝑺𝒓           𝑴𝑺           𝑴𝒊           ∆𝑬𝒄          ∆𝑬𝒗          𝑵𝟎𝜶         𝑵𝟎𝜷 

Sr0.875 Fe0.125S        4              3.690           0.005        0.031       0.119       -3.021       0.017       -12.08       0.068 

Sr0.75 Fe0.25S           4;                   3.680;          0.006;       0.052;      0.230;      -2.639      -0.977       -5.278     -1.954 

                                                4d                   3.651d              -0.001d       0.044       0.089d  

Sr0.50 Fe0.50S           4             3.643           0.010         0.125       0.435       -2.768       0.884       -2.768       0.884 

Sr0.25 Fe0.75S          3.973       3.636           0.004         0.158       0.750            -               -               -                - 
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3. The electronic properties calculated from the equilibrium lattice parameters confirm that all Sr1-

xFexS compounds are HM ferromagnets and therefore applicable to spintronics, whereas the 

Sr0⋅25Fe0⋅75S compound shows metallic behavior. 

 

4. For all HMF compounds, we calculated a total magnetic moment of 4 μB and a low local 

magnetic moment at the non-magnetic sites of Sr and S due to hybridization between Fe-3d and 

S-3p states. The exchange interactions in the compounds yielded exchange constants 𝑁0𝛼 and 

𝑁0𝛽 with opposite signs, confirming the existence of an opposite interaction between valence 

and conduction states. 
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3.2 Structural, Electronic, Magnetic, Optical, and Thermoelectric Properties of co-doped 

SrS: (Fe, p0) Alloys 

       3.2.1   Introduction 

       A key factor in the recent boom in scientific research has been the search for new materials with 

remarkable properties. In this regard, third-generation semiconductors – also referred to as – wide band 

gap (WBG) materials have emerged as a highly favorable platform for the development of high-

performance optoelectronic and electronic devices [65]. SrS is a material that stands out among the 

others as an example with interesting properties. In addition to the features discussed previously in this 

Chapter, SrS is particularly known for its remarkable optical properties, which are covered in further 

detail in Chapter 1, Part 1.4.  

       Despite extensive research on pure SrS, obstacles such as the large bandgap and indirect nature limit 

its application in optics [66]. Chemical doping is a promising solution to this problem, as demonstrated 

by our previous work, where doping transition metals, particularly Fe at 12.5%, successfully induced an 

indirect to direct band transition. This is a promising direction to improve the optical properties and 

performance of spintronics. 

       The need for more data storage capacity makes it imperative to convert waste heat into usable 

electrical energy [67]. This plan is considered the best as it provides a reliable, cost-effective, clean and 

environmentally friendly source of renewable energy in the long term. High-performance spin-

dependent thermoelectric materials lie at the intersection of thermoelectricity and spintronics, an area 

that requires further research and development. 

       In particular, the alkali metal series has shown promise in doping the SrS site. These non-magnetic 

elements have been shown to increase ferromagnetism and luminescence efficiency [68–70] and are 

non-toxic. Simultaneous doping of these elements with transition metal ions in bulk SrS will be 

important as it can create new systems with unique properties. 

       The second section of this chapter builds on our previous work and examines the structural, 

electronic, magnetic, optical, and transport properties of Li, Na, and K co-doped at a fixed concentration 

of 12.5% in SrS: Fe. Our knowledge of co-doped SrS systems is expected to grow as a result of this 

research, leading to the development and improvement of SrS-based materials for applications in 

thermoelectricity, magnetism, electronics, and optics. 
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       3.2.2   Computational Details 

       Since our work in this section of the chapter builds on the work in the previous section, we have 

chosen to continue with the same data parameter settings as for the mono-doped systems, including 

code, basis set, approximation, and function for exchange-correlation term within the INPUT 

parameters. We simply enlarged the supercell to accommodate 32 atoms in a (2 × 2 × 2) configuration 

of a bcc structure in the FM case to produce the co-doped systems SrS: (Fe, p0= Li, Na and K). This 

supercell contains 16 Sr atoms and 16 S atoms. We exchanged two atoms at the Sr positions to achieve 

a total impurity ion concentration of 12.5%. One was fixed as Fe and is located at the (0, 0, 0) position 

(at the corner), and the other, for p0 ions, is located in the next position at (0.5, 0, 0), i.e. Sr0.875Fe0.0625 

p0
0.0625S. For the AFM configuration, we used a larger P-type supercell with 64 atoms (2 × 2 × 2). To 

obtain trustworthy results in evaluating optical and thermoelectric properties, we also used a larger k-

mesh and the TB-mBJ method [16]. We used Bardeen and Shockley's deformation potential theory [71] 

and Boltzmann's semi-classical theory-based BoltzTrap2 software [72] to perform a post-DFT approach 

to study the thermoelectric properties of the compounds.    

3.2.3   Results and Discussion 

          3.2.3.1 Structural Properties 

       The (2 × 2 × 2) bcc-lattice crystal of the (Fe, p0) co-doped SrS systems is modeled in Figures 11(a) 

and (b). Table 6 shows the structural parameters details of the SrFeLiS, SrFeNaS, and SrFeKS systems, 

including lattice parameter  (a), bulk modulus  (B), total energy differences between FM and AFM 

configurations (𝛥𝐸=EAFM -EFM), and Curie temperature (TC). 

 

Figure 11. (a) Polyhedral view of the SrS: (Fe, p0) [p0 = Li, Na, and K] crystal structures (b) The 

stable FM configuration. 
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   Table 6 

The calculated values of crystal lattice parameter a (Å), bulk modulus B (GPa), energy difference (𝛥E), 

Curie temperature (𝑇𝐶), and formation energy (𝐸𝑓) of (Fe, p0) co-doped SrS systems. The Fe mono-

doped SrS data are included in the Table from the preceding section, to facilitate further analysis and 

comparison. 

    The AFM and FM order’s energetic stability is indicated by the “-” and/or “+” signs of ΔE. According 

to the simulation results in Table 6, the positive ΔE values indicate that the co-doped SrS (Fe, p0) 

structures have the ability to suppress the AFM order and promote the FM order in the long term. This 

implies that the FM state is stabilized and gains an energetic advantage over the AFM state when Fe is 

combined with alkali metals (Li, Na and K). 

       The Curie temperature (TC), an important parameter for magnetic materials in spintronics, was 

calculated based on the energy difference ΔE. To estimate TC, the MFA (Mean-Field Approximation) 

formula was used as follows: 

                                                                 𝑻𝒄
𝑴𝑭𝑨 = −

𝟐

𝟑𝒏𝒌𝑩
∆𝑬                                                            (eq.26) 

Here kB is the Boltzmann constant and n is the number of substituted atoms.  

       However, it is important to keep in mind that percolation behavior, which has a significant impact 

on the magnetic order and leads to an overestimation of Tc, is not taken into account by MFA [73]. To 

overcome this limitation, we used an empirical relationship [74] that uses the ratio Tc/𝑻𝒄
𝑴𝑭𝑨= 0.794 to 

relate the exact value of the critical temperature (Tc) to the expected mean field value (𝑻𝒄
𝑴𝑭𝑨).  From 

Table 6, it is noted that all three systems have Tc above room temperature (RT) and that there is a clear 

trend in Tc. In particular, it increases as the atomic number (Z) increases from Li to Na to K, suggesting 

that the higher the Z, the more stable the system is. This highlights how the types of alkali metal dopants 

(Li, Na and K) can be changed to control ferromagnetism in these systems, opening possibilities for 

spintronic applications. It should be noted that this is the first time these systems have been predicted 

and further experimental validation is required.   

Materials               a0 (Å)          B0(GPa)         𝛥EAFM-FM (eV)       𝑻𝑪(𝑲)          𝑬𝒇 (eV)       

SrFeS                    5.949           50.244                1.160                  -                 -4.384   

SrFeLiS                5.983            48.322               0.432                1326             -5.099 

SrFeNaS               5.994            48.107               0.435                1337             -5.087 

SrFeKS                 6.017            47.518               0.437                1341             -5.073                  
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       Table 6 shows the optimized lattice parameters and bulk modulus of the co-doped systems in the 

stable FM configuration. Figure 12 shows the comparison of the total energies and the cell volume. The 

structural parameters of monodoped SrS: Fe2+ calculated in the previous section were also included to 

assess the feasibility of co-doping. Since the substituted Fe2+ (0.55 Å) has a smaller ionic radius than the 

dopants Li+ (0.76 Å), Na+ (1.02 Å) and K+ (1.38 Å), the lattice constant increases gradually with 

increasing Z after the co-doping procedure. This indicates grid expansion. In contrast, the values of the 

bulk modulus decrease slightly, indicating that the co-doped systems have lower hardness. Importantly, 

Figure 12 shows that the addition of Li, Na, and K results in an increase in cell volume of 0.49%, 0.64%, 

and 0.98%, respectively, and a consistent energy reduction of about 3% to 8%. These data clearly 

indicate that the co-doping process can lead to significant stabilization of the system.        

 

Figure 12. An illustration of the total energy and cell volume of the Fe-p0 co-doped systems in 

comparison to the Fe mono-doped system. 

       To evaluate the thermodynamic stability of the co-doped systems, we also calculated the formation 

energy. Our expression was as follows: 

                            𝑬𝒇 = 𝑬𝒄𝒐𝒅𝒐𝒑𝒆𝒅 − 𝒂𝑬𝒃(𝑺𝒓) − 𝒃𝑬𝒃(𝑭𝒆) − 𝒄𝑬𝒃(𝒑𝟎) − 𝒅𝑬𝒃(𝑺)                            (eq.27) 

The term 𝑬𝒄𝒐𝒅𝒐𝒑𝒆𝒅 refers to the total energy of SrS co-doped with transition-alkali metals; the terms 

𝑬𝒃(𝑺𝒓),  𝑬𝒃(𝑺), 𝑬𝒃(𝑭𝒆), and 𝑬𝒃(𝒑𝟎) denote the energies per atom of the host atoms (Sr and S), the 

fixed dopant (Fe), and the associated impurity (p0 = Li, Na, and K); the numbers of the relevant atoms 

within the supercell are indicated by a, b, c, and d.   



Chapter 3                                        Effect of Doping and CO-Doping on the SrS Bulk Properties 

 

 

131 

 

       Table 6 shows that the estimated formation energies (E𝑓) of all compounds have negative values. 

This suggests that these substances may be synthesized under ambient conditions and are 

thermodynamically stable. E𝑓 (Fe-Li) < E𝑓 (Fe-Na) < E𝑓 (Fe-K) < E𝑓 (Fe-single) is the order in which the E  values 

are found. This implies that the most difficult system to dope is the singly Fe-doped SrS, which has the 

highest E𝑓. On the other hand, the co-doped Fe-Li system has a comparatively simpler doping process 

as much less energy is required for its formation. 

       In summary, we find that the introduction of monovalent alkali metals reduces the E𝑓 of the mono-

doped system. This implies that the alkali atoms help alleviate some of the difficulties in the singly Fe-

doped SrS system, which in turn leads to a more stable configuration. Therefore, the overall stability of 

the system is significantly improved and the doping process is simplified by (Fe, p0) co-doping. 

         3.2.3.2   Electronic Properties and Chemical Bonding Analysis  

                       3.2.3.2.1 Electronic Band Structure Analysis 

       Figure 13 shows the electronic band structures of the co-doped SrS systems (Fe, Li), (Fe, Na) and 

(Fe, K) along the high symmetry directions (Λ, Δ, and Z) and high symmetry points (Г-H-N-Г-P) of the 

first Brillouin zone (BZ).  

       All SrS co-doped systems are half-semiconductors because the EF is clearly empty since neither the 

up- nor the down-spin channels crosses it. Both the VBM and CBM are positioned at the Γ point for up-

spin, resulting in a wide direct bandgap of 3.241 eV, 3.246 eV, and 3.182 eV for co-doping of Li, Na, 

and K, respectively. On the other hand, the narrower and indirect bandgap is indicated by the CBM 

being at the H point and the VBM being at the Γ point for the down-spin channel. For co-doping with 

Li, Na, and K, the bandgap size upon spin-down was found to decrease with Z, with values of 0.353 eV, 

0.346 eV, and 0.300 eV, respectively. It is important to note that the VBM is located close to the EF in 

the band structures of all three compounds, suggesting that they are p-type semiconductors. The 

comparatively smaller bandgap of the spin-down channel (<1 eV) facilitates thermal excitation of 

electrons, which improves electrical conductivity. Due to this property, these p-type HSC alloys have 

great potential for use in thermoelectric (TE) systems. 

       Table 7 summarizes the results for the up-spin and dn-spin channels. We find that the introduction 

of hole-type charge carriers through alkali doping not only maintains the semiconducting nature of the 

up-spin but also reduces its bandgap values compared to Fe-doped SrS, which exhibits HMF properties. 

It also causes a down-spin shift from the EF, leading to conventional semiconductor behavior. 
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Table 7 

The calculated bandgap values of co-doped SrS: (Fe, p0) systems. The data of Fe mono-doped SrS are 

included in the table from the previous section to facilitate further analysis and comparison. 

  

 

Materials         Gap                   Up-spin channel                                 Down-spin channel 

                         nature           Direction        Value (eV)                 Direction              Value (eV) 

SrFeS               HMF               [Г- Г]               3.401                              -                            -   

SrFeLiS           HSC                [Г- Г]               3.241                          [Г- H]                   0.353 

SrFeNaS          HSC                [Г- Г]               3.246                          [Г- H]                   0.346 

SrFeKS            HSC                [Г- Г]               3.182                          [Г- H]                   0.300 
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Figure 13. (a-c) Spin-resolved electronic band structures of (Fe, Li), (Fe, Na), and (Fe, K) co-doped 

SrS with mBJ-PBE method. 

              3.2.3.2.2 Total and Partial Densities of States Analysis 

       The spin-resolved total density of states (TDOS) and orbital-decomposed density of states (PDOS) 

of Sr, S, Fe, and p0 atoms are shown in Figure 14. 
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Figure 14. (a-c) Spin-resolved total and partial densities of states of of (Fe, Li), (Fe, Na), and (Fe, K) 

co-doped SrS with the mBJ-PBE method.  

       The asymmetry of the TDOS in both spin channels can be seen in Figures 14(a–c) and confirms the 

ferromagnetic nature of the materials. It can also be seen that neither spin channel exhibits an impurity 

state at the EF level, highlighting the magnetic semiconductor nature of them. Fe:3d and S:3p orbitals 

make up the majority of the VB, while the S:3p and Fe:3d orbitals dominate the VBM, with the Sr:5s 

and p0:s (Li:2s, Na:3s and K:4s) orbitals contribute very little. Fe:3d orbitals make up the majority of 

the CB, and Fe:3d determines the CBM, with a small contribution from Sr: 5s and p0:s orbitals. It appears 

that alkali substitution contributes only slightly to the TDOS near the EF. Ultimately, this is different 

from the TDOS detected by the Fe mono-doped SrS, where the compound exhibited the HMF property. 

We hypothesize that coupled Fe-p0 doping is preferable to Fe mono-doping to achieve optimal magnetic 

and optical properties due to the presence of a localized energy level at the top of the CB near the EF. 

       A careful examination of the PDOS shows that the Fe:3d values have shifted significantly compared 

to the parent compound SrS:Fe. Atomic Fe:3d  levels split into eg and t2g manifolds with lower and 

higher energies, respectively, due to the tetrahedral crystal field. While the eg orbital splits into the 

singlet 𝑑𝑥2−𝑦2  and 𝑑𝑧2 levels, the t2g orbital splits further into the double degenerate dxz + dyz levels and 

the singlet dxy level. Hund's rule states that since the 3d state of the Fe dopant has six electrons, the five 

up-spin electrons fill the five sub-states that lie below the EF level in a potential range of about ∼-0.4 to 
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-4.5 eV. Since the p0-s states are one electron short, the addition of alkali dopants creates a hole in the 

system. As a result, the atoms of Li, Na and K act as acceptors. Thus, the p-type semiconductor behavior 

in the three compounds can be explained by the sub-states in the spin-down channels remaining 

unoccupied and located above the EF level in a potential range of approximately ∼ − 0.3 eV–1.4 eV. 

The 3p orbitals of neighboring S atoms and the 3d orbitals of Fe clearly overlap close to the EF, 

suggesting strong pd-hybridization between them. This pd-hybridization is crucial for maintaining 

ferromagnetic order and generating magnetism in the co-doped systems in addition to band edge 

splitting. Another factor is the coupling chain between the states Fe:3dt2g/eg‒Sr:5s‒p0:3s, which exists 

in the energy range from about ∼-2 eV to EF.  

       Along with the previously defined direct exchange splitting (∆𝒙(𝒅)), we also calculated the crystal 

field energy (∆𝑬𝒄𝒓𝒚𝒔), which is defined as the energy arising from the interaction of surrounding ligands 

with metal ions (𝐸𝑡2𝑔 − 𝐸𝑒𝑔). When the ∆𝑥(𝑑) energy exceeds the ∆𝐸𝑐𝑟𝑦𝑠, the energy obtained from the 

parallel spin alignment through direct exchange is larger than the energy difference between the eg and 

t2g orbitals, this can cause the material to exhibit more pronounced ferromagnetic behavior. In our case,  

SrFeLiS, SrFeNaS and SrFeKS have calculated ∆𝑥(𝑑) values of 6.06 eV, 6.14 eV and 5.465 eV, 

respectively. These values exceed their corresponding ∆𝐸𝑐𝑟𝑦𝑠 values of 0.672 eV, 0.713 eV and 0.436 

eV. Therefore, they strongly support the parallel alignment of the spins and promote the stabilization of 

ferromagnetism in these systems.    

       A crucial parameter for understanding the electronic structure and optical properties of (Fe, p0) co-

doped SrS is the d-d transition, which is defined as the distance between up-spin occupied Fe:3d states 

and unoccupied Fe:3d states in down-spin. We gain important insights into the energy absorbed during 

the d-d transition by quantifying the energy separation between the up-spin and down-spin states 

involved in this transition. Our calculations show that the co-doped SrS systems (Fe, Li), (Fe, Na), and 

(Fe, K) have d-d transition energies of 0.300 eV, 0.346 eV, and 0.353 eV, respectively. These values 

show that the co-doped SrS systems absorb 0.300 eV, 0.346 eV, and 0.353 eV during the d-d optical 

transition in the FM configuration, respectively. 

             3.2.3.2.3  Electron Density Difference and Chemical Bonding Analysis 

       The analysis of the electron density difference of the co-doped systems provides information about 

the interaction between atoms and their bonding properties. In an ionic bond, there is a significant 

difference in electronegativity between the bonded atoms, resulting in electron transfer and the 

formation of charged ions. This type of bond is predominantly ionic in nature. Conversely, a covalent 

bond occurs when atoms with similar electronegativity share electrons, resulting in a more balanced 

electron distribution and covalent character. 
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       The 2D bond charge density distributions of the SrS: (Fe, Li), SrS: (Fe, Na), and SrS: (Fe, K) systems 

were plotted in the (110) plane in Figure 15. The charge density difference is represented by the color 

scale in the figures, with red indicating electron depletion and blue indicating electron accumulation.  

                     
 

                       

                    

Figure 15. (a-c) The bonding contour profiles of electron density difference for (Fe, Li), (Fe, Na), and 

(Fe, K) co-doped SrS Systems, respectively. 
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       A small amount of electrons, about 0.016 eV/Å³ accumulates between Sr and S, Fe and S, and p0 

and S, as shown in this figure. This indicates the strong ionic character of the Sr-S, Fe-S and p0-S bonds. 

Interestingly, there is a larger accumulation of electrons around the Fe atom compared to the Sr atom, 

suggesting that Fe has a greater ability to donate or accept electrons, which affects its bonding behavior. 

Furthermore, the analysis showed that more charges were localized between p0 and S, reducing electron 

exchange between them. As a result, there is a greater concentration of free electrons generated by p0 

atoms, leading to an increase in electron accumulation near p0. For co-doping with Li, Na, and K, the 

electron accumulation values around p0 are about 0.05, 0.196, and 0.3 eV/Å³, respectively. This suggests 

that the ionic character of the p0-S bond in the (Fe, p0) co-doped SrS system slightly improves with 

increasing Z of alkali metals. The doping of p0 atoms thus improves ionic bonding of SrS: (Fe, p0) co-

doped systems.  

         3.2.3.3   Magnetic Properties  

                        3.2.3.3.1 Magnetic Moment  

       Table 8 summarizes the results of the total magnetic moment, the magnetic moments of Sr, S, Fe 

and p0, and the magnetic moment of the interstitial region calculated by the PBE + mBJ method. The 

calculated MToT in all systems converges to an integral value of 5.00 μB, as shown in this table. The 

mono-doped SrS:Fe  indicates a permanent magnetic moment of 4.00 μB in free space, which is different 

from this value. As mentioned in the DOS section, the total value of the magnetic moment increases to 

5.00 μB due to the charge exchange between the Fe and p0 ions in the co-doped systems. The 3d orbitals 

of the transition metal ion (Fe) and the interstitial region are the main sources of MToT. The nearest 

neighboring S and Sr atoms as well as the alkali metals contribute very little to the total value. 

       The sp-d hybridization between the Fe:3d states and the S:3p, Sr:5s, and p0:ns states (where n is the 

number of Li, Na, and K electrons) in these compounds is responsible for the higher values of magnetic 

moments in the interstitial region. Due to this hybridization, the magnetic moments of the interstitial 

region increase and the local magnetic moments associated with the Fe atoms decrease (to about 3.89 

μB in all compounds). This phenomenon illustrates how hybridization has a significant impact on how 

these compounds behave magnetically and distribute electrons.  

       The studied co-doped systems exhibit elevated and integer magnetic moment values, suggesting 

possible applications in spintronic devices. 
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                       3.2.3.3.2 Exchange Constants 

       The s-d and p-d exchange constants are determined using the corresponding equations (Eq. 24) (Eq. 

25) described in the first section of this chapter. The calculated ∆𝐸𝑐, ∆𝐸𝑣,  𝑁0𝛼, and 𝑁0𝛽 are summarized 

in Table 8. The negative values of s-d coupling suggest an attractive interaction between magnetic 

moments on dopant atoms and band holes, implying AFM coupling in the alkali-doped SrS:Fe systems. 

Conversely, the positive values of 𝑁0𝛽 indicate that the p-d coupling is repulsive, indicating FM 

behavior. Compared to the results of Fe single doping, the exchange constants for p0 co-doping show a 

slight increase. This slight increase can be attributed to the effects of additional electrons, altered 

hybridization, and variations in the crystal lattice and local environment. These factors collectively 

influence the magnetic coupling and contribute to the observed changes in exchange constants.         

Table 8  

The calculated values of total magnetic moment (Mtot), interstitial magnetic moment (Mi), magnetic 

moment on each Sr, S, Fe, and p0 atoms, band edges splitting ∆𝐸𝑐  and ∆𝐸𝑣, and exchange constants 

𝑁0𝛼and 𝑁0𝛽 of co-doped SrS systems. The data of Fe mono-doped SrS are included in the Table from 

the previous section for further analysis and comparison. 

 

       3.2.3.4   Optical Properties 

       The optical behavior of a material in a medium is elucidated by examining its optical properties. 

Highly spin-polarized semiconductors (HSCs), which span a wavelength spectrum from ultraviolet to 

visible, can be treated as a continuous medium. Under optical excitation, these materials demonstrate 

the ability to generate fully spin-polarized electrons and/or holes. The complex dielectric function ε(ω) 

is a key optical property that bridges the gap between the physical process of electron transfer and the 

energy band structure. It reflects the linear macroscopic response of the material to electromagnetic 

radiation. The complex dielectric function can be expressed as: 

                                                           𝜺(𝝎) = 𝜺𝟏(𝝎) + 𝒊𝜺𝟐(𝝎)                                                      (eq.27) 

Where 𝜺𝟐(𝝎) signifies the imaginary part of the complex dielectric function and delineates optical 

absorption. Conversely, the real part 𝜺𝟏(𝝎) denotes dispersion and polarized radiation. 

  Materials        Mtot (µB)    Mi (µB)    MFe(µB)      MSr(µB)      MS(µB)    Mp0(µB)     ∆𝑬𝒄(eV)      ∆𝑬𝒗 (eV)     𝑵𝟎𝜶         𝑵𝟎𝜷 

SrFeS               4             0.119          3.690          0.005          0.031            -             -3.021          0.017         -12.08        0.068           

SrFeLiS           5                    0.503          3.893              0.008          0.110        0.002             -2.841          0.053             -8.782        0.170 

SrFeNaS          5             0.270          3.895         0.007          0.111        0.112         -2.840         0.052         -9.088        0.171 

SrFeKS            5             0.268         3.892          0.007          0.112        0.005         -2.830         0.048         -9.05          0.154 
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       The  𝜺𝟐(𝝎) includes two different contributions: interband transitions (between the bands) and 

intraband transitions (within the bands). It can be calculated based on the band structure as follows [77]: 

                            𝜺𝟐(𝝎) = (
𝟒𝝅𝟐𝒆𝟐

𝒎𝟐𝝎𝟐) ∑ ∫⟨𝒊|𝑴|𝒇⟩𝟐
𝒊,𝒇 𝒇𝒊(𝟏 − 𝒇𝒇)𝜹(𝑬𝒇 − 𝑬𝒊 − 𝝎)𝒅𝟑𝒌                            (eq.28) 

Where 𝒇𝒊 and 𝒇𝒏 are the Fermi functions for initial |𝒊⟩ and final |𝒇⟩ states with energies 𝑬𝒊 and 𝑬𝒇 and 

𝑴 is the momentum operator.  

       The 𝜺𝟏(𝝎) can be derived from the imaginary part through the Kramers-Kronig relation [75], as 

shown below:  

                                                      𝜺𝟏(𝝎) = 𝟏 +
𝟐

𝝅
𝑷 ∫

𝝎′𝜺𝟐(𝝎′)

𝝎′𝟐−𝝎𝟐

∞

𝟎
𝒅𝝎′                                                     (eq.29) 

Where 𝑷 is the Cauchy principal value. 

As 𝝎 → 0, the static dielectric constant (𝜺𝟏(𝟎)) in Eq.29 simplifies to:  

                                                 𝜺𝟏(𝟎) = 𝜺(𝝎) = 𝟏 +
𝟐

𝝅
𝑷 ∫

𝜺𝟐(𝝎′)

𝝎′

∞

𝟎
𝒅𝝎′                                                     (eq.30) 

The integral part ∫
𝜺𝟐(𝝎′)

𝝎′

∞

𝟎
𝒅𝝎′  is proportional to a value of  

𝝅

𝟐
𝝎𝒑

𝟐. The 𝝎𝒑 is defined as the plasmon 

frequency [75] and it is given as follows:  

                                                                         𝝎𝒑
𝟐 =

𝑵𝒗𝒆𝟐

𝒎𝒆
∗ 𝜺𝟎

                                                                               (eq.31) 

Where 𝑵𝒗 is the valance electron density and 𝒎𝒆
∗  is the effective mass of the electrons.   

        From the components 𝜺𝟏(𝝎) and  𝜺𝟐(𝝎) of the complex dielectric function, further parameters 

such as the refractive index 𝒏(𝝎) and the extinction coefficient 𝒌(𝝎) could be calculated [75]:             

                                                  𝒏(𝝎) =
[√𝜺𝟏

𝟐(𝝎)+𝜺𝟐
𝟐(𝝎)+𝜺𝟏(𝝎)]

𝟏
𝟐⁄

√𝟐
                                                        (eq.32) 

                                                  𝒌(𝝎) =
[√𝜺𝟏

𝟐(𝝎)+𝜺𝟐
𝟐(𝝎)−𝜺𝟏(𝝎)]

𝟏
𝟐⁄

√𝟐
                                                      (eq.33) 

      We can also calculate the absorption coefficient 𝜶(𝝎) and the optical conductivity 𝝈(𝝎) using the 

following formulas [75]:   

                                     𝜶(𝝎) = √𝟐 (𝝎)[√𝜺𝟏
𝟐(𝝎) + 𝜺𝟐

𝟐(𝝎) − 𝜺𝟏(𝝎)] 
𝟏

𝟐⁄                                     (eq.34) 
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                                                               𝝈(𝝎) =
𝝎

𝟒𝝅
𝜺𝟐(𝝎)                                                           (eq.35) 

       Figure 16 shows the real and imaginary parts of the complex dielectric function, the absorption 

coefficient and the optical conductivity, over a photon energy range of 0–13.6 eV. In addition, for 

comparison purposes, we calculated the optical properties of pure SrS and Fe-doped SrS using the data 

from the first part of this chapter. 

 

 

Figure 16. (a-d) Real part of the complex dielectric function ε1(ω), Imaginary part of the complex 

dielectric function ε2(ω), Absorption coefficient α(ω), and Optical conductivity σ(ω) spectra, 

respectively, of pristine SrS, Fe-single doped and (Fe, p0) co-doped systems. 

a. Real and Imaginary Parts of Complex Dielectric Function 

       The discussion begins with an examination of the real part of the complex dielectric function. In 

Figure 16(a) we plotted the profiles of the ε1(ω) function for the binary, ternary, and quaternary systems. 

At lower energies, a notable difference is apparent between the co-doped, singly doped, and pristine SrS 

(a) 
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systems. The static dielectric, denoted by ε1(0), refers to the real part value at zero energy and is defined 

by (Eq. 30). In the case of the pristine SrS, ε1(0) starts positive and reaches a value of 3.769. After 

reaching this value, ε1(ω) increases with energy until it reaches its maximum of 6.151 at 4.186 eV in the 

visible region. 

       When Fe is introduced into pure SrS, the compound shows the HMF character, which causes ε1(0) 

to shift towards a significantly large negative value, indicating two crucial aspects: First, this negative 

value means metallic behavior in this energy sector. Secondly, it results in energy loss and limited light 

transmission through the medium, resulting in significant reflections. However, once it reaches its 

minimum value, the magnitude of ε1(ω) begins to increase and finally becomes positive at 0.416 eV, 

marking the first root. 

       When co-doping SrS:Fe with alkali metals, sharp peaks appear on the low energy side, showing 

high values of ε1(0) with 6.194, 5.954 and 5.822 for Li-, Na- and K-co-doped SrS:Fe, respectively. These 

values are significantly increased compared to pure SrS. These distinct peaks indicate the 

semiconducting behavior that arises upon the introduction of alkali metal ions. The significantly higher 

value of ε1(0) in SrFeLiS underlines its superior polarizability compared to other alloys. Beyond 0.416 

eV, the ε1(ω) profiles of the three co-doped systems follow a similar trend as the pure SrS and Fe single 

doping. The maximum dielectric peak for Fe mono-doping occurs at a photon energy of 4.3 eV, which 

corresponds to a dielectric value of 6.204. 

       Beyond this energy, there is no apparent disparity in the ε1(ω) profiles of all studied systems. This 

suggests that the influence of alkali metal co-doping may also extend to lower energies. Subsequently, 

the value of ε1(ω) decreases sharply and finally reaches negative values after 8.065 eV. These negative 

values imply high reflectivity and plasmonic excitation in the energy range of 8.065–13.6 eV, indicating 

metallic behavior of the materials. Furthermore, the ε1(ω) values show a trend towards greater stability 

with increasing photon energy. This suggests that the materials' interaction with incoming high-energy 

photons becomes more restricted or dampened. 

       Figure 16(b) provides a visual representation of the spectra of the ε2(ω) function. Such spectral data 

provide crucial insights into how materials react to incoming electromagnetic radiation. In addition, the 

phenomenon of interband shift is clearly illustrated, which arises from the interaction between electrons 

in the occupied valence band and the radiation built into the material below the EF. 

      In contrast to the behavior of ε1(ω), ε2(ω) in the Fe mono-doping system shows high positive values, 

followed by a sharp decay, with multiple transition peaks appearing at different rates in the low energy 

region. These interband transitions can be attributed to the influence of impurity bands introduced by 

the electrons of the Fe atom. The decrease in ε2(ω) indicates that the interaction between photons and 
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the material surface is minimal [76]. Prominent peaks in the ε2(ω) spectrum of Fe-doped SrS indicate 

electronic transitions between occupied and unoccupied states. These transitions can be identified 

directly by the PDOS of each connection. The 2.0 eV peak arises from the transition between 3p-S in 

the VB and 3d-t2g Fe in the CB. At 2.7 eV, an electronic transition occurs between the 5s-Sr state and 

the 3d-t2g Fe state. The significant 5.4 eV peak is attributed to the electronic transition between the 3d-

t2g orbital in the VB and the 3d-eg orbital in the CB (see Figure 9 in this chapter). The variation in the 

size of these dielectric peaks can be explained by the difference in the amount of photoelectron energy 

required for electronic transitions induced by the different dopants. 

       When examining the ε2(ω) curve of pristine SrS, a prominent peak is visible in the near UV region 

and maximum absorption occurs in this region. The absorption edge for this binary system begins at an 

energy of 3.435 eV and is due to electron transitions between the S-3p states in the VB and the Sr-5s 

states in the CB. 

       For the systems SrFeLiS, SrFeNaS and SrFeKS they show clear absorption peaks in the infrared 

range of 0.3–1.6 eV. This means enhanced infrared absorption in the SrS and SrS:Fe systems through 

co-doping with one of the three alkali metal ions. It is noteworthy that co-doping with Li has the highest 

intensity. The absorption edges in these ordered alloys SrFeLiS, SrFeNaS, and SrFeKS manifest as 

energy peaks at 0.353 eV, 0.346 eV, and 0.300 eV, respectively. These peaks arise from electron 

transitions between the S-3p states in the VB and the Fe-3deg states in the CB. Remarkably, the positions 

of these energy peaks closely match the forbidden gaps of the respective alloys. This close agreement 

suggests that the electron transitions responsible for the absorption edges occur within the energy range 

defined by the forbidden gap of each material. 

       sp-d hybridization creates direct transitions from the VB to the CB, leading to the formation of 

shallow levels near the EF. This reduces the bandgaps of the materials, which leads to a red shift. In the 

energy range of 1.6–2.7 eV, the co-doped systems exhibit higher peak intensities compared to the pure 

and singly doped systems, which means that the co-doping enhances the absorption of the system in the 

visible region. Significant peak intensities of ε2(ω) are observed in the energy range of 3.2–11.3 eV, 

indicating significant absorption from the near visible to ultraviolet region. This property makes the 

studied materials promising for applications in energy production systems. 

b. Absorption Coefficient 

       In addition to ε1(ω) and ε2(ω), we calculated the absorption coefficient α(ω), which is a crucial 

metric that quantifies the material's ability to absorb and convert photons of specific energy into a usable 

form. This coefficient provides valuable insight into the attenuation of incident light intensity as it passes 
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through a material and illustrates the process of light decay in the absorbing medium. The α(ω) curves 

of pristine SrS, Fe-doped, and (Fe, p0) co-doped SrS are shown in Figure 16(c). 

       The HMF property is evident in the absorption coefficient spectra. In the singly doped system there 

is a clear infrared absorption in the lower energy range from 0 to approximately 0.4 eV. However, a 

notable absence of infrared absorption is observed in the pure and co-doped systems. This is because 

the photon energy falls into the forbidden bandgap, which means transparency for infrared light. As the 

photon energy increases, the absorption coefficient increases rapidly, showing typical semiconductor 

behavior. Of all the compounds examined, the ultraviolet range has the highest absorption. The 

absorption spectra of these materials show prominent peaks in the UV range, which mainly occur above 

9 eV photon energy. These peaks show specific values, namely 162, 163, 162, 159, and 157 [104 Cm−1], 

for the pristine Fe-mono-doped and Li, Na, and K co-doped SrS alloys, respectively. This indicates a 

significant level of absorption and minimal electron losses within this energy range for all alloys. In the 

visible range, the absorption values for all compounds are comparatively lower than in the UV range 

and almost zero for SrS. The substitution of p0 also shifts the position of the absorption peaks of singly 

doped SrS in the infrared and visible region and results in new peaks. Consequently, a redshift occurs, 

which is consistent with the previous interpretation of ε2(ω). 

       Based on previously reported data, the absorption curves can be divided into two distinct regions 

showing improvement compared to pure SrS. SrS: (Fe, p0) compounds exhibit significant absorption 

compared to SrS: Fe in the first region, covering the energy range from 0 to 2.7 eV and covering the 

near-infrared to visible region. In the second region, which extends from 2.7 to 13.6 eV and corresponds 

to the near ultraviolet region, SrS:Fe absorbs more energy than SrS:(Fe, p0). These groundbreaking 

findings clearly demonstrate the potential of SrS: (Fe, p0) materials as highly effective hole transport 

materials (HTM) for use in solar cells. They are particularly characterized by their exceptional property 

of minimal absorption of incident sunlight, making them an ideal choice for improving solar cells 

efficiency. It should also be mentioned that SrS:Fe is ideal for use as a photodetector. 

c. Optical Conductivity 

       The optical conductivity σ(ω) is related to the conduction of electrons, which are formed when a 

photon of a certain frequency interacts with a medium. Figure 16(d) shows the optical conductivities of 

pure, Fe-doped and (Fe, p0) co-doped SrS. The optical conductivity spectra largely agree with the shape 

of the imaginary part of the dielectric function. This means that by analyzing these spectra, which come 

from the imaginary part of the dielectric function, we can identify specific transitions that are responsible 

for the peaks. This is done using band-to-band decomposition as explained earlier. 
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       σ(ω) of the co-doped compounds is quite intriguing and starts around the fundamental bandgap. 

Notably, the optical conductivity for all compounds, including the pure and singly doped ones, shows 

significant peaks in the photon energy range of 4–11 eV. This indicates an increased photon absorption 

rate in this particular energy range. Remarkably, all compounds in this region exhibit similar behavior, 

highlighting their comparable optical properties. The remarkably high value of optical conductivity 

means that these materials respond strongly to light, demonstrating their efficiency in conducting 

electrons when illuminated. Furthermore, the optical conductivity patterns consistently mirror those 

observed at α(ω), highlighting that the absorption of photons results in an abundance of charges available 

for conduction. This highlights the crucial role of photon absorption in enabling charge conduction. 

       It is important to highlight that our optical findings for the binary system agree well with previous 

theoretical evaluations [20, 77, 78]. However, it is worth noting that both experimental and theoretical 

data are lacking for other ternary and quaternary systems, highlighting the need for experimental 

validation. 

     3.2.3.5   Thermoelectric Properties 

       As stated in Section 1.3.3 of Chapter 1 and 2.3.3 of Chapter 2, thermoelectricity is the process of 

converting heat into electricity through the Seebeck effect. In this scenario, it is the heat flow that induces 

movement of charge carriers, resulting in the generation of an electric current. The thermoelectric 

performance of materials can be evaluated using the dimensionless figure of merit, which is described 

as follows: 

                                                             𝒁𝑻 =  𝑺²𝝈𝑻/(𝜿𝒆 +  𝜿𝒍)                                                              (eq.36) 

In this case, S stands for the Seebeck coefficient, σ for the electrical conductivity, PF = S²σ for the 

power factor, κe+ κl for the total thermal conductivity (which adds the contributions of the lattice and 

electronic components, respectively) and T for the temperature in Kelvin. 

       To achieve the best thermoelectric performance, low thermal conductivity, significant Seebeck 

coefficient and high electrical conductivity are required. Nevertheless, the electronic component of 

thermal conductivity is directly related to electrical conductivity according to the Wiedemann-Franz law 

[79], which establishes a connection between κe and electrical conductivity via κe = LσT (where L is 

the Lorentz number). Because of this interdependence, it is difficult to improve ZT by changing one 

parameter without also changing the others. 

      Selecting and designing thermoelectric materials, therefore, requires considering various other 

crucial factors. This includes aiming for a low band effective mass, which leads to a high Seebeck 

coefficient, without significantly impeding electrical conductivity. In BoltzTrap2's constant relaxation 
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time approximation (RTA), both electrical and electronic thermal conductivities, unlike the Seebeck 

coefficient, are dependent on relaxation time (τ). Therefore, determining τ is necessary to determine 

their actual values. The electronic structure derived from DFT calculations serves as an important input 

for the estimation of this parameter. Based on the identified band structures, we determined the effective 

masses (m*) of the charge carriers at the CBM and VBM using the parabolic band approximation 

framework [80]. Additionally, we calculated the uniaxial deformation potentials of electrons and holes 

by evaluating the CBM and VBM changes. 

       We also performed estimates of uniaxial deformation potentials for electrons and holes obtained by 

calculating changes in the CBM and VBM. The deformation potential (DP), defined as the energy 

change of a system due to a deformation of its lattice structure along the transport direction, is described 

as follows: 

                                                                         𝑬𝒅 =
𝝏𝑬𝒆𝒅𝒈𝒆

𝝏(
∆𝒂

𝒂𝟎
)

                                                            (eq.37) 

Where 𝝏𝑬𝒆𝒅𝒈𝒆 represents the alteration in CBM and VBM for electrons and holes, respectively, and  
∆𝒂

𝒂𝟎
 

denotes the uniaxial strain, ranging from -4% to 4%. The slope of the curves represents Ed. 

       Based on their effective masses and strain potentials, we calculated the relaxation time, for the 

pristine, doped and co-doped SrS systems using the deformation potential theory proposed by Bardeen 

and Shockley [71]. This theory provides a formula that relates τ to temperature as follows:  

                                                                𝝉 =  
𝟐√𝟐𝝅ℏ𝟒𝑪𝜶

𝟑(𝒎∗𝒌𝒃𝑻)𝟑/𝟐𝑬𝒅
 𝟐                                                                            (eq.38)  

ℏ is the reduced Planck’s constant, 𝒎∗ is the band effective mass, Ed is the DP, and 𝑪𝜶  is the elastic 

constant computed via a quadratic polynomial fit of total energy fluctuation under strain as:                                 

                                                                     𝑪𝜶 = 
𝟏

𝑽𝟎

𝝏𝟐𝑬

𝝏(
∆𝒂

𝒂𝟎
)𝟐

                                                                          (eq.39) 

Herein, 𝑽𝟎 represents the equilibrium volume.  

       For the pure, doped, and co-doped SrS systems, the fitted curves showing edges and total energies 

versus strains are shown in Figures 17–20. Table 9 additionally shows the calculated values of m∗, Ed 

and 𝐶𝛼.  
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Figure.17 Band energy edge (Eedge) as a function of uniaxial strain (
∆𝑎

𝑎0
) for the pristine SrS. 

 

 

 

SrS 
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Figure 18. Band energy edge (Eedge) as a function of uniaxial strain (
∆𝑎

𝑎0
) for: (a) Fe mono-doped and 

(b-d) (Fe, Li), (Fe, Na), and (Fe, K) co-doped systems, respectively. 

 

Figure 19. Total energy as a function of uniaxial strain (
∆𝑎

𝑎0
) for the pristine SrS. 
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Figure 20. Total energy as a function of uniaxial strain (
∆𝑎

𝑎0
) for: (a) Fe mono-doped and (b-d) (Fe, 

Li), (Fe, Na), and (Fe, K) co-doped systems, respectively. 

       As shown in Table 9, the 𝐶𝛼 values gradually decrease as dopants are introduced into SrS and as 

the system goes from mono-doping to co-doping. This is consistent with an increase in atomic number 

within the co-doped systems. This decrease in the elastic constant can be attributed to the introduction 

of additional dopant atoms, which disrupt the regular lattice structure and lead to lattice defects. 

       On the other hand, the Ed has a stronger effect on electrons than on holes. These different effects 

highlight the different sensitivity of these charge carriers to external perturbations.  

       In addition, the m∗ of the majority-electrons is smaller than that of the majority-holes. This contrast 

in m∗ highlights the different mobilities and transport behavior of the majority electrons and holes.  

       Comparing our results for the pristine material with those of Hou et al. using HSE [80], we observe 

good agreement for all parameters. The slight differences could possibly be due to differences in the 

computational code or approximation methods used (VASP code).  
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Table 9 

The calculated elastic constant 𝐶𝛼, the DP constant Ed, and the effective mass 𝑚∗ of the pristine, doped 

and co-doped SrS systems.   

j  Ref [82].              

       Using the obtained parameters from Table 9 and substituting them into Eq. 38, we can determine τ. 

The τ of holes (p-type) and electrons (n-type) for pure SrS as well as for majority- and minority- spins 

of doped and co-doped systems as a function of temperature in a range of 100–1200 K is shown in 

Figures 21 and 22, respectively. 

 

Figure 21. Measured relaxation time (τ) of holes and electrons as temperature dependence for SrS. 

Materials         Carrier type      𝑪𝜶 (eV/Å𝟑)                    Ed (eV)                                            𝒎∗(me) 

SrS                         p-type              1.335                    -6.25                                   0.461 

                                                        1.347j                             -17.20j                                                  0.590j 

                                n-type              1.335                   -18.55                                 0.170 

                                                        1.347j                             -11.44j                                                  1.518j 

                                                                          Up-Spin     Dn-Spin         Up-Spin    Dn-Spin 

 

SrFeS                      p-type               0.800            -4.951         -1.150             0.538        1.363 

                                 n-type              0.800            -12.25          -9.951            0.288        0.899 

SrFeLiS                   p-type              0.780            -3.452          -0.952            0.560        0.382 

                                 n-type              0.780            -11.05          -3.703            0.254        0.841 

SrFeNaS                  p-typ                0.696            -1.080         -0.544            0.583         0.393 

                                 n-type              0.696            -9.853          -3.501            0.244        0.910 

SrFeKS                    p-type              0.644            -0.734         -0.230            0.600         0.417 

                                 n-type              0.644            -5.000          -3.100            0.227        0.795 
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Figure 22. Measured spin-resolved relaxation time (τ) of holes and electrons as temperature 

dependence for (a) Fe-single doped and (b-d) (Fe, p0) co-doped systems, respectively.        

       From the figures, it can be seen that all compounds have similar variations in τ. The intensity of τ 

initially decreases before gradually varying over a high temperature range. At low temperatures, the co-

doped system SrFeKS has the most significant value, followed by SrFeNaS, SrFeLiS, SrFeS and then 

SrS. This trend can largely be attributed to the low deformation potential values of the SrFeKS material 

compared to other materials (since τ is inversely proportional to the square of Ed, the impact of this 

contribution will be particularly significant). The relaxation time of HSC compounds is ten times longer 

than that of HMF compound. Consequently, we expect high electrical conductivity and consequently 

high ZT in all p-type co-doped systems.   

       Our calculated τ values for pristine SrS appear to be higher than those of Hou et al. [80], who 

obtained values in the order of 10-14s. This is also due to the difference in the computational code or 

approximation methods used 
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       After determining τ, we calculated the spin-dependent transport properties, including σ, S, κ, and 

ZT, for both holes and electrons in all systems, independent of τ. The results are shown in Figure 23 (a-

e). 

 

(a) 

 

(b) 

 

(c) 
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(e) 

Figure.23  Temperature dependent thermoelectric properties (a) electrical conductivity (σ), (b) 

Seebeck coefficient (S), (c) electronic thermal conductivity (κe), (d) lattice thermal conductivity (κl), 

and (e) figure of merit (ZT) for both p-type and n-type of pristine, Fe-single doped and (Fe, p0) co-

doped  SrS systems. 

 

a. Electrical Conductivity  

       Electrical conductivity (σ) refers to the movement of free electrons within materials. It generally 

depends on the mobility of the charge carriers, which is influenced by impurities and defects. Electrons 

move from the hot to the cold region in a material, and as a result of this phenomenon, electricity is 

generated. For an effective thermoelectric device, materials must have high electrical conductivity. 

Materials are categorized as either conductors or semiconductors according to energy band theory. 

Conductors have freely moving electrons for conduction, while semiconductors require the supply of 

external energy to enable charge movement. Our analysis uses the two-current model to study the 
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temperature-dependent changes in spin-based transport properties. The plots of σ for p-type and n-type 

are shown in Figure 23(a) versus temperature up to 1200 K.      

       In the two-current model, electrical conduction is determined by taking into account the currents in 

both spin channels [81]. This means that the total electrical conductivity is the sum of the respective 

values for each spin channel, expressed by the equation: σ = σ↑ + σ↓ [82].  

       Examining the curves, it is clear that the electronic conductivity of pure material is almost 

independent of temperature for both p-type and n-type carriers. This observation is consistent with the 

findings of Hou et al. [80] and Rajput et al. [83]. Conversely, the curves for the co-doped systems all 

show a gradual increase with increasing temperature, which is characteristic of semiconductors. On the 

other hand, the conductivity of mono-Fe-doped SrS gradually decreases with increasing temperature, a 

behavior typical for metallic materials. Notably, the conductivity of p-type compounds exceeds that of 

the corresponding n-type compounds, which may be due to the longer relaxation time in p-type systems 

compared to n-type systems. For p-type carriers, the maximum conductivity reaches 103.1×107 S.m−1 

for SrS: (Fe, K), followed by 7.4×107 S.m−1 for SrS: (Fe, Li), then 0.7×107 S.m−1 for SrS: (Fe, Na), 

1.6×107 S.m−1 for SrS: Fe and a minimum of 0.0125×107 S.m−1 for pristine SrS, all at 1200 K. 

b. Seebeck Coefficient  

       The Seebeck coefficient (S), commonly known as thermo-power, is quantified as the voltage 

produced in an open circuit between two points where there is a uniform temperature difference of 1 K. 

The magnitude of this coefficient varies with the temperature level at which the thermal gradient is 

introduced. An essential Seebeck coefficient is essential for optimizing thermoelectric devices. In the 

two-current model, the total Seebeck coefficient can be understood as the average of the up-spin and 

down-spin coefficients, weighted by their respective electrical conductivities as S = σ↑ S↑ + σ↓ S↓/σ↑ 

+ σ↓ [82]. The variation of the Seebeck coefficient with temperature is shown in Figure 23(b). 

     The sign of the Seebeck coefficient basically determines the type of majority charge carriers in the 

system. Figure 23(b) shows that both types of carriers exist in our considered series of materials: (i) 

materials with a positive Seebeck coefficient region have holes as the majority charge carriers, and (ii) 

materials in the negative Seebeck coefficient region have electrons as the majority of charge carriers. 

The Seebeck coefficients of p-type and n-type SrS, SrS: Fe and SrS: (Fe, p0) alloys show similar trends. 

In the range of 200–500 K, the absolute values of S for both carrier types in pure SrS initially decrease 

with increasing temperature, reaching a minimum of 245 μV K−1 at 500 K and then decreasing with 

temperature until they reach a maximum of 249 reach μV K−1 at 1200 K, which is comparable to previous 

results [80, 83]. For the HMF compound, S increases gradually, reaches a maximum of 24.29 μV. K−1 

at 500 K, and then slowly decreases at temperatures between 500 and 1200 K. Based on these results, 
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we can conclude that doping iron in SrS is not preferable as it reduces its Seebeck coefficient, showing 

that pure semiconductors have better voltage generation compared to HMF compounds. For Li- and Na-

co-doped systems, S increases with increasing temperature, indicating a high Seebeck coefficient at high 

temperatures. Conversely, co-doping with K initially decreases S in the range of 200–500 K, followed 

by a linear decrease to match the trend of pristine and other co-dopants. The simultaneous doping of Li, 

Na and K in SrS:Fe significantly increases the absolute value of S, approaching 151.15, 160.29 and 

150.24 μVK−1 at 1200 K, respectively. The variation of S values can be attributed to the differences in 

the bandgap values. 

c. Thermal Conductivity  

       Optimization of thermoelectric materials also depends on a crucial factor known as thermal 

conductivity (κ). This factor refers to the transfer of energy in the form of heat due to temperature 

differences within a material. The total thermal conductivity (κ= κe + κl) includes both the electronic 

(κe) and the lattice contribution (κl). As already described, κe is closely linked to electronic conductivity 

via the Wiedemann-Franz law [79]. Therefore, a good thermoelectric material requires low thermal 

conductivity without compromising electrical conductivity. κe is calculated using the BoltzTrap2 code 

as described in Eq. 38 in Chapter 1 in the framework of the two-current model [82]. Conversely, κl is 

determined by the Slack equation. This equation specifically accounts for the heat conduction enabled 

by acoustic phonons through an anharmonic flip-scattering process and can be expressed as [84]: 

                                                                    𝛋𝒍 = 𝑨
�̅�𝜽𝑫

𝟑  𝑽𝟏/𝟑

𝜸𝟐𝑻𝒏𝟐/𝟑                                                             (eq.40) 

Herein �̅� is the average atomic mass, V  is the average volume per atom, n is the number of atoms in 

the unit cell, and γ is the Grüneisen parameter calculated by the expression proposed by Julian [87] as 

𝜸 =
𝟗−𝟏𝟐(

𝒗𝒕
𝒗𝒍

)𝟐

𝟐+𝟒(
𝒗𝒕
𝒗𝒍

)𝟐
, in which vl and vt are the longitudinal and transversal sound velocities, respectively.  

The constant factor A is determined by the Grüneisen parameter and can be calculated using the formula: 

A =
𝟐.𝟒𝟑×𝟏𝟎𝟕

𝟏−
𝟎.𝟓𝟏𝟒

𝜸
+

𝟎.𝟐𝟐𝟖

𝜸𝟐

 . 

       Figures 23(c-d) show the evolution of κe and κl as a function of temperature for all series of 

materials discussed in this study. The curves representing κe in Figure 23(c) show a significant increase 

with increasing temperature for both p-type and n-type semiconductor materials in their pristine and 

HSC forms. This is due to the increase in electron energy, which increases the mobility of the charge 

carriers and consequently leads to higher electrical conductivity. Notably, the p-type alloys exhibit 
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higher κe values compared to their corresponding n-type counterparts. In contrast, for the HMF alloy, 

κe decreases rapidly and remains constant at high temperatures. 

       For comparison, p-type SrS: (Fe, K) has the highest κe, followed by SrS: (Fe, Li), then SrS: (Fe, 

Na), SrS and finally the SrS: Fe compound at 1200 K. The order is different for n-type carriers, where 

they are SrS: (Fe, K), SrS, SrS: (Fe, Li), SrS: (Fe, Na) and finally SrS: Fe. The behavior of κe mirrors 

that of σ and follows the proportionality presented in the Wiedemann-Franz law [79] for p-type carriers. 

For the n-type carriers, all compounds follow the law except SrS, which is consistent with Rosenberg's 

observation [88] that the Wiedemann-Franz law holds at both low and high temperatures, but may not 

hold at intermediate temperatures. Our results are not consistent with those of Hou et al. [80], which 

could also be due to the differences in the parameters used. 

       To gain deeper insights into the temperature sensitivity of thermal conductivity, we plotted the 

curves of κl in Figure 23(d), which clearly shows that κl decreases with increasing temperature. From 

100 K to 1200 K, the κl decreases from 126.51 W/m.K to 10.54 W/m.K for pristine SrS, from 69.04 

W/m.K to 5.76 W/m.K for SrS: (Fe, Li), from 60.92 W/m.K to 5.04 W/m K for SrS: (Fe, Na), from 

53.12 W/m K to 4.42 W/m K for SrS: (Fe, K ) and from 9.64 W/m K to 0.82 W/m K for SrS: Fe. This 

trend shows that higher temperatures lead to greater phonon scattering, resulting in reduced κl. This 

behavior of suppressed lattice thermal conductivity is desirable for improving the thermoelectric 

efficiency.  

       Our original values are overestimated compared to previous literature work (2.60 W/m.K at 1200 

K) [80]. This can be attributed to the use of ShengBTE [87], which uses a fully iterative solution of the 

BTE and considers second and third order force constants instead of the Slack equation. This 

overestimation of κl can be clarified by considering the influence of inaccurately estimated γ in the Slack 

equation, as mentioned in [88]. 

d. Figure of Merit  

       Using the collected σ, S, κe, and κl data, we estimated the dimensionless quality factor (ZT) to 

evaluate the practical thermal efficiency of our compounds. The temperature-dependent ZT 

diagrams are shown in Figure 23(e). Upon careful analysis, we found that the ZT values for p-type 

SrS, SrS:Fe, and SrS:(Fe, p0) compounds outperform their n-type counterparts within the same 

material, reflecting the superior thermoelectric performance of p-type compounds underlines in 

comparison to their n-type carriers. Furthermore, it is evident that temperature has a significant 

influence on the thermoelectric behavior of these compounds. At 300 K, ZT remains relatively low 

and has values of 0.04, 0.24, 0.07, 0.02 and 0.3 for pristine SrS, SrS: Fe, SrS: (Fe, Li), SrS: (Fe, Na) 

and SrS: (Fe, K) in p-type doping carriers. However, when temperatures increase to 1200 K, the 
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maximum ZT values reach 0.24, 1.51, 3.11, 3.34, and 3.03 for p-doped carriers, maintaining the 

same order. In contrast, the maximum ZT value for n-doped carriers reaches 0.06, 0.02, 0.22, 0.08 

and 0.24 at 1200 K. This discrepancy can be due to the significantly higher electrical conductivity 

and electronic thermal conductivity of p-type carriers compared to their n-type counterparts.  

       Furthermore, these impressive ZT values, which exceed one for p-type carriers, are largely due 

to the semiconductor nature of the narrow bandgap co-doped alloys. These results suggest that the 

HSC compounds are promising for high-temperature thermoelectric applications, especially 

compared to the HMF alloy. Furthermore, it shows that co-doping is more effective than mono-

doping to achieve the best thermoelectric performance for binary SrS. It should be emphasized that 

the ZT values we calculated for SrS show slight deviations from those reported by Hou et al. [80] 

(0.08 for p-type and 0.15 for n-type). These deviations were explained in the respective section. 

       3.2.4   Conclusion  

       In the second section of this chapter, we examined an in-depth study of the three newly designed p0 

alkali metals (p0 = Li, Na, and K) co-doped into SrS:Fe compounds at a selected doping level of 12.5% 

using rigorous ab-initio calculations within the PBE and PBE+mBJ methods. This study included a 

comprehensive investigation of the effects of co-doping on various properties, including structural, 

electronic, magnetic, optical, and thermoelectric properties. The key findings and conclusions from this 

endeavor are presented as follows: 

1. The results of the structural properties obtained with the PBE-GGA approximation have shown 

that the lattice constant a (Å) increases gradually with the atomic number (Z), while the bulk 

modulus B (GPA) progressively decreases. Substitution of alkali metals in SrS:Fe has been 

shown to increase the overall stability of the system, facilitate the doping process, and strengthen 

ionic bonds. Calculations of the differences in total energies (ΔE) confirmed the stability of the 

co-doped systems in the ferromagnetic (FM) state, with a higher Curie temperature (Tc) being 

observed compared to room temperature. Among the co-doped systems, SrS: (Fe, K) in 

particular has the highest Tc, making it a promising candidate for spintronic applications. 

 

2. The electronic properties showed that all compounds were characterized as p-type 

semiconductors (HSCs), and it was observed that the energy gap became smaller in the co-

doped systems compared to the semi-metallic (HM) SrS:Fe compound. 

 

3. In all compounds, we calculated a total magnetic moment of 5 μB, which is increased compared 

to mono-doping, and a low local magnetic moment was created at the non-magnetic sites due to 

sp-d hybridization. 
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4. The analysis of optical properties in terms of dielectric function, absorption coefficient and 

optical conductivity has shown that all three types of alkali metal ions have the ability to enhance 

the infrared absorption of the SrS:Fe system and generate new peaks in the visible region and 

leads to a redshift. This property makes the materials ideal for solar cells applications. 

 

5. The analysis of the thermoelectric properties clearly showed that the p-type ZT values were 

significantly superior to those of the n-type ZTs. In particular, the p-type SrS: systems (Fe-Li, 

Na, and K) were found to be promising candidates for efficient thermoelectric materials, 

showing ZT values above 1 at 1200 K. 

 

       In summary, Chapter 3 with its two parts has provided comprehensive insights into one of the two 

methods, namely co-doping. This method proves to be a powerful tool for tailoring the properties of 

HMFs to meet precise application requirements. 

       In the next chapter of this dissertation, we will examine the second method, which focuses on 

dimensionality reduction. 
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Chapter 4 

Effect of Dimensionality Reduction on the Fe-

Doped SrS Properties  

 

This part of the work is in progress. 

 

 

n the final chapter of this dissertation, we have studied the spin-resolved structural, electronic, and 

magnetic properties of Sr1-xFexS monolayers at different concentrations (x = 0, 0.125, 0.25, 0.50, 

0.75, and 1). We have also compared the findings for these monolayers with those of their bulk 

counterparts, as examined in the initial section of Chapter 3, to get the effect of dimensionality reduction 

on the different properties. 

 

1.1 Introduction 

       Two-dimensional (2D) materials have distinct properties that can differ significantly from their bulk 

counterparts due to their increased surface-to-volume ratio. This characteristic has provided a new 

foundation for hybrid device engineering, allowing us to explore and customize the materials' 

exceptional properties. Although extensive research is being conducted on the applications of 2D 

materials, many investigations are still in their early stages, and there remain numerous unresolved 

issues that require attention. In the realm of 2D materials, one of the most notable examples is monolayer 

graphene [1], which captured the significant interest of material scientists since 2004, as we discussed 

earlier in Chapter 1. The SrS structure, akin to graphene, exhibits a large indirect bandgap in the near-

visible spectrum and a remarkably flat band in the upper valence band [2]. This rendered it particularly 

intriguing in the post-graphene era for various applications. 

        Keeping in view of these unique characteristics, in this chapter, we systematically investigate the 

structural, electronic and magnetic properties of SrS-to-FeS monolayers by varying the strontium ratio 

concentration using the powerful first-principle calculations. Until now, the study of Sr1−xFexS alloys 

has been limited to the bulk phase, as conducted for the first time in the previous chapter, with no prior 

I 
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reports on the monolayer forms of Sr1−xFexS alloys. Therefore, this study will forms a base for future 

theoretical and experimental investigations in this field. 

1.2 Computational Details  

       The calculations presented in this chapter were performed using the Vienna Ab-initio Simulation 

Package (VASP) program [3, 4], within the Spin-Polarized Density Functional Theory (SPDFT) 

formalism and the Projector Augmented Wave (PAW) potential [5, 6]. The electron exchange-

correlation functional was described by the Perdew-Burke-Ernzerhof (PBE) form of the generalized 

gradient approximation (GGA) [7]. To ensure accuracy, potential underestimations in bandgap and 

magnetic moment within GGA were cross-verified using the non-local Heyd-Scuseria-Ernzerhof hybrid 

functional (HSE06) [8]. In this approach, the electron-electron interaction was determined by a 

proportion of Hartree-Fock exchange with α = 0.25 and a default screening parameter of 0.2 Å⁻¹. 

       To create Sr1−xFexS alloys, the Sr atoms were systematically replaced with Fe atoms in varying 

ratios (x), corresponding to x = 0, 0.125, 0.25, 0.50, 0.75, and 1. For each alloy ratio, all possible 

combinations of Fe atom in the SrS host matrix were considered to select the most stable configuration. 

To model the different crystal structures of the systems, a (2 × 4 × 1) supercell of 16 atoms containing 

one Fe atom for x = 0.125 and a (2 × 2 × 1) supercell of 8 atoms containing one, two, and three Fe atoms 

for x = 0.25, 0.50, 0.75, respectively, were constructed based on a conventional SrS unit cell. Interlayer 

interactions between successive unit-cells were avoided by assuming a vacuum spacing of 20 Å. A 

gamma scheme was used to sample the Brillouin zone (BZ), with a 12 × 12 × 1 k-point mesh in the unit 

cells and scaled accordingly to 6 × 3 × 1 and 6 × 6 × 1 k-point meshes, respectively, for the supercell 

simulations.  

       The ground state was optimized with an energy convergence criterion of 10-5 eV between 

consecutive iterations. Additionally, the maximum Hellmann-Feynman force on each atom was 

constrained to be less than 10-3 eV/Å during ion relaxation. To ensure accuracy, a cutoff value of 500 

eV for the plane-waves energy was employed. 

       For charge distribution analysis, Bader analysis [9] was applied to different concentrations. The 

dynamic stabilities of bare SrS and FeS monolayers were assessed via phonon band dispersion using the 

PHONOPY code [10]. A (5 × 5 × 1) supercell was used for each monolayer with a 9 × 9 × 1 k-point 

mesh. 

       Ab-initio molecular dynamics simulation (AIMD) [11] was employed to investigate the thermal 

stabilities of the monolayers. This was conducted using a supercell of (6 × 6 × 1) for h-SrS and (5 × 5 × 

1) for s-FeS at 300 K temperature, employing time steps of 1 fs. 



Chapter 4                                        Effect of Dimensionality Reduction on the Fe-Doped SrS Properties 

 

 

166 

 

1.3 Results and Discussion 

       4.3.1 Structural Properties  

       The SrS monolayer is an atomically thin material, composed of a single layer with a unique planar 

hexagonal honeycomb lattice structure. This lattice is entirely constructed from Sr-S bonds, exhibiting 

space group N°187 that falls within the D3h point group symmetry, akin to other well-studied monolayers 

like graphene, silicene, and BN. The unit cell of the SrS monolayer encompasses one Sr atom and one 

S atom. 

       In contrast, the FeS monolayer possesses a distinctive square crystal structure within the P4/mmm 

space group N°123. Its unit cell comprises a total of four atoms, including two Fe atoms and two S 

atoms. Figure 1 offers an illustrative representation of the top and side views of both the h-SrS and s-

FeS configurations. 

 

Figure 1. Top and side views of the repeated unit-cells of (a) the bare h-SrS and (b) s-FeS 

monolayers. 

      The structural parameters including the lattice parameters a (Å) and bond lengths d (Å) of the h-SrS 

and s-FeS are tabulated in Table 1. The lattice parameters were determined to be a = b = 4.837 Å for h-

SrS and 3.557 Å for s-FeS. On the other hand, the bond lengths were determined to be dSr−S = 2.793 Å 

for h-SrS, and 2.150 Å for s-FeS. These values are in good agreement with those reported in the literature 

[12-15]. When comparing the lattice parameter of rock-salt SrS (6.059 Å) to its hexagonal structure, we 

observed that it is larger in bulk form than in monolayer form. This can be attributed to dimensionality 

reduction, where interatomic interactions result in a different equilibrium spacing compared to a 

monolayer.  
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Table 1  

The equilibrium optimized structural parameters of bares h-SrS, s-FeS, and doped monolayers Sr1-xFexS: 

lattice constant (a), shortest bond length (d), formation energy(𝐸𝑓), and elastic constants (Cij). 

  a Ref [12], b Ref [13], c Ref [14], d Ref [15]. 

       We have evaluated the energy required for constructing the atomic assembly of both h-SrS and s-

FeS monolayers by calculating the formation energy (𝑬𝒇) using the formula as indicated in Chapter 3. 

       The calculated 𝐸𝑓  values are also indicated in Table 1. As it is seen from Table 1, the 𝐸𝑓 values for 

h-SrS and s-FeS are both negative, indicating that the bare monolayers are exothermic and unlikely to 

decompose after formation. Moreover, the formation energy of h-SrS (-1.402 eV) is notably less than 

that of s-FeS (-0.427 eV), indicating that h-SrS provides a more favorable environment for doping 

compared to s-FeS. Hence, when preparing Fe-doped SrS samples, it is advisable to create an h-SrS 

environment to ensure efficient and effective doping in practical experiments. 

       Utilizing the Density Functional Perturbation Theory (DFPT) approach [16], we assessed the 

dynamic stability of the h-SrS and s-FeS monolayers by examining their phonon dispersions. In Figure 

2, the phonon spectra are presented along high-symmetry lines in the first Brillouin zone. It is evident 

that the phonon branches do not exhibit any imaginary frequencies, indicating that both structures 

remain dynamically stable under ambient conditions. However, slight occurrences of negative 

frequencies can be addressed by further increasing the supercell size. 

       The phonon plots reveal that the h-SrS monolayer possesses six phonon branches, consisting of 

three acoustic and three optical branches. Conversely, the primitive cell of s-FeS, which contains four 

atoms, yields twelve phonon branches, comprising three acoustic and nine optical branches. The 

Materials               a=b (Å)      d (Å)        𝑬𝒇𝒐𝒓 (eV)          C11  (N/m)       C12 (N/m)      C66 (N/m)                                                             

h-SrS                      4.837        2.793        -1.402                28.993             23.801               - 

                                4.76a         2.75a              -                        -                        -                   - 

                                4.85b         2.80b              -                                   -                                       -                   -                                                                        

Sr0.875Fe0.125S          4.756        2.254         -1.176                   -                         -                   - 

Sr0.75Fe0.25S             4.581       2.283         -1.049                   -                          -                  - 

Sr0.50Fe0.50S             4.168       2.217         -0.454                   -                          -                  - 

Sr0.25Fe0.75S             4.085       2.232         -0.021                   -                          -                  - 

s-FeS                       3.557       2.150         -0.427              77.575               46.595           60.542 

                                3.56c        2.16c               -                       -                         -                     -     

                                   3.59d                  -                  -                           -                         -                     -                                                                                         
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maximum frequency in these monolayers reaches up to 140 cm−1 for h-SrS and 200 cm−1 for s-FeS, 

aligning with prior research findings [13, 14]. Our observations also indicate that the phonon spectra of 

both systems exhibit non-degeneracy along the directions of the Brillouin zone. Furthermore, we note 

an important phonon gap in the optical band, measuring approximately 50cm−1 and 15cm−1 for h-SrS 

and s-FeS, respectively. 

       Significantly, this phonon gap is most prominent in h-SrS and least in s-FeS, primarily attributed to 

disparities in the arrangement of atoms within their primitive cells. This phonon bandgap has the 

potential to enhance thermal conductivity through specific phonon-phonon scattering processes, 

suggesting that s-FeS may exhibit higher thermal conductivity compared to h-SrS. 

       Subsequently, Ab-initio Molecular Dynamics (AIMD) simulations were conducted to perform a 

comprehensive evaluation of the thermal stability of the materials. Figure 3 depicts the energy 

fluctuations of the h-SrS and s-FeS bare monolayers over a 3000 fs period at 300 K. The AIMD 

simulations revealed consistent energy values for the bare monolayers throughout the entire simulation 

duration. The minor energy fluctuations arise from the rippling effect induced by the increase in 

temperature (the change in energy interval is minimal). This observation strongly supports the assertion 

that both the h-SrS and s-FeS monolayers possess stable structures and exhibit good thermal stability at 

room temperature. 

 

   

Figure 2. Phonon dispersion spectra of the bare h-SrS and s-FeS, respectively. 
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Figure 3. The variation of the total energy with time during AIMD simulation at 300k over a 3000 fs. 

   After confirming the thermodynamic, dynamic, and thermal stabilities of the pristine monolayers, we 

employed the widely recognized strain-energy approach [17, 18] to evaluate their mechanical stability. 

       By systematically varying the strain ratio (𝜀 =  
𝑎𝑖−𝑎0

𝑎0
 , 𝑎𝑖 and 𝑎0 indicate strained and strain-free 

lattice constants, respectively)  within the range of -3% ≤ 𝜀 ≤ 3% with an incremental step size of 0.01, 

we acquired corresponding energy (E) values. The resulting E vs. 𝜀 data was fitted using a quadratic 

polynomial equation. This fitting process allowed us to extract the in-plane stiffness using the following 

equation:   

                                                               𝑪𝒊𝒋 =
𝟏

𝑨𝟎

𝝏𝟐𝑬

𝝏𝟐𝜺
                                                                                  (eq.1) 

In this context, 𝐴0 denotes the equilibrium area of the system. A system is deemed mechanically stable 

when it adheres to the minimum Born criterion for elastic stability in 2D materials [19].  

       For hexagonal and square crystals, the mechanical stability criterion are the following [20]:  

                                                    C11 > 0;     C11 > |C12|                 for hexagonal structure              (eq.2) 

                                             C11 > 0;   C66 > 0;   C11 > |C12|         for square structure                      (eq.3) 

       Upon reviewing the elastic constants detailed in Table 1, we can affirm their compliance with the 

aforementioned stability criteria, confirming hence the mechanical stability of these monolayers. It is 

worth noting that experimental validation and further theoretical investigations are still required to 
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validate these findings. Specifically, the elastic constant C11 measures a material's resistance to linear 

compression along the x direction [21]. Our computations revealed that the C11 values for the pristine 

monolayers are markedly elevated in comparison to the other elastic constants with the s-FeS boasts the 

highest value of 77.575 N/m, followed by h-SrS. This suggests that both systems are highly resistant to 

uniaxial stress in the x direction, and s-FeS is particularly highly incompressible in this direction due to 

its exceptionally large C11 value.  

       Following our previous work on bulk structures, we conducted spin-polarized computations 

involving the introduction of Fe atoms into the pure h-SrS structure at four key concentrations: 12.5%, 

25%, 50%, and 75% Fe. In order to ensure energetically stable configurations for the resulting alloys, 

we explored various arrangements of the transition-metal atoms into the h-SrS monolayer for each alloy 

type, evaluating the total energy per atom. The most energetically stable configurations for each alloy 

are illustrated in Figure 4.  

Figure 4. The ground-state configurations of predicted energetically stable Sr1−xFexS monolayers (Sr 

atom is designated by brown color, S by yellow, and Fe by grey). 

       After geometric optimization, it was observed that all the alloyed ground-state structures maintained 

their original hexagonal configuration, albeit with slight distortions in the shape of their unit cells. Table 

1 furnishes detailed information on the lattice constants, formation energies, and bond lengths for the 

doped monolayer alloys. It is noteworthy that the lattice parameters consistently decrease with 

increasing Fe concentration in h-SrS. This reduction can be attributed to the disparity in ionic radii 

between Fe and Sr atoms. Additionally, they exhibit the same trend as their bulk counterparts, with a 

noticeable decrease in values from bulk to monolayer structure. This is also explained by the interatomic 

interactions resulting from the dimensionality reduction. 

        Concerning the bond lengths, the average distance between Fe and the nearest S atoms in the doped 

monolayers ranges from dFe-S = 2.217 to 2.283 Å, depending on the specific doping concentration. The 

Fe-S bonds in the doped monolayers experience compression compared to Sr-S bonds before doping. 
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This compression can be attributed to the relatively small difference in ionic radii between Fe and Sr 

atoms. However, it is noteworthy that the Fe-S bond length shows minimal variation with changes in 

the doping concentration, indicating the structural stability of the alloys. 

       The formation energy for the doped monolayers has also been computed utilizing the previously 

outlined formula from Chapter 3. The outcomes, detailed in Table 1, demonstrate that Fe atoms can be 

effectively incorporated into the monolayer h-SrS through an exothermic process. Upon examining the 

formation energies, a gradual increase is observed as the doping concentration escalates from 0.125 to 

0.75. This pattern signifies that the h-SrS with 12.5% Fe doping displays the highest thermodynamic 

stability among the alloys, suggesting its most energetically favorable configuration.  

       Upon comparing the formation energies of monolayers to their bulk counterparts (please refer to 

Table 1 in Chapter3), it becomes evident that the formation energies in 2D configurations are greater 

than those in 3D configurations. This leads to the conclusion that in a bulk structure, atoms establish 

more connections and form a higher number of bonds, ultimately resulting in increased binding energy 

and, consequently, lower formation energy. Moreover, the higher surface of 2D materials enables 

increased surface energy due to the incomplete coordination compared to the bulk counterparts; thereby 

contribute to a higher energy of formation.  

       Also in terms of comparison, the stability demonstrated through co-doping SrS: Fe with alkali 

metals surpasses that achieved by reducing its dimensionality. This highlights the pronounced 

effectiveness of co-dopage method in enhancing stability in our specific case. 

       4.3.2   Electronic Properties and Bader Charge Analysis 

               4.3.2.1 Band Structures Analysis 

       In Figure 5, we have depicted the band structures of both the pristine compounds and Sr1−xFexS 

monolayer alloys using the Heyd–Scuseria–Ernzerhof (HSE06) method. Additionally, we have 

tabulated the computed bandgap values for these compounds in Table 2, comparing them with those 

obtained via the GGA method. It is crucial to note that the GGA method, employed in our computational 

analysis, tends to underestimate the bandgap values of the materials under study. This tendency can 

potentially affect the precision of our findings, especially in characterizing the electronic and optical 

properties of the materials. To tackle this challenge, the HSE has emerged as a promising alternative 

due to its capability to offer more dependable and precise predictions of bandgap values. 

       From Figure 5, it is evident that the h-SrS exhibits the characteristics of a non-magnetic 

semiconductor, displaying an indirect bandgap of 2.825 eV within the GGA method and 3.861 eV within 

HSE, which aligns with earlier researches [12, 13]. Notably, the CBM is positioned at the Γ point of the 
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BZ, while the VBM is located at the M point. It is obvious when the dimensionality of SrS decreases 

from 3D to 2D; the bandgaps maintain indirect with the gap values increase from 3.435 eV using the 

mBJ to 3.861 eV using the HSE for 2D monolayer. This is expected as the lattice parameter demonstrates 

the opposite trend when transitioning from 3D to 2D.  

       In contrast, the electronic behavior of the s-FeS monolayer differs from that of h-SrS. The analysis 

reveals a metallic character, with the Fermi level intersecting both the valence and conduction bands, 

resulting in a non-magnetic metallic state according to both the GGA and HSE methods. These 

observations validate a previous study [14], underscoring the reliability and accuracy of the obtained 

results. 

       The introduction of Fe atoms through doping in the pristine h-SrS monolayer induces significant 

changes in its band structure. This doping introduces impurity levels within the initial bandgap, causing 

a notable shift in the electronic character towards a HSC character within the HSE. Notably, this 

alteration induced by doping leads to a distinct lowering of the position of the CBM. 

       As detailed in Table 2, within the GGA method, the bandgap diminishes from 2.825 eV in its pristine 

form to a range of 1.822–0.000 eV in up-spin channel and to 0.664-0.000 eV in down-spin channel, 

depending on the doping concentration of the Fe atoms. Similarly, the HSE method predicts a decrease 

in the bandgap from 3.861 eV to a range of 3.225–3.049 eV in up-spin channel and to 2.935-2.297 eV 

in down-spin channel.  

       The PBE results indicate that the HSC monolayers including, Sr0.875Fe0.125S, Sr0.75Fe0.25S, and 

Sr0.50Fe0.50S, display total indirect bandgaps in [H-Γ], [K-Γ], and [Γ-K], respectively, while the 

Sr0.25Fe0.75S demonstrates metallic character. 

       However, under the application of the HSE method, it is observed that the Sr0.25Fe0.75S transition 

from a metal to HSC with a total direct bandgap of 2.263 eV in [Γ- Γ] direction, while the remaining 

alloys preserve their semiconducting properties within the same bandgap direction.  

       It is important to highlight that the effect of doping on the band structure, as observed with both the 

PBE and HSE methods, shows non-linear behavior with respect to the doping concentration. The 

variation of the total band gaps, defined as the smallest distance between the CBM and VBM of both 

spin channels, is tabulated in Table 2 and shown in Figure 6 for visualization. 

       The significant reduction in the bandgap of h-SrS after the incorporation of Fe atoms can be 

attributed to the hybridization between the orbitals of the Fe dopant atoms and the neighboring Sr/S 

atoms, as further explained by the partial density of states (PDOS) analysis in the following section. 



Chapter 4                                        Effect of Dimensionality Reduction on the Fe-Doped SrS Properties 

 

 

173 

 

       Comparing the results for doped monolayers with their bulk counterparts, we conclude that the 

reduction in dimensionality shifts the nature from HMF to HSC by creating a gap in the spin-down 

channel. In addition, the doped monolayers exhibit a particularly flat valence band, a typical feature of 

their 2D configurations. This flat valence band represents an important and advantageous feature to 

consider in thermoelectric applications. 

             4.3.2.2 Bader Charge Analysis 

       Bader charge analysis provides valuable insights into the redistribution of electron charges within 

a material. Here, we performed Bader charge analysis to understand the partitioning of the total charge 

of the h-SrS monolayer into localized atomic charges after Fe dopant substitution. The results are 

summarized in Table 2. 

       The observed variation in charge transfer values is consistent with the corresponding trend of 

bandgap variation within the monolayers calculated using the GGA method. In the original h-SrS 

monolayer, both Sr and S atoms carry a net Bader charge of 1.236e, reflecting the electron transfer from 

Sr to S atoms caused by their different electronegativities. When doping with Fe atoms, the amount of 

charge transferred to the Fe atom varies from 0.399e to 0.575e to 0.609e to 0.268e for Sr0.875Fe0.125S, 

Sr0.75Fe0.25S, Sr0.50Fe0.50S, and Sr0.25Fe0.75S, respectively.  

       These values are lower than those in bare h-SrS, indicating a less robust interaction between Fe and 

the neighboring S atoms compared to that between Sr and S atoms. A reduced Bader interaction implies 

a weaker bond between the doped Fe ions and the neighboring atoms. This could possibly be due to 

changes in the electronic structure or atomic arrangement caused by the doping process. 
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Figure 5. Spin-polarized electronic band structures of the bare h-SrS, s-FeS and Sr1−x FexS monolayer 

alloys calculated with the HSE06 method. The EF is set to zero.

 

Figure 6. Visualization of the bandgap fluctuation of the bare h-SrS, s-FeS and Sr1−x FexS monolayer 

alloys.  
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Table 2  

The calculated electronic properties of bare h-SrS, s-FeS, and doped monolayer alloys Sr1−xFexS, 

including bandgap values for up-spin channel, down-spin channel, and total gap within both PBE and 

HSE functionals, along with Bader charge (∆q) transfer from Sr (Fe) to S atoms. 

  a Ref [12], b Ref [13], c Ref [14].  

 

  

              4.3.2.3 Total and Partial Densities of States Analysis 

       The TDOS and PDOS of the bare h-SrS and s-FeS are visually depicted in Figure 7.  

       The analysis of the TDOS for the h-SrS bare monolayer clearly affirms its semiconducting nature. 

This is evident from the absence of energy states at the EF level, signifying the presence of a bandgap 

between the CB and VB. Moreover, the examination reveals a distinct two peaks precisely situated at 

the VB edge at -0.117 eV and -0.932 eV, respectively, representing the highest occupied energy levels 

in the material. Further investigation via the PDOS clarifies that the VB arises mainly from the 3pz 

orbitals of S atom and a weak hybridization between the Sr: 5s-orbitals and the S: 3px-orbitals, with the 

S orbitals providing the most substantial contributions. Conversely, the emergence of the CB in the 

Materials                     Up-spin channel                      Dn-spin channel                       Total gap                            ∆q 

                               direction      Value(eV)        direction     Value(eV)        direction     Value(eV)            (e) 

h-SrS               PBE    [M-Γ]           2.825                                                               [M-Γ]           2,825                1.236  

                                   [M-Γ]a         2.77a         

                                   [M-Γ]b         2.54b  

                        HSE   [M-Γ]           3.860                                                            [M-Γ]          3.860 

                                   [M-Γ]           3.74b  

Sr0.875Fe0.125S  PBE    [X-Γ]            1.822                  [H-Γ]            0.229               [H-Γ]           0,229                0.399 

                        HSE   [X-Γ]            3.154                 [H-Γ]           2.451              [H-Γ]          2.435               

Sr0.75Fe0.25S     PBE   [M-Γ]           1.803                 [K-Γ]           0.664               [K-Γ]          0.664               0.575                 

                        HSE   [M-Γ]           3.105                 [K-Γ]           2.935               [K-Γ]          2.830                  

Sr0.50Fe0.50S     PBE   [Γ-Γ]             1.780                  [Γ-K]           0.198                [Γ-K]          0.198                0.609        

                        HSE   [Γ -Γ]           3.050                 [Γ-K]           2.564               [Γ-K]          2.564                         

Sr0.25Fe0.75S     PBE          Metal                                     Metal                                   Metal                           0.268 

                        HSE    [Γ -Γ]         3.225                  [Γ-Γ]           2.297               [Γ -Γ]          2.263                         

s-FeS               PBE          Metal                                                                                   Metal                           0.771 

                                         Metalc 

                        HSE           Metal                                                                                  Metal                                                    
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energy range of 3.860 to 6 eV is predominantly attributed to the 5s-orbitals of the Sr atoms, accompanied 

by a minor contribution of the S: 3pz-orbitals. These observations align with prior studies [13]. 

       The TDOS of the s-FeS bare monolayer displays a different characteristic from that of h-SrS, within 

a sharp peak extending towards the CB edge giving a metallic character. Analysis of the PDOS of s-FeS 

reveals that the VB in the energy range from -6 eV to 4 eV is dominated by both the S: p-orbitals and 

the Fe: d-orbitals, within  the highest contribution coming from the S: 3pz and Fe: 3dx2-y2-states 

       In the energy range from -3.5 eV to 2.5 eV, the contribution of the S: p-states decreases and Fe: d-

states dominate. Specifically, Fe: 3dxy dominates in the energy range of -3.5 eV to -2 eV, while Fe: 3dz2 

and Fe: 3dx2-y2 dominate in the energy range of -2 eV to 1 eV, intersecting the EF level. This confirms 

the metallic characteristic exhibited by this bare monolayer. From 1 eV to 2.5 eV, both Fe: 3dxy and Fe: 

3dz2 are dominant. A minor contribution in this range comes from the S: 3pz. These findings are in 

agreement with the results presented in reference [14]. 

 

Figure 7. Electronic total (TDOS) and partial (PDOS) densities of states of the bare h-SrS and s-FeS 

monolayers.  

       The TDOS and PDOS of the ternary-doped monolayers at different concentrations are displayed in 

Figures 8 and 9, respectively.  

       Looking carefully at these numbers, the disparity between spin-up and spin-down TDOS in the Sr1-

xFexS monolayers is striking. This asymmetry is in perfect agreement with the ferromagnetic ground 

states of all systems and confirms their magnetic nature. Furthermore, the presence of the impurity states 

in the minority VB, located in close proximity to the EF, confirms their p-type character even after 

doping with impurities, which is fundamental for enabling a wide range of electronic devices and 

technologies. 
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       Specifically, in the majority-spin, the Fe: 3d states and S: 3p states of the four compounds hybridize 

with each other. This leads to the preservation and reduction of the bandgap compared to that of the bare 

h-SrS. In the minority-spin, the p-d hybridization also shifts the 3d-Fe and 3p-S states towards the EF, 

while maintaining the bandgap. This results in a distinctly HSC character for these compounds. This 

behavior is definitely different from that of their bulk counterparts, where the p-d hybridization and the 

emergence of 3d states in the minority states at EF lead to a HMF character with 100% spin-polarization. 

       We come to a very important conclusion in our case that is by reducing the symmetry in 2D 

monolayer form we can drastically change the character of the compounds.  

       It is also evident from the Figure 8 that with increasing the concentration of the Fe impurities from 

12.5% to 75%, respectively, the p-d hybridization become notably pronounced and the 5s states effect 

decreases, which aligns also with the bulk results.  

 

 

     

Figure 8. Electronic TDOS of Sr1−xFexS (x= 0.125, 0.25, 0.50, and 0.75) monolayer alloys. The 

positive and negative values represent the spin-up and spin-down channels, respectively. 
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       We further analyzed the PDOS of the monolayer alloys and plotted them in Figure 9. The analysis 

of the curves revealed that, for the Sr0.875Fe0.125S compound, the majority-spin VB, in the energy range 

of ∼-5 eV to ∼-1 eV is primarily derived from the 3px and 3pz states of S atoms, and the 3dxz, 3dyz, and 

3dz2 of the Fe atoms, with a minor contribution coming from the 5s-states of the Sr atoms. As the Fe 

content reaches 25%, 50%, and 75 % Fe, the 3dyz and 3dxz of Fe atom increase and become dominant 

compared to the 3px and 3pz states of S atoms and 5s-states of the Sr atoms, which decrease with 

increasing the concentration.   

       In the majority-spin CB, in the energy range of ∼-3 eV to around ∼6 eV, the Sr: 5s become dominant 

through all the four concentrations, with a small contributions coming from 3pz and 3px of the S atoms. 

       For the minority-spin channel, the VB is mainly dominated by the S: 3px and S: 3pz states and the 

VBM at around -1 eV is dominated by Fe: 3dxz and Fe: 3dyz states for 12.5% Fe, by the Fe: 3dz2 states 

for 25% Fe, the Fe: 3dz2 states for 50% Fe, and by the Fe: 3dz2 and Fe: 3dyz for 75% Fe.  

       The CB on the other side, in the energy range of ∼-3 eV to ∼5 eV, is dominated by the Fe: 3dxz 

states and the Fe: 3dx2-y2 and a little contribution coming from the 5s states of the Sr. 

       Overall, the impact of the p-d hybridization on the electronic behavior is even seen at low-

dimensionality, underscoring the significance of this phenomenon in influencing the bandgap and 

changing the character of materials. 
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Figure 9. Electronic PDOS of Sr1−xFexS (x= 0.125, 0.25, 0.50, and 0.75) monolayer alloys.  

 

       4.3.3   Magnetic Properties 

       The magnetic properties of the Fe-doped h-SrS monolayer alloys are evaluated based on their 

magnetic moments, and the outcomes are presented in Table 3.  

       The results revealed an integer value of the magnetic moment (MTOT) of 4µB per supercell across 

all concentrations. These findings align with the bulk structure results reported earlier in Table 5 of 

Chapter 3. The distribution of magnetic moments within the Sr1−xFexS monolayers conforms to Hund’s 

rule and crystal field theory. Interaction with neighboring S ions induces a crystal field splitting, causing 

the 3d- orbitals of the transition metal atom Fe to separate into distinct energy levels. In this context, the 

trigonal-bipyramidal arrangement of Fe introduces a symmetry that can be depicted using the D3h point 

group. These levels encompass a non-degenerate orbital 'a' (dz2), a two-fold degenerate orbital 'eg1' (dxy 

and dx2−y2), and another two-fold degenerate orbital 'eg2' (dxz and dyz), as illustrated in Figure 10.  

       In the spin-up configuration of Fe2+ (d6), the 'a', 'eg1', and 'eg2' orbitals are situated below the EF 

level and are fully occupied, while the 'a' orbital in the spin-down channel lies above the EF. This 

electronic configuration can be represented as a ↑↓ eg2 ↑↑ eg1 ↑↑, resulting in a MTOT of 4µB.  
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Figure 10. Schematic diagram representation of the crystal field splitting of the Fe2+ sites. Modified 

from [22].  

      Upon comparing the MTOT per supercell with the local magnetic moments per atom (Table 3), it 

becomes evident that the primary contribution to the magnetic moment arises from the Fe atom, 

affirming the findings presented in the PDOS analysis. Smaller magnetic moments are attributed to the 

nearest neighboring Sr and S atoms, which exhibit ferromagnetic coupling with their adjacent Fe atoms 

due to their positive signs. 

       Furthermore, it was observed that the local magnetic moment of Fe displays a linear variation, where 

it increases with increasing doping concentration from 12.5% to 75%. This behavior suggests a strong 

interaction between the Fe dopants and the adjacent surrounding atoms, reinforcing the ferromagnetic 

order in these monolayers. It should be mentioned that this trend differs from that of the bulk structures, 

where the MFe shown a decrease with concentration increasing. This may be also attributed to the 

difference in the arrangement of the atoms and how they interact in 2D monolayer structure, where there 

are fewer neighboring atoms, compared to the bulk structure.  

Table 3  

Total magnetic moment (MTOT) and local magnetic moment on each Sr, S, and Fe atoms of Sr1−xFexS 

(x= 0.125, 0.25, 0.50, and 0.75) monolayer alloys. 

 

 

 

 

 

 

 

 

 

 

   Concentration (x)         Mtot (µB)      MFe(µB)      MSr(µB)       MS(µB)       

0.125                               4.000           3.545          0.005          0.028 

0.250                               4.000           3.555          0.011          0.035 

0.500                               4.000           3.556          0.028          0.051 

0.750                               4.000           3.587          0.089          0.037 
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1.4 Conclusion 

       In this chapter, we have done a spin-resolved ab-initio study of the 2D monolayer form of Sr1−x FexS 

(x = 0, 0.125, 0.25, 0.50, 0.75, and 1) ordered alloys using a plane-wave pseudopotential DFT method 

within the VASP code. This study involved a comprehensive investigation of the effect of 

dimensionality reduction on different properties including the structural, electronic, and magnetic 

properties. The principle outcomes and conclusions are outlined as follows:    

1. The outcomes of formation energies, molecular dynamics simulations, and elastic stiffness 

constants indicated that each of the examined bare materials, SrS (FeS), is energetically 

favorable and remained thermally and mechanically stable under ambient conditions. Phonon 

spectra calculations further demonstrated that both materials exhibited dynamic stability in their 

lattice structures. In terms of ground state results, it is found that SrS maintained stability in a 

hexagonal structure akin to graphene, while FeS shown a preference for a square structure, 

aligning with prior theoretical studies. When Fe impurities were introduced in the Sr-sites 

through doping, all four monolayers retained their structural and thermodynamic stability in the 

hexagonal form, as confirmed by the formation energy. Upon comparing the formation energies, 

it is determined that the h-SrS system with 12.5% Fe doping displayed the lowest energy among 

the doped cases, indicating its most stable composition. 

 

2. The electronic properties analysis confirmed that both the PBE and HSE06 methods identified 

the bare monolayer h-SrS as a non-magnetic semiconductor with an indirect bandgap. On the 

other hand, the s-FeS system was identified as a non-magnetic metal. Concerning compositions, 

according to PBE results, three compounds namely, Sr0.875Fe0.125S, Sr0.75 Fe0.25S and Sr0.50Fe0.50S 

exhibited the behavior of HSCs, while Sr0.25Fe0.75S behaved as a metal. However, when the 

HSE06 method was applied, Sr0.25Fe0.75S transformed into a HSC with a direct bandgap in both 

spin-directions, while the other alloys maintained their semiconducting properties with an 

enhancement in bandgap values. We have concluded that the dimensionality affected the 

electronic character of these compounds that shown the HMF in bulk form. 

 

3. In all doped monolayers, we calculated a total magnetic moment of 4 μB, which is consistent 

with the bulk structures. Additionally, low local magnetic moments on the non-magnetic sites 

were generated due to the p-d hybridization. We also observed that the local magnetic moments 

on Fe sites increased with increasing concentration, contrary to their bulk counterparts, 

confirming the strong ferromagnetic character at low dimension. 

 



183 

 

References for Chapter 4 

[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., & Firsov, 

A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. 

[2] Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., & Wu, K. (2012). Evidence of silicene in 

honeycomb structures of silicon on Ag (111). Nano letters, 12(7), 3507-3511. 

[3] Blöchl, P. E. (1994). Projector augmented-wave method. Physical review B, 50(24), 17953.  

[4] Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave 

method. Physical review b, 59(3), 1758. 

[5] Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and 

semiconductors using a plane-wave basis set. Computational materials science, 6(1), 15-50. 

[6] Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy 

calculations using a plane-wave basis set. Physical review B, 54(16), 11169. 

[7] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made 

simple. Physical review letters, 77(18), 3865. 

[8] Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb 

potential. The Journal of chemical physics, 118(18), 8207-8215.  

[9] Bader, R. F. W., Popelier, P. L. A., & Keith, T. A. (1994). Theoretical definition of a functional 

group and the molecular orbital paradigm. Angewandte Chemie International Edition in English, 33(6), 

620-631. 

[10] Jeong, H. Y., Lee, J. H., & Hayes, K. F. (2008). Characterization of synthetic nanocrystalline 

mackinawite: crystal structure, particle size, and specific surface area. Geochimica et cosmochimica 

acta, 72(2), 493-505. 

[11] Rapaport, D. C. (2004). The art of molecular dynamics simulation. Cambridge university press. 

[12] Zheng, H., Li, X. B., Chen, N. K., Xie, S. Y., Tian, W. Q., Chen, Y., & Sun, H. B. (2015). Monolayer 

II-VI semiconductors: A first-principles prediction. Physical Review B, 92(11), 115307. 

[13] Lin, H. F., Lau, W. M., & Zhao, J. (2017). Magnetism in the p-type Monolayer II-VI 

semiconductors SrS and SrSe. Scientific Reports, 7(1), 45869. 

[14] Bafekry, A., Abdolhosseini Sarsari, I., Faraji, M., Fadlallah, M. M., Jappor, H. R., Karbasizadeh, 

S.,  Nguyen, V., & Ghergherehchi, M. (2021). Electronic and magnetic properties of two-dimensional 

of FeX (X= S, Se, Te) monolayers crystallize in the orthorhombic structures. Applied Physics 

Letters, 118(14), 143102. 

[15] Sukhanova, E. V., Baidyshev, V. S., Manakhov, A. M., Al-Qasim, A. S., & Popov, Z. I. (2023). 

Hydrogen production from H2S on metal-doped FeS Mackinawite monolayer via DFT 

calculations. Applied Surface Science, 609, 155322. 

javascript:;


184 

 

[16] Gonze, X., & Lee, C. (1997). Dynamical matrices, Born effective charges, dielectric permittivity 

tensors, and interatomic force constants from density-functional perturbation theory. Physical Review 

B, 55(16), 10355.  

[17] Topsakal, M., Cahangirov, S., & Ciraci, S. (2010). The response of mechanical and electronic 

properties of graphane to the elastic strain. Applied Physics Letters, 96(9). 

[18] Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R. T., & Ciraci, S. 

(2009). Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-

principles calculations. Physical Review B, 80(15), 155453. 

[19] Born, M., Huang, K., & Lax, M. (1955). Dynamical theory of crystal lattices. American Journal of 

Physics, 23(7), 474-474. 

[20] Shen, D., Zhao, B., Zhang, Z., Zhang, H., Yang, X., Huang, Z., & Duan, X. (2022). Synthesis of 

group VIII magnetic transition-metal-doped monolayer MoSe2. ACS nano, 16(7), 10623-10631. 

[21] Gao, X., Jiang, Y., Zhou, R., & Feng, J. (2014). Stability and elastic properties of Y–C binary 

compounds investigated by first principles calculations. Journal of Alloys and Compounds, 587, 819-

826. 

[22] Wang, W., Wang, H., Xu, X., Zhu, L., He, L., Wills, E., & Xu, X. (2012). Crystal field splitting 

and optical bandgap of hexagonal LuFeO3 films. Applied Physics Letters, 101(24), 241907. 

 



185 

 

General Conclusion and Future Perspectives 

 

n the pursuit of new materials aimed at optimizing energy usage, advancing information storage, 

and promoting sustainability, spintronics, optoelectronics, and thermoelectrics have captured 

significant attention from researchers, being regarded as pivotal technologies for the future.   

Identifying materials with the requisite properties for effective application across these three domains 

proves to be a challenging task, owing to the specific criteria set by material properties. Presently, there 

exists a pressing need to develop new materials that are both more abundant, less harmful, and more 

cost-effective than their current counterparts. In light of this, the research approach has focused on 

enhancing the different properties of materials that already exhibit good ferromagnetic properties for 

spintronics.  

       Dilute magnetic semiconductors (DMSs), the building blocks of spintronics, can be obtained by 

doping transition metals into semiconductor host matrices. Due to their high Curie temperature, low 

cost, ease of synthesis, and high electrical conductivity, iron (Fe) transition metal atoms are a great 

option for ferromagnetic dopants used in this dissertation to improve host matrix properties. 

    Advances in theories and improvement of computational methods such as density functional theory 

(DFT) in recent years have led to significant advances in the understanding and analysis of the physical 

properties of materials. The work of this dissertation relied on theoretical research using ab-initio 

calculations to contribute to the study of new materials desirable for the above applications. 

       First, we investigated the structural, mechanical, electronic and magnetic properties of Sr1−x FexS 

compounds (x = 0, 0.125, 0.25, 0.50 and 0.75) using the FP-LAPW method and the implemented PBE/ 

PBE+mBJ approximations in the WIEN2K code. Our aim was to understand the influence of Fe doping 

on various properties of binary SrS and to explore new potential semi-metallic ferromagnets (HMF) for 

spintronic applications. Examination of the structural properties revealed that these materials were more 

stable in the ferromagnetic (FM) phase than in the anti-ferromagnetic (AFM) and non-magnetic (NM) 

phases. The formation energies indicated their thermodynamic stability. An increase in Fe concentration 

led to a decrease in the lattice parameter a (Å), accompanied by an increase in the hardness B (GPA). 

Analysis of their mechanical properties showed that they were mechanically stable and showed greater 

resistance to unidirectional compression than to shear deformation. They showed high anisotropy and 

were stiffer in the [100] direction. They can be classified as ductile compounds. They also exhibited 

I 
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ionic bonding nature and resist high temperature treatment. For the selected concentrations, the DMSs 

Sr1−xFexS (x = 0.125, 0.25 and 0.50) showed a total magnetic moment of 4 μB and a ferromagnetic half-

metallic character (HMF) due to the strong p-d hybridization, making them good candidates for 

spintronics. In contrast, Sr1−xFexS (x=0.75) showed a metallic character. Based on the obtained negative 

and positive exchange constants N0α and N0β, it was observed that the exchange coupling between the 

valence band of SrS and Fe-3d states is anti-ferromagnetic, whereas between the conduction band of 

SrS and Fe-3d states, the exchange coupling is a mixture of ferromagnetic and anti-ferromagnetic. 

       The next step was to enhance the properties of these materials to make them more efficient. Co-

doping and dimensionality reduction were the two methods used to accomplish this. 

     The study of co-doping initially involved selecting the dopant concentration at x = 0.125 and 

incorporating the alkali metals Li, Na, and K alongside Fe. This was consistently done using the PBE 

/PBE+mBJ as incorporated in the WIEN2K code, complemented by the Boltzmann transport equations 

integrated into the BoltzTrap code. The investigation encompassed structural, electronic, and magnetic 

properties of the quaternaries with the formula Sr0.875Fe0.06p0
0.06S (p0 = Li, Na, and K), followed by an 

examination of their optical and thermoelectric properties. The outcomes regarding structural properties 

revealed a gradual increase in lattice constant with atomic number (Z), coupled with a progressive 

decrease in bulk modulus. Introducing alkali metal in SrS: Fe proved instrumental in maximizing the 

system's overall stability and reinforcing ionic bonds. Calculations of total energy differences (ΔE) 

affirmed the stability of the systems in the ferromagnetic state, with a notably higher Curie temperature 

(Tc) observed compared to room temperature (RM). Notably, SrS: (Fe, K) exhibited the highest Tc 

among these co-doped systems. Examination of the electronic and magnetic properties revealed that all 

materials exhibited p-type semiconductor behavior (HSCs). In particular, it was observed that the energy 

gap in the co-doped systems was smaller compared to the SrS:Fe compound. A total magnetic moment 

of 5 μB was calculated, which represents an increase compared to mono-doping, and a small local 

magnetic moment was generated at the non-magnetic sites due to the sp-d hybridization. Examination 

of the optical properties, including real and imaginary parts of the dielectric function, absorption 

coefficient, and optical conductivity, revealed that each of the three alkali metal ions contributed to 

enhanced infrared absorption in the SrS: Fe system and the formation of new peaks in the visible 

spectrum. Such a property significantly increases the suitability of these materials for applications in 

solar cells. Finally, the analysis of thermoelectric properties, in terms of Seebeck coefficient, electrical 

conductivity, thermal conductivity and merit factor, highlighted the exceptional performance of the p-

type ZT values compared to their n-type and mono-doped counterparts and exceeded them 1 at 1200 K. 

This makes them promising candidates for high-temperature thermoelectric applications. 

      The dimensionality reduction method involved reducing the dimension of the ternary compounds 

Sr1−x FexS (x = 0, 0.125, 0.25, 0.50, 0.75, and 1) from their 3D bulk structures to their 2D monolayer 
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counterparts using a plane-wave pseudopotential (PAW) method and the PBE/PBE+HSE 

approximations within the VASP code. This investigation included a thorough examination of their 

structural, electronic, and magnetic properties. The findings from the analysis of formation energies, 

molecular dynamics simulations, and elastic constants indicated that each of the examined pristine 

materials, SrS (FeS), had favorable formation energies and maintained thermal and mechanical 

stabilities under normal conditions. Calculations of phonon spectra also confirmed the dynamic stability 

of their lattice structures. Regarding their ground state configurations, SrS was observed to remain stable 

in a hexagonal structure like graphene, while FeS preferred a square structure, which is consistent with 

previous theoretical studies. The influence of dimensionality reduction is clearly observed in the 

electronic properties of the doped monolayers, which exhibited a behavior that differs significantly from 

the HMF character observed in the bulk counterparts. According to the PBE results, Sr0.875Fe0.125S, Sr0.75 

Fe0.25S and Sr0.50Fe0.50S showed HSC behavior, while Sr0.25Fe0.75S behaved like a metal. However, with 

the application of the HSE method, Sr0.25Fe0.75S transformed into an HSC with a direct bandgap in both 

spin directions. Finally, we calculated a total magnetic moment of 4 μB in all doped monolayers, a result 

from p-d hybridization that is consistent with results in bulk structures. We also found an increase in 

local magnetic moments at Fe sites with concentration in contrast to their bulk counterparts, confirming 

the robust ferromagnetic nature at small dimensions. 

       In summary, both co-doping and dimensionality reduction show promising key performances for the 

desired applications.  

       In perspectives, we plan to calculate the optical and thermoelectric properties of our monolayers to 

enable a comprehensive comparison between 2D and 3D scales. Furthermore, it would be interesting to 

evaluate the reliability of other methods discussed in Chapter 1, such as inducing defects or external 

stimuli in SrS-based DMS. 
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Appendices  

 

Appendix. A 

       This appendix contains basic equations that serve as initial steps in understanding the process of 

finding an appropriate basis set. 

 

A.1 Bloch’s Theorem 

       In the field of solid-state systems, it is common for the units of interest to have specific translational 

symmetries in space. This property is suitable for the application of periodic boundary conditions (PBC) 

[1–3], a technique that significantly streamlines calculations for real systems. Under PBC, the system is 

encapsulated in a unit cell, systematically replicated throughout space and defined by the vectors 

𝒂𝟏⃗⃗ ⃗⃗ , 𝒂𝟐⃗⃗ ⃗⃗ , and 𝒂𝟑⃗⃗ ⃗⃗  [4]. This well-structured setup ensures that each grid point R can be precisely 

constructed, facilitating detailed analysis and calculations.  

                                                        𝑹 = 𝒏𝟏𝒂𝟏⃗⃗ ⃗⃗  𝒏𝟐𝒂𝟐⃗⃗ ⃗⃗ + 𝒏𝟑𝒂𝟑⃗⃗ ⃗⃗                                                      (eq.1) 

       The Bravais lattice is characterized by three integer coefficients, namely n1, n2 and n3. This grid is 

paired with a reciprocal grid : 

                                                       𝑮 = 𝒎𝟏𝒃𝟏
⃗⃗ ⃗⃗  𝒎𝟐𝒃𝟐

⃗⃗ ⃗⃗ + 𝒎𝒃𝟑
⃗⃗ ⃗⃗                                                    (eq.2) 

       Each reciprocal lattice vector G can be expressed as a linear combination of the reciprocal basis 

vectors 𝒃𝟏
⃗⃗ ⃗⃗ , 𝒃𝟐

⃗⃗ ⃗⃗ , and 𝒃𝟑
⃗⃗ ⃗⃗  where m1, m2, and m3 are integer values. These reciprocal basis vectors are 

derived from their counterparts in real space. 

                                                           𝒃𝟏
⃗⃗ ⃗⃗  ⃗ =

𝟐𝝅

𝜴
(𝒂𝟐⃗⃗ ⃗⃗ ×  𝒂𝟑⃗⃗ ⃗⃗ )                                                         (eq.3) 

                                                          𝒃𝟐
⃗⃗ ⃗⃗ =

𝟐𝝅

𝜴
(𝒂𝟑⃗⃗ ⃗⃗ ×  𝒂𝟏⃗⃗ ⃗⃗  )                                                         (eq.4) 

                                                          𝒃𝟑
⃗⃗ ⃗⃗ =

𝟐𝝅

𝜴
(𝒂𝟏⃗⃗ ⃗⃗ ×  𝒂𝟐⃗⃗ ⃗⃗  )                                                         (eq.5) 
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Here, 𝜴 = 𝒂𝟏⃗⃗ ⃗⃗ (𝒂𝟐⃗⃗ ⃗⃗ ×  𝒂𝟑⃗⃗ ⃗⃗ ) represents the volume of the unit cell in real space. Both the real and reciprocal 

basis vectors adhere to the relationship 𝒂𝒊⃗⃗  ⃗. 𝒃𝒋
⃗⃗  ⃗ = 𝟐𝜹𝒊𝒋. The Schrödinger equation governing a single 

electron under periodic boundary conditions (PBC) is provided by [4]: 

                                                 (−
𝟏

𝟐
𝛁𝟐 + 𝑽(�⃗� ))𝝍(�⃗� ) = 𝜺𝝍(�⃗� )                                                   (eq.6) 

       Within a system governed by a periodic potential 𝑽(�⃗� ) that adheres to 𝑽(�⃗� + �⃗⃗� ) = 𝑽(�⃗� ), the Bloch 

theorem, credited to Swiss physicist Felix Bloch in 1929 [5], postulates that all eigenstates 𝝍(�⃗� ) of the 

one-electron Hamiltonian can be expressed as a composite of a plane wave phase factor 𝒆𝒊𝒌�⃗�  and a 

periodic function 𝒖𝒏,𝒌(�⃗� ). This function mirrors the precise periodicity exhibited by the Bravais lattice 

[4].     

                                                           𝝍𝒏,𝒌(�⃗� ) = 𝒆𝒊𝒌�⃗� 𝒖𝒏,𝒌(�⃗� )                                                            (eq.7) 

                                                           𝒖𝒏,𝒌(�⃗� + 𝑹)⃗⃗⃗⃗ = 𝒖𝒏,𝒌(�⃗� )                                                         (eq.8) 

In this context, the quantum numbers 'n' and 'k' refer to the band index and the Bloch wave vector in 

reciprocal space, respectively. It is a fundamental principle that any periodic function can be expressed 

as a sum of plane waves in a basis set [2]:  

                                                       𝒖𝒏,𝒌(�⃗� ) = ∑ 𝑪𝒏,𝒌,𝑮 𝒆
𝒊𝑮�⃗�  𝑮                                                   (eq.9) 

       Consequently, the one-electron wave function can be expanded as follows: 

                                                      𝝍𝒏,𝒌(�⃗� ) = ∑ 𝑪𝒏,𝒌,𝑮 𝒆
𝒊𝑮+𝒌)�⃗�  𝑮                                                    (eq.10) 

       In practical applications, the plane waves are typically truncated within a cutoff |𝑮𝒎𝒂𝒙|, which 

corresponds to an energy cutoff 𝑬𝒄𝒖𝒕 = |𝒌 + 𝑮𝒎𝒂𝒙|
𝟐/𝟐. Furthermore, the Bloch wave vectors 'k' can be 

confined to the Brillouin zone (BZ), which represents the first Wigner-Seitz cell in reciprocal space. 

This restriction is possible because all other Bloch states 'k' can be calculated by combining a Bloch 

state within the BZ (kBZ) with an additional reciprocal lattice vector 'G' [4].   

                                                                    𝒌 = 𝒌𝑩𝒁 + 𝑮                                                               (eq.11) 

       This implies that the Bloch states (eigenvalues and eigenfunctions) exhibit periodicity in reciprocal 

space [4]. To streamline computational efforts, symmetry considerations come into play. Specifically, 

only k-points within the irreducible wedge of the Brillouin Zone (IBZ) are taken into account, each with 
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a corresponding weight denoted as 𝝎𝒌. With this approach, the summation over k-points for a periodic 

function F(k) spanning the entire Brillouin Zone can be simplified as follows: 

                      
𝟏

Ω 𝑩𝒁
∫ 𝒅𝒌 𝑭(𝒌)

.

𝑩𝒁
=

Ω

(𝟐𝝅)𝟑
∫ 𝒅𝒌 𝑭(𝒌)

.

𝑩𝒁
= ∑ 𝑭(𝒌) =𝑩𝒁

𝒌 ∑ 𝝎𝒌𝑭(𝒌)𝑰𝑩𝒁
𝒌                   (eq.12) 

Here, the k point grids and their associated weights 𝝎𝒌 are typically generated using the Monkhorst and 

Pack scheme [6]. ΩBZ represents the volume of the Brillouin Zone, while Ω denotes the volume of the 

real-space unit cell.  

       The band structure of solids is represented by 𝝐n(k) a function dependent on the k vector for a 

specific band 'n'. The Density of States (DOS) for each band 'n' is determined by integrating over the 

IBZ [4]: 

                            𝑫𝒏(𝝐) =
Ω

𝟐𝝅𝟑 ∫ 𝒅𝒌 𝜹(𝝐 − 𝝐𝒏(𝒌)) =
.

𝑩𝒁
∑ 𝝎𝒌(𝝐 − 𝝐𝒏(𝒌))𝑰𝑩𝒁

𝒌                   (eq.13) 

       As a result, the total DOS, encompassing contributions from all bands, is calculated as: 

                                                       𝑫(𝝐) = ∑ 𝑫𝒏(𝝐)𝒏                                                                           (eq.14) 

 

A.2 Fourier Transformation 

       In physics, the Fourier transform (FT) is a powerful mathematical operation that transforms a 

function and provides a detailed representation of the frequencies contained in the original data. Given 

a three-dimensional rectangular box (a finite system) with side lengths Lx, Ly, and Lz, any sufficiently 

smooth function 𝒇(�⃗� ) that satisfies the periodic boundary conditions can be considered [7]. 

                               𝒇(�⃗� + 𝑳𝒙𝒆𝒙) = 𝒇(�⃗� + 𝑳𝒚𝒆𝒚) = 𝒇(�⃗� + 𝑳𝒛𝒆𝒛) = 𝒇(�⃗� )                                (eq.15) 

       Eq.15 can be represented as a series of Fourier as follows:  

                                                             𝒇(�⃗� ) =
𝟏

Ω
𝑭𝒌 𝒆

𝒊𝒌�⃗�                                                                    (eq.16) 

Where k represents a wave vector within the reciprocal space of the system, which has a volume Ω = 

LxLyLz. 

                        𝒌 = 𝒏𝒙
𝟐𝝅

𝑳𝒙
𝒆𝒙 + 𝒏𝒚

𝟐𝝅

𝑳𝒚
𝒆𝒚 + 𝒏𝒛

𝟐𝝅

𝑳𝒛
𝒆𝒛,        {𝒏𝒙, 𝒏𝒚, 𝒏𝒛}𝝐 integer                (eq.17) 

Subsequently, the Fourier coefficients F(k) can be computed through the following process: 
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                                                           𝑭(𝒌) = ∫ 𝒅�⃗� 𝒇(�⃗� )𝒆−𝒊𝒌�⃗� .

Ω
                                              (eq.18) 

Some frequently utilized formulas for simplifying equations: 

                                                              
𝟏

Ω
∑ 𝒆±𝒊𝒌�⃗� 

𝒌 = 𝜹(�⃗� )  

                                                            ∫ 𝒅�⃗� 
.

Ω
𝒆±𝒊𝒌�⃗� = Ω𝜹(𝒌)                                                            (eq.19) 

       The principles and formulas previously discussed for the three-dimensional system can be extended 

and applied to a two-dimensional environment, taking the respective dimensions and coordinates into 

account. 
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Appendix. B 

       This appendix provides a guide to better understand the WIEN2K and VASP codes and includes 

the flowchart of basic programs that serve as first steps in understanding the process of how the programs 

are used and executed. 

 

B.1 WIEN2K Code 

       1.1   ``Master Input`` File case.struct: Preliminary Requirement in WIEN2K 

       To start DFT calculations in WIEN2K for a specific system, it is important to create a .struct file 

that represents the atom types involved in the simulation. This file, called “case.struct” (where “case” 

is the file name), serves as the main requirement in WIEN2K. The generation process is facilitated by 

StructGen, which is accessible via a web browser and the w2web interface or alternatively via the 

command line of an xterm. This crucial first step is to create a blank structure template into which we 

can enter relevant structure details such as atom symbols, lattice parameters, space group, atom 

positions, angles, atomic number (Z), and RMT values, which can be set either manually or automatically. 

After completing the StructGen process, the file "case.struct" is generated, which serves as the master 

input file for all subsequent programs. This step also automatically creates an input file with the atomic 

configurations, labeled “case.inst.” 

       1.2   Main Programs in WIEN2K 

       Once the two basic input files have been generated, the calculations are initialized using the “init-

lapw” command. This command provides a user-friendly step-by-step guide to setting up the 

calculations and generating inputs for the main programs. By initializing the calculations, several 

automated steps are carried out seamlessly. Where 'x' represents the script for starting WIEN2k 

programs. 

 x nn _This command calculates the nearest neighbors within a specified distance.  

  x sgroup_ This command calculates both the point and space groups for a given structure.  

 x-symmetry_ This command generates space group symmetry operations, determines the point 

group for individual atom locations, and generates the local moment extension (LM) for lattice 

harmonics and local rotation matrices.  
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 x lstart_ This command generates atomic densities and defines how the orbitals are treated in 

band structure calculations, including considerations such as core or band states, local orbitals, 

etc. 

 x kgen_ This command creates a k-network within the Brillouin zone (BZ).  

 x dstart_ This command generates an initial density for the Self-Consistent Field (SCF) cycle.  

       After initializing the calculation, the SCF process is initiated and repeated until solution 

convergence is achieved. For non-magnetic materials, such as SrS in our case, the SCF cycle can be 

triggered with the “run_lapw” command. For materials with ferromagnetic properties, such as Fe-doped 

SrS in our scenario, the “runsp_lapw” command is used. The SCF cycle includes the following phases: 

 LAPW0 (POTENTIAL): This phase generates the potential based on the calculated density. 

 LAPW1 (BANDS): Here the valence bands, including eigenvalues and eigenvectors, are 

calculated. 

 LAPW2 (RHO): This stage derives valence densities from the obtained eigenvectors. 

 LCORE: It is responsible for computing the core states and their respective densities. 

 MIXER: In this step, a mixing process is performed for the input and output densities to enable 

further iterations.  

     The diagram (Figure 1) clearly illustrates how the various WIEN2K programs are used and 

executed and provides a visual orientation for better understanding. 
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Figure.1 The flowchart shows the program flow in the WIEN2K package. 
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B.2 VASP Code 

      2.1 Main Input/Output Files in VASP 

       VASP searches the specified directory for four primary input files: POSCAR, INCAR, KPOINTS, 

and POTCAR.  

 Within the POSCAR file we specify the placement of a single atom within a box. This file 

encapsulates the initial grid geometry and ion positions.  

 The INCAR file contains tags that control the calculation. These tags are detailed in the VASP 

wiki under specific categories and have default values if not explicitly defined in the INCAR 

file. As a central input file, INCAR includes a significant portion of the key words that are 

essential for the calculations. This includes parameters such as the limit energy, smearing 

parameters, convergence criteria and more.  

 The KPOINT file specifies the coordinates and associated weights of k-points within the 

Brillouin zone for sampling. It also contains information about how these k-points are created, 

including the method used, such as the Monkhorst-Pack scheme. 

 The POTCAR file contains pseudopotential data and associated information for the designated 

atoms.  

Regarding the output files, VASP generates three main files: CONTCAR, OUTCAR and 

OSZICAR. 

 The CONTCAR includes the optimized grid geometry and ion positions.  

 The OUTCAR file serves as the central output document in VASP and includes a 

comprehensive set of data generated during the calculation.  

 The OSZICAR file provides an optimized overview of each electronic step, presenting 

important information on a single line. This includes the number of iterations, total energy 

and variation in total energy. 
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  2.2   Running Calculations 

       Similar to the WIEN2K code, the VASP code is based on two central phases: cell relaxation and 

the SCF cycle. When run with the vasp_std executable, VASP can be run in parallel with mpirun. First, 

the electronic charge density is determined from the POTCAR file and remains constant for the first 

steps. This is attributed to the iterative diagonalization of the Hamiltonian, meaning that the Kohn-Sham 

(KS) orbitals used to update the charge density require a warm-up period to be considered reliable. 

Figure 2 provides another visualization of the SCF cycle and OUTPUT file generation. 

 

Figure.2 Schematic representation of the self-consistent loop for solving the Kohn-Sham equation. 

(For the two spins, it is necessary to go through two such loops at the same time.) 
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B.3  Possibilities with WIEN2K and VASP Codes 

       The WIEN2K and VASP codes are versatile tools for studying a wide range of properties in periodic 

materials. They allow researchers to determine important structural attributes such as structure type, 

lattice constants, bonding, bond angles, bulk modulus, formation and cohesion energies, phonon 

spectrum and molecular dynamics. They also enable in-depth study of electronic properties, including 

spin-resolved electronic band structures, densities of states (both total and projected) and magnetic 

moments. In addition, they facilitate the assessment of real and imaginary components of dielectric 

function as well as the evaluation of mechanical, thermal and electronic transport properties. 

 Structural Properties 

       Ensuring a well-defined and relaxed geometry is a crucial aspect when examining crystals or 

surfaces. The aim is to find the geometry with the lowest energy. Since we are studying periodic systems, 

two very important concepts come into play: the crystal unit cells and the positions of ions, both of 

which define the crystal structure. Within WIEN2K, optimization is carried out using the eosfit program. 

This tool allows varying grid parameters up to a certain percentage. One can then graph the energy 

versus volume and fit this nonlinear relationship using various equations of state. WIEN2K provides 

options such as the Murnaghan [8] and Birch Murnaghan [9] equations of state. VASP offers various 

relaxation methods. Among these, the most commonly used approach is to relax the ion positions while 

keeping the cell shape constant, a configuration achievable with ISIF=4. Visualization was facilitated 

by Xcrysden [10] for WIEN2K and Vesta [11] for VASP code. 

       To deal with phonon spectra, an additional package called PHONOPY (included in VASP) was 

used [12]. This utility constructs a supercell to calculate force constants in real space using DFPT 

(Density Functional Perturbation Theory) [13]. The PHONOPY code is used to calculate the phonon 

spectrum, a process performed for all monolayers studied in this dissertation. 

       By applying ab-initio molecular dynamics simulations (AIMD), a better assessment of thermal 

stability can be achieved. AIMD is a computational approach that combines quantum mechanical 

principles with classical molecular dynamics to simulate the dynamic behavior of atoms and molecules 

in real time. Without going further into the mathematical equations that describe their method, let us 

simply note that the thermostat principle is to adjust the velocities of the system particles during the 

simulation so that the average kinetic energy of the system is equal to the kinetic energy corresponding 

to the target temperature. Typical AIMD simulations are limited to systems with a few hundred atoms 

and a total duration of ten to a thousand picoseconds [14]. To run a basic AIMD simulation in VASP 

(as in our case for monolayers), a simple copy of the input files along with changes to a few flags and 
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selecting the correct thermostat type is enough. It should be noted that the choice of thermostats to use 

depends on the specific requirements of the simulation and the accuracy required for the study being 

carried out. Various thermostats can be used to control temperature, including: 

1. Nose-Hoover Thermostat : 

This is a popular choice for maintaining a constant temperature during AIMD simulations. It uses a 

number of additional degrees of freedom to control the kinetic energy of the system. 

2. Langevin Thermostat : 

The Langevin thermostat adds a stochastic term to the equations of motion, simulating the effects of a 

heat bath. This allows the system to reach and maintain a desired temperature. 

3. Andersen Thermostat : 

The Andersen thermostat randomly selects particles and gives them a velocity that corresponds to a 

Maxwell-Boltzmann distribution at the desired temperature. 

In this dissertation, we implemented the Nose-Hoover thermostat.  

 Electronic Properties 

       After geometry relaxation, the electronic density of states (DOS) was determined by integrating the 

electron density over k-space. Another important electronic property, the band structure, was also 

estimated by locating the high symmetry points in the Brillouin zone of the solid. In our WIEN2K 

analysis, we used the interface tailored for the post-processing of first principles data, equipped with the 

essential programs for property calculation. Meanwhile, in our work with VASP, we used the VaspKit 

package [15] for data post-processing. VaspKit proves to be an accessible toolkit that streamlines the 

initial setup of calculations and enables detailed post-processing analysis to derive a variety of material 

properties from the raw data generated by the VASP code. (All upcoming properties are determined 

using the same scheme). 

 Magnetic Properties 

       Evaluating magnetic properties is crucial for applications such as spintronic devices and spin-based 

devices. These properties have been thoroughly investigated by analyzing spin-polarized density of 

states diagrams and spin-resolved electronic band structures, magnetic moments, and exchange 

constants.  
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 Mechanical Properties 

       Mechanical properties are the properties of a material that describe how it reacts to applied forces 

or loads. These properties are important for understanding how a material behaves under different 

conditions, which is crucial for the design and construction of various structures and components. The 

most important mechanical properties include stiffness, hardness, ductility and brittleness, all of which 

can be determined from elastic constants. In Figure 3 we have shown the strain curve (ε), which 

illustrates the deformation of the material in relation to the applied stress (σ). Two main regions are 

identified: the first is called the “elastic region” and is characterized by a linear variation of deformation 

with stress, where the deformation is reversible; when stress is removed, the material returns to its 

original shape. The second region is the “plastic region” in which the deformation is irreversible. The 

stress value at which the plastic region begins is called the yield point. Note that the elastic and plastic 

regions correspond to low and high stresses, respectively. In this dissertation, we will work in the elastic 

range.  

 

Figure.3 Schematic Stress-Strain Curve. After Ref [16]. 

 

       In the linear elastic regime, the relationship between the stress (σ) and the applied strain (ε) in solids 

follows the generalized Hooke's law [16] and can be expressed using Voigt notation [17]: 

                                                              𝝈𝒊 = ∑ 𝑪𝒊𝒋𝜺𝒋
𝟔
𝒋=𝟏                                                             (eq.20) 
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       The strain, stress, and elastic constants are each represented as tensor of 6x6 independent 

components denoted by subscripts i and j. Each code handles the elastic constants in its own way. 

WIEN2K typically begins with a perfect crystal lattice structure. To calculate elastic constants, the 

program applies small deformations (strains) along various directions to the crystal lattice. For each 

strain applied, WIEN2K calculates the total energy of the deformed crystal structure. By fitting these 

energy-strain curves, it is possible to extract the elastic constants and determine all elastic moduli. 

Similar to WIEN2K, VASP can calculate elastic constants by applying small deformations to the crystal 

lattice. This is often done using the second derivative of the total energy according to the atom positions, 

the so-called Hessian matrix. This matrix contains information about the curvature of the energy surface, 

which is related to the elastic constants.   

 Optical Properties 

       It is crucial to understand how materials interact with light, and their optical properties provide a 

valuable tool for this. These properties are characterized by the complex dielectric function ε(ω), which 

determines the response of the medium to the electromagnetic field [18]: 

                                                          𝜺(𝝎) = 𝜺𝟏(𝝎) + 𝒊𝜺𝟐(𝝎)                                                         (eq.21) 

Here, 𝜺𝟏 and 𝜺𝟐 represent the real and imaginary parts of the complex dielectric function, respectively, 

𝝎 denotes the photon frequency.    

       In the WIEN2K framework, the "optic" subroutine is employed to compute the optical properties. 

This subroutine calculates the components of the matrix dipole moment for each k-point and each 

combination of occupied and empty bands. The determination of 𝜺𝟐 components across the Brillouin 

zone is accomplished by the "joint" subroutine, generating the file case.joint. Application of the 

Kramers-Kronig formula to compute the 𝜺𝟏 components is carried out by the "kram" subroutine. At 

this stage, we specify the value of the "scissor operator," determined by the difference between the 

experimentally measured optical gap and the theoretically derived one. The resulting files include 

case.epsilon, case.sigmak, case.absorption, case.reflection, case.refraction, and case.eloss. 

       Within the VASP code, the VASPKIT package proves invaluable in determining frequency-

dependent dielectric functions. This package facilitates the extraction of linear spectra by parsing the 

output files using FLAG 71. The resulting files are labeled with names corresponding to each specific 

property, including ABSORPTION_2D, OPTICAL CONDUCTIVITY_2D, REFLECION_2D, and 

TRANSMISSION_2D. 
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 Thermoelectric Properties 

       Thermoelectric properties refer to the characteristics of a material that govern its ability to convert 

temperature gradients into electrical voltage or vice versa, a phenomenon known as the Seebeck effect. 

These properties are crucial in thermoelectric applications, which involve harnessing waste heat or 

providing localized cooling. Optimizing the Figure of merit (ZT) for thermoelectric performance is a 

key goal in thermoelectric materials research. This parameter depends on properties like electrical 

conductivity (σ), thermal conductivity (κ= κe+ κl), and the Seebeck coefficient (S) that could be 

manipulated through simulation to enhance the overall performance. The thermoelectric properties are 

calculated using the BoltzTrap2 code [19]. 
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