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«Do not try to become a successful man.

Try to become a man of value ».
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Résumé

L’objectif principal de cette thèse est le développement d’une démarche pour le diagnostic des

défauts d’engrenages, tant en régime stationnaire qu’en celui variable. La méthodologie proposée

est basée sur deux approches différentes mais complémentaires : une approche subjective basée

sur la perception sonore et une approche objective basée sur l’analyse vibratoire. En effet, cette

analyse permet de détecter les défauts et les anomalies en interprétant les signaux vibratoires,

indépendamment des fluctuations de vitesse de rotation. L'analyse perceptive, quant à elle, se

concentre sur l'identification des sons anormaux liés aux défauts des engrenages dans des

conditions de fonctionnement en régime stationnaire et en régime variable. En combinant ces

deux approches analytiques, nous pouvons obtenir des informations précieuses sur l'état de santé

des machines tournantes afin de mettre en place des stratégies de maintenance efficaces

permettant d'améliorer la fiabilité de ces machines dans divers scénarios opérationnels.

Après une revue et synthèse des références bibliographiques, le travail porte en premier lieu sur

une étude comparative entre les méthodes objectives et subjectives pour identifier la gravité des

défauts simples et multiples des engrenages à partir de signaux mesurés dans un environnement

bruité. Cette analyse approfondie permet de mieux comprendre les forces et les faiblesses de

chaque méthode et d’en proposer des recommandations pour leur application dans des situations

réelles où les signaux sont bruités. De ce fait, cette contribution conduit à l'élargissement des

connaissances sur les approches objectives et subjectives pour l'analyse des défauts d'engrenages.

En deuxième lieu, une méthode hybride optimisée pour détecter les défauts d'engrenages dans

des conditions non stationnaires a été proposée. Cette approche combine la méthode

ICEEMDAN, le débruitage par ondelettes et l’analyse d’ordre. Les résultats démontrent

l'efficacité de cette méthode pour détecter divers types de défauts d'engrenages dans différents

modes de variation de vitesse de rotation.

Enfin, des tests perceptifs ont été réalisés à l'ENSIM, Le Mans, France, dans une chambre semi-

anéchoïque pour simuler différents types de défauts d'engrenages. La particularité de ces tests est

que les mesures ont été effectuées avec un régime de vitesse variable, comprenant des phases

d'accélération, de maintien et de décélération. Cette approche permet d'évaluer la perception des

défauts d'engrenages dans des conditions réalistes de fonctionnement. Les résultats de ces tests

fournissent des informations précieuses sur la détection subjective des défauts d'engrenages dans

des environnements dynamiques.

Mots clés : Approche objective, approche subjective, Perception sonore, Analyse multirésolution

par ondelettes, Cyclostationnarité, ICEEMDAN, Analyse d’ordre.
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Abstract

The main objective of this thesis is the development of an approach for diagnosing gear faults,

both in steady-state and variable operating conditions. The proposed methodology is based on

two different but complementary approaches: a subjective approach based on auditory perception

and an objective approach based on vibration analysis. Indeed, this analysis allows for the

detection of faults and anomalies by interpreting vibrational signals, independently of rotational

speed fluctuations. The perceptual analysis, on the other hand, focuses on the identification of

abnormal sounds related to gear faults in both steady-state and variable operating conditions. By

combining these two analytical approaches, we can obtain valuable information about the health

status of rotating machinery in order to implement effective maintenance strategies to improve

the reliability of these machines in various operational scenarios.

After conducting a literature review and synthesis, the research primarily focuses on a

comparative study between objective and subjective methods to identify the severity of single

and multiple gear faults based on measured signals in a noisy environment. This in-depth

analysis helps to better understand the strengths and weaknesses of each method and provides

recommendations for their application in real scenarios with noisy signals. Consequently, this

contribution leads to the expansion of knowledge regarding objective and subjective approaches

for gear fault analysis.

Secondly, an optimized hybrid method for detecting gear faults under non-stationary conditions

has been proposed. This approach combines the Improved Complete Ensemble Empirical Mode

Decomposition with Adaptive Noise (ICEEMDAN), wavelet denoising, and order analysis. The

results demonstrate the effectiveness of this method in detecting various types of gear faults

under different rotational speed variation modes.

Finally, perceptual tests were conducted at ENSIM, Le Mans, France, in a semi-anechoic

chamber to simulate various types of gear faults. What makes these tests unique is that

measurements were taken under variable-speed conditions, including phases of acceleration,

steady-state, and deceleration. This approach allows for the assessment of gear fault perception

under realistic operating conditions. The results of these tests provide valuable insights into the

subjective detection of gear faults in dynamic environments.

Keywords: Objective approach, subjective approach, Auditory perception, Wavelet

multiresolution analysis, Cyclostationarity, ICEEMDAN, Order analysis.
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ملخص

المنهجیة وتعتمد م�غيرة. �ؤ �بتة دوران سر�ة !ا� في سواء التروس، عیوب ل-شخیص منهجیة تطو/ر إلى �ٔساسا ا4ٔطرو!ة هذه تهدف

تحلیل �لى یقوم موضوعي ونهج الصوتي الادٕراك �لى یقوم شخصي �ؤ ذاتي نهج م�كاملين: ولكن مختلفين نهRين اتباع �لى المقتر!ة

عن UتقVمس بصورة Zهتزاز إشارات تفسير _لال من وا4ٔعطاب العیوب اك-شاف التaلیل من النوع لهذا يمكن الواقع، في Zهتزازات.

الثابتة ال-شغیل ظروف في التروس بعیوب المرتبطة العادیة iير ا4ٔصوات تحدید �لى اkاتي التaلیل /ركز mnب سر�ة.اoوران تقلبات

لتنفpذ اoوارة لqrلات الصحیة الحا� حول قيمة معلومات �لى الحصول يمكwنا التaلیلیين، اxنهRين هذ/ن بين الجمع _لال من والمتغيرة.

م�نو�ة. zشغیل سwnاریوهات في اq4لات هذه موثوقpة وتحسين الفعاّ� الصیانة استراتیجیات

اkاتیة وا4سٔالیب الموضوعیة ا4سٔالیب بين مقارنة دراسة �لى ا4ؤل المقام في العمل /ركز الببلیوغرافpة، المراجع وتلخیص اسVتعراض بعد

لنا ی-pح (صاخ�ة). ضجیج ذات ب�nة في المقاسة الإشارات تحلیل _لال من التروس في والمتعددة ال�سVیطة العیوب خطورة مدى لتaدید

ضجیج، ذات الإشارات �كون حpث حقpقpة مواقع في لتطبیقها توصیات وتقديم طریقة كل في والضعف القوة نقاط فهم المعمق التaلیل هذا

التروس. عیوب تحلیل في اkاتي واxنهج الموضوعي اxنهج �ش�نٔ المعرفة دا�رة توسVیع في �سهم مما

تجمع �بتة. iير اoوران سر�ة �كون �ٔ/ن عمل ظروف في التروس عیوب عن �لكشف محسVنة هجینة طریقة اقتراح تم الثانیة، U!المر في

£سVت¢دام الضوضاء تقلیل وتقwیة ،(ICEEMDAN) الضوضاء من £لت¢لص المحسVنة اxكامل التجریبي الوضع تحلیل تقwیة بين المنهجیة هذه

اوٕضاع في التروس عیوب من مختلفة �نٔواع عن الكشف في الطریقة هذه فعالیة النتائج تظهر الترتnب. تحلیل وتقwیة الصوتیة، فوق المو°ات

السر�ة. في �لتغير مختلفة

�لمهندسين العلیا الوطنیة المدرسة في التروس عیوب �نٔواع مختلف لتaاكي �از� شVبه غرفة دا_ل السمعي الإدراك اخ�بارات إجراء تم �ٔ_يراً،

�ٔساس �لى انٕتاµا تم اxٕيها ZسV·ع تم التي ا4ٔصوات �نٔ هو Zخ�بارات هذه يميز ما بفرºسا. لومان مدینة في المتوا°دة (ENSIM)

عیوب ادٕراك ¼یفpة بتقpيم المنهجیة هذه zسمح والتباطؤ. وZسVتقرار ال-سارع فترات �شمل م�غير، سر�ة نظام تحت المقاسة الإشارات

ب�nات في التروس لعیوب اkاتي الكشف حول قيمة معلومات سVتوفر Zخ�بارات هذه نتائج �نٔ حpث واقعیة zشغیل ظروف في التروس

دینامpكpة.

اoوري، التردد المويجات، £سVت¢دام القرار م�عدد تحلیل السمعي، الإدراك المحسوس، اxنهج الموضوعي، اxنهج الرئnسVیة: اxكلمات

الترتnب. تحلیل ،ICEEMDAN
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General introduction

Modern machines and industrial facilities are subject to increasingly diverse operational

demands, varying in terms of rotation speed, duration, and efficiency. However, this heightened

operational versatility comes with a significant drawback: these machines are constantly exposed

to the risk of damage and unexpected failures, leading to costly and unplanned downtime. The

economic implications of preventing such machine damage cannot be overstated for today's

companies.

Human perception plays a crucial role in assessing the health of these machines. Humans rely on

their five senses and memory to perceive and understand the world around them. When it comes

to machines, these senses not only detect vibrations but also interpret the sounds generated

during their operation. These sounds can serve as early fault indicators. Moreover, the field of

vibration analysis has emerged as a fundamental tool in condition-based maintenance, with its

effectiveness relying on the expertise of individuals who draw upon technical knowledge and

professional experience.

Condition-based maintenance comprises two essential steps: monitoring and diagnosis.

Monitoring involves periodic tracking of degradation indicators, while diagnosis employs

advanced investigative techniques to determine the precise nature, severity, and urgency of any

detected fault. However, traditional diagnostic methods pose a significant challenge when

machines operate under variable conditions, requiring either the adaptation of existing

techniques or the development of innovative approaches. Among these advancements, vibro-

acoustics emerges as a promising discipline, exploring the perceptual impact of machine-

generated sounds and their correlation with structural characteristics. Order analysis, which

efficiently identifies faults in rotating machinery operating under variable conditions, is also a

significant breakthrough in this context.

This thesis was developed with this intention, namely the development of both subjective and

objective approaches for gear fault detection, a crucial element in several industrial systems.

The thesis is structured around five chapters:

The first chapter is dedicated to a literature review concerning various types of maintenance used

by facilities for industrial machinery. This chapter explores fault detection methods in rotating
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machines, with a focus on gears, by examining both objective approaches such as vibration

signal analysis and subjective ones using sound perception. It highlights an emerging trend of

combining these two approaches to enhance fault detection accuracy, thereby providing a more

comprehensive understanding of the machine's health and maintenance strategies, while

emphasizing the importance of introducing general concepts before delving into these topics.

The second chapter is dedicated to comparing two approaches for detecting gear faults in a highly

noisy environment: a subjective approach based on sound perception through paired comparison

tests, and an objective approach based on vibration analysis using three advanced signal

processing methods. The work carried out in this chapter is purely experimental and was

conducted on a test bench at the Mechanics and Structures Laboratory of the University of

Guelma. The first part of the work aims to establish a correlation between the auditory perception

of listeners and scalar indicators for different degrees of gear faults. The second part attempts to

analyze the same signals using three well-known methods of vibration signal processing.

In the third chapter, a vibrational study is presented for identifying the severity of gear faults

under variable operating conditions. These conditions are simulated on a test bench located at the

University of Souk Ahras. To this end, an optimized hybrid method for gear fault detection is

employed. This method combines ICEEMDAN to decompose the signals into Intrinsic Mode

Functions (IMFs), identifies the fault signatures, and then applies multivariate wavelet denoising

and Principal Component Analysis (PCA) to improve the signal-to-noise ratio. Subsequently,

order tracking analysis eliminates speed variations and reveals an envelope order spectrum

highlighting gear faults. This method is applied on various types of gear faults under multiple

speed variation conditions, including acceleration, deceleration, and combinations thereof,

surpassing conventional fault detection methods.

In the fourth chapter, we utilize a paired comparison sound technique by applying auditory

perception to evaluate the severity levels of gear faults in changing operational scenarios. These

simulated faults encompass both minor and major gear problems. After conducting listening tests

in the semi-anechoic chamber at LAUM, Le Mans, France, we analyze the results to determine

whether the auditory perception method can effectively distinguish between different degrees of

gear faults under variable operation conditions.

Finally, the fifth chapter contains a general conclusion of the thesis as well as prospects for our

future work.
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Chapter one

General concepts and bibliographic synthesis

1. Introduction

The maintenance of industrial machinery and installations has become a key concern, both

for companies' productivity and for the overall national economy. The role of the

maintenance engineer is no longer limited to the detection of unexpected breakdowns but

must also focus on proactive measures to anticipate them. This task is particularly critical in

certain industrial sectors such as energy production (e.g., wind power) or in high-risk

industries such as hydrocarbon and chemical facilities. In such sectors, an unexpected failure

can result in significant material damage, environmental harm, and, most importantly, loss of

human lives.

Monitoring and prediction are indeed the best means to anticipate such failures or at least

reduce the probability of their occurrence. This can only be achieved through the use of

reliable tools. In this regard, vibration monitoring and diagnostics have been the most widely

used tool in the industry for several decades. Taking advantage of signal processing

advancements, this field continues to evolve day by day.

Over the years, researchers have developed diagnostic methods, often tailored for specific

faults in rotating machinery such as bearings and gears, enabling detection in the time domain,

frequency domain, time-frequency domain, and so on. However, the majority of these

methods were developed for steady-state operating conditions. In reality, we encounter

machines and installations on a daily basis that operate under variable conditions. Under such

operating conditions, monitoring and diagnosing such machines and installations using

conventional methods is practically impossible.

In recent years, the necessity of monitoring this type of machinery has prompted researchers

to work on two fronts: either adapting conventional methods to make them applicable in

variable operating conditions, or designing new methods.

This chapter presents a comprehensive literature review on the utilization of both objective

and subjective methods for detecting faults in rotating machinery, with a specific focus on
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gears. In the objective approach, recent signal processing methods have been explored,

particularly those employing time-frequency analysis techniques such as ICEEMDAN for

steady-state operation and order analysis for variable operating conditions. These methods

aim to extract relevant fault signatures from vibration signals and provide quantitative

measurements for fault detection and diagnosis.

In addition to the objective methods, the subjective approach has gained attention,

specifically in leveraging sound perception for fault detection. Although still in its nascent

stage, this approach shows promising potential for detecting gear faults. By capturing and

analyzing acoustic signals generated by the machinery, researchers have explored the use of

sound-based indicators and perceptual features to identify the presence of defects.

Furthermore, the integration of objective and subjective approaches has emerged as a trend in

fault detection research. By combining vibration analysis with sound perception, researchers

aim to improve the accuracy and reliability of fault detection systems. This hybrid approach

harnesses the strengths of both methods, providing a more comprehensive understanding of

the machine's health condition and enabling effective early fault detection.

Overall, this chapter highlights the recent advancements in objective and subjective methods

for fault detection in rotating machinery, shedding light on the potential of these approaches

in improving the reliability and maintenance strategies of gear systems. Before all of this,

general concepts about the field of maintenance, vibration analysis, and the different methods

used should be presented first to facilitate understanding of the different parts of the thesis.

2. Overview of Maintenance

Maintenance is a crucial aspect in ensuring the reliability and lifespan of industrial equipment.

It involves regular monitoring and repair of machinery to prevent unexpected breakdowns

and enhance their performance. In general, maintenance is an important element in ensuring

the proper functioning of industrial equipment and extending their lifespan. It can also help

minimize unforeseen downtime costs and improve overall productivity. There are several

types of maintenance: preventive maintenance that involves performing regular tasks to prevent

failures and breakdowns. This can include regular inspections, performance testing, planned

replacement of worn-out parts, corrective Maintenance is used to address issues that have already

occurred. This can involve repairs following failures, replacement of damaged parts, and finally

predictive Maintenance utilizes tools such as vibration analysis, thermal monitoring, oil analysis, etc.,

to detect potential problems before they cause significant damage or breakdowns.
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These different types of maintenance can be used individually or in combination to ensure the

reliability and lifespan of industrial equipment. The selection of the appropriate maintenance

type depends on the specificities of each equipment and work environment (see figure 1.1).

Figure 1.1. Different types of maintenance depending on time [1].

3. Tools for Monitoring Faults in Rotating Machinery

There are different analysis techniques used to monitor the degradation status or performance

of machine components such as gears and bearings. These techniques include vibration

analysis, acoustic emission, thermography, oil and lubricant analysis, variation in resistance

in an electrical circuit, etc. Monitoring these indicators is performed periodically to ensure

optimal equipment operation and prevent potential failures [2]. The figure (1.2) shows the

utilization rate of these different techniques in the industrial environment.
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Figure 1.2. Different analysis methods used in conditional maintenance [2].

3.1. Vibration Analysis

Vibration analysis is a technique that measures and analyzes the vibrations produced by the

movements of rotating machinery. It can help detect abnormalities in machine operation and

prevent failures. The three principles of vibration analysis are summarized in figure (1.3).

Figure 1.3. The three principles of vibration analysis [3].

The choice of the indicator used for monitoring the degradation status of a machine depends

on the type of machine and the type of failure one wants to detect. For rotating machinery,

vibration-based indicators are commonly used as they can detect most faults. A trend curve of
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the indicator over time is established, and different thresholds corresponding to an alert level,

an alarm level, and a failure level are defined. These thresholds are determined either through

experience or by applying a standard. Vibration severity charts are used to define the

different thresholds [2].

3.2. Thermal Monitoring

Thermal monitoring utilizes temperature sensors to measure the temperature of rotating

equipment. It can help detect anomalies in machine operation, such as overheating, which

may indicate potential failures.

3.3. Oil Monitoring

Oil monitoring utilizes oil analyzers to measure the properties of lubricating oil in rotating

machinery. It can help detect anomalies in machine operation, such as contamination or oil

equipment failures, which may indicate potential failures.

3.4. Acoustic Monitoring Systems

Acoustic monitoring systems use microphones to measure the sound level produced by

rotating machinery. They can help detect anomalies in machine operation, such as abnormal

noises, which may indicate potential failures. The use of these monitoring tools can help

detect failures in rotating machinery at an early stage, allowing for timely repairs to be

planned before a failure occurs and potentially damages the machine or causes production

downtime.

4. The diagnosis and monitoring through vibration analysis

Vibration analysis is a technique used to diagnose and monitor the health status of machines.

It involves measuring and analyzing the vibrations produced by the machine's movements.

The interest of failure diagnosis in the industrial field lies in productivity gains and

competitiveness of the sector, which depend on the essential control of production tool

availability and the quality of goods or services provided. There are two essential tasks in

diagnosis: observing failure symptoms and identifying the cause of failure using logical

reasoning based on observations. The various technical stages of industrial diagnosis

necessary for the design, development, and operation of diagnostic aid systems are

summarized in figure (1.4).
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The extraction of necessary information to form the characteristics associated with normal

and abnormal operations is done through appropriate measurement means or observations

conducted by surveillance personnel. There are two ways to estimate the physical quantity:

either through direct measurement using sensors or through indirect measurement based on

state estimators. The development of features and signatures associated with indicative

symptoms of failures and degradation is carried out for the purpose of dysfunction detection.

This decision-making process may lead to a shutdown of the installation if the consequences

are significant. When dysfunction is detected, pre-alarm and alarm thresholds need to be set

based on the measured deviation between the nominal signature and the measured one. To

determine these thresholds, decision tests need to be defined.

Vibration analysis is an important tool for maintaining the health of machines and preventing

breakdowns. Regular monitoring of machine vibrations is crucial for detecting anomalies and

taking corrective measures before they cause significant damage.

Figure 1.4. The different stages of industrial diagnosis.
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5. Common elements of different rotating machines

5.1. Relationship between the physical phenomenon and measurement

The vibrations felt or measured on a machine are, in fact, the response of the structure to the

sum of internal or external excitations (See Figure 1.5).

Figure 1.5. Vibratory response of a machine [4].

The measured signal is complex and rich in information. To simplify, we will focus on

showing a few examples of diagnostics through vibrational analysis.

5.2. Bearings

Bearings and rolling elements have an estimated lifespan provided by the manufacturer, but

this estimation is based on ideal load conditions. Factors such as contamination,

misalignment, lubrication or mounting errors, and random overloads can alter the bearing's

lifespan and cause unpredictable damage.

5.2.1. Generation of vibrations in a defective bearing

Let's consider an example of a defect on the outer ring of a bearing, which generates an

impact when the ball passes over it. This impact creates a vibration that propagates through

the bearing's outer ring and cage, which is referred to as an impulse. The phenomenon is

illustrated in figure (1.6).

Impulses in machines are characterized by their steep rise and short duration. The typical

frequencies of damage depend on the repetition of these impulses, while their amplitude

depends on the rotational speed, mechanical clearances, the defect itself, and the load

condition. The typical frequency of damage is influenced by the bearing's geometry and the

shaft's rotation speed. The relationships between these different variables are depicted in
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figure (1.7). Depending on the type of defect, there can be four typical impulse frequencies,

with rise and pulse times in the range of a few tens of microseconds.

Figure 1.6. Defect on the outer ring.

Figure 1.7. The failure frequencies of bearing components [4].

In the case of multiple defects, there will be harmonics of the previously calculated

frequencies. To determine these frequencies, it is necessary to have precise knowledge of the

dimensional characteristics of the bearing.
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5.3. Gears

Gears are mechanical components commonly used to transmit power and motion between

parallel or intersecting axes. Gears typically consist of two toothed wheels, one called the

"pinion" and the other the "gear," which mesh together to transfer force. During the initial

operation of machines, gear running-in is an important process to eliminate surface

imperfections and establish an optimal contact surface between the gear teeth. This process

ensures efficient and smooth operation of gears with minimal noise and vibrations. However,

other factors such as material quality, lubrication, alignment, etc., can also impact gear

operation. Therefore, regular maintenance of gears is crucial to ensure their long-term proper

functioning. Gears can have defects that can affect their operation. Common gear defects

include:

 Wear: Gear teeth can wear over time, leading to poor engagement between the teeth.

(See figure 1.8).

Figure 1.8.Worn gear.

 Extracted Tooth: Gear teeth can break due to impact or overload. (See figure 1.9).

Figure 1.9. Extracted tooth.
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 Deformation: Gears can deform due to heat, overload, or torsion, leading to defects in

tooth engagement. (See figure 1.10).

Figure 1.10. Deformation of teeth under overload.

 Excessive backlash: Excessive backlash between gear teeth can lead to premature wear

and poor engagement.

 Poor alignment: If gears are not properly aligned, it can result in excessive wear,

overheating, and premature failure. Therefore, it is important to take care of gears and

maintain them regularly to avoid these defects.

6. Common causes of gear defects

Gear defects can be caused by various factors, including:

 Overload: Is one of the most common causes of gear defects. It occurs when the load

applied to the gear exceeds its power transmission capacity. Overload can lead to the

formation of cracks, pitting, or other types of defects.

 Corrosion: Is another common factor that can cause gear defects. It occurs when gears

are exposed to corrosive environments, such as acids, bases, salts, or high humidity.

Corrosion can lead to the formation of cracks, pitting, or other types of defects (See

figure 1.11).
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Figure 1.11. Corrosion.

 Poor design: Can also cause gear defects. This can include errors in geometric

specifications, inappropriate material selection, or improper selection of operating

conditions.

 Fatigue: Can also cause gear defects. It occurs when gears are subjected to repeated

cyclic loads and can result in the formation of cracks.

 Improper assembly: This can include misalignment of shafts, inappropriate mounting

tensions, or incorrect installation of gears.

7. Impact of a defect on the performance of a gear transmission system

Gear defects can have serious consequences for the operation of mechanical systems,

including:

 Reduction in gear lifespan: Gear defects can significantly reduce the lifespan of gears.

They can lead to the formation of cracks that can propagate over time and result in gear

failure.

 Deterioration of power transmission quality: Gear defects can also lead to a

deterioration in the quality of power transmission. This can result in vibrations, noise, or

improper movements, which can cause damage to other components of the mechanical

system.

 Increase in energy consumption: This can occur when gears are subjected to additional

loads to compensate for the defects, which can result in overheating and increased energy

consumption.

 Reduction in reliability : Gear defects can also reduce the reliability of mechanical

systems. This can lead to unexpected downtime, additional costs for repairs, and a

decrease in productivity.

 Damage to adjacent components: Such as bearings, shafts, and housings.
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8. Objective approach based on vibration analysis for the detection of gear defects

Vibration analysis is a widely used monitoring technique for mechanical components and

industrial machines in operation. It can detect most faults that may occur in rotating

machinery, such as misalignments, imbalances, cracks, bearing defects and lubrication

problems. Sensors are used to measure the vibration and resonance frequencies of the

machine to detect anomalies and changes in vibration levels. The collected data is then

analyzed to determine the health of the machine and plan necessary maintenance. Vibration

analysis is widely used in many industries to optimize equipment availability and reliability.

[2]. Indeed, various calculated parameters are used in either the time domain, frequency

domain, or both, for this purpose.

There are several signal processing techniques that can be utilized to diagnose gear faults.

Here are some examples:

 Fourier Transform: Is a commonly used technique to convert a time-domain signal into

a frequency-domain signal. This allows for the analysis of the distribution of vibrational

energy in the frequency domain and the determination of predominant frequencies

associated with gear faults.

 Frequency Response Function (FRF) Analysis: Measures the vibratory responses of

gears at different excitation frequencies and helps determine resonance frequencies

associated with gear faults.

 Spectral Envelope Analysis (SEA): Allows for visualizing the distribution of

vibrational energy over time and can be used to identify gear faults.

 Cepstral Analysis: Utilizes an inverse Fourier transformation to convert a frequency-

domain signal into a time-domain signal. By employing these signal processing

techniques, it is possible to accurately diagnose gear faults and take the necessary

measures to address them.

There are other highly effective signal processing techniques for diagnosing gear defects.

Here are a few more examples :

 Wavelet Analysis: It is a time-frequency method that separates a time-domain signal

into different frequency components. Two versions of wavelet analysis have been widely

used for the detection gear defects, the Continuous Wavelet Transform (CWT) and

Discrete Wavelet Transform (DWT) still called Wavelet Multi-Resolution Analysis

(WMRA).
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 Impact Frequency Analysis (IF):Measures the vibrations caused by impacts between

gear teeth and can be used to detect defects such as shape defects and surface defects.

 Structural Defect Models (SDA): Are based on numerical simulation of gear vibrations

and can be used to diagnose gear defects by comparing simulation results with actual

vibration measurements.

 Correlation Analysis:Measures the similarity between vibrational signals measured at

different positions on gears and can be used to detect gear defects such as excessive

backlash and surface defects.

 EMD and its derivatives: Its family are indeed signal processing techniques that can be

used to diagnose gear faults. EMD is a non-linear decomposition technique that separates

a signal into several empirical modes, each representing a specific component of the

signal. The EMD family also includes techniques such as EEMD (Ensemble Empirical

Mode Decomposition Improved), CEEMD (Complete Ensemble Empirical Mode

Decomposition), and DEEMD (Detrended Empirical Mode Decomposition). These

techniques are based on EMD and are designed to handle noisy data and trends present in

vibrational signals.

CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)

and ICEEMDAN (Improved Complete Ensemble Empirical Mode Decomposition with

Adaptive Noise) are also signal processing techniques that can be used to diagnose gear

faults. CEEMDAN and ICEEMDAN employ an ensemble approach to decompose the

signal into multiple empirical modes, with adaptive noise estimation to enhance the

quality of the decomposition. CEEMDAN utilizes a multi-modal decomposition

approach to produce a series of empirical modes, while ICEEMDAN employs an

iterative approach to improve the quality of the decomposition.

EMD and its derivatives can be used to diagnose gear faults by isolating the frequency

components associated with the faults and comparing them to vibration standards for

gears in good working condition. The results from CEEMDAN and ICEEMDAN can

also be used to visualize vibrations over time and identify periods of abnormal vibrations

that may be associated with gear faults.

By using a combination of these signal processing techniques, it is possible to obtain a

comprehensive picture of gear faults and take the necessary measures to correct them.
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9. Subjective approach based on perceptive method for the evaluation gear defects

Perceptive tests are used to evaluate the sound quality of a prototype, compare it to

competing models, or generally identify the sound dimensions (such as aspects of timbre)

involved in the perception of noise produced by a specific object type. Several methods are

available, each characterized by its own implementation methodology and providing specific

results.

The use of paired comparison tests allows for assessing preferences or annoyance levels

related to a particular noise. Additionally, dissimilarity tests compare different sounds to

establish a perceptual space with one or multiple dimensions through principal component

analysis (PCA). The connection with physics is then established by seeking correlations

between the test results and a scalar indicator or a combination of scalar indicators calculated

from these signals.

9.1. Estimation of magnitude

This method has been widely used for estimating the level of noise. Its principle is to directly

ask the listener to assign a value proportional to their sensation. It is possible to present the

listener with a reference stimulus to which an imposed reference value is assigned. This

results in a scale of sensation ratios. However, this method is rarely used for real sounds.

9.2. Absolute evaluation

The listener is required to provide an evaluation of the sound characteristics, and responses to

specific questions are performed on a MATLAB interface, as shown in figure (1.12). The

response for each sound, represented by numbers on a scale from 0 to 1, depends on the

judgment of the listeners, ranging from very similar to very dissimilar, respectively. Analysis

of variance methods are then used to assess the significance of differences between the

average values of each sound [5].
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Figure 1.12 Scales of absolute evaluation.

9.3. Comparative evaluation

This method combines both the principles of evaluation and comparison. The listener must

listen to the sounds as many times as they want before providing a response. This method is

faster than pairwise comparison and more precise than absolute evaluation. However, the

results of this method may correspond to an ordering of the sounds rather than a direct

comparison.

9.4. Categorization

The principle consists of asking the listener to group the sounds into categories based on their

perceived similarities in relation to the tested characteristic. If two sounds are classified in the

same category, they are assigned a 1; if they have never been classified together, they are

assigned a 0. This allows us to create a matrix called "pseudo-distances" that helps determine

groups of sounds with similar characteristics. The great advantage of this method is that it

allows us to select a few sounds that best represent the entire set of stimuli on which more

detailed studies can be conducted.

9.5. Similarity measurement

Multidimensional Proximity Analysis, also known as similarity measurement, aims to

represent estimated dissimilarities (similarities) between stimuli by distances between these

stimuli represented as points in a multidimensional space. These points will be further apart

in the space if the corresponding stimuli were perceived as more dissimilar [6]. This space
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allows for exploring the number and nature of the dimensions underlying the estimations of

dissimilarities.

9.6. Pairwise comparison

This method involves comparing two stimuli and indicating which one is preferred, which is

easier than evaluating each of them separately due to the limited capacity of auditory memory.

Initially, the listener must listen to all the sounds under study. In practice, for N sounds, the

number of pairs corresponding to the upper triangular matrix is N*(N-1)/2. Generally,

listeners perform their task with seriousness, which reduces the extent of this risk. Therefore,

it is preferable to allow the response "the two sounds are equivalent," making the test more

comfortable for the listener [7].

The order of presentation of pairs should ensure that two consecutive appearances of the

same sound are as far apart as possible. This is because if all the sounds were successively

compared to one of them, specific characteristics of that sound could gain excessive

importance and influence the responses. Techniques exist to construct sequences of pairs that

satisfy these conditions. The idea is to randomly permute the order of sounds for each listener

before constructing the sequence of pairs.

The responses of the listeners are coded numerically as either 0 or 1. The first step of analysis

involves calculating the number of circular errors made by each listener. One limitation of the

pairwise comparison method is the number of stimuli, as N sounds result in a minimum of

N*(N-1)/2 pairs. For example, with 15 sounds, this represents 105 pairs. If each sample has a

duration of six seconds, the minimum listening duration would exceed 35 minutes, which is

very long for a listener and carries the risk of lower quality responses [6].

9.7. Dissimilarity experiment

The proximity data collected can be obtained from different types of judgments. We

distinguish direct judgments, ordered judgments [8], triadic judgments [9-10], and tetradic

judgments [11]. Here, we will only focus on the direct judgments used in our experiments.

The listener must judge the degree of dissimilarity for each pair in a set of stimuli. The term

"dissimilarity experiment" is generally used for this type of protocol. In these types of studies,

the listener typically has no other task than to evaluate the dissimilarity between pairs of

objects. Specifically, no instructions are given to pay attention to specific attributes that may

characterize the stimuli, except, for example, in cases of comparisons between countries,
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which can be judged based on a large number of criteria. The data is then collected and

organized into a matrix, which can be triangular if only proximities are considered, or

complete if both symmetrical proximities are also collected. In the latter case, since the

values provided by the subjects will generally differ from each other, these differences will

be treated as noise in the data, which can be ignored by averaging the proximities and . This

dissimilarity matrix will then serve as input for multidimensional analysis programs [12].

10. Bibliographic synthesis

10.1. Objective approaches for the detection of gear defects in constant regime

Gearbox is a vital element in any power transmission system on rotating machine especially

for important torque. It is used to transfer the motion by increasing or decreasing the rotation

speed in several systems, such as vehicles, machine-tools, wind turbines, etc.

Vibratory analysis using several signal processing methods is the most popular approach

widely used in condition monitoring and diagnosis procedures. In literature, there are many

works in this respect where authors used different signal processing methods, online or

offline, on rotating machines to identify specific mechanical defects generating mainly

impulsive forces. To avoid unscheduled shutdown of the gearbox, there is always continues

need for a reliable diagnosis method to detect the defect in its early stage. The classical

methods are mainly based on spectrum or cepstrum analyses.

In the frequency domain, spectrum analysis is known as the basic and oldest method. When

the defect size grows, the amplitude of the meshing frequency increases. Moreover, in this

case a modulation phenomenon occurs, characterized by sidebands around the meshing

frequency spaced by the rotation frequency of the shaft carrying the defective gear [13]. In

some cases, these sidebands are not clearly visible on the spectrum, using cepstrum analysis

is then necessary. This method consists of calculating a vector, named the cepstrum, which

represents the inverse Fourier transform of the spectrum logarithm. Many applications of this

approach have been widely used [14-16].

Cousinard et al. [15]conducted a study to evaluate two diagnostic methods, namely cepstral

analysis and envelope analysis, to detect damage on the teeth of gears operating at low speeds.

They used an accelerometer placed on the housing of a gear reducer in a paper mill consisting

of four sets of 91-tooth cylindrical wheels with a diameter of 1.5 m, driven by a gear train of

51 teeth each one. By comparing the cepstra and the envelope spectra measured in the radial,

horizontal and axial directions for different measurement points, they were able to identify
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the origin of the failure. The results show that the two methods are effective for the detection

of this type of defect, providing a finesse of analysis which makes it possible to obtain an

accurate diagnosis. In addition, envelope analysis has proven to be a complementary

technique to cepstral analysis, which is penalized by its high sensitivity to noise and random

speed fluctuations.

Since these methods are limited and not adaptable to analyze transient phenomena, time-

frequency approaches are developed and favored to use in gear defect detection. The wavelet

analysis is undoubtedly the most popular time-frequency method applied in rotating machine

faults detection. especially rolling bearing and gear defects. Djebala et al. [17] presented a

study based on the parametric optimization of Wavelet Multi-Resolution Analysis (WMRA)

to identify rolling bearing defects. The kurtosis was used as an optimization and evaluation

criterion. The experimental results show the reliability of this method in the detection of

different types of bearing defects. Also, it was used in the literature for gear defects diagnosis

in its continuous or discrete versions [18-21]. Moreover, the authors found that the

application of the WMRA on pass-band filtered signals gives better results than its

application on wide-band or the use of simple pass-band filtered signals. This optimized

WMRA was successfully applied to detect simple and combined gear defects in [16].

Chiementin et al. [22] proposed a new wavelet shape adapted to shock signals, with a

methodology of reducing the computing time, which is demodulation by a semi-wavelet. The

importance of this semi-wavelet lies in a better representation of the signal and its

instantaneous use. Three methods are applied, two classical wavelet methods and half-

wavelet demodulation. The latter has a particularity that could detect multiple defects on the

same ring thanks to its better resolution due to its shape and reduced computing time. On the

other hand, the classical methods can only detect one defect with a significant computation

time.

In more recent work [23], the kurtosis and the entropy were compared to a new index to

detect rolling bearing and gear defects. Theoretical and experimental results show that the

proposed index is less affected by impulsive noise, can detect incipient defects, and provide

monotonic trending for bearing and gear degradation assessment much better than kurtosis

and negative entropy.

Bouzouane et al. have developed a method for monitoring and diagnosing faults in rotating

machines that can be integrated into a maintenance program. They used two types of wavelet

transformation, namely discrete by Daubechies wavelet and continuous by Morlet wavelet, to
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implement this method in real cases. The signals were measured on a test bench on which

two types of fault were simulated: the first caused by an imbalance and the second by a fault

in meshing. The results obtained indicate that the multi-resolution method (using Daubechies

wavelet) is more appropriate for the identification and tracking of unbalance, while the

continuous transform (using Morlet wavelet) is better suited to the analysis of non-stationary

signals, such as those generated by a defect on the gear tooth [24].

A significant advance in the vibration diagnosis of rotating machines is undoubtedly using

reliable periodic methods based on cyclostationarity and separating the cyclic component

from the signal [25-26]. Among these methods, the cyclostationarity formulation has several

advantages for analyzing such signals compared to conventional approaches. It allows

understanding a wide range of behaviors with the same tools, from simple deterministic

periodicity to non-stationary randomness [27-28]. Second, it explicitly integrates a temporal

dimension that allows following non-stationarity in the systems under study. Third, this

analysis enables discovering the amplitude modulations present in the vibration signals [29-

30]. This modulation varies depending on the signal components, which can often provide

valuable data.

Urbanek et al. [31-32] reported that the Modulation Intensity Distribution (MID) returns

information similar to spectral correlation density. The authors proved that the Integration of

the Modulation Intensity Distribution (IMID) is the optimal method for detecting the

secondary component of cyclostationarity in the vibration signal. Recently, Kebabsa et al.

[33-34] used the cyclostationarity method to diagnose a turboalternator and a turbofan in an

industrial environment, respectively. Their study highlighted, with great efficiency, various

defects such as friction and oil swirl defects in the plain bearings, blade defects, and

generalized wear on the reducer’s gears. It was also possible to highlight all the modulations

in the signals measured in low and high frequencies based on the MID and IMID.

Babouri et al. [35] also used cyclostationarity in a comparative study with other signal

processing methods on vibratory signals measured either on an experimental setup or in an

industrial environment. Statistical analysis, FFT, envelope analysis, and some time-frequency

methods such as Wavelet Multi-Resolution Analysis (WMRA) were used in this work. The

results show that these methods have significant limitations when analyzing non-stationary

and non-linear signals and confirm the ability of cyclostationarity to diagnose real mechanical

defects in an industrial environment. Assaad et al. [36] used a technique to process a

cyclostationary signal from a planetary motion transmission gearbox composed of multi-stage
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gears. The authors used the first-order cyclostationarity to synchronize the average of the

vibration signal, which allows defect location. A combination of cyclostationarity and

autoregressive modeling is used to increase the detection and diagnostic capability.

Huang et al. [37] proposed a new method under the name of Empirical Mode Decomposition

(EMD). Contrary to wavelet analysis, the EMD does not need analyzing wavelet mother, the

signal is decomposed by itself using an adaptive decomposition method. The EMD has been

widely used for rolling bearing and gear fault detection [38-40]. It has been also combined

with other signal processing tools to provide robust hybrid methods as the wavelet multi-

resolution analysis in [41].

Note that EMD and AMRO have proven their effectiveness in other applications, besides

fault diagnosis. Babouri et al. combined AMRO and EMD to track and monitor cutting tool

wear during the turning of a steel part without lubrication. These vibrational signals were

measured under different cutting speed, depth of cut, and feed configurations using a carbide

tool (TiCN/Al2O3/TiN). The results obtained demonstrate that the proposed hybrid method

allows for optimization and meaningful evaluation of the cutting tool's wear condition,

surpassing what can be achieved by applying AMRO and EMD separately. [42].

Even with its reliability in fault detection, this method has faced the mode mixing problem,

where different scales may be consisted in one Intrinsic Mode Function (IMF), which could

lead to false diagnostics. To solve this problem a new version of the EMD is proposed, the

Ensemble Empirical Mode Decomposition (EEMD) [43]. The EEMD is a noise-assisted data

analysis, it consists in adding a white noise to the signal and calculating an ensemble of trials

using the original EMD, and the mean of the result of each ensemble represents the true IMF.

Unfortunately, the provided solution causes more computing time. Even with that, the EEMD

has been used for the detection of rolling bearing defects [44-46], and gear defects [47-49].

The EEMD has also another limitation concerning the residue of the added white noise that

still exists in the new reconstructed components from the IMFs even after applying the

averaging process.

To overcome this limitation, a new algorithm called Complete Ensemble EMD with Adaptive

Noise (CEEMDAN) was presented by Torres et al. [50]. It provides a complete

decomposition with numerically negligible error. This proposed method is a very recent

signal decomposition technique that has been applied on the first time on biomedical signal

(ECG), where the results gave better spectral separation of mode function. Many authors

have discovered that the CEEMDAN could be successfully implemented in monitoring and
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machine fault diagnosis [51-54]. Xiao et al. [55] show the efficiency of combining

CEEMDAN with Teager Energy Operator for bearing fault diagnosis. CEEMDAN is used to

decompose the signal and reduce the noise, and according to the correlation coefficient

criterion the most sensitive component is selected and its Teager energy operator is calculated

to extract the fault. In the same context, an energy weighting method based on time-

frequency spectrum analysis is proposed to extract weak impact features under strong noise

background [56]. Sometimes, combining two methods may give us more information about

the defect, as in the work of Dong et al. [57] to extract rolling bearing defects using the

CEEMDAN and Multi-scale Fuzzy Entropy (MFE).

Trying to improve the CEEMDAN and recover its shortcomings, Colominas et al. [58]

proposed the improved version of the complete ensemble EMD with adaptive noise

(ICEEMDAN). Several real biomedical signals are treated, the results show that the obtained

components have less noise and more physical meaning. However, the ICEEMDAN is only

in its first applications in the field of fault detection in rotating machines [59-61].

10.2. Objective methods for variable-speed gear fault detection

Unfortunately, most of these methods are not useful to analyze variable signals. The need to

monitor machines working in variable condition (speed, load) leads researchers to adapt

classical methods to the variable regime or developing new ones. Several researches have

been made for rolling bearing and gear defects in variable regime [62-65], however their

number remains far lower than that of the constant regime.

The article proposed by Nguyen Trong Du [66], based on a new method for detecting gear

faults in gearboxes operated in non-stationary conditions without the need for a tachometer.

The method is based on variable sideband analysis (VSA) of the gearbox vibration signals.

The VSA method involves extracting the sidebands of the gearbox vibration signal using the

Hilbert transform and then analyzing their amplitude and frequency variations over time.

The proposed method is evaluated using simulation data and experimental data collected

from a gearbox operated in non-stationary conditions. The results show that the method can

effectively detect gear faults even in the absence of a tachometer. The method is also shown

to be robust to changes in operating conditions, such as changes in load and speed. The

authors conclude that the proposed method has the potential to improve gear fault detection in

gearboxes operated in non-stationary conditions, which can lead to more effective

maintenance and increased machine reliability.
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The article proposes a new method for diagnosing planetary gearbox faults under variable

speed conditions. The method is based on the scaling operator demodulation spectrum

(SODS), which is used to analyze the vibration signals of the gearbox. The SODS method

involves decomposing the vibration signals into different frequency bands using the

continuous wavelet transform (CWT), and then calculating the SODS of each band.

Dezun Zhao et al. [67] are introduced a new method to diagnose faults in planetary gearboxes

that operate under varying speeds. The method relies on the scaling operator demodulation

spectrum (SODS) to analyze the gearbox's vibration signals. This involves decomposing the

signals into various frequency bands using continuous wavelet transform (CWT) and

computing SODS for each band.

To evaluate the method's effectiveness, the authors used both simulated and experimental

data from a planetary gearbox operating under variable speed conditions. Results indicate that

the proposed method can detect different types of gearbox faults, including gear tooth

breakage and wear, with a high degree of accuracy. Moreover, the method shows resilience to

changes in load and speed. Based on these findings, the authors suggest that the proposed

approach can significantly enhance the diagnosis of planetary gearbox faults under variable

speed conditions. This, in turn, can lead to more efficient maintenance practices and

improved machine reliability.

Farhat et al. [68] presents a numerical model developed to analyze the behavior of a single

stage gearbox operating under variable operating conditions. The study focuses on capturing

the effects of changing speeds and loads on the gearbox performance.

They start by providing an overview of the importance of studying gearboxes operating in

variable regimes, highlighting the challenges and the need for accurate modeling and analysis

techniques. They emphasize that conventional models and methods designed for steady-state

conditions may not be suitable for capturing the dynamic behavior of gearboxes under

variable regimes.

The numerical model presented in the article is based on mathematical equations and

algorithms that account for the dynamic behavior of the gearbox components, including gears,

bearings, and shafts. The model incorporates parameters such as gear mesh stiffness,

damping, and contact forces to accurately simulate the interaction between the gearbox

components.

To validate the model, the researchers compare the numerical results with experimental data

obtained from a test rig. The comparison demonstrates the model's capability to accurately
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predict the gearbox behavior under variable operating conditions. The article concludes by

highlighting the significance of the developed numerical model in understanding the

performance and reliability of gearboxes operating in variable regimes. The model can be

used for further studies, such as optimizing gear design, analyzing the effects of different

operating parameters, and assessing the gearbox's response to varying loads and speeds.

Overall, the article contributes to the field of gearbox analysis by providing a numerical

model that can effectively simulate and analyze the behavior of single stage gearboxes under

variable operating conditions.

Merzoug et al. [64] highlights the need for adapted monitoring techniques to detect gear

faults in gear transmissions operating under variable regimes. The study presents a

specialized vibratory monitoring approach that combines signal processing and machine

learning to analyze vibration signals from the gear system. Experimental validation

demonstrates the approach's effectiveness in accurately detecting gear faults and assessing

overall gear health. The article emphasizes the significance of vibratory monitoring in

improving reliability and maintenance strategies for gear transmissions in variable regimes,

offering early fault detection and reducing the risk of unexpected failures. Overall, the study

contributes to the field of gear transmission monitoring by introducing a tailored vibratory

monitoring approach for variable operating conditions.

Hammami et al. [69] explores the use of the CEEMDAN method to analyze the dynamic

behavior of a defective spur gearbox operating under an acyclic regime. The study

emphasizes the need for advanced analysis techniques for gearboxes under such conditions.

The article focuses on applying CEEMDAN, a signal processing method that decomposes

vibration signals into intrinsic mode functions (IMFs), to analyze the gearbox vibrations.

Experimental tests on a defected spur gearbox were conducted, and CEEMDAN was found

effective in capturing the gearbox's dynamic behavior. The method enables accurate fault

detection and diagnosis by revealing distinct fault-related frequency components and their

time-varying characteristics. This research contributes to improving the understanding and

maintenance strategies for gear systems operating in acyclic regimes.

In the article of Chaabi et al. [62] a new method is performed to improve monitoring rolling

bearing defects in variable regime using ICEEMDAN, multivariate denoising, and order

analysis. The proposed method has been successfully applied on simulated and experimental

signals measured in variable regime. For several years intelligent systems have been used to

provide automatic detection of defects in industrial systems.
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10.3. Subjective methods for detecting gear defects

Several works have been carried out in diagnosing and evaluating the severity of defects,

mainly in gears and bearings, using a subjective method. Among the subjective methods

found in the literature, sound perception is simple to use and does not require prior

knowledge of signal processing. It uses sounds generated by defects and listening tests in

which any listener can participate provided they have healthy audibility. In addition, several

researchers have been studying and refining the perceptual impact of sounds and seeking to

correlate them with the most appropriate scalar indicators calculated from the measured

signals.

The sound perceptive approach has been used in several fields, including the work carried out

by Parizet et al. [70], where it was used to study the noise in a high-speed train at different

locations. The authors carried out a study concerning the usual physical or psycho-acoustic

parameters. The test results indicate that the first factor influencing the perception of noise in

a high-speed train is the intensity, which the overall weighted signal level can correctly

describe. On the other hand, the influence of loudness is practically the same for all listeners.

The use of sound perception in the diagnosis of defects in rotating machines is very recent. In

the study carried out by Younes et al. [5-71-72], the authors applied the sound perception

method to several types of defects. In [5], the authors used this method to classify real gear

defects based on signals measured every two hours over several days. The authors also used

the same method for experimentally simulated gear defects on several wheels in a test bench.

In [71], the authors applied it to single and double gear and bearing defects. The results show

that despite the difference between the two types of defects, the sound perception gives

acceptable results where listeners distinguish bearing defects from gear defects. However, the

correlation ratios obtained remain relatively low. To improve them, the authors proposed in

another paper [72] the equalization of the sound pressure levels of the different sounds to

help listeners focus on the content of the sounds and not on their pressure levels, which

considerably improved the correlation ratios. In all their work, the authors show the

possibility of ranking the defects of single and double gear and bearing defects in ascending

order of degradation, according to the type and size of the defect, in a two-dimensional

perception space. The correlation of the sound perception results, obtained by the pairwise

comparison method, with the scalar indicators of the measured signals has resulted in

mathematical models with good coefficients of determination, which can be effectively used

in the monitoring of the evolution of the defect size in rotating machines.
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Despite its efficiency in constant regime, the sound perception approach has never been

applied to detect rolling bearing or gear defects in variable regime. This is perhaps due to the

difficulty for the auditors to distinguish the different sounds in acceleration or deceleration

rates.
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Chapter Two
Detecting gear defects in a noisy environment
using objective and subjective approaches:
case of steady-state regime

1. Introduction

In light of the substantial global technological advancements, there exists a pressing need to

ensure the safety of workers who are exposed to exceptionally high noise levels originating

from rotating machinery. This elevated use of rotating machinery is primarily driven by their

increasingly high rotational speeds and prolonged operational periods. It's important to note

that these machines are susceptible to damage and unexpected breakdowns, leading to

unscheduled downtime. The expenses associated with production stoppages significantly

outweigh those incurred in repair activities. Consequently, the prevention of machinery

damage holds paramount economic significance for all companies. Moreover, the noise levels

produced by machine operations, exacerbated by defects within various mechanisms, can

surpass international standards governing noise levels within workshops, as stipulated by ISO

(1999).

The objective of this chapter is to formulate and establish two methods for detecting defects

in gears. These methods are grounded in both subjective and objective approaches. The

efficacy of the proposed methods is put to the test and validated using defective gears

operating within a noisy environment under steady-state conditions.

2. Mathematical foundations of the subjective approach

The approach employed in this thesis that relies on subjective assessment primarily centers

around the sound perception method, the theoretical framework of which was introduced in

chapter 1. In the subsequent sections, we will expound upon its mathematical underpinnings

in a clear and explicit manner.
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2.1. Sound perception tests

Perceptual assessments serve to dissect various sound attributes and uncover the perceptual

dimensions that listeners employ to discriminate among audio stimuli. Utilizing relative

difference metrics, we are able to construct a matrix that captures the perceived disparities

among these stimuli. The dimensions themselves are unveiled through the application of the

Multi-Dimensional Scaling (MDS) method [1]. In multidimensional space, the MDS

represents the dissimilarities of stimuli perceived by the listeners.

2.1.1. Multi-dimensional scaling method

This technique enables the representation of objects within a spatial framework by leveraging

the proximity relationships between each pair of objects. In this space, it becomes possible to

represent each individual object. Various algorithms have been developed to determine the

coordinates of objects in this space based on the distances between them. Some of these

algorithms can account for the unique characteristics of different subjects or groups of

subjects exposed to different stimuli, and in some cases, they can consider both aspects

simultaneously. In this study, the multi-dimensional scaling analysis algorithm employed is

the INDSCAL model, which stands for INdividual Differences SCALing. Originally

introduced by Caroll and Chang [2-3], the INDSCAL algorithm is based on the assumption

that despite that the auditors use the same dimension, they don’t attribute them the same

weight. Equation (2.1) takes into account the different weights attributed by the listener as

��� :

��� = �=1
	 ��� 
�� − 
��

2∑ 1/2
(2.1)

where, ���� is the distance between objects i and j according to the subject k. Xir and Xjr are

the coordinates of these objects on the dimension r of the perceptive space.

2.1.2. The Bravais-Pearson correlation coefficient

The Bravais-Pearson correlation coefficient is a statistical measure that expresses the strength

and direction (positive or negative) of the linear relationship between two quantitative

variables. It is a measure of linear association, which assesses the ability to predict one

variable (x) based on another variable (y) using a linear model [3].

It allows measuring the strength of the relationship between two quantitative variables.

Therefore, it is an important parameter in the analysis of linear regressions (simple or

multiple). However, this coefficient is zero (r=0) when there is no linear relationship between
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the variables (although it does not exclude the existence of a non-linear relationship).

Additionally, the coefficient is positive if the relationship is positive (direct, increasing) and

negative if the relationship is negative (inverse, decreasing). This coefficient ranges between

-1 and +1; the stronger the linear relationship, the closer the coefficient is to +1 or -1, while a

coefficient closer to 0 indicates a weaker relationship.

A value close to +1 indicates a strong relationship between the two variables. The linear

relationship is positive (meaning the variables vary in the same direction). A value close to -1

also indicates a strong relationship, but the linear relationship between the two variables is

negative (the variables vary in opposite directions). A value close to 0 indicates an absence of

a linear relationship between the two variables.

The calculation:

The Bravais-Pearson correlation coefficient (r) between two variables X and Y is computed

using the covariance and standard deviations by applying the following formula (eq 2.2):

r = X, Y = Cov(X,Y)
σX∗σY (2.2)

2.1.3. Determination of the number of dimensions

Experimenters have the prerogative to select the number of dimensions in which they wish to

represent the data. There are various criteria at their disposal to guide this decision. Initially,

the experimenter can compare the minimum constraint values obtained for different

dimensional settings:

������ = (�,�)∈� ( ��,�−���,�)2∑

(�,�)∈����,�2∑
(2.3)

dij,k represents the Euclidean distances, δij,k is the dissimilarity measures between conditions i

and j for subject k. The experimental procedures employed to assess discomfort or any other

perceptual attribute can be categorized into two main types: absolute evaluations and paired

comparisons of sounds. In absolute evaluations, each sound is independently evaluated by the

listener, irrespective of the other sounds. However, for a smaller set of sounds, the second

method is generally preferred. In this approach, known as paired comparisons, listeners

compare two sounds, which tends to be more manageable for non-specialist individuals than

performing an absolute evaluation. The Ross series is frequently utilized to construct

sequences of sound pairs for the comparison task. Listener responses are digitally coded on a
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scale ranging from 0 to 1. For further elaboration on sound perception, additional information

can be found in [4-5].

3. Mathematical foundations of the objective approach

3.1. Wavelet Multi-Resolution Analysis (WMRA)

WMRA is a very strong time-frequency method used is several domains to analyze transitory

phenomena. Instead of cosine functions used by Fourier transform, wavelet analysis is a

mathematical transform that uses an analyzing functions named wavelet derived from a

wavelet mother after translation and scaling. The wavelets can be expressed in the following

form:

!",# � = 1
"!

�−#
" (2.4)

with, a scaling or expansion parameter and b translation parameter.

In its continuous form, wavelet analysis is given by

$�% ", # = 1
" −∞

+∞ �(�)( ∗ !∗( �−#" )�� (2.5)

Where !∗ is the conjugate of !.

The discrete version of the wavelet analysis was developed by attributing constant values, 2m

and n2m, for parameters a and b, respectively (n and m integers) as follows:

(2.6)

In 1989, Mallat [6] proposed a practical algorithm for the DWT called Wavelet Multi-

Resolution Analysis (WMRA). In the proposed algorithm, the analyzed signal passes through

a waterfall decomposition using a pair of filters. The low-pass filter allows to isolate the low-

frequency components of the signal, called approximation coefficients cAj. The high-pass

filter allows obtaining the detail coefficients cDj corresponding to high-frequency

components.

Throughout the decomposition, these vectors undergo down-sampling, which necessitates

their passage through two additional reconstruction filters. These filters facilitate the retrieval

of approximations Aj and details Dj. Consequently, the original signal can be reconstructed

using the derived sub-signals as follows:

)�% *, + = 2−*
2 −∞

+∞ �(�)( ∗ !∗(2−*� − +)��
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Djebala et al. [7-8] proposed an optimized version of the WMRA especially adapted for

defects inducing periodical shocks. Using the kurtosis as main criterion, a parametric study

has been carried out for the selection of several parameters. In this study, the optimized

Wavelet Multi-Resolution Analysis (WMRA) is employed for the analysis of vibratory

signals that have been measured. Figure (2.1) serves as an illustrative example, demonstrating

the decomposition process for the case when n=3.
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3.2. Cyclostationary analysis

Cyclostationarity is a technique primarily centered around the Modulation Intensity

Distribution function (MID), which serves as a method for detecting and identifying

modulations within a signal. Originally, the MID technique was developed for diagnosing

defects in gears, rolling, and journal bearings. The spectral correlation density plays a crucial

role in identifying amplitude modulations characterized by symmetrically spaced sidebands

in the spectra. It enables the representation of modulation indicator values on a frequency

spectrum plot, with respect to both the carrier frequency f and the modulation frequency α.

Within the realm of mechanical signal analysis based on cyclostationary properties, two

primary methods for detecting modulations are employed: spectral correlation (IMID) and

spectral coherence (MID). The core algorithm of the MID utilizes a sideband filter,

(2.7)

Figure 2.1. Waterfall decomposition in three levels. (6)
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facilitating the extraction of signals that may contain the corresponding modulation

components. The formulation of functions f and α for a given Δf is referred to as the

Modulation Intensity Distribution (MID), and it can be expressed as follows [9]:

,-)∆/0�$ = �$12 / + 2
2 �$12 / − 2

2 (2.8)

The upper index PSC is the product of the spectral correlation. The degree of

cyclostationarity proposed in [10] represents the ratio between the energy 2 ≠ 0 and

2 = 0 for a stationary signal; its mathematical expression is given by:

)�$2 = 	12 2 2�2 	10 2 2�2(( (2.9)

Equation (2.9) can be rewritten using spectral correlation:

)�$2 = �$12 2 2�/ �$10 2 2�/(( (2.10)

The Modulation Intensity Distribution (MID) is inherently a function of both the carrier

frequency f and the modulation frequency α. However, presenting it in three-dimensional

form can lead to challenges in interpretation and the automated decision-making process,

especially in industrial monitoring systems [11]. As a practical solution, it may be more

convenient to represent the MID not as a surface but as a curve that depends solely on the

frequency modulation after integrating it over a range of carrier frequencies. This integration

results in the creation of the IMID (Integrated Modulation Intensity Distribution), which

becomes a function solely of the cyclic frequency. This approach allows us to effectively

showcase the periodicity within the signal while simultaneously reducing the complexity of

the analysis. An added advantage of IMID is its applicability in selecting the carrier

frequency for the entire frequency band [12].

-,-)/1
/2 2, ∆/ = /1

/2,-)∆/ /, 2 �/( (2.11)

where, ,-)∆/ /, 2 is a vector calculated in the carrier frequency band from f1 to f2.

3.3. Improved CEEMDAN

The EMD (Empirical Mode Decomposition) allows for a multi-scale decomposition by

successively exploring the different scales of the signal, from the finest (first IMF) to the

coarsest (last IMF or residue). Although it offers a discrete scale decomposition, unlike the

wavelet transform, the scales of EMD have significant particularities. In fact, the scales are
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adaptive, meaning they are determined by the scales present in the signal rather than a

predetermined grid. Moreover, the notion of scale in EMD is linked to the spacing between

extrema, which differs greatly from the notion of scale relative to a given waveform, as is the

case for the wavelet transform. Furthermore, the scale of an IMF is defined locally based on

the spacing between extrema, rather than globally. However, adaptivity and locality are also

responsible for a flaw in EMD called "mode mixing." This problem occurs when the signal is

composed of multiple components, some of which are not present throughout the duration of

the signal. In this situation, it may happen that some components that one would like to see

grouped in a single IMF are distributed over several IMFs, as shown in the example presented

in figure (2.2) (left): a signal composed of three components, a permanent sinusoid (50 Hz)

and two sinusoids localized in time, one of higher frequency than the permanent sinusoid

(100 Hz) and the other of lower frequency (30 Hz). The representation of the IMFs (Figure

2.2, right) shows that the first IMF captures the highest frequency component at all times and

therefore contains the permanent component (50 and 100 Hz), except when the high-

frequency component (100 Hz) is present. The part of the permanent component located at

the high-frequency component is then shifted to the second IMF.

For fault diagnosis through EMD analysis, mode mixing renders the IMFs devoid of physical

meaning and can lead to a false diagnosis. When the mode mixing is founded in EMD

method, the EEMD overcomes this problem with a noise-assisted analysis (see figure 2.3).

The EEMD calculates an ensemble of trials using the original EMD, and adding to each trial

a different composition of white noise of finite variance. This method can be summarized as

follow [13-16].

1. A new signal is generated 1� � = 1 � + 5�(�) , where 1(�) is the original signal

and 5� � [� = 1…. -] are different composition of white Gaussian noise.

2. After decomposing 1� � by the EMD, different -,:�� (�) are obtained, where � = 1…-
indicate the modes.

3. Finally, the average of the corresponding IMF is obtained by -,:�(�); ;;;;;;;; =
1
- �=1

- -,:��∑ (�), where -,:�; ;;;;; is the k-th mode of x(t).
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Figure 2.2. Signal sum and its components (left). The IMFs representing mode mixing (right).

The high computing time and the residue of added noise present in the obtained IMFs are the

main problems of the EEMD approach (see figure 2.3). To overcome this limitation Torres et

al. [17] proposed a new algorithm named CEEMDAN based on adding a white noise in a

specific frequency band during the decomposition of the signal. <�(. ) is defined as an

operator which, given a signal, produces the j-th mode obtained by EMD, =� represents the

Signal to Noise Ratio (SNR), the steps of the CEEMDAN algorithm as proposed by Torres

are then the following : (see figure 2.4, 2.5):

1. Decompose I realization of 1 � + =05� � by EMD to obtain the first -,:1; ;;;;; by

averaging:

-,:1(�); ;;;;;;;; = 1
- �=1

- -,:1�∑ (�).

2. Calculate the first residue as: �1 � = 1 � − -,:1(�); ;;;;;;;; .

3. Decompose I realization of �1 � + =1<1 5� � until their first EMD mode and

calculate the second mode: -,:2(�); ;;;;;;;; = 1
- �=1

- <1(�1 � + =1<1(5�(�)))∑ .

4. For k=2…. K, calculate the k-th residue: �� � = ��−1 � − -,:�(�); ;;;;;;;; .

5. For k=2…. K, define the (k+1)-th mode as: -,:�+1(�); ;;;;;;;;;; = 1
- �=1

- <1(�� � + =�<�(5(�)))∑ .
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6. Go to step 4 for next k.

The last steps are repeated until the obtained residue is no longer to be decomposed: � � =
1 � − �=1

> -,:�(�); ;;;;;;;;∑ .

With k is the total number of modes. The original signal 1 � can be presented in the end as:

1 � = �=1
> -,:�(�); ;;;;;;;;∑ + �(�).

Figure 2.3. Comparison between EMD (left) and EEMD (right) [12].



Chapter two: Detecting gear defects in a noisy environment using objective and subjective approaches: case of steady-state regime

44

Figure 2.4. Comparison between EEMD (left) and CEEMDAN (right) [12].

Figure 2.5. Comparison between the number of iterations of EEMD (left) and CEEMDAN

(right) [12].

Even with the CEEMDAN algorithm, a little residual noise still exists in the obtained IMFs.

Colominas et al. [18] proposed a new improved version of this method applied on theoretical

and ECG real signals. It has shown to be more effective than all the previous versions (EMD,

EEMD and CEEMDAN).
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The improved CEEMDAN algorithm is presented in brief as below (1):

1.Use EMD algorithm to calculate the local means of : 1� � = 1 � + =0<1(5�(�))
To obtain the first residue: �1(�) = (,(1�(�))) , where M(.) is the operator which produces

the local means of the signal, and wi a realization of white noise.

2.At the first stage, calculate the first IMF as: -,:1(�); ;;;;;;;; = 1 � − �1(�).
3.Estimate the second residue as the average of local means of the realization:

�1 � + =1<2(5�(�)) and calculate the second IMF as: -,:2(�); ;;;;;;;; = �1 � − �2 � .

4.Calculate the k-th IMF: -,:�(�); ;;;;;;;; = ��−1 � − �� � .

5.Go to step 4 for next k.

On the other hand, figure (2.6) shows the number of iterations obtained by the ICEEMDAN.

In comparison to that obtained by the CEEMDAN (see figure 2.5), it can be readily observed

that ICEEMDAN allows for fewer iterations, thus less computation time, which is a

significant factor when dealing with signals with a considerable number of points and a large

number of ensembles.

Figure 2.6. Number of iterations obtained by the ICEEMDAN [12].
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4. Experimental procedure

The data utilized in this study was gathered from experiments conducted on a test rig located

within the Laboratory of Mechanics and Structures at the University of Guelma in Algeria.

This test rig primarily consisted of the following components: an electric motor with a power

rating of 5 KW and a rotational speed of 1500 rpm, a coupling mechanism, a gearbox (as

detailed in Table 2.1), and an electromagnetic brake used to simulate the load, as depicted in

Figure 2.7. The gearbox itself comprised three shafts and four spur gears that were typically

lubricated. The input and output shafts were each equipped with a gear (gear 1 and gear 4)

featuring 42 and 45 teeth, respectively. Additionally, the intermediate shaft hosted two gears

(gear 2 and gear 3) with 50 and 65 teeth, respectively. Table 1 provides a comprehensive list

of the gearbox specifications. Throughout all the tests, the input shaft rotates at constant

speed set equal to 14 Hz. The intermediate and output shafts have rotation frequencies equal

to 12 Hz and 17 Hz, respectively.

Figure 2.7. Experimental setup.
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Gear type Straight Teeth

Gear

characteristics

Transmission ratios
U1=42/50=0.84

U2=65/45=1.444

Rotation frequency [Hz]

Shaft 1, gear (1) Shaft 2, gears (2 and 3) Shaft 3, gear (4)

14 12 17

Meshing

frequency [Hz]
588 761

Table 2.1. Used gears and characteristic frequencies.

The vibratory signals were measured using a Bruel & Kjær PULSE 16.1 analyzer along with

PULSE LABSHOP acquisition software, as illustrated in Figure 2.7. Subsequently, post-

processing and analysis were carried out within the Matlab environment.

Table 2.2. Experimental plan.

For data acquisition, three accelerometers of Bruel & Kjær type were strategically positioned

in the housing of the gearbox in horizontal direction. The accelerometer 1 is mounted close to

Exp Gear defects Code
Mode of

operation

Maximal

frequency

1 Healthy gears HG

With

lubrication

and with load

6400 Hz

2 Small defect on gear 2 SDG2

3 Average defect on gear 2 ADG2

4 Great defect on gear 2 CDG2

5
Great defect on gear 2+Small

defect on gear 4
CDG2+SDG4

6
Great defect on gear 2 +

Average defect on gear 4
CDG2+ADG4

7
Great defect on gear 2 + Great

defect on gear 4
CDG2+CDG4
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the gear 1 and bearing 2 on the input shaft. The accelerometer 2 was placed adjacent to the

intermediate shaft, near gear 2. Lastly, the accelerometer 3 was situated near the output shaft,

close to the second gear pair (gear 4 and bearing 4). Consequently, seven signals, denoted as

S1 to S7, were obtained. These signals corresponded to various conditions, including single

and double gear defects. To cover the meshing frequencies and several of their harmonics, all

the signals were measured with the same maximum frequency set equal to 6400 Hz (see table

2.2). For a visual reference, figure (2.8) provides images depicting the simulated defects

showcasing different levels of severity.

(a) (b) (c)

Figure 2.8. Simulated defects for three severities, (a)Small defect, (b)Average defect,(c)

Critical defect.

5. Proposed methodology

The proposed methodology aims to integrate both objective and subjective approaches for

comparative purposes. The subjective approach centers on sound perception and employs a

paired comparison test. Initially, a conversion process was undertaken to transform the

vibratory signals into audible sounds, which were then utilized in listening tests. The test

interface was developed within the Matlab environment and consisted of two distinct phases.

The first phase, termed the learning phase, allowed the listeners to acquaint themselves with

the sounds associated with the ongoing test. This phase provided an opportunity for the

listeners to become familiar with the test sounds. The second phase involved pairwise

comparisons. A total of 31 participants took part in this test, comprising 13 women and 18

men, with ages ranging from 22 to 50 years. Before commencing the test, participants were

provided with context and an explanation of how the interface functioned. Each step of the

test was elaborated with illustrative examples. Following the completion of the comparisons,

a dissimilarity matrix was generated, capturing the assessments made by the listeners.

Subsequently, multidimensional analysis was applied to derive the perceptual space. Figure
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2.9 offers a summarized representation of the principles underpinning the subjective approach

employed in this study.

Three sophisticated signal processing techniques were employed as objective approach for

the analysis of vibratory signals captured under various degrees of gear defect severity. These

methods include the OWMRA, Cyclostationary analysis, and a hybrid method based on the

combination of Improved CEEMDAN and multivariate denoising. As final result, each of

these techniques culminates in the generation of an envelope spectrum. Figure (2.10)

provides a concise overview, summarizing the three distinct methods employed as part of the

objective approach in this chapter.

Figure 2.9. The outlined methodology for the subjective approach.



Chapter two: Detecting gear defects in a noisy environment using objective and subjective approaches: case of steady-state regime

50

Application of three advanced

signal processing approaches for

the analysis of vibratory signals

Optimized WMRA Cyclostationary

analysis

ICEEMDAN-MVD hybrid
approach

Decomposition of the
signal into different details
and approximations using

the waterfall algorithm

Application of the multivariate
denoising using wavelet and

PCA analysis

Decomposition of the
signal into different

Intrinsic Mode Functions
using the Improved

CEEMDAN algorithm

Application of the envelope
analysis on the denoised IMF

and performation of an envelope
spectrum

Selection of parameters fs,
α,Δf

Selection of the optimal
decomposition vector

using kurtosis

Selection of the most
relevant IMF using the

kurtosis and/or the
kurtogram plot

Application of the
envelope analysis on the

optimal vector and
performation of an

envelope spectrum of

Selection of a filter
interval [a1,a2]

MID and IMID
calculation

Figure 2.10. The outlined methodology for the objective approach.

6. Results and discussion

6.1. Analysis of the scalar indicators

First a quantitative and statistic evaluation of the seven measured signals is carried out

through the use of ten well-known scalar indicators. The primary objective of this study

encompasses two aspects: firstly, to establish a mathematical correlation between the

calculated indicators and the outcomes of sound perception, and secondly, to conduct a

comparative analysis between sound perception, solely based on listening tests (enabling

participation from individuals without theoretical expertise in signal processing), and three

highly advanced signal processing methods in the realm of mechanical defect diagnosis.

These scalar indicators can be categorized into two groups: those sensitive to the energy of

the signal and those sensitive to the shape of the signal. Mathematical expressions for these
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ten scalar indicators are provided in table (2.3), while table (2.4) offers a summary of the

obtained results.

Scalar indicator Mathematical expression

Peak Value (PV) �?@ �(�)
Overall Level (OL)

2 2
3 10

1000
B� 2C

RMS 1
B� +=1

B� 1(+) 2C

Energy (E)

�=1

B
1�2C

Power (P) 1
B �=1

B
1�2C

Crest Factor (CF) �?@ �>
1
B �=1

B� �> 2∑

Kurtosis (K) 1
B �=1

B 1� − 1; 4∑
E4

Skewness (SK) 1
B �=1

B 1� − 1; 3∑
E3

K Factor (KF)

�?@ �> × 1
B� �=1

B� �> 2C

Spectral Center of

Gravity (SCG)

/ × G(/)�/(
G(/)�/

Table 2.3. Mathematical expressions of the used scalar indicators.
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RMS CF PV KF E OL K P SK SCG

S1 5.56 5.96 33.1 183.91 506220 5.78 5.08 30.9 0.19 315

S2 4.96 5.92 29.4 145.95 403790 4.92 5.32 24.64 0.20 313

S3 4.61 6.51 30.1 138.98 349320 4.53 5.76 21.32 0.07 315

S4 4.80 6.55 33.6 161.56 378840 4.91 6.12 23.12 0.15 322

S5 4.91 6.35 31.2 153.19 394990 4.96 4.55 24.10 0.12 325

S6 4.85 10.01 48.6 235.77 385650 4.76 10.29 23.53 0.25 337

S7 5.20 10.92 56.9 296.32 444370 5.08 8.52 27.13 0.08 340

Table 2.4. Scalar indicators’ values.

Table (2.4) shows that the scalar indicators calculated for the seven signals are significant of

measures carried out in a very noisy environment. The RMS, the energy, the power, and the

overall level of the healthy case signal (S1), display very significant values, more important

than those of defective case (single and double). Actually, these indicators are very sensitive

to the signal energy, this is why their values are very important even for the healthy case.

Most of these indicators, which should increase with the increase in the severity of the defect,

display in certain cases a completely opposite trend. This confirms that the signals are very

noisy and the defect signature is embedded into the background noise. The same case is

observed for the kurtosis considered as the most sensitive indicator to shock signals. Its value

for the healthy signal is very important and exceeds the detection threshold equal to three. In

conclusion, most of the calculated scalar indicators don’t display correct trend, it is not

recommended to use them as indicators for monitoring the gear defect evolution in the case

of signals measured in noisy environment.

6.2 Results obtained by sound perception approach

The proximity space of sounds, as depicted in figure (2.11) and derived directly from

listeners' judgments, reveals an intriguing pattern. Specifically, the coordinates of DIM1 align

remarkably well with the extent of deterioration observed in the tested gears. This alignment

spans from single defects (S2, S3, and S4) to double defects (S5, S6, and S7). However, the

sound associated with no defects (S1) appears noticeably distinct in this context. To shed

light on this anomaly, we subjected the signal (S1) to optimized multi-resolution wavelet

analysis. Indeed, the resulting envelope spectrum of detail (D2), as shown in figure (2.12),
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highlights a shaft misalignment defect as the dominant feature in this spectrum is the

frequency component corresponding to the third harmonic of the input shaft (3xFr). We

believe that this distinctive spectral characteristic is responsible for the listeners' perception

of (S1) as distinct from typical gear defects.

Figure 2.11. Perceptual space.Acceleration (m/s²) Amplitude
Figure 2.12. Detail D2 and its corresponding envelope spectrum of the healthy case signal

(S1) obtained after the application of OWMRA.
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Figure (2.13) and Equation (2.12) illustrate the relationship between DIM1 and two key

scalar indicators, the Spectral Center of Gravity (SCG) and the Overall Level (OL), which are

the most representative of this dimension. However, it's important to note that despite

achieving a determination coefficient of R² = 0.90, this correlation remains modest due to the

high level of noise present in the signals. This can be explained by the fact that the adopted

scalar indicators are less sensitive to the defect gravity. Moreover, the listeners encountered

difficulty in differentiating shaft misalignment from gear defect.

)-,1 = 0.223 × HG + 0.0244 × �$I − 9.036 (2.12)

Figure 2.13. Dispersion between the dimension (DIM1) and the scalar indicators.

Figure (2.14) presents the correlation between DIM2 and two scalar indicators, the skewness

and the overall level. In this case a much better fit is obtained since the coefficient of

determination is R² = 0.94. The mathematical model representing this relationship is

expressed as follows:
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)-,2 = 0.476 × HG + 1.116 × �> − 2.550 (2.13)DIM2 obtained by listening test
Figure 2.14. Dispersion between the dimension (DIM2) and the scalar indicators.

In the subsequent phases of this research, we will exclude the coordinates associated with the

shaft misalignment defect (DIM1, DIM2). Our goal is to refine the mathematical model for

DIM1, specifically in relation to gear defects. This enhanced model will have practical

applications in machine monitoring, as it directly reflects the progression of defect

degradation.

6.2.1. Comparison of DIM1 obtained by sound perception and mathematical model

For six different sounds, figure (2.15) depicts the evolution of the dimension DIM1, both as

assessed through sound perception and calculated using equation (2.12). For single defects,

the dimension DIM1 displays a negative trend and then increases in function of the defect

severity evolution in gear 2. However, these DIM1 values shift to positive territory when

double defects are involved. Furthermore, the level of DIM1 increases with the combination

of a significant defect on gear 2 and the progression of the defect on gear 4, transitioning

from small to critical. The shift of DIM1 values from negative to positive, whether observed

through the mathematical model (2.12) or sound perception, signifies a change in defect

severity from moderate to severe. This insight can be employed as a decision support tool



Chapter two: Detecting gear defects in a noisy environment using objective and subjective approaches: case of steady-state regime

56

regarding whether maintenance operations should be undertaken, or even the complete

shutdown of the machine.

SDG2 ADG2 CDG2CDG2+SDG4CDG2+ADG4CDG2+CDG4-0.4-0.3-0.2-0.10.00.10.20.30.40.5DIM1 Evolution of gears defects DIM1: Perception tests. DIM1: Mathematical model.
Figure 2.15. Dimension 1 values for the 6 sounds.

In the mathematical model, the DIM1 value for the (CDG2+SDG4) defect becomes positive

but remains notably lower than that obtained through sound perception. This difference is

primarily influenced by the scalar indicators derived from the signal linked to the shaft

misalignment defect, which has a distinct nature compared to gear defects. In [19], large gear

defect does not correspond to a total tooth pull-out but rather to the extraction of

approximately 50% of the tooth modulus. Consequently, in our research, the DIM1 value for

the large defect remains negative, whereas it might become positive in cases involving a

complete tooth pull-out in [19-20]. This obtained result agrees perfectly with that found in

references [19-20]. Moreover, it gives more accuracy concerning the possible choices of the

actions which must be undertaken by the maintenance crew.

6.2.2. Improvement of the DIM1 mathematical model

Under Matlab environment, an experimental approach has been carried out to establish

mathematical correlation between the scalar indicators of different signals and the sound

perception of different sounds. To enhance the determination coefficient of the mathematical

model, the coordinates (DIM1, DIM2) of the signal (S1) obtained through sound perception
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were removed, along with their corresponding scalar indicators. The resulting improved

mathematical model is represented by equation (2.14) and shown in figure (2.16). Notably,

the results indicate a significant enhancement in the coefficient of determination, which

increased from 0.90 to 0.94. This refined mathematical model is composed of two scalar

indicators: the kurtosis and the spectral center of gravity. Several studies have corroborated

that kurtosis is the most sensitive indicator for detecting defects that induce periodic shocks

[21].

)-,1 =− 0.039224 × > + 0.032729 × �$I − 10.3825 (2.14)DIM2 obtained by listening test
Figure 2.16. Dispersion between the dimension (DIM1) and the scalar indicators.

In figure (2.17), it's evident that the DIM1 values obtained through the mathematical model

(2.14) closely align with the DIM1 values derived from sound perception, exhibiting a high

determination coefficient of R² = 0.94. DIM1 emerges as a novel scalar indicator, well-suited

for monitoring gear defects in rotating machinery. It combines the outcomes of sound

perception with two established scalar indicators. Figure (2.18) presents the results of the

sound proximity space generated through sound perception, along with the outcomes of the

two new mathematical models. In the DIM1 direction, which corresponds to the progression

of defect size, there is a strong concurrence between the two sets of results, except for the

case of large defects (S4 and M4). Notably, there exists a considerable disparity between

these two outcomes in terms of distance.
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SDG2 ADG2 CDG2CDG2+SDG4CDG2+ADG4CDG2+CDG4-0.4-0.3-0.2-0.10.00.10.20.30.40.5DIM1 Evolution of gears defects DIM1: Test perception DIM1: Mathematical model
Figure 2.17. Dimension DIM1 values for the 6 sounds.

Figure 2.18. Perceptual space, S(i) obtained by sound perception and

M(i) obtained by the mathematical model.
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6.3. Results obtained by vibratory analysis

6.3.1. Results obtained by OWMRA

Figure (2.19) displays vibratory signals collected under various sizes of gear defects. In the

case of simple defects (a-c), the signals exhibit high levels of noise, making it difficult to

discern the presence of periodic shocks. However, for double defects (d-f), some periodic

shocks become discernible. These shocks are somewhat more pronounced compared to the

signals from single defects. Notably, this periodicity exclusively pertains to the large defect

on gear 2, rotating at 12 Hz. Regardless of the defect size, no periodicity corresponding to the

defect on gear 4, which operates at a frequency of 17 Hz, is observed.

Figure 2.19. Vibratory signals measured for different severity of gear defects

(a) SDG2, (b) ADG2, (c) CDG2, (d) CDG2+SDG4, (e) CDG2+ADG4 and (f)

CDG2+CDG4.

Next the OWMRA is applied on the vibratory measured signal according to the methodology

developed by Djebala et al. in [21]. The methodology encompasses several sequential steps.
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Initially, the measured signal undergoes a decomposition process into multiple details and

approximations, facilitated by an appropriately selected wavelet. Following this, the kurtosis

values for all these distinct components are computed. Among these components, the one

with the highest kurtosis value is singled out as the optimal vector. Subsequently, a

demodulation technique utilizing the Hilbert transform is applied to this chosen optimal

vector. This multi-step process ultimately leads to the extraction of an envelope spectrum,

representing the final outcome of the methodology.

Figure (2.20) displays the envelope spectra obtained after the application of the OWMRA on

all the measured signals. For single defect case (figure 2.20. a and b), the component

corresponding to the rotation frequency of the defective gear is not identifiable on the spectra.

Figure 2.20. Envelope spectra obtained from Optimized WMRA

(a) SDG2, (b) ADG2, (c) CDG2, (d) CDG2+SDG4, (e) CDG2+ADG4 and (f)

CDG2+CDG4.

For the case of great defect (figure 2.20. c) and double defect (figure 2.20. d), only the peak

corresponding to the rotation frequency 12 Hz is observed (defect on gear 2), the one



Chapter two: Detecting gear defects in a noisy environment using objective and subjective approaches: case of steady-state regime

61

corresponding to the small defect on gear 4 (17 Hz) is not obvious. Even for the other double

defects (figure 2.20. e and f), only the frequency corresponding to the great defect on gear 2

is detectable. The pronounced noise levels within the measured signals hinder the OWMRA

from clearly discerning the distinct gear defects.

6.3.2. Results obtained by cyclostationary analysis

As mentioned earlier, cyclostationary analysis is well-suited for detecting modulation

phenomena caused by defects, such as those occurring in rolling bearings and gears. This

approach offers two representations: the Modulation Intensity Distribution (MID) and its

integrated counterpart, the Integrated Modulation Intensity Distribution (IMID). In the

context of defect diagnosis where we seek to identify the modulation frequency (defect

frequency), the IMID plot is the preferred choice. It can be interpreted as a simplified

envelope spectrum. In contrast, MID provides a 3D representation that displays both the

carrier and modulating frequencies on the same plot.

Figure (2.21) provides a representation of the Integrated Modulation Intensity Distribution

(IMID) spectra for various defect severities. The results obtained through the Wavelet Multi-

Resolution Analysis (WMRA) and the cyclostationary approach are closely aligned. However,

it's important to note that the identification of defects proves challenging for small and

moderate defects and even more so for large and combined ones. For instance, defects like

SDG2 and ADG2, which operate at a frequency of 12 Hz, are obscured by misalignment

defects on the shaft rotating at 14 Hz. Consequently, the peaks corresponding to 12 Hz and

their harmonics (24 Hz and 36 Hz) are intertwined with those related to 14 Hz and its

harmonics (28 Hz, 42 Hz, and 56 Hz). When analyzing signals linked to double defects, only

the frequency of the significant defect (CDG2) becomes evident, while no peak

corresponding to the defect on the fourth gear (17 Hz) emerges, regardless of the defect size.
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Figure 2.21. IMID spectra obtained by cyclostationary analysis

SDG2, (b) ADG2, (c) CDG2, (d) CDG2+SDG4, (e) CDG2+ADG4 and (f) CDG2+CDG4.

6.3.3. Results obtained by ICEEMDAN-MVD

In this section a hybrid method is applied as developed by Chaabi et al. in [22]. This

approach has been developed to detect rolling bearing defects in variable regime.The

methodology involves several steps: First, the measured signals are subjected to

decomposition using the improved Complete Ensemble Empirical Mode Decomposition with

Adaptive Noise (CEEMDAN) method, resulting in several Intrinsic Mode Functions (IMFs).

Kurtosis is employed to identify the most pertinent IMF. Following IMF selection, a

multivariate denoising technique combining wavelet and Principal Component (PCA)

analyses is applied to the chosen IMF. Finally, a demodulation approach is employed on the

denoised optimal IMF, leading to the generation of an envelope spectrum. Figure (2.22. a-f)



Chapter two: Detecting gear defects in a noisy environment using objective and subjective approaches: case of steady-state regime

63

illustrates the envelope spectra corresponding to various defect severities. Notably, the results

obtained through this hybrid approach closely align with those obtained from the two

previous methods.

Figure 2.22. Envelope spectra obtained from the ICEEMDAN-MVD hybrid method for (a)

SDG2, (b) ADG2, (c) CDG2, (d) CDG2+SDG4, (e) CDG2+ADG4 and (f) CDG2+CDG4.

In the presence of noisy signals and the influence of shaft misalignment, the three methods

employed in this study (Wavelet Multi-Resolution Analysis or WMRA, cyclostationarity

analysis, and the ICEEMDAN-based approach) encounter difficulty in clearly identifying

small and moderate defects on gear 2. However, they are capable of detecting the large defect

on the same gear. Conversely, identifying small, moderate, and critical defects on gear 4

proves unattainable, especially when these defects are combined with a critical defect on gear

2. In contrast, the utilization of sound perception allows for the identification and ranking of
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defects on both single and double gears in ascending order of severity. Furthermore, the

correlation of results obtained through perception with the scalar indicators derived from

vibratory signals yields a mathematical model capable of effectively monitoring the condition

of gears in rotating machinery.

7. Conclusion

The primary objective of this chapter was to explore the application of the sound perception

method for the analysis of gear defects in rotating machinery. This involved the

transformation of measured vibration signals into audible sounds, followed by a

comprehensive analysis using pairwise comparison tests. The goal was to establish a

mathematical relationship between the perception of these sounds and the scalar indicators

derived from the measured signals. The results of the perception tests revealed the capability

to classify defects based on their level of gear degradation. Additionally, it was possible to

distinguish between single defects and double defects within a two-dimensional proximity

space with remarkable clarity. The correlation between objective metrics (such as kurtosis,

peak value, and spectral center of gravity) and the perceptual differences in gear sounds, as

represented by their proximity in the perceptual space, underscored the relationship between

these factors. Moreover, the newly obtained indicator, DIM1, from this correlation model

proves to be a valuable tool for monitoring the progression of gear defects in rotating

machinery. It serves as a decision-making parameter for determining whether to halt the

machine's operation. When the value of DIM1 shifts from negative to positive, it signifies the

transition of a defect from a moderate to a severe state. This information aids maintenance

crews in making informed decisions about machine operation and maintenance.

Furthermore, this chapter sought to compare the outcomes obtained through sound perception,

especially in cases involving significantly noisy signals, with the results obtained via

vibration diagnosis using three advanced signal processing techniques. The findings revealed

that sound perception successfully classifies gear defects in ascending order of severity,

whether they are single or double defects. In contrast, the other methods, which are grounded

in complex theories, encountered challenges in identifying single gear defects like SDG2 and

ADG2. Additionally, they struggled to pinpoint one of the two double defects, CDG2+ADG4

and CDG2+CDG4. The superiority of the subjective approach compared to objective one is

due to the fact that the human ear is very sensitive, and can easily differentiate the sounds,

thus making it possible to highlight defects in a fairly clear manner.
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Chapter three

Detection of gear defects in variable regime

using a new hybrid objective approach

1. Introduction

Machines that operate under variable conditions are those capable of functioning effectively

at variable speeds or loads. In contrast to fixed-speed machines, which operate at a constant

speed, variable-speed machines are designed to adapt to varying loads, thus rendering them

more efficient and flexible. These machines find extensive use across multiple industrial

sectors, including aerospace, automotive, energy, shipbuilding, and others. They are

particularly well-suited for high-performance and high-flexibility applications such as gas

turbines, compressors, pumps, and electric motors. The variable-speed operation of machines

is enabled by advanced technologies such as electronic controls, load and speed sensors, and

automated control systems. These technologies allow the machines to automatically adjust to

load variations, maintain a constant rotational speed, optimize energy efficiency, and prolong

machine lifespan. Ultimately, variable-speed machines offer significant benefits in terms of

efficiency, flexibility, and performance. They have emerged as an essential element in many

industrial processes and continue to play a pivotal role in the successful completion of

construction and infrastructure projects.

The objective of this chapter is to propose a new hybrid objective method especially adapted

for the detection of gear defects under variable condition.

2. Gear faults detection in variable regime

In the steady state regime, the signal of an undamaged pair of gears is dominated by the

meshing frequency and several of its harmonics. Frequency components corresponding to the

shafts’ rotational speed are also visible. Figure (3.1) shows a typical spectrum of one-stage

gear transmission with a wheel and a pinion turning at 25 Hz and 50 Hz, respectively. The

meshing frequency is taken equal to 1500 Hz. On the spectrum the meshing frequency and its
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harmonics as well as the rotation speeds of the shafts carrying the two gears are normally

visible.[1] Amplitude
Figure 3.1. Typical spectrum of an undamaged pair of gears.Amplitude

Figure 3.2. Spectrum in the case of small defect located on the gear turning at Fr2= 50 Hz.

In the case of a damaged gear periodical shocks are produced with each contact of the

defective tooth against any other. A modulation phenomenon occurs on the spectrum, this last

will show many sidebands around the meshing frequency and its harmonics. These sidebands

are spaced by the rotational frequency of the shaft carrying the defective gear. As the previous

example, a spectrum corresponding to a small defect on the wheel is highlighted in figure
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(3.2). It shows sidebands around the meshing frequency spaced by 50 Hz, which indicates that

the gear turning at 50 Hz is the defective one.

Two powerful detection tools are tested on an experimental signal measured in constant

regime. Figure (3.3) represents the acceleration signal measured on gear transmission with

defective wheel. The rotation speed of the defective gear is taken equal to 14 Hz and the

number of teeth is 18, consequently the meshing frequency is equal to 252 Hz. Periodical

impacts due to the defect are clearly visible on the signal. The spectrum of figure (3.4)

confirms the presence of gear defect since it clearly shows many sidebands around the

meshing frequency and its harmonics spaced with the rotation frequency of the defective gear.

Applying cepstrum analysis on the signal of figure (3.3) highlights a main component

corresponding to a quefrency of 0.07 s (1/14 Hz) and several of its rhamonics as shown in

figure (3.5). This quefrency corresponds perfectly to the rotation frequency of the shaft

carrying the defective gear (14 Hz).0 2 4 6 8Time (s)-1-0.500.51
Figure 3.3. Signal of extracted tooth defect.
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Figure 3.4. Spectrum of an extracted tooth defect.Amplitude
Figure 3.5. Cepstrum in the case of extracted tooth defect.

On the other hand, an envelope spectrum is performed after the application of demodulation

approach using Hilbert transform. Figure (3.6) shows a main component corresponding to the
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rotation frequency of the gear turning at 14 Hz and several of its harmonics, which means that

it is the defective one. In conclusion, on the steady state regime the defect is obviously

detected by the two considered tools.0 20 40 60 80 100 120Frequency (Hz)0200400600800 X2 X314 Hz
Figure 3.6. Envelope spectrum in the case of extracted tooth defect.

Now, let’s consider the same defect but in this case the rotation speed varies by an

acceleration mode from 0 rpm to 840 rpm in 10.8 s as shown in figure (3.7). Its corresponding

spectrum of figure (3.8) doesn’t indicate any information about the defect.

Figure 3.7. Signal of extracted tooth defect measured in acceleration regime: (a) Pure signal

and (b) rpm signal.



Chapter three: Detection of gear defects in variable regime using a new hybrid objective approach

73

As the rotation frequency is variable, the meshing frequency is also variable, and in this case

the modulations are impossible to detect. Neither the cepstrum nor the envelope spectrum are

able to detect the defect, (see figure 3.9.a,b). Consequently, it’s very hard, even impossible, to

detect gear defect in variable regime by conventional approaches, even using robust methods

like the cepstrum and the envelope spectrum.

Figure 3.8. Spectrum of the signal in the case of variable regime.

Figure 3.9. (a) Cepstrum and (b) Envelope spectrum of the signal in the case of extracted

tooth defect in variable regime.
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3. Theoretical background

3.1. Multivariate denoising using wavelet and PCA analysis

Multivariate denoising using wavelet and PCA analysis is a commonly utilized signal

processing technique to eliminate noise from multi-dimensional signals or datasets. This

involves the application of wavelet transform and principal component analysis (PCA) to a set

of observations or measurements to segregate the useful signal or information from the

unwanted noise or components. The use of wavelet transform as a mathematical tool

decomposes signals into diverse frequency components, allowing them to be used in multi-

dimensional signals, such as images or spectra, and resulting in a more efficient representation

than traditional Fourier transform. When denoising, wavelet analysis is frequently used to

identify and isolate noisy signal components. PCA is a statistical method employed to

decrease the dimensionality of a data set while preserving the most significant information.

This technique finds principal components, which are linear combinations of the original

variables capturing the greatest amount of variation. By holding onto only the most critical

components, PCA can aid in noise removal and decrease the complexity of the data set. The

new algorithm is summarized as below [2] :

1. Perform the wavelet transform at level J of each column of �(�).

2. For 1 ≤ � ≪ 	 , perform the PCA of the details matrix 
� and select an appropriate

number �� of useful principal component of suppress the detail 
�.

3. Do again the previous step for the approximation matrix ��.

4. Reconstruct new matrix �
 by the inverse wavelet transform from the simplified details

and approximations.

5. Perform the PCA of matrix �
 and build adequate statistic for statistical Process

Control (SPC).

3.2. Order tracking analysis

As shown before, monitoring gear defects is impossible with conventional methods when the

operating conditions are variable, especially speed and load. In this case the analysis of

vibratory signals must be achieved in order domain rather than frequency domain. For the

order analysis, it is necessary to sample the vibration signal at constant angular increments

and therefore at a rate proportional to the shaft speed [3].



Chapter three: Detection of gear defects in variable regime using a new hybrid objective approach

75

In stationary regime the characteristic frequency of gear defect is equal to the rotation

frequency of the shaft carrying the defective gear:

�� = ��

By analogy with rolling bearing defects this characteristic frequency can then be given by :

�� = C.��

Where �� is the rotation speed of the defective gear, and C a constant equal to 1, this constant

is named defect order. In rolling bearing defects this constant is calculated from the

geometrical characteristics of the bearing and is different from one type of bearing defect to

another. As solution to speed variation effect, it is therefore common to look for this constant

rather than the characteristic frequency which is variable. For this, an order spectrum must be

performed rather than frequency spectrum.

4. Proposed approach

The proposed approach aims to use hybrid method to allow detection of gear defects in

variable regime. The most important steps are as follow :

- First, applying the kurtogram [4] on the measured signal allows locating the frequency range

that covers the information corresponding to gear defect and having the highest kurtosis value.

Indeed, gear defect induces periodical chocks and the kurtosis is the most sensitive indicator

to defects inducing periodical impulsive forces.

- In the second step, the Improved CEEMDAN [5-9] is used to decompose the raw signal into

different IMFs. This method will isolate the signature of the gear defect in specific IMF.

- Based on the kurtogram plot, the relevant IMF is selected. This IMF will contain the optimal

information about the gear defect.

- After isolating the IMF covering the optimal frequency band selected by the kurtogram and

kurtosis value, multivariate denoising based on wavelet and PCA method is applied to remove

the residual noise and increase the SNR of the selected IMF to give more effective result.

- Finally, order analysis is performed on the optimal denoised IMF to remove the speed

variation effect, then envelope analysis based on Hilbert spectrum is performed to obtain an

order envelope spectrum highlighting the defect order and its harmonics.

Figure (3.10) summarizes the global flowchart of the proposed approach.



Chapter three: Detection of gear defects in variable regime using a new hybrid objective approach

76

Experimental signal �(�) of gear

defect in variable speed

Kurtogram analysis is performed

on the analyzed signal using

spectral kurtosis algorithm

Decompose the signal �(�) into

different IMFs using ICEEMDAN

Apply multivariate denoising on the optimal

IMF

Final selection of the relevant IMF

Apply the Order Tracking Analysis on the

envelope signal of the selected denoised IMF

Perform an order envelope spectrum and extract

the defect order

Perform RPM

vector

according to

the measured

signal

Figure 3.10. Global flowchart of the proposed method.

5. Experimental procedure

The data used in the current study are measured on the Machinery Faults Simulator (MFS)

test rig of the university of SoukAhras and using SpectraQuest processing software. The post

processing using the proposed approach is carried out under Matlab. The MFS test rig consists

mainly of an electric motor with 0.75 KW and a maximum rotation speed of 6000 rpm,

coupling, belt transmission (d1=51 mm, d2=126 mm and L=965 mm) with transmission ratio

equal to 0.4, and finally a gearbox as shown in figure (3.11). The one-stage gearbox contains

two wheels of straight cut bevel teeth with 1.5:1 ratio normally lubricated and manually

adjustable. A magnetic brake is used to simulate the load. The input and output wheels have

18 and 27 teeth, respectively, the transmission ratio is then equal to 0.67. Two accelerometers

were used to measure vibratory signals. The first one is a bidirectional accelerometer placed
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on the top of the gearbox reducer (axial, radial), and the second one is mounted horizontally.

A tachometer is used to measure the rotation speed of the motor shaft allowing the rpm signal.

Figure 3.11. Experimental setup.

Three different gearboxes are used having each one a different gear defect, half-tooth

extracted defect D1 (grey gearbox), generalized defect DG (red gearbox), and extracted tooth

defect D2 as illustrated on table (3.1) and figure (3.12). For all the three gearboxes the

defective gear is the one having 18 teeth mounted on the input shaft.

Table 3.1. Experimental plan.

Figure 3.12. (a) Half-extracted tooth defect, (b) Extracted tooth defect, (c) Generalized defect.

Trial Gear defect Code Mode of operation for the three

types of defects

1 Half-extracted tooth defect D1 Acceleration from 0 Hz to 14 Hz

Constant regime at 14 Hz

Deceleration from 14 Hz to 0 Hz

2 Generalized defect DG

3 Extracted tooth defect D2

(a) (b) (c)
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A combined regime having three different modes is considered in this study. The first is an

acceleration mode from 0 Hz to 14 Hz (0 rpm to 840 rpm) within 10.8 s. The second mode is

a steady-state regime at 14 Hz (840 rpm) for 5.4 s, and finally the third mode is a deceleration

from 14 Hz to 0 Hz (840 rpm to 0 rpm) for 11.5 s.

6. Results and discussion

6.1. Case of extracted tooth in acceleration mode

6.1.1. Choice of the optimal frequency range

The proposed approach is first applied on the signal shown in figure (3.7). Note that the

spectrum, cepstrum and envelope spectrum were incapable to detect the gear defect in

variable speed (Acceleration mode). As first step the kurtogram of the signal is calculated

indicating the high kurtosis values in the frequency range of [1600 Hz-3200 Hz] (see figure

3.13). This result shows that the highest kurtosis values are located in high frequency range

and not usually around the meshing frequency as mentioned in section 2.0 500 1000 1500 2000 2500 3000Frequency (Hz)11.622.63Level k 10203040506070
Figure 3.13. Kurtogam of the signal of extracted tooth defect.

6.1.2. Improved CEEMDAN decomposition and selection of the relevant IMF

The Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

(ICEEMDAN) is applied to decompose the signal into several Intrinsic Mode Functions

(IMF). Only the first four IMFs are retained, the others correspond to low frequency and
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consequently don’t have significant contribution in the defect detection. The spectra of IMF1

and IMF2 of figure (3.14) show modulation in the frequency band selected from the

kurtogram [1600 Hz-3200 Hz]. However, IMF2 has the highest kurtosis value, 73.86 against

58.14 for IMF1, for this raison it will be taken as optimal IMF in the next step.

Figure 3.14. IMFs and corresponding spectra obtained after the application of ICEEMDAN.

6.1.3. Wavelet denoising and order tracking analysis

A wavelet denoising is applied on the optimal IMF to remove the residual noise added by

ICEEMDAN and improve the Signal to Noise Ratio (SNR), the kurtosis value is increased

from 73.86 to 96.81, (see figure 3.15.a, b). Finally, Order Tracking Analysis (OTA) is applied

on the denoised IMF to remove the speed variation effect. In this case the rpm signal
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corresponding to the gearbox input shaft (carrying the defective gear) is used in the OTA

algorithm (acceleration from 0 Hz to 14 Hz). Figure (3.15.c) represents the order envelope

spectrum highlighting the order of the defect (order 1 of the rotating frequency) and several of

its harmonics, which indicates that the wheel mounted on the input shaft is the defective one.

Figure 3.15. (a) Optimal IMF, (b) Denoised IMF, (c) Order envelope spectrum.

6.1.4. Case of non-appropriate rpm signal

In practice the defect is not previously known as in laboratory tests. Both the defective wheel

and the shaft carrying it are unknown. Consequently, the rpm signal to be used in the Order

Tracking Analysis is also unknown. It is then interesting to test what happens when the OTA

algorithm is alimented with the “wrong” rpm signal, i.e., that which not correspond to the

shaft carrying the defective wheel. Figure (3.16) shows the order envelope spectrum obtained

after the application of the proposed approach on the previous case using rpm signal of the

output shaft (acceleration from 0 Hz to 8.4 Hz) instead of the input shaft. In this case the

envelope order spectrum shows main order corresponding to 1.71 which means that the defect

is not on the wheel mounted on the output shaft.
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In practice it is then necessary to test the OTA algorithm with the rpm signals of all the

gearbox shafts. The one allowing an envelope order spectrum with a main order equal to 1 is

that carrying the defective gear.

Figure 3.16. Order envelope spectrum with the rpm signal of output shaft.

6.1.5. Case of non-appropriate selection of the relevant IMF

To confirm the validity of the adopted approach for the selection of the optimal IMF, the

IMF7 whose frequency band covers the meshing frequency range (from 0 Hz to 252 Hz) is

treated as mentioned in the literature for the steady-state regime (cf. section 2). The final

result shown in figure (3.17) indicates that the kurtosis value is very weak (8.7) compared to

the optimal IMF2 (73.86) taken above. Moreover, the wavelet denoising has apparently no

effect since the kurtosis before and after denoising is the same. The order envelope spectrum

shows the order of the rotation speed of the defective gear, but the results remain poor

compared to those of figure (3.15). This confirms that the kurtogram is the best tool to select

the optimal IMF.
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IMF 7 Den IMF 7 Amplitude
Figure 3.17. (a) IMF7 signal, (b) Denoised IMF7, (c) Order envelope spectrum.

6.2. Case of extracted tooth in deceleration mode

Consider now the same defect in the case of deceleration mode from 14 Hz to 0 Hz. Figure

(3.18.a, b) represents the measured signal and its corresponding rpm signal. The final result

obtained after the application of the proposed approach is shown in figure (3.18.c). The order

envelope spectrum clearly highlights the order 1 corresponding to the rotation frequency of

the input shaft and its harmonics.
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RPMDen IMF 2 Amplitude
Figure 3.18. (a) Signal of the extracted tooth in the case of deceleration mode (b) rpm signal

(c) Order envelope spectrum.

6.3. Case of extracted tooth in combined mode (Acceleration-steady state regime-

deceleration)

In this case a more complicated variation regime is considered, three speed variation modes

are used, acceleration from 0 Hz to 14 Hz in 10.8 s, constant speed at 14 Hz during 5.4 s, and

finally deceleration mode from 14 Hz to 0 Hz in 11.5 s, as shown in figure (3.19.a, b). The

proposed method is applied as mentioned before leading to the order envelope spectrum of

figure (3.19.c), the order of the rotation speed of the input shaft is clearly visible which

confirms another time that the defective wheel is that mounted on the input shaft.
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Figure 3.19. (a) Original signal of extracted tooth defect (b) rpm signal (c) denoised IMF (d)

Order envelope spectrum in combined mode.

6.4. Case of generalized defect in combined mode

Figure (3.20.a) shows the signal of generalized defect measured in combined mode as

mentioned in the rpm signal of figure (3.20.b). In this case the impacts are not visible on the

measured signal as in the case of extracted tooth, consequently the detection will be more

difficult. As final result and after applying the proposed approach the order 1 of the rotation

speed is obtained and some of its harmonics, which confirms the presence of gear defect in

the input shaft, (see figure 3.20.c).
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Figure 3.20. (a) Original signal of generalized defect (b) rpm signal (c) Denoised IMF (d)

Order envelope spectrum in combined mode.

6.5. Case of half-extracted tooth in combined mode

In this section a half-extracted tooth defect is considered. Figure (3.21.a) represents the

measured signal in combined mode as mentioned in the rpm signal of figure (3.21.b). Figure

(3.21.c) shows the final order envelope spectrum obtained after the application of the

proposed approach; several harmonics of the order defect (order 1) are clearly visible. In

addition, sub-harmonics corresponding to almost 1/3 the order 1 are visible. After

investigation, these sub-harmonics are due to another defect. Note that this defect was also

present in the two previous cases (extracted tooth and generalized defects), however the

corresponding sub-harmonics are so weak compared with gear defect. By coincidence, this
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result shows that the proposed approach can detect other defects, in addition of gear defect,

which is very interesting as perspective in the future.

Figure 3.21. (a) Original signal (b) rpm signal (c) order envelope spectrum in the case of half-

extracted tooth in combined mode.

6.6. Comments on the obtained results

1. The approach adopted by the proposed method is to isolate the gear defect signature from

other machine components. Improved CEEMDAN is then used to decompose the measured

signal into several IMFs. In the literature ICEEMDAN was shown to be a more complete

decomposition than other methods ie. EMD, EEMD and CEEMDAN. The mode mixing

problem and the residual noise are almost completely removed after the decomposition.

2. Gear defect signature is now localized in a specific IMF; it is then essential to look for this

IMF and select it as relevant one. As gear defects generate periodical impulsive forces, the

best indicator proposed for the selection of the relevant IMF is the kurtosis. For this, the

kurtogram plot obtained after the computation of the spectral kurtosis is used. The kurtogram
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locates the best frequency band allowing the highest kurtosis values. The IMF covering this

optimal frequency band is then selected as relevant one.

3. The results show that the kurtogram is the best way to select the relevant IMF. In this

context the IMF covering the meshing frequency range doesn’t give such satisfying results.

Consequently, the modulations produced from gear defect are not usually located around the

meshing frequency and its harmonics, and can excite the system resonances at high

frequencies where filtering operation is optimal.

4. The results show that the use of non-appropriate rpm signal in order tracking analysis gave

a defect order different from 1, and can lead to false diagnosis. In multiple-stages gearbox it is

then necessary to test the order tracking algorithm with rpm signals of all the shafts. The rpm

signal allowing an order equal to 1 corresponds to the shaft carrying the defective gear.

7. Conclusion

In this chapter, a hybrid method is proposed for gear defects detection in non-stationary

running condition. The proposed approach is based on the Improved CEEMDAN,

Multivariate denoising based on Wavelet and Principal Component Analysis, and Order

Tracking Analysis. The results show that the proposed approach is proven to be effective with

experimental signals measured in variable speed.

The gear defects are very well highlighted for three defect types and in three different speed

variation modes. As final result, the defect order is clearly visible on the order envelope

spectrum as well as several of its harmonics. Note that this order must be equal to 1 to

confirm the presence of the defect and to know the shaft carrying the defective gear, for this

we demonstrated that the Order Tracking algorithm must be alimented with the true rpm

signal.

The results also demonstrated that the kurtogram is the best tool for the selection of the

relevant IMF obtained after the ICEEMDAN decomposition. This step is very important since

the gear defect signature is isolated in this relevant IMF, and from which the order envelope

spectrum is extracted.

The proposed hybrid approach is very helpful when making decision during the surveillance

of gear transmission systems found in almost every rotating machine working under non-

stationary condition. This task represented a very hard challenge for engineers.
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Chapter four
Application of the perceptive method for the

identification of gear fault severities operating

under variable conditions

1. Introduction

The use of sound perception in diagnosing faults in rotating machinery is relatively recent.

Younes [1] employed this method for detecting faults that result in impacts, such as gears

and bearings in a stationary regime. More recently, Laissaoui applied this same technique to a

combination of bearing faults and shaft misalignment [2]. Still in a stationary regime, in this

thesis's chapter 2, we demonstrated that even in the case of noisy signals, the sound

perception method can be highly effective compared to more sophisticated signal processing

methods such as , WMRA, Cyclostationarity, and ICEEMDAN for identifying the severity of

gear faults [3]. For more details about the perceptive approach and its application for faults

detection see references [3-6].

The work carried out in this chapter aims to extend the sound perception method for

identifying the severities of gear faults operating under variable conditions, following its

successful application in stationary regime. The objective is to utilize the pairwise

comparison method and judgments from auditors to identify the severity of gear faults, based

on the results of the fault severity evolution indicator DIM1 obtained through the perceptual

space. This indicator can also be correlated with the optimal vibration indicators from various

measured signals, presented in the form of a mathematical model.

Four vibrational signals corresponding to various gear faults are measured under variable

operating conditions on the test bench at Souk-Ahras University. The recording duration for

each measurement is quite long, lasting 21 seconds. This duration includes an acceleration

phase where the speed varies from 0 to 20 Hz over a period of 6 seconds, followed by a

constant speed phase of 20 Hz lasting 12 seconds, and finally, a deceleration phase where the

rotational speed decreases from 20 to 0 Hz within 3 seconds. Subsequently, these vibrational

signals are converted into four sounds, which will be presented to the listeners for auditory
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tests conducted in a semi-anechoic chamber at the Technology Campus of the University of

Maine, France. This controlled environment aims to ensure that their judgments are as

accurate as possible, isolating them from external environmental influences.

As in chapter 2, the listeners are required to provide assessments of the auditory

characteristics for each pair of sounds. The response for each pair of sounds is transformed

into numerical values on a scale ranging from 0 to 1, depending on the judgment of the

listeners, from very similar to very dissimilar, respectively. Analysis of variance methods is

then employed to assess the significance of differences between the mean values for each

sound [1-2]. One constraint encountered in the variable regime compared to the stationary

regime is the duration of listening for each sound. In the variable regime, the listening

duration increases from 4 seconds in the stationary case to 21 seconds. The very lengthy

duration of the sound does not allow for a large number of sound combinations in the

listening tests. For only 8 sound combinations, the duration of a test exceeds 15 minutes,

making it challenging for the listeners to maintain concentration.

2. Experimental study

2.1. Introduction

We will employ the pairwise sound comparison method through the application of the sound

perception method to attempt to identify the varying severities of gear faults in variable

operating conditions. The simulated faults include simple and severe gear faults, as shown in

Table (4.1). After conducting listening tests in the semi-anechoic chamber at LAUM, we will

analyze the results and address the question: Can the sound perception method make accurate

judgments regarding the different severities of gear faults in variable operating conditions, or

not ?

2.2. Vibration measurements

In this experimental setup, we utilized the MFS test bench at the University of Souk Ahras

(see figure 4.1) to measure vibrational signals from two variable-speed gearboxs across three

phases: acceleration, steady-state, and deceleration. These phases were considered under the

following conditions: no faults, half-tooth broken (as shown in figure 3.12.a), broken-tooth

(Figure 3.12.b), and generalized wear on the gearbox teeth (Figure 3.12.c). For data
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acquisition, we employed a 3D accelerometer (B&K 4524B 33569) and the Pulse 16.1

vibration analyzer software (see figure 4.1).

Figure 4.1. 3D accelerometer and the Pulse 16.1 vibration analyzer software.

In table (4.1), we present the designations for four types of gear faults based on a personal

judgment of increasing severity. Son1, Son2, and Son4 are derived from the signals measured

on the gearbox in figure (4.1), with each corresponding to a different gear configuration after

wheel assembly and disassembly. Son1 is associated with the gear assumed to be without

faults, although subsequent spectral analysis reveals tooth wear due to frequent use in student

practical work. Son2 represents the gear with a half-tooth breakage fault, while Son4

corresponds to the gear with a full-tooth breakage fault. For Son3, we replaced the gearbox

from figure (3.11) with the one shown in figure (4.1), which exhibits generalized tooth wear

(The red one). While we do not possess precise information on the extent of this wear, the

latter gearbox is rarely used in student practical work.

Table 4.1. Various gear defects.

Son1 Healthy Gear HG

Son2 Half-tooth broken HTB

Son3 Generalized defect GD

Son4 Broken tooth BT
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2.3. Structure of the Listening System

The dissimilarity evaluation tests were conducted in the semi-anechoic chamber at the

Technology Campus of the University of Maine, France. Sound playback and listening were

carried out using a Matlab interface and 'AKG K52' stereo headphones, as shown in figure

(4.2).

Figure 4.2. Sound listening tests in a semi-anechoic chamber.

2.4. Interface and test subjects

The listening tests interface is developed within the MATLAB environment and consists of

two phases: the first phase, known as the learning phase, involves presenting sounds to the

participants to help them become familiar with the test sounds. The second phase is a

pairwise comparison phase in which participants assess the dissimilarity between sounds. A

total of twenty-eight (28) participants took part in the listening tests, comprising 10 females

and 18 males, aged between 21 and 45 years. At the beginning of the test, participants are

provided with context by explaining how the interface works, with each step of the test

detailed for their understanding, as illustrated in the example interface shown in (figure 4.3).

Subsequently, using the Rose series, the four sounds generate 8 combinations of sound pairs,

which are presented to participants in a random manner, with each test lasting approximately

15 minutes.
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Figure 4.3. Learning phase interface.

3. Results and discussions

In figure (4.4), the scatter plot between measured and reconstructed similarities is presented.

A strong correlation coefficient of R=0.98 is obtained.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1similaritées mesurées-0.200.20.40.60.811.2 Nb val sing : 2   R : 0.98872
Figure 4.4. Scatter plot between measured and reconstructed similarities.
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3.1. Analysis of results obtained by the perceptual method in variable operating

conditions

Despite that the machine is operating in variable conditions and the noise generated by the

movement transmission belts towards the speed gearbox, the results of the perception tests

allowed classifying the sounds in ascending order of degradation.

The naming of the sounds from S1 to S4 for the four sounds corresponding to different gear

fault configurations presented in table (4.1) is based on personal judgment, where it was

assumed that generalized wear corresponds to a more severe fault condition than the fault

corresponding to the loss of half a tooth. However, the analysis of the proximity space of the

four sounds presented in figure (4.5) shows the opposite. The generalized wear of the gears

teeth (S3) in the gearbox in figure (4.2.c) was judged by the listeners to be a less severe fault

condition than the loss of half a tooth (S2) in the gearbox in figure (3.11).-0.2 -0.1 0 0.1 0.2 0.3 0.4Dimension 1-0.25-0.2-0.15-0.1-0.0500.050.10.150.2 S1 S2S3 S42 431
Figure 4.5. Proximity space.

So, according to dimension 1 (DIM1), which represents the evolution of fault severity [3-8],

it is observed that the listeners ranked the severities of the defects in the following order:

Wheel without defect, generalized wear of the wheel, half-tooth broken, and finally, a full

tooth broken. The ranking provided by DIM1 is validated by three classical scalar indicators:

Kurtosis (K), Peak-to-Peak Value (PP), and Shape Factor (SF), as shown in table (4.2) below.

Another validation of the results will be presented at the end of this chapter, based on the
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processing of signals taken from the stationary zone of signals measured under variable

conditions, using the ICEEMDAN method, as discussed in chapters 2 and 3.

Sons DIM1 K PP SF DIM2 CF IF MF

S1 -0.170 8.1396 1.6413 1.5445 0.152 5.2600 8.1239 102.9071

S2 -0.011 11.1373 1.8554 1.6611 0.105 8.4080 13.9669 228.0402

S3 -0.152 8.6273 1.8238 1.5743 -0.232 11.0781 17.4400 304.1626

S4 0.334 73.8888 1.9146 2.1089 -0.025 18.8547 39.7633 1728.740

Table 4.2. The various computed indicators for the four sounds, arranged in the order of

personal pre-judgment.

In table (4.3), we present the coordinates of the sounds obtained in a two-dimensional space

(DIM1 and DIM2). The variable regime’s result obtained for dimension DIM1 is in complete

agreement with the results of our previous work obtained for the stationary regime. In our

earlier work, we observed that the transition of DIM1 values from negative to positive

corresponds to the transition from a moderate defect to a severe defect, aiding in the decision

to replace the gear.

Sons DIM1 K PP SF DIM2 CF IF MF

S1 -0.170 8.1396 1.6413 1.5445 0.152 5.2600 8.1239 102.9071

S3 -0.152 8.6273 1.8238 1.5743 -0.232 11.0781 17.4400 304.1626

S2 -0.011 11.1373 1.8554 1.6611 0.105 8.4080 13.9669 228.0402

S4 0.334 73.8888 1.9146 2.1089 -0.025 18.8547 39.7633 1728.740

Table 4.3. The various computed indicators for the four sounds, arranged according to the

judgments of the listeners (DIM1).

Based on the literature we have reviewed and our previous work, no exact physical

interpretation has been given for dimension 2 (DIM2). The results obtained in this study have

allowed us to realize that DIM2 actually represents the differences in judgments among the

listeners between different sounds (identical, A little different, different, and very different),

as shown in figures (4.6) and (4.7). To confirm this analysis, we can observe that the listeners

judged S1 and S2 as identical (similar) sounds since they belong to the same gearbox.
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However, they classified S1 and S3 as slightly different sounds since they belong to two

different gearboxes, despite the fact that the severity of the defect in S3, according to DIM1,

is considered lower than that of S2. Based on these results, we can conclude that the physical

interpretation of DIM2 expresses the differences in judgments among the sounds generated

by the defects.-0.2 -0.1 0 0.1 0.2 0.3 0.4Dimension 1-0.25-0.2-0.15-0.1-0.0500.050.10.150.2 S1 S2S3 S4DifferentA littledifferent A little different
Figure 4.6. Explanation of the proximity space.
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Identical A little different Different Very different

Figure 4.7. New representation of DIM2.

3.2. Scalar indicators analysis

The goal is to find a mathematical correlation between the results of sound perception and

these indicators. Based on the values of the scalar indicators in table (4.3), we can observe

that the Kurtosis (K), Peak to Peak (PP), and Shape Factor (SF) indicators vary in an

increasing manner in good agreement with DIM1, while the Crest Factor (CF), Impulse

Factor (IF), Magnetic Factor (MF), Root Mean Square (RMS), and Energy (E) indicators

vary in an alternating manner in accordance with DIM2.

3.3. Correlations between scalar indicators and the two dimensions

The search for correlations between the scalar indicators computed from the vibratory signals

measured under variable conditions and the two dimensions, DIM1 and DIM2, in the

proximity space of figure (4.5) aims to establish mathematical models for machine

monitoring. To achieve this, we perform an ascending linear regression, using the vibratory

indicators as input and mathematical models with one or two scalar indicators as output. The

dimension chosen will be the one that exhibits the highest similarity score, indicating a better

alignment of data points on the regression line.
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According to figure (4.8), the two physical parameters that best characterize DIM1 are the

Shape Factor (SF) and the Margin Factor (MF), with a linear combination yielding a

correlation factor R²= 0.999 (p <0.001).

Dim1 = 1.4341 x SF -0.00019754 x MF-2.3498 (4.1)-0.2 -0.1 0 0.1 0.2 0.3 0.4DIM1 Calculated by mathematical model-0.2-0.100.10.20.30.4 MesuresDim1 = 1.4341 x ShapeF+ -0.00019754 x MF + -2.3498    avec   R2 = 0.99925
Figure 4.8. Scatterplot between DIM1 and vibratory indicators.

Dim2 = -0.074374 x CF + 1.4561 x ShapeF-1.6938 (4.2)-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2DIM2 Calculated by mathematical model-0.25-0.2-0.15-0.1-0.0500.050.10.150.2 MesuresDim2 = -0.074374 x CF         + 1.4561 x ShapeF     + -1.6938    avec   R2 = 0.99913
Figure 4.9. Scatter plot between DIM2 and vibration indicators.
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According to figure (4.9), the two physical parameters that best characterize DIM2 are the

Crest Factor (CF) and the Shape Factor (SF), with a linear combination yielding a correlation

factor of R²= 0.999 (p <0.001).

4. Verification of DIM1 and DIM2 mathematical models

In the proximity space of figure (4.10), we present the coordinates of the four sounds based

on DIM1 and DIM2, calculated by the two mathematical models (Mi) provided by

expressions (4.1) and (4.2), as well as those obtained experimentally through perception tests

(Si). We observe a very good agreement between the two sets of results, indicating the

usability of these mathematical models for machine monitoring.

Figure (4.11) displays the DIM1 values of the four sounds calculated by the two

mathematical models and those obtained through perception. The results align well,

confirming and validating the findings from chapter 2 and other studies conducted in our

laboratory [3-8]. In the stationary regime, the transition of DIM1 values from negative to

positive corresponds to a shift from moderate to severe defects, such as a fractured tooth in

our case. This aids in the decision-making process regarding gear replacement.

Figure 4.10. Sounds classified by the listeners (Si) and those calculated by the mathematical

models (Mi).
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Figure 4.11. Values of DIM1 for the 4 sounds.

5. Faults diagnosis using ICEEMDAN

5.1. Introduction

In order to validate the severity assessments of gear defects based on auditory perception for

signals measured under variable operating conditions, we will extract a portion of the

stationary zone (constant speed) from each of the four previously processed signals and

subject them to ICEEMDAN analysis.

5.2. Signal processing for the healthy state

Based on the spectrum in figure 4.12, the appearance of the meshing frequency Fm = 138.62

Hz and its harmonics 2Fm , 3Fm , and 4Fm is observed. According to the typical spectra of

faults, the decrease in amplitudes of the harmonics of the meshing frequency without any

modulation corresponding to the rotation frequencies of the input and output shafts indicates

that the gear is in good condition. However, on zooms 1 and 2, the appearance of a comb of

peaks corresponding to one-third of the rotation frequency of the input shaft of the gearbox
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(Fr2 ) is noticed, with sub-harmonics of the rotation frequency corresponding to the presence

of friction or impacts in the rolling bearing of the input shaft of the gearbox (Ff=Fr2 /3=2.56

Hz). After checking the implicated bearing of the gearbox, it was found that there was indeed

excessive play between the outer ring of the bearing and the bore of the gearbox. This play is

mainly due to the uncontrolled force applied by the belt tensioner on the one hand, and on the

other hand, due to the repeated assembly and disassembly of the input shaft of the gearbox

each time the type of fault is changed. Initially, we thought of a fault in the belt that transmits

the movement from the drive shaft (Fr1) to the input shaft of the gearbox (Fr2), calculated by

expression (4.3), Fb=3Hz, very close to the friction frequency (Ff). These amplitudes are low

compared to the amplitude of the meshing frequency and its harmonics. The amplitude of the

second harmonic of the impact frequency 2Ff is much higher than its fundamental amplitude,

indicating the presence of excessive play in the bearing. During perception tests, the noise

generated by the presence of impacts in the bearing and that generated by the passage of the

belt caused a lot of discomfort for the auditors.

Its characteristic frequency is given by:

Fb =
π∗d1

L
*
�1=

π∗d2

L
*
�2 (4.3)

When the details are mentioned in table (4.4)

d1 ��1 d2 ��2 L Fb ��3 Ff=Fr2/3

51 mm 19.5 Hz 126.2 mm 7.63 Hz 970 mm 3 Hz 5.11 2.56

Table 4.4. Belts and friction defects characteristic.
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Figure 4.12. Spectrum of a healthy gear measured in the band [0-6400] Hz.
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5.3. Signal Processing for half-tooth spalling defect

In figure (4.13), we present the spectrum corresponding to the transverse spalling of a half-

tooth. The same observations raised previously are applicable in this case, but with a

significant increase in the amplitude of the meshing frequency (a 10% increase compared to

the defect-free case) and, more notably, its first harmonic, 2Fe (a 46% increase compared to

the defect-free case). This increase is attributed to the elevated contact pressure on the half-

tooth during engagement. This increase causes a decrease in the amplitudes of the impact

frequency and its harmonics (a 36% decrease in the amplitude of 2Ff). In the case of

transverse tearing of half a tooth, the operation of the gear is almost normal, with no play

between the teeth during operation. The presence of the gear fault can be distinguished only

by comparing the amplitudes of the meshing frequency and its harmonics with the case

without faults for the same load and operating conditions.



Chapter four: Application of the perceptive method for the identification of gear fault severities operating under variable

105

Figure 4.13. Spectrum of a half-tooth spalling defect measured in the band [0-6400] Hz.

5.4. Signal processing for generalized wear defect

In figure (4.14), we present the gear spectrum exhibiting generalized wear. Generalized wear

of the tooth profile results in a periodic dull impact at the meshing frequency, generating a

comb of decreasing amplitude lines. We observe modulation of the meshing frequency and its

harmonics by the rotation frequency of the output shaft of the gearbox, Fr2 = 5 Hz. In this

case, the wear is present on the wheel mounted on the output shaft. Zoom 1 shows an

asymmetric image of modulations around the meshing frequency, characteristic of degraded

meshing. The belt defect is completely masked by the gear defect. Zoom 2, covering the

lower frequencies, also reveals that the spectrum is rich in rotation frequency Fr2. In the case

of generalized wear, the amplitudes of the meshing frequency and its harmonics are

significantly lower than those of the half-tooth spalling defect. Therefore, it can be concluded

that the generalized wear defect is less severe than the half-tooth spalling defect, confirming

the judgments of the auditors obtained through auditory perception under variable operating

conditions.
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Figure 4.14. Spectrum of gear showing generalized wear measured in the band [0-6400] Hz.
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5.5. Signal processing for a broken tooth defect

The spectrum of figure (4.15) is plentiful in harmonics of the input shaft rotation frequency,

Fr1 = 7.63 Hz, of the gearbox containing a wheel with a completely broken tooth. The

amplitudes of the comb of lines corresponding to the rotation frequency are significantly

higher than the amplitude of the meshing frequency and its harmonics. Therefore, the defect

is considered significant, as illustrated in the zoomed-in spectrum. Once again, The presence

of the impact fault in the gearbox bearing is completely masked by the gear fault.

Figure 4.15. Spectrum of a gear with a completely broken tooth measured in the band [0-

6400] Hz.

6. Conclusion

The results of the listening tests conducted in the semi-anechoic chamber at LAUM using

signals measured under variable operating conditions, reveal the following points:

 Despite the noise generated by the passage of the two transmission belts, which hindered

the listeners from focusing on the sound content, and despite the variable operation of the

machine, the perceptual tests performed by the listeners successfully classified the

defects according to their severity. This classification ranged from the least degraded
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condition, S1 (wheel presumed to be defect-free), to the most degraded condition, S4,

corresponding to the complete loss of a tooth.

 The results obtained in this study have allowed us to observe that the physical

interpretation of DIM2 is to express the differences in judgments between the sounds

generated by the defects (identical, slightly different, different, and very different).

Listeners judged S1 and S2 as similar sounds (close) since they belong to the same

gearbox, whereas they classified S1 and S3 as slightly different sounds since they belong

to two different gearboxs, despite the fact that the severity of the defect in S3, as judged

from the values of DIM1, is considered to be lower than that of S2.

 The mathematical models for DIM1 and DIM2 have shown a strong correlation between

the vibrational scalar indicators and the results of auditory perception, with a correlation

coefficient of R2 = 0.99. These models can be used as diagnostic tools and decision

support for assessing the evolution of the defect's degradation under variable operating

conditions.

 The results of the spectral analysis using ICEEMDAN in steady-state conditions confirm

the findings obtained through the auditory perception method under variable operating

conditions.
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Chapter five

General conclusion

This thesis aims to make a significant contribution in the field of fault detection in rotating

machinery, with a primary focus on gears. Throughout the different chapters, we have explored

various objective and subjective approaches to enhance the reliability of fault detection, even

under variable and noisy operating conditions.

The effectiveness of the sound perception method in classifying gear faults based on their

severity has been demonstrated. The correlation between this auditory perception and scalar

indicators derived from vibration signals has been established. For highly noisy signals, the

subjective approach proves to be more effective in assessing the severity of gear faults compared

to objective methods, thanks to the heightened sensitivity of the human ear in detecting and

evaluating faults. It even surpasses the most advanced objective signal processing techniques,

which have limitations in the case of highly noisy signals.

For the objective approach, an innovative hybrid method, combining Improved CEEMDAN

(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise), wavelet denoising,

and order tracking analysis for gear fault detection under non-stationary conditions. The results

showcased the effectiveness of this approach in detecting gear faults, providing a promising

alternative to traditional methods. This novel approach not only demonstrated its ability to

identify gear faults in challenging operational conditions but also underscored its potential to

enhance the field of machinery fault detection and diagnosis.

The results of the listening tests reaffirmed the auditory perception's ability to classify gear

faults based on their severity, even in the presence of noise and speed variations. Furthermore,

mathematical models were developed to correlate the auditory perception results with objective

measurements, thereby providing valuable diagnostic tools for assessing the fault progression.

These findings not only validated the subjective auditory approach but also established a bridge

between human perception and quantitative data, enabling more accurate and comprehensive

fault assessment in gear systems.
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Overall, this thesis opens exciting new prospects for the industry in terms of predictive

maintenance and machine reliability. The advancements made here have the potential to

significantly reduce unplanned downtime, optimize maintenance operations, and lower costs for

businesses. This research represents a crucial step towards the path of continuous improvement in

monitoring and maintaining mechanical systems, highlighting the importance of combining both

objective and subjective approaches and fully leveraging the strengths of each for more effective

fault detection in complex and dynamic environments.


