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Abstract

We report on theoretical study of the structural, electronic and optical proper-
ties of semiconductors using the full–potential linearized augmented plane wave
method (FP–LAPW) in the framework of density functional theory (DFT).
This study includes the rocksalt–like compounds GeTe, SnTe and PbTe, the
antifluorite compounds Be2C, Mg2C, Mg2Si and Mg2Ge and the Nowotny–
Juza compounds LiZnN, LiZnP, LiZnAs and LiCdP. The obtained results are
in good agreement with the available experimental data.
The bandgap of the rocksalt compounds and LiZnN, show an anomalous be-
havior; it decreases when the atomic number decreases. The small bandgap of
LiZnN compared to LiZnP can be attributed to the anion p–cation d repulsion
effects.
The study of the optical properties shows that the dielectric constant decreases
with increasing the cation atomic number for the rocksalt-like and antifluorite
compounds and increases with increasing the anion atomic number for the
other studied compounds.
The elastic properties and the valence charge density distribution show that
the filled tetrahedral compounds LiZnP, LiZnAs and LiCdP have a covalent
bond (e.g., Zn–As) and ionic one (e.g., Li–As) so that they can be character-
ized as half–ionic and half–covalent semiconductors.
Finally, the study of the effect of hydrostatic pressure on the electronic and
optical properties shows that the antifluorite compounds follow the same be-
haviour as the elemental diamond–like semiconductors, silicon and diamond.
However, the small values of Be2C pressure coefficients compared to those of
diamond are attributed to the ionic nature of the Be–C bond in Be2C.



 ملخص

 

الضوئية بالإضافة إلى الخواص البنيوية  ه الرسالة قمنا بدراسة نظرية للخواص الالكترونية وذفي ه

 شرودنغر بطريقة دالة الكثافة، حيث تم حل معادلة نظرية إطار الدراسة تمت في هذه. لأنصاف النواقل

  .التناسق الذاتي

 

 و  (NaCl)آلوريد الصوديوم تتبلور على شكل  التي GeTe، SnTe ، PbTe  سة تشمل المرآباتاردهذه ال

تتبلور على شكل مضاد الفليوريد و المرآبات   والتيBe2C ،Mg2C ،Mg2Si ،Mg2Geالمرآبات 

 حد إلىحصلنا على نتائج متوافقة ، حيث  LiZnN  ،LiZnP ،LiZnAs،LiCdPالمعروفة باسم نووتني جوزا 

  .آبير مع النتائج التجريبية

 ،GeTe   بالنسبة للمرآباتمألوفن عصابات التكافؤ و عصابات النقل يتبع سلوك غير الفاصل الطاقي بي

SnTe ، PbTe  بالنسبة للمرآب آذلكو LiZnN. ريذحيث انه يتناقص مع تناقص العدد ال.  

رة ذلل d تنافر مداراتب LiZnP مقارنة مع المرآب LiZnN  لـحيث تم تفسير صغر قيمة الفاصل الطاقي

Zn ت  مع مداراpرة ذ للN.  

  ري في المرآباتذيد مع تناقص العدد الازيت الثابت الكهربائي للعوازل أندراسة الخواص الضوئية بينت 

GeTe، SnTe ، PbTeتبع سلوك ي هذا الثابت الأخرى بالنسبة للمرآبات أما. مألوف سلوك غير أيضاا ذ وه

  .ريذتناقص مع تناقص العدد اليعادي حيث 

 هذه أن تبين LiZnN  ،LiZnP ،LiZnAs،LiCdPدراسة خواص المرونة و توزيع الشحنات في المرآبات 

و بالتالي يمكن على سبيل المثال،  Li- As ،و رابطة أيونيةمثلا،  Zn-As ،المرآبات ذات رابطة تكافئية

  . في نفس الوقتأيونية تكافئية و اعتبارها آمرآبات

، Be2C  الالكترونية و الضوئية للمرآباتهيدروستاتيكي على الخواص الضغط التأثير دراسة أخيرا

Mg2C ،Mg2Si ،Mg2Ge معالأولية النواقل أنصاف المرآبات تتبع سلوك مماثل لسلوك هذه أن تبين       

 مقارنة مع معاملات الماس حيث تم تفسيرها بطبيعة الرابطة Be2C ـتناقص ملحوظ لمعاملات الضغط ل

  . مقارنة مع الرابطة التكافئية للماسBe2Cفي المرآب  Be-C الأيونية

  

  

  

  



Résumé 

 

Dans cette thèse nous avons effectué une étude théorique des propriétés structurales, 

électroniques et optiques des semi-conducteurs, en utilisant la méthode linéaire des ondes 

planes augmentées (FP-LAPW), dans le cadre de la théorie de la fonctionnelle de la densité 

(DFT). Cette étude porte sur les semi-conducteurs GeTe, SnTe et PbTe qui se cristallisent 

dans une structure de chlorure de sodium, les composés Be2C, Mg2C, Mg2Si et Mg2Ge 

cristallisant dans la structure anti-fluorite et les composés de Nowotny et Juza LiZnN, LiZnP, 

LiZnAs et LiCdP. Les résultats obtenus sont en bon accord avec les données expérimentales 

disponibles. 

Le gap d’énergie des composés GeTe, SnTe, PbTe et LiZnN présente une anomalie; il 

diminue  avec la diminution du nombre atomique. En particulier, la petite valeur du gap de 

LiZnN par rapport à celui de LiZnP est due à la répulsion entre l’orbital d de l’atome du zinc 

et l’orbital p de l’atome d’azote.  

L’étude des propriétés optiques montre que la constante diélectrique statique augmente quand 

le nombre atomique diminue pour les composés GeTe, SnTe et PbTe, par contre elle diminue 

pour les autres composés étudiés.  

Les propriétés élastiques et la distribution des charges de valence, montrent l’existence des 

deux caractères ionique et covalent des liaisons dans les composés à liaisons tétraédriques 

remplies.  

L’étude de l’effet de pression hydrostatique sur les propriétés électroniques et optiques des 

composés Be2C, Mg2C, Mg2Si et Mg2Ge montre que ces composés se comportent comme les 

semi-conducteurs élémentaires ; le  silicium et le diamant. Les petites valeurs des coefficients 

de pression de Be2C par rapport à celles du diamant ont été attribuées au caractère ionique de 

la liaison Be-C. 
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CHAPTER 1

Introduction

The use and understanding of materials have gone hand in hand with the

advances of civilization and technology since the first use of primitive tools.

Historian uses the dominant materials of an ancient era to classify it. His-

torical ages - the Stone Age, the Bronze Age, the Iron Age - have often been

named according to the material dominating the technology of that time [1,2].

The properties of a given material depend on the chemical nature of its con-

stituent atoms, and their arrangement and distribution in its microstructure.

Thus, the objective of modern materials science is to tailor a material in order

to obtain a desired set of properties suitable for a given application [1].

Since the discovery of the bipolar junction transistor by Shockly, Bardeen and

Brattain in 1948, semiconductors have been and still are the basic materials

for the technological revolutions of electronics [3]. Silicon is the most used and

developed semiconductors up to now, however, owing to its indirect bandgap

it is not suitable optical source which requires direct gap to achieve a high

probability of transitions which ensure a high efficiency [4]. Therefore, other

compounds, such as II–VI and III–V zinc–blend–like semiconductors, have

been used [5].

1



2

IV–VI and II–IV semiconductors, which crystallize in the rock salt and anti-

fluorite structures, respectively, are compounds usually used in light emitters

and detectors operating in the Infrared region of the light spectrum. The first

infrared detectors was based on lead sulfide (PbS), however the need of detec-

tor operating in specific wavelength leads to the use of other materials, such

as lead salts alloys and super lattices [6, 7].

However, following Rompa et al. [8] the insertion of closed shell atom or ion

in one of the empty interstitial sites of zinc–blende semiconductor can change

the nature of the bandgap (from indirect to direct). On the other hand Zunger

and his collaborators [9–11] aimed at the Nowotny–Juza filled tetrahedral com-

pounds (FTC) such as LiZnP and LiZnN [12, 13]. Their works show that the

Nowotny–Juza compounds AIBIICV can be viewed as zinc–blend (BIICV )−

filled by AI+ ions (e.g., LiZnP). Furthermore, they showed that AIBIICV can

be obtained from the III–V zinc–blend compounds by transmuting the III

atom to its isovalent pair I+II (e.g., Ga to Li+Zn), in this context the ternary

FTC are analogous to the binary zinc–blend III-V compounds. Moreover the

interstitial insertion rule have been proposed to describe the induced change

in band structure of FTC compared to their binary analogous.

Computer modelling in the framework of quantum mechanical description of

the interactions between electrons and atomic nuclei has an important impact

on materials science both in fundamental understanding and design of new

materials for future applications, and in many cases, it is possible to predict

material properties before it has even been manufactured which greatly re-

duces time and cost required for this process [14].

First principles methods, which require only the atomic number and the crys-

tal structure as input, provide a powerful tools in this field. In particular

the density functional theory (DFT) is the widely accepted theory by both

physicists and chemists [15,16]. Its impact on modern physics, chemistry, and
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material sciences has been deemed so important that Walter Kohn shared the

Noble prize in chemistry with John Pople in 1998 [17].

In this thesis we report on first principles studies of the structural, electronic

and optical properties of a series of semiconductors, including the rocksalt–

like GeTe, SnTe and PbTe, and the antifluorite Mg2–Y (Y=C, Si, Ge) and the

filled tetrahedral compounds LiZnN, LiZnP, LiZnAs and LiCdP. This choice of

materials enables us to study the evolution of the electronic structure of rock-

salt, antifluorite and Nowotny–Juza FTC semiconductors, when the Z atomic

number changes (i.e., Ge–Sn–Pb in IV–VI or Y=C, Si, Ge, Sn in antifluorite

compounds) on one hand. On the other one, it enables us to view the induced

behavior changes, when the crystal structure changes (space group, the change

of coordination, valence electron number).

This thesis is organized as follows: in the two following chapters the theoretical

background and the calculation method are briefly described. In the next five

chapters we give the obtained results and discuss them. Finally a summary

and concluding remarks are given.
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CHAPTER 2

The many body problem

2.1 Introduction

Matter is formed by atoms held together by chemical bonds [1–3]. Atoms

are composed of a heavy positif charged nucleus and a nearly massless elec-

trons. Thus condensed matter physics is concerned with understanding and

exploiting the properties of systems of interacting electrons and atomic nuclei.

In quantum mechanics the properties of such systems can be, in principle,

obtained by solving the Schrödinger equation. Unfortunately, the strongly

interacting many–body system, formed by electrons and nuclei, makes the so-

lution of this equation impossible and many approaches have been proposed

to solve this problem. The major and most popular ones are the Hartree–Fock

approximation (HF) [4], which is usually used in quantum chemistry, and the

density functional theory (DFT) used in the calculations of solids [5–7]. In

this chapter, we briefly discuss the fundamental concepts of the DFT.

2.2 The electronic Schrödinger equation

The starting point for calculations of solid properties is the Schrödinger equa-

tion

Hψ = Eψ, (2.1)

6
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where H and ψ are the Hamiltonian and wavefunction of all the electrons and

nuclei. ψ is a function of all electron and nuclear coordinates.

If we neglect the relativistic effects, H can be written

H =
∑

i

p2
i

2me

+
∑

α

P2
α

2Mα

+
1

2

∑
i,j

′ e2

|ri − rj| +
1

2

∑

α,β

′ ZαZβe2

Rα −Rβ

−
∑
i,α

Zαe2

ri −Rα

,

(2.2)

where :

Pα and pi are the momenta of nuclei and electrons, respectively, me is

the electron mass, Mα is the mass of the nucleus α, ri and Rα are the

electronic and nuclear coordinates, respectively, and Zα is the charge of

that nucleus. The sums over i and j run over all electrons and the sums

over α and β run over all the nuclei. The primes on the summations

exclude i = j and α = β.

In the right hand side of this equation, the two first terms are the kinetic

energies of the electrons and nuclei, respectively, the following two terms are

the Coulomb (repulsive) potential energy between the electrons and the corre-

sponding one for the nuclei, the last term is the Coulomb (attractive) energy

between the electrons and nuclei.

Because of the presence of the last term, this Hamiltonian is not separable into

the sum of a purely nuclear Hamiltonian and a purely electronic one. However,

the great difference between the electron and nuclei masses makes the motion

of electron faster than the one of nuclei leading to the Born–Oppenheimer ap-

proximation, within the nuclei are considered point charges at fixed positions,

which enables the separation of variables [4]. This can be done by taking the

wavefunction as a product of the electronic wavefunction ϕ and the nuclear

one φ (i.e., ψ = ϕ × φ). Substituting this expression in (2.1) and (2.2) yields

Schrödinger equations for ϕ and φ. The equation for ϕ is
{∑

i

p2
i

2me

+
1

2

∑
i,j

′ e2

|ri − rj| −
∑
i,α

Zαe2

ri −Rα

}
ϕ = Eϕ, (2.3)
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this is the so called electronic Schrödinger equation.

The eigenvalue problem of equation (2.3) is a problem of a large number of

variables and is very difficult to solve. Therefore, further approximations have

to be made in practical calculations for realistic materials.

2.3 Hartree and Hartree–Fock approximations

In the Hartree approximation the electronic wavefunction ϕ of the system of

n electrons is taken as the product of the single particle wavefunctions χ (one

for each electron)

ϕ = χ1(r1)χ2(r2) · · ·χn(rn), (2.4)

substituting (2.4) into (2.3) and minimizing the energy with respect to the

variations in χi yields a Schrödinger equation for each of the χi, and we write
[
− ~2

2me

∇2
i + e2

∑

j 6=i

∫ |χj(r)|2
|ri − r| dr− e2

∑
α

Zα

ri −Rα

]
χi(ri) = εχi(ri). (2.5)

In this approximation, the wavefunction (2.4) does not respect the antisym-

metric statistics of electrons, and the tendency for cohesion is underestimated.

To overcome this problem, in the Hartree–Fock approximation the wavefunc-

tion is given in the form of a Slater determinant

ϕ =
1√
n!

∣∣∣∣∣∣∣∣∣

χ1(r1) χ1(r2) · · · χ1(rn)

χ2(r1) χ2(r2) · · · ...
...

...
. . .

...
χn(r1) · · · · · · χn(rn)

∣∣∣∣∣∣∣∣∣
. (2.6)

This wavefunction is antisymmetric. Following the same procedure as in

Hartree approximation, leads to a different single particle equations

[
− ~2

2me

∇2
i + e2

∑

j 6=i

∫ |χj(r)|2
|ri − r| dr− e2

∑
α

Zα

ri −Rα

]
χi(ri)

− e2
∑

j

∫
χ∗j(r)χj(ri)χi(r)

|ri − rj| = εχi(ri). (2.7)
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The last term in this equation is called the exchange term which arises from

the antisymmetrized function (2.6).

The Hartree–Fock approximation is a wave–function–based method. In fact,

when high accuracy is required many Slater determinants are used, so that

comprehension becomes difficult. It is worth adding that the cohesive energy

of solids, even improved, is still underestimated in this approximation.

2.4 Density functional theory

Density functional theory is now the most popular approach for calculating the

electronic properties of materials. It is a theory of electronic structure formu-

lated in terms of the electron density as the basic unknown function instead of

the electron wave function in the Hartree and Hartree–Fock approximations.

Although the electronic density has been introduced early in the works of

Fermi [8] and Gaspar [9]. However, the DFT has been given a firm foundation

by Hohenberg and Kohn [5], and Kohn and Sham [6]. Since then an enormous

amount of work has been done in this field and several monographs, textbooks,

reviews have been devoted to this novel approach. Here we just point out the

fundamental concepts of the theory. Namely, the Hohenberg–Kohn theorem,

the Kohn–Sham equations and the exchange and correlation potential.

2.4.1 Hohenberg–Kohn theorem

For a system of N electrons moving under the influence of some local external

potential v(r). The first Hohenberg–Kohn theorem states that v(r) is deter-

mined within an arbitrary additive constant by the knowledge of the electron

density n(r). The proof proceeds by reductio ad absurdum. That is to say that

the total energy of the system is given exactly as a functional of the ground

state density

E = E[n(r)]. (2.8)
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The second theorem states that for a given external potential v(r), the correct

charge density n(r) minimizes the ground state energy E[n(r)].

The Hohenberg–Kohn theorem does not provide any idea about the form of

the functional E[n(r)] and therefore the utility of the DFT depends on the

discovery of sufficiently accurate approximations. The best scheme for the

implementation of the DFT is the Kohn–Sham one.

2.4.2 The single particle Kohn–Sham equations

Kohn and Sham introduced the idea of an auxiliary non–interacting system, in

which the electrons move independently in a common effective local potential,

with the same electron density as the real system [6]. Therefore, the density

can be taken as the sum of single particle densities

n(r) =
N∑

i=1

|ψ(r)|2, (2.9)

and the Hohenberg–Kohn functional takes the form

E[n(r)] =− ~2

2m

N∑
i=1

∫
ψ∗i (r)∇2ψi(r)dr +

∫
n(r)Vion(r)dr

+
e2

8πε0

∫ ∫
n(r)n(r′)
|r− r′| drdr′ + Exc[n(r)],

(2.10)

where the right hand side terms are the kinetic energy of the non–interacting

electrons, the energy of interaction with the ionic potential, the Hartree en-

ergy, and the exchange and correlation interaction energy. The last term is

still unknown and has to be approximated, one of the most used approach, the

local density approximation, is discussed in the next subsection.

The minimization of the total energy functional of equation (2.10) by using the

method of Lagrange multiplies lead to the single particle Kohn–Sham equations

[
− ~

2

2m
∇2 + Veff

]
ψi(r) = εiψi(r), (2.11)
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where the effective potential is the sum of Coulomb (VC) and exchange corre-

lation (Vxc) potentials

Veff (r) = VC(r) + Vxc[n(r)], (2.12)

The equation (2.11) is probably the most important equation of the density

functional theory. It tells us that the motion of the interacting electrons can

be treated exactly as a system of independent particles.

2.4.3 Local density approximation

In order to use the Kohn–Sham formulation for the DFT, an approximate

form for the exchange and correlation energy is required. The local density

approximation (LDA) is the simplest and the widely used approximation in

which the exchange and correlation energy is taken to be the same as in a

uniform electron gas of the same density

ELDA
xc =

∫
exc[n(r)]n(r)dr. (2.13)

Modern forms of the local density approximation are based on the total energy

of the homogeneous electron gas derived from quantum Monte Carlo simula-

tions [10].

2.4.4 Solving the single particle equations

Finding the solution of the Kohn–Sham equation is the major computational

problem in determining the ground state charge density and hence the other

properties. To do this, the Kohn–Sham orbital ψi is expanded in term of the

basis functions φj

ψi(r) =
∑

j

aijφj(r), (2.14)

where aij are the expansion coefficients.

By substituting equation (2.14) in (2.11), multiplying both sides by φ∗j(r), and
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integrating over all space, the aij and εi form the eigenvalue problem

∑
j

(Hkj − εiSkj)aij = 0, (2.15)

where

Hkj =

∫
φ∗k(r)

[
− ~

2

2m
∇2 + Veff (r)

]
φj(r)d

3r, (2.16)

is the Hamiltonian matrix and

Skj =

∫
φ∗k(r)φj(r)d

3r, (2.17)

is the overlap matrix.
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CHAPTER 3

Method of calculation

3.1 Introduction

In the previous chapter, it has been shown that the many electrons Schrödinger

equation can be mapped to a system of single particle equations called the

Kohn–Sham equations. In solving these equations a basis set and a form

to describe the crystal potential are required. The computational methods

are usually distinguished by these choices. Pseudo–potential and plane waves

(PW–PP), full-potential linear muffin-tin orbital (FP–LMTO) or full–potential

linearized augmented plane wave (FP–LAPW), are examples of such meth-

ods [1, 2]. In our calculations we have used the state of the art FP–LAPW

method, which is among the most accurate known method. In this chapter we

briefly discuss the main concepts of this method and its applications in the

physical properties computation [1, 5].

3.2 APW method

The FP–LAPW method is a modification of the augmented plane wave method

(APW) developed by Slater in 1937 [1]. The basic idea of the later method is

that: (i) Near an atomic nucleus the potential and wave function are atomic–

like; that is to say that they are strongly varying but have nearly spherical

14
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symmetry. (ii) Between the atoms the potential and wave function are smooth.

So that space can be divided into spherical regions centered at atomic nucleus

sites, the so called muffin-tin spheres, and the remaining unit cell volume con-

stitutes the interstitial region. In the spherical region the potential is assumed

to be spherically symmetric, whereas, in the interstitial region is constant

which can be taken as zero

V (r) =

{
V (r) for r < rs,

0 for r > rs.
(3.1)

The basis functions are combinations of spherical harmonics times a radial

function inside the spheres and plane waves in the interstitial region

ϕ (r) =





∑

`m

A`mU` (r) Y`m (r) for r < rs,

1√
Ω

∑
G

CG exp [i (G + K) · r] for r > rs,

(3.2)

where ϕ is a wave function, Ω is the unit cell volume, Ul is the regular solution

of {
− d2

dr2
+

`(` + 1)

r2
+ V (r)− E`

}
rU`(r) = 0. (3.3)

The true (real) wavefunction is continuous, so that the APW basis functions

must also be continuous at the sphere surface (i.e., for r = rs). Therefore,

the coefficients Alm are chosen so that the basis functions inside the sphere

matches to plane wave (interstitial region) for r = rs. This can be done by

expanding the plane wave in spherical harmonics, and we obtain

A`m =
4πi`√
ΩU` (r)

∑
G

CGJ` (|K + G|R) Y ∗
`m (K + G) , (3.4)

where J` is a spherical Bessel function.

The APW method gives good results for close packed fcc and ideal c/a hcp ma-

terials. However, it is less accurate for bcc and related materials and becomes

less reliable as the site symmetry and coordination decrease. This method
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suffers from many problems, in particular, the matching condition which leads

to the so called asymptote problem, and the lack of variational freedom make

it computationally demanding.

3.3 FP–LAPW method

In order to solve the problems encountered in the APW method Anderson

proposed the linear methods LMTO and LAPW in 1975 [1, 2].

3.3.1 The basis functions

In the LAPW method the wave functions are expanded in a linear combination

of spherical harmonics and radial functions and their energy derivatives inside

the muffin–tin spheres, and plane waves in the interstitial region

ϕ (r) =





1√
Ω

∑
G

CG exp [i (K + G) · r] for r > rs,

∑

`m

[A`mU` (r) + B`mU̇` (r)]Y`m (r) for r < rs,
(3.5)

the radial functions satisfy the following equation

1

r2

d

dr

[
r2dU`

dr

]
+

[
ε− ` (` + 1)

r2
− V (r)

]
U` (ε, r) = 0, (3.6)

whereas their derivatives satisfy the equation

{
1

r2

d

dr
+

` (` + 1)

r2
+ V (r)− E`

}
rU̇` (r) = rU` (r) , (3.7)

the coefficients B`m are determined in the same way as the A`m ones in the

APW method.

If E` differs from the band energy, the best way to describe the radial function

is by using the linear combination

U (r) = Ul (εl, r) + (ε− El) rU̇l (r) + O
(
(ε− El)

2) . (3.8)
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3.3.2 The full potential

In the full–potential version of the LAPW method (FP–LAPW), no shape

approximations are made for the potential and charge densities. The potential

takes the following form

V (r) =





∑
G

VGeiG·r for r > rs,

∑

lm

Vlm(r)Ylm(r) for r < rs.
(3.9)

3.4 Calculation of properties

3.4.1 Total energy

Using the equation 2.11, the total energy is given by

E =
∑
αc

εαC +
∑
occ

W (k, j)εk,j − 1

2

∑
α

ZαR(α)

−
∫

ρ(r)[Vxc(r)− εxc +
1

2
Vc(r)]d

3r, (3.10)

where the integral is over the unit cell, the sum over c is over the core states,

the W (k, j) are the weights associated with the valence eigenvalues, ρ is the

total charge density (valence and core), εxc is the exchange and correlation

energy density per atom, Zα is the nuclear charge on atom α, and R(α) is the

Coulomb potential at the nucleus minus the Zα/r self contribution.

3.4.2 Lattice parameter and bulk modulus

The knowledge of the total energy of crystal allows the study of its structural

properties. The equilibrium lattice parameter (a), bulk modulus (B) and its

pressure derivative (B’) are determined by fitting the total energy as a function

of volume to the Murnaghan’s equation of state (eos) [3]

E(V ) =
BV

B′

[
(V0/V )B′

B′ − 1
− 1

]
+ cst., (3.11)

with

B = V
∂2E

∂V 2
, (3.12)
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and

V = V0

(
1 +

B′P
B0

)−1/B′

, (3.13)

where B is the bulk modulus, B′ is the bulk modulus pressure derivative, E(V )

is the total energy at volume V and V0 is the equilibrium volume (ground state).

3.4.3 Elastic constants

Consider a crystal defined by the lattice vectors a1, a2 and a3. To calculate the

elastic constants, the unit cell is deformed using an appropriate strain tensor

to yield an energy–strain relation. The coefficients obtained from a polyno-

mial fit to this data then yield the specific elastic constants, depending on the

symmetry of the strain tensor used.

The strained lattice is defined by the distorted primitive vectors




a′1
a′2
a′3


 =




a1

a2

a3


 · (←→I +←→ε ), (3.14)

where
←→
I is the 3× 3 identity matrix and ←→ε is the strain tensor given by

←→ε =




e1 e6/2 e5/2
e6/2 e2 e4/2
e5/2 e4/2 e3


 . (3.15)

The total energy changes by an amount

E(ei) = E0 + P (V )∆V + V

6∑
i=1

6∑
j=1

Cijeiej/2 + O[e3
i ]. (3.16)

For the particular case of crystals with cubic symmetry there are only three

distinct non vanishing elastic constants namely c11, c12, and c44. To calculate

their values the appropriate strain tensors and the corresponding energy strain

relations are described in Refs. [5, 6].
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The shear modulus G, Young modulus E and Poison’s ratio ν of polycrystalline

aggregate of single phase monocrystals having random orientations, can be

calculated from the cij. For cubic lattices the bulk modulus is given by B =

(c11+2c12)/3 and the shear modulus is bounded by the Reuss and Voigt moduli,

GR and GV , which represents its lower and upper limits, respectively [4]

GR = 5(c11 − c12)c44/[4c44 + 3(c11 − c12)], (3.17)

GV = (c11 − c12 + 3c44)/5, (3.18)

and according to Hill the arithmetic mean value is taken as an estimate for G

G =
1

2
(GR + GV ). (3.19)

The bulk and shear moduli are used to calculate the Young modulus E and

the Poisson’s ratio ν

E =
9BG

3B + G
, (3.20)

ν =
3B − E

6B
. (3.21)

3.4.4 Band characters and density of states

The density of states is a fundamental quantity in band theory. It is defined

as the number of electron states in an interval of energy. If the number of

states between E and E + dE is D(E), then the number of electrons will be
∫ EF

0
D(E)dE. The density of states can be calculated from the band character

(or orbital population) Q
(α)
l (ε,k) which is the lth angular momentum compo-

nent of the charge due to the wavefunction ψ(ε,k) enclosed in the sphere ΩMT

of radius R
(α)
MT about the atom α [7]

Q
(α)
l (ε,k) =

∫

ΩMT

|P̂ψ(ε,k, r)|2dr, (3.22)

where P̂ is an angular momentum projection operator with origin at the site

α.
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The partial density of states (PDOS) are then determined by integrating the

Q
(α)
l (ε,k) over all k in the Brillouin zone (BZ)

N
(α)
l =

∫

BZ

Q
(α)
l (ε,k)dk, (3.23)

and the total density of states is taken as the the sum over all orbitals and

atoms

D(E) =
∑

α

∑

l

N
(α)
l .

3.4.5 Linear optical properties

The linear optical properties in solids can be described with the complex di-

electric function ε(ω) = ε1(ω) + iε2(ω), the interband contribution to the

imaginary part of ε(ω) is calculated by summing transitions from occupied

to unoccupied states over the Brillouin zone, weighted with the appropriate

momentum matrix elements.

The imaginary, or absorptive part of the dielectric tensor, Im ε(ω), is given

by [8]

Im ε(ω) = ε2(ω) =
4π2e2

m2ω2

∑
i,j

∫
〈i|M |j〉2(fi(1−fj))δ(Ef−Ei−~ω)d3k, (3.24)

where e and m are the electron charge and mass, respectively, ω is the fre-

quency of the photon, M is the momentum operator, |i〉 is the wave function,

corresponding to the eigenvalue Ei, and fi is the Fermi distribution for |i〉
state. The real, or the dispersive, part of the dielectric tensor, Re ε(ω), is

obtained from the imaginary part by using the Kramers–Kronig relation

Re ε(ω) = ε1(ω) = 1 +
2

π
P

∫ k

0

ω′ε2(ω
′)dω′

ω′2 − ω2
, (3.25)

where P implies the principal value of the integral. The integral over the

Brillouin zone (BZ) was performed using the tetrahedron method.

The absorption coefficient α and the complex refractive index N are given by

α =
2πω

c

√
−Re(ε) + |ε|

2
, (3.26)
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N(ω) = n(ω) + ik(ω), (3.27)

where

n(ω) =

√
|ε(ω)|+ Re ε(ω)

2
, (3.28)

k(ω) =

√
|ε(ω)| − Re ε(ω)

2
. (3.29)

The reflectivity for normal incidence is given by the following expression

R(ω) =
(n(ω)− 1)2 + k2(ω)

(n(ω) + 1)2 + k2(ω)
. (3.30)
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CHAPTER 4

Electronic and optical properties of GeTe, SnTe and

PbTe

4.1 Introduction

The IV–VI semiconductors AB (A=Ge, Sn, Pb; B=S, Se, Te) have been ob-

jects of investigation for a long time on account of their interesting properties

like high dielectric constant and narrow fundamental gap whose pressure co-

efficient is negative for PbTe, i.e., it decreases as pressure is applied, and it is

positive for SnTe. The narrow gap semiconductors are very suitable materials

as infrared detectors and light emitting devices [1]. SnTe is a p-type semi-

conductor with a deficiency of tin atoms [2], it has been shown that SnTe is

a good candidate for observing acoustic plasmons by using a model dielectric

tensor based on the random phase approximation (R.P.A.) with an analytic

continuation to the lower half of the complex frequency plane [3, 4].

The band structures of these compounds have been calculated using many dif-

ferent methods such as the empirical pseudo potential [5–10], the augmented

plane wave method [11, 12], the full potential linear muffin tin orbital (FP–

LMTO) [13], linear augmented plane wave method [14–16]. In the cubic phase,

all of them gave results with general features in common, for exemple, the di-

rect bandgap is at the L point in the brillouin zone for PbTe and near it for

24
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SnTe. Experimental information relevant to the band structure has been ob-

tained from the measurement of various quantities [17–22].

The optical properties have been investigated both theoretically [8, 10, 13, 14]

and experimentally; near normal incidence of Cardona and Greenaway [23],

the wavelength modulated reflectivity of Kohn et al. [8] and Korn and Braun-

stein on the Pb1−xSnxTe alloy system [24] and more recently the ellipsometry

measurements [25–28].

Recently, Okoye [14] has used the the FP–LAPW method within the local

density and the generalized gradient schemes to calculate some of the optical

properties for SnTe and GeTe in the rocksalt structure. However, there is a

crucial dependence of the results on the Brillouin zone sampling as was men-

tioned by Ambrosch–draxl et al. [29], thus using a dense mesh and taking into

account of the spin orbit interaction might seem necessary in order to compare

the calculated properties to the experimental data.

In this chapter we show the effect of the k sampling in the irreducible part of

the Brillouin zone (IBZ) on the optical spectra on one hand, and on the other

we give a comparative and a complementary study of the optical properties

to both experimental and other works for GeTe, SnTe and PbTe. After a de-

scription of the calculations details in section 4.2, the results and discussions

are presented in section 4.3. Finally, a conclusion is given.

4.2 Details of calculation

In this work, we use the full potential linearized augmented plane wave method,

which has been described elsewhere [30]. The calculations have been carried

out using the wien2k code [31]. As exchange and correlation potential the

Perdew–Wang scheme [32] is used. The crystallographic structure is required

as experimental input. The crystal structure of the compounds GeTe, SnTe

and PbTe is rocksalt. The full space group is Fm3m which has 48 symmetry

operations which includes inversion symmetry. In the calculation 453, 537, and
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569 plane waves have been used for the expansion of the charge density and

the potential in the interstitial region for GeTe, SnTe and PbTe, respectively,

and lattice harmonics up to l=10 for the expansion in the muffin tin spheres.

The muffin tin radii were chosen to be 2.4 Bohr, for the Ge, Sn and Te atoms,

and 2.5 Bohr for Pb atom. A satisfactory degree of convergence was achieved

by considering a number of LAPW basis up to RMT×Kmax=8, where RMT de-

notes the smallest atomic radius and Kmax gives the magnitude of the largest

k vector in the plane wave expansion. For the self consistent calculation, the

Brillouin zone integration has been performed with 47 points in the IBZ.

To ensure convergence the variation of the total energy and the values of the

energy of the highest valence and lowest conduction bands have been calcu-

lated in function of the number of k points and RMT×Kmax. It is worth noting

that the muffin tin radii are also varied to satisfy convergence.

For the calculation of optical spectra the integration over the Brillouin zone

(BZ) was performed using the tetrahedron method. As pointed out by Ambrosch-

Draxl [29] that the calculated optical spectra depend on the BZ sampling,

therefore we varied the number of k point in the BZ in order to see the con-

vergence with respect to the BZ sampling.

It is worth noting that all calculations have been performed with spin orbit,

this effect is very important since the splitting of the bands contributes to the

optical transitions.

4.3 Results and discussions

4.3.1 Structural properties

The equilibrium parameters are obtained by calculating the total energy for

several values of the volume around the experimental one, then the calculated

values are fitted to the Murnaghan’s equation of state [34]. The results for

the three compounds are illustrated in figure 4.1 and summarized in table 4.1

together with other theoretical and available experimental data. We included
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the results obtained by the GGA [35]. The LDA equilibrium lattice constants

are used in calculating the density of states band structure and the optical

properties.

320 340 360 380

-0.976

-0.975

-0.974

-0.973

-0.972
E

 +
 1

77
74

 (
R

y)

GeTe

calc
EOS fit

360 380 400 420 440 460

-0.268

-0.266

-0.264

-0.262

E
 +

 2
59

30
 (

R
y)

calc
EOS fit

400 420 440 460 480

Volume (Bohr)
3

-0.454

-0.452

-0.45

-0.448

-0.446

E
 +

 5
54

17
 (

R
y)

SnTe

PbTe

calc
EOS fit

Figure 4.1: Energy versus volume, the filled diamond represents the calculated
total energy while the lines are the fit to the Murnaghan’s equation of state.
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Table 4.1: Structural parameter, lattice parameter aeq in (Å) , Bulk modulus
B in (GPa) and its pressure derivative B’

Calc. (Present results) Other calculations Expt.

LDA GGA LDA GGA

GeTe
aeq 5.86 6.01 5.85a 6.01a 5.99e

B 60.43 48.28 60.01a 48.93a

B’ 3.77 4.16 60.01a 48.93a

SnTe
aeq 6.23 6.40 6.23a 6.40a 6.313e

6.23b

B 50.74 40.91 50.75a 40.06a

51b

B’ 4.88 5.37 4.47a 4.25a

PbTe
aeq 6.38 6.56 6.37b 6.56c 6.462f

6.44d

B 49.40 37.56 51.4c 41.4c 39.8f

51.7d

B’ 4.26 4.93 4.08c 3.35c

a Ref [14],
b Ref [7],
c Ref [16],
d Ref [15],
e Ref [9],
f see Ref [16].

4.3.2 Electronic properties

The optical properties are closely related to the electronic structure, thus the

knowledge of it and the possible electronic transitions (band structure) as well

as their origins (energy level) are very useful and fruitful in analyzing the

optical spectra. In figure 4.3 we present the total density of states (TDOS) of

GeTe, SnTe and PbTe along with the experimental data. As it is easily seen

that the main features are preserved in the structures. The agreement with

the experiment is good.

The calculated band structures are displayed in figure 4.3 together with the

effect of spin orbit interaction of the three compounds studied. The partial
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Figure 4.2: Total density of states of GeTe, SnTe and PbTe compared to
the available XPS, (a) Shalvoy et al., (b) Kemeny and Cardona, and UPS
Fukui [36] data. The data (a) and (b) are taken from Ref. [37].

density of states (PDOS) is plotted in the right panels. The calculated band

structure and DOS show similarities for the studied compounds. The first

peak reflects the s Te electrons, which corresponds to the lowest lying bands

in figure 4.3, and its width originates mainly from region around Γ point

in the BZ, since only there the dispersion of this band is appreciable. The

second one the s X (X=Ge, Sn, Pb) electrons and the rest of the valence

band is mainly due to the p electrons of both elements in the compounds.

The conduction bands are mainly formed by the telluride and the X(X=Ge,

Sn, Pb) p states, furthermore, above 6 eV there is a contribution from the d

states. We note that the positions of the peaks shift down in energy as the

column IV is traversed upwards, the same trend is observed in the calculated

band structures of figure 4.3. The spin orbit interaction has a reverse effect on
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the fundamental gap of Ge(Pb) and SnTe, since it decreases the gap at L for

GeTe and increases it for SnTe as it is shown in table 4.2. The decrease of the

gap is due to the lowering of the energy level of the first conduction band at

the L point.

Table 4.2: LDA and GGA energy gap both with and without spin orbit, and
results from experiment and other calculations, note that the data taken from
Ref [14] and [16] are calculated at the experimental lattice parameter

Calc. (without SO) Calc. (with SO) Other calc. Expt.

LDA GGA LDA GGA LDA GGA

GeTe 0.16 0.37 0.03 0.22 0.24a, 0.20a 0.10 (300◦ K)d

0.20 (4.2◦ K)d

SnTe 0.03 0.05 0.26 0.10 0.22a 0.21a 0.20 (300◦ K)d

0.30 (4.2◦ K)d

PbTe 0.58 0.82 0.08 0.18 0.64b 0.18b 0.19e

0.19c 0.32 (300◦ K)f

a Ref [14],
b Ref [16],
c Ref [15],
d Ref [20],
e see Ref [16],
f Ref [17].
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Figure 4.3: Band structure of GeTe, SnTe, and PbTe along high symmetry
directions in the Brillouin zone with (dotted) and without (solid lines) spin
orbit interaction. In the right panels the partial density of states are displayed.
The Fermi energy is at zero.
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4.3.3 Optical properties

We start the discussion of the optical properties by studying the effect of the

BZ sampling on the imaginary and the real parts of the dielectric function for

the three compounds. Figure 4.4 shows the variation of ε2 and ε1 of SnTe with

respect to the k point meshes. The graph in the inset shows our calculated ε2

using 2456 points in the IBZ compared to the one obtained by Okoye [14] and

the experimental one of Suzuki and Adachi [27]. It is clear that with increasing

the number of k points the structures and the peaks in the ε2 spectra exhibit

a pronounced energy shift to the lower values, as it does the onset of the

absorption. The value of energy for which the real part of the dielectric function

changes sign is also shifted to lower energies. The same results are found for

the other two compounds. Only with the most dense mesh convergence is

obtained and quantitative agreement with experimental data is achieved [29].

For the rest of the paper, the results are presented for the case of 2456 points

in IBZ for SnTe and 4735 for GeTe and PbTe.

Our theoretical calculated absorptive and dispersive parts of the dielectric

function for PbTe and SnTe are shown and compared to the experimental

spectra [24, 25, 27, 28] in figure 4.5. For GeTe, no experimental spectra are

available for us; we just show the calculated ones. The calculated absorptive

spectra are not broadened. For PbTe a constant energy shift of 0.24 eV has

been applied. Our calculated spectrum is in good agreement with that obtained

by Delin et al. [13] using the FP–LMTO and Kohn et al. [8] obtained by the

empirical pseudo potential. It is generally seen that the main features observed

in the experimental data are well reproduced in our calculations.

Now, we turn to the examination of the origin of the different features in

our calculated absorptive part of the spectra in terms of band to band tran-

sitions [38]. First, we decompose the calculated ε2 in contributions from each

pair of valence vi, and conduction vj bands (vi,vj). This is shown for the

three materials studied in figure 4.6 (a). It is clear that the most features of
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Figure 4.4: The frequency dependant dielectric function of SnTe for a series of
k meshes in the BZ. In the inset our calculated imaginary part of the dielectric
function with 2456 k points is compared to that obtained by Okoye [14] (with
165 points and without spin orbit) and the ellipsometry data of Suzuki and
Adachi [27].

the spectra are due to the transitions between the top valence and the low

lying conduction bands, i.e. (v1,c1). Secondly, since the most contributions to

the joint density of states (JDOS), assuming that the matrix element of the

momentum operator [24] do not vary much with k, are from those region in

k-space where the bands are parallel. It is very meaningful to plot the band

pair (valence-conduction) energy differences in the BZ, as illustrated in fig-

ure 4.6 (b), in which the counting for v(c) is down (up) from the top (bottom)

of the valence (conduction) bands. The regions where the energy difference is

constant correspond to regions of high density of states, and extremes corre-

spond to Van Hove singularities [23, 24, 39]. On this basis, the ε2 spectra can

be interpreted as follow:

(i) An onset at the fundamental absorption edge comes from transition be-
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tween the extrema of the topmost valence band and the first conduction

band at L for GeTe and PbTe and near it along the Q direction for

SnTe. We note that this peak is sharper in SnTe than in the other two

compounds.

(ii) A smal peak (structure) in the region around 0.7 eV for SnTe and GeTe,

and 0.9 eV for PbTe, also comes from v1–c1 but along Σ and ∆ lines in

BZ.

(iii) Another structure around 1 eV for SnTe and GeTe, comes from the

transitions between the topmost valence band and the second (lowest)

conduction band (v1–c2) along the Σ lines in BZ.

(iv) The main broad peak, around 1.3 eV for GeTe, 1.6 eV for SnTe and

1.9 eV for PbTe, due to transitions between the two top valence bands

(v1,v2) to the first (low) conduction band (c1) along Σ line in BZ and

the flat structure along Q line, where the topmost valence band and the

first conduction band are pseudo parallel figure 4.3, and also at W. We

must note that the contribution from (v1–c2) transitions to the main

peak decreases in this order PbTe–SnTe–GeTe. This peak is the E2 peak

in Cardona and Greenaway work on the reflectivity measurements [23].

(v) The structures in energy range 1.6–2.47 eV for GeTe and 2–2.5 eV for

SnTe and around 2.7 eV in PbTe, come from transitions between the

second valence band to the two low conduction bands for GeTe and

SnTe (v2–c1,c2), and to the second conduction band for PbTe (v2–c2).

(vi) At higher energy the main features are; a relatively broad asymmetric

peak around 5.80 eV for GeTe, 5.30 eV for SnTe and 5.4 eV for PbTe,

due to transition v1–c2 along the X–W line, and a sharp peak around 6.0

eV for GeTe, 5.75 eV for SnTe and 5.88 eV for PbTe, due to transition

from v1–c1 along ∆ line (Γ–X) (as shown in the inset of figure 4.6 (b)).
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The most striking feature which can be deduced from the discussion above

is the shift in the energy positions of the peaks and structures when lead

is substituted by an atom of the same column and smaller atomic number

(Sn,Ge). This is in excellent agreement with the results of Ref. [23]. The same

trend is observed in the calculated band structure and DOS.

The dispersive part of the dielectric function, ε1, is shown in figure 4.6 (b)

and with the available experimental spectra for PbTe and SnTe, but for GeTe

we just show the calculated spectra. The general features observed in the

energy range of the experimental data; that is a shoulder, followed by a step

decrease, then ε1 becomes negative and then it slowly increases towards zero,

are well reproduced in our calculated spectra. Furthermore, the positions of

the zeros of the calculated spectra are shifted down in energy when the column

IV is crossed upwards.

Finally, the reflectivity, R, the absorption coefficient, α, and the real, n, and

the imaginary, k, parts of the refractive index are calculated from the complex

dielectric function by using the expressions 3.26–3.30. The results are displayed

in figures 4.7 and 4.8 and compared with those obtained experimentally and

by other calculations.
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4.4 Conclusion

The optical spectra of GeTe, SnTe, and PbTe are successfully calculated us-

ing the FP–LAPW method. Increasing the density of the k–mesh in the BZ is

shown to shift the structures and peaks positions to lower energies. The micro-

scopic origin of the main features in the optical spectra is analyzed, and found

that it is due to transitions between the highest valence and lowest conduction

bands, which are both of p character. Furthermore, the contributions of the

different regions in k–space are discussed in terms of the transition band struc-

tures. The positions of the main peak in the imaginary part of the dielectric

function decrease through this sequence PbTe–SnTe–GeTe in the cubic phase.

For SnTe and PbTe, our spectra are in good agreement with the experimental

ones.
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CHAPTER 5

Electronic and optical properties of Be2C and Mg2X

(X=C,Si,Ge) under hydrostatic pressure

5.1 Introduction

Be2C and Mg2X (X=C, Si, Ge) are semiconductors having antifluorite struc-

ture which can be viewed as zinc–blende MIIXIV (M=Be, Mg; X=C, Si, Ge,

Sn) filled by MII atom [1]. This affects the crystal structure by changing the

coordination of the XIV atom from four fold coordinated in the diamond struc-

ture (e.g., Si, Ge) to eight fold coordinated in the antifluorite structure (e.g.,

Mg2Si). But this structural change does not affect the electronic configuration

of the molecule, since the number of valence electrons remains the same in

both structures (i.e., diamond and antifluorite), moreover the Bravais lattice

is also the same, thus the two structures possesse the same Brillouin zone (BZ),

which results in a similar electronic structure [1, 2].

The antifluorite semiconductors are very interesting materials, they form the

simplest metal–semiconductor hybrid materials [3]. The narrow gaps of Mg2Si,

Mg2Ge and Mg2Sn (0.3–0.6 eV) make them very suitable materials for tech-

nological application as infrared detector in the wave length range 1.2–1.8 µm

relevant for optical fibers [4]. On the other hand due to the small size of Be and

C atoms Be2C and Mg2C are expected to exhibit large elastic moduli, which

44
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are related to hardness. Hence Be2C and Mg2C are very promissing materials

for high temperature and pressure applications [5].

Although there have been numerous studies on the electronic and optical prop-

erties of these materials [1,2,5–12], but to the best of our knowledge there are

no published works on the effect of pressure on these properties.

This chapter is devoted to the study of the evolution of these properties with

pressure. The paper is organized as follows, in the following section we give

the details of calculations. After that, we give the obtained results and discuss

them in section 6.4, and finally a conclusion is given in section 6.5.

5.2 Details of calculation

The present calculations are performed using the full potential linearized aug-

mented plane wave method [13] within the local density approximation (LDA) [14,

15], as implemented in the Wien2k code [16]. In this work we treat the core

electrons fully relativistically, and the valence electrons scalar relativistically

(all the relativistic effect are taken into account except the spin–orbit cou-

pling).

In the calculations, the Be (2s2), C (2s22p2), Mg (3s2), Si (3s23p2) and Ge

(4s24p2) states are treated as valence electrons, and the muffin–tin radii (in

Bohr) are chosen to be 2.0 for Mg, Si and Ge atoms, and 1.45 for Be and C

atoms. The basis functions are expanded up to Rmt ×Kmax=8 (where Kmax

is the plane wave cut–off and Rmt is the smallest of all MT sphere radii), and

up to lmax=10 in the expansion of the non–spherical charge and potential. We

use the Perdew and Wang functional [17] for the exchange and correlation in-

teraction. For the integration we used 10×10×10 k–points mesh in the whole

first Brillouin zone and the self–consistent calculations are considered to be

converged when the total energy is stable within 0.1 mRy.

The linear optical properties in solids can be described with the complex
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dielectric function ε(ω) = ε1(ω) + iε2(ω), the interband contribution to the

imaginary part of ε(ω) is calculated as described in chapter 3. The integral

over the Brillouin zone (BZ) was performed using the tetrahedron method.

The calculated optical spectra depend strongly on the BZ sampling, therefore

a sufficiently dense k–mesh is used in the calculations of the optical spectra,

which consists of 24× 24× 24 k–mesh.

5.3 Results

5.3.1 Structural properties

Table 5.1: Structural parameters, lattice parameter a0 in (Å), Bulk modulus
B in (GPa), the Bulk modulus pressure derivative B’ and cohesive energy Ec

in eV/atom

Parameters Present work Other calculations Expt.

Be2C a0 4.27 4.231, 4.272, 4.293 4.344

B 219.6 215.91, 2162, 2133

B’ 3.09 3.52, 4.183

Ec 6.10 5.862, 6.033 5.084

Mg2C a0 5.36 5.001

B 104.7 1341

B’ 3.54
Ec 3.95

Mg2Si a0 6.26 6.091, 6.265, 6.2956 6.3387, 6.358

B 58.84 59.21, 58.315, 56.26 46.3–55.09

B’ 3.97 4.0235

Ec 3.10
Mg2Ge a0 6.29 6.121, 6.2865, 6.3186 6.3937

B 56.12 57.61, 55.915, 55.106 44.0–54.79

B’ 4.31 4.0515

Ec 2.96
1PWPP Ref. [11], 2FP–LMTO Ref. [5], 3LMTO–ASA Ref. [5], 4Ref. [5] and references therein, 5FP–LAPW
Ref. [12], 6PWPP Ref. [20], 7Ref. [21], 8Ref. [22], 9Ref. [11] and references therein.

Antifluorite semiconductors Be2C and Mg2X (X=C,Si,Ge) can be consid-

ered as zinc–blende–like materials, with the atom which would be at (1
4
, 1

4
, 1

4
)a0
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Figure 5.1: p(v) equation of state, v0 is the equilibrium volume.
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replaced by two Mg or Be atoms at (1
4
, 1

4
, 1

4
)a0 and (3

4
, 3

4
, 3

4
)a0, where a0 de-

notes the lattice parameter. The ground state value of this parameter as well

as the bulk modulus (B) and its pressure derivative (B’) are obtained by cal-

culating the total energy for several values of the unit cell volume and fitting

them to the Murnaghan’s equation of state (eos) [19]. The obtained results

are listed in table 5.1, in which the available experimental data and results of

other calculations are also shown. The calculated lattice parameters are about

1% lower than the experimental values for Mg2Si, Mg2Ge and Be2C, while, the

lattice parameter of the hypothetical compounds Mg2C is larger than the previ-

ously reported value of Corkill and Cohen [11] calculated using the plane wave

pseudo–potential (PW–PP) method. The bulk modulus of Mg2Si and Mg2Ge

are higher than all the reported experimental values, this can be attributed to

the LDA underestimation of lattice parameters. The lattice parameters and

the bulk moduli agree well with the other calculations.

The energy–volume curves are very similar to the obtained ones by Benhelal

et al. [12] using the same method. Since we are interested to the pressure

effect, we have calculated the equation of state (the pressure versus volume)

by taking the volume derivative of the fitted curves. The obtained results are

depicted in figure 5.1. However, to the best of our knowledge, no experimental

data are available to date, our results can be considered as prediction for future

investigations.

5.3.2 Electronic properties

The zero pressure electronic band structures and optical spectra are calculated

at the theoretical lattice constants. The energy band structure along principal

symmetry directions at normal pressure and under pressure are depicted in

figures 5.2–5.5 for the studied compounds. In these figures the valence bands

are arbitrarily aligned. The band structures are quite similar for all the four

compounds, with smaller differences in the details, with several features in
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Figure 5.2: Energy band structure for Be2C, along principal symmetry direc-
tions at normal pressure (full curves) and at 40.3 GPa (broken curves).
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Figure 5.3: Energy band structure for Mg2C, along principal symmetry direc-
tions at normal pressure (full curves) and at 17.7 GPa (broken curves).
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Figure 5.4: Energy band structure for Mg2Si, along principal symmetry direc-
tions at normal pressure (full curves) and at 5.4 GPa (broken curves).
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Figure 5.5: Energy band structure for Mg2Ge, along principal symmetry di-
rections at normal pressure (full curves) and at 6.7 GPa (broken curves).



5.3. RESULTS 53

0 50 100 150 200
Pressure (GPa)

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

E
ne

rg
y 

ga
p 

(e
V

) Be
2
C

Γ−Γ
Γ-L
Γ-X
L-L
X-X

0 10 20 30 40 50 60 70
Pressure (GPa)

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

E
ne

rg
y 

ga
p 

(e
V

) Mg
2
C

Γ−Γ
Γ-L
Γ-X
L-L
X-X

-2 0 2 4 6 8 10 12
Pressure (GPa)

0

0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y 

ga
p 

(e
V

) Mg
2
Si

Γ−Γ
Γ-L
Γ-X
L-L
X-X

-2 0 2 4 6 8 10
Pressure (GPa)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y 

ga
p 

(e
V

) Mg
2
Ge

Γ−Γ
Γ-L
Γ-X
L-L
X-X

Figure 5.6: Variation of bandgaps as a function of pressure for Be2C, Mg2C,
Mg2Si and Mg2Ge.

common with the IV, IIB–VI [23–25] and III–V [26–31] semiconductor com-

pounds.

The valence bands can be divided into two groups. Starting from lower energy,

the lowest bands consist mainly of the group IV atom s states. The second

group of bands is mainly due to the group IV atom p–states hybridized with
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Table 5.2: Bandgaps (in eV) and bandgap pressure coefficients a (meV/kbar)
and b (meV/kbar2)

Compound Γ− Γ Γ−X Γ− L

C1 a 4.9 0.49 2.91
Si1 a 11.8 -1.9 3.73
Be2C E(0) 4.087305 1.198264 4.994781

a 0.834453 0.237605 0.874447
b -0.000551 -0.000178 -0.000605

Mg2C E(0) 1.795377 0.766938 3.650250
a 6.294564 0.019512 7.175434
b -0.007941 -0.000498 -0.008431

Mg2Si E(0) 1.983420 0.117929 1.303065
a 10.388145 -2.140667 6.771665
b -0.026289 0.003787 -0.016904

Mg2Ge E(0) 1.155191 0.100224 1.095372
a 10.331485 -1.718754 7.850679
b -0.026438 0.003169 -0.018896

1Ref. [36].

the Be and Mg p states. Continuing upward in energy, we see that all four

compounds have a distinct energy gap, the maximum of the valence band is

at the Γ point and the minimum of the conduction band is situated at the X

point. The conduction bands are mixture of p and s states (see Ref. [12] for

more details).

Under pressure the valence band energy levels decrease and consequently

the valence band widths increase, whereas the conduction energy levels in-

crease except at the X point of the lowest conduction band of Mg2Si and

Mg2Ge where they decrease.

The LDA underestimates the bandgaps, but it reproduces the experimental

trend quite well [32, 33]. The pressure derivatives and deformation potentials

are given reasonably well within this approximation [34–36]. In this context

and bearing in mind that the correction to this LDA effect is typically a rigid

shift of the whole conduction bands, one might assume that the pressure coeffi-

cients of bandgaps within LDA, even underestimated [35,36], are more reliable
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than the absolute gaps.

From the calculated equation of state and the gaps derived from band

structure at various lattice parameters, we derived the first and second order

pressure coefficients of the main transitions using polynomial fits. The vari-

ation of the direct and indirect gaps with pressure are shown in figure 5.6.

The obtained values of the zero pressure gaps, the first and the second order

pressure coefficients a and b, respectively, are listed in table 5.2.

As in the other diamond and zinc–blende semiconductors the linear coefficients

are positive for the direct gap Γ–Γ and the indirect one Γ–L, while the coef-

ficient of the Γ–X transition is negative except for the compounds containing

the first row elements. Thus, the positive sign of aΓ−X coefficient for Be2C and

Mg2C is in good agreement with the results found by Wei and Zunger [36] for

C, GaN and AlN compounds which contain first row elements.

Be2C and Mg2Si are closely related to the C and Si [1, 5], respectively, our

results show that under pressure the bandgaps of Be2C and Mg2Si follow the

same behaviour as the homopolar column IV diamond–like semiconductors.

This trend was also encountered in the other FTC LiZnX (X=N,P,As) and

their binary analogous GaX [37]. Comparing our results for Be2C and Mg2Si

with the results of Wei and Zunger [36] for C and Si, respectively. We found

that the coefficients of Mg2Si are of the same order of magnitude as the Si

ones. Whereas the Be2C coefficients are substantially reduced relatively to the

diamond ones, in contrast to what was found for LiZnN compared to GaN,

where they are enhanced and this has been attributed to the significant re-

duction of LiZnN bulk modulus relatively to the one of GaN [37]. However,

the bulk modulus value of Be2C (219 GPa) is nearly half of that of diamond

(442 GPa [38]), thus the pressure coefficients of Be2C are expected to be larger

than those of diamond.
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As reported by Wei and Zunger [36] the bandgap pressure coefficients are

altered by many effects, the volume effect (bulk modulus), the ionicity and

the p–d coupling. Obviously, the smaller coefficients of Be2C compared to

diamond is not caused by p–d coupling effects, since both compounds lack

an active d orbital. However, it has been shown in previous works [5, 9, 11],

that Be2C is an ionic semiconductor, and it is well known that diamond is the

most covalent compound, therefore, the smaller coefficients of Be2C might be

attributed to the ionic character of this compound.

Another point worth noting is that Mg2Si and Mg2Ge become metallic as

pressure increases (see Fig. 5.6) and the metallization pressures are 6.1 GPa

and 6.7 GPa, for Mg2Si and Mg2Ge, respectively. While the two carbide

compounds remain semiconductors in the range of the considered pressure.

5.3.3 Optical properties

The calculated imaginary part of the dielectric function under normal and un-

der hydrostatic pressure for the studied compounds is shown in figure 5.7. The

spectra of Mg2Si, Mg2Ge and Be2C are quite similar. However the spectrum

of Mg2C is different from the others. This difference can be attributed to the

position of the conduction bands which is quite different, for example, whereas

the maximum of the valence band is at Γ, the conduction band valleys follow

the X–L–Γ ordering of increasing energy for Mg2Si and Mg2Ge and X–Γ–L

for Be2C and Mg2C. Furthermore, the Mg2Si, Mg2Ge spectra at zero pressure

are similar to the ones obtained by Benhelal et al. [12]. The calculated onsets,

which correspond to the threshold of absorption originate from the direct tran-

sition at the Brillouin zone centre are 4.09 eV, 1.80 eV, 1.98 eV and 1.16 eV

for Be2C, Mg2C,Mg2Si and Mg2Ge, respectively. The last two values are very

close to the ones reported in Ref. [12]. Furthermore, the assignment of the

peaks and structures in the optical spectra and band structure transitions for

Mg2Si and Mg2Ge are given in Refs. [8, 12]. Under pressure, we observe that
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Figure 5.7: The imaginary parts of the dielectric function for Be2C, Mg2C,
Mg2Si and Mg2Ge under normal and under hydrostatic pressure.

all the peaks shift to higher energies due to the increase of the bandgaps (as

illustrated in figure 5.6).

The variation of the static dielectric constant ε1 with pressure is also calcu-

lated for the studied compounds and the results are shown in figure 5.8. The

LDA overestimates the values of ε1. The static dielectric constant decreases
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Figure 5.8: The variation of ε1 as a function of pressure for Be2C, Mg2C, Mg2Si
and Mg2Ge.

as the pressure increases for the semiconducting phase, its calculated values

are adjusted using a polynomial fit and the first and second order pressure

coefficients are displayed in table 5.3.
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Table 5.3: The coefficients a and b of the static dielectric function ε1, ε1(p) =
ε1(0) + ap + bp2, a (GPa−1) and b (GPa−2))

ε1(0) a b

Be2C This work 7.04716 -0.011844 0.000119
Mg2C This work 8.76655 -0.075923 0.002408
Mg2Si This work 16.54 -0.234658 0.014835

Other 16.1827 [12]
Expt. 12.9 [7]

Mg2Ge This work 16.78 -0.413175 0.027131
Other 16.3626 [12]
Expt. 13.3 [7]

5.4 Conclusion

We have used the FP–LAPW within the LDA in order to investigate the effect

of pressure on the electronic and optical properties of the antifluorite Be2C and

Mg2X (X=C,Si,Ge) compounds. The calculated pressure coefficients indicate

that the EΓ−Γ
g and EΓ−L

g increase with pressure for all the studied compounds

whereas EΓ−X
g increases with pressure for the carbide compounds and decreases

for the other two and it is negative beyond 6.1 GPa for Mg2Si and 6.7 GPa for

Mg2Ge. Furthermore, the smaller value of the first order pressure coefficient

of Be2C compared to diamond is attributed to the ionic character of the Be–C

bond in this compound. The structures in the optical spectra shift towards

higher energies when the pressure increases. The static dielectric function

decreases with pressure.
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CHAPTER 6

Structural and elastic properties of the filled tetrahedral

semiconductors LiZnX (X=N,P, and As)

6.1 Introduction

Among the filled–tetrahedral compounds (FTC), the Nowotny–Juza AIBIICV

with (AI= Li, Cu, Ag ; BII= Be, Mg, Zn, Cd ; CV = N, P, As, Sb, Bi)

form a special class of semiconductors recognized as promissing materials for

technological applications [1–3]. The main feature of these compounds is the

change of the band structure from indirect to direct in comparison with the

binary III–V analogous compounds leading to a new family of direct–wide

bandgap semiconductors [2, 4].

Despite their interesting properties, the Nowotny–Juza compounds are less–

investigated than the conventional III–V semiconductors. First principle tech-

niques have been used to study the filling–induced change in electronic and

optical properties for these compounds [1, 5–8] and very recently the vibra-

tional spectrum of cubic LiZnAs has been calculated [9]. On the experimental

side Kuriyama and his group studied the optical bandgap and determined the

force constants for few members of this family [10–18]. However, the elastic

constants and moduli which have been not yet calculated or measured (to the

authors knowledge), are of extreme interest in both condensed matter theory
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and technological fields. Many interesting properties of materials are closely

related to them. For example, the bulk modulus is related to the hardness

of the materials which is the key in high–temperature and pressure applica-

tions, and the elastic constants might provide valuable information about the

bonding between adjacent atomic planes, the anisotropy character of bonding,

structural stability and sound speeds. Therefore, a knowledge of the elas-

tic properties of the filled tetrahedral compounds will be of great interest in

understanding their behavior under different constraints.

The experimental determinations of all elastic constants need a single–

phase, homogeneous and defect–free single crystal, so far, these conditions are

not fullfilled in general for most of ternary alloys [19, 20] and in particular

for FTC [3, 10–12, 18]. Theoretically, such single–crystal is assumed to exist

through the periodic boundary conditions, and the full set of elastic constants

and moduli can be directly obtained. For polycrystalline samples, the shear

and young’s moduli and Poisson’s ratio can in principle be estimated from the

elastic constants [19,21].

In this work we initialize first–principles study of elastic properties of the

filled compounds α–LiZnX (X=N, P, As) using the state of the art full po-

tential linearized augmented plane wave method (FP–LAPW) [22, 23], in the

framework of the density functional theory (DFT) within the local density ap-

proximation (LDA) [24,25]. Due to the absence of experimental measurements

on the elastic constants of the three compounds, we also calculate the elastic

constants of GaN, GaP, and GaAs for comparison and checking the reliability

of our predicted results. The remainder of this paper is organized as follows:

in section 6.2 we summarize the crystal structure of the FTC. The method and

details of calculations are described in section 6.3. In section 6.4 we present the

obtained results and discuss them. Finally, a conclusion is given in section 6.5.
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6.2 Crystal structure

The zinc–blend crystal structure can be characterized by four lattice sites

in unit cell namely τ1 = (0, 0, 0)a0, τ2 = (1
4
, 1

4
, 1

4
)a0, τ3 = (1

2
, 1

2
, 1

2
)a0 and

τ4 = (3
4
, 3

4
, 3

4
)a0, where a0 denote the lattice parameter. For zinc–blend–like

structure DC compounds the cation D and the anion C atoms, occupy the τ1

and τ2 sites, respectively, whereas τ3, τ4 sites are empty, leading to the most

minimal packing fraction (0.34) which is small than the half of the close–packed

structure (0.74) which proves the effectiveness of sp3 tetrahedral bonding in

forming stable compounds [1]. Based on the openness of the zinc–blend struc-

ture, the small packing fraction, and the presence of two empty interstitial

sites, Rompa et al., have proposed a simple method to modify the band struc-

ture of zinc–blend–like structure compounds by inserting a closed shell atom

like He in one of the empty sites, their calculations indicate indirect–direct

modification of the SiHe bandgap [4]. Later Wood and coworkers have pro-

posed the insertion rule to describe the filling–induced change in the band

structure of filled tetrahedral compounds [1].

The Nowotny–Juza compounds AIBIICV can be obtained by the transmu-

tation of the cation atom (DIII) of the zinc–blend DIIICV to its isovalent pair

AI+BII atoms, in this context the resulting compound can be viewed as Hy-

pothetical zinc–blend (BIICV )− partially filled with (AI)+ interstitial ions [2].

Their crystal structure can be described as follows: the τ1, τ2 are occupied by

the BII and CV atoms, respectively, and the AI atoms can occupy, either the

τ3 site and forms the α–phase, or the τ4 site which represents the β–phase [5].

The filling–induced change in the crystalline structure can be summarized as

follows: (i) the insertion of the interstitial ion induce a dilation of the crystal

cell, (ii) the change of coordination for the anion atom occupying the τ2 site,

from four–fold coordinated in the original zinc–blend structure to eight–fold

coordinated in the filled one, and (iii) the additional interstitial atoms increase

the packing fraction and the crystal becomes much denser than the original
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zinc–blend parent.

6.3 Details of calculations

The present calculations are performed using the full potential linear aug-

mented plane wave (FP–LAPW) [22, 23] within the local density approxima-

tion (LDA) [26]. In this work we treat the core electrons fully relativistically,

and the valence electron semirelativistically (all the relativistic effect are taken

in account except the spin–orbit coupling).

In the calculations, the Li (2s1), N (2s22p3), P (3s23p3), Zn (3d104s2), Ga

(3d104s24p1) and As (3d104s24p3) states are treated as valence electrons, and

the muffin–tin radii (in Bohr) are chosen to be 1.8 for Li, 1.7 for N, and 2.2 for

Ga, P, Zn and As atoms, we pointout that the radii of Ga and N atoms in GaN

are reduced to 1.9 and 1.6, respectively, to avoid the overlap between spheres,

and for the same raison the radius of P atom is reduced to 2.0 in GaP. The

basis functions are expanded up to Rmt ×Kmax = 8 (where Kmax is the plane

wave cut–off and Rmt the smallest of all MT sphere radii), and up to lmax = 10

in the expansion of the non–spherical charge and potential. We use the Perdew

and Wang functional [26] for the exchange and correlation interaction. The

integrations over the Brillouin zone are performed with 7× 7× 7 k–mesh and

the self–consistent calculations are considered to be converged when the total

energy is stable within 0.1 mRy.

The theoretical equilibrium total energy, lattice parameter a0, bulk mod-

ulus B and its first order pressure derivative B’ are determined by fitting the

total energy as a function of volume for both phases α and β to the Mur-

naghan’s equation of state (eos) [27].

As it is well known that the elastic tensor of cubic crystals has only three

independent elastic constants, namely c11, c12 and c44. Their determination

requires knowledge of the curvature of the energy as a function of strain for

selected deformations the unit cell. In this work, we adopt the same scheme
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for deformations as those used by Kanoun et al. [28]: the elastic constants

c11 and c12 are related to the bulk modulus B and can be computed by the

Birch–Murnaghan eos [23] ; The two remaining deformations are : (i) a vol-

ume conservative tetragonal strain to calculate c11−c12; and (ii) rhombohedral

strain to deduce c44. The associated strain tensors as well as the full set of

equations reliying the elastic constants to the strain–induced change in the

total energy can be found in Refs. [23, 28].

6.4 Results

6.4.1 Structural properties

The calculated energy curves in function of volume for the two phases α and β

of the three compounds are displayed in figure 6.1. The obtained total energy

differences Eα−Eβ (in meV per formula) are: -1673, -463 and -204, for LiZnN,

LiZnP and LiZnAs, respectively, indicating that the α phase is the energetically

favourable one. As it is clear from figure 6.1, the absence of common tangents

between energy curves indicates that a pressure–induced phase transition from

α to β is not possible in the studied pressure range. The rest of this paper will

be devoted to the α phase only.

The results of structural optimization of α–LiZnX and zinc–blend GaX are

listed in table 6.1, together with the available experimental data and results

of other calculations. The lattice parameters and the bulk moduli for the

binaries agree very well with the measured ones, the calculated B are 7% and

4.8% higher for GaN and GaP and 1.6% lower in GaAs than the experimental

values. From table 6.1, the lattice parameters for LiZnN, LiZnP and LiZnAs

are 4.80 Å, 5.61 Å, and 5.80 Å respectively, which are slightly less than the

experimental values, this is mainly due to the LDA, but still predict an increase

in volume for the ternaries compared to the binaries analogous compounds.

The values of the bulk modulus (in GPa) are 141, 76, and 66 for the materials

listed above, respectively, suggesting that the filling tends to slightly soften
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Figure 6.1: Energy versus volume for the α and β phases of the studied com-
pounds. The circles and diamonds represent the calculated energies while the
lines are the fits to the Murnaghan equation of state.

these materials, this can be associated to the volume increase in the filled

compounds.

The bulk modulus pressure derivative falls within the range 4–5 as it the case

for most solids.

6.4.2 Elastic properties

The calculated elastic constants are listed in table 6.2 together with the avail-

able experimental data and results of other calculation for GaN. The bulk

modulus calculated from the theoretical values of the elastic constants B =
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Table 6.1: Structural parameter, lattice parameter a0 in (Å) , Bulk modulus B
in (GPa), bulk modulus pressure derivative B’ for the α–phase of filled LiZnX,
and their parent zinc–blend GaX.

Filled Compound Binary Parents

This work Other Expt. This work Other Expt.

LiZnN GaN
a0 4.80 4.871, 4.911 4.46 4.4462 4.463 4.54 , 4.495

B 141 203 187–2026 1905

B’ 4.2 4.5 3.97

LiZnP GaP
a0 5.61 5.648 5.769, 5.7510 5.41 5.4311, 5.4512

B 76 93.0 88.712

B’ 4.2 4.5
LiZnAs GaAs

a0 5.8 5.7688 5.9313 5.61 5.5514 5.6412

B 66.9 73.8 7314 75.412

B’ 4.9 4.9
1 Ref [12], 2 Ref [30], 3 Ref [28,31,32,34], 4 Ref [31,32,34], 5 Ref [28], 6 Ref [28,30–32,34], 7 Ref [28,31,34],
8 Ref [9], 9 Ref [11], 10 Ref [3], 11 Ref [38], 12 Ref [37], 13 Ref [3, 13], 14 Ref [29].

(c11 + 2c12)/3 is also listed in table 6.2, and it has nearly the same value as

the one obtained from energy minimization (see table 6.1 for comparison) on

one hand, and on the other it compares well with the one obtained from the

experimental elastic constants. Furthermore, when analyzing carefully the re-

sults in table 6.2 and bearing in mind that the LDA underestimates the lattice

parameter, consequently overestimates the elastic constants, and the neglect

of the thermal motion the calculated cij for GaP and GaAs are in good agree-

ment with experimentally measured values. This might be an estimate of the

reliability of the calculational results for the ternaries.

All the calculated elastic constants in table 6.2 satisfy the mechanical sta-

bility criteria in cubic crystals [39]; c11− c12 > 0 ; c44 > 0 ; B > 0. The overall

trend in the elastic constants for the LiZnX series LiZnN–LiZnP–LiZnAs is sim-

ilar to that for the GaX series GaN–GaP–GaAs, where all the cij are reduced,

and also the bulk and shear wave moduli B and cs = (c11−c12)/2, respectively.
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Table 6.2: Calculated elastic constants and moduli in (GPa) for the filled
LiZnX, and their parent zinc–blend GaX.

Reference c11 c12 c44 B = (c11 + 2c12)/3 cs

LiZnN This work 323.7 57.3 114.9 146.1 133.2
GaN This work 290.0 167.0 210.0 208.0 61.5

Other [31,34] 296 154 206 201.3 71
Other [35] 293 159 155 203.6 67
Other [28] 274.2 166.1 199.0 202.1 54.0
Expt.1 325 154 145 211 85.5

LiZnP This work 149.2 47.7 76.0 81.5 50.7
GaP This work 143.9 67.5 88.8 93.0 38.2

Expt. [37] 141.2 62.3 70.5 88.6 39.4
LiZnAs This work 120.6 40.2 70.7 67.0 40.2
GaAs This work 136.1 45.9 75.6 75.9 45.1

Other [29] 123 53 62 76.3 54.0
Expt. [37] 118.1 53.2 59.4 74.8 32.4

1 Obtained from hexagonal elastic constants of Ref [33] using Martin’s method [36],

The velocities of the acoustic waves in solids are related to their elastic

constants [40], for example for cubic crystals the velocity of the longitudinal

wave in (110) direction is given by
√

(c11 + c12 + 2c44)/2ρ, where ρ is the den-

sity. From the theoretical elastic constants, we computed the ratio between the

values of sound velocities in different directions (the density is calculated with

the equilibrium volume) in the ternary and binary compounds, and found that

it doesn’t deviate much from unity for vLiZnAs/vGaAs and vLiZnP /vGaP (see ta-

ble 6.3,and 6.4). This is in good agreement with the recent study of Wood and

Strohmayer [9] on the vibrational spectrum of LiZnAs, in which they found

that the sound velocities are quantitatively simmilar for LiZnAs and GaAs.

Table 6.3: Sound velocities in FTC for different propagation directions. The
subscript L and T stand for longitudinal and transversal, respectively, and the
superscript (hkl) indicates the propagation direction.

v001
L v001

T v110
L v110

T v111
L v111

T

LiZnN 7.90 4.71 7.67 5.07 7.60 4.95
LiZnP 6.20 4.42 6.70 3.61 6.86 3.90
LiZnAs 4.90 3.75 5.49 2.83 5.67 3.17
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Table 6.4: Ratio between sound velocities in FTC and their zinc–blend binary
analogous for different propagation directions, r = v(FTC)/v(Binary). The sub-
script L and T stand for longitudinal and transversal, respectively, and the
superscript (hkl) indicates the propagation direction.

r001
L r001

T r110
L r110

T r111
L r111

T

LiZnN vs. GaN 1.16 0.81 0.91 1.6 0.86 1.18
LiZnP vs. GaP 1.06 0.96 0.98 1.2 0.97 1.00

LiZnAs vs. GaAs 0.98 1.00 0.99 0.98 0.95 0.99

Having established the elastic constants cij, the elastic moduli for polycrys-

talline samples, shear modulus G, Young modulus E, and Poisson’s ratio ν are

calculated using the equations (3.20,3.19, 3.21), and the results are listed in

table 6.5, which can be interpreted as follow:

(i) The large value of shear moduli are indications of the more pronounced

directional bonding between atoms.

(ii) The small poisson’s ratio for LiZnX (' 0.18) than (' 0.24) for GaX,

indicate the relative stability against shear [21].

(iii) The quotient of bulk to shear modulus (B/G) is related to the ductility

or brittleness of the crystal. The small values of this quotient (' 1.25 ¿
1.67) show that the studied compounds are brittle rather than ductile

materials (i.e., for cubic lattices the lower limit of ductility is (B/G) =

1.67 see Ref. [21] for more details.)

Finally, it is worthnoting that we are not aware of any experimental measure-

ment or theoretical calculation of the elastic constants for the filled compounds,

therefore our calculated values can be considered as prediction of these proper-

ties for the LiZnX materials, hoping that our study will stimulate some future

works in this field.
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Table 6.5: Elastic moduli in (GPa) and Poisson’s ratio for polycrystalline
samples of LiZnX and GaX, calculated using equations (3.19,3.20 and 3.21)
from the data of table 6.2

GR GV G E ν

LiZnN 121.6 122.2 121.9 286.2 0.17
GaN 96.00 141.0 118.5 297.6 0.25
LiZnP 63.4 65.9 64.6 153.4 0.18
GaP 53.6 58.0 55.8 138.4 0.24
LiZnAs 54.3 58.5 56.4 132.0 0.17
GaAs 44.6 48.6 46.6 115.9 0.24

Ga N
0

1

2

3

4

5

Zn N Li
0

1

2

3

4

5

Ga P
0

1

2

3

E
le

ct
ro

n 
de

ns
ity

 (
e/

A
ng

3 )

Zn P Li
0

1

2

3

Ga As
Atomic positions

0

1

2

3

Zn As Li
Atomic positions

0

1

2

3

Figure 6.2: Electronic charge density profiles along the < 111 > direction.

6.4.3 Valence charge density and bonding character

To obtain additional informations about the bonding properties, and to explain

the large value of the elastic moduli, we have calculated the valence charge
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Figure 6.3: Valence charge density in plane (110)

density in the (110) plane and its profile along the bonding direction 〈111〉 for

the studied compounds and also for the GaX compounds for comparison. The

calculated densities show a great similarities between the ternary and binary

compounds as it illustrated in figure 6.2 and 6.3 leading to similar character

of the Zn–X and Ga–X bonds, and the main features of the bonding character

are :
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(i) The Li–N, Li–P and Li–As bonds, have a strongly ionic character with

the presence of small amount of covalent charge.

(ii) The Zn–P, Zn–As are similar to Ga–P and Ga–As bonds, which are

strongly covalent.

(iii) The Zn–N bond is similar to the Ga–N bond which have strong ionic

character, with small covalent character indicated by the presence of

small amount of valence charge along the bond.

(iv) The filling of the interstitial site (1
2
, 1

2
, 1

2
) induce a small change in the

shape of the electronic charge distribution of the anion atom and reduce

its anisotropy, as it clear from the more spherical shape of the charge

of N, P and As atom in the filled compounds in comparison with their

shape in GaN, GaP and GaAs. This little difference of the sharge shape

can be attributed to the volume change (dilation) and the charge transfer

from the Li to the anion atoms.

In conclusion the valence charge densities confirm the previously deduced

strong directional bonding between atoms (i.e., from the large elastic moduli)

and the half–ionic half–covalent nature of the LiZnP and LiZnAs [5], and

indicate that the LiZnN is ionic rather than covalent semiconductor.

6.5 Conclusion

We have performed first–principles calculations of structural and elastic prop-

erties of the Nowotny–Juza filled tetrahedral semiconductors LiZnX and the

binary GaX (X=N, P, As) by using the FP–LAPW method, within the local

density approximation. The energy minimization reveals that the most stable

phase is the α one for all the studied compounds. The reliability of the pre-

dicted results for the FTC is checked by comparing the calculated results and

the experimental data for the GaX compounds. The filling of the interstitial



6.5. CONCLUSION 75

sites leads to a reduction of the bulk modulus which is related to hardness.

Our results show that the overall trend in the elastic constants of the LiZnX is

similar to that in those of the binary compounds, where all the cij are reduced

in moving downward in the periodic table of the elements, i.e., from N to As.

From the theoretically obtained elastic constants, the sound velocities are cal-

culated and found to be in good agreement with the recent calculation of the

vibrational spectrum of LiZnAs.

The calculated elastic constants are used to compute the elastic moduli of

polycrystalline samples, which indicate a strong directional bonding between

atoms. The charge density contours and profiles confirm the strong directional

bonding, and show that the LiZnP and LiZnAs have a dual bonding character

i.e., Half–covalent and Half–ionic semiconductors at the same time, whereas,

LiZnN is ionic rather than covalent semiconductors like its parent GaN.
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CHAPTER 7

Optical properties of the filled tetrahedral

semiconductors LiZnX (X=N,P, and As)

7.1 Introduction

Nowotny-Juza LiZnX (X=N,P, and As) semiconductors belong to the class of

filled tetrahedral compounds (FTC) AIBIICV recognized as very promising

materials for technological applications. They have been first synthesized and

structurally characterized in the middle of the last century (1940–1950) by

Nowotny [1] and Juza [2]. Their crystal structure can be derived from the

zinc blend III–V compounds structure by transmuting the group III atom into

its isovalent pair AI+BII , in this context the BIICV form zinc blend lattice

and the AI atom can occupy either the a(1
2
, 1

2
, 1

2
) site (where a is the lattice

parameter) and forms the α phase, or the a(3
4
, 3

4
, 3

4
) site which is the β phase.

Interest in this compound family was renewed since the predictions of Wood

et al. [3] and Carlson et al. [4] that LiZnP and LiZnN exhibit semiconduct-

ing behavior with direct–wide energy gap. Their predictions have stimulated

many other works, and were confirmed experimentally by Kuriyama and his

group [5–7] and R. Bacewicz and T.F. Ciszek [8].

The electronic band structure was calculated and interpreted by means of the

79
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insertion rule [4], and the structural aspect and bonding character have been

the subject of many studies [9–12]. Recently, Wood and Strohmayer [13] have

studied the vibrational properties of LiZnAs and LiZnP, and more recently

the elastic properties were reported by us [14]. Unfortunately, there are only

few data concerning the optical constants of this interesting semiconductors

family, yet up to now there is no theoretical work concerning the linear opti-

cal properties of these FTC, although their promising potential technological

applications have been emphasized.

In this chapter, we present studies of the linear optical properties of α–

LiZnX compounds. The trend in the bandgap is discussed and analysed in

terms of covalency and anion p–cation d repulsion effects. The features of ob-

tained optical spectra are assigned to interband transitions along the Brillouin

zone high symmetry lines. The rest of this paper is organized as follows; in

section 7.2 we briefly discuss the electronic properties of LiZnX; in section 7.3

the trend in the bandgap is analysed ; in section 7.4 we describe the method

used for the calculations of optical properties and we give the obtained results.

A conclusion is given in section 7.5.

7.2 Band structure and density of states

Since the optical properties are closely related to the electronic structure, it is

of interest to describe it first and then we use it in analyzing the different op-

tical spectra features. As in the previous chapter [14], we use the FP–LAPW

method with the Perdew–Wang exchange–correlation term [17] and the same

calculation details. The electronic band structures, density of states and op-

tical spectra are calculated at the theoretical lattice parameters, which are

4.80 Å, 5.61 Å and 5.80 Å for LiZnN, LiZnP and LiZnAs, respectively.

Figure 7.1 illustrates our calculated band structures (left panels) and the
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Figure 7.1: Electronic band structure (left panels) and total density of states
(right panels) for the ternary compounds LiZnN, LiZnP and LiZnAs, the Fermi
level is set to zero.
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corresponding total density of states (DOS) (right panels) for the three stud-

ied compounds, while figures 7.2–7.4 show the site and angular momentum

decomposed DOS. It is clear from these figures that the studied compounds

are semiconductors and their band structures show great overall similarities

to those of III–V [18–23] and IIB–VI [24–26] compounds. In the III–V binary

analogous compounds the d bands are deeper in energy compared to those in

the ternary ones LiZnX, this makes the p–d interaction stronger in the latter

ones [26, 27]. This p–d coupling, which is included in our calculations, affects

the electronic and structural properties of Nowotny–Juza compounds by de-

creasing the gap and lattice parameter. For example, whereas the Zn atom

possesses an additional electronic shell than the Mg atom, the lattice parame-

ter of LiZnN (4.91 Å [6]) is smaller than that of LiMgN (4.95 Å [28]), and its

bandgap is also smaller 1.91 eV [6] for LiZnN and 3.2 eV [28] for LiMgN.

The calculated band structure and DOS show similarities for the studied

ternary compounds. The first peak reflects the group V atom s states, which

corresponds to the low lying band in figure 7.1, and its width originates mainly

from the region around the Γ point in BZ, since only there the dispersion of the

band is appreciable. The second one, a narrow Zn d states which lie higher in

energy for LiZnN than for LiZnP and LiZnAs (see figures 7.1–7.4), this peak is

broader (i.e., not core like states) in LiZnN than in the other two compounds.

It also contains a small contributions from the V atoms p states and which

decreases in this sequence LiZnN–LiZnP–LiZnAs. The rest of the valence and

conduction bands are mixture of p and s states with small amount of d states.

The contribution of d states to the valence band maximum (VBM) is larger in

LiZnN than the others.

Our calculation indicates that the valence band maximum is at Γ point and

the minimum of the conduction band is also at Γ for LiZnN and LiZnAs, while

it is at the X point for LiZnP. The bandgap nature of LiZnP is not consistent

with the experimental finding. It is worth noting that L.H. Yu et al. [12], found
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Figure 7.2: Site and angular momentum decomposed DOS of LiZnN, the Fermi
level is set to zero.

the same inconsistency for LiMgP and they suggest that more experimental

measurements are necessary. In table 7.1, we report our calculated bandgaps

together with the experimental and other theoretical results. The theoretical

gaps are smaller than the experimental values, this discrepancy is attributed

to the LDA method which always underestimates the bandgap. Our calculated

bandgaps for the ternaries have similar trend as the measured ones, however,

both of them do not follow the usual trend encountered in the GaX binaries,

i.e., as the ionicity increases the bandgap increases in the series GaAs–GaP–

GaN. It is worth noting that the bandgaps of LiMgX compounds have similar

trend as AlX compounds [28]. Therefore, the small bandgap of LiZnN deserves

further attention and its origin will be discussed in the next section.
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Table 7.1: Calculated and experimental bandgaps (eV) for LiZnN, LiZnP and
LiZnAs.

Direct gap (Γ− Γ) Indirect gap (Γ−X) Expt.

This work Other This work Other

LiZnN 0.94 0.601 [11] 2.29 2.34 [11] 1.91 [6]
(ZnN)− 0.35 2.84
GaN1 0.55 3.19
GaN 1.94 3.26 3.2–3.54

LiZnP 1.72 1.09 2.1 [8], 2.04 [5]
(ZnP)− 1.48 1.36
GaP2 1.23 1.65
GaP 2.10 1.45 2.338–2.354

LiZnAs 0.74 0.94 1.25 [8], 1.51 [7]
(ZnAs)− 0.48 1.23
GaAs2 0.34 1.52
GaAs 1.11 1.35 1.514

1 At the lattice parameter of LiZnN.
2 At the lattice parameter of LiZnP.
3 At the lattice parameter of LiZnAs.
4 See Ref. [29] and references therein.
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Figure 7.5: Charge density profile along the 〈111〉 direction for GaN (a); GaN,
LiZnN and (ZnN)− at a=4.80 Å (b), GaP (c); GaP, LiZnP and (ZnP)− at
a=5.61 Å (d); GaAs (e); GaAs, LiZnAs and (ZnAs)− at a=5.80 Å (f).

Table 7.2: Calculated p–d repulsion energy (eV) for LiZnN, LiZnP and LiZnAs
using model A1 and A2 of Ref. [26]. Qd is the fraction of d character in the Zn
sphere, Vpd is the p–d coupling matrix element, and ∆Epd is the energy shift
of the valence band maximum due to p–d repulsion.

Qd Γ15v − Γ15d Vpd ∆Epd

A1 A2 A1 A2 A1 A2 A1 A2

LiZnN 0.163 0.120 6.96 6.96 1.13 0.84 2.57 2.27
LiZnP 0.100 0.065 7.60 7.60 0.76 0.49 2.27 1.87
LiZnAs 0.079 0.051 7.60 7.60 0.60 0.39 2.05 1.67
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7.3 Trend in bandgaps

As one goes from the binary zinc blende GaX to their filled compounds LiZnX,

many effects can alter their electronic properties. In particular the bandgap is

related to volume, bonding character and charge density maps at high symme-

try points in the BZ. Moreover, for a system containing active d orbital like 3d

of Zn atom, the anion p–cation d coupling (repulsion) leads to an upward shift

of the VBM. To systematically study these effects we proceed as follows; (i) we

assume that the filled compounds can be obtained from their binary parents

by, first, increasing the volume of the binary compound, second, replacing the

Ga atom by Zn and form the hypothetical (ZnX)−, finally, inserting the (Li)+

ion at the interstitial site and form the filled compound LiZnX; (ii) from the

examination of the bandgap and charge density evolutions in all these struc-

tures, firstly we can be able to explain the small gap of the FTC in comparison

with their parents, and secondly to gain more insight on the puzzling small

bandgap of LiZnN in comparison with LiZnP. The charge density profiles are

plotted in figure 7.5, and the bandgaps are listed in table 7.1.

From the charge density plots, it is clearly seen that the charge densities are

quite similar for the ternary and binary compounds, which qualitatively lead

to the same trend in the bonding character of Ga–X and Zn–X bonds, whereas,

the X–Li bonds are purely ionic. Furthermore, the heteropolar gaps L1v–L1v

and X1v–X3v (the labels of the bands are the same as those of Ref. [9]) are

much greater in LiZnN than in LiZnP (see figure 7.1) showing that the po-

larity is greater in the former than in the later. From this point of view it is

expected that the bandgaps in the ternary compounds follow the same trend as

in the binaries (i.e.; increase in the series LiZnAs–LiZnP–LiZnN) as suggested

by Kuriyama before measuring the bandgap of LiZnN [5].

From table 7.1, the direct bandgap of the binary decreases as the volume in-

creases. Furthermore, the insertion of the Lithium atom increases the gap,

this is consistent with the result of [Ref. [4] Fig.2]. The only anomaly is found
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when going from GaX (at the same volume of the ternaries) to the hypo-

thetical (ZnX)−, whereas, the gap increases for the arsenide and phosphide

compounds, it decreases for the nitride one. As in the case of ZnO, despite

its greater ionicity it has smaller bandgap than ZnS [26,30], the p–d coupling

might be responsible of the small gap value of LiZnN. This effect has been

confirmed experimentally to exist in LiZnAs and LiZnP by Nelson et al. [27].

In fact, from Fig. 6 of Ref. [26], the orbital energy of Zn 3d is closer to the

one of N 2p than to the ones of P 3p and As 4p, therefore one expect the p–d

repulsion to be stronger in LiZnN than LiZnP and LiZnAs.

In order to assess for the p–d coupling, we used the tight–binding model given

in appendix of Ref. [26] for estimating the energy shift of the valence band

maximum for two different band parameters obtained from our calculated band

structures. The results are given in table 7.2, which show clearly that the p–d

repulsion in LiZnN is stronger than the other compounds, which shifts the

VBM upward in energy. This might be the reason why the bandgap of LiZnN

is lower than those of LiZnP and LiZnAs.

In conclusion, the lower bandgaps of the filled compounds LiZnX in compar-

ison with their parents is caused by the volume increase in these compounds

and p–d coupling between the cation d and anion p orbital. Furthermore,

the small bandgap of LiZnN is mainly due to the strong p–d coupling in this

compound.

7.4 Optical properties

The linear optical properties in solids can be described with the complex di-

electric function ε(ω) = ε1(ω) + iε2(ω), the interband contribution to the

imaginary part of ε(ω) is calculated as described in chapter 3. The calculated

optical spectra depend strongly on the BZ sampling, therefore a sufficiently

dense k–mesh is used in the calculations of optical spectra, which consists of

25× 25× 25 k–mesh.
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The calculated imaginary parts of the dielectric function for the three

ternary compounds are displayed in figures 7.6–7.8. Like band structures and

density of states, the optical spectra have similarities to those of the III–V

binary analogous ones.

To analyze the calculated optical spectra and to determine the origins of the

different peaks and features, we decompose each spectrum to its individual pair

contribution, i.e., contribution from each pair of valence vi and conduction cj

bands (vi–cj) (see figure 7.6). This technique together with the transition band

structure (band pair, valence–conduction, energy differences in the BZ) allow

the knowledge of the bands which contribute more to the peaks and their loca-

tions in the Brillouin zone [19,32–34]. Figures 7.6–7.8 illustrate the electronic

transitions band structures of the three studied compounds (given in the right

panels). In tables 7.3–7.5 the calculated energy of the peaks as well as ex-

tended regions giving the dominant contributions to elements of the structure

in the optical spectra are given. To the best of the author’s knowledge no

experimental spectra are available for these compounds. The details of the

optical spectra are given below.

LiZnN

The spectra of LiZnN is quite different from the two others, it is too broad

and contains more structure than those of LiZnP and LiZnAs. The threshold

in ε2 at 0.94 eV is caused by v1→c1 transition at Γ, the counting of the bands

is down (up) from the top (bottom) of the valence (conduction) band. The

rise and shoulder in 1–4 eV region involves the v1,v2,v3→c1 transitions along

Λ, ∆ and Σ lines. The rest of ε2 spectra can be divided into three groups of

structures. In the first group in the energy range 4.5–7.0 eV, there are two

peaks, the first is mainly due to transition from the two highest valence bands

to the lowest conduction band i.e., v1,v2→c1 in the W–L (Q line) and L–Γ
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Figure 7.6: The decomposition of the imaginary part of the dielectric function
into band–to–band contributions (left panel) and the transition energy band
structure (right panel) for LiZnN. For the counting of the bands see text.
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Figure 7.7: As figure 7.6, but for LiZnP.
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Figure 7.8: As figure 7.6, but for LiZnAs.

Table 7.3: Optical transitions in α–LiZnN.

Energy of optical structure Major contribution transitions

Peak position (eV) Transition Energy (eV)

5.30 ∆ , X: v1→c1 5.30
L, Q, Λ, X–W, Σ : v1→c1 ; v2→c1 5.35 ; 5.41

6.71 Q, Σ : v1→c1 6.72
X, ∆ : v3→c1 6.72

7.44 Q, Σ : v1→c2 7.44
7.96 Q, Λ, ∆, Σ : v1;v2→c2 7.88 ; 7.93
8.61 Q, ∆, Σ : v2→c2 8.61
9.48 Q (near L), ∆, Σ: v1→c3 9.30, 9.48
9.64 (near X); W–K: v1→c2 9.72; 9.70

Σ : v2→c2 9.78
10.08 Q (Near L), Σ: v3→c1 10.08
10.58 Q, X–W–K,Σ: v1→c3 10.58

∆, Λ, Σ: v3→c2 10.39
11.75 Q, ∆, X–W, Σ: v2→c3, v3→c2 11.75
13.21 Q, Λ,∆, W–K, Σ: v3→c3 13.21

(Λ line) directions in the vicinity of L, and in the Γ–X (∆ line). The second

peak results from the K–Γ (Σ line). The second group in the 7.0–9.0 eV region

consists of three peaks. The first two originate from v1→c2 transition in the
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Q, Σ and Λ lines. The last one is arising mainly from v2→c2 transition in

the ∆ and Σ directions. There is also a significant contribution from the last

transition to the second peak in Λ direction where the two bands are parallel

(see figure 7.1). The last structure in the energy range 9–16 eV comes from

the three highest valence bands to the third conduction band transitions. The

positions of the peaks and the major contribution transitions are collected in

table 7.3.

Table 7.4: Optical transitions in α–LiZnP.

Energy of optical structure Major contribution transitions

Peak position (eV) transition Energy (eV)

3.41 Q, ∆, Σ: v1→c1 3.36
Q, ∆, Σ: v2→c1 3.42

4.55 Q, Σ: v1→c1 4.54
Q, ∆, Σ: v1,v2→c1 4.40

4.79 ∆, Λ, Σ: v1→c2 ; v2→c2 4.76 ; 4.79
4.93 near L: v1→c2 4.93

Q, ∆, Σ: v2→c2, v1→c3 4.98
Q, ∆, Σ: v2→c3 5.07

5.5 X–W, Q, Σ: v1→c2 5.48
X–W, Q, Σ: v2→c2 5.53

Table 7.5: Optical transitions in α–LiZnAs.

Energy of optical structure Major contribution transitions

Peak position (eV) transition Energy (eV)

2.77 Q, L : v1→c1 2.68
Q, L : v2→c1 2.84

4.28 ∆, W–K : v1→c1 4.28
Σ: v2→c1 4.28

X : v1,v2→c1 3.94
K : v2→c1 4.16

4.91 L, ∆, Λ : v1→c2 4.91
Σ, ∆ : v2→c2 5.00

5.15 X : v1→c2 5.15
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LiZnP and LiZnAs

The imaginary parts of the dielectric function of LiZnP and LiZnAs are quite

similar. From figures (7.7 and 7.8) it is clear that the most important contri-

butions to the peaks in the optical spectra are due to the interband transitions

from the highest valence band to the lowest conduction band. There is also a

significant contribution from v2→c1 and v1→c2. Table 7.4 and 7.5 indicate

the contributing regions and directions in the BZ to the spectra of LiZnP and

LiZnAs, respectively. The first peak originates from the Λ direction and the

neighborhood of L in the Q line. The main peak is arising from the ∆ line and

the neighborhood of K. The third peak comes from the Q, Λ and ∆ lines and

it is worth noting that the contribution from v1→c2 to this peak is somewhat

higher in LiZnAs than in LiZnP. At higher energies the spectra decay rapidly

with photon energies.

Table 7.6: The calculated dielectric constants of α–LiZnX and their binary
analogous GaX, together with the available experimental and other calculation
results.
Materials Uncorrected Corrected Other Expt. ∆E (eV)

LiZnN 6.58 5.61 0.97
GaN 5.59 4.79 4.78 [33] 5.2, 5.71 1.41
LiZnP 10.53 9.85 9.62 [10] 0.32
GaP 11.05 9.14 9.1–9.59 [35]3 9.1 [35]3 1.00
LiZnAs 12.56 10.44 11.1 [13] 0.76
GaAs 13.98 10.88 10.2–13.1 [35]3 10.8–10.9 [35]3 1.02

1 Wurtzite values taken from Ref. [33], 2 Ref. [10] (Estimated value),
3 See Ref. [35] and references therein.

The real parts of the dielectric function were also calculated from the imag-

inary parts using the Kramers–Kronig relation, but they are not shown here.

We just give the static dielectric constants ε(0). However, the dielectric con-

stant is overestimated by the LDA, which is often attributed to the underesti-

mation of the bandgap by this approximation [35, 36]. In order to correct for

this LDA effect, a constant energy shift is applied to the conduction bands so
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as to match the calculated bandgaps with the experimental data. The theoret-

ical values of the static dielectric constant ε(0) (with and without shift) of the

studied compounds, together with the theoretical and experimental ones of the

binary parents GaX are summarized in table 7.6. The last column contains

the values of the energy shift. For the binaries, the corrected values of ε(0) are

in good agreement with the experimental ones. This might be an estimate of

the reliability of the predicted values for the ternaries.

7.5 Conclusion

In conclusion, we have presented first principles study of the electronic proper-

ties and optical spectra of the three filled tetrahedral compounds LiZnN, LiZnP

and LiZnAs. In our calculations the FP–LAPW in the LDA scheme has been

used. The bandgap trend is analysed in terms of bond covalency and anion

p–cation d coupling effect. The small value of LiZnN gap is attributed to the

later. The calculated optical spectra are quite similar for LiZnP and LiZnAs.

The decomposition of the dielectric functions into individual band–to–band

contributions and the transition band structures allowed to identify the mi-

croscopic origin of the features in the optical spectra and the contributions

of the different regions in the Brillouin zone. The calculated static dielec-

tric constants of the ternaries obtained by correcting the calculated bandgaps,

overestimated by the LDA, with the scissor operator predict that they are close

to the binary ones for LiZnP and LiZnAs.
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CHAPTER 8

Electronic structure of the filled tetrahedral compound

LiCdP and zinc–blende InP: application of the insertion

rule

8.1 Introduction

Among the Nowotny–Juza filled tetrahedral compounds [1, 2], the LiZnX and

LiMgX (where X=N, P, As) are the most studied both experimentally [3–7]

and theoretically [8–21]. Unfortunately, there are only few works concerning

the electronic properties of the Cadmium based compounds of this family (i.e.,

LiCdX). The bandgap of LiCdP has been roughly estimated by Bacewicz and

Cizeck [22], they reported that they can not determine its nature (direct or

indirect). On the theoretical side, to our knowledge, there have been two

previous calculations of LiCdP electronic structure using the linear muffin tin

orbital method (LMTO). The first one by Pawlowska et al. [23] only displays

the band structure, the second one by Kandepal et al. [15] reports some elec-

tronic properties of LiCdP. Very recently Mellouki et al. [24] have reported the

elastic properties and deduced the sound velocities in different directions of

this compound.

However, since LiCdX compounds are analogous to the zinc–blende InX ones,

which crystallize in the same space group, it is expected that their properties
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are quite similar to them. Moreover, it has been argued by Richardson and

Cohen [25] that the filled compounds derived from InP, InAs and InSb are

expected to have larger bandgaps than their parents. Their suggestions were

based on the analysis of valence charge densities at high symmetry points of

the Brillouin zone (BZ) in conjunction with the insertion rule [9]. Thus a de-

tailed investigation of the electronic structure of LiCdX (X=P, As and Sb) is

of great interest.

The aim of this chapter is to give a detailed study of the electronic properties of

the filled compound LiCdP. To give more insight on the filling induced change

in the electronic band structure we also calculate the electronic properties of

the binary analogous compound InP. This chapter is organized as follows; in

section 8.2 we describe the crystal structure and we give the calculation de-

tails; section 8.3 encloses the obtained results and their discussions; finally a

summary is given in section 8.4.

8.2 Structural aspects and computational de-

tails

The crystal structure of Nowotny–Juza filled compounds, as illustrated in fig-

ure 8.1, is closely related to the zinc–blende structure. The zinc–blende struc-

ture can be characterized as an ”empty tetrahedral interstitial structure”, with

the cation atom at τ1(0, 0, 0)a and the anion at τ2(
1
4
, 1

4
, 1

4
)a, and two vacant

interstitial sites at τ3(
1
2
, 1

2
, 1

2
)a and τ4(

3
4
, 3

4
, 3

4
)a, where a denotes the lattice pa-

rameter. The filled compounds AIBIICV can be obtained from their binary

analogous ones (DIIICV ) by transmuting the cation atom (group DIII atom)

to its isovalent pair BII+AI (e.g., In to Cd+Li), the BII and CV atoms form

a regular zinc–blende crystal, and the AI atom can occupy either the τ3 site

and forms the α phase or the τ4 site which is the β one. When the two sites

are occupied we obtain the γ phase.

The present calculations are performed using the full potential linear aug-
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(0,0,0)

(1/4,1/4,1/4)

(1/2,1/2,1/2)

(3/4,3/4,3/4)

<111>

Figure 8.1: Crystal structure of the Nowotny–Juza filled tetrahedral com-
pounds. The occupation of the sites by the atoms is explained in the text.

mented plane wave method within the local density approximation (LDA), as

implemented in the Wien2k code [27].

In this work we treat the core electrons fully relativistically, and the valence

electron scalar relativistically (all the relativistic effect are taken into account

except the spin orbit coupling). In the calculations, the In (4d105s25p1), Li

(2s1), Cd (4d105s2) and P (3s23p3) states are treated as valence electrons, and

the muffin–tin radii are chosen to be 2.2 Bohr for all atoms of InP and LiCdP.

The basis functions are expanded up to Rmt ×Kmax = 8 (where Kmax is the

plane wave cut–off and Rmt the smallest of all MT sphere radii), and up to

lmax = 10 in the expansion of the non spherical charge and potential. We

use the Perdew and Wang functional [30] for the exchange and correlation in-

teraction. For the integration we used 8 × 8 × 8 k–points mesh in the whole

first Brillouin zone and the self consistent calculations are considered to be

converged when the total energy is stable within 0.1 mRyd.
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8.3 Results

8.3.1 Structural properties

The ground state structural parameters are determined by calculating the to-

tal energy for a set of unit cell volumes and fitting them to the Murnaghan’s

equation of state [31]. The fitted curves were reported in Ref. [24].

The obtained lattice parameter, bulk modulus and its first order pressure

derivative are listed in table 8.1 along with available experimental data and

results of other calculations. The calculated lattice parameters, even under-

estimated by the LDA, agree well with the experimental ones. However, our

result for InP bulk modulus is in good agreement with the measured value.

The total energy calculations show that the α phase of LiCdP is more stable

than the β one.

Table 8.1: Structural parameters, lattice parameter a0 in (Å), Bulk modulus B
in (GPa) and its pressure derivative B’ for α–LiCdP, β–LiCdP and zinc–blende
InP.

α–LiCdP β–LiCdP InP

a0 5.981, 6.112, 6.0872, 6.0963 5.991 5.841, 5.8694, 5.875

B 66.221, 52.802 65.311 70.791, 71.105

B’ 4.441 4.591 4.291

1This work,
2Ref. [15],
3Ref. [22],
4Ref. [32],
5Ref. [33].

8.3.2 Band structure

Figure 8.2 shows the electronic band structures of the α and β–LiCdP com-

pared to the zinc–blende InP one. From this figure it is clear that LiCdP and

InP are semiconductors with direct gap at the Brillouin zone center (Γ point).

The different bandgaps are summarized in table 8.2. The conduction band val-

leys follow the Γ–L–X ordering of increasing energy for β–LiCdP and InP, and
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the Γ–X–L one for α–LiCdP. The insertion of Li+ ions at the interstitial sites

pushes the energy levels of the second valence bands upwards and reduces their

width in the two phases of LiCdP compared to InP. The most striking features

of the bandgaps is that the direct bandgap of α–LiCdP is wider than that of

InP. The situation is reversed for the indirect gap Γ–X. The wider direct and

smaller indirect bandgaps of the ternary compound α–LiCdP in comparison

with its binary analogous InP is in good agreement with the previous report

of Richardson and Cohen [25], and can be understood through the ’interstitial

insertion rule’ [9] which states that: ”substitution of the tetrahedral interstitial

sites in zinc–blende semiconductor by He– or Li+–like species (i.e., repulsive s

core potentials, attractive non–s core potentials) raises (lowers) the energy of

the conduction bands that have s (non–s) character on these sites”. To assess

for this, and since the character of charges does not change qualitatively, i.e.,

the state moving upwards (downwards) still has s (non–s) character at the

occupied site [12], we have calculated the angular momentum decomposition

of the occupied interstitial site charges (Ql) (in the Li atomic sphere) and the

energy variations (∆E = ELiCdP −EInP ) of the lowest conduction band at the

high symmetry points L, Γ and X. The results are summarized in table 8.3.

For the α phase the Γ and L states have s character and move upward in energy

(∆E > 0 in table 8.3), whereas the X state which possesses a non–s character

moves downward in energy, thus the ’interstitial insertion rule’ is successfully

applied in this case (α phase). On the other hand, for the β phase the L

state which has a non–s character moves downwards, and the X state with a

strong s character moves upwards, while the Γ state has s character but moves

downwards in energy, so it does not obey the ’interstitial insersion rule’. In

conclusion the ’interstitial insertion rule’ is not obeyed by all conduction band

variations of LiCdP as in the case of LiMgP [13], where it has been found that

this rule cannot be applied in predicting all conduction band modifications of

LiMgP.
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Table 8.2: Calculated bandgaps (in eV) of α–LiCdP, β–LiCdP and InP

α–LiCdP β–LiCdP InP

Γ–Γ 0.6351, 1.302 0.3961 0.5211, 1.353

Γ–X 1.1891 1.6061 1.5711

Γ–L 1.6691 0.7711 1.3181

1This work,
2Expt. [22],
3Expt. [33].

Table 8.3: The energy variations of the first conduction bands in LiCdP com-
pared to zinc–blende InP (∆E = ELiCdP − EInP , where E corresponds to
the respective conduction band states), and the percentages of s–like (Qs) and
non–s–like (Qnon−s, i.e., p, d, f components) charges inside the Li atomic sphere
in the respective conduction band states

L Γ X

α–LiCdP ∆E (eV) 0.351 0.114 −0.382
Qs 7.752 % 2.464 % 0.000 %
Qnon−s 0.389 % 0.185 % 6.014 %

β–LiCdP ∆E (eV) −0.547 −0.125 +0.035
Qs 0.339 % 11.817 % 20.864 %
Qnon−s 9.433 % 0.137 % 0.027 %
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Figure 8.2: Electronic band structures of α–LiCdP and β–LiCdP. For compar-
ison, the dashed lines show the bands of zinc–blende InP. The Fermi level is
set to 0.
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8.3.3 Valence charge density and bonding character

To gain more insight on the bonding character and to explain the charge trans-

fer in LiCdP and InP, we have calculated the valence charge densities in the

(110) plane.

Figure 8.3 depicts the charge contours and figure 8.4 shows the charge profiles

along the < 111 > direction. From this figure there is a great similarity be-

tween the charge density of the Cd–P and In–P bonds, they are characterized

by a strong charge overlapping and bonding maxima, which is clearly seen in

the profile plots (in figure 8.4 the charges are drawn toward the P atom and

exhibit a single hump in the bond charge), therefore they can be characterized

by a strong covalent character and a weak ionic one. On the other hand the

Li–P bond in α–LiCdP and the Li–Cd one in β–LiCdP are nearly purely ionic.

So that, LiCdP can be characterized as half–ionic and half–covalent at the

same time. These bonding characteristics were also found in the other filled

tetrahedral compounds LiZnAs [10] and LiZnP [6].
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Figure 8.3: Valence charge density contours in the (110) plane.
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Figure 8.4: Charge profile along the < 111 > direction.
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8.4 Conclusion

In conclusion, we have used the full potential linearized augmented plane wave

method within the local density approximation to investigate the structural,

electronic and bonding properties of the filled tetrahedral compound LiCdP.

Total energy optimization gives ground state structural parameters in good

agreement with experiment and shows that the most stable phase of LiCdP is

the α one. The conduction band modifications at high symmetry points Γ, X

and L are discussed and found to obey the ’interstitial insertion rule’ except

the Γ state of β–LiCdP. The calculated bandgaps show that the direct gap

of α–LiCdP is larger than the one of InP, while the opposite is true for the

indirect gap Γ–X. The valence charge densities show that the Cd–P bonds

have covalent character in both α and β phases, whereas, the Li–Cd bond in

β–LiCdP and the Li–P one in α–LiCdP are nearly purely ionic, so that the

filled tetrahedral compound LiCdP can be characterized as half–covalent and

half–ionic at the same time.



BIBLIOGRAPHY

[1] H. Nowotny, K. Bachmayer, Mh. Chem. 80 (1949) 734.

[2] R. Juza, F. Hund, Z. Anorg. Chem. 257 (1948) 1.

[3] K. Kuriyama and T. Katoh, Phys. Rev. B 37 (1988) 7140.

[4] K. Kuriyama, Y. Takahashi and K. Tomizawa, Phys. Rev. B 47 (1993)

13861.

[5] K. Kuriyama, T. Kato and T. Tanaka, Phys. Rev. B 49 (1994) 4511.

[6] K. Kuriyama, T. Kato and T. Tanaka, Phys. Rev. B 49 (1994) 11452.

[7] K. Kuriyama, K. Nagasawa, K. Kushida, J. Cryst. Growth 237/239 (2002)

2019.

[8] D.M. Wood, A. Zunger and R. de Groot, Phys. Rev. B 31 (1985) 2570.

[9] A.E. Carlsson, A. Zunger, D.M. Wood, Phys. Rev. B 32 (1985) 1386.

[10] S.–H. Wei, A. Zunger, Phys. Rev. Lett. 56 (1986) 528.

[11] H.–P. Li, Z.–F. Hou, M.–C. Huang and Z.–Z. Zhu, Chinese Phys. Lett.

20 (2003) 114.

[12] L.H. Yu, K.L. Yao and Z.L. Liu, Physica B 353 (2004) 278.

109



BIBLIOGRAPHY 110

[13] L.H. Yu, K.L. Yao and Z.L. Liu, Solid State Commun. 135 (2005) 124.

[14] D.M. Wood, and W.H. Strohmayer, Phys. Rev. B 71 (2005) 193201.

[15] H.C. Kandpal, C. Felser and R. Seshardri, J. Phys. D: Appl. Phys. 39

(2006) 776.

[16] F. Kalarasse and B. Bennecer, J. Phys. Chem. Solids 67 (2006) 846.

[17] F. Kalarasse and B. Bennecer, J. Phys. Chem. Solids 67 (2006) 1850.

[18] F. Kalarasse, B. Bennecer and A. Mellouki, J. Phys. Condens. Matter 18

(2006) 7237.

[19] B. Bennecer and F. Kalarasse, Algerian Journal of Advanced Materials

(AJAM) ISSN: 1111-625X, 3 pp. 23–26. Proceedings of the Fourth Inter-

national Congress on Material Science and Ingineering CISGM-4, Tlemcen,

Algeria, 2-4th May, 2006.

[20] A. Bouhemadou, R. Khenata and F. Zerarga, Solid Satate Communication

141 (2007) 288.

[21] L. Kalarasse, A. Mellouki, B. Bennecer and F. Kalarasse, Pressure ef-

fect on the optical properties of the filled tetrahedral semiconductors LiZnX

(X=N,P, and As), J. Phys. Chem. Solids, in press.

[22] R. Bacewicz and T.F. Ciszek, Appl. Phys. Lett. 52 (1988) 1150.

[23] Z. Pawlowska, N.E. Christensen, S. Satpathy and O. Jepsen, Phys. Rev.

B 34 (1986) 7080.

[24] A. Mellouki, L. Kalarasse, B. Bennecer and F. Kalarasse, First principles

calculations of the structural and elastic properties of the filled tetrahedral

compounds LiCdX (X=N,P,As), Comput. Mater. Sci., in press.

[25] S.L. Richardson and M.L. Cohen, Phys. Rev. B 35 (1987) 1388.



BIBLIOGRAPHY 111

[26] D. Singh, Planes waves, pseudo-potentials and the LAPW method. Kluwer

Academic Publishers, Boston, Dortrecht, London, 1994.

[27] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz,

WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Cal-

culating Crystal Properties. Karlheinz Schwarz, Techn. Universität Wien,

Austria, 2001. ISBN 3-9501031-1-2.

[28] P. Hohenberg and W. Kohn, Phys. Rev. B, 136, (1964) 864.

[29] W. Kohn and L.J. Sham, Phys. Rev. A, 140, (1965) 1113.

[30] J.P. Perdew and Y. Wang. Phys. Rev. B 45 (1992) 13244.

[31] F.D. Murnaghan. Proc. Natl Acad. Sci, USA, 30 (1944) 244.

[32] M.–Z. Huang and W.Y. Ching, Phys. Rev. B 47 (1993) 9449.

[33] P.Y. Yu and M. Cardona, Fundamentals of Semiconductors, Third edition,

Springer, 2001.



CHAPTER 9

Summary and concluding remarks

We have used the full–potential linearized augmented plane wave method in

the framework of the density functional theory in order to investigate the

structural, electronic and optical properties of a series of semiconducting com-

pounds including the rocksalt GeTe, SnTe, and PbTe, the antifluorite Be2C,

Mg2C, Mg2Si and Mg2Ge, and the Nowotny–Juza filled tetrahedral compounds

LiZnN, LiZnP, LiZnAs and LiCdP.

The calculated structural parameters are in good agreement with the available

experimental data. The band structure and density of states show that all the

studied compounds are semiconductors. The obtained bandgap values, even

underestimated by the LDA, are in good agreement with the measured ones.

The anomalous feature of the electronic band structure of the filled tetrahedral

compounds is the small gap of LiZnN compared to LiZnP which is attributed

to the strong p–d coupling in this compound. The band structure of LiCdP

shows that this compound obeys the interstitial insertion rule.

The optical spectra of GeTe, SnTe, and PbTe are successfully calculated. How-

ever, increasing the density of the k–mesh in the BZ is shown to shift the struc-

tures and peaks positions to lower energies. The microscopic origin of the main
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features in the optical spectra is analyzed, and found to be due to transitions

between the highest valence and lowest conduction bands, which are both of p

character. Furthermore, the contributions of the different regions in k–space

are discussed in terms of the transition band structures. The positions of the

main peak in the imaginary part of the dielectric function decrease through

this sequence PbTe–SnTe–GeTe in the cubic phase. For SnTe and PbTe, our

calculated spectra are in good agreement with the experimental ones.

The predicted values of the static dielectric constants for LiZnP and LiZnAs

are close to those of the binary compounds GaP and GaAs, respectively. So

that the coordination change does not affect much the dielectric constants.

We have also studied the effect of hydrostatic pressure on the electronic and op-

tical properties of the antifluorite compounds Be2C, Mg2C, Mg2Si and Mg2Ge.

The calculated pressure coefficients indicate that the EΓ−Γ
g and EΓ−L

g increase

with pressure for all the studied compounds, whereas EΓ−X
g increases with

pressure for the carbide compounds and decreases for the other two and it is

negative beyond 6.1 GPa for Mg2Si and 6.7 GPa for Mg2Ge. Furthermore, the

smaller value of the first order pressure coefficient of Be2C compared to dia-

mond is attributed to the ionic character of the Be–C bond in this compound.

The structures in the optical spectra shift towards higher energies when the

pressure increases and the static dielectric function decreases with pressure.

The most important conclusions of our study is that :

(i) The bandgap of IV-VI compounds has anomalous behaviour, it increase in

the following order GeTe–SnTe–PbTe.

(ii) The Nowotny Juza filled tetrahedral compounds follow the same behaviour

as their binary analogous III–V zinc-blend, and their properties are closely

related to them, including elastic constants, sound velocities, electronic band
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structure and optical properties, with some modifications, for example the

degree of directness of the bandgap is changed as a result of the distortion of

band structure which can be understood through the charge distribution at

high symmetry points of the Brillouin zone in conjunction with the interstitial

insertion rule. These findings indicate that Nowotny–Juza compounds provide

new opportunities in bandgap engineering.

(iii) The valence charge densities show that the Zn–P, Zn–As and Cd–P bonds

have covalent character, whereas, the Li–Cd, Li–P and Li–As bonds are nearly

purely ionic, so that the filled tetrahedral compound LiZnP, LiZnAs and LiCdP

can be characterized as half–covalent and half–ionic semiconductors at the

same time. Whereas, Li–N and Zn–N bonds are strongly ionic, so that LiZnN

is an ionic semiconductors.

(iv) The peaks and structures of the imaginary part of dielectric function

are shifted towards higher energies as the cation atomic number increases for

rocksalt IV-VI compounds, and shift towards lower energies for the antifluorite

compounds. For the Nowotny–Juza compounds the peaks shift towards lower

energies when the anion atomic number increases.

(v) The static dielectric constant decreases as the cation atomic number in-

creases in the rocksalt IV-VI compounds, whereas the inverse occurs for the

antifluorite compounds where it increases. On the other hand, it increases

with anion atomic number for the Nowotny–Juza compounds and follows the

same trend as the III-V zinc-blend–like compounds.

(vi) Under hydrostatic pressure the electronic band structures and optical spec-

tra of antifluorite semiconductors follow the same behaviour as those of zinc–

blend–like and diamond–like elemental semiconductors.


