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مِنوُن" لكَُُ وَرَسُولََُ وَالمؤُم لوُا فسََيَََى الله عََْ َ  قال الله تعالى :" قل اِعْم

لا بذكرك ... ولا  لا بطاعتك ... ولا تطيب اللحظات ا  لا بشكرك ... ولا يطيب النهار ا  لـهَي  لا يطيب الليل ا  ا 

لا بعفوك  تطيب الآخرة ا 

 .الحمد والشكر لله تعالى

لى نبي الرحمة و نور العالمين لى من بلغّ الرسالة وأأدَّى الأمانة ... ونصح الأمة ... ا   ا 

هِ و سَلَّّ   .س يدنا محمَّد صَلََّّ الله علَيَم

لى من تشاركني  ا  ِِ ِِ ِِ ِِ ِِ ِِ ِِ ِِ لى من سهرت الليّالي تنيَ دربي ... ِ لى من ساندتني في صلاتها ودعائها ... ا  ا 

لى نبع الحنان نسانة في الوجود  أأفراحي وأأساتي ... ا  لى أأروع وأأحن ا  لى أأجمل ابتسامة في حياتي ... ا   ... ا 

 .أأمِّ  الغالية

لى من علمني أأن الدنيا كفاح ... سلاحها العلّ و النجاح ...  ا  ِِ ِِ ِِ ِِ ِِ ِِ ِِ ِِ لى من كللّه الله بالهيبة والوقار ...ِ  ا 

لى أأعظم و أأعز رجل في الكون لى الذي لم يبخل علي بأأي شيء ... ا   ا 

 .يز الباهيأأبي العز 

لى من شاركوني حضن أأمي  لي من روحي ... ا  لى من هم أأقرب ا  لى القلوب الطاهرة والرقيقة والنفوس البريئة ... ا  ا 

صراري ... ا خوتي:  وبهم أأس تمد عزتي وا 

 رميساء. فاروق، رقية و

 .زيتوني ا لى جميع عائلة

لى اللاتي ظفرت بهن هدية من الأقدار أأخوات ... فعرفن معنى الأخوة لى اللواتي لم تلدهن أأمي ...  ا  والصداقة ... ا 

لى من تحلين بالا خاء والوفاء والعطاء، أأخواتي الحبيبات :  ا 

 نسرين، راوية، صافيناز، هاجر، خديجة، منال، سارة... 

لى من أأخذن بيدي و رسمن الأمل في كل  آنسنني في دراس تي و شاركنني همومي تذكارا و تقديرا ... ا  لى من أ ا 

لى من تذوقت معهن أأجمل اللحظات ... الآن تفتح الأشرعة وترفع المرساة لتنطلق السفينة في خطوة مشيته ا ... ا 

لا قنديل الذكريات ...ذكريات الأخوة التي لا تنسى،  عرض واسع مظلّ هو بحر الحياة وفي هذه الظلمة لا يضيء ا 

 صديقاتي الغاليات:

لهام، يمان، نهي بشرىشروق، شهرة، صفاء، ا  ... ، حس نة، ا   

 .ا لى كل الذين أأعرفهم ولم تسعني الكتابة لهم
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Résumé

Dans ce travail, nous énonçons les fonctions arithmétiques de base, ainsi

que les fonctions de Chebyshev. Ensuite, nous présentons les formules de

sommation célèbres avec preuves. Par exemple : La formule de sommation

d’Euler et la formule de sommation partielle. A la fin, nous appliquons ces

formules pour trouver les valeurs moyennes de certaines fonctions multiplica-

tives et additives. Les valeurs moyennes de certaines fonctions arithmétiques

arbitraires sont également discutées.

Mots clés. Fonctions arithmétiques, La valeur moyenne des fonctions

arithmétiques, Moyenne ordres des fonctions arithmétiques.
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Abstract

In this work, we understand the basic arithmetic functions, as well as

chebyshev’s functions. Next, we present famous summation formulas with

proofs. For example: The Euler summation formula and partial summation

formula. At the end, we apply these formulas to find mean values of some

multiplicative and additive functions. The mean values of some arbitrary

arithmetic functions are also discussed.

Keywords and phrases Arithmetic functions, Averages order of arith-

metic functions, The mean values of arithmetic functions.
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Table of notations

We list below page numbers where various notations in the body of the text

are introduced.
Notation Explanation
τ(n), d (n) the number of divisors of n
σs(n) The sum of s-th power of all divisors of n
ϕ (n) Euler phi function
ω (n) the number of distinct prime divisors of n
Ω (n) the total number of prime divisors of n

d | n, d - n divides (does not divide)
µ(n) Möbius function
ζ (s) Riemann zeta function
[x] The integer part of x
{x} The fractional part of x
dxe The smallest positive integer ≥ x

(a, b) The greatest common divisor of two integers a and b
ϕs (n) The generalized Euler’s function
σ(n) the sum of the divisors of n
f ∼ g asymptotic equality
Λ (n) Von Mangoldt function
ψ (x) Chebyshev ψ-function
θ(x) Chebyshev θ-function
ψ (n) The sum of Λ(k) over integers k ≤ n
λ(n) The Liouville function
f � g f(x)/g(x) is bounded above and below
O, o Big (little) oh notation

π (n), π (x) number of primes ≤ n (or x)
log The logarithm-function
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Introduction

An arithmetic function is defined to be a function f(n), defined for n ∈

N, which maps to a complex number such that f : N → C. Examples of

arithmetic functions include: the number of divisors of n, the sum of divisors

of n, Euler’s function, the number of primes less than a given number n and

the number of ways n can be represented as a sum of two squares, ... etc.

For suitable references, see [2],[4],[6], [7]. While the behavior of values of such

arithmetic functions are hard to predict, it is easier to analyze the behavior

of the averages of arithmetic functions which is defined as:

lim
n→∞

f (1) + f (2) + ...+ f (n)

n
= L.

Here L is called the average value of f (n) (see, eg [7, Section 6, page 201]). So

in this work we will understand how they examine averages of several different

arithmetic functions. More precisely, we focus of the following summation

formulas:

•
∑

n≤x : summation over all positive integers ≤ x.

•
∑

p≤x : summation over all primes ≤ x.

•
∑

pm : summation over all prime powers pm with p prime and m a

positive integer.

5
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•
∑

d|n : summation over all positive divisors of n (including the trivial

divisors d = 1 and d = n).

•
∑

d2|n : summation over all positive integers d for which d2 divides n.

•
∑

p|n : summation over all (distinct) primes dividing n.

We need to the following definition (see [4],[7],[5]): Let f and g be func-

tions of x. The notation f � g denotes that f(x)/g(x) is bounded above

and below by positive numbers for large values of x. The notation f = O(g)

denotes that there exists a constant c such that |f(x)| ≤ cg(x). The notation

f ∼ g denotes that lim
x→∞

f(x)/g(x) = 1.

While the behavior of a number theoretic function f (n) for large n is often

difficult to determine because the function values can fluctuate considerably

as n increases, it is more fruitful to study partial sums and seek asymptotic

formulas of the form ∑
n≤x

f (n) = F (x) +O (h (x)) ,

where F (x) is a known function of x and O (h (x)) represents the error,

a function of smaller order than F (x) for all x in some prescribed range.

Some of these arithmetic functions are called multiplicative when they satisfy

f (nm) = f (n) f (m) whenever n and m are coprime. Here, we will focus on

the following arithmetic functions:

• d : The number of non-negative divisors function.

• σs : The sum of the s -th powers of all the non-negative divisors func-

tion, for s ∈ R. In particular, σ0 = d.

6
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• ϕ : The Euler’s function.

An average order of an arithmetic function is some simpler or better-

understood function which takes the same values "on average". So if f is an

arithmetic function. We say that an average order of f is g if∑
n≤x

f (n) ∼
∑
n≤x

g (n)

as x tends to infinity. It is conventional to choose an approximating function

g that is continuous and monotone. But even so an average order is of course

not unique. In cases where the limit

lim
N→∞

1

N

∑
n≤N

f (n) = A

exists, it is said that f has a mean value (average value) A. Let us study

the following facts:

• An average order of d(n), the number of divisors of n, is log n.

• An average order of σ(n), the sum of divisors of n, is nπ2 / 6.

• An average order of ϕ (n), Euler’s totient function of n, is 3n / π2.

• The average order of representations of a natural number as a sum of

three squares is 4πn / 3.

• An average order of ω(n), the number of distinct prime factors of n, is

log log n.

• An average order of Ω(n), the number of prime factors of n, is log log n.

7
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• The prime number theorem is equivalent to the statement that the von

Mangoldt function Λ(n) has average order 1.

• An average value of µ(n), the Möbius function, is zero; this is again

equivalent to the prime number theorem.

Workplan:

In Chapter 1, we introduce some basic facts and notations that will ap-

pear in the rest of this work. That is, the basic arithmetic functions and we

illustrate an example for each function. In Chapter 2, we present properties of

big-O notations and the famous summation formulas and results with proofs.

For example: The Euler summation formula, Abel summation formula and

the Maclaurin summation formula. In Chapter 3, we calculate mean values

in the case when f is a multiplicative or additive arithmetic function with

f (n) =
∑
d|n
f (d). Finally, in Chapter ?? we state some open problems.

8



Chapter 1

Basic arithmetic functions

In this chapter, we state some basic arithmetic functions (see [2],[7]). First,

we state the Fundamental Theorem of Arithmetic and then recall definitions

of basic arithmetic functions and we illustrate an example for each func-

tion.

Theorem 1.1 (Fundamental Theorem of Arithmetic, see [7, p. 25] )

Every positive integer n greater than 1 can be written uniquely as the product

of primes:

n = qa11 q
a2
2 · · · qarr =

r∏
i=1

qaii , (1.1)

where q1, q2, ..., qr are distinct primes and a1, a2, ..., ar are natural numbers.

The equation (1.1) is often called the prime power decomposition of n, or the

standard prime factorization of n.

1.1 Definitions and examples

Definition 1.1 A real or complex valued function defined in the positive in-

tegers (or all integers) is called an arithmetic functions or a number-theoretic

9
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function.

Remark 1.1 An arithmetic function is a function whose domain is the set

of natural numbers.

We give some examples of arithmetic functions as follows and we will

discuss their properties in the following section.

1) The divisor function d.

Definition 1.2 The divisors function d(n) is defined as the number of positif

divisors of n, i.e .,

d(n) =
∑
d|n

1.

It is well-known that for the natural number n ≥ 2 with canonical

representation n = qa11 q
a2
2 ...q

ak
k (where k, a1, ..., ak are positive integers and

q1, q2, ...qk are different primes), we have

d (n) = (a1 + 1) (a2 + 1) ... (ak + 1) . (1.2)

Let n = 2023 = 7 · 172, we have by (1.2), d(n) = (1 + 1) (2 + 1) = 6. If n is

square-free having k distinct primes, that is, n = q1q2...qk then d (n) = 2k.

2) The divisor sum function σ.

Definition 1.3 The divisor sum function σ(n) is defined as the sum of all

positif divisors of n, i.e .,

σ(n) =
∑
d|n

d.

10
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By a well-known result, note that if n = qa11 q
a2
2 ...q

ak
k , where k, a1, ..., ak

are positive integers and q1, q2, ...qk are different primes, then

σ(n) =
k∏
i=1

pai+1
i − 1

pi − 1
. (1.3)

Let n = 2023 = 7 · 172, clearly by (1.3)

σ(n) =
2∏
i=1

pai+1
i − 1

pi − 1
=

(
71+1 − 1

7− 1

)
·
(

172+1 − 1

17− 1

)
= 2456.

More generally, the divisor sum function power σs(n) with (s ∈ C and σ1(n) =

σ(n)) is defined as the sum of s power of all positif divisors of n, i.e .,

σs(n) =
∑
d|n

ds.

3) The Euler totient function ϕ.

Definition 1.4 The Euler totient function ϕ (n) is defined as

ϕ(n) =
∑

1≤k≤n
(k,n)=1

1.

By a well-known result, note that if n = qa11 q
a2
2 ...q

ak
k , where k, a1, ..., ak

are positive integers and q1, q2, ...qk are different primes, then

ϕ(n) = n
∏
p|n

(
1− 1

p

)
. (1.4)

Let us take n = 2023 = 7 · 172. Then by (1.4), we have ϕ(n) = (7− 1) · 17 ·

(17 − 1) = 1632. Note that ϕ(p) = p − 1 if and only if p is prime. Here is a

short table of values of ϕ:

n 1 2
ϕ(n) 1 1

3 4
2 2

5 6
4 2

7 8
6 4

9 10
6 4

11
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Note if n is a prime number, then ϕ (p) = p − 1 and if n is a prime power,

say n = pa then ϕ (n) = pa−1 (p− 1) .

4) Möbuis function µ (n) .

Definition 1.5 The Möbuis function µ (n) is defined as follows :

µ(n) =


1, if n = 1,
(−1)r, if n = p1p2...pr with distinct primes pi,
0, otherwise.

(1.5)

Let n = 2023 = 7 · 172, then by (1.5) µ(n) = 0. If n = 2027 · 2029, then

µ(n) = 1. Note that µ(n) = 0 if and only if n has a square factor > 1. Here

is a short table of values of µ:

n 1 2
µ(n) 1 −1

3 4
−1 0

5 6
−1 1

7 8
−1 0

9 10
0 1

5) Von Mangoldt function Λ(n).

Definition 1.6 The von Mangoldt function Λ (n) is defined as follows:

Λ(n) =

{
log p, if n = pk, k ≥ 1and p prime,
0, otherwise. (1.6)

Let n = 2023 = 7 · 172. By (1.6), we see that Λ(n) = log(7 · 172) =

log 7 + log (172) = log 7 + 2 log 17 = 7. 612 3. We also have the following

lemma:

Lemma 1.1 (see [2]) For every n ≥ 1, one has∑
d|n

Λ (d) = log n.

12
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Proof. Let n = qa11 q
a2
2 ...q

ak
k , where 2 ≤ q1 < q2 < ... < qk are distinct primes

and a1, a2, ..., ak are positive integers. We write

∑
d|n

Λ (d) =
k∑
i=1

ai (log qi) = log n.

The proof is finished.

6) Number of prime factors ω(n).

Definition 1.7 The omega function ω(n) is defined as the number of distinct

prime factors of n, i.e.,

ω(n) = r, (1.7)

where n = pa11 p
a2
2 ...p

ar
r is the prime-power decomposition.

Let n = 2023 = 7 · 172 , we have ω(n) = 2.

7) Total number of prime factors Ω(n).

Definition 1.8 The omega function Ω(n) is defined as the total number of

prime factors of n, i.e.,

Ω(n) = a1 + a2 + ...+ ar, (1.8)

where n = pa11 p
a2
2 ...p

ar
r is the prime-power decomposition.

Let n = 2023 = 7 · 172, we have Ω(n) = 3.

8) Liouville function λ (n) .

Definition 1.9 The Liouville function λ is defined as follows :

λ(n) = (−1)Ω(n). (1.9)

13
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Let n = 2023 = 7 · 172, we have λ(n) = −1.

9) Riemann zeta function ζ(s).

Definition 1.10 Let s = σ + it ∈ C. For σ > 1, the Riemann zeta function

ζ(s) is defined by the series

ζ(s) =
∞∑
n=1

1

ns
. (1.10)

10) Prime-counting function π (x) .

Definition 1.11 The prime-counting function is the function counting the

number of prime numbers less than or equal to some real number x. It is

denoted by π(x) (unrelated to the number π).

As an example, for π (10) = 4. Of great interest in number theory is the

growth rate of the prime-counting function. It was conjectured in the end of

the 18th century by Gauss and by Legendre to be approximately x/ log x,

where log is the natural logarithm, in the sense that lim π(x)
x/ log x

= 1 as x tends

to infinity.

1.2 Multiplicative functions

An important class of arithmetic functions are multiplicative functions de-

fined as follows.

Definition 1.12 An arithmetic function f which is not identically zero is

said to be multiplicative if

f(mn) = f(m) · f(n) (1.11)

14
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whenever (m,n) = 1. Moreover, if (1.11) holds for all m,n, then f is called

completely multiplicative.

We have the following property of all multiplicative functions.

Proposition 1.1 If f is multiplicative, then f(1) = 1.

Proof. Since f is not identically zero, there exists n ∈ N such that f(n) 6=

0.We have f(n) = f(n)f(1) as f is multiplicative. Hence, f(1) = 1.

Proposition 1.2 (see [2]) The function ϕ is multiplicative.

Proof. For any m,n ∈ N such that (m,n) = 1, we need to prove ϕ(m · n) =

ϕ(m)ϕ(n). Assume m = pa11 p
a2
2 ...p

ar
r and n = qb11 q

b2
2 ...q

bs
s with pi, qj are

distinct primes and ai,bj ∈ N. By (1.4), we have

ϕ(m · n) = mn
∏
p|mn

(1− 1

p
) = m

r∏
i=1

(1− 1

pi
) · n

s∏
i=1

(1− 1

qj
) = ϕ(m)ϕ(n).

This completes the proof.

Proposition 1.3 The functions d,σ, σs and µ are multiplicative.

The Möbius function arises in many different places in number theory.

One of its fundamental properties is a remarkably simple formula for the

divisor sum
∑

d|n µ(d).

Theorem 1.2 (see [2]) If n ≥ 1, then we have∑
d|n

µ(d) = I(n) =

{
1, if n = 1,
0, otherwise.

15
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Proof. If n = 1, then both sides are equal to 1. If n > 1, then we can write

n = pa11 p
a2
2 ...p

ar
r . By definition and Proposition 1.3, we have∑

d|n

µ(d) =
∑

0≤c1≤a1

∑
0≤c2≤a2

...
∑

0≤cr≤ar

µ (pc11 p
c2
2 ...p

cr
r )

=
∑

0≤c1≤1

∑
0≤c2≤1

...
∑

0≤cr≤1

µ (pc11 )µ(pc22 )...µ(pcrr )

=
r∏
i=1

∑
0≤ci≤1

µ(pcii ) =
r∏
i=1

(1− 1) = 0.

This proves the theorem.

Theorem 1.3 (see [2]) If n ≥ 1, then we have

ϕ(n) =
∑
d|n

µ(d)
n

d
.

Proof. By Theorem 1.2, we have

ϕ(n) =
∑

1≤k≤n
(k,n)=1

1 =
∑

1≤k≤n

1
∑
d|(n,k)

µ(d)

Exchanging the order of the sums above, we get

ϕ(n) =
∑
d|n

µ(d)
∑

1≤k≤n
d|k

1 =
∑
d|n

µ(d)
n

d
,

as claimed.

Theorem 1.4 (see [2]) If n ≥ 1, then we have

n =
∑
d|n

ϕ(d).

16
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Proof. By Theorem 1.3, we have∑
d|n

ϕ(d) =
∑
d|n

∑
l|d

µ(l)
d

l
=
∑
d|n

∑
l|d

µ

(
d

l

)
l =

∑
l|n

l
∑
l|d|n

µ

(
d

l

)
.

Making a change of variable k = l | d, we get∑
d|n

ϕ(d) =
∑
l|n

l
∑
k|n/l

µ (k)

By Theorem 1.2, we also have∑
d|n

ϕ(d) =
∑
l|n

l · I(n/l) = n.

This completes the proof.

1.3 Additive functions

Definition 1.13 An arithmetic function f which is not identically zero is

said to be additive if

f(m · n) = f(m) + f(n). (1.12)

whenever (m,n) = 1. Moreover, if (1.12) holds for all m,n, then f is called

completely additive.

Proposition 1.4 The function ω is additive and the function Ω is completely

additive.

Proof. Write m = pa11 ...p
ar
r and n = qb11 ...q

bs
s with prime pi , qj and positive

integers ai, bj. Clearly, If (m,n) = 1, then ω(m · n) = r + s = ω(m) + ω(n).

Moreover, we have Ω(m · n) =
∑

i ai +
∑

j bj = Ω(m) + Ω(n).

Remark 1.2 The function log n is completely additive, since log (m · n) =

logm + log n. In [3], Erdös proved that if a function f (n) is additive and

increasing then there is some α ≥ 0 such that f (n) = α log n.
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1.4 Chebyshev’s Functions

The first, denoted θ(x) or ϑ (x), is defined for a real variable x by

θ (x) =
∑
p≤x

log p (1.13)

where log denotes the natural logarithm, with the sum extending over all

prime numbers p that are less than or equal to x. As an example, θ (10) =

log 2 + log 3 + log 5 + log 7.

The second Chebyshev function ψ (x) is actually the summation function

of Λ(n). That is,

ψ (x) =
∑
n≤x

Λ (n) . (1.14)

As an example, ψ (10) = 3 log 2 + 2 log 3 + log 5 + log 7. This function is

defined similarly, with the sum extending over all prime powers not exceeding

x. Further for a given prime p ≤ x the number of times log p is counted in

the sum for ψ (x) is
[

log x
log p

]
. Hence, ψ (x) can also be expressed as

ψ (x) =
∑
p≤x

[
log x

log p

]
log p.

There are certain immediate relationships between these three functions. We

have the following corollary:

Corollary 1.1 For x ≥ 5, we have

θ (x) ≤ ψ (x) ≤ π (x) log x.

Proof. First, if pk ≤ x then p ≤ x so clearly θ (x) ≤ ψ (x) . Further since

1 ≤ log p for p ≥ 3 we have π (x) ≤ θ (x) for x ≥ 5. Now if pk ≤ x then

18
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k ≤
[

log x
log p

]
. It follows that

ψ (x) =
∑
pk≤x
k≥1

log p =
∑
p≤x

∑
pk≤x
k≥1

1

 log p =
∑
p≤x

[
log x

log p

]
log p =

∑
p≤x

log x = π (x) log x.

Therefore, ψ (x) ≤ π (x) log x.
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Chapter 2

Summation Formulas

The basic idea for handling the sums
∑

n≤x f(n) is to approximate the sum

by a corresponding integral and investigate the error made in the process.

The following important result, known as Euler’s summation formula, gives

an exact formula for the difference between such a sum and the corresponding

integral. In fact, these notions are some tools from real analysis and are found

in [1], [7], [8] and [5].

Theorem 2.1 (Euler’s summation formula [1]) If f has a continuous

derivative f ′ on the interval [y, x], where 0 < y < x, then∑
y<n≤x

f(n) =

∫ x

y

f (t) dt+

∫ x

y

(t− [t]) f ′ (t) dt+f (x) ([x]− x)−f (y) ([y]− y) ,

(2.1)

where [t] denotes the integer part of t.

Proof. Let m = [y] and k = [x]. For integers n and n− 1 in [y, x] we have
n∫

n−1

[t] f ′ (t) dt =

n∫
n−1

(n− 1) f ′ (t) dt = (n− 1) {f (n)− f (n− 1)}

= {nf (n)− (n− 1) f (n− 1)} − f (n) .
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Summing from n = m+ 1 to n = k, we obtain :

k∫
m

[t] f ′ (t) dt =

m+1∫
m

[t] f ′ (t) dt+

m+2∫
m+1

[t] f ′ (t) dt+ ...+

k∫
k−1

[t] f ′ (t) dt

=
k∑

n=m+1

{nf (n)− (n− 1) f (n− 1)} −
k∑

n=m+1

f (n)

=
k∑

n=m+1

{nf (n)− (n− 1) f (n− 1)} −
∑
y<n≤x

f (n)

= kf (k)−mf (m)−
∑
y<n≤x

f (n) .

Therefore,

∑
y<n≤x

f (n) = −
k∫

m

[t] f ′ (t) dt+ kf (k)−mf (m) (2.2)

= −
k∫

m

[t] f ′ (t) dt+ kf (x)−mf (y) .

Integration by parts gives us

x∫
y

f (t) dt = xf (x)− yf (y)−
k∫

m

tf ′ (t) dt.

and when this is combined with (2.2) we obtain (2.1). The proof is finished.

In most applications, one needs to estimate a sum of the form
∑

n≤x f(n),

taken over all positive integers n ≤ x. In this case, Euler’s summation formula

reduces to the following result:

Corollary 2.1 (Euler’s summation formula, special case) Let x ≥ 1

and suppose that f(t) is defined on [1, x] and has a continuous derivative on
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this interval. Then we have

∑
n≤x

f(n) =

x∫
1

f (t) dt+

∫ x

y

(t− [t]) f ′ (t) dt+ f (x) ([x]− x) + f (1) .

Theorem 2.2 (Euler-Maclaurin formula [1]) Let a < b and a, b ∈ Z.

Let f : [a, b] −→ C. If f is of class C1on [a, b]. Then we have∑
a<n≤b

f(n) =

∫ b

a

(f(x) + Ψ1(x)f ′ (x))dx+
1

2
(f(b)− f(a)),

where Ψ1(x) = x− [x]− 1/2 is the saw function.

Proof. Let n ∈ Z such that a ≤ n < b. By integration by parts, we have∫ n+1

n

Ψ1(x)f ′ (x) dx =

∫ n+1

n

(x− n− 1/2)df(x)

= [(x− n− 1/2)f(x)]n+1
n −

∫ n+1

n

f(x)dx

=
1

2
(f(n+ 1) + f(n))−

∫ n+1

n

f(x)dx.

Hence∫ b

a

Ψ1(x)f ′ (x) dx =
b−1∑
n=a

∫ n+1

n

Ψ1(x)f ′ (x) dx

=
1

2
(f(b) + f(a)) +

b−1∑
n=a+1

f(n)−
∫ b

a

f(x)dx

So we obtain∑
a<n≤b

f(n) =

∫ b

a

(f(x) + Ψ1(x)f ′ (x))dx+
1

2
(f(b)− f(a)),

as claimed.
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Theorem 2.3 (see [7, p. 206]) Let a and b be integers with a < b, and let

f (t) be a function that is monotonic on the interval [a, b]. Then

min (f (a) , f (b)) ≤
b∑

n=a

f (n)−
∫ b

a

f (t) dt ≤ max (f (a) , f (b)) . (2.3)

Let x and y be real numbers with y < [x], and let f(t) be a nonnegative

monotonic function on [y, x]. Then∣∣∣∣∣∣
∑
y<n≤x

f(n)−
x∫
y

f(t)dt

∣∣∣∣∣∣ ≤ max(f(y), f(x)). (2.4)

If f(t) is a nonnegative unimodal (increasing or decreasing) function on

[1,∞), then

F (x) =
∑
n≤x

f(n) =

x∫
1

f(t)dt+O(1). (2.5)

Proof. If f (t) is increasing on [n, n+ 1], then

f (n) ≤
∫ n+1

n

f (t) dt ≤ f (n+ 1) (2.6)

Moreover, if f(t) is increasing on the interval [a, b], then

f (a)+

∫ a+1

a

f (t) dt+...+

∫ b

b−1

f (t) dt ≤
b∑

n=a

f (n) ≤ f (b)+

∫ a+1

a

f (t) dt+...+

∫ b

b−1

f (t) dt

and so

f (a) +

∫ b

a

f (t) dt ≤
b∑

n=a

f (n) ≤ f (b) +

∫ b

a

f (t) dt (2.7)

If f (t) is decreasing on [n, n+ 1], then

f (n+ 1) ≤
∫ n+1

n

f (t) dt ≤ f (n) (2.8)
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Moreover, if f(t) is increasing on the interval [a, b], then

f (b)+

∫ a+1

a

f (t) dt+...+

∫ b

b−1

f (t) dt ≤
b∑

n=a

f (n) ≤ f (a)+

∫ a+1

a

f (t) dt+...+

∫ b

b−1

f (t) dt

and so

f (b) +

∫ b

a

f (t) dt ≤
b∑

n=a

f (n) ≤ f (a) +

∫ b

a

f (t) dt (2.9)

Thus, (2.3) follows immediately from (2.7) and (2.9).

Summation by parts (also called partial summation or Abel summation)

is the analogue for sums of integration by parts. Given a sum of the form∑
n≤x a (n) f(n), where a(n) is an arithmetic function with summatory func-

tion A (x) =
∑

n≤x a (n) and f(n) is a “smooth” weight, the summation by

parts formula allows one to “remove” the weight f(n) from the above sum

and reduce the evaluation or estimation of the sum to that of an integral over

A(t). The general formula is as follows:

Theorem 2.4 (Partial Summation, [1],[7]) Let f(n) and g(n)be arith-

metic functions. Consider the sum function

F (x) =
∑
n≤x

f (n)

Let a and b be nonnegative integers with a < b. Then

b∑
n=a+1

f(n)g(n) = F (b)g(b)− F (a)g(a+ 1)−
b−1∑

n=a+1

F (n)(g(n+ 1)− g(n)).

(2.10)

Let x and y be nonnegative real numbers with [y] < [x], and let g(t) be a

function with a continuous derivative on the interval [y, x]. Then∑
y<n≤x

f(n)g(n) = F (x)g(x)− F (y)g(y)−
∫ x

y

F (t)g′(t)dt. (2.11)
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In particular, if x ≥ 2 and g(t) is continuously differentiable on [1, x], then∑
n≤x

f (n) g(n) = F (x)g(x)−
∫ x

1

F (t)g′(t)dt. (2.12)

Proof. Identity (2.10) is a straightforward calculation:
b∑

n=a+1

f(n)g(n) =
b∑

n=a+1

(F (n)− F (n− 1))g(n)

=
b∑

n=a+1

F (n)g(n)−
b−1∑
n=a

F (n)g(n+ 1)

= F (b)g(b)− F (a)g(a+ 1)−
b−1∑

n=a+1

F (n)(g(n+ 1)− g(n)).

If the function g(t) is continuously differentiable on [y, x], then

g(n+ 1)− g(n) =

∫ n+1

n

g′(t)dt.

Since F (t) = F (n) for n ≤ t < n+ 1, it follows that

F (n)(g(n+ 1)− g(n)) =

∫ n+1

n

F (t)g′(t)dt.

Let a = [y] and b = [x]. Since a ≤ y < a+ 1 ≤ b ≤ x < b+ 1, we have∑
y<n≤x

f(n)g(n) =
b∑

n=a+1

f(n)g(n)

= F (b)g(b)− F (a)g(a+ 1)−
b−1∑

n=a+1

F (n)(g(n+ 1)− g(n))

= F (x)g(b)− F (y)g(a+ 1)−
b−1∑

n=a+1

∫ n+1

n

F (t)g′(t)dt

= F (x)g(x)− F (y)g(y)− F (x)(g(x)− g(b))− F (y)(g(a+ 1)− g(y))

−
∫ b

a+1

F (t)g′(t)dt

= F (x)g(x)− F (y)g(y)−
∫ x

y

F (t)g′(t)dt.
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This proves (2.11).

Finally, if x ≥ 2 and g(t) is continuously differentiable on [1, x], then∑
n≤x

f(n)g(n) = f(1)g(1) +
∑

1<n≤x

f(n)g(n)

= f(1)g(1) + F (x)g(x)− F (1)g(1)−
∫ x

1

F (t)g′(t)dt

= F (x)g(x)−
∫ x

1

F (t)g′(t)dt.

This proves (2.12).

2.1 Definitions and notations

First, we focus on some notations and their explanation (for details one can

see [1],[4],[6],[7]):

Definition 2.1 Suppose that f (x) and g (x) are two real-valued functions.

Then

1. f (x) = O(g (x)) (read f (x) is big O of g (x)) or f (x)� g (x) if there

exists a constant A independent of x and an x0 such that

f (x) ≤ A · g(x) for all x ≥ x0.

or

|f (x)| ≤ A · g(x) for all x ≥ x0.

2. f (x) = o(g (x)) or f (x) � g (x) (read f (x) is little o of g (x)) if

f(x)

g(x)
→ 0 as x→∞.

In other words g (x) is of a higher order of magnitude than f(x).
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3. If f (x) = O(g (x)) and g (x) = O(f (x)), that is, there exist constants

A1, A2 independent of x and an x0 such that

A1 · g(x) ≤ f (x) ≤ A2 · g(x) for all x ≥ x0,

then we say that f (x) and g (x) are the same order of magnitude and

write

f (x) = Θg (x) or f (x) u g (x) .

In addition, we say that g is a normal order of f if for every ε > 0, the

inequalities

(1− ε) g(x) ≤ f (x) ≤ (1 + ε) g(x)

hold for almost all n. That is, if the proportion of n ≤ x for which this

does not hold tends to 0 as x tends to infinity.

4. If
f (x)

g (x)
→ 1 as x→∞

then we say that f (x) and g (x) are asymptotically equal and we

write

f (x) ∼ g (x) .

Definition 2.2 f (n) = O (g (n)) if there exist positive constants c and N

such that f(n) ≤ cg(n) for all n ≥ N.

Example 2.1 For x ∈ R, we have [x] ∼ x, sinx � x, sinx = O(1), 2 +

sinx � 1,
√
x = o(x), xk = o(ex) for every constant k and logk x = o(xα) for

every pair of constants k and α > 0.
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2.2 Some properties of big-O notations

Properties of Big-O1 Notation (see [1],[4],[6],[7],[2])

We can easily prove the following facts: x ∈ O (x), 3x ∈ O (x), x ∈ O (x2),

10x+ 5 ∈ O (x2) and O (x) ⊂ O (x2).

Transitivity. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

If f(n) = O(h(n)) and g(n) = O(h(n)), then

f(n) + g(n) = O(h(n)).

• a · nk = O
(
nk
)
.

• The function nk = O(nk+j) for any positive j.

• 2n2 +O(n) = O(n2).

• Every polynomial is big-O of n raised to the largest power: 2n3 + 7n2 +

1 = O(n3).

• If f(n) = cg(n), then f(n) = O(g(n)).

• loga n = O (logb n) for ever positive numbers a, b 6= 1.

• loga n = O (log2 n) for any positive a 6= 1.

• 10 is O (1) and 2023 is O (1), and so on.

• 5000000n ∈ O (n) and 0.000005n ∈ O (n) .

• If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) + f2(n) =

max (O (g1(n)) , O (g2(n))) and f1(n)f2(n) = O(g1(n)) O(g2(n)).
1Big-O expresses an upper bound on the growth rate of a function, for sufficiently large

values of n.
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• f (n) = 2n and g (n) = 3n. Then f(n) = O(g(n)).

• f (n) = log log n and g (n) = log n. Then f(n) = O(g(n)).

• If f is O (g), the f + g is O (g). If f1, f2, ..., fk are each O (g), then

f1 + f2 + ...+ fk is O (g).

• 2n2+3n+1 = 2n2+O(n) means that there exists a function f(n) ∈ O(n)

such that 2n2 + 3n+ 1 = 2n2 + f(n).

• If h ∈ O(g) and g ∈ O(n2), then h ∈ O(n2).

• If f1 ∈ O(g1) and f2 ∈ O(g2), then f1 + f2 ∈ O(max{g1, g2}).

• [x] = x+O (1).

• f(x) = O(1). This simply means that f(x) is bounded for sufficiently

large x (or for all x in a given range). Similarly f(x) = o(1) means that

f(x) tends to 0 as x→∞.

• If f(x) = g(x) +O(1), then ef(x) � eg(x), and vice versa.

• If f(x) = g(x) + o(1), then ef(x) ∼ eg(x), and vice versa.

• 1

n+ 1
is a normal order of

1

n
, n is a normal order of n+ 1 and log (n)

is a normal order of log (n+ 1).

Definition 2.3 f(n) = Ω(g(n)) if there exist positive constants c and N

such that f(n) ≥ cg(n) for all n ≥ N .

• Note the equivalence f(n) = Ω(g(n)) if and only if g (n) = O (f (n)).
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Definition 2.4 f(n) = Θ(g(n)) if there exist positive constants c1, c2 and N

such that c1g (n) ≤ f(n) ≤ c2g(n) for all n ≥ N .

Note that f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) =

Ω(g(n)). In general, big-O includes the following terms:

O (1) constant
O (log n) logarithmic
O ((log n)c) polylogarithmic
O (n) linear
O (n2) quadratic
O (nc) polynomial
O (cn) exponential

We need to use the following lemma:

Lemma 2.1 We have

1.
∑
d≤x

1 = x+O (1).

2.
∑
p≤x

O (1) = O (x). In particular, O (1) + ...+O (1)n-times = O (n).

Proof. 1. By definition, we have x = [x] + {x}. It follows that∑
d: d≤x

1 = [x] = x− {x} = x+O (1) ,

since 0 ≤ {x} < 1.

2. Also if we put f = O (1) (this means that f is bounded), then∑
p≤x

O (1) = [x] f = O (x) ,

since
∣∣∣ [x]f
x

∣∣∣ ≤ |f |.
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2.3 Applying Euler’s summation and Partial
summation formulas

Euler’s summation formula has numerous applications2 in number theory and

analysis. We will give here three such applications; the first is to the partial

sums of the harmonic series. See the references [4], [7], [5].

Theorem 2.5 (Partial sums of the harmonic series, [1]) For every x ≥

1, we have ∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
,

where γ is the Euler’s constant3.
2An important application of Euler’s summation formula is a proof of the socalled

Stirling formula, which gives an asymptotic estimate for n!. This formula will be an easy
consequence of the following estimate for the logarithm of n!, log n! =

∑
m≤n

logm, which is

a sum to which Euler’s summation formula can be applied.
3The number γ = 0.577... is called Euler’s constant. A famous unsolved problem in

number theory is to determine whether γ is rational or irrational.
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Proof. We take f (t) =
1

t
in Euler’s summation formula, which has a con-

tinuous derivative on the interval [y, x] with 0 < y < x, to get∑
n≤x

f (n) =

∫ x

y

f (t) dt+

∫ x

y

(t− [t]) f ′ (t) dt+ f (x) ([x]− x)− f (y) ([y]− y)

=

∫ x

y

dt

t
−
∫ x

y

t− [t]

t2
dt+

[x]− x
x

−
(

[y]− y
y

)
=

∫ 1

y

dt

t
+

∫ x

1

dt

t
−
∫ y

1

t− [t]

t2
dt−

∫ x

1

t− [t]

t2
dt+ 1− x− [x]

x

=

∫ x

1

dt

t
−
∫ x

1

t− [t]

t2
dt+ 1− x− [x]

x

= log x−
∫ x

1

t− [t]

t2
dt+ 1 +O

(
1

x

)
= log x+ 1−

∫ ∞
1

t− [t]

t2
dt+

∫ ∞
x

t− [t]

t2
dt+O

(
1

x

)
The improper integral

∫∞
1

t−[t]
t2
dt exists since it is dominated by

∫∞
1

dt
t2
dt. On

the other hand, we see that

0 ≤
∫ ∞
x

t− [t]

t2
dt ≤

∫ ∞
x

dt

t
=

1

x
.

It follows that ∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
,

where

γ = 1−
∫ ∞

1

t− [t]

t2
dt.

Setting x tends to infinity, we get

γ = lim
x→∞

(∑
n≤x

1

n
− log x

)
,

so γ is also equal to Euler’s constant.
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In view of (1.10), which gives the definition of Riemann zeta function.

As an application of Euler’s summation formula, we now derive an integral

representation for this function. This representation will be crucial in deriving

deeper analytic properties of the zeta function.

Theorem 2.6 ([1]) If x ≥ 1, then

a)
∑

n≤x
1
ns

= x1−s

1−s + ζ(s) +O(x−s), for s > 0 with s 6= 1, where

ζ(s) =

{ ∑∞
n=1

1
ns
, if s > 1

lim
x→∞

(∑
n≤x

1
ns
− x1−s

1−s

)
, if 0 < s < 1.

b)
∑

n>x
1
ns

= O(x1−s), for s > 1.

c)
∑

n≤x n
α = xα+1

α+1
+O(xα), for α ≥ 0.

Proof. We prove this theorem as follows:

a) We apply the Euler’s summation formula with f(x) = x−s:∑
n≤x

1

ns
=

∫ x

1

1

ts
dt− s

∫ x

1

t− [t]

ts+1
dt+ 1− x− [x]

xs

=
x1−s

1− s
− 1

1− s
+ 1− s

∫ ∞
1

t− [t]

ts+1
dt+O(x−s).

Therefore, ∑
n≤x

1

ns
=

x1−s

1− s
+ γ(s) +O(x−s), (2.13)

where

γ(s) = 1− 1

1− s
− s

∫ ∞
1

t− [t]

ts+1
dt.

Now we have to divide into two cases:
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If s > 1,
∑

n≤x
1
ns

approaches ζ(s) as x → ∞ and the term x1−s and

x−s both approach 0. From the definition of ζ(s) and the fact that γ(s)

does not depend on x, by making x tend to infinity in (2.13), we obtain

that γ(s) = ζ(s) if s > 1.

If instead 0 < s < 1 and as above taking x tend to infinity in (2.13),

we have that x−s → 0. By the fact that γ(s) doesn’t depend on x we

can see that

lim
x→∞

(∑
n≤x

1

ns
− x1−s

1− s

)
= γ(s).

Therefore, by definition, γ(s) is also equal to ζ(s) if 0 < s < 1.

b) To prove (b) with s ≥ 1 we use (a). In fact, we see that∑
n>x

1

ns
= ζ(s)−

∑
n≤x

1

ns
=

x1−s

1− s
+O(x−s) = O(x1−s),

since x−s ≤ x1−s.

c) We use Euler’s summation formula once more with f(t) = tα, we obtain∑
n≤x

nα =

∫ x

1

tαdt+ α

∫ x

1

tα−1 (t− [t]) dt+ 1− (x− [x])xα

=
xα+1

α + 1
− 1

α + 1
+O

(
α

∫ x

1

tα−1dt

)
+O (xα)

=
xα+1

α + 1
+O (xα) .

This completes the proof.

Next, we apply Theorem 2.3. In fact, we can prove that:

Proposition 2.1 ([7]) For x ≥ 2, we have∑
n≤x

log n = x log x− x+O(log x).
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Proof. The function f(t) = log t is increasing on [1, x]. By Theorem 2.3, we

get ∫ x

1

log tdt ≤
∑
n≤x

log n ≤
∫ x

1

log tdt+ log x,

and so ∑
n≤x

log n = x log x− x+O(log x).

This completes the proof.

As an application of Abel’s summation formula, we have

Theorem 2.7 ([1]) We have∑
n≤x

Λ(n)

n
= log x+O(1).

Proof. Apply Abel’s summation formula with an = 1 and f(n) = log n.

Then ∑
n≤x

log n = bxc log x−
∫ x

1

buc
u
du

= (x− (x− bxc)) log x−
∫ ∞

1

u− (u− buc)
u

du

= x log x+O(log x)− (x− 1) +

∫ x

1

u− buc
u

du)

= x log x− x+O(log x). (2.14)
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Also we have∑
n≤x

∑
n≤x

log n = log(bxc!) =
∑
p≤x

(
∞∑
k=1

⌊
x

pk

⌋)
log p

=
∑
pm≤x

⌊
x

pm

⌋
log p =

∑
n≤x

⌊x
n

⌋
Λ(n)

=
∑
n≤x

x

n
Λ(n)−

∑
n≤x

(x
n
−
⌊x
n

⌋)
Λ(n)

= x
∑
n≤x

Λ(n)

n
−O

(∑
n≤x

Λ(n)

)

But
∑

n≤x Λ(n) = Ψ(x) = O(x) and so∑
n≤x

log n = x
∑
n≤x

Λ(n)−O(x).

By (2.14),

x log x− x+O(log x) = x
∑
n≤x

Λ(n)−O(x),

hence

x
∑
n≤x

Λ(n)

n
= x log x+O(x).

Thus, ∑
n≤x

Λ(n)

n
= log x+O(1).
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Chapter 3

Average values of arithmetic
functions

In this chapter we focus on Mean values of Multiplicative and Additive Arith-

metic Functions. Let us start with the following definition:

Definition 3.1 ([1]) Let f be an arithmetic function. Then the mean value

(or the average value) of f over the interval [1, x] is defined to be

g(x) =
1

x

∑
n≤x

f(n).

If limx→∞ g(x) exists, then the limit is called the asymptotic mean of f . In

addition, if g is a monotone function such that

g(x) ∼ 1

x

∑
n≤x

f(n).

Here, we say that g(n) is an average order of f(n).

In other words, let f be an arithmetic function and let g(x) be a monotonic

increasing function of x. We say that g(n) is the average order of f(n) if∑
n≤x

f(n) = xg (x) + o (xg (x)) .
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Note that in Chapter 2 (see Theorem 2.5) we showed, by application of

partial summation that the average order of
1

n
is

log n

n
. In this section we

will give the true order of magnitude of τ , ϕ and σ. We need to present the

following lemma:

Lemma 3.1 (see [6]) Let f(n) be an arithmetic function and

F (x) =
∑
n≤x

f (n) .

Then ∑
m≤x

F
( x
m

)
=
∑
d≤x

f (d)
[x
d

]
=
∑
n≤x

∑
d|n

f (d) .

Proof. We see that∑
m≤x

F
( x
m

)
=

∑
m≤x

∑
d≤ x

m

f (d) =
∑
dm≤x

f (d)

=
∑
d≤x

f (d)
∑
m≤x

d

1 =
∑
d≤x

f (d)
[x
d

]
=

∑
n≤x

∑
d|n

f (d) .

Thus, we have ∑
m≤x

F
( x
m

)
=
∑
dm≤x

f (d) =
∑
n≤x

∑
d|n

f (d) .

3.1 Average order of d (n)

Theorem 3.1 ([7]) Let d(n) be the divisor function. We have:

(a) The relation d(n)� logc n is false for every constant c.
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(b) The relation d(n)� nδ is true for every fixed δ > 0.

Proof. We prove (a) Let n be any of the numbers (2 · 3...pr)m, m = 1, 2, ...;

here r is arbitrary but fixed. Then

d(n) =
∏
p|n

(m+ 1) = (m+ 1)r > mr.

But m = log n/ log(2 · 3...pr), so that

d(n) >
logr n

(log(2 · 3...pr))r
� logr n,

where the implied constant depends only on r, and not on n.

For the proof of (b), let

f(n) =
d(n)

nδ
.

We see that f is multiplicative. But f(pm) = (m+1)/pmδ, so that f(pm)→ 0

as pm →∞, that is, as either p or m, or both, increases. This clearly implies

that f(n)→ 0 as n→∞, which proves the assertion.

Theorem 3.2 ([7]) We have∑
n≤x

d (n) = x log x+O (x) .

Proof. By definition, we get∑
n≤x

d (n) =
∑
n≤x

∑
d|n

1 =
∑
d≤x

∑
e: de≤x

1 =
∑
d≤x

∑
e: e≤x

d

1 =
∑
d≤x

[x
d

]
=

∑
d≤x

(x
d

+O (1)
)

= x
∑
d≤x

1

d
+O (x)

= x (log x+O (1)) +O (x)

= x log x+O (x) .
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This means that

1

x

∑
n≤x

d (n) = log x+O (1) ∼ log x,

as x tends to infinity. Thus, the average order of d (n) is logn.

Remark 3.1 The average order of the number of divisors of natural numbers

grows like log n. That is,

d(1) + d(2) + ...+ d(n)

n
∼ log n.

In fact, let k be a fixed integer. If we list the multiples of k less than or equal

to n:

k, 2k, 3k, ...,
[n
k

]
k,

we find that there are
[
n
k

]
multiples, where [t] denotes the floor function.

Each of those multiples contributes 1 to the sum d(1) + ... + d(n). If we

examine multiples of all integers k ≤ n, it follows that summing over k gives
n∑
k=1

[n
k

]
= d(1) + ...+ d(n)

Now, we want to prove that

lim
n−→∞

∑n
k=1

[
n
k

]
n log n

= 1

First, we establish the relationship:

n

k
− 1 <

[n
k

]
≤ n

k
.

Summing over k gives:
n∑
k=1

(n
k
− 1
)
<

n∑
k=1

[n
k

]
≤

n∑
k=1

n

k
.
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We then factor out n to get:

n
n∑
k=1

(
1

k
− 1

n

)
<

n∑
k=1

[n
k

]
≤ n

n∑
k=1

1

k

The first and the last term in the above inequality can be rewritten as the

integrals

n

∫ n

1

(
1

t
− 1

n

)
dt and n

∫ n

1

1

t
dt.

Integrating gives

n log n− n+ 1 <
n∑
k=1

[n
k

]
≤ n log n.

So taking n→∞, we have

lim
n→∞

∑n
k=1

[
n
k

]
n log n

= 1.

and so,
d(1) + d(2) + ...+ d(n)

n
∼ log n.

3.2 Average order of σ (n)

We have:

Theorem 3.3 ([1]) For every x ≥ 1, we have∑
n≤x

σ1(n) =
1

2
ζ(2)x2 +O (x log (x))

=
π2

12
x2 +O (x log (x))

Proof. ∑
n≤x

σ1(n) =
∑
n≤x

∑
q|n

q =
∑
q,d
qd≤x

q =
∑
d≤x

∑
q≤x

d

q,
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By (c) of Theorem 2.6, we have∑
n≤x

σ1(n) =
∑
d≤x

(
1

2

(x
d

)2

+O
(x
d

))

=
x2

2

∑
d≤x

1

d2
+O

(
x
∑
d≤x

1

d

)
,

By Theorem 2.5 and (a) of Theorem 2.6, we get

=
x2

2

(
−1

x
+ ζ(2) +O

(
1

x2

))
+O (x log (x))

=
1

2
ζ(2)x2 +O (x log (x)) ,

Note that
∑

d≥1
1
d2

= ζ (2) = π2

6
. This completes the proof.

3.3 Average order of ϕ (n)

Applying Theorems 1.3, 1.4 and 2.6 we calculate the average order of ϕ (n) .

Theorem 3.4 ([1],[7]) For x > 1 we have∑
n≤x

ϕ (n) =
3

π2
x2 +O (x log x) .

That is, the average order of ϕ (n) is
3n

π2
.
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Proof. The method is similar to that used for the divisor function. At first,

we have∑
n≤x

ϕ (n) =
∑
n≤x

∑
d|n

µ (d)
n

d
=
∑
e,d
ed≤x

µ (d) e =
∑
d≤x

∑
e: ed≤x

µ (d) e =
∑
d≤x

µ (d)
∑
e: e≤x

d

e

=
∑
d≤x

µ (d)

([
x
d

] ([
x
d

]
+ 1
)

2

)

=
∑
d≤x

µ (d)

(
1

2

(x
d

)2

+O
(x
d

))

=
x2

2

∑
d≤x

µ (d)

d2
+O

(
x
∑
d≤x

1

d

)

=
x2

2

{
6

π2
+O

(
1

x

)}
+O (x log x)

=
3

π2
x2 +O (x log x) .

The proof is finished.

3.4 Average orders of ω (n)

Based on the following theorem, we present the average order of ω (n). We

will use the result:

Theorem 3.5 ([1]) We have∑
p≤x

1

p
= log (log x) +O (1) .

In addition, by Theorem 2.2, we have∑
n≤x

log n =

∫ x

1

(log u+ Ψ1(u)
1

u
)du+O(log x).
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Since |Ψ1(u)| ≤ 1, we have∫ x

1

Ψ1(u)
1

u
du�

∫ x

1

1

u
du = O(log x).

Note that ∫ x

1

log u du = [(u log u− u)]x1 = x log x− x+ 1.

Now, we have:

Theorem 3.6 ([7]) We have∑
n≤x

ω (n) = x log (log x) +O (x) .

Proof. We can write∑
n≤x

ω (n) =
∑
n≤x

∑
p: p|n

1 =
∑
p≤x

∑
n≤x
p|n

1 =
∑
p≤x

∑
e: pe≤x

1 =
∑
p≤x

∑
e: e≤x

p

1

=
∑
p≤x

(
x

p
+O (1)

)
= x

∑
p≤x

1

p
+O (x) ,

since
∑
p≤x

O (1) = O (x). By Theorem 3.5, we obtain

∑
n≤x

ω (n) = x log (log x) + γx+O

(
x

log x

)
,

where γ is the euler’s constant. Thus, the average order of ω (n) is log (log n).

In view of [7, p. 283], applying Chebyshev’s theorem and Mertens’s the-

orem, we state the following two results:
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Theorem 3.7 ([7]) For every x ≥ 2,∑
n≤x

ω (n) = x log (log x) + Cx+O

(
x

log x

)
,

where C is a positive real number.

Similarly, we have

Theorem 3.8 ([7]) For every x ≥ 2,∑
n≤x

ω2 (n) = x (log (log x))2 +O (x log (log x)) .

3.5 Average orders of some other arithmetic
functions

By some summation techniques we can verify the following results (see [1],[4],[6],[7]):

Note that by Proposition 2.1, we have:∑
n≤x

log n = x log x− x+O (1) . (3.1)

Theorem 3.9 (see [7]) We have∑
p≤x

log p

[
x

p

]
= x log x+O (x) .

Proof. As before, by Lemma 1.1, we see that∑
n≤x

log n =
∑
n≤x

∑
d|n

Λ (d) =
∑
d≤x

Λ (d)
∑

e: pe≤x

1 =
∑
d≤x

Λ (d)
[x
d

]
Thus, ∑

d≤x

Λ (d)
[x
d

]
= x log x− x+O (1) ,
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where∑
d≤x

Λ (d)
[x
d

]
=

∑
p≤x

log p

[
x

p

]
+
∑
k≥2

∑
p: pk≤x

log p

[
x

pk

]

≤
∑
p≤x

log p

[
x

p

]
+
∑
k≥2

∑
p: pk≤x

x log p

pk

≤
∑
p≤x

log p

[
x

p

]
+ x

∑
p

log p

(
∞∑
k=2

1

pk

)

=
∑
p≤x

log p

[
x

p

]
+ x

∑
p

log p

p (p− 1)

≤
∑
p≤x

log p

[
x

p

]
+ x

∞∑
n=1

log n

n (n− 1)
�
∑
p≤x

log p

[
x

p

]
+ x

∞∑
n=1

log n

n2

�
∑
p≤x

log p

[
x

p

]
+ x

∞∑
n=1

1

n
3
2

�
∑
p≤x

log p

[
x

p

]
+ x.

Thus,

x log x− x+O (1) =
∑
p≤x

log p

[
x

p

]
+O (x)

and hence ∑
p≤x

log p

[
x

p

]
= x log x+O (x) .

As an application of Lemma 3.1, we have

Theorem 3.10 ([7]) For x ≥ 2, we have∑
m≤x

ψ
( x
m

)
=
∑
d≤x

Λ(d)
[x
d

]
= x log x− x+O(log x).
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Proof. Let f(n) = Λ(n) in Lemma 3.1, we have

F (x) =
∑
n≤x

Λ(n) = ψ(x),

and so ∑
m≤x

ψ
( x
m

)
=

∑
d≤x

Λ(d)
[x
d

]
=

∑
n≤x

∑
d|x

Λ(d)

=
∑
n≤x

log n

= x log x− x+O(log x).

The last identity comes from (3.1).

3.6 Series of reciprocals of the primes

Let us use the following lemma [4].

Lemma 3.2 (Chebyshev’s estimate)
c1x

log x
≤ π(x) ≤ c2x

log x
, for all x ≥ 2

(c1, c2 are constants).

Theorem 3.11 (see [4]) There exists positive constants B1, B2 such that

B1n log n ≤ pn ≤ B2n log n.

Equivalently, pn � n log n.

Proof. Let pn be the n-th prime. Then clearly π(pn) = n. From Chebyshev’s

estimate

n = π(pn) ≤ A2
pn

log pn
, for all n ≥ 2.
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This implies
1

A2

n log pn ≤ pn, for all n ≥ 2.

However, pn > n and so

1

A2

n log n <
1

A2

n log pn ≤ pn, for all n ≥ 2.

Therefore, in general we write

B1n log pn ≤ pn

for all n ≥ 2 with B1 = 1/A2. In the other direction, we have

n = π(pn) ≥ A1
pn

log pn
.

Since pn ≥ n it follows that log pn√
pn
→ 0 as n → ∞. Therefore, there exists a

constant k such that
log pn√
pn

< A1 if n > k.

Hence

n
log pn
pn

≥ A1 >
log pn√
pn

if n > k.

It follows that n > √pn and so log pn < 2 log n if n > k. Let

B2 = max{ 2

A1

,
p2

2 log 2
,

p3

3 log 3
, ...,

pk−1

(k − 1) log(k − 1)
}.

Then

pn ≤ B2n log n for all n ≥ 2.

The proof of Theorem 3.11 is finished.

The above result also provides a very simple proof of Euler’s Theorem

which state that the series
∑

p
1
p
diverges.
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Corollary 3.1 ([2]) The sum ∑
p

1

p

diverges.

Proof. For n ≥ 2 we have 1
pn
≤ 1

B1n logn
from the last theorem. However the

series
∑∞

n=1
1

n logn
diverges by the integral test.

Althought there are infinitely many primes and
∑

p
1
p
diverges it still

diverges very slowly. Using the methods applied in the proof of Chebychev’s

estimate we can actually bound the growth of the series of reciprocals of the

primes.

Theorem 3.12 (see [4]) There exists a constant k such that∑
2<p≤x

1

p
< k log log x if x > 3.

Proof. From Theorem 3.11, we have pn ≥ B1n log n. Therefore,∑
2<p≤x

1

p
=

π(x)∑
n=2

1

pn
<

π(x)∑
n=2

1

B1n log n
<

1

B1

[x]∑
n=2

1

n log n
.

However,
1

n log n
=

∫ n

n−1

dt

n log n
≤
∫ n

n−1

dt

t log t

since 1
n logn

≤ 1
t ln t

on [n− 1, n] if n ≥ 3. Then

∑
2<p≤x

1

p
<

1

B1

[x]∑
n=2

1

n log n
≤ 1

2B1 log 2
+

1

B1

[x]∑
n=3

∫ n

n−1

dt

t log t

and so∑
2<p≤x

1

p
≤ 1

2B1 log 2
+

1

B1

∫ x

2

dt

t log t
=

1

B1

log log x+
1

2B1 log 2
− 1

B1

log log 2

=
1

B1

log log x+ C < k log log x.
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taking k large enough, where C = 1
2B1 log 2

− 1
B1

log log 2.

We finish this work by the following important Mertens Theorems [4],[6],[7]:

.

• For x ≥ 1, we have ∑
p≤x

log p

p
= log x+O (1) .

• There exists a constant C such that∑
p≤x

1

p
= log log x+ C +O

(
1

log x

)
,

for x ≥ 2.

• Mertens’s formula. There exists a constant c such that for x ≥ 2,∏
p≤x

(
1− 1

p

)−1

= ec log x+O (1) .
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Conclusion and Open Problems

We state three famous open questions on the subject. One can see the refer-

ence [6].

• Are there infinitely many prime pairs? Find an asymptotic formula

for the number of prime pairs ≤ x. That is, we ask if there exists an

increasing function g such that∑
|p−q|=2
p,q≤x

1 ∼ g (x)

for all sufficiently large x, where p, q are prime numbers.

• We ask if the number of perfect numbers1 ≤ n is < c log n.

• Pillai Conjecture:
∣∣∣∣∑
n≤x

(−1)n pn

∣∣∣∣ ∼ p[x]

2
. That is, −2 + 3− 5 + 7− 11 +

13− ...+ (−1)n p[x] ∼
p[x]

2
.

1We say n ∈ N is a perfect number if σ(n) = 2n, which means the number is equal
to the sum of its proper divisors. For examples, 6 and 28. It was of great interest of the
Greeks to determine all the perfect numbers. It was known as early as Euclid’s time that
every number of the form n = 2p−1(2p − 1), in which both p and 2p − 1 are prime, is
perfect.
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