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Abstract

The main focus of this thesis is to present a numerical study of Fredholm integral equations

of the nonlinear integro-differential type. This includes examining both the regular and

weakly singular cases, as well as the fractional case. To obtain numerical solutions for these

equations, we use popular projection methods like the Galerkin method and the collocation

method, along with classical orthogonal polynomials. The primary benefit of this approach

is that it allows us to transform the main equations for each case into a nonlinear algebraic

system. We can then use iterative methods to solve these systems efficiently. To show the

accuracy and effectiveness of our approach, we present several numerical examples throughout

the thesis. These examples demonstrate how our numerical process accurately solve the given

equations, which further confirms the effectiveness of our proposed method.

Keywords: Orthogonal polynomials. Fredholm integro-differential equations. Galerkim

method. Collocation technique. Nonlinear equation
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Resumé

L’objectif principal de cette thèse est de présenter une étude numérique des équations in-

tégrales de Fredholm de type intégro-différentiel non linéaire. Cela comprend l’examen

à la fois des cas réguliers et faiblement singuliers, ainsi que du cas fractionné. Pour

obtenir des solutions numériques pour ces équations, nous utilisons des méthodes de

projection populaires comme la méthode de Galerkin et la méthode de collocation, ainsi

que des polynômes orthogonaux classiques. Le principal avantage de cette approche est

qu’elle nous permet de transformer les équations principales de chaque cas en un sys-

tème algébrique non linéaire. Nous pouvons ensuite utiliser des méthodes itératives

pour résoudre efficacement ces systèmes. Pour démontrer la justesse et l’efficacité de

notre approche, nous présentons plusieurs exemples numériques tout au long de la thèse.

Ces exemples démontrent comment nos solutions numériques résolvent avec précision

les équations données, ce qui confirme davantage l’efficacité de la méthode que nous

proposons.

Mots-clés: Polynômes orthogonaux. Équations intégro-différentielles de Fredholm.

Méthode de Galerkin. Technique de colocation. Équation non linéaire.
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 ـــــصـــخــالمــل
ذات نواة غير التكاملية التفاضلية  دراسة عددية لمعادلات فريدهولم  نقدم هذه الأطروحةفي 

، الإنفراد ضعيفةالأنوية كذا الأنوية المعتدلة و  حالات كل من  دراسة. وهذا يشمل خطية
دلات، المعا ا النوع منللحصول على حلول عددية لهذ ؛الحالة الكسرية بالإضافة إلى

 راتكثيلى جانب  إ ،وطريقة التجميعقالوركين مثل طريقة  هيرةنستخدم طرق الإسقاط الش
تسمح لنا  باعتبارها فائدة الأساسية من هذه الطريقةال ؛الحدود المتعامدة الكلاسيكية

يمكننا بعد ذلك  مما ام جبري غير خطيبتحويل المعادلات الرئيسية لكل حالة إلى نظ
قدم ن تقريبنا المقترحلإظهار دقة وفعالية  ؛ وأخيراتكرارية لحل هذه الأنظمة استخدام الطرق ال

.فعالية الطريقة دقة و حيتوضل ة العدديةالعديد من الأمثل  

 

 :الكلمات المفتاحية

كثيرات الحدود المتعامدة، معادلات التفاضلية التكاملية لفريدهولم، طريقة قالوركين، 
 .الخطيةطريقة التجميع، المعادلات غير 



Notations

V Vector space.

B Banach space.

〈., .〉 Scalar product.

H Hilbert space.

〈., .〉 Scalar product.

‖x‖ Norm of x.

Rn[X] Polynomials of degree less than or equal n.

∂ Partial differential.

L2 ([a, b]) Lebesgue space.

H1 ([a, b]) Sobolev space.

C Set of complex numbers.

R Set of real numbers.

Z Set of integer numbers.

N Set of positive integer numbers.

N∗ Set of strict positive integer numbers.
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Introduction

An integro-differential equation is a type of differential equation that involves both derivatives

and integrals of the unknown function. Such equations are often used in physics, engineering,

and applied mathematics to model a wide range of phenomena, including heat transfer, fluid

mechanics, and signal processing, ... (see [6, 9, 23, 36]).

Solving integro-differential equations can be challenging, as they often do not have ex-

plicit solutions. Instead, numerical methods are used to approximate the solutions. Among

these, we can enumerate finite difference methods or spectral methods: Laplace decomposi-

tion method [5], Legendre-Galerkin method [18], Bernoulli polynomials [8] , Pseudospectral

methods, Piecewise linear approximation, Polynomial approximation, Rational approxima-

tion [21], B-spline method [16, 28], Euler matrix method [25], Exponential spline method

[22], CAS wavelet [35], Differential transformation [13], Schauder bases [7], Homotopy per-

turbation method [39], collocation method [31], Haar wavelet bases [17].

On the other hand, there are many publications that give the numerical solution by using

orthogonal polynomials; we find for instance: Chebyshev polynomials [14, 27, 33], Legender

polynomials [37, 38], Hermite polynomials [24], Laguerre polynomials [30, 32], Jacobi polyno-

mials [29], new class of orthogonal polynomials [3], Comparison of the orthogonals polynomial

[12] . However, applying orthogonal polynomials to solve nonlinear integro-differential equa-

tions can be more complex than solving linear equations. In fact, there are still techniques

that can be used to approximate the solution using orthogonal polynomials. One approach

is to use a Galerkin method, which involves approximating the solution as a linear combina-

tion of a finite number of orthogonal polynomials, and then projecting the original nonlinear

integro-differential equation onto the space of these polynomials. This yields a system of

nonlinear algebraic equations for the coefficients of the polynomial expansion, which can

then be solved using numerical techniques such as Newton’s method or fixed-point iteration.
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Another approach is to use a collocation method, which involves evaluating the integro-

differential equation at a set of collocation points, and approximating the solution as a linear

combination of orthogonal polynomials that satisfy the equation at these points. This yields

a system of nonlinear algebraic equations that can also be solved numerically.

In this thesis, we undertake a numerical research for several forms of nonlinear integro-

differential equations in which the unknown function and its derivatives are in the nonlinear

kernel. The current study relies on the use of several kinds of orthogonal polynomials to get

the required numerical solution.

The outline of the thesis is as follows: The first chapter aims to introduce some funda-

mental definitions and theorems in functional analysis, as well as the orthogonal polynomials,

including their properties that are necessary for the subsequent chapters.

In the second chapter, we examine regular integro-differential equations with nonlinear

kernels. In the first section, using Legender polynomials, we give the numerical solution for

the following equation u(z) = f(z) +

∫ 1

0

K (z, y, u(y), u′(y)) dy, ∀z ∈ [0, 1],

u(0) = ρ.

In the second section, we develop the previous method presented in the first section by

utilizing Chebyshev polynomials to solve the following equation [19] ψ(z) = f(z) +

∫ 1

0

K (z, y, ψ(y), ψ′(y), ψ′′(y)) dy, ∀z ∈ [0, 1],

ψ(0) = α, ψ′(0) = β.

Through the third chapter, we investigate nonlinear integro-differentials equations with

weakly singular kernels which takes the following form v(z) = f(z) +

∫ b

a

p(|z − t|)F (z, t, v(t), v′(t)) dt, z ∈ [a, b],

v(a) = v0,

where

lim
x→0

p(x) = +∞.

10



CONTENTS

In the first section, we apply the Galerkin method along with Chebyshev polynomials of

the second kind to approximate the solution of the nonlinear integro-differential equation. In

the second section, we use the collocation approach based on Laguerre polynomials to solve

the equation.

Finally, in the fourth chapter, we utilize Hermite polynomials to obtain an approximation

for the solution of the fractional integro-differential equation of the form

z ∈ [0, 1], u(z) = g(z) +

∫ 1

0

K (z, t, u(t),Dαu(t)) dt, u(0) = 0,

where Dα denotes the Caputo- Fabrizio derivative of order α [20].

During the period of the thesis study, we were able to publish the following articles:

1. Henka, Y., Lemita, S., Aissaoui, M. Z. (2023). Hermite wavelets collocation method

for solving a Fredholm integro-differential equation with fractional Caputo-Fabrizio

derivative. Proyecciones (Antofagasta), 42(4), 917-930.

2. Henka, Y., Lemita, S., Aissaoui, M. Z. (2022). Numerical study for a second order Fred-

holm integro-differential equation by applying Galerkin-Chebyshev-wavelets method.

Journal of Applied Mathematics and Computational Mechanics, 21(4), 28-39.
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Chapter 1

Preliminaries

12



1.1 General notions

1.1 General notions

In order to provide a comprehensive understanding of the material presented in this thesis,

it is important to establish a solid background in the relevant mathematical concepts. This

section introduces the reader to some fundamental definitions and theorems that will be used

throughout the rest of the work.

Definition 1.1. A norm on a vector space V is a mapping ∥ · ∥ : V → [0,∞) such that for

all u, v ∈ V and for all α ∈ C:

(i) ∥u+ v∥ ≤ ∥u∥+ ∥v∥ (Triangle Inequality),

(ii) ∥αu∥ = |α|∥u∥ (Scalar Property),

(iii) ∥u∥ = 0 if and only if u = 0.

The pair (V , ∥ · ∥) is then called a normed space.

Definition 1.2. A space B is said to be a Banach space if (B, ∥ · ∥) is a complete normed

space.

Definition 1.3. Let V be a vector space over C. A scalar (or inner) product is a mapping

⟨.,.⟩fromV × V into C such that

(i) ⟨u, v⟩ = ⟨v, u⟩ ∀u, v ∈ V,

(ii) ⟨u+ w, v⟩ = ⟨u, v⟩+ ⟨w, v⟩ and ⟨λu, v⟩ = λ⟨u, v⟩ ∀u, v ∈ V , λ ∈ C,

(iii) ∀u ∈ V ⟨u, u⟩ ≥ 0 and ⟨u, u⟩ = 0 if and only if u = 0.

We call a linear space with an inner product an inner product space or pre-Hilbert space.

Proposition 1.1. Any inner product ⟨., .⟩ defines a norm on V by setting:

∥u∥ =
√
⟨u, u⟩ ∀u ∈ V .

Exemple 1.1. A Hilbert space is a complete inner product space.

Exemple 1.2. The space H = Cn is a Hilbert space with the inner product:

⟨v, u⟩ =
n∑

i=1

viui ∀v, u ∈ Cn,

where v = (v1, v2, . . . , vn) and u = (u1, u2, . . . , un).

13



1.1 General notions

Exemple 1.3. Let H = L2([a, b]). Then H is a Hilbert space equipped with the inner product:

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx ∀f, g ∈ L2([a, b]).

Exemple 1.4. Let

H = ℓ2 =

{
u = (un)n∈N∗ ⊂ C,

∞∑
i=1

|ui|2 <∞
}
,

and the scalar product

⟨u, v⟩ =
∞∑
i=1

uivi ∀u, v ∈ ℓ2.

Then H is a Hilbert space.

Theorem 1.1. (Cauchy-Schwarz inequality) Let H be a Hilbert space. Then

|⟨v, u⟩| ⩽ ∥u∥∥v∥ for all v, u ∈ H.

Definition 1.4. Let M = {ui ∈ H; i ∈ I ⊂ N} and ⟨ui, uj⟩ = 0 for all i, j ∈ I with i ̸= j.

Then, M is said to be an orthogonal system. Additionally, if M is orthogonal and ∥ui∥ = 1

for all i ∈ I, then M is called an orthonormal system.

Lemma 1.1. (Bessel’s inequality ) Let H be a Hilbert space. If {ei ∈ H, i ∈ I ⊂ N} is an

orthonormal basis, then for all u ∈ H

∑
k≥0

|⟨ek, u⟩|2 ≤ ∥u∥2.

Definition 1.5. A set C is convex if and only if

∀u, v ∈ C, ∀θ ∈ [0, 1] θu+ (1− θ)v ∈ C.

Exemple 1.5. In a normed space E, any subspace is a convex set.

Theorem 1.2. Let K be a non-empty closed convex subset of a Hilbert space H. For any

element u ∈ H, there exists a unique point v ∈ K such that

∥u− v∥ = inf
w∈K

∥u− w∥.

Theorem 1.3. Let (E, ∥·∥) be a normed space. A mapping T : E → E is called a contraction

on E if there exists a positive constant ρ < 1 such that

∥T (u)− T (v)∥ ≤ ρ∥u− v∥ for all u, v ∈ E.

14



1.2 Orthogonal polynomials

Theorem 1.4. [4] (Banach’s Fixed Point Theorem). Let (E, ∥ · ∥) be a Banach space

and let T : E → E be a contraction on E. Then T has a unique fixed point x ∈ E, i.e.

T (x) = x.

Definition 1.6. [10] (Caputo-Fabrizio derivative) Let α be a real number from the open

interval (0, 1). The fractional Caputo-Fabrizio derivative of order α for a function u belonging

to the space H1[0, 1] is as follows:

Dαu(z) =
1

1− α

∫ z

0

exp

[
− α

1− α
(z − s)

]
u′(s)ds.

Definition 1.7. [26] (Caputo-Fabrizio integral) Let α be a real number from the open

interval (0, 1). We define the fractional integral of order α using the Caputo-Fabrizio operator

for a function u belonging to the Sobolev space H1[0, 1] as follows:

Iαu(z) = (1− α)u(z) + α

∫ z

0

u(s)ds. (1.1)

Lemma 1.2. Given a real number α such that 0 < α < 1 and a function u in the Sobolev

space H1([a, b]), the following identities hold:

Iα (Dαu(z)) = u(z)− u(a),

Dα (Iαu(z)) = u(z)− exp

[
− α

1− α
(z − a)

]
· u(a).

Proof. See [26]

1.2 Orthogonal polynomials

In this section, we address the topic of orthogonal polynomials, which are a special type of

polynomials with the property that they are orthogonal with respect to a particular inner

product. We explore some of the basic properties of orthogonal polynomials, including their

recurrence relations and differential equations.

Definition 1.8. The two functions u and v are said to be orthogonal with respect to the

weight function w(z) on [a, b]

⟨u, v⟩ =
∫ b

a

w(z)u(z)v(z)dz = 0.

Proposition 1.2. Let (Pi)i≥0 be a family of orthogonal polynomials. Then, there is a recur-

rence relation between Pn+1, Pn and Pn−1

∀n ∈ N⋆, ∃an, bn, cn ∈ R, Pn+1 = (anX + bn)Pn + cnPn−1. (1.2)

15



1.2 Orthogonal polynomials

Proof. The family (XPn, Pn, Pn−1, . . . , P0) is a family of polynomials having different degrees

and so, it is a free family of Rn+1[X] with n + 2 vectors. We deduce that this family is a

basis of Rn+1[X] and there exist reals an, bn, cn and αi for 0 ≤ i ≤ n− 2, such that

Pn+1 = anXPn + bnPn + cnPn−1 +
n−2∑
i=1

αiPi.

We use the orthogonality of (Pi)i≥0

∀0 ≤ i ≤ n− 2, < Pn+1, Pi >= an < XPn, Pi > +αi ∥Pi∥2 = 0.

According to the expression of the scalar product < XPn, Pi⟩ = ⟨Pn, XPi⟩, since XPi ∈
Rn−1[X] we have ⟨XPn, Pi⟩ = 0, then

∀0 ≤ i ≤ n− 2, αi = 0.

1.2.1 Legendre polynomials

The Legendre polynomials take the following form by the Rodrigués formula:

Ln(z) =
1

n!2n
dn

dzn
[(
z2 − 1

)n]
. (1.3)

Theorem 1.5. The Legendre polynomials Ln(z) are given by the following recurrence formula

(n+ 1)Ln+1(z) = (2n+ 1)zLn(z)− nLn−1(z) L1(z) = z, L0(z) = 1.

Exemple 1.6. With n = 4 we get the following six polynomials:

L0(z) = 1,

L1(z) = z,

L2(z) =
1

2

(
3z2 − 1

)
,

L3(z) =
1

2

(
5z3 − 3z

)
,

L4(z) =
1

8

(
35z4 − 30z2 + 3

)
,

L5(z) =
1

8

(
63z5 − 70z3 + 15z

)
.

16



1.2 Orthogonal polynomials

Figure 1.1: Legendre polynomials for 1 ≤ n ≤ 4.

Proposition 1.3. Legendre polynomials are orthogonal on [−1, 1] and

∫ 1

−1

Li(z)Lj(z)dz =


2

2i+ 1
, i = j,

0, i ̸= j.

Proof. For i < j

∫ 1

−1

di

dzi

[(
z2 − 1

)i] dj
dzj

[(
z2 − 1

)j]
dz =−

∫ 1

−1

di+1

dzi+1

[(
z2 − 1

)i] dj−1

dzj−1

[(
z2 − 1

)j]
dz

+

[
di

dzi

[(
z2 − 1

)i] dj−1

dzj−1

[(
z2 − 1

)j]]1
−1

.

(1.4)

Since

[
di

dzi

[(
z2 − 1

)i] dj−1

dzj−1

[(
z2 − 1

)j]]1
−1

= 0 because ∀k ∈ (0, 1, . . . , j−1),
dk

dzk

[(
z2 − 1

)j]1
−1

= 0,

then the relation(1.4) becomes

∫ 1

−1

di

dzi

[(
z2 − 1

)i] dj
dzj

[(
z2 − 1

)j]
dz = −

∫ 1

−1

di+1

dzi+1

[(
z2 − 1

)i] dj−1

dzj−1

[(
z2 − 1

)j]
dz.

(1.5)

17



1.2 Orthogonal polynomials

By integrating in the right-hand member j times, we get∫ 1

−1

di

dzi

[(
z2 − 1

)i] dj
dzj

[(
z2 − 1

)j]
dz = (−1)j

∫ 1

−1

di+j

dzi+j

[(
z2 − 1

)i] d0
dz0

[(
z2 − 1

)j]
dz

+

[
di+j−1

di+j−1

[(
z2 − 1

)i] d0
dz0

[(
z2 − 1

)j]]1
−1

=(−1)j
∫ 1

−1

di+j

dzi+j

[(
z2 − 1

)i] (
z2 − 1

)j
dz.

Since
di+j

dzi+j

[(
z2 − 1

)i]
= 0 if i < j,

then,

∫ 1

−1

di

dzi

[(
z2 − 1

)i] dj
dzj

[(
z2 − 1

)j]
dz = 0.

If i = j,

(n+ 1)

∫ 1

−1

Ln+1(z)Ln−1(z)dz − (2n+ 1)

∫ 1

−1

zLn(z)Ln−1(z)dz + n

∫ 1

−1

L2
n−1(z)dz = 0. (1.6)

(n+ 1)

∫ 1

−1

Ln+1(z)Ln(z)dz − (2n+ 1)

∫ 1

−1

zL2
n(z)dz + n

∫ 1

−1

Ln−1(z)Ln(z)dz = 0.

(n+ 1)

∫ 1

−1

L2
n+1(z)dz − (2n+ 1)

∫ 1

−1

zLn(z)Ln+1(z)dz + n

∫ 1

−1

Ln−1(z)Ln+1(z)dz = 0. (1.7)

Since ∫ 1

−1

Ln+1(z)Ln−1(z)dz = 0,

∫ 1

−1

Ln+1(z)Ln(z)dz = 0,∫ 1

−1

Ln−1(z)Ln(z)dz = 0 and
∫ 1

−1

Ln−1(z)Ln+1(z)dz = 0,

then from (1.6) we deduce

−(2n+ 1)

∫ 1

−1

zLn(z)Ln−1(z)dz + n

∫ 1

−1

L2
n−1(z)dz = 0.

Therefore, ∫ 1

−1

zLn(z)Ln−1(z)dz =
n

(2n+ 1)

∫ 1

−1

L2
n−1(z)dz = 0,

and from (1.7), we deduce

n

∫ 1

−1

L2
n(z)dz − (2n− 1)

∫ 1

−1

zLn−1(z)Ln(z)dz = 0.

Hence, ∫ 1

−1

zLn−1(z)Ln(z)dz =
n

(2n− 1)

∫ 1

−1

L2
n(z)dz.
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1.2 Orthogonal polynomials

Thus ∫ 1

−1

L2
n(z)dz =

(2n− 1)

(2n+ 1)

∫ 1

−1

L2
n−1(z).

By recurrence, it comes∫ 1

−1

L2
n(z)dz =

1

(2n+ 1)

∫ 1

−1

L2
0(z)dz =

2

(2n+ 1)
.

Corollary 1.1. The Legendre polynomials can be defined by a differential equation for any

integer n, such that Ln(z) is a solution for the differential equation:(
1− z2

)
P ′′ − 2zP ′ + n(n+ 1)P = 0.

Proof. We have

L′
n(z) = 2nz

(
z2 − 1

)n−1
,

after multiplication by
(
z2 − 1

)
, we obtain(
z2 − 1

)
L′
n(z) = 2nzLn(z). (1.8)

By differentiating the equality (1.8) n+ 1 times, with Leibniz’s formula, we find(
z2 − 1

) dn+2

dzn+2
[Ln(z)] + (n+ 1)(2z)

dn+1

dzn+1
[Ln(z)] +

n(n+ 1)

2
(2)

dn

dzn
[Ln(z)]

=2n

[
z
dn+1

dzn+1
[Ln(z)] + (n+ 1)

dn

dzn
[Ln(z)]

]
,

i.e. (
z2 − 1

) [ dn
dzn

[Ln(z)]

]′′
+ 2z

[
dn

dzn
[Ln(z)]

]′
− n(n+ 1)

dn

dzn
[Ln(z)] = 0,

that gives, after multiplication by
1

n!2n

∀n ∈ N,
(
1− z2

)
L′′
n(z)− 2zL′

n(z) + n(n+ 1)Ln(z) = 0.

1.2.2 The first kind of Chebyshev polynomials

The Chebyshev polynomials of the first kind are given by the Rodrigués representation

Un(z) =
(−1)n

√
π (1− z2)

1/2

2n
(
n− 1

2

)
!

dn

dzn

[(
1− z2

)n−1/2
]
. (1.9)
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1.2 Orthogonal polynomials

Figure 1.2: Chebyshev polynomials for 1 ≤ n ≤ 4.

Definition 1.9. The first kind of Chebyshev polynomials of order n is given by

Un(z) = cos
(
n cos−1(z)

)
, ∀z ∈ [−1, 1].

Theorem 1.6. The Chebyshev polynomilas of first kind can be defined by the following re-

currence relation  Un+1(z) = 2zUn(z)− Un−1(z),

U0(z) = 1, U1(z) = z, for n ⩾ 1.

Proposition 1.4. These polynomials are orthogonal with respect to the weight function

w(z) = 1/
√
1− z2 on the interval [−1, 1], and

∫ 1

−1

w(z)Un(z)Um(z)dz =


π, n = m = 0,

π/2, n = m ̸= 0,

0, n ̸= m.

Proof. We have

cos(nθ +mθ) + cos(nθ −mθ) = 2 cos(nθ) cos(mθ).
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1.2 Orthogonal polynomials

We put z = cos θ. Then

dz = − sin θdθ

−dz = sin θdθ =
√

1− (cos θ)2dθ =⇒ dθ = − dz√
1− z2∫ 1

−1

Tn(z)Tm(z)
dz√
1− z2

= −
∫ −1

1

Tn(z)Tm(z)
dz√
1− z2

=

∫ π

0

cos(nθ) cos(mθ)dθ.

Then if n ̸= m ∫ π

0

cos(nθ) cos(mθ)dθ = 0,

if n = m ̸= 0 ∫ π

0

cos(nθ)2dθ =

∫ π

0

1 + cos(2nθ)

2
dθ =

π

2
,

if n = m = 0 ∫ π

0

cos(nθ)2dθ =

∫ π

0

dθ = π.

Corollary 1.2. The Chebyshev polynomial of degree n is a solution for the differential equa-

tion:

(
1− z2

)
P ′′(z)− zP ′(z) + n2P (z) = 0, ∀z ∈ [−1, 1].

Proof. Let n ∈ N. By deriving the equality Tn(cos θ) = cos(nθ), we get

∀θ ∈ R, (− sin θ)T ′
n(cos θ) = −n sin(nθ).

By deriving this equality a second time

∀θ ∈ R, (− cos θ)T ′
n(cos θ) + sin2 θT ′′

n (cos θ) = −n2 cos(nθ) = −n2Tn(cos θ),

∀z ∈ [−1, 1], (−z)T ′
n(z) +

(
1− z2

)
T ′′
n (z) = −n2Tn(z).

Hence,

∀n ∈ N, ∀z ∈ [0, 1],
(
1− z2

)
T ′′
n (z)− zT ′

n(z) + n2Tn(z) = 0.

1.2.3 Chebyshev polynomials of the second kind

The Chebyshev polynomials of the second kind Un(z) are given by the following formula:

Un(z) =
(−1)n(n+ 1)

√
π

2n+1
(
n+ 1

2

)
! (1− z2)1/2

dn

dzn

[(
1− z2

)n+1/2
]
.
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1.2 Orthogonal polynomials

Theorem 1.7. The second kind of Chebyshev polynomials are defined by the following recur-

rence relation:  Un+1(z) = 2zUn(z)− Un−1(z),

U0(z) = 1, U1(z) = 2z, n ≥ 1.
(1.10)

Exemple 1.7. The first six Chebyshev polynomials of the second kind are

U0(z) = 1,

U1(z) = 2z

U2(z) = 4z2 − 1,

U3(z) = 8z3 − 4z

U4(z) = 16z4 − 12z2 + 1

U5(z) = 32z5 − 32z3 + 6z.

Proposition 1.5. The present polynomials are orthogonal with respect to the weight function

w(z) =
√
1− z2 on the interval [−1, 1]. Moreover, we have

∫ 1

−1

w(t)Ui(t)Uj(t)dt =


π

2
, i = j,

0, i ̸= j.

Corollary 1.3. The Chebyshev polynomials of the second kind of the degree n is a solution

for the differential equation: (
1− z2

)
y′′ − 3zy′ + n(n+ 2)y = 0. (1.11)

Proof. By setting z = cos(θ), we have

Un(cos(θ)) sin(θ) = sin((n+ 1)θ),

and by differentiating this equality twice, we get

− sin(θ)Un(cos(θ))− 3 cos(θ) sin(θ)U ′(cos(θ)) + sin(θ)3U ′′
n(cos(θ)) = −(n+ 1)2 sin((n+ 1)θ).

Thus,

−3 cos(θ) sin(θ)U ′(cos(θ)) + sin(θ)3U ′′
n(cos(θ)) = −n(n+ 2) sin((n+ 1)θ),

and by dividing by sin(θ), we find
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1.2 Orthogonal polynomials

Figure 1.3: Chebyshev polynomials of the second kind for 1 ≤ n ≤ 4.

∀θ ∈ R − 3 cos(θ)U ′(cos(θ)) + sin(θ)2U ′′
n(cos(θ)) = −n(n+ 2)

sin((n+ 1)θ)

sin(θ)
.

Then,

∀z ∈ [−1, 1]
(
1− z2

)
U ′′
n(z)− 3zU ′

n(z) + n(n+ 2)Un(z) = 0.

1.2.4 Hermite polynomials

The Hermite polynomials can be defined by the Rodrigués formula

Hn(z) = (−1)nez
2 dn

dzn
e−z2 . (1.12)

Theorem 1.8. The Hermite polynomials Hn(z) satisfy the following relation:

2zHn+1(z) = Hn+2(z) + 2(n+ 1)Hn(z). (1.13)
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1.2 Orthogonal polynomials

Figure 1.4: Hermite polynomials for 1 ≤ n ≤ 4.

Exemple 1.8. The first six Hermite polynomials Hn(z) are

H0(z) = 1,

H1(z) = 2z,

H2(z) = 4z2 − 2,

H3(z) = 8z3 − 12z,

H4(z) = 16z4 − 48z2 + 12,

H5(z) = 32z5 − 160z3 + 120z.

Proposition 1.6. These polynomials are orthogonal on the interval R with respect to the

weight function w(z) = e−z2. Moreover we have

∫ 1

−1

w(z)Hn(z)Hm(z)dz =

 n!2n
√
π, n = m,

0, n ̸= m.

Lemma 1.3. We have

∫ +∞

−∞
exp

(
−u2

)
du =

√
π.

Proof. The exponential generating function is given by
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1.2 Orthogonal polynomials

G(z, w) = exp
(
2zw − w2

)
=

∞∑
n=0

Hn(z)w
n

n!
.

We have

∫ +∞

−∞
G(z, w)G(z, t) exp

(
−z2

)
dz =

√
π exp(2wt),

and then,

∫ +∞

−∞

∑
m≥0

tm

m!
Hm(z)

∑
n≥0

wn

n!
Hn(z) exp

(
−z2

)
dz =

√
π exp(2wt).

Thus,∑
n≥0

(∑
m≥0

tm

n!m!

∫ +∞

−∞
Hn(z)Hm(z) exp

(
−z2

)
dz

)
wn =

√
π exp(2wt)dz

=
√
π
∑
n≥0

(
2n

n!
tn
)
wn,

and therefore, ∑
m≥0

tm

m!

∫ +∞

−∞
Hn(z)Hm(z) exp

(
−z2

)
dz =

√
π2ntn.

Hence,

∫ +∞

−∞
Hn(z)Hm(z) exp

(
−z2

)
dz = 0, if n ̸= m.

On the other hand, if n = m by multiplying the equality (1.13) respectively by Hn(z) and

Hn−1(z) we deduce

H2
n(z)− 2zHn−1(z)Hn(z) + 2(n− 1)Hn−2(z)Hn(z) = 0, n ≥ 2,

and

Hn+1(z)Hn−1(z)− 2zHn(z)Hn−1(z) + 2nH2
n−1(z) = 0, n ≥ 2.

Therefore,

H2
n(z) + 2(n− 1)Hn−2(z)Hn(z) = Hn+1(z)Hn−1(z) + 2nH2

n−1(z). (1.14)

Multiplying (1.14) by exp
(
−z2

)
, we find

H2
n(z) exp

(
−z2

)
+ 2(n− 1) exp

(
−z2

)
Hn−2(z)Hn(z)

− exp
(
−z2

)
Hn+1(z)Hn−1(z)− 2n exp

(
−z2

)
H2

n−1(z)

= 0.
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1.2 Orthogonal polynomials

The integration of the latter gives∫ +∞

−∞
exp

(
−z2

)
H2

n(z)dz + 2(n− 1)

∫ +∞

−∞
exp

(
−z2

)
Hn−2(z)Hn(z)dz

−
∫ +∞

−∞
exp

(
−z2

)
Hn+1(z)Hn−1(z)dz − 2n

∫ +∞

−∞
exp

(
−z2

)
H2

n−1(z)dz

=0.

Due to orthogonality, we have∫ +∞

−∞
exp

(
−z2

)
Hn−2(z)Hn(z)dz = 0 et

∫ +∞

−∞
exp

(
−z2

)
Hn+1(z)Hn−1(z)dz = 0.

Therefore, ∫ +∞

−∞
exp

(
−z2

)
H2

n(z)dz = 2n

∫ +∞

−∞
exp

(
−z2

)
H2

n−1(z)dz.

By applying this formula n− 1 times, we get∫ +∞

−∞
H2

n(z) exp
(
−z2

)
= 2n−1n!

∫ +∞

−∞
exp

(
−z2

)
H2

1 (z)dz = 2n−1n!

∫ +∞

−∞
exp

(
−z2

)
(2z)2dz.

(1.15)

But,

4

∫ +∞

−∞
exp

(
−z2

)
(z)2dz = 4

∫ +∞

−∞
z exp

(
−z2

)
xdz = 4

[
−1

2
z exp

(
−z2

)]+∞

−∞
+ 2

∫ +∞

−∞
exp

(
−z2

)
dz

= 2
√
π.

By substituting this result in (1.15) , we obtain∫ +∞

−∞
H2

n(z) exp
(
−z2

)
dz =

√
π2nn!.

Corollary 1.4. The Hermite polynomial of degree nHn(z) is a solution for the differential

equation:

y′′ − 2zy′ + 2ny = 0.

Proof. We have

Hn(z) = (−1)nez
2 dn

dzn
e−z2 ,

and then,

H ′
n(z) = (−1)n2zez

2 dn

dzn
e−z2 + (−1)nez

2 dn+1

dzn+1
e−z2 .

Multiplying by e−z2 gives

H ′
n(z)e

−z2 = (−1)n2z
dn

dzn
e−z2 + (−1)n

dn+1

dzn+1
e−z2 . (1.16)
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1.2 Orthogonal polynomials

Differentiating (1.16) leads to

−2zH ′
n(z)e

−z2 +H ′′
n(z)e

−z2 = (−1)n2
dn

dzn
e−z2 + (−1)n2z

dn+1

dzn+1
e−z2 + (−1)n

dn+2

dzn+2
e−z2 ,

and using the Rodrigués formula (1.12), we find

−2zH ′
n(z) +H ′′

n(z) = 2Hn(z)− 2zHn+1 +Hn+2.

Therefore, by the recurrence relation (1.13),

H ′′
n(z)− 2zH ′

n(z) + 2nHn(z) = 0.

1.2.5 Laguerre polynomials

The Rodrigués representation for Laguerre polynomials is

Ln(z) =
ex

n!

dn

dzn
(
zne−z

)
.

Theorem 1.9. The Laguerre polynomials satisfy the recurrence relation:

(n+ 2)Ln+2(z) = (2n+ 3− z)Ln+1(z)− n+ 1Ln(z).

Exemple 1.9. The first six Laguerre polynomials are

L0(z) = 1,

L1(z) = −z + 1,

L2(z) =
1

2

(
z2 − 4z + 2

)
,

L3(z) =
1

6

(
−z3 + 9z2 − 18z + 6

)
,

L4(z) =
1

24

(
z4 − 16z3 + 72z2 − 96z + 24

)
,

L5(z) =
1

120

(
−z5 + 25z4 − 200z3 + 600z2 − 600z + 120

)
.

Proposition 1.7. The Laguerre polynomials are orthogonal with repect to the weight function

w(z) = exp(−z) on the interval [0,+∞[. Moreover, we have

∫ +∞

0

w(z)Ln(z)Lm(z)dz =

1, n = m,

0, n ̸= m.
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1.2 Orthogonal polynomials

Figure 1.5: Laguerre polynomials for 1 ≤ n ≤ 4.

Corollary 1.5. The Laguerre polynomial Ln(z) satisfies the following differential equation:

zy′′ + (1− z)y′ + ny = 0.

Proof. The generating function is

g(z, t) = exp

[ −zt
(1− t)

]
=
∑
n≥0

Ln(z)z
n,

and we have

(1− t)2
∂g

∂t
(z, t) = (1− z − t)g(z, t), (t− 1)

∂g

∂z
(z, t) = tg(z, t),

∂2g

∂z2
(z, t) =

t

t− 1

∂g

∂z
(z, t).

Then,

z
∂2g

∂z2
(z, t) + (1− z)

∂g

∂z
(z, t) + t

∂g

∂t
(z, t) = 0.

Therefore, ∑
n≥0

(zL′′
n(z) + (1− z)L′

n(z)) t
n + t

∑
n≥1

nLn(z)t
n−1 = 0.

Hence,
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1.2 Orthogonal polynomials

∑
n≥0

(zL′′
n(z) + (1− z)L′

n(z) + nLn(z)) t
n = 0,

zL′′
n(z) + (1− z)L′

n(z) + nLn(z) = 0, for all n ≥ 0.
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Chapter 2

Regular Nonlinear Fredholm Integro

Differential Equations
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2.1 Fredholm integro-differential equations of the first order

2.1 Fredholm integro-differential equations of the first or-

der

In this section, we present both analytical and numerical investigations of Fredholm integro-

differential equations of this particular type: u(z) = f(z) +

∫ 1

0

K (z, y, u(y), u′(y)) dy,

u(0) = ρ,

(2.1)

where K,
∂K

∂z
∈ C

(
[0, 1]2 × R2

)
, f(z) ∈ H1([0, 1]) and u(z) ∈ H1[0, 1]. This section aims

to investigate the existence and uniqueness of the solution of problem (2.1) and propose

a numerical process for its approximation. To achieve this goal, we analyze the necessary

conditions for the existence and uniqueness of the solution. Then, we apply our numerical

method that can approximate the solution with a high level of accuracy.
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2.1 Fredholm integro-differential equations of the first order

2.1.1 Existence and uniqueness

Consider the Sobolev space H = H1([a, b],R) equipped with the following norm

∀u ∈ H ∥u∥H = ∥u∥L2[a,b] + ∥u′∥L2[a,b] .

As a starting point, the following assumptions are made:

(S)

∥∥∥∥∥∥∥∥∥∥∥∥

∃αr, βr > 0, such that r = 0, 1∀z, x ∈ [0, 1], for all u, v, ū, v̄ ∈ R,

|K(z, x, u, v)−K(z, x, ū, v̄)| ⩽ α0|u− ū|+ β0|v − v̄|,

|∂zK(z, x, u, v)− ∂zK(z, x, ū, v̄)| ⩽ α1|u− ū|+ β1|v − v̄|,

0 < γ = max {α0 + α1, β0 + β1} < 1.

Let f ∈ H and define the operator:

∀z ∈ [0, 1], L : H −→ H

u 7−→ L(u)(z) = f(z) +

∫ 1

0

K (z, y, u(y), u′(y)) dy,

with [L(u)]′(z) = f ′(z) +

∫ 1

0

∂zK (z, y, u(y), u′(y)) dy.

Theorem 2.1. The equation (2.1) admits a unique solution in H based on the assumption

S.

Proof. Let φ, ψ ∈ H. Then, for all z, x ∈ [0, 1]

|K (z, x, φ(x), φ′(x))−K (z, x, ψ(x), ψ′(x))| ⩽ α0|φ(x)− ψ(x)|+ β0 |φ′(x)− ψ′(x)| .

It follows that for all z ∈ [0, 1] and by Cauchy-Schwarz inequality

ll|L(φ)(z)− L(ψ)(z)| ⩽ α0|φ(y)− ψ(y)|+ β0 |φ′(y)− ψ′(y)|

⩽ α0∥φ− ψ∥L2 + β0 ∥φ′ − ψ′∥L2 .

|L(φ)(z)− L(ψ)(z)|2 ⩽ α2
0∥φ− ψ∥2L2 + β2

0 ∥φ′ − ψ′∥2L2 + 2α0β0∥φ− ψ∥L2 ∥φ′ − ψ′∥L2

∥L(φ)− L(ψ)∥2L2 ⩽ (α0∥φ− ψ∥L2 + β0 ∥φ′ − ψ′∥L2)
2
.

Hence,

∥L(φ)− L(ψ)∥L2 ⩽ α0∥φ− ψ∥L2 + β0 ∥φ′ − ψ′∥L2 .

Similarly, we can find

∥L(φ)′ − L(ψ)′∥L2 ⩽ α1∥φ− ψ∥L2 + β1 ∥φ′ − ψ′∥L2 .
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2.1 Fredholm integro-differential equations of the first order

and then,

∥L(φ)− L(ψ)∥H ⩽ γ∥φ− ψ∥H.

Since γ < 1, the equation (2.1) has a unique solution.

2.1.2 Numerical study

We obtain the numerical solution using Legendre wavelets and the operational matrix of

integration. The Galerkin method is applied to obtain a nonlinear algebraic system, which is

subsequently solved using the iterative method. Additionally, we provide several illustrative

examples.

The Legendre wavelets can be defined as:

ℓi,j(z) =

2
k−1
2

√
2j + 1Lj

(
2kz − 2i+ 1

))
,

i− 1

2k−1
⩽ z ⩽

i

2k−1
,

0, otherwise
(2.2)

where k ∈ N∗, j ∈ N, 0 ≤ j ≤ m − 1, i = 1, 2, . . . , 2k−1, and Lj(z) is the Legendre

polynomial with degree j. Furthermore, this family of Legendre wavelets {ℓi,j} also defines

an orthonormal basis for L2([0, 1]).

Function approximation

Using the Legendre wavelets basis, each function u(z) in L2([0, 1]) can be expressed by the

following formula:

u(z) =
∞∑
i=1

∞∑
j=0

ci,jℓi,j(z), (2.3)

where ci,j = ⟨u, ℓi,j⟩, and ⟨., .⟩ denotes the inner product in L2([0, 1]).

By truncating the infinite series (2.3), we can write:

um(z) ≈
2k−1∑
i=1

m−1∑
j=0

ci,jℓi,j(z) = CTPm(z), (2.4)

where CT and Pm(z) are 2k−1m× 1 matrices given by:

CT =
[
c1,0, c1,1, . . . , c1,m−1, c1,0, c1,1, . . . , c1,m−1, . . . , c2k−1,0, . . . , c2k−1,m−1

]
,

Pm(z) =
[
ℓ1,0, ℓ1,1, . . . , ℓ1,m−1, ℓ1,0, ℓ1,1, . . . , ℓ1,m−1, . . . , ℓ2k−1,0 , ℓ2k−1,1 . . . , ℓ2k−1,m−1

]T
.
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2.1 Fredholm integro-differential equations of the first order

Figure 2.1: Legendre wavelets for k=1 and 1 ≤ n ≤ 4

Theorem 2.2. [40] Let u ∈ L2[0, 1] be with a bounded second derivative, (e.g., u′′(z) ≤M).

The truncated series um(z) given in (2.4) converges uniformly to the function u(z). Moreover,

|ci,j| ≤
24

1
2M

25k+1(2j + 1)(2j − 1)(2j − 3)
1
2

.

Operational matrix of integration

As a particular case, we take k = 1 in (2.4), to get:

CT = [c0, c1, . . . , cm−1] ,

Pm(z) = [ℓ0(z), ℓ1(z), . . . , ℓm−1(z)] .

The matrix Mm is defined as a matrix consisting of the coefficients of Legendre wavelets.
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2.1 Fredholm integro-differential equations of the first order

Mm =



1 −
√
3

√
5 · · · (−1)m−1

√
2m− 1

0 2
√
3 −6

√
5 · · · ...

0 0 6
√
5 · · · ...

0 0 0 · · · ...
...

...
... . . .

0 0 0 · · · (2m− 2)!

((m− 1)!)2
√
2m− 1


.

In the canonical polynomial basis Xm(z) =
(
1, z, z2, . . . , zm−1

)
, the vector Pm(z) of Leg-

endre wavelets can be rewritten as follows:

Pm(z) = Xm(z)Mm.

Consider the matrix N which contains the coefficients of the integral of canonical poly-

nomial basis:

N =



0 1 0 0 · · · 0

0 0
1

2
0 · · · 0

0 0 0
1

3
· · · 0

...
...

...
... . . . ...

0 0 0 0 · · · 1

m


.

Then, we have the following integration matrix :

∫ z

0

CTPm(s) = CT ÑPm+1(z) = CTQm(z), (2.5)

where Qm(z) = ÑPm+1(z) and Ñ is given by:

Ñ =M−1
m NMm+1.

Method description

Let be given the integro-differential equation:

u(z) = f(z) +

∫ 1

0

K (z, y, u(y), u′(y)) dy, u(0) = ϱ.

First, let us differentiate the above equation with respect to the variable z to get:

u′(z) = f ′(z) +

∫ 1

0

∂zK (z, y, u(y), u′(y)) dy. (2.6)
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2.1 Fredholm integro-differential equations of the first order

Now, we approximate the unknown function u′(z) of equation (2.6) by using Legendre

wavelets (2.4) :

u′m(t) = CTPm(t). (2.7)

Next, we integrate the equation (2.7) with respect to the variable t from 0 to z :

um(z) = ϱ+ CTQm(z), (2.8)

where Qm(z) is described in (2.5). By substituting relations (2.7) and (2.8) into the

equation (2.6) we obtain the following non linear equation corresponding to the m unknown

coefficients (ci, i = 0, 1, . . . ,m− 1) :

CTPm(z) = f ′(z) +

∫ 1

0

∂zK
(
z, y, ϱ+ CTQm(y), C

TPm(y)
)
dy.

To obtain the coefficients CT = [c0, c1, . . . , cm−1], we apply the Galerkin projection method

corresponding to the Legendre’s wavelet basis, i.e. by multiplying the above equation by

ℓj(z), j = 0, 1, . . . ,m− 1 and integrating with respect to the variable z from 0 to 1 , we get

the following non linear algebraic system:

c0 =

∫ 1

0

f ′(z)ℓ0(z)dz +

∫ 1

0

∫ 1

0

ℓ0(z)∂zK
(
z, y, ϱ+ CTQm(y), C

TPm(y)
)
dydz,

c1 =

∫ 1

0

f ′(z)ℓ1(z)dz +

∫ 1

0

∫ 1

0

ℓ1(z)∂zK
(
z, y, ϱ+ CTQm(y), C

TPm(y)
)
dydz,

... =
...

cm−1 =

∫ 1

0

f ′(z)ℓm−1(z)dz +

∫ 1

0

∫ 1

0

ℓm−1(z)∂zK
(
z, y, ϱ+ CTQm(y), C

TPm(y)
)
dydz.

(2.9)

The exact solution CT can be difficult or even impossible to obtain in several cases.

Therefore, approximative methods are widely used, generally iterative methods. In our study,

we choose the Picard successive approximations method. We start with the initial vector CT
0

and consider the sequence of vectors
(
CT

k

)
k∈N. We then consider the following system:

ck+1
0 =

∫ 1

0

f ′(z)ℓ0(z)dz +

∫ 1

0

∫ 1

0

ℓ0(z)∂zK
(
z, y, ϱ+ CT

k Qm(y), C
T
k Pm(y)

)
dydz,

ck+1
1 =

∫ 1

0

f ′(z)ℓ1(z)dz +

∫ 1

0

∫ 1

0

ℓ1(z)∂zK
(
z, y, ϱ+ CT

k Qm(y), C
T
k Pm(y)

)
dydz,

... =
...

ck+1
m−1 =

∫ 1

0

f ′(z)ℓm−1(z)dz +

∫ 1

0

∫ 1

0

ℓm−1(z)∂zK
(
z, y, ϱ+ CT

k Qm(y), C
T
k Pm(y)

)
dydz.

(2.10)
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2.1 Fredholm integro-differential equations of the first order

One can solve the algebraic system (2.10) by using the Picard successive method to get the

coefficients (ci, i = 0, 1, . . . ,m− 1). Then we substitute them into the formula (2.8), which

represents an approximate solution ukm(z) to the main equation (2.3).

Convergence analysis

Theorem 2.3. The numerical solution um converges to the true solution u in the Sobolev

space H.

Proof. We will discuss the demonstration of this theorem in a similar way through the next

section.

In this section we only demonstrate the convergence of the system (2.10).

Consider the Banach space Rm equipped the norm

∀x ∈ Rm ∥x∥2 =

√√√√m−1∑
i=0

|xi|2.

Let’s suppose that:

∀z, x ∈ [0, 1], for all a, ā, b, b̄ ∈ R,∣∣∂zK(z, x, a, b)− ∂zK(z, x, ā, b̄)
∣∣ ⩽ α|a− ā|+ β|b− b̄|,

δ = α + β < 1.

Theorem 2.4. Under the assumption (A), the nonlinear system (2.9) has a unique solution.

Proof. Let us define the following operator:

T : (T1, T2, · · · , T3) : Rm −→ Rm

CT 7−→ Ti
(
CT
)
=

∫ 1

0

ℓi(z)f
′(z)dz +

∫ 1

0

∫ 1

0

ℓi(z)∂zK
(
z, y,MCTP (y), CTP (y)

)
.

Let CT and GT be two vectors from Rm. We have

∥∥T (CT
)
− T

(
GT
)∥∥

2
≤
∥∥∥L (CTP (t)

)′ − L
(
GTP (t)

)′∥∥∥
L2

Bessel’s inequality

≤ α
∥∥MCTP (t)−MGTP (t)

∥∥
L2 + β

∥∥CTP (t)−GTP (t)
∥∥
L2

≤ α∥M∥
∥∥CTP (t)−GTP (t)

∥∥
L2 + β

∥∥CTP (t)−GTP (t)
∥∥
L2

≤ α∥M∥
∥∥CT −GT

∥∥
2
+ β

∥∥CT −GT
∥∥
2

≤ (α + β)
∥∥CT −GT

∥∥
2

≤ δ
∥∥CT −GT

∥∥
2
,
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2.1 Fredholm integro-differential equations of the first order

where the operator L is defined above. Since δ < 1, by Banach’s theorem 1.4, the system

(2.9) has a unique solution.

Theorem 2.5. Under the assumption A, for any initial vector CT
0 , the sequence

(
CT

k

)
k∈N

converges to the vector CT .

Proof. We have ∥∥CT
k+1 − CT

∥∥ ≤ δ
∥∥CT

k − CT
∥∥ .

Therefore, by recurrence on k, we get∥∥CT
k+1 − CT

∥∥ ≤ δk+1
∥∥CT

0 − CT
∥∥ .

Since δ < 1,
∥∥CT

k+1 − CT
∥∥→ 0 when k → +∞.

Corollary 2.1.
∥∥ukm − u

∥∥
H ≤

∥∥ukm − um
∥∥
H + ∥um − u∥H → 0 when k,m→ +∞.

2.1.3 Numerical examples

Here, several numerical examples are given to demonstrate the efficiency of our proposed

method. We mention that the numerical results are computed by using the following error

function:

Em = ∥um(z)− u(z)∥H1([0,1]) =
√

∥um(z)− u(z)∥2L2([0,1]) + ∥u′m(z)− u′(z)∥2L2([0,1]),

where u(z) is the exact solution and um(z) the approximate solution given by our proposed

method. The results in the tables below are obtained when
∥∥CT

k+1 − CT
k

∥∥ ≤ ε, for different

values of ε.

First example

Let us consider the Fredholm integro-differential equation:


∀z ∈ [0, 1], u(z) = f(z) +

∫ 1

0

1

5
sin [2(y + z + u(y)) + (1− y)ey − u′(y)] dy,

u(0) = 0,

where

f(z) = zez − 1

5

[
sin2(1 + z)− sin2(z)

]
.

The exact solution is u(z) = zez.
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2.1 Fredholm integro-differential equations of the first order

m Em, ε = 10−15 Em, ε = 10−10 Em, ε = 10−7 Em, ε = 10−5

2 2.4042e− 02 2.4042e− 02 2.4042e− 02 2.4042e− 02

3 1.8363e− 03 1.8363e− 03 1.8363e− 03 1.8363e− 03

4 1.0855e− 04 1.0855e− 04 1.0855e− 04 1.0855e− 04

5 5.2218e− 06 5.2218e− 06 5.2218e− 06 5.2457e− 06

6 2.1146e− 07 2.1146e− 07 2.1193e− 07 5.4274e− 07

7 7.3891e− 09 7.3891e− 09 1.5907e− 08 4.9991e− 07

8 2.3076e− 10 2.3117e− 10 1.4089e− 08 4.9985e− 07

9 4.4605e− 11 4.6703e− 11 1.4087e− 08 4.9985e− 07

Table 2.1: Numerical results for the first example .

Second example

Consider the following integro-differential equation:

 u(z) =
1

4
[cos(z + 1) + 3 cos(z)] +

∫ 1

0

sin(z + y)

2 (1 + u(y)2 + u′(y)2)
dy, z ∈ [0, 1],

u(0) = 0.

The exact solution is u(z) = sin(z).

Third example

Consider the following equation: u(z) = f(z)−
∫ 1

0

sin(z)

4

√
3 + u2(y) + 0.25π−2 (u′(y))2dy, x ∈ [0, 1],

u(0) = 0,

where

f(z) =
1

2
sin(z) + | sin(2πz − π)|,

and the exact solution is u(z) = | sin(2πz−π)|. In this example, to obtain an approximate

solution um(z), we must take k = 2 in the Legendre wavelets formula (2.2), because u′(z)

has a discontinuous point at z = 0.5.
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2.1 Fredholm integro-differential equations of the first order

m Em, ε = 10−15 Em, ε = 10−10 Em, ε = 10−7 Em, ε = 10−5

2 1.5073e− 03 1.5073e− 03 1.5073e− 03 1.5073e− 03

3 1.7277e− 04 1.7277e− 04 1.7277e− 04 1.7277e− 04

4 4.7584e− 06 4.7584e− 06 4.7584e− 06 4.7588e− 06

5 3.6343e− 07 3.6343e− 07 3.6344e− 07 3.6913e− 07

6 7.1237e− 09 7.1237e− 09 7.3462e− 09 6.4994e− 08

7 4.0789e− 10 4.0789e− 10 1.8400e− 09 6.4604e− 08

8 8.4572e− 12 8.5713e− 12 1.7943e− 09 6.4602e− 08

9 5.8232e− 12 5.9877e− 12 1.7943e− 09 6.4602e− 08

Table 2.2: Numerical results for the second example .

m Em, ε = 10−10 Em, ε = 10−5 Em, ε = 10−3

3 1.7436e− 02 1.7436e− 02 1.7436e− 02

4 1.7436e− 02 1.7436e− 02 1.7436e− 02

5 2.6345e− 04 2.6345e− 04 2.6347e− 04

6 2.6345e− 04 2.6345e− 04 2.6347e− 04

7 2.2965e− 06 2.2973e− 06 3.9486e− 06

8 2.2965e− 06 2.2973e− 06 3.9486e− 06

9 2.8432e− 07 2.9053e− 07 3.2246e− 06

Table 2.3: Numerical results for the third example .
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2.1 Fredholm integro-differential equations of the first order

Figure 2.2: u(y) vs um(y) with m = 9 for the first example .

Figure 2.3: u′(y) vs u′m(y) with m = 9 for the first example.
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Figure 2.4: u(y) vs um(y) with m = 9 for the second example .

Figure 2.5: u′(y) vs u′m(y) with m = 9 for the second example .
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Figure 2.6: u(y) vs um(y) with m = 7 for the third example .

Figure 2.7: u′(y) vs u′m(y) with m = 7 for the third example .
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2.1 Fredholm integro-differential equations of the first order

Interpretation of results:

Tables 2.1, 2.2 and 2.3, show the error function Em for different values of m for the previous

examples. In all cases, it seems that accuracy increases as m increased. On the other hand,

Figures 4.2,· · · , 2.7 show the comparison between the exact solution u(s) (with its derivative

u′(s) ) and the approximate solution um(s) (with its derivative u′m(s) ) for the three examples.

It also appears that the exact and approximate solutions are almost identical. So, we confirm

from these results the efficiency and validity of our proposed method.
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2.2 Second order Fredholm integro-differential equations

2.2 Second order Fredholm integro-differential equations

Our aim through this section is to introduce a numerical study for the following type of

integro-differential equation of a second order: ψ(z) = f(z) +

∫ 1

0

K (z, y, ψ(y), ψ′(y), ψ′′(y)) dy,

ψ(0) = α, ψ′(0) = β,

(2.11)

where K, ∂zK, ∂2zK ∈ C0
(
[0, 1]2 × R3

)
, α, β ∈ R, ψ(z), f(z) ∈ H2([0, 1]).

We utilize Chebyshev wavelets to obtain an approximate solution, and to improve accu-

racy, we extend our analysis to wavelets defined on subintervals. We also construct a double

operational matrix of integration over different subintervals. Finally, we provide several ex-

amples to demonstrate the efficiency of our approach.

2.2.1 Chebyshev wavelets

The Chebyshev wavelets are defined as follows:

θi,j(z) =

 2
k
2 Θ̃j

(
2kz − 2i+ 1

)
,

i− 1

2k−1
⩽ z ⩽

i

2k−1
,

0, otherwise

where

Θ̃j(z) =


1√
π
, j = 0,√
2

π
Θj(z), j ̸= 0,

for k ∈ N∗, j ∈ N, 0 ≤ j ≤ n−1, i = 2p, p = 0, · · · , k−1. Θj is the Chebyshev polynomial

of degree j. The Chebyshev wavelets denoted by θi,j form an orthonormal basis in the Hilbert

space L2
wk
([0, 1]) with:

wk(z) =



w1,k(z), 0 ≤ z <
1

2k−1
,

w2,k(z),
1

2k−1
≤ z <

2

2k−1
,

...
...

w2k−1,k(z),
2k−1 − 1

2k−1
≤ z < 1,

45



2.2 Second order Fredholm integro-differential equations

Figure 2.8: Chebyshev wavelets for k = 1 and 1 ≤ n ≤ 4.

where wi,k(z) = w
(
2kz − 2i+ 1

)
. The graphical representations of the Chebyshev wavelet

charts are shown in Figure 2.8 for k = 1 and 1 ≤ n ≤ 4.

Any function ψ(z) in L2
wk
([0, 1]) can be written as follows:

ψ(z) =
∑
i≥1

∑
j≥0

ci,jθi,j(z), (2.12)

where ci,j = ⟨ψ, θi,j⟩, and ⟨., .⟩ is the scalar product in L2
wk
([0, 1]).

By truncating the infinite series (2.12), we approximate the function ψ(z) as follows:

ψn(z) =
2k−1∑
i=1

n−1∑
j=0

ci,jθi,j(z) = CTP (z), (2.13)

where P (z) and CT are 2k−1n× 1 matrices:

CT =
[
c1,0, c1,1, . . . , c1,n−1, c1,0, c2,1, . . . , c2,n−1, . . . , c2k−1,0, . . . , c2k−1,n−1

]
,

and

P (z) =
[
θ1,0, θ1,1, . . . , θ1,n−1, θ2,0, θ2,1, . . . , θ2,n−1, . . . , θ2k−1,0, θ2k−1,1 . . . , θ2k−1,n−1

]T
.
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Figure 2.9: Chebyshev wavelets for k = 2 and 1 ≤ n ≤ 4.
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2.2 Second order Fredholm integro-differential equations

2.2.2 Operational integration matrix

We take k = 2. Then, P (z) and CT are simplified as follows:

CT = [c1,0, c1,1, . . . , c1,n−1, c2,0, c2,1, . . . , c2,n−1] ,

P (z) = [θ1,0(z), θ1,1(z), . . . , θ1,n−1(z), θ2,0(z), θ2,1(z), . . . , θ2,n−1(z)] .

Let Wn be a matrix of Chebyshev wavelet coefficients:

Wn =

 Fn On

On F̃n

 ,

F̃n =
2√
π


1 −3

√
2 . . . Tn−1(−3)

√
2

0 4
√
2 . . .

...
...

... . . .

0 0 . . . 4n−1
√
2

 ,

Fn =
2√
π


1 −

√
2 . . . (−1)n−1

√
2

0 4
√
2 . . .

...
...

... . . .

0 0 · · · 4n−1
√
2

 ,

and

Zn(z) =
(
1, z, z2, . . . , zn−1, 1, z, z2, . . . , zn−1

)
,

Pn(z) = [θ1,0(z), θ1,1(z), . . . , θ1,n−1(z), θ2,0(z), θ2,1(z), . . . , θ2,n−1(z)] .

So, we can write:

Pn(z) = Zn(z)Wn.

Consider the matrix Nn that represents the integral matrix in the canonical basis:

Nn =

 Gn On

On G̃n


where

G̃n =



−1

2
1 0 0 · · · 0

− 1

22
0

1

2
0 · · · 0

0 0 0
1

3
· · · 0

...
...

...
... . . . ...

− 1

2n
0 0 0 · · · 1

n


,
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and

Gn =



0 1 0 0 · · · 0

0 0
1

2
0 · · · 0

0 0 0
1

3
· · · 0

...
...

...
... . . . ...

0 0 0 0 · · · 1

n


.

Consequently, we find the initial operational matrix of integration:∫ z

0

CTPn(ξ)dξ = CTMnPn+1(z) = CTQ1(z).

By the same way we get the double operational matrix of integration:∫ z

0

∫ x

0

CTPn(ξ)dξdx = CTMnMn+1Pn+2(z) = CTQ2(z),

where

Mn = W−1
n NnWn+1.

2.2.3 Method description

Consider the following problem: ψ(z) = f(z) +

∫ 1

0

K (z, ξ, ψ(ξ), ψ′(ξ), ψ′′(ξ)) dξ,

ψ(0) = α, ψ′(0) = β.

(2.14)

First, we differentiate the equation in (2.14) twice to get the following equation:

ψ′′(z) = f ′′(z) +

∫ 1

0

∂2zK (z, ξ, ψ(ξ), ψ′(ξ), ψ′′(ξ)) dξ. (2.15)

Next, we approximate the unknown function ψ′′(z) using Chebyshev wavelets:

ψ′′
n(z) = CTPn(z). (2.16)

By integrating the equation(2.16) from 0 to z, we find:

ψ′
n(z) = β + CTQ1(z). (2.17)

Integrating again (2.17) from 0 to z produces

ψn(z) = α + βz + CTQ2(z). (2.18)
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2.2 Second order Fredholm integro-differential equations

Then, by substituting (2.16), (2.17) and (2.18) into (2.15), we obtain:

CTPn(z) = f ′′(z) +

∫ 1

0

∂2zK
(
z, ξ, α + βξ + CTQ2(ξ), β + CTQ1(ξ), C

TPn(ξ)
)
dξ. (2.19)

Let us now multiply the equation (2.19) by θi,j(z)wi,2(z) for j = 0, 1, · · · , n − 1 and

i = 1, 2, and then we integrate with respect to the variable z from 0 to 1. This gives the

following nonlinear algebraic system:

ci,0 = yi,0 +

∫ 1

0

∫ 1

0

θi,0(z)wi,2(z)∂
2
zK
(
z, ξ, α + βξ + CTQ2(ξ), β + CTQ1(ξ), C

TPn(ξ)
)
dξdz

ci,1 = yi,1 +

∫ 1

0

∫ 1

0

θi,1(z)wi,2(z)∂
2
zK
(
z, ξ, α + βξ + CTQ2(ξ), β + CTQ1(ξ), C

TPn(ξ)
)
dξdz

...
...

ci,n−1 = yi,n−1 +

∫ 1

0

∫ 1

0

θi,n−1(z)wi,2(z)∂
2
zK
(
z, ξ, α + βξ + CTQ2(ξ), β + CTQ1(ξ), C

TPn(ξ)
)
dξdz

(2.20)

where yi,j = ⟨f ′′, θi,j⟩. By applying the Picard successive approximations method, we

obtain the vector solution CT for the system (2.20) outlined above. We can subsequently

substitute this solution into (2.18) to get the numerical solution for the main equation (2.11).

2.2.4 Convergence analysis

In order to establish the convergence analysis for the numerical process outlined previously,

we begin by considering the Sobolev space H = H2([0, 1],R) equipped with the norm

∀ψ ∈ H, ∥ψ∥H = ∥ψ∥L2[0,1] + ∥ψ′∥L2[0,1] + ∥ψ′′∥L2[0,1] .

Furthermore, let us consider the following additional assumptions:

(S)



∃Ar, Br, Cr > 0, where r = 0, 1, 2.∀z, t ∈ [0, 1],∀x, x̄, y, ȳ, s, s̄ ∈ R,

|K(z, t, x, y, s)−K(z, t, x̄, ȳ, s̄)| ⩽ A0|x− x̄|+B0|y − ȳ|+ C0|s− s̄|,
|∂zK(z, t, x, y, s)− ∂zK(z, t, x̄, ȳ, s̄)| ⩽ A1|u− ū|+B1|y − ȳ|+ C1|s− s̄|,∣∣∂2zK(z, t, u, y, s)− ∂2zK(z, t, ū, ȳ, s̄)

∣∣ ⩽ A2|u− ū|+B2|y − ȳ|+ C2|s− s̄|,

0 < γ = max

{
2∑

r=0

Ar,

2∑
r=0

Br,

2∑
r=0

Cr

}
< 1.

Theorem 2.6. Under assumptions (S), the numerical solution ψn converges to the exact

solution ψ in the Hilbert space H.
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2.2 Second order Fredholm integro-differential equations

Proof. Let T be an operator which is defined as a mapping from H to itself as follows:

T : H −→ H

ψ 7−→ T (ψ)(z) =

∫ 1

0

K (z, ξ, ψ(ξ), ψ′(ξ), ψ′′(ξ)) dξ + f(z).

Consequently, we can express the exact solution ψ to equation (2.11), along with its first

and second derivatives ψ′ and ψ′′, through the following system of equations:


ψ(z) = T (ψ)(z),

ψ′(z) = T ′(ψ)(z),

ψ′′(z) = T ′′(ψ)(z).

Applying the Galerkin projection method by using Chebyshev wavelets, defined in (2.13),

we can approximate the preceding system as follows:
ψn(z) = Tn (ψn) (z),

ψ′
n(z) = T ′

n (ψn) (z),

ψ′′
n(z) = T ′′

n (ψn) (z).

It is clear that

|ψn(z)− ψ(z)| = |Tn (ψn)− T (ψ)| = |Tn (ψn)− T (ψn) + T (ψn)− T (ψ)|

⩽ |Tn (ψn)− T (ψn)|+ |T (ψn)− T (ψ)| .

Based on the Cauchy-Schwarz inequality and hypotheses (S), we deduce:

|T (ψn)− T (ψ)| =
∣∣∣∣∫ 1

0

(K (z, ξ, ψn(ξ), ψ
′
n(ξ), ψ

′′
n(ξ))−K (z, ξ, ψ(ξ), ψ′(ξ), ψ′′(ξ))) dξ

∣∣∣∣
⩽ A0

∫ 1

0

|ψn(ξ)− ψ(ξ)| dξ +B0

∫ 1

0

|ψ′
n(ξ)− ψ′(ξ)| dξ + C0

∫ 1

0

|ψ′′
n(ξ)− ψ′′(ξ)| dξ

⩽ A0 ∥ψn − ψ∥L2[0,1] +B0 ∥ψ′
n − ψ′∥L2[0,1] + C0 ∥ψ′′

n − ψ′′∥L2[0,1] .

(2.21)

Conversely, the research conducted in [2] assumes the convergence of the sequence Sn =

Tn (ψn) and establishes the following error convergence rate:

|Tn (ψn)− T (ψn)| ⩽ O (nµ0) → 0. (2.22)

So, from inequalities (2.21) and (2.22), we obtain:

∥ψn − ψ∥L2[0,1] ⩽ A0 ∥ψn − ψ∥L2[0,1] +B0 ∥ψ′
n − ψ′∥L2[0,1] + C0 ∥ψ′′

n − ψ′′∥L2[0,1] +O (nµ0) .

51



2.2 Second order Fredholm integro-differential equations

Similarly, we find:

∥ψ′
n − ψ′∥L2[0,1] ⩽ A1 ∥ψn − ψ∥L2[0,1] +B1 ∥ψ′

n − ψ′∥L2[0,1] + C1 ∥ψ′′
n − ψ′′∥L2[0,1] +O (nµ1) ,

∥ψ′′
n − ψ′′∥L2[0,1] ⩽ A2 ∥ψn − ψ∥L2[0,1] +B2 ∥ψ′

n − ψ′∥L2[0,1] + C2 ∥ψ′′
n − ψ′′∥L2[0,1] +O (nµ2) .

Therefore,

O (nµ) = O (nµ0) +O (nµ1) +O (nµ2) → 0.

Furthermore, when 0 < γ < 1, we can deduce that:

∥ψn − ψ∥H ⩽
O (nµ)

1− γ
→ 0.

This indeed confirms the convergence of the approximate solution ψn to ψ in the Hilbert

space H.

2.2.5 Numerical examples

First example

Let be given the integro-differential problem: ψ(z) = f(z) +

∫ 1

0

K (z, ξ, ψ(ξ), ψ′(ξ), ψ′′(ξ)) dξ,

ψ(0) = ψ′(0) = 0,

with f(z) = z sin(z) +
1

2
sin(z)(2 ln(2)− 1), and

K(u, v, x, y, z) = −1

2
sin(u) ln

[
1 + cos(v)v + sin(v)x− 1

2
sin(v)(z − sin(v))

]
and the exact solution is ψ(z) = z sin(z).

Second example

Let be given the Fredholm integro-differential problem:
ψ(z) = f(z)−

∫ 1

0

3

4
cos(z) sin

[
1

2
exp−y (2ψ′′(y)− ψ′(y)− ψ(y))

]
dy, ∀z ∈ [0, 1],

ψ(0) =
1

4
, ψ′(0) = −3

4
,

with

f(z) =


1

4

[
(2z − 1)2 exp(z) + cos(z)

[
cos

(
1

2

)
− 2 cos(2) + cos

(
7

2

)]]
, z ∈

[
0,

1

2

]
,

1

4

[
−(2z − 1)2 exp(z) + cos(z)

[
cos

(
1

2

)
− 2 cos(2) + cos

(
7

2

)]]
, z ∈

[
1

2
, 1

]
.
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2.2 Second order Fredholm integro-differential equations

Figure 2.10: ψ vs ψn for the first example with n = 7.

n 3 4 5 6 7

En 6.988E− 05 1.433E− 06 4.934E− 08 6.723E− 10 5.444E− 10

CPU time 0.109 0.123 0.154 0.194 0.310

Table 2.4: Numerical results of the first example.

and the exact solution is:

ψ(z) =


1

4
(2z − 1)2 exp(z), 0 ⩽ z ⩽

1

2
,

−1

4
(2z − 1)2 exp(z),

1

2
⩽ z ⩽ 1.

n 3 4 5 6 7

En 7.949E− 04 2.759E− 05 7.617E− 07 1.741E− 08 8.503E− 09

CPU time 0.081 0.108 0.129 0.169 0.372

Table 2.5: Numerical results of the second example.
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2.2 Second order Fredholm integro-differential equations

Figure 2.11: ψ′ vs ψ′
n for the first example with n = 7.

Figure 2.12: ψ′′ vs ψ′′
n for the first example with n = 7.
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2.2 Second order Fredholm integro-differential equations

Figure 2.13: ψ vs ψn for the second example, with n = 7.

Figure 2.14: ψ′ vs ψ′
n for the second example with n = 7.
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2.2 Second order Fredholm integro-differential equations

Figure 2.15: ψ′′ vs ψ′′
n for the second example with n = 7.

Discussion

Based on both the tables and figures, it is evident that the error function diminishes signifi-

cantly, particularly when the number n is large. This indicates that our suggested approach

exhibits greater efficacy when dealing with higher degrees of the polynomial (approximate

solution) n.
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Chapter 3

Weakly Singular Nonlinear Fredholm

Integro-Differential Equations

In this chapter, our primary objective is to delve into a numerical approximation method

tailored for solving a class of nonlinear Fredholm integro-differential equations characterized

by kernels that possess weak singularities: v(z) = f(z) +

∫ b

a

p(|z − t|)F (z, t, v(t), v′(t)) dt, z ∈ [a, b],

v(a) = v0,

(3.1)

where

f ∈ C1([a, b],R), F, ∂zF ∈ C0
(
[a, b]2 × R2

)
,

p(t) ∈ W 1,1(0, b− a),

lim
t→0

p′(t) = +∞.
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3.1 Galerkin method

3.1 Galerkin method

The Galerkin method and the operational matrix of integration are used to compute the

approximate solution. Based on the features of the second kind of Chebyshev polynomials,

we present a technique for removing the kernel singularity during the computing process, and

then we find the desired numerical solution.

3.1.1 Function approximation

Consider the Hilbert space H = L2
w[−1, 1] that is equipped with the inner product ⟨u, v⟩ =∫ 1

−1

w(ξ)u(ξ)v(ξ)dξ with w(ξ) =
√

1− ξ2, and the orthonormal basis

B =

{
φn =

√
2

π
ϕn, n = 0, 1, · · ·

}
,

where ϕn is the Chebyshev polynomial of the second kind of degree n described in the

first chapter. Define the following orthogonal projection:

∀ξ ∈ [−1, 1], Pn : H −→ Pn

v 7−→ Pn(v)(ξ) =
n∑

i=0

⟨v, φi⟩φi(ξ) = CTPn(ξ),
(3.2)

where

CT = [c0, c1, · · · , cn] , ci = ⟨v, φi⟩ , i = 0, · · · , n (3.3)

and

Pn(ξ) = [φ0(ξ), φ1(ξ), · · · , φn(ξ)] .

Pn is the space of polynomials of degree less than or equals n. We approximate any function

v(ξ) of H as:

v(ξ) ≈ (Pnv) (ξ) = CTPn(ξ). (3.4)

Theorem 3.1. Let f(ξ) ∈ L2
ω[−1, 1], satisfying |f ′′(ξ)| ⩽ L. Then, the series (3.2) converges

uniformly to f(ξ). Furthermore, the coefficients in (3.3) satisfy the following inequality:

|cn| <
4
√
2πL

(n+ 1)2
, ∀n ⩾ 2.

Proof. We have

cn =

∫ 1

−1

f(ξ)φn(x)ω(ξ)dx. (3.5)
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3.1 Galerkin method

If we set ξ = cos θ in (3.5), then we get

cn =

√
2

π

∫ π

0

f(cos(θ)) sin(n+ 1)θ sin θdθ

=
1√
2π

∫ π

0

f(cos(θ))[cosnθ − cos(n+ 2)θ]dθ,

that, after integrating twice by parts, gives

cn =
1√
2π

∫ π

0

f ′′(cos θ)Sn(θ)dθ,

where

Sn(θ) =
sin θ

n

(
sin(n− 1)θ

n− 1
− sin(n+ 1)θ

n+ 1

)
− sin θ

n+ 2

(
sin(n+ 1)θ

n+ 1
− sin(n+ 3)θ

n+ 3

)
.

Therefore,

|cn| =
1√
2π

∣∣∣∣∫ π

0

f ′′(cos(θ))Sn(θ)dθ

∣∣∣∣
=

1√
2π

∣∣∣∣∫ π

0

f ′′(cos(θ))Sn(θ)dθ

∣∣∣∣
⩽

L√
2π

∫ π

0

|Sn(θ)| dθ

⩽ π
L√
2π

[
1

n

(
1

n− 1
+

1

n+ 1

)
+

1

n+ 2

(
1

n+ 1
+

1

n+ 3

)]
=

2
√
2πL

(n2 + 2n− 3)

<
4
√
2πL

(n+ 1)2
.

3.1.2 Operational integration matrix

The operatinal matrix of integration for n = 4 is obtained as follows:∫ z

−1

φ0(t)dt =

[
1

1

2
0 0 0 0

]
P (z),∫ z

−1

φ1(t)dt =

[
−3

4
0

1

4
0 0 0

]
P (z),∫ z

−1

φ2(t)dt =

[
1

3

1

6
0

−1

6
0 0

]
P (z),∫ z

−1

φ3(t)dt =

[
−1

4
0

−1

8
0

1

8
0

]
P (z),∫ z

−1

φ4(t)dt =

[
1

5
0 0

−1

10
0

1

10

]
P (z).
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3.1 Galerkin method

Therefore,

∫ z

−1

CTP (t)dt = CTM5×6Q(z),

where

Q(z) = [φ0(z), φ1(z), · · · , φn+1(z)] ,

and

M5×6 =



1
1

2
0 0 0 0

−3

4
0

1

4
0 0 0

1

3

1

6
0 −1

6
0 0

−1

4
0 −1

8
0

1

8
0

1

5
0 0 − 1

10
0

1

10


.

Similarly, we can find the operational matrix of integration M for an arbitrary value n.

3.1.3 Method description

By taking the derivative of the equation (3.1), we get the following equation:

v′(z) = f ′(z) +

∫ 1

−1

sign(z − t)p′(|z − t|)F (z, t, v(t), v′(t)) dt

+

∫ 1

−1

p(|z − t|)∂zF (z, t, v(t), v′(t)) dt,

(3.6)

where

sign(z − t) =


+1, z > t,

0, z = t,

−1, z < t.

Now, we approximate the derivative of the unknown function v′(z) by using (3.4). Thus,

v′(z) = CTP (z). (3.7)

Integrating (3.7) with respect to z from 0 to z gives

v(z) = v0 + CTMQ(z). (3.8)
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3.1 Galerkin method

Now, by substituting (3.8) and (3.7) into (3.6), we get the following equation for the unknown

vector CT :

CTP (z) = f ′(z) +

∫ 1

−1

sign(z − t)p′(|z − t|)F
(
z, t, v0 + CTMQ(t), CTP (t)

)
dt

+

∫ 1

−1

p(|z − t|)∂zF
(
z, t, v0 + CTMQ(t), CTP (t)

)
dt.

(3.9)

By multiplying the equation (3.9) by w(z)φi(z) for i = 0, · · · , n, and then integrating with

respect to the variable z, we find

c0 = ⟨f ′, φ0⟩+
∫ 1

−1

∫ 1

−1

w(z)φ0(z) sign(z − t)p′(|z − t|)F
(
z, t, v0 + CTMQ(t), CTP (t)

)
dt

+

∫ 1

−1

∫ 1

−1

w(z)φ0(z)p(|z − s|)∂zF
(
z, t, v0 + CTMQ(t), CTP (t)

)
dt,

c1 = ⟨f ′, φ1⟩+
∫ 1

−1

∫ 1

−1

w(z)φ1(z) sign(z − t)p′(|z − t|)F
(
z, t, v0 + CTMQ(t), CTP (t)

)
dt

+

∫ 1

−1

∫ 1

−1

w(z)φ1(z)p(|z − s|)∂zF
(
z, t, v0 + CTMQ(t), CTP (t)

)
dt,

...
...

cn = ⟨f ′, φn⟩+
∫ 1

−1

∫ 1

−1

w(z)φn(z) sign(z − t)p′(|z − t|)F
(
z, t, v0 + CTMQ(t), CTP (t)

)
dt

+

∫ 1

−1

∫ 1

−1

w(z)φn(z)p(|z − s|)∂zF
(
z, t, v0 + CTMQ(t), CTP (t)

)
dt.

(3.10)

Analytically, the first integration for each equation in (3.10) exists because p′ ∈ L1([−1, 1]).

However, the Matlab software cannot run. Hence, we use the integration by parts and the

following property for the weight function w(z):

w(−1) = w(1) = 0.

Then, the equations (3.10) are simplified as follows:

c0 = ⟨f ′, φ0⟩+
∫ 1

−1

∫ 1

−1

(w(z)φ0(z))
′ p(|z − t|)F

(
z, t, v0 + CTMQ(t), CTP (t)

)
dtdz

c1 = ⟨f ′, φ1⟩+
∫ 1

−1

∫ 1

−1

(w(z)φ1(z))
′ p(|z − t|)F

(
z, t, v0 + CTMQ(t), CTP (t)

)
dtdz

... =
...

cn = ⟨f ′, φn⟩+
∫ 1

−1

∫ 1

−1

(w(z)φn(z))
′ p(|z − t|)F

(
z, t, v0 + CTMQ(t), CTP (t)

)
dtdz.

(3.11)
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3.1 Galerkin method

The solution of the nonlinear equations system (3.11) can be obtained by using Picard suc-

cessive approximations, which lead to the following system:

ck+1
0 = ⟨f ′, φ0⟩+

∫ 1

−1

∫ 1

−1

(w(z)φ0(z))
′ p(|z − t|)F

(
z, t, v0 + CT

k MQ(t), CT
k P (t)

)
dt,

ck+1
1 = ⟨f ′, φ1⟩+

∫ 1

−1

∫ 1

−1

(w(z)φ1(z))
′ p(|z − t|)F

(
z, t, v0 + CT

k MQ(t), CT
k P (t)

)
dt,

... =
...

ck+1
n = ⟨f ′, φn⟩+

∫ 1

−1

∫ 1

−1

(w(z)φn(z))
′ p(|z − t|)F

(
z, t, v0 + CT

k MQ(t), CT
k P (t)

)
dt,

(3.12)

where k ∈ N, c(i)0 = ⟨f ′, φi⟩, for all i = 0, · · · , n and CT
k =

[
ck0, c

k
1, · · · , ckn

]
.

3.1.4 Convergence analysis

In this section, to examine the convergence analysis of our method, we need to recall the

following useful theorem.

Theorem 3.2. There exists a constant α > 0 such that, for any function u ∈ H1(I), the

following estimate holds:

∥Pnu− u∥L2(I) ≤ αn−1∥u∥H1(I).

Proof. For details, see [34] .

Suppose the following hypotheses:

(A)

∥∥∥∥∥∥∥∥∥∥∥∥∥

∃A,A′, B,B′ ∈ R+, ∀ζ, τ ∈ [−1, 1],∀u, u′, v, v′ ∈ R,

|F (ζ, τ, u, v)− F (ζ, τ, u′, v′)| ≤ A |u− u′|+B |v − v′| ,

|∂ζF (ζ, τ, u, v)− ∂ζF (ζ, τ, u′, v′)| ≤ A′ |u− u′|+B′ |v − v′| ,

0 <
√
2
(
B ∥p′∥L1(I) +B′∥p∥L1(I)

)
< 1.

Theorem 3.3. Under the assumptions (A), the numerical solution vn(ξ) converges to the

exact solution v(ξ). Furthermore,

∥vn − v∥H1(I) ≤ βn−1∥v∥H1(I),

where β is a constant.
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3.1 Galerkin method

Proof. Denote Pnv = vn(ξ) and Pn−1v
′ = v′n(ξ). Then, from (3.6) and (3.9), we can write

v′n(ξ)− v′(ξ) =∫ 1

−1

sign(ξ − ζ)p′(|ξ − ζ|)F (ξ, ζ, vn(ζ), v
′
n(ζ)) dζ +

∫ 1

−1

p(|ξ − ζ|)∂ξF (ξ, ζ, vn(ζ), v
′
n(ζ)) dζ

−
∫ 1

−1

sign(ξ − ζ)p′(|ξ − ζ|)F (ξ, ζ, v(ζ), v′(ζ)) dζ −
∫ 1

−1

p(|ξ − ζ|)∂ξF (ξ, ζ, v(ζ), v′(ζ)) dζ

=

∫ 1

−1

sign(ξ − ζ)p′(|ξ − ζ|) [F (ξ, ζ, vn(ζ), v
′
n(ζ)) dζ − F (ξ, ζ, v(ζ), v′(ζ))] dζ

+

∫ 1

−1

p(|ξ − ζ|) [∂ξF (ξ, ζ, vn(ζ), v
′
n(ζ)) dζ − ∂ξF (ξ, ζ, v(ζ), v′(ζ))] dζ.

Therefore, under the hypotheses (A), we get

|v′n(ξ)− v′(ξ)| ≤
∫ 1

−1

|p′(|ξ − ζ|)| [A |vn(ζ)− v(ζ)|+B |v′n(ζ)− v′(ζ)|] dζ

+

∫ 1

−1

|p(|ξ − ζ|)| [A′ |vn(ζ)− v(ζ)|+B′ |v′n(ζ)− v′(ζ)|] dζ

≤ A ∥p′∥L1(I) ∥vn − v∥L∞(I) +B ∥p′∥L1(I) ∥v′n − v′∥L∞(I)

+ A′∥p∥L1(I) ∥vn − v∥L∞(I) +B′∥p∥L1(I) ∥v′n − v′∥L∞(I) .

Since L∞ is dense in L2, we achieve

∥v′n − v′∥L2(I) ≤
√
2
(
A ∥p′∥L1(I) + A′∥p∥L1(I)

)
∥vn − v∥L2(I)

+
√
2
(
B ∥p′∥L1(I) +B′∥p∥L1(I)

)
∥v′n − v′∥L2(I) .

Hence,

∥v′n − v′∥L2(I) ≤
√
2
(
A ∥p′∥L1(I) + A′∥p∥L1(I)

)
1−

√
2
(
B ∥p′∥L1(I) −B′∥p∥L1(I)

) ∥vn − v∥L2(I) .

From the previous Theorem 3.2 , we conclude that

∥vn − v∥H1(I) ≤ βn−1∥v∥H1(I),

where β is a constant given by:

β = α

1 +

√
2
(
A ∥p′∥L1(I) + A′∥p∥L1(I)

)
1−

√
2
(
B ∥p′∥L1(I) −B′∥p∥L1(I)

)
 .
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3.1 Galerkin method

n E(n, 2) E(n, 3) E(n, 4) E(n, 5)

3 1.1723e− 01 1.1723e− 01 1.1723e− 01 1.1719e− 01

5 2.1376e− 03 2.0952e− 03 2.0917e− 03 2.0915e− 03

7 5.8607e− 04 5.0129e− 05 1.6428e− 05 1.6271e− 05

9 5.8485e− 04 4.6525e− 05 3.2965e− 06 8.5842e− 07

Table 3.1: Numerical results for Example 1.

3.1.5 Numerical examples

In order to illustrate the effectiveness of the proposed method, we consider two numerical

examples for the integro-differential equation (3.1). Let us define the error function as follows:

E(n, k) = max
i=1:n

|v (zi)− vn (zi)| ,

where v(z) is the exact solution, vn(z) the approximate solution of degree n, zi = −1+
2i

n+ 1
for n = 1 · · ·n, and k is the order of the approximation in the algebraic system (3.12).

Example 1

Consider the following equation: v(z) = f(z) +

∫ 1

−1

√
|z − t| cos

[
z + v(t) + et − v′(t)

]
dt, ∀z ∈ [−1, 1],

v(−1) = −e−1,

with

f(z) = ez − 2

3

(√
(1− z)3 +

√
(1 + z)3

)
cos(z),

and the exact solution is v(z) = zez.

Example 2

Consider the following equation: v(z) = sin(z) +
8

7

(
(1 + z)

7
4 + (1− z)

7
4

)
+

∫ 1

−1

|z − t| 34
√
3 + v(t)2 + v′(t)2dt,

v(−1) = sin(−1), ∀z ∈ [−1, 1].

such that the exact solution is v(z) = sin(z).
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3.1 Galerkin method

Figure 3.1: Exact and numerical solutions (Example 1) with n = 2 and k = 2.

Figure 3.2: Exact and numerical solutions (Example 1) with n = 3 and k = 2.
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3.1 Galerkin method

Figure 3.3: The derivative of exact and numerical solutions (Example 1 ) with n = 4 and

k = 1.

Figure 3.4: The derivative of exact and numerical solutions (Example 1) with n = 4 and

k = 3.
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3.1 Galerkin method

Figure 3.5: Exact and numerical solutions (Example 2) with n = 3 and k = 1.

Figure 3.6: Exact and numerical solutions (Example 2) with n = 4 and k = 1.
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3.1 Galerkin method

Figure 3.7: The derivative of exact and numerical solutions (Example 2) with n = 4 and

k = 1.

Figure 3.8: The derivative of exact and numerical solutions (Example 2) with n = 4 and

k = 2.
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3.2 Collocation method

n E(n, 2) E(n, 3) E(n, 4) E(n, 5)

3 3.3368e− 03 3.2190e− 03 3.2189e− 03 3.2188e− 03

5 5.4483e− 04 2.9483e− 05 2.6844e− 05 2.6746e− 05

7 5.4679e− 04 1.1965e− 05 8.6072e− 07 1.3264e− 07

9 5.4680e− 04 1.1966e− 05 8.5800e− 07 7.9817e− 08

Table 3.2: Numerical results for Example 2.

3.2 Collocation method

In this section, we present another method to solve the proposed equation, that is the col-

location method. In this method, we seek a numerical solution represented by Laguerre

polynomials.

3.2.1 Operational integration matrix

The operational matrix of integration for n = 3 is obtained as follows:∫ z

−1

φ0(t)dt =
[
2 −1 0 0 0

]
P (z),∫ z

−1

φ1(t)dt =

[
3

2
−1 1 0 0

]
P (z),∫ z

−1

φ2(t)dt =

[
13

6
0 1 −1 0

]
P (z),∫ z

−1

φ3(t)dt =

[
73

24
0 0 1 −1

]
P (z).

Therefore,

∫ z

−1

CTP (t)dt = CTM4×5Q(z),

where

M4×5 =



3

2
−1 1 0 0

3

2
−1 1 0 0

13

6
0 1 −1 0

73

24
0 0 1 −1


.

Similarly, we can find the operational matrix of integration M for an arbitrary value n.
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3.2 Collocation method

Let N ∈ N∗ and consider the following grid points in the interval [−1, 1]:

∆N =

{
zi = −1 + ih, h =

2

N + 1
, i = 0, 1, . . . , N

}
.

Lemma 3.1. The matrix

Wn =


φ0 (z0) φ1 (z0) · · · φn (z0)

φ0 (z1) φ1 (z1) · · · φn (z1)
...

... . . . ...

φ0 (zn) φ1 (zn) · · · φn (zn)


is invertible for any n.

Proof. Let Cn be the matrix that contains the coefficients for the Laguerre polynomials of

degree less than or equals n. We have

Cn =


1 1 · · · 1

n!

0 −1 · · · ...
...

... . . . ...

0 0 · · · (−1)n

n!


,

and let Vn be the Vandermonde matrix

Vn =


1 z0 z20 · · · zn0

1 z1 z21 · · · zn1
...

...
... . . . ...

1 zn z2n · · · znn

 .

It is well known that the matrices Cn and Vn are invertible. We have

Wn = VnCn,

Hence, the matrix Wn is invertible as well.

Now, we approximate the function β(z) as

β(z) ≈ CTP (z), (3.13)

such that
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3.2 Collocation method

β (zi) = CTP (zi) , ∀ i = 0, · · ·n.

3.2.2 Method description

Consider the following integro-differential equation: β(z) = f(z) +

∫ 1

−1

p(|z − s|)Ψ (z, s, β(s), β′(s)) ds, z ∈ [−1, 1],

β(−1) = β0.

(3.14)

By taking the derivatives of (3.14), we get

β′(z) = f ′(z) +

∫ 1

−1

sign(z − s)p′(|z − s|)Ψ (z, s, β(s), β′(s)) ds

+

∫ 1

−1

p(|z − s|)∂Ψ
∂z

(z, s, β(s), β′(s)) ds,

(3.15)

where

sign(z − s) =


+1, z > s,

0, z = s,

−1, z < s.

Let us approximate the unknown function β′(z) by using (3.13). Then,

β′(z) = CTP (z). (3.16)

By integrating (3.16) with respect to z from 0 to z, we get

β(z) = β0 + CTMQ(z). (3.17)

Now, substituting (3.17) and (3.16) into (3.15) yields the following equation:

CTP (z) = f ′(z) +

∫ 1

−1

sign(z − s)p′(|z − s|)Ψ
(
z, s, β0 + CTMP (s), CTP (s)

)
ds

+

∫ 1

−1

p(|z − s|)∂Ψ
∂z

(
z, s, β0 + CTMP (s), CTP (s)

)
ds.

(3.18)

Collocating the equation (3.18) by the grids points ∆N leads to the nonlinear algebraic

system:
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3.2 Collocation method

CTP (zi) = f ′ (zi) +

∫ 1

−1

sign (zi − s) p′ (zi − s |)Ψ
(
zi, s, β0 + CTMP (s), CTP (s)

)
ds

+

∫ 1

−1

p (|zi − s|) ∂Ψ
∂z

(
zi, s, β0 + CTMP (s), CTP (s)

)
ds,

(3.19)

that can be written as

CTWn = DT =
[
d0
(
CT
)
, d1
(
CT
)
, · · · , dn

(
CT
)]
,

where Wn is described in the lemma above and for i = 1, . . . , n,

di
(
CT
)
= f ′ (zi) +

∫ 1

−1

sign (zi − s) p′ (zi − s |)Ψ
(
zi, s, β0 + CTMP (s), CTP (s)

)
ds

+

∫ 1

−1

p (|zi − s|) ∂Ψ
∂z

(
zi, s, β0 + CTMP (s), CTP (s)

)
ds.

Therefore, by lemma 3.1,

CT = DTW−1
n .

The nonlinear algebraic system (3.19)is solved by an iterative process. Let us consider

the following system: CT
k+1 =

[
d0
(
CT

k

)
, d1
(
CT

k

)
, · · · , dn

(
CT

k

))]
W−1

n ,

CT
0 = (f ′ (z0) , f

′ (z1) , · · · , f ′ (zn)) , k ∈ N.
(3.20)

By solving the system (3.20) for a suitable value of k, we can obtain the coefficients CT .

Finally, the desired approximation for β′(z) is computed by (3.13) .

3.2.3 Numerical examples

In order to demonstrate the effectiveness of the method proposed in this section, we provide

several numerical examples that highlight its accuracy. These examples serve as a way to

test and validate our method, and compare its results with other existing methods. Through

these examples, we aim to show that our method can accurately approximate solutions for

integro-differential equations with a weakly singular kernel.
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3.2 Collocation method

n E(n, 4) CPUtime

2 1.1023e− 01 0.045137

3 1.5531e− 02 0.031160

4 3.3139e− 03 0.035663

5 3.1440e− 04 0.367585

6 4.6722e− 05 0.045970

Table 3.3: Numerical results (Example 1)

n E(n, 3) CPUtime

2 4.8956e− 03 0.0058

3 3.4910e− 03 0.1127

4 6.7750e− 05 0.1054

5 4.8455e− 05 0.1216

6 5.4069e− 07 0.1506

Table 3.4: Numerical results (Example 2)

Example 1

Consider the following equation: β(z) = f(z) +

∫ 1

−1

√
|z − s| cos [z + β(s) + es − β′(s)] ds ∀z ∈ [−1, 1],

u(−1) = −e−1,

with f(z) = ez − 2

3

(√
(1− z)3 +

√
(1 + z)3

)
cos(z) so that the exact solution is β(z) =

zez.

Example 2

Consider the following equation:

 β(z) = sin(z) +
8

7

(
(1 + z)

7
4 + (1− z)

7
4

)
+

∫ 1

−1

|z − s| 34
√

3 + β(s)2 + β′(s)2ds,

u(−1) = − sin(−1), ∀z ∈ [−1, 1],

such that the exact solution is β(z) = sin(z).
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3.2 Collocation method

Figure 3.9: Exact and numerical solutions (Example 1), with n = 2

Figure 3.10: Exact and numerical solutions (Example 1), with n = 3
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3.2 Collocation method

Figure 3.11: Exact and numerical solutions (Example 2), with n = 2

Figure 3.12: Exact and numerical solutions (Example 2), with n = 3
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3.2 Collocation method

Discussion

In this chapter, we have presented two different methods for solving integro-differential equa-

tions with weakly singular kernels. The efficiency of both methods is demonstrated through

several examples. Moreover, we can compare advantages and disadvantages of each method.

The Galerkin method is more accurate but it is quite complex and requires more computa-

tion. On the other hand, the collocation method is less accurate than the Galerkin method

but it is simpler and requires less computational complexity.
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Chapter 4

Fractional Integro-Differential Equation

with the Caputo-Fabrizio Sense

In this chapter, we demonstrate the applicability of our technique in solving fractional integro-

differential equations with the Caputo-Fabrizio derivative. Specifically, we concentrate on the

following equation:  u(z) = g(z) +

∫ 1

0

K (z, s, u(s),Dαu(s)) ds,

u(0) = 0,

(4.1)

where ∂xK,K ∈ C
(
[0, 1]2 × R2

)
, 0 < α < 1, u(z), g(z) ∈ H1[0, 1], and Dα denotes the

Caputo-Fabrizio derivative of order α.

We explain the construction of the fractional operational matrix of integration utilizing

Hermite wavelets. We then apply the collocation technique followed by the iterative method

to approximate the numerical solution. To verify the accuracy of our process, we present

several computational examples.
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4.1 Hermite wavelets

Figure 4.1: Hermite wavelets for n = 0, 1, 2, 3.

4.1 Hermite wavelets

The Hermite wavelets are given as follows :

ψi,j(z) =


2

k+1
2√
π
Hj

(
2kz − 2i+ 1

)
,

i− 1

2k−1
⩽ z ⩽

i

2k−1
,

0, otherwise ,

where i = 1, 2, . . . , 2k−1.k > 0 is an integer number, j = 0, 1, 2, . . . , n−1, Hj is the Hermite

polynomial of degree j.

Any function u(z) in L2
w(R) can be written in the following form:

u(z) =
∞∑
i=1

∞∑
j=0

ci,jψi,j(z), (4.2)

where ci,j = ⟨u, ψi,j⟩ with ⟨., .⟩ being the scalar product in the Hilbert space L2(R). Then,

we get the approximate function for u(z) by truncating the series (4.2) as follows:

un(z) =
2k−1∑
i=1

n−1∑
j=0

ci,jψi,j(z) = CTP (z), (4.3)

where P (z) and CT are 2k−1n× 1 matrices:
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4.2 Fractional operational integration matrix

P (z) =
[
ψ1,0, ψ1,1, . . . , ψ1,n−1, ψ2,0, ψ2,1, . . . , ψ2,n−1, . . . , ψ2k−1,0, ψ2k−1,1 . . . , ψ2k−1,n−1

]T
,

and

CT =
[
c1,0, c1,1, . . . , c1,n−1, c1,0, c2,1, . . . , c2,n−1, . . . , c2k−1,0, . . . , c2k−1,n−1

]
.

4.2 Fractional operational integration matrix

If k = 1, then both P (z) and CT would be:

CT = [α0, α1, . . . , αn−1] ,

P (z) = [ψ0(z), ψ1(z), . . . , ψn−1(z)] .

Wn denotes a matrix comprising the coefficients associated with the Hermite wavelets:

Wn =
1√
π



2 −4 4 · · · Hn−1(−1)

0 8 −32 · · · ...

0 0 32 · · · ...
...

...
... . . . ...

0 0 0 · · · 22n−1


,

and

Zn(z) =
(
1, z, z2, . . . , zn−1

)
, Pn(z) = [ψ0(z), ψ1(z), . . . , ψn−1(z)] .

We have:

Pn(z) = Zn(z)Wn.

Consider an integral matrix denoted by N within the canonical polynomial basis:

L =



0 1 0 0 · · · 0

0 0 1/2 0 · · · 0

0 0 0 1/3 · · · 0
...

...
...

... . . . ...

0 0 0 0 · · · 1/n


.

Subsequently, the operational integration matrix in the Hermite wavelets basis is given as

follows: ∫ z

0

CTPn(y)dy = CTMPn+1(z),
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4.3 Method description

where

M = W−1
n LWn+1.

Furthermore, employing the previously defined notation in (1.1), we can express the

fractional operational integration matrix in the following manner:

Iα
(
CTPn(z)

)
= CT [αM + (1− α)F ]Pn+1(z) = CTQn(z), (4.4)

where Qn(z) = [(1− α)F + αM ]Pn+1(z) and F =


1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

.

4.3 Method description

Consider the following Fredholm integro-differential equation:

u(z) = f(z) +

∫ 1

0

K (z, s, u(s),Dαu(s)) dy, u(0) = 0. (4.5)

By taking the derivative of both sides of equation (4.5) and using the Caputo-Fabrizio

derivative of order α, we obtain

Dαu(z) = Dαg(z) +

∫ 1

0

Dα
xK (z, s, u(s),Dαu(s)) ds. (4.6)

We approach the unknown function Dαu(z) by using the formula (4.3)

Dαu(z) ≈ CTPn(z). (4.7)

To approximate the unknown function u(z), we perform an integration of (4.7) with the

help of the operational matrix of fractional integration mentioned earlier (4.4). This process

yields:
un(z) = Iα

(
CTPn(z)

)
= CTQn(z).

(4.8)

Now, substitute (4.7) and (4.8) into (4.6) to obtain:

CTPn(z) = Dαg(z) +

∫ 1

0

Dα
xK

(
z, s, CTQn(s), C

TPn(s)
)
ds. (4.9)
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4.4 Numerical experiments

Using the grid points zi =
2i+ 1

2(n+ 1)
, where i ∈ N and i ≤ n − 1, we apply collocation to

equation (4.9). This results in the formation of the subsequent nonlinear algebraic system:

CTA = DT , (4.10)

such that

DT = [d0, d1, · · · , dn−1] ,

where

di = Dαg (zi) +

∫ 1

0

Dα
xK

(
zi, s, C

TQn(s), C
TPn(s)

)
ds, for i = 0, · · · , n− 1,

and

A =


ψ0 (z0) ψ0 (z1) · · · ψ0 (zn−1)

ψ1 (z0) ψ1 (z1) · · · ψ1 (zn−1)
...

... . . . ...

ψn−1 (z0) ψn−1 (z1) · · · ψn−1 (zn−1)

 .

We apply the iterative method to solve the system (4.10). To do this, we introduce the

following system:

CT
k+1A = DT

k ,

where

DT
k =

[
dk0, d

k
1 · · · , dkn

]
,

and

dki = Dαg (zi) +

∫ 1

0

Dα
xK

(
zi, s, C

T
k Qn(s), C

T
k Pn(s)

)
ds.

For a suitable value of k, we find the vector CT
k , then substitute the coefficients of CT

k

into (4.8) to compute the approximate solution to equation (4.5).

4.4 Numerical experiments

Here, some illustrative experiments are included to demonstrate the efficiency of our method.

We introduce the error as follows:

En = max
i=0,n−1

|un (zi)− u (zi)| ,

where u(z) represents the true solution, un(z) stands for the approximate solution, n signifies

the degree of Hermite wavelets.

81



4.4 Numerical experiments

First experiment

Let be given the fractional Fredholm integro-differential equation:
∀z ∈ [0, 1], u(z) = g(z) +

∫ 1

0

ln

[
6

5

(
cos(s)− ze−3s

)
+

2

5
u(s)−Dαu(s)

]
ds,

u(0) = 0,

where

g(z) = cos(z) + ln

[
6

5
(1 + z)

]
− 3

2
.

The exact solution to this equation takes the form of u(z) = sin(z), when the fractional

order of differentiation is α = 0.5.

Second experiment

Consider the following equation:
u(z) = g(z)−

∫ 1

0

sin(z + s)

1 +Dαu(s) + 2su(s)
ds, ∀z ∈ [0, 1],

u(0) = 0.

In this context, we have g(z) = e−z − 1 + cos(1 + z) − cos(z), and the exact solution is

expressed as u(z) = e−z − 1 if the fractional order of differentiation is α = 0.75.

Third experiment

We have the following equation:
∀z ∈ [0, 1], u(z) = −5

2
z2 +

∫ 1

0

z2
√

12− 3e−s + 2Dαu(s) + u(s)ds,

u(0) = 0,

such that the order of derivation is α =
2

3
, and the exact solution of the equation is u(z) = z2.

Fourth experiment

Let the following equation:
∀z ∈ [0, 1], u(z) = ze−

z
3 − cos(z) +

∫ 1

0

sin

(
z − s+

2

9
s2 − 4

3
x+ e

s
3u(s) + e

s
3Dαu(s)

)
ds,

u(0) = 0.

The order for this example is α =
1

4
, and the exact solution is u(z) = ze−

z
3 − cos(z).
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4.4 Numerical experiments

n 3 4 5 6 7

En 6.988E− 05 1.433E− 06 4.934E− 08 6.723e− 10 5.444E− 10

Table 4.1: Numerical results (First experiment).

n 3 4 5 6 7

En 7.949E− 04 2.759E− 05 7.617E− 07 1.741E− 08 8.503E− 09

Table 4.2: Numerical results (Second experiment)

n 3 4 5 6 7

En 4.402E− 04 5.399E− 05 5.730E− 06 4.661E− 07 4.355E− 08

Table 4.3: Numerical results (Third experiment) .

n 3 4 5 6 7

En 1.301E− 05 1.762E− 07 1.065E− 08 7.066E− 11 4.737E− 11

Table 4.4: Numerical results (Fourth experiment).

Figure 4.2: Exact and approximate solutions (First experiment), n = 7.
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4.4 Numerical experiments

Figure 4.3: Exact and approximate solutions (Second experiment), n = 7.

Figure 4.4: Exact and approximate solutions (Third experiment) , n = 7.
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4.4 Numerical experiments

Figure 4.5: Exact and approximate solutions (Fourth experiment) n = 7.

Results interpretation

Tables 4.1, 4.2, 4.3, and 4.4 display the error En for various degrees n, illustrating that

the method’s performance improves as n increases. Additionally, Figures 4.2,4.3, 4.4, and

4.5 present graphs depicting both the exact and approximate solutions, showcasing their

remarkable similarity. Thus, the aforementioned examples serve as compelling evidence of

the efficiency and validity of our numerical approach.
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Conclusion

This thesis has been focused on an in-depth investigation of various types of integrodifferen-

tial equations. Specifically, we have studied equations with regular kernels, weakly singular

kernels, and those in the fractional case. To solve these equations, we have employed the

popular projection method along with classical orthogonal polynomials. By applying this ap-

proach, we are able to transform in each case the main equations into a nonlinear algebraic

system, that can then be solved using the Picard successive approximations. To validate

the effectiveness and accuracy of our proposed methods, we have also developed algorithms

using the Matlab platform. This allowed us to implement our methods and present numerical

examples that demonstrate their applicability and performance. Through our comprehensive

analysis and numerical examples, we have shown that our proposed approach can accurately

and efficiently solve a wide range of integro-differential equations.
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