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ABSTRACT

The Internet of Things (IoT) has transformed technology by facilitating seamless com-

munication and data exchange among interconnected devices. However, this in-

creased connectivity poses security challenges, necessitating intrusion detection sys-

tems (IDS) to protect IoT environments. This study examines the influence of dimen-

sionality reduction methods on IDS accuracy and performance in IoT. We analyze

various dimensionality reduction techniques and their impact on IoT intrusion detec-

tion systems. Four machine learning models (linear regression, decision tree, SVM,

MLP) are implemented with principal component analysis (PCA) as the chosen re-

duction method. The IoTID20 dataset is used for training and testing. Comparative

evaluations with existing algorithms measure accuracy, F1-score, fit time, and score

time. Results reveal that PCA significantly reduces training time without significant

accuracy loss. This research offers insights into the impact of dimensionality reduc-

tion on IDS performance in IoT, highlighting PCA’s advantages in optimizing training

time.

Keywords: Internet of Things, security, intrusion detection systems (IDS), machine

learning, dimensionality reduction methods, IoT environments, IoTID20.
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RÉSUMÉ

L’internet des objets (IdO) a transformé la technologie en facilitant la communication

transparente et l’échange de données entre les appareils interconnectés. Cependant,

cette connectivité accrue pose des problèmes de sécurité, nécessitant des systèmes de

détection d’intrusion (IDS) pour protéger les environnements de l’IdO. Cette étude

examine l’influence des méthodes de réduction de la dimensionnalité sur la précision

et la performance des IDS dans l’IdO. Nous analysons diverses techniques de réduc-

tion de la dimensionnalité et leur impact sur les systèmes de détection d’intrusion

dans l’IdO. Quatre modèles d’apprentissage automatique (régression linéaire, arbre

de décision, SVM, MLP) sont mis en œuvre avec l’analyse en composantes principales

(ACP) comme méthode de réduction choisie. L’ensemble de données IoTID20 est util-

isé pour la formation et les tests. Les évaluations comparatives avec les algorithmes

existants mesurent la précision, le score F1, le temps d’adaptation et le temps de score.

Les résultats révèlent que l’ACP réduit considérablement le temps de formation sans

perte significative de précision. Cette recherche donne un aperçu de l’impact de la ré-

duction de la dimensionnalité sur les performances des IDS dans l’IdO, en soulignant

les avantages de l’ACP dans l’optimisation du temps de formation.

Mots-clés : Internet des objets, sécurité, systèmes de détection d’intrusion (IDS),

apprentissage automatique, méthodes de réduction de la dimensionnalité, environ-

nements IoT, IoTID20.
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GENERAL INTRODUCTION

The proliferation of Internet of Things (IoT) devices has witnessed a remarkable surge

in recent years, revolutionizing various aspects of our daily lives. These intercon-

nected devices offer unprecedented convenience and connectivity, enabling seamless

communication and data exchange. However, the rapid expansion of IoT also brings

forth significant security challenges that demand careful attention.

The security challenges associated with IoT stem from the vast network of inter-

connected devices, creating a fertile ground for potential security breaches and vul-

nerabilities. As IoT devices continue to permeate different domains, such as health-

care, transportation, and smart homes, ensuring the security and protection of these

systems has become a critical concern.

To address the security challenges of IoT, machine learning techniques have emerged

as powerful tools for intrusion detection. By leveraging advanced algorithms and

data analysis, machine learning models can effectively detect and identify potential

intrusions in real-time. These models have the ability to adapt and learn from new

data, making them well-suited for identifying anomalous patterns and behaviors that

may indicate unauthorized access or malicious activities within IoT environments.

However, the exponential growth of IoT also poses limitations in terms of storage

and computational resources. The sheer volume of data generated by IoT devices

can overwhelm traditional storage systems and hinder efficient analysis. To mitigate
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these challenges, dimension reduction techniques come into play. Dimension reduc-

tion aims to reduce the complexity and size of the data while preserving its essential

features. By reducing the dimensionality of the data, these techniques enable more

efficient storage and processing, thereby enhancing the scalability and performance

of IoT systems.

We delve into the security challenges of IoT and explore the potential of machine

learning and dimension reduction techniques to address these challenges. We investi-

gate the applicability and effectiveness of various machine learning algorithms in de-

tecting intrusions within IoT networks. Furthermore, we analyze different dimension

reduction techniques to optimize the storage and processing of IoT data, considering

their impact on the accuracy and performance of intrusion detection models.

By understanding the limitations of IoT in terms of storage and computational

resources and exploring dimension reduction techniques, we aim to enhance the se-

curity and efficiency of IoT systems. Through our research, we seek to contribute to

the development of more robust and scalable IoT environments that can withstand

emerging security threats while maximizing the benefits of interconnected devices.

In our study, we aim to explore the influence of dimension reduction techniques

on the performance and accuracy of machine learning algorithms for intrusion detec-

tion in Internet of Things (IoT) systems. Specifically, we focus on evaluating the ef-

fectiveness of principal component analysis (PCA) as a dimension reduction method

and examine its impact on enhancing the performance of popular machine learning

algorithms used for intrusion detection in IoT environments.

This dissertation is organized as follows:

— Chapter 01: Machine learning and Security of IoT.

— Chapter 02: Dimensionality reduction techniques.

— Chapter 03: Architecture and Implementation.

— Chapter 04: Results and Discussion.
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CHAPTER 1

MACHINE LEARNING AND SECURITY OF IOT

1.1 Introduction

Machine learning and security of Internet of Things (IoT) have become critical re-

search areas in the field of computer science and technology. The increasing number

of connected devices, ranging from smart homes to healthcare systems, has resulted

in the creation of large amounts of data that can be analyzed and used to improve

decision making and the overall user experience.

However, with the increasing reliance on IoT devices, the security of these systems

has become a major concern. These devices are often connected to the Internet, mak-

ing them vulnerable to various cyber threats such as hacking, malware attacks, and

data breaches. This is where machine learning comes in. Machine learning algorithms

can be used to identify and mitigate these threats in real-time, improving the overall

security of IoT systems.

The use of machine learning in IoT security can help to address challenges such as

detecting and preventing unauthorized access to devices, detecting anomalies in net-

work traffic, and classifying different types of security threats. This allows for a more

proactive approach to security, as opposed to traditional security methods which are
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often reactive. For example, machine learning can be used to develop intrusion de-

tection systems that monitor network traffic and identify potential security threats.

Machine learning can also be used to develop authentication systems that use bio-

metric data, such as facial recognition or fingerprint scans, to verify the identity of

users and devices.

1.2 Machine Learning

According to Arthur Samuel, machine learning refers to the field of study that enables

computers to learn without requiring explicit programming. Samuel gained fame for

his checkers playing program.

Machine learning (ML) is employed to enhance the efficiency of data handling by

machines. In some cases, we are unable to extract meaningful information from data

through conventional means. This is where machine learning comes into play. Given

the vast availability of datasets, the demand for machine learning is increasing. Nu-

merous studies have been conducted on enabling machines to learn autonomously,

without explicit programming [1].

1.2.1 Supervised Learning

Supervised Learning plays a crucial role in machine learning. It derives its name from

the fact that the learning process relies on labeled observation variables. In this type

of learning, datasets are trained using training sets to construct a machine learning

model. This model is then used to label new observations from a testing set. The

training set consists of input variables, known as features, which greatly influence the

accuracy of the predicted variable. It encompasses both quantitative and qualitative

variables. The output variable represents the label class assigned by the Supervised

Learning model to new observations. Based on the nature of the output variables,

Supervised Learning tasks can be categorized into two types: classification tasks and
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regression tasks. Classification tasks involve categorical output variables, while re-

gression tasks involve continuous output variables. For instance, classifying images

as "hot" or "not hot" represents a classification task, whereas predicting stock prices

corresponds to a regression task. The procedure of Supervised Learning can be de-

scribed as follows: we denote the input variables as x(i) and the output variable as

y(i). A pair (x(i), y(i)) represents a training example, and the training set used for

learning is denoted as (x(i), y(i)), i = 1, 2, . . . , m. Here, the index i refers to an ele-

ment in the training set. The space of input values is denoted as X, while Y represents

the space of output values. The ultimate goal is to learn a function

h : X → Y

so that h(x) serves as an effective predictor for the corresponding value of y. In this

context, h is referred to as a hypothesis [2].

1.2.2 Unsupervised Learning

Unsupervised learning is a type of machine learning where the algorithm is given a

data without labels or known outputs, and the objective is to discover patterns and

relationships in the data. Unlike supervised learning, where the algorithm is trained

on labeled data to predict the output for new inputs, The algorithm is tasked with

grouping or clustering the data points into natural categories or clusters, based on

similarities and differences in the data. The goal of unsupervised learning is often

to uncover hidden structures or representations in the data that can be used to gain

insights or make predictions about new, unseen data.
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1.2.3 Reinforcement Learning

Reinforcement learning is an online learning technology that differs from supervised

learning and unsupervised learning. In reinforcement learning, the environment pro-

vides a reinforcement signal, which evaluates the quality of actions taken by an intel-

ligent agent. The intelligent agent has the ability to sense or perceive its environment

using sensors, which can be physical (e.g., cameras, microphones) or virtual (e.g., data

feeds, API calls) depending on the agent and the operating environment.

Unlike other learning methods, the reinforcement signal does not explicitly in-

struct the intelligent agent on how to generate the correct action. Due to the limited

information provided by the external environment, the intelligent agent must rely on

its own experience to learn. Through this learning process, the agent acquires an ap-

propriate appraisal value for the environment state and adjusts its action strategy to

adapt to the environment.

The intelligent agent continuously interacts with the environment, perceiving the

environment and selecting actions to maximize the reward value. The interactive in-

terface between the intelligent agent and the environment consists of actions, rewards,

and states. Each time the reinforcement learning system interacts with the environ-

ment, it first receives the input of the current environment state (s). Then, based on

internal inference mechanisms, it outputs an action (a) that interacts with the environ-

ment. Consequently, the environment transitions to a new state (s’) after accepting the

action. The system then receives the input of the new state (s’) and obtains the reward

and punishment signal (r) from the environment [3].

1.3 Machine Learning Algorithms

Machine learning algorithms are a set of techniques that enable computer systems to

learn and improve their performance on a specific task without being explicitly pro-

grammed. These algorithms use statistical models and data to recognize patterns,
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make predictions or decisions, and perform various tasks such as classification, re-

gression, clustering, and anomaly detection. We list below some of the most impor-

tant and widely used machine learning algorithms.

1.3.1 Decision Tree Algorithms

A decision tree is a graphical representation of choices and their outcomes, organized

in the form of a tree structure. The nodes in the tree represent events or decisions,

while the edges represent the decision rules or conditions. A decision tree consists

of nodes and branches. Each node represents a group of attributes that are being

classified, and each branch represents a possible value that the node can take [1].

1.3.2 Logistic Regression

Logistic regression is a classification technique used to predict binary or multinomial

outcomes based on input variable values. It is commonly used for tasks such as pre-

dicting tumor malignancy, classifying spam emails, or determining preferred cuisine

type. Unlike linear regression, which predicts continuous variables, logistic regres-

sion deals with categorical target variables. It offers advantages such as ease of imple-

mentation, computational efficiency, and regularization. Input feature scaling is not

required, making it suitable for industry-scale problems. However, logistic regression

has limitations, including its inability to solve non-linear problems and its suscepti-

bility to overfitting. Additionally, all independent variables must be identified for it

to work effectively. Practical applications of logistic regression include disease risk

prediction, cancer diagnosis, mortality prediction, and failure probability estimation

in engineering processes [4].
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1.3.3 Support Vector Machine

Another extensively employed and advanced machine learning technique is Support

Vector Machine (SVM). SVM is a supervised learning model with associated learn-

ing algorithms used for classification and regression analysis in machine learning [1].

While logistic regression models the probability of the output class, SVM focuses on

discovering the decision boundary that maximizes the margin between the classes.

SVM goes beyond modeling the probability of the output classes and aims to find the

decision boundary that maximizes the separation between the classes.

1.3.4 Neural Networks

A neural network is a sequence of algorithms designed to identify underlying rela-

tionships within a dataset by emulating the functioning of the human brain. Neural

networks can be comprised of either organic or artificial neurons. One key feature of

neural networks is their ability to adapt to changing inputs, enabling them to generate

optimal results without requiring a redesign of the output criteria. Originating from

the field of artificial intelligence, the concept of neural networks is rapidly gaining

traction in the development of trading systems [1].

1.3.5 K-Nearest Neighbor

The k-nearest neighbors (KNN) algorithm is a straightforward and supervised ap-

proach for machine learning that can tackle classification and regression problems.

Although the method is uncomplicated and easily comprehensible, a significant draw-

back is that its performance slows down considerably as the data size increases [1].

1.3.6 K-Means Clustering

K-means is an unsupervised machine learning algorithm that is designed to address

the clustering problem. This algorithm is relatively simple and straightforward, as
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it involves dividing a dataset into a specified number of clusters. The fundamental

concept behind this approach is to define k centers, with each center representing a

different cluster. It is crucial to strategically select the placement of these centers, as

different locations can result in different outcomes. Therefore, it is best to position

them as far apart from one another as possible [1].

1.3.7 Dimensionality Reduction Algorithms

Dimensionality reduction are machine learning techniques that are commonly used

to reduce the size of a large dataset by identifying the most informative components

and representing them with fewer features. This enables a more effective visualiza-

tion of data with high dimensionality and helps to improve the efficiency of super-

vised classification. Examples of these techniques include Principal Component Anal-

ysis (PCA), Principal Component Regression (PCR), Partial Least Squares Regression

(PLSR), Sammon Mapping, Multidimensional Scaling (MDS), Projection Pursuit, Lin-

ear Discriminant Analysis (LDA), Mixture Discriminant Analysis (MDA), Quadratic

Discriminant Analysis (QDA), and Flexible Discriminant Analysis (FDA) [5]. We will

get into more details about dimensionality reduction techniques in the chapter 2.

1.4 Security of IoT

1.4.1 Internet of Things

The term ”Internet of things” was coined by Kevin Ashton of Procter and Gam-

ble, later MIT’s Auto-ID Center, in 1999. Since then, the Internet of Things (IoT)

has rapidly evolved into a field involving smart objects’ interconnection and inter-

action [6]. IoT refers to a network of objects where everything can be identified and

connected to the Internet through some kind of communication and computing de-

vice such as RFID, sensor, actuators, and mobile phone [7]. The growth of the IoT is

driven by advances in connectivity, sensors, cloud computing, and analytics, as well
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as by the increasing affordability and accessibility of these technologies. As the IoT

continues to expand, it will create new opportunities for innovation and disruption,

as well as new challenges related to privacy, security, and data management.

As devices rely on different wireless technologies to communicate with each other,

a multitude of security and privacy issues emerge, such as maintaining confidential-

ity, integrity, authenticity, and privacy. Furthermore, due to their limited energy, com-

putation, and communication resources, IoT devices are highly susceptible to security

and privacy attacks [7].

1.4.2 Usage Environments

The Internet of Things (IoT) has transformed the way we live, work, and interact with

technology. IoT devices are designed to collect, exchange, and analyze data from the

physical world, allowing for unprecedented levels of automation, efficiency, and con-

venience. The applications of IoT are vast and diverse, ranging from smart homes and

cities to industrial automation and healthcare. IoT devices are used in various envi-

ronments, such as homes, offices, factories, transportation systems, and public spaces.

However, as IoT becomes increasingly ubiquitous, new challenges emerge, such as

security and privacy concerns, interoperability issues, and the ethical implications of

using and sharing personal data. Therefore, understanding the usage environments

of IoT is essential for developing effective solutions that can maximize the benefits of

this technology while minimizing the risks.

Healthcare

IoT technologies have significant potential to transform the healthcare industry by im-

proving patient care, increasing efficiency, and reducing costs. The applications of IoT

in healthcare can be broadly categorized into tracking of objects and people, identifi-

cation and authentication of people, and automatic data collection and sensing, assist

patients with chronic conditions by providing real-time feedback and reminders for
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medication or physical therapy. One of the primary uses of IoT technology in health-

care is to track objects and people. This includes tracking the location and movement

of medical equipment, medication, and other supplies within a healthcare facility. It

also involves tracking the location of patients, staff, and visitors to improve security

and optimize workflows. Wearable IoT devices can also be used to monitor the health

of patients, providing real-time data on vital signs, activity levels, and other metrics

that can be used to monitor their health and track their recovery progress [8].

Smart Environments

A smart environment is a space that is designed to be easy and comfortable to use,

thanks to the intelligence of the objects within it. This can apply to a wide range of

settings, including offices, homes, industrial plants, and leisure environments. In a

smart environment, objects are equipped with sensors, processing power, and con-

nectivity, which allows them to interact with each other and with the environment

in a seamless and intuitive way. For example, in a smart home, lights, thermostats,

and other devices can be controlled through a single app or voice commands, making

it easier and more convenient for users to manage their environment. Similarly, in

a smart office, sensors can detect when rooms are occupied and adjust lighting and

temperature settings accordingly, improving energy efficiency and creating a more

comfortable working environment. Overall, smart environments are designed to en-

hance the user experience by making everyday tasks easier and more intuitive, while

also improving efficiency and reducing energy consumption. In an industrial plant

setting, a smart environment can include sensors that monitor the condition of ma-

chinery and alert maintenance personnel when repairs are needed. This can improve

efficiency and reduce downtime.
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Industrial

In the industrial sector, also known as IIoT (Industrial Internet of Things), has been

rapidly growing in recent years. IIoT refers to the use of connected devices and tech-

nologies to enhance and optimize industrial processes, such as manufacturing, logis-

tics, and supply chain management. One key application of IIoT is predictive main-

tenance, which involves using IoT sensors and data analytics to monitor industrial

equipment and predict when maintenance or repairs are needed. Another important

application is asset tracking, which involves using IoT sensors to monitor the location

and condition of industrial assets, such as inventory, vehicles, and equipment. also

used to optimize industrial processes and workflows, such as by automating routine

tasks and providing real-time insights into performance metrics.

Transportation and Logistics

The transportation and logistics industry is rapidly adopting IoT technology to im-

prove efficiency, safety, and sustainability. Advanced vehicles such as cars, trains,

buses, and bicycles are being equipped with sensors, actuators, and processing power

that enable real-time monitoring of their location, speed, fuel consumption, and other

vital parameters. This information is transmitted to traffic control sites and trans-

portation vehicles to optimize routing, reduce congestion, and improve the overall

flow of traffic. Additionally, roads and rails are being instrumented with sensors that

can detect traffic density, road conditions, and weather patterns, allowing for proac-

tive maintenance and timely intervention to prevent accidents and improve safety.

IoT is also being used to improve logistics management. Goods are being equipped

with tags and sensors that provide real-time data on their location, temperature, hu-

midity, and other relevant parameters. This data is transmitted to transportation ve-

hicles and logistics management systems, allowing for real-time tracking and moni-

toring of the status of goods. This enables logistics providers to optimize their opera-

tions, reduce inventory costs, and improve customer satisfaction by providing timely
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and accurate delivery updates [8].

Personal and Social Domain

The personal and social domain in IoT refers to the use of connected devices and tech-

nologies to enhance and facilitate personal and social interactions. IoT devices can be

used in wearable devices, such as fitness trackers and smartwatches, which can mon-

itor and track various aspects of a person’s health and fitness. They can also be used

to facilitate social interactions, by enabling people to connect and communicate with

each other more easily. For example, smart home devices can be used to control and

automate various aspects of a person’s home, such as lighting, heating, and security.

In addition, IoT devices can also be used to enhance social experiences outside of the

home. For example, smart city technologies can be used to facilitate public gather-

ings and events, such as by providing real-time information on traffic and parking, or

by enabling people to connect and share information with each other through social

media and other platforms [8].

1.4.3 Communication Protocols

The Internet of Things (IoT) is a rapidly growing network of interconnected devices,

ranging from smartphones and wearables to industrial machinery and smart home

appliances. These devices use a variety of communication protocols to exchange data

and interact with each other. Communication protocols are essentially sets of rules

that define how devices transmit, receive, and interpret data. In IoT, communication

protocols play a crucial role in ensuring that devices can seamlessly and securely con-

nect and communicate with each other. The choice of protocol depends on a variety

of factors such as the type of device, the network infrastructure, the desired level of

security, and the specific application requirements. In this context, understanding the

different communication protocols used in IoT is essential for developers, engineers,

and designers who are involved in building and deploying IoT systems.
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The IoT protocols can be divided into four main groups: application protocols,

service discovery protocols, infrastructure protocols, and other influential protocols.

It’s not necessary to use all of these protocols together for a specific IoT application.

Additionally, depending on the type of IoT application, certain standards may not be

necessary to support [9].

FIGURE 1.1: Table provides a summary of the most prominent protocols
defined by these groups
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1.4.4 Security

Security Challenges

User Privacy and Data Protection Due to the omnipresence of IoT environment,

user privacy is a critical concern in IoT security. With devices interconnected and data

transmitted and exchanged over the internet, preserving user privacy has become a

sensitive subject in numerous research studies. Despite the ample research conducted

on the matter of privacy, there are still many areas that require further exploration.

Topics such as privacy in data collection, sharing, and management, as well as data

security, continue to be open research issues that need to be addressed [10].

Authentication and Identity Management Authentication and Identity Manage-

ment (IdM) encompass a collection of processes and technologies aimed at managing

and securing access to resources and information, as well as protecting object profiles.

IdM plays a vital role in uniquely identifying objects, while authentication verifies the

establishment of identity between two communicating parties. In the context of the

Internet of Things (IoT), managing identity authentication becomes crucial due to the

need for multiple devices and users to authenticate each other utilizing reliable ser-

vices. This involves developing an effective identity management approach to ensure

the unique identification of all objects. Furthermore, factors such as mobility, privacy,

pseudonymity, and anonymity necessitate in-depth analysis and further research [10].

Trust Management and Policy Integration Trust plays a crucial role in establishing

secure communication among devices in the uncertain environment of the Internet of

Things (IoT). It is important to consider trust from a user’s perspective to establish

trust in interactions between entities and the system. In the field of IoT, the key ob-

jectives of trust research include developing new decentralized trust models, imple-

menting trust mechanisms for cloud computing, and creating applications based on

node trust. Automated and preferably autonomous trust evaluation is essential, and

the reputation-based Subjective Logic (SL) approach shows promise in this regard.
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Trust can be transitive between systems but should be governed by agreements. A

trust device should possess the capability to prevent subversion, and a robust pol-

icy framework is necessary to incorporate the evaluated trust level and current threat

level when making decisions [10].

Authorization and Access Control Authorization determines whether a person or

object, once identified, is permitted to access a resource, while access control regulates

resource access by granting or denying it based on various criteria. Access control is

often implemented using authorization mechanisms. Both authorization and access

control are crucial in ensuring a secure connection between multiple devices and ser-

vices. In this scenario, the primary concern is to simplify the creation, comprehen-

sion, and manipulation of access control rules. Further details on access control are

provided below [10].

End-to-End Security Endpoint security between IoT devices and Internet hosts is a

critical concern. Simply employing cryptographic techniques such as encryption and

authentication codes for packet transmission is inadequate for resource-constrained

IoT devices. Achieving complete end-to-end security requires verifying the identity

of both endpoints, using protocols to dynamically negotiate session keys (e.g., TLS

and IPsec), and securely implementing algorithms such as AES and Hash. In an IoT

system with end-to-end security, both endpoints can assume that their communica-

tion remains private and that data in transit cannot be tampered with by any third

party. Ensuring correct and comprehensive end-to-end security is essential as many

IoT applications would be impossible without it [10].

Attack Resistant Security Solution Given the diverse range of devices in the inter-

net of things, with varying levels of memory and computation resources, it is crucial

to provide lightweight and attack-resistant security solutions to protect these devices

from potential attacks. In addition, mitigation measures should be implemented on
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the devices themselves to defend against external attacks, such as denial-of-service

and flood attacks [10].

Security Attacks

1. Physical attacks on IoT systems aim at targeting the hardware components of

the system, typically necessitating the attacker to be physically close or within

the system’s vicinity. These attacks can cause damage to the hardware’s func-

tionality or even shorten its lifespan. Various forms of physical attacks exist,

including node tampering, RF interference on RFIDs, node jamming in wireless

sensor networks (WSNs), malicious node injection, physical damage, social en-

gineering, sleep deprivation attack, and malicious code injection. Node tamper-

ing involves physically replacing or modifying a sensor node, while social engi-

neering manipulates users of the IoT system for the attacker’s advantage. Sleep

deprivation attacks and malicious code injection compromise both the function-

ality and security of the IoT system.

2. Network attacks in IoT systems are focused on exploiting vulnerabilities in the

network. The attacker doesn’t need to be physically close to the network to

launch an attack. These attacks include traffic analysis, where confidential data

is intercepted using sniffing applications like packet sniffers. Other attacks in-

volve RFID technology, such as spoofing and cloning, which allow the attacker

to gain access to the system or replicate a victim’s RFID tag. Unauthorised access

and sinkhole attacks breach confidentiality and deny service by dropping pack-

ets. The man-in-the-middle attack involves the attacker intercepting communi-

cation between two sensor nodes, while the Sybil attack involves a malicious

node claiming the identities of multiple nodes to deceive the system. Denial of

service attacks involve overwhelming the network with more traffic than it can

handle. Routing information attacks can manipulate the network by spoofing or
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altering routing information, causing complications such as routing loops and

false error messages.

3. Software attacks are the primary cause of security vulnerabilities in computer

systems, including IoT systems. These attacks involve the use of malicious soft-

ware such as viruses, worms, Trojan horses, spyware, and malicious scripts to

steal information, tamper with data, and deny service. Phishing attacks involve

tricking users into divulging their authentication credentials through emails or

fake websites. Malicious scripts can be used to shut down systems or steal data.

Denial of service attacks can be executed on IoT networks, blocking legitimate

users and allowing attackers access to sensitive data.

4. Encryption-based attacks on IoT systems aim to break the encryption scheme

being used to secure the data transmission. These attacks include side-channel

attacks, which involve retrieving the encryption key by analyzing the encryp-

tion devices through techniques like timing, power, fault, and electromagnetic

analysis. Cryptanalysis attacks assume the possession of plaintext or cipher-

text to find the encryption key, with examples like known-plaintext attacks and

chosen-ciphertext attacks. A man-in-the-middle attack occurs when an adver-

sary intercepts and interferes with the key exchange between two IoT system

users, allowing the attacker to decrypt and encrypt any data being transmit-

ted [11].

1.5 Conclusion

In this first chapter we have seen an overview of the Internet of Things, including its

definition, its applications, and its different components. Security is a major concern

in the Internet of Things, and we have seen the different threats that can be faced

by these systems. We have also seen the different security mechanisms that can be

used to protect these IoT devices from different attacks. We have also outlined in this
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chapter the different machine learning techniques that might be used to detect attacks

in IoT systems. In the next chapter we focus on dimensionality reduction techniques,

and we will see how these techniques can be used to improve the performance of

machine learning algorithms.
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CHAPTER 2

DIMENSIONALITY REDUCTION TECHNIQUES

2.1 Introduction

Dimensionality reduction is a crucial technique in the field of machine learning, which

refers to the process of reducing the number of features in a dataset while retaining

as much of the relevant information as possible. As datasets continue to grow in

size and complexity, dimensionality reduction techniques have become increasingly

important for reducing computational costs, improving model accuracy, and gaining

a better understanding of the underlying structure of data. There are various ap-

proaches to dimensionality reduction, ranging from linear methods such as Principal

Component Analysis (PCA) to nonlinear methods such as t-Distributed Stochastic

Neighbor Embedding (t-SNE). These techniques can be applied to a wide range of

applications, from image and signal processing to natural language processing and

data visualization. In this dissertation, we explore the principles and applications of

various dimensionality reduction techniques and their impact on machine learning

performance.
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2.2 Dimensionality Reduction Techniques

The increasing amount of data stored in high-dimensional data (HDD) has led to a

common use of various dimensionality reduction (DR) techniques in many applica-

tion areas. These techniques transform high-dimensional data into a new dataset that

represents low dimensionality while preserving the original data’s meaning as much

as possible [12]. The two primary types of DR techniques are feature selection and

feature extraction. Feature selection identifies the most relevant features to improve

model performance by selecting a subset of the original features, while feature extrac-

tion transforms the original features into a lower-dimensional space by identifying

new features that capture the most important information.

2.2.1 Feature Selection

Feature selection is a technique used to reduce the impact of dimensionality on a

dataset by identifying a subset of features that efficiently represent the data. It in-

volves selecting the most important and relevant features for a particular data mining

task, while eliminating redundant and irrelevant features. Feature selection helps to

identify an optimal subset of features that is appropriate for a given problem. The

primary goal of feature selection is to create a small subset of features that repre-

sent the essential features of the input data, while minimizing the overall size of the

dataset [13]. There are various ways to classify feature selection methods, with the

most common being filters, wrappers, embedded, and hybrid methods. an additional

type of evaluation method that has emerged recently is known as ensemble feature

selection[13]. However, this classification is based on the assumption of feature in-

dependence or near-independence. For datasets with structured features that have

dependencies, and for streaming features, additional methods have been developed.

These methods extend the conventional classification to cover a wider range of scenar-

ios and help to select the most appropriate subset of features for a given problem [14].

The hierarchy of feature selection techniques is illustrated in Figure 2.1.
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FIGURE 2.1: The hierarchy of feature selection techniques

The Filter Method

It is one of the earliest feature selection techniques and is also known as an open-loop

method. It evaluates the features based on their intrinsic characteristics before the

learning tasks are performed. This method mainly uses four different measurement

criteria, namely information, dependency, consistency, and distance, to assess the fea-

ture characteristics. The filter method performs feature selection independently of

the data mining algorithm and employs statistical standards to evaluate the ranking

of the selected subset. It is highly efficient and scalable in high-dimensional datasets,

and has been found to outperform the wrapper technique. However, the primary

drawback of this method is that it does not consider the interaction between the se-

lected subset and the performance of the induction algorithm [13].

The Wrapper Method

Also known as a close-loop method, integrates feature selection with the learning al-

gorithm and uses the performance accuracy or classification error rate as a criterion

for feature evaluation. It selects the most discriminative subset of features by reduc-

ing the estimation error of a specific classifier. Despite the advantages of achieving
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better performance and high accuracy compared to the filter method [13], wrappers

are slower in finding good subsets due to their dependence on the resource demands

of the modelling algorithm. Additionally, feature subsets are biased towards the mod-

elling algorithm used for evaluation, even with cross-validation. Therefore, it is nec-

essary to use an independent validation sample and another modelling algorithm to

obtain a reliable generalization error estimate after finding the final subset. Empirical

studies have shown that wrapper methods obtain subsets with better performance

than filter methods because the subsets are evaluated using a real modelling algo-

rithm [14].

The Embedded Method

Is a feature selection mechanism that integrates feature selection within the learn-

ing algorithm, using its properties to guide feature evaluation. Unlike the wrapper

method, it does not require the repeated execution of the classifier or the examination

of every feature subset, making it more efficient and tractable. The embedded method

combines the advantages of both the filter and wrapper methods, selecting features

during the implementation of the mining algorithm. As a result, it is computationally

less expensive while maintaining similar performance to the wrapper method [13].

The Hybrid Method

Have been introduced to merge the advantageous features of filters and wrappers.

The hybrid method usually starts with a filter approach to decrease the feature space

dimension and to generate some possible candidate subsets. After that, a wrapper

approach is applied to identify the optimal candidate subset. The hybrid method

is renowned for providing high accuracy, which is a characteristic of the wrapper

method, and high efficiency, which is a characteristic of the filter method [14]. By

integrating both methods, the hybrid approach inherits the complementary strengths

of filters and wrappers. The combination of filter and wrapper techniques is the most

prevalent approach to building hybrid methods [13].
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The Ensemble Method

Is a technique that seeks to create a collection of feature subsets and subsequently

generate a consolidated outcome from the collection. This approach relies on multi-

ple subsampling techniques, where a specific feature selection method is applied to

several subsamples, and the resulting features are combined to form a more robust

subset [13].

Feature selection offers several benefits [13] :

– reducing the size of the data.

– minimizing storage requirements.

– improving prediction accuracy.

– preventing overfitting.

– reducing the execution and training time by simplifying the variables.

2.2.2 Feature Extraction

Feature extraction is a type of dimensionality reduction technique that transforms

high-dimensional data into a lower-dimensional space by extracting the most relevant

features from the original data. In other words, it involves deriving new features from

the existing set of features, which are more informative and discriminative for the ma-

chine learning algorithm. Feature extraction is particularly useful when the original

data has a large number of features, some of which may be irrelevant or redundant,

making it difficult to train a machine learning model. By reducing the number of fea-

tures while preserving the relevant information, feature extraction can improve the

performance of machine learning models, reduce computational costs, and alleviate

the curse of dimensionality. Popular feature extraction techniques include Principal

Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Independent

Component Analysis (ICA).
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Principal Component Analysis

Principal Component Analysis (PCA) is widely recognized as one of the most com-

monly used algorithms for dimensionality reduction. It is employed to find the most

optimal subspace of a given dimension, m, within a set of observations x with a di-

mension of M, where the objective is to minimize the least-square error. For simplicity,

it is often assumed that the data is zero-mean, and the subspace to be fitted is a lin-

ear subspace passing through the origin. The essence of PCA lies in searching for

orthogonal directions that can explain the maximum variance of the data. By identi-

fying these directions, PCA effectively reduces the dimensionality of the data while

preserving the most critical information. [15].

Linear Discrimant Analysis

Linear Discriminant Analysis (LDA) is a statistical technique utilized for both clas-

sification and dimensionality reduction purposes. Its primary objective is to iden-

tify a linear combination of features that maximizes the separation between multiple

classes in a dataset. LDA achieves this by projecting high-dimensional data onto a

lower-dimensional space while preserving the discriminative information among dif-

ferent classes to the greatest extent possible. Essentially, LDA aims to find a lower-

dimensional representation of the data that retains the essential information necessary

for distinguishing between various classes. This approach is widely employed in ma-

chine learning and pattern recognition, finding applications in diverse fields such as

image recognition, bioinformatics, and natural language processing.

Autoencoder

An autoencoder is an artificial neural network architecture specifically developed to

learn efficient representations of input data. It achieves this by encoding the data into

a lower-dimensional latent space and subsequently decoding it back to its original

form. The primary objective of an autoencoder is to minimize the reconstruction error
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between the input and output, which is accomplished through the use of a hidden

layer stack that reduces dimensionality.

Autoencoders come in various forms, including Sparse Autoencoder, Variational

Autoencoder, Denoising Autoencoder, and Relational Autoencoder. These variants

highlight the versatility of autoencoders in extracting meaningful features from data.

By leveraging the power of artificial neural networks, autoencoders have proven to

be effective in dimensionality reduction and feature extraction tasks [16].

t-Stochastic Neighbor Embedding

t-Stochastic Neighbor Embedding (t-SNE), developed by Hinton and Roweis, is a

non-linear dimensionality reduction technique (NLDRT) employed for reducing high-

dimensional data to a lower-dimensional space. Unlike other methods, t-SNE op-

erates by comparing the distances between distributions. It is particularly useful

for visualizing datasets with non-linear structures and is non-parametric in nature.

By preserving the local structure of the high-dimensional data, t-SNE uncovers the

global structure and can be applied to manifold learning tasks. The transformation

to a lower-dimensional space in t-SNE is accomplished through the utilization of

conditional probability, enabling effective representation of the data in the reduced

space [12].

2.3 Related Works

Vasan & Surendiran [17] investigated the effectiveness of Principal Component Anal-

ysis (PCA) in the context of network intrusion detection. The researchers aimed to

evaluate the Reduction Ratio (RR), determine the optimal number of Principal Com-

ponents, and analyze the impact of noisy data on the performance of PCA. To achieve

their goals, the researchers conducted experiments using PCA in conjunction with

different classification algorithms. They utilized two standard datasets, namely KDD

CUP and UNB ISCX, which are commonly used in the field of network intrusion
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detection. The findings of the study revealed that utilizing the first 10 Principal Com-

ponents proved to be sufficient for achieving accurate classification results. On the

KDD dataset, the classification accuracy reached approximately 99.7%, while on the

ISCX dataset, it achieved an accuracy of around 98.8%. These results were compara-

ble to the accuracy obtained using the original feature sets, which consisted of 41 and

28 features for the KDD and ISCX datasets, respectively. Overall, the study demon-

strated the effectiveness of PCA in reducing the dimensionality of network intrusion

detection datasets while maintaining high classification accuracy.

Aksu et al. [18] presented a system aimed at detecting denial of service (DoS)

attacks in intrusion detection. In their approach, they utilized the Fisher Score algo-

rithm for feature selection and employed Support Vector Machine (SVM), K-Nearest

Neighbor (KNN), and Decision Tree (DT) as the classification algorithms. The results

of their system demonstrated high success rates in detecting DoS attacks. Using SVM

as the classification algorithm, the intrusion detection system (IDS) achieved a success

rate of approximately 99.7%. When KNN was used, the success rate was measured

at 57.76%. Finally, the IDS attained a success rate of 99These findings indicate that

the system showed excellent performance in detecting DoS attacks, with SVM and

DT demonstrating particularly high success rates. The research highlights the im-

portance of feature selection and the impact of different classification algorithms in

building effective intrusion detection systems.

Xia et al. [19] proposed an Intrusion Detection System (IDS) that combined Prin-

cipal Component Analysis (PCA) and Grey Neural Networks (GNN) to enhance net-

work security. The IDS followed a two-step approach, where PCA was employed

to reduce the dimensionality of the input data, and then GNN was utilized for clas-

sification. To evaluate the performance of the proposed IDS, it was tested on the

KDDCup99 dataset, which is commonly used for intrusion detection research. The

results demonstrated a detection rate of 57% for overall intrusions and a detection

rate of 48% for hidden attacks. These findings indicate that the IDS was effective in
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detecting intrusions and outperformed other methods that achieved a maximum de-

tection rate of 22%. The combination of PCA and GNN in the proposed IDS proved

to be beneficial for network security, as it successfully reduced the dimensionality of

the input data and improved the detection rates compared to other methods. These

results highlight the effectiveness of the proposed approach in enhancing intrusion

detection capabilities in network security applications.

Al-Qatf et al. [20], utilized Sparse Auto-Encoder (SAE) as a technique for fea-

ture learning and dimensionality reduction on the NSL-KDD dataset, which is an en-

hanced version of the older KDD-CUP99 synthetic netflow dataset. The objective of

their approach was to enhance classification performance using Support Vector Ma-

chines (SVM). By applying SAE and SVM, the researchers achieved promising results

on the NSL-KDD dataset. They reported an accuracy of 84.96% in binary classifi-

cation and 99.39% accuracy in multi-class classification, specifically for five classes.

These results indicate that their approach effectively learned meaningful features and

reduced dimensionality, leading to improved classification accuracy. It is worth not-

ing that this study differed from the mentioned research by utilizing the CICIDS2017

dataset. The CICIDS2017 dataset contains new attacks and intruder strategies and is

based on real network traffic. This dataset offers a more realistic representation of

network behavior and allows for evaluating the effectiveness of intrusion detection

methods in the face of contemporary threats. By utilizing the CICIDS2017 dataset,

this study aimed to assess the performance of the proposed approach in a more chal-

lenging and up-to-date context.

Vijayanand et al. [21] proposed a novel intrusion detection system specifically de-

signed for wireless mesh networks. Their system employed multiple support vector

machine (SVM) classifiers along with a feature selection technique based on genetic

algorithms (GA). The authors acknowledged that the accuracy of attack detection can

be hindered by the presence of redundant and irrelevant variables in the monitored

data. To address this issue, they incorporated feature selection techniques, specifically
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using a genetic algorithm. This approach aimed to identify and select the most infor-

mative and relevant features from the dataset, improving the overall accuracy of the

intrusion detection system. Experimental results were conducted on various datasets,

including a 512-bit dataset, 1024-bit dataset, combined dataset, ADFA-LD dataset,

and CICIDS2017 dataset. The findings demonstrated that their system achieved high

accuracy in detecting attacks across these datasets. This suggests that their approach

is effective and suitable for intrusion detection in wireless mesh networks. By in-

tegrating multiple SVM classifiers and employing a genetic algorithm-based feature

selection technique, the proposed intrusion detection system showed promising re-

sults in terms of attack detection accuracy. This research contributes to the field of

wireless mesh network security by addressing the challenges posed by redundant

and irrelevant variables and providing an effective solution for intrusion detection.

Salo et al. [22] developed a novel hybrid dimensionality reduction technique that

combines an ensemble classifier based on support vector machine (SVM), instance-

based learning algorithms (IBK), and multilayer perceptron (MLP) with the feature se-

lection approaches of information gain (IG) and principal component analysis (PCA).

To evaluate the effectiveness of their proposed technique, they conducted experi-

ments using three well-established datasets: ISCX 2012, NSL-KDD, and Kyoto 2006+.

The goal was to assess the performance of the IG-PCA-Ensemble method in terms

of accuracy. The experimental results showed that the IG-PCA-Ensemble method

outperformed other approaches in terms of accuracy. Specifically, when applied to

the ISCX 2012 dataset, this method achieved the highest accuracy rate of 99.01%. The

combination of the ensemble classifier, instance-based learning algorithms, multilayer

perceptron, and the feature selection techniques of information gain and principal

component analysis proved to be effective in reducing the dimensionality of the data

while maintaining high accuracy in classification. These findings highlight the poten-

tial of the IG-PCA-Ensemble method for dimensionality reduction and classification

tasks in various domains, as demonstrated by the positive results obtained on the

ISCX 2012 dataset.
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In the same context, Jyothsna et al. [23] developed a novel approach which is a

hybrid Dimensionality Reduction and Neural Network Based Classifier. they used

also two feature selection techniques: IG and PCA for dimensionality reduction and

a multilayer perception technique to classify the data. The proposed method was

evaluated using the benchmark dataset of network Intrusion Detection System i.e.,

NSL-KDD.The results demonstrate that the model has improved accuracy and also

offers reduced computational time and a lower false alarm rate.

Pervez & Farid. [24] proposed a novel approach that combines dimensionality re-

duction techniques, specifically information gain (IG) and principal component anal-

ysis (PCA), with a neural network-based classifier, specifically a multilayer percep-

tron (MLP). The purpose of this approach is to improve the accuracy of classifica-

tion while reducing computational time and minimizing false alarms in the context

of network intrusion detection. To evaluate the effectiveness of their approach, they

conducted experiments using the benchmark dataset NSL-KDD, which is commonly

used in the field of network intrusion detection systems. The results of the evaluation

demonstrated that the proposed approach achieved improved accuracy compared to

existing methods. Additionally, it showcased reduced computational time, indicating

that the approach is efficient in processing and classifying the data. Furthermore, the

approach showed a lower false alarm rate, suggesting that it effectively distinguishes

between normal network traffic and intrusive activities. The combination of dimen-

sionality reduction techniques (IG and PCA) and the neural network-based classifier

(MLP) in this approach offers a promising solution for network intrusion detection.

The improved accuracy, reduced computational time, and lower false alarm rate in-

dicate the potential of this approach in enhancing the performance and efficiency of

intrusion detection systems.
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2.4 Conclusion

Dimensionality reduction techniques are important for reducing the number of fea-

tures in high-dimensional data while retaining as much information as possible. There

are two main categories of dimensionality reduction are feature selection and feature

extraction. Feature selection methods aim to choose a subset of the original features,

while feature extraction methods create new features that capture the essence of the

original data. Some common techniques include PCA, LDA, ICA, t-SNE, and autoen-

coders. The choice of technique depends on the type of data, the goal of analysis, and

the computational resources available.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

After establishing the foundational theoretical concepts of machine learning, IoT se-

curity, and dimensionality reduction techniques in the initial chapters, our focus shifts

to the second part of our research. This phase involves an investigation into the im-

pact of dimension reduction methods on the performance of intrusion detection sys-

tems in IoT environments. To conduct a comparative analysis, we utilize the IoTID20

database as our dataset. Multiple models are trained using various learning algo-

rithms to assess how dimension reduction affects accuracy and processing speed. This

chapter outlines the steps undertaken to obtain the study results. Firstly, we discuss

the data preprocessing techniques employed to prepare it for our analysis. Subse-

quently, we delve into an exploration of the basic models utilized for the comparison.

Furthermore, we outline the different performance metrics considered during the al-

gorithm evaluation. Finally, we provide an explanation of the principal component

analysis (PCA) method employed for data reduction.
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3.2 Methodology

3.2.1 Data Pre-processing

In order to ensure accurate analysis, it is essential to perform pre-processing on the

dataset and understand its characteristics. Pre-processing is a crucial step in prepar-

ing the dataset for further analysis. In our study, the initial dataset consisted of 625,783

rows and 86 columns. After removing non-numerical columns, the dataset was re-

duced to 70 columns. Here are the pre-processing steps that we have followed for our

research on the impact of dimensionality reduction on the accuracy and performance

of intrusion detection systems in IoT environments:

• First of all, We started by converting categorical labels into numerical labels us-

ing appropriate encoding techniques such as one-hot encoding or label encod-

ing.

• Non-numerical value-containing columns were removed in the next step.

• We inspect the dataset to identify features that have a single value for all records.

These features do not provide any useful information for the classification task

and can be safely removed from the dataset.

• Normalization was done to equalize the weight of each feature. This step is

crucial as features with a wider range of values have more impact than features

with a smaller range of values.

• After normalization, the "NaN" and "Inf" values that could be present in the

initial dataset or appear after normalization were removed.
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3.3 Model Evaluation Measures

3.3.1 Accuracy

Accuracy is calculated by dividing the number of correctly predicted instances (true

positives and true negatives) by the total number of instances in the dataset. The

formula for accuracy is:

Accuracy = (Number of Correct Predictions) / (Total Number of Predictions)

It is commonly expressed as a percentage, so the accuracy value is multiplied by

100. A higher accuracy value indicates better performance of the classification model

in correctly predicting the class labels of the instances in the dataset.

3.3.2 Precision

Precision is a metric used to evaluate the performance of a classification model, par-

ticularly in the context of positive predictions. It measures the proportion of true

positive instances (TP) out of all instances predicted as positive, which includes both

true positives and false positives (FP).

The formula for precision is:

Precision = TP / (TP + FP)

A high precision value indicates that the model has a low rate of falsely classifying

negative instances as positive. It reflects the model’s ability to accurately identify

positive instances and is particularly useful when the cost of false positives is high,

such as in medical diagnoses or fraud detection.

3.3.3 Recall

Recall, also known as sensitivity or true positive rate, is a metric used to evaluate the

performance of a classification model, specifically in the context of positive instances.

Recall measures the proportion of true positive instances (TP) that are correctly iden-

tified by the model out of all the actual positive instances, which includes both true
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positives and false negatives (FN). It quantifies the model’s ability to capture and

identify positive instances. The formula for recall is:

Recall = TP / (TP + FN)

A high recall value indicates that the model is effective at identifying most of the

positive instances and has a low rate of false negatives. It is particularly useful in

scenarios where the identification of positive instances is crucial, such as in medical

diagnoses or detecting rare events.

3.3.4 F1

The F1 score is a widely used evaluation metric that provides a comprehensive mea-

sure of a classification model’s overall performance by combining precision and recall

into a single value. It is calculated as the harmonic mean of precision and recall, of-

fering a balanced assessment of both metrics.

By taking the weighted average of precision and recall, the F1 score considers both

the ability of the model to correctly identify positive instances (precision) and its ca-

pability to capture all positive instances (recall).

The F1 score formula is as follows:

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

The F1 score ranges between 0 and 1, with a higher value indicating better per-

formance. It is particularly useful in situations where both precision and recall are

equally important, and a balance between them is desired.

3.3.5 Fit Time

Fit time refers to the amount of time required to train a model on a given dataset. The

term "fit" is used to describe the process of optimizing the parameters of a model to

minimize the discrepancy between its predicted outputs and the actual outputs ob-

served in the training dataset. Fit time is an important consideration when choosing a
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machine learning model for a particular task, as models that take longer to train may

not be practical for real-time or time-sensitive applications.

3.3.6 Score Time

Score time is the duration it takes for a trained machine learning model to make pre-

dictions or classify new data. It represents the computational burden associated with

processing and evaluating unseen instances. As a crucial performance metric, score

time directly affects the model’s practical usability and efficiency in real-time applica-

tions.

3.4 Cross Validation

Cross-validation is a methodology employed to assess the effectiveness of a machine

learning model by systematically dividing the available data into subsets. The data is

partitioned into a training set, where the model is trained, and a validation set, where

the model is evaluated. This partitioning process is repeated multiple times as shown

in Figure 3.1, with different subsets serving as the validation set in each iteration. The

performance of the model is measured and recorded for each iteration, and the results

are then averaged to obtain a more robust estimate of the model’s performance.

By utilizing cross-validation, we aim to obtain a more accurate evaluation of the

model’s ability to generalize to unseen data. It helps in assessing the model’s perfor-

mance across different subsets of the data, which aids in identifying potential issues

such as overfitting or underfitting. Cross-validation provides a more reliable estimate

of the model’s performance compared to a single train-test split, as it reduces the im-

pact of data variability and provides a more comprehensive evaluation of the model’s

capabilities.
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FIGURE 3.1: Cross Validation Method

One of the widely used methods of cross-validation is k-fold cross-validation. In

this approach, the dataset is divided into k equal-sized folds or subsets. The model

is then trained on k-1 folds and evaluated on the remaining fold. This process is re-

peated k times, with each fold serving as the validation set once. The performance

metrics, such as accuracy or error rate, obtained from each iteration are typically av-

eraged to provide an overall assessment of the model’s performance.

3.5 The Basic Models Used for the Comparison

Choosing the appropriate learning algorithm for a case study is a crucial decision,

and it is often challenging to determine the best option. In this case study, I focused

on comparing and evaluating several basic models to analyze their performance and

who provides the best performance and accuracy. The models I utilized for the com-

parison included:

— Decision Tree
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— Multi-Layer Perceptron (MLP)

— Support Vector Machine (SVM)

— Linear Regression

In the upcoming chapter, we will present the evaluation measures and showcase

the results obtained.

3.6 Data Compression

In our study on data compression, we employed Principal Component Analysis (PCA)

as a fundamental technique. By utilizing PCA with components 3, 6, and 8, we were

able to effectively reduce the dimensionality of our datasets while preserving impor-

tant information. PCA is a mathematical method that transforms a set of potentially

correlated variables into a smaller set of variables known as principal components. It

achieves this by applying a vector space transformation to the original dataset. This

transformation allows us to interpret the data using only a few principal components

instead of the original numerous variables. By reducing the dimensionality of the

dataset, PCA helps to simplify the analysis process. It enables us to identify signif-

icant features, trends, patterns, and outliers more easily compared to working with

the original high-dimensional dataset. PCA’s mathematical projection provides in-

sights and facilitates data interpretation in a more efficient manner. By harnessing

the capabilities of PCA, we were able to extract the most relevant features from our

data and achieve effective data compression. This approach allowed us to reduce the

complexity of the datasets while retaining critical information, thereby enhancing our

understanding of the underlying patterns and structures within the data [25].

The key steps of PCA can be summarized as follows:

1. Standardization: The input data is standardized to ensure that each feature has

a similar scale. This is achieved by subtracting the mean (µ) of each feature and

dividing by its standard deviation (σ).
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2. Covariance matrix computation: The covariance matrix (Σ) is computed to cap-

ture the relationships between different features. The element Σ ij represents the

covariance between the ith and jth features, indicating how they vary together.

3. Eigenvalue decomposition: The covariance matrix is then decomposed into its

eigenvectors (V) and eigenvalues. This can be expressed as

Σ = VΛVT

where Λ is a diagonal matrix containing the eigenvalues, and V contains the

corresponding eigenvectors.

4. Eigenvector selection: The eigenvectors represent the principal components of

the data. They are ranked based on their corresponding eigenvalues, with the

highest eigenvalue indicating the principal component that captures the most

variance. By selecting a subset of the eigenvectors, we can reduce the dimen-

sionality of the data.

5. Dimensionality reduction: The selected eigenvectors are combined to form a

transformation matrix (W). By multiplying the original data matrix (X) by this

transformation matrix, we obtain the lower-dimensional representation (Y =

XW), where Y represents the transformed data.

3.7 Dataflow

In this project, we focused on improving the accuracy and performance of an intru-

sion detection system in IoT environments. To achieve this, we employed the PCA

dimensionality reduction method. First, we preprocessed the IoTID20 dataset, han-

dling missing values and outliers. Then, we applied PCA to extract the most impor-

tant features and reduce the dimensionality of the dataset. Next, we trained various

machine learning algorithms, such as decision trees and support vector machines on
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the original data and the reduced data. To evaluate the models, we split the dataset

into training and testing subsets using cross-validation. we compared the accuracy

and performance of the models with and without PCA to analyze the impact of di-

mensionality reduction. Additionally, we conducted further analysis and visualiza-

tion to gain insights into the models’ behavior. Overall, this architecture allowed us

to investigate the effectiveness of PCA in improving the intrusion detection system’s

accuracy and performance in IoT environments. We summarize in Figure 3.2 the flow

of our data from reading the dataset until generating our results.
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FIGURE 3.2: Diagram illustrating the steps of applying dimensionality
reduction

3.8 Conclusion

In this chapter, we provided a detailed account of our methodology for testing the

impact of principal component analysis (PCA) on accuracy within the context of in-

trusion detection in IoT networks. To achieve this, we implement PCA in conjunction
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with multiple machine learning algorithms and assess its effect on accuracy. Addi-

tionally, we introduce and discuss the performance measures that we will employ to

evaluate the results, including accuracy, F1 score, fit time, and score time. This ap-

proach allows us to determine the extent to which dimension reduction techniques

impact the accuracy and performance of machine learning algorithms for intrusion

detection in IoT networks.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this concluding chapter, we begin by discussing the development tools employed

to obtain the results. then, we present the outcomes of the extensive tests conducted

in two parts. The first part focuses on binary classification results, encompassing

accuracy tests, F1 score, fit time, and score time. The second part extends the analysis

to multi-class classification results, where the same tests are employed. To provide a

comprehensive overview of the findings, the chapter concludes with a summarized

table that consolidates the results obtained from the diverse range of tests conducted.

4.2 Development Tools

4.2.1 Python

Python is a programming language known for its simplicity and ease of learning. It

operates at a high level and follows an interpreted, object-oriented, and dynamically-

typed approach. Python prioritizes readability and straightforwardness in code, al-

lowing developers to split programs into reusable modules. Additionally, it provides
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an extensive library of standard modules that serve as a foundation for building ap-

plications. With Python, programs can be written in a concise and readable manner,

eliminating the need for explicit variable or argument declarations. [26].

Python is an extensively employed programming language that finds applications

in various domains, including web development, scientific computing, data analysis,

artificial intelligence, and more. The thriving developer community plays a vital role

in its success, offering a wide range of libraries and frameworks. Guido van Rossum is

the mastermind behind Python, releasing it for the first time in 1991. Python is freely

available under the open-source Python Software Foundation License, allowing users

to utilize it without any cost.

4.2.2 SKLearn

Scikit-learn, often referred to as sklearn, is a Python library designed for machine

learning tasks. It presents a straightforward and efficient toolkit for data mining and

analysis purposes. Built upon the solid foundations of NumPy, SciPy, and matplotlib,

sklearn encompasses an extensive collection of supervised and unsupervised learning

algorithms. These algorithms cover a broad range of applications, including classifi-

cation, regression, clustering, and dimensionality reduction. Moreover, sklearn offers

additional functionalities such as model selection, evaluation, preprocessing, and fea-

ture extraction. Its versatility and reliability have led to its widespread adoption in

both industry and academia, serving as a valuable resource for the development and

deployment of machine learning models. [27]. Originally known as "scikits.learn,"

the library now known as Scikit-learn had its beginnings in 2007 when David Cour-

napeau initiated its development as part of a Google Summer of Code project. Sub-

sequently, in 2010, Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, and Vin-

cent Michel, hailing from the French Institute for Research in Computer Science and

Control (FIRCA), made significant contributions to its advancement.
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4.2.3 Material Resources

The specifications of the PC used for implementing and testing are listed in the table

below:

Processor 2,2 GHz Quad-Core Intel Core i7
Cache 6 MB
Ram 16 GB 1600 MHz DDR3

Operating system macOs Big Sur

TABLE 4.1: Material Resources

4.2.4 IoTID20 Dataset

IoTID20 is a dataset that contains network traffic data captured from a real IoT net-

work environment. It was created by researchers at the University of New Brunswick

in Canada to aid in the development of Intrusion Detection Systems (IDS) for IoT de-

vices. The dataset contains normal and malicious traffic captured from 20 IoT devices,

including cameras, smart locks, smart lights, and a Google Home device.

The dataset provides network traffic at the packet level, including the packet pay-

load, and it contains various types of attacks such as denial-of-service (DoS) attacks,

command injection attacks, and reconnaissance attacks. Additionally, the researchers

have provided a set of ground truth labels indicating which network traffic flows are

benign and which ones are malicious.

The recently introduced dataset for IoT botnets offers a broader range of network

and flow-based characteristics. The inclusion of flow-based features allows for the

examination and assessment of flow-based intrusion detection systems. By serving

as a benchmark, the proposed dataset enables the identification of unusual behavior

within IoT networks. Ultimately, the newly introduced IoTID20 dataset establishes

a solid groundwork for the advancement of intrusion detection methods in IoT net-

works. [28]. The dataset is publicly available and can be downloaded from the Uni-

versity of New Brunswick’s website.
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4.3 Results and Discussion

In the following section, we present and analyze the results obtained from both the

original and reduced datasets using various dimensionality reduction techniques. We

conducted an implementation of 4 machine learning models, namely Logistic Re-

gression, Decision Tree, Support Vector Machines (SVM), and Multilayer Perceptron

(MLP). To ensure a robust evaluation, we employed the cross-validation method to

train and test these models.

Our focus lies in evaluating the accuracy and f1 score of the models employed and

comparing their respective fit times and score times for learning and prediction tasks.

By delving into these key metrics, we gain valuable insights into the performance and

efficiency of the implemented approaches.

4.3.1 Binary Classification

We have in Figure 4.1 a showcase of accuracy metric results, where the x-axis repre-

sents the 4 machine learning models on each one we have bars representing the orig-

inal and the reduced data using PCA 3, 6, and 8 dimensions, and the y-axis denotes

the accuracy percentage. The legend provides color and pattern coding to indicate

the number of dimensions.

FIGURE 4.1: Accuracy metric
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The Decision Tree algorithm exhibits an exceptional accuracy rate of 99% when

applied to both the original and reduced data. In contrast, other algorithms such

as linear regression, SVM, and MLP experience a decline in accuracy, reaching 93%

when the dimensions are reduced to 3 and 6. This discrepancy highlights the superior

performance of the Decision Tree algorithm in maintaining high accuracy even with

reduced dimensions. While linear regression, SVM, and MLP encounter challenges

in accurately capturing the underlying patterns in the data when the dimensionality

is reduced, the Decision Tree algorithm proves to be more robust and effective in

preserving the accuracy of classification. These findings emphasize the importance of

selecting appropriate algorithms that can handle dimensionality reduction without

compromising accuracy.

Despite the reduction in the number of dimensions, we observe that the accuracy

remains largely consistent across all PCA components. The maximum accuracy drop

observed is no more than 5%, indicating that the reduction in dimensions does not

significantly impact the model’s performance. This phenomenon can be attributed to

the presence of a high number of correlated features in the dataset, Consequently, it

becomes possible to reduce the number of dimensions without sacrificing much in-

formation.

FIGURE 4.2: F1 Score metric
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Figure 4.2 presents the F1 score metric for diverse scenarios, encompassing the

original dataset and dimensionality reductions achieved through PCA with 8, 6, and

3 dimensions. Notably, the F1 score exhibits a consistently high performance across

all original and reduced datasets, with a maximum decrease of only 3%. The F1 score

holds particular significance in the context of binary classification tasks, such as the

one undertaken in this study. This significance arises from the imbalanced nature of

the dataset, where one class is substantially more prevalent than the other. Relying

solely on accuracy as an evaluation metric can be misleading in such cases. Con-

sequently, the F1 score offers a more dependable assessment by incorporating both

precision and recall into its calculation.

FIGURE 4.3: Fit Time metric

Figure 4.3 showcases the computational efficiency of four different algorithms, we

have in the x-axis the algorithms and the y-axis represents the fit time in milliseconds.

Upon analysis, we observe distinct patterns in the fit times of the algorithms. We

observe that Decision Tree and SVM consistently outperform the other algorithms in

terms of fit time across original and reduced data. Even with larger datasets, Decision

Tree and SVM exhibit significantly faster training times compared to MLP and Linear

Regression. This finding highlights the algorithm’s efficiency and scalability, making

it a favorable choice for training models on larger datasets.
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Linear Regression shows moderately longer fit times in original data compared to

SVM and Decision Tree but performs better than MLP in reduced data. Although it

falls behind SVM and Decision Tree in terms of fit time, Linear Regression remains

computationally feasible for datasets of the given sizes.

On the other hand, MLP exhibits the highest fit times among the algorithms ana-

lyzed. We also observe for the same model that the input dimension does not have

the same impact on the training time, as the amount of operations performed in the

hidden layers does not depend on the input dimension.

FIGURE 4.4: Score Time metric

Figure 4.4 presents the results of the score time metric, which measures the time

taken by each algorithm to generate predictions for unseen data, expressed in mil-

liseconds. Among the algorithms investigated, SVM consistently demonstrates the

shortest score times across all scenarios, making it the most computationally efficient.

In the original data, SVM achieves a score time of 186 milliseconds, and with PCA

dimensionality reduction of 3, 6, and 8, the score times range from 163 to 170 millisec-

onds, indicating consistently low computational overhead. However, we note that

the difference between all the tested algorithms is not notably important, either with

or without dimension reduction.
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4.3.2 Multi-class Classification

The multi-class classification results are presented in figures 4.5, 4.6, and 4.7 focusing

on category classification.

(A) Accuracy (B) F1 Score

FIGURE 4.5: Accuracy metrics

Figure 4.5 shows the accuracy and F1 score. Among the algorithms considered,

the decision tree algorithm demonstrates the highest accuracy, achieving 99% accu-

racy, surpassing the performance of the other models. When comparing the results of

binary classification, the decision tree consistently outperforms the other models.

FIGURE 4.6: Fit Time metric

For linear regression, SVM, and MLP, their performance remains relatively similar

across both the original and reduced datasets. However, there is a noticeable impact
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on accuracy when reducing the data from 8 dimensions to 6 dimensions, and further

to 3 dimensions, with a drop of approximately 9% in accuracy for each reduction.

FIGURE 4.7: Score Time metric

It is worth noting that the accuracy and F1 score exhibit similar trends in this anal-

ysis. This is attributed to the dataset’s balanced nature, where the classes are relatively

equally represented. In such cases, the F1 score may be less informative or relevant

compared to situations where the dataset is imbalanced. In imbalanced datasets, the

F1 score becomes more crucial as accuracy alone can be misleading.

Figure 4.6 presents the fit time, In the original data, the fit time for multi-class

classification is approximately twice as long as the fit time for binary classification.

However, in the reduced data, the fit time for multi-class classification is similar to

that of binary classification. As always, the decision tree algorithm exhibits the best

performance.

When reducing the data dimensions to 8, 6, and 3, we observe significant improve-

ments in fit time for linear regression, decision tree, and SVM. The fit time for MLP

also improves, although not to the same extent as the other models.

In terms of score time, it is doubled compared to binary classification. However,

the performance of the models remains consistent with their performance in binary
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classification. Specifically, linear regression, decision tree, and SVM outperform MLP

in the original data.

The higher values of fit time and score time observed in category classification

compared to binary classification can be attributed to the increased complexity and

larger number of classes involved in category classification. In binary classification,

the model only needs to distinguish between two classes, which typically requires

less computational time. However, in category classification, the model must classify

instances into multiple classes, which can be more computationally demanding and

time-consuming, resulting in higher fit time and score time.
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Algorithm Sub-

Algorithm

Accuracy% F1% Fit

Time(ms)

Score

Time(ms)

Linear Regression Original 98 99 52932 195

PCA8 96 98 4465 169

PCA6 93 96 5159 166

PCA3 93 96 4669 163

Decision Tree Original 99 99 3765 194

PCA8 99 99 522 176

PCA6 99 99 451 175

PCA3 99 99 268 174

SVM Original 98 99 12825 186

PCA8 97 98 1921 170

PCA6 93 96 876 164

PCA3 93 96 658 163

MLP Original 99 99 31827 244

PCA8 99 99 24269 182

PCA6 98 99 27897 175

PCA3 94 97 17943 169

TABLE 4.2: Table of results for Binary Classification
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Algorithm Sub-

Algorithm

Accuracy% F1% Fit

Time(ms)

Score

Time(ms)

Linear Regression Original 94 94 97514 549

PCA8 91 91 7759 528

PCA6 83 82 9252 510

PCA3 76 71 6880 502

Decision Tree Original 99 99 3174 549

PCA8 99 99 760 530

PCA6 99 99 596 524

PCA3 99 99 371 534

SVM Original 91 91 73597 555

PCA8 90 90 9983 535

PCA6 80 78 7046 535

PCA3 73 68 5603 504

MLP Original 96 95 45802 640

PCA8 95 95 22163 547

PCA6 90 90 35734 540

PCA3 80 76 20327 521

TABLE 4.3: Table of results for Multi-Class Classification

4.4 Conclusion

In this chapter, our focus was on evaluating the impact of principal component analy-

sis (PCA) on the performance of four machine learning models for intrusion detection

in IoT networks using the IoTID20 dataset. We conducted a thorough comparison of

these algorithms in terms of accuracy, F1 score, fit time, and score time, ensuring the

reproducibility of the results. Throughout the analysis, our objective was to determine

how dimension reduction affects the performance of these algorithms. Our findings



Chapter 4. Results and discussion 53

indicate that PCA as a dimension reduction technique can effectively reduce training

time without significantly compromising the accuracy of the models. In certain cases,

it may even lead to performance improvements.
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GENERAL CONCLUSION

In recent years, the rapid development of the Internet of Things (IoT) has brought

about a remarkable transformation, with a multitude of interconnected devices rev-

olutionizing various aspects of our lives. However, this unprecedented level of con-

nectivity also brings with it substantial security challenges. The extensive network of

IoT devices creates an environment ripe for potential security breaches and vulner-

abilities, necessitating careful attention to ensure the security and protection of IoT

systems.

In this context, machine learning techniques have emerged as powerful tools for

intrusion detection in IoT networks. By leveraging advanced algorithms and data

analysis, machine learning models can effectively detect and identify potential intru-

sions in real-time. These techniques enable the detection of anomalous patterns and

behaviors that may indicate unauthorized access or malicious activities within IoT

environments. With the ability to adapt and learn from new data, machine learn-

ing algorithms provide a reliable and efficient approach to enhance the security and

protection of IoT networks against emerging threats.

To investigate the performance of machine learning algorithms in intrusion detec-

tion for IoT networks, our study focused on the selection of appropriate data. We

chose the IoTID20 dataset, specifically designed for anomaly detection in IoT envi-

ronments. In order to enhance the efficiency of our analysis, we employed principal
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component analysis (PCA) as a dimensionality reduction technique. This allowed us

to reduce the complexity of the dataset while retaining the most informative features,

thereby streamlining the learning process for our models.

Next, we evaluated the performance of several machine learning algorithms, in-

cluding linear regression, decision tree, support vector machines (SVM), and multi-

layer perceptron (MLP), on the reduced dataset. Our objective was to identify the

models that were influenced by this dimensionality reduction and analyze their per-

formance in the context of intrusion detection. We utilized several performance met-

rics, with "Accuracy" and "F1" being the most commonly used. Additionally, we in-

cluded "fit time" and "score time" to compare the algorithms in terms of their compu-

tational efficiency.

The results of our study demonstrated the significant impact of dimension reduc-

tion techniques on reducing training time without compromising the accuracy of our

models. Interestingly, in certain cases, the accuracy of the models even improved after

dimension reduction. This suggests that by reducing the dimensionality of the data,

we were able to eliminate noise and irrelevant information, enabling the models to

focus on the most discriminative features for effective intrusion detection.

Overall, our findings highlight the potential of dimension reduction techniques,

such as PCA, in optimizing the performance of intrusion detection systems in IoT

networks. By leveraging machine learning algorithms and careful data analysis, we

can enhance the security and protection of IoT systems, mitigating potential threats

and safeguarding sensitive data. These insights contribute to the ongoing efforts to

develop more efficient and effective security solutions within the dynamic landscape

of the Internet of Things.
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Perspective

In future research endeavors, our intention is to explore additional dimension re-

duction methods, such as LDA (Linear Discriminant Analysis), t-SNE (t-Distributed

Stochastic Neighbor Embedding), and UMAP (Uniform Manifold Approximation and

Projection), autoencoder. The primary objective behind this undertaking is to assess

the impact of these techniques on the performance of our intrusion detection system.

By comparing the results obtained from these various dimension reduction methods,

we hope to identify the most effective approach for enhancing the performance of

our intrusion detection system. This exploration will contribute to the advancement

of intrusion detection techniques and provide valuable insights for improving the de-

tection and prevention of unauthorized activities in network security.
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methods with applications”. In: 2015 38th international convention on information

and communication technology, electronics and microelectronics (MIPRO). Ieee. 2015,

pp. 1200–1205.

[15] Carlos Oscar Sánchez Sorzano, Javier Vargas, and A Pascual Montano. “A sur-

vey of dimensionality reduction techniques”. In: arXiv preprint arXiv:1403.2877

(2014).



Bibliography 59

[16] Yesi Novaria Kunang et al. “Automatic features extraction using autoencoder

in intrusion detection system”. In: 2018 International Conference on Electrical En-

gineering and Computer Science (ICECOS). IEEE. 2018, pp. 219–224.

[17] K Keerthi Vasan and B Surendiran. “Dimensionality reduction using principal

component analysis for network intrusion detection”. In: Perspectives in Science

8 (2016), pp. 510–512.
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