
ةيبعشلا ةيطارقيمدلا ةيرئازلجا ةيروهملجا

People’s Democratic Republic of Algeria
 Ministry of Higher Education and Scientific Research

University of 8 May 1945-Guelma-
Faculty of Mathematics, Computer Science and Science of Matter

Department of Computer Science

Master Thesis
Specialty: Computer Science

Option:

Science and Technology of Information and Communication

Theme

A Meta-Scan based approach for the detection of injection
vulnerabilities in Web applications

 Presented by: Oudjani Seyyid Taqy Eddine

Jury Members:

Dr. Chemseddine Chohra Chairman
Dr. Abdelhakim Hannousse Supervisor
Dr. Nadjette Benhamida Examiner

June 2023

i

Acknowledgements
First and foremost, I express my sincere gratitude to the Almighty Allah for

bestowing upon me the strength, energy, perseverance, and resilience to successfully

complete this humble work.

I express my sincere gratitude to Dr. Abdelhakim Hannousse, my supervisor, for his

invaluable guidance, extensive knowledge, and valuable advice throughout this

project. His assistance and constructive feedback have greatly contributed to the

improvement and successful accomplishment of the objectives of this work.

I express my heartfelt gratitude to the esteemed members of the jury for their

invaluable presence and thorough examination of my thesis. I am sincerely

appreciative of the time they have dedicated to carefully reading my work.

Furthermore, I am grateful for the insightful feedback they provided during the

presentation, which will undoubtedly contribute to the enhancement of my research.

I am deeply grateful to my mother for her constant support, love, and nurturing

presence. She has been a steadfast companion throughout every phase of my

journey, past, present, and future.

I present this commitment as a tribute to my late father, whose absence is keenly felt.

I am aware that he would have been immensely proud of me if he were here with us.

To my esteemed siblings, Djihad, Azou, Idris, and the precious Takwa.

I would like to sincerely thank Djanou for her unwavering support and presence by

my side throughout my university years. Her contribution has been truly invaluable.

I also want to express my gratitude to my friends Seif, Moustach, Chipa, Said, Yacin

yechki, CSC, Zaki, Zou, Hasda, Arslan, Foufou, Oussama, Kiro, Loufi, and others

whose names I may not be able to mention individually but who have provided me

with incredible assistance and encouragement. I am grateful to all of you for being

my steadfast family and always supporting me.

I want to extend a special thank you to the entire ”Todo family” for their exceptional

support and kindness. I am truly grateful for all of you.

ii

ABSTRACT

The constantly evolving web landscape presents a wide range of emerging threats that

exploit vulnerabilities within web applications, exposing data, systems, and servers

to significant risks such as data manipulation and theft, unauthorized access and de-

nial of services. To tackle these challenges, the present research project explores the

ability of dynamic analysis and penetration testing tools to effectively detect injec-

tion vulnerabilities in web applications. Consequently, web developers with the help

of security experts can take appropriate actions to safeguard vulnerable applications

from cyberattacks. The study conducted in this project proposes a meta-scan-based

system that leverages the capabilities of several open source and dynamic application

security testing tools. The proposed system aims at detecting three specific injection

vulnerabilities: cross-site scripting, SQL injections, and OS command injections. To

enhance usability, the system incorporates a user-friendly graphical interface with

various features. Through rigorous testing using four well-known vulnerable appli-

cations, the system’s performance is assessed and compared with that of individual

scanners. The results reveal promising outcomes, as the new system successfully re-

duces false positives and negatives, validating its efficacy in bolstering web security.

Keywords: Cybersecurity; injection vulnerabilities; penetration testing; meta-scan.

iii

RÉSUMÉ

L’évolution constante du Web présente des menaces émergentes exploitant les vulné-

rabilités des applications web, exposant ainsi les données, les systèmes et les serveurs

à des risques importants tels que la manipulation et le vol de données, l’accès non

autorisé et le déni de service. Pour relever ces défis, le présent projet de recherche ex-

plore la capacité des outils d’analyse dynamique et de tests de pénétration à détecter

efficacement les vulnérabilités d’injection dans les applications web. Par conséquent,

les développeurs web, avec l’aide des experts en sécurité, peuvent prendre les mesures

appropriées pour protéger les applications vulnérables. L’étude menée dans le cadre

de ce projet propose un système basé sur la méta-analyse qui exploite les capacités de

plusieurs outils open source de tests de sécurité dynamiques. Le système proposé vise

à détecter trois vulnérabilités d’injection : les scripts intersites, les injections SQL et de

commandes système. Pour améliorer la convivialité, le système intègre une interface

graphique conviviale dotée de différentes fonctionnalités. Grâce à des tests rigoureux

sur quatre applications vulnérables bien connues, les performances du système sont

évaluées et comparées à celles des outils individuels. Les résultats obtenus montrent

des perspectives prometteuses, car le nouveau système réduit efficacement les faux

positifs et les faux négatifs, ce qui valide son efficacité pour renforcer la sécurité web.

Mots-clés: Cybersécurité; vulnérabilités d’injection; test de pénétration; méta-analyse.

iv

ë

j ”

˙

⌦

Õ A

⇣

JÀ AK
.

 , I
.

K
⌦

ÒÀ @
⇣

H A

⇣

ÆJ
⌦

J
.
¢

⇣

� ˙

⌦

Ø

≠™

íÀ @ † A

⇣

Æ

K …

™

⇣

JÇ

⇣

�

⇣

È

�

J
⌘

É A

K
⇣

H @ YK
⌦

YÓ

⇣

E I
.

K
⌦

Ò À Q“

⇣

JÇ÷œ @ P Ò¢

⇣

JÀ @ – Y

⇣

ÆK
⌦

ÈK
.

h QÂî÷œ @
Q

�
⌦

´ » ÒìÒÀ @

⇣

È

⇣

ØQÂÑÀ @
⇣

H A

K AJ
⌦

J
.
À AK

.
I

.
´ C

⇣

JÀ @ …

⌘

J”

⇣

Ë
Q

�
⌦

J
.
ª Q£ A

j÷œ – X @Ò

m
Ã

'@

⇣

È“

¢

�

�

B @
⇣

H A

K AJ
⌦

J
.
À @

ë�
⌦

Q™

⇣

K

⇣
H @ X

�

@ ˙

⌦

æJ
⌦

” A

JK
⌦

YÀ @ …J
⌦

 j

⇣

JÀ @

⇣

ËP Y

⇣

Ø ˙

⌦

⌘

ÊjJ
.
À @ ® QÂ

⌘
Ñ÷œ @ @

YÎ

≠
⌘

Ç∫

⇣

JÇ�
⌦

,
⇣

H AK
⌦

Yj

⇣

JÀ @ Ë

YÎ

⇣

ÈÍk
.

@Ò÷œ .

⇣

È” Y

m
Ã

'@

ë

ØP

¯

⌦

P Ò¢÷œ

·∫÷fl⌦ , ΩÀ

YÀ . I
.

K
⌦

ÒÀ @
⇣

H A

⇣

ÆJ
⌦

J
.
¢

⇣

� ˙

⌦

Ø

·

⇣

Æm
Ã

'@

≠™

ì † A

⇣

Æ

K

·´ » A™

ÆÀ @

≠
⌘

Ç∫ À

⇣

Ü @
Q

⇣

�

g B @ P AJ
.

⇣

J

k @

˙

⌦

⇣

ÊÀ @

⇣

ÈÉ @P YÀ @ h
Q

⇣

�

⇣

Æ

⇣

K .Q¢

j À

⇣

È

ìQ™÷œ @
⇣

H A

⇣

ÆJ
⌦

J
.
¢

⇣

JÀ @

⇣

ÈK
⌦

A“m
Ã

⇣

ÈJ
.
É A

J÷œ @
Q

�
⌦

K
.

@ Y

⇣

JÀ @

X A

m
⇢

⇣

'
@ ,

·”

�

B @ Z @
Q

�
.

g

⇣

Ë Y´ AÇ÷fl. , I
.

K
⌦

ÒÀ @

·” YK

⌦
Y™À @

⇣
H AJ

⌦

K Aæ” @
�

…

™

⇣

JÇ�
⌦

¯

⌦

YÀ @ ˘

⌦

™J
⌦

“j
.

⇣

JÀ @ …J
⌦

 j

⇣

JÀ @ ˙Œ´ Y“

⇣

J™K
⌦

A

◆

” A

¢

� ® QÂ
⌘
Ñ÷œ @ @

YÎ P A£ @
�

˙

⌦

Ø
⇣

IK
⌦

Qk
.

�

@

≠™

ì † A

⇣

Æ

K
⌘

H C

⌘

K

¨ A
⌘

Ç

⇣

⌧ª @ ˙Õ @
�

h
Q

⇣

�

⇣

Æ÷œ @ – A

¢

JÀ @

¨ YÓE
⌦

. ˙

⌦

æJ
⌦

” A

JK
⌦

YÀ @

‡ A”

�

B @ P AJ
.

⇣

J

k B P Yí÷œ @

⇣

ÈkÒ

⇣

J

Æ”
⇣

H @ X

�

B @

– A

¢

JÀ @ …“

⇣

J
⌘

Ç�
⌦

, – @ Y

j

⇣

JÉ B @

⇣

ÈÀÒÓDÖ

·

�
⌦

Çj

⇣

JÀ . – A

¢

JÀ @ Q” @

�

@ SQL
·

⇣

Æk ©

⇣

Ø @Ò÷œ @
Q

�
.
´

⇣

ÈJ
⌦

í

JÀ @

⇣

Èm
.

◊ Q
�
.
À @ :

·

⇣

Æj À

⇣
H A

⇣

ÆJ
⌦

J
.
¢

⇣

�

⇣

È™K
.

P

�

@ ˙Œ´ – P Aì P AJ
.

⇣

J

k @ » C

g

·” .

⇣

È

Æ

⇣

J

m
◊

≠

�

K A

£ ©” – @ Y

j

⇣

JÉ B @

⇣

È ÓDÖ

⇣

ÈJ
⌦

”ÒÉP

⇣

ÈÍk
.

@ ˙Œ´

⌘
IJ

⌦
k ,

⇣

Ë Y´ @ l
.

⇢

�

'
A

⇣

J

K

·´ l
.

⇢

�

'
A

⇣

J

JÀ @

≠
⌘

Ç∫

⇣

K .

⇣

ÈK
⌦

XQ

ÆÀ @
⇣

H @ X

�

B AK
.

È

⇣

J

KP A

⇣

Æ” – A

¢

JÀ @ Z @ X

�

@ ’Ê

⌦

J
⌦

⇣

Æ

⇣

K ’

⇣

ÊK
⌦

,

⇣

È

Ø Q™”

⇣

È

ÆJ
⌦

™

ì

. I
.

K
⌦

ÒÀ @

‡ A”

�

@

QK
⌦

Q™

⇣

K ˙

⌦

Ø È

⇣

JJ
⌦

À A™

Ø
⇣

IJ
.

⌘

⌧K
⌦

 ,

⇣

ÈK
.

X AæÀ @
⇣

H AJ
⌦

J
.
 ÇÀ @

⇣
H AJ

⌦
K
.

Am
.

⇢'

⌦
B
�

@

·” » A™

Ø …æ
⌘

Ç�
.

YK
⌦

Ym
.

Ã
'@ – A

¢

JÀ @ …

⇣

ÆK
⌦

. ˘

⌦

™J
⌦

“j
.

⇣

JÀ @ …J
⌦

 j

⇣

JÀ @ ;

⇣

Ü @
Q

⇣

�

g B @ P AJ
.

⇣

J

k @ ;

·

⇣

Æm
Ã

'@

≠™

ì † A

⇣

Æ

K ; ˙

⌦

G @
Q

�
.
J
⌦

ÇÀ @

·”

�

B @ :

⇣

ÈÀ @YÀ @
⇣
HA“ æÀ@

v

TABLE OF CONTENTS

Acknowledgements i

Abstract ii

Résumé iii

iv

Table of Contents v

List of Figures xi

List of Tables xiii

List of Listings xiv

Introduction 1

1 Injection vulnerabilities and associated attacks 4

1.1 Injection attacks . 5

1.2 Risks and impacts . 6

1.2.1 Data breach or information leak 6

vi

1.2.2 Denial of Service (DoS) . 6

1.2.3 Unauthorized access to sensitive data 6

1.2.4 Data corruption . 7

1.2.5 Total system compromise . 7

1.2.6 Malware distribution . 7

1.3 Statistics on web vulnerabilities . 8

1.4 Types of injection vulnerabilities . 9

1.4.1 Running Example . 10

1.4.2 Cross-site scripting (XSS) injection vulnerabilities 13

1.4.3 SQL-based injection vulnerabilities 15

1.4.4 OS command injection vulnerabilities 15

1.4.5 Other injection vulnerabilities . 17

1.5 Conclusion . 18

2 Injection vulnerabilities detection approaches 19

2.1 Static analysis based approaches . 20

2.1.1 Manual code review . 20

2.1.1.1 Description . 20

2.1.1.2 Advantages & Drawbacks 21

2.1.2 Static code analysis . 22

2.1.2.1 Description . 22

2.1.2.2 State-of-the-Art Research 24

2.1.2.3 Advantages & Drawbacks 25

2.2 Dynamic analysis based approaches . 26

2.2.1 Penetration testing & Vulnerability scanning 26

2.2.1.1 Description . 26

2.2.1.2 State-of-the-Art Research 29

2.2.1.3 Advantages & Drawbacks 30

2.2.2 Dynamic taint analysis . 31

vii

2.2.2.1 Description . 31

2.2.2.2 State-of-the-Art Research 32

2.2.2.3 Advantages & Drawbacks 33

2.2.3 Fuzz testing . 34

2.2.3.1 Description . 34

2.2.3.2 State-of-the-Art Research 35

2.2.3.3 Advantages & Drawbacks 36

2.3 Hybrid based approaches . 36

2.3.1 Description . 36

2.3.2 State-of-the-Art Research . 37

2.3.3 Advantages & Drawbacks . 38

2.4 Machine learning based approaches . 39

2.4.1 Description . 39

2.4.2 State-of-the-Art Research . 39

2.4.3 Advantages & Drawbacks . 41

2.5 Conclusion . 42

3 A meta-scan detection system for web injection vulnerabilities 44

3.1 Motivation . 44

3.2 Proposed meta-scan based system architecture 46

3.3 Meta-scan based system phases . 48

3.3.1 Selection of base scanners . 49

3.3.2 Configuration of selected scanners 50

3.3.3 Initiating the scanning process 52

3.3.4 Data analysis and consolidation 52

3.3.5 Decision-making process . 55

3.3.5.1 Threshold selection for each vulnerability 56

3.3.5.2 Learning and updating weights 58

3.3.6 Reporting . 61

viii

3.4 Conclusion . 64

4 Implementation & Experimentation 65

4.1 Selection of base scanners . 65

4.1.1 OWASP ZAP . 66

4.1.2 Wapiti . 67

4.1.3 SkipFish . 67

4.1.4 Nikto . 69

4.1.5 Nuclei . 69

4.2 Configuration of base scanners . 71

4.3 Initiating the scanning process . 72

4.3.1 OWASP ZAP . 72

4.3.2 Wapiti . 73

4.3.3 SkipFish . 73

4.3.4 Nikto . 73

4.3.5 Nuclei . 74

4.3.6 Sequential vs. Multithreading based execution 74

4.4 Data analysis and consolidation . 76

4.4.1 OWASP ZAP . 76

4.4.2 Wapiti . 77

4.4.3 SkipFish . 78

4.4.4 Nikto . 79

4.4.5 Nuclei . 80

4.4.6 Consolidation process . 81

4.5 Decision-making . 84

4.5.1 Data description . 85

4.5.2 Parameter tuning . 86

4.5.3 Experimental results . 91

4.6 Reporting and GUI . 93

ix

4.7 Installation requirements . 96

4.7.1 Kali Linux . 97

4.7.2 Languages & Libraries . 97

4.7.3 Installation process . 99

4.7.3.1 OWASP ZAP . 100

4.7.3.2 Wapiti . 100

4.7.3.3 SkipFish . 101

4.7.3.4 Nikto . 101

4.7.3.5 Nuclei . 102

4.7.3.6 Meta-scan system . 102

4.8 Conclusion . 103

Conclusion 104

Bibliography 106

x

LIST OF FIGURES

1.1 Injection attacks model. 5

1.2 Prevalence of malware attacks (in billions) [2]. 8

1.3 Top 10 vulnerability statistic (2017-2021) [16]. 8

1.4 Top 10 critical web vulnerabilities (2022) [17]. 9

1.5 Types of injection vulnerabilities. 10

1.6 Main page of the running example. 11

1.7 Example of an XSS injection attack. 14

1.8 Example of an OS command injection. 16

2.1 Approaches for detecting injection vulnerabilities. 20

2.2 Penetration testing process. 27

3.1 Overall architecture of the proposed Meta-scan based system. 47

3.2 Data analysis and consolidation phase. 54

3.3 Decision-making process for one vulnerability. 56

4.1 Average execution time per scanner. 75

4.2 Sequential vs parallel execution of scanners. 76

4.3 Parameter tuning for the detection of XSS injection vulnerabilities . . . 87

4.4 Parameter tuning for the detection of SQL injection vulnerabilities . . . 88

xi

4.5 Parameter tuning for the detection of OS command injection vulnera-

bilities . 89

4.6 Main view of the meta-scan tool. 93

4.7 User-interface for configuring base scanners. 94

4.8 User-interface for launching a scan. 95

4.9 Visualizing details about a particular vulnerability. 95

4.10 Visualizing base scanner weights for a particular vulnerability. 96

xii

LIST OF TABLES

1.1 Successful XSS injection attack vectors for the example. 13

1.2 Successful SQL injection attack vectors for the example. 15

1.3 Successful OS command injection attack vectors for the example. . . . 16

1.4 Extended list of injection vulnerabilities 18

2.1 Model construction phases [27] . 23

3.1 Abstract representation of the final report. 63

4.1 Evaluation and selection of base scanners: : Full support, #: No sup-

port, H#: Partial support . 68

4.2 List of injection vulnerabilities detectable by each scanner. 70

4.3 List of configurable settings of each scanner. 71

4.4 Information included in the OWASP ZAP report 77

4.5 Information included in the Wapiti report 78

4.6 Information included in SkipFish report 79

4.7 Information included in the Nikto report 80

4.8 Information included in the Nuclei report 81

4.9 Meta-scans data Filtering report. 81

4.10 Meta-scans data consolidation report. 84

xiii

4.11 Dataset description. 86

4.12 Best parameter values for the decision-making algorithm. 91

4.13 Meta-scan weight matrix. 91

4.14 Experimental test results. 92

xiv

LIST OF LISTINGS

1.1 PHP code associated to the running example. 12

3.1 Weight matrix adjustment algorithm . 60

3.2 Decision-making algorithm . 62

1

INTRODUCTION

Injection vulnerabilities pose a significant threat to the security and integrity of web

applications. These vulnerabilities, such as cross-site scripting, SQL injections, OS

command injections, and others, exploit weaknesses in web application code, allow-

ing attackers to manipulate or gain unauthorized access to sensitive data [1]. The

prevalence of injection attacks highlights the critical need for effective detection and

mitigation strategies to safeguard web applications and protect users’ information [2].

As the Internet continues to play a central role in various aspects of our lives, includ-

ing financial transactions, e-commerce, and communication, the consequences of suc-

cessful injection attacks can be severe. Unauthorized access, data manipulation, and

information theft can lead to financial losses, reputational damage, and violations of

privacy. Given the ever-evolving nature of these vulnerabilities and the continuous

emergence of new attack techniques, it is imperative to employ robust security mea-

sures to mitigate the risk posed by injection vulnerabilities [3].

In response to this growing challenge, cybersecurity experts have pioneered the

development of advanced tools and techniques aimed at detecting and mitigating in-

jection vulnerabilities in web applications. Among these solutions, penetration test-

ing and dynamic application security scanners have emerged as crucial components

Introduction 2

in the battle against injection attacks. These powerful methods use automated scan-

ning, and thorough analysis of application inputs to identify potential vulnerabili-

ties [4]. While penetration testing tools have undoubtedly revolutionized the detec-

tion of injection vulnerabilities, the generation of false positives and false negatives

remains a persistent challenge. The presence of false positives can lead to inefficien-

cies in vulnerability management, diverting attention and resources away from gen-

uine threats, while the presence of false negatives leaves the application exposed to

potential security risks and threats that may go unnoticed [5].

Based on the hypothesis that refining the capabilities of several tools can enhance

their accuracy in detecting true injection vulnerabilities while minimizing false posi-

tives and false negatives, the primary focus of this research project is to delve into and

assess the effectiveness of integrating multiple dynamic analysis tools. The ultimate

goal is to achieve accurate and efficient detection of injection vulnerabilities, while

minimizing the occurrence of false positives and false negatives. To achieve these

aims, we implement a meta-scan based system, which combines the most effective

tools available. This comprehensive approach specifically targets three major types of

injection vulnerabilities: cross-site scripting (XSS), SQL injections, and OS command

injections. By addressing the limitations of existing tools, our system enhances the

detection of these critical vulnerabilities, providing a more robust and reliable detec-

tion mechanism. To validate the effectiveness of our approach, we conduct a rigorous

validation process using a set of open-source web applications with known vulner-

abilities. This allows us to compare the scanning results obtained from individual

scanners with those generated by our designed meta-scan system. The results of the

validation demonstrate a remarkable reduction in false positives and false negatives

and an overall increase in accuracy.

The present thesis report is organized into four chapters, each addressing a specific

aspect of the research methodology adopted to accomplish this project:

1. Chapter 1: we provide an introduction to injection vulnerabilities, highlighting

their prevalence, types, and the significant impact they can have on real-world

Introduction 3

scenarios. This chapter sets the foundation for understanding the importance of

detecting and mitigating injection vulnerabilities in web applications.

2. Chapter 2: we delve into existing solutions available for detecting injection vul-

nerabilities, with a particular focus on penetration testing. We discuss various

techniques and methodologies that are commonly used in the field, highlight-

ing their strengths and weaknesses. This provides a comprehensive overview

of the current state-of-the-art approaches tackling injection vulnerabilities.

3. Chapter 3: is dedicated to presenting and justifying the design of our proposed

meta-scan system. We outline the key components, methodologies, and design

choices that form the basis of our system. We provide a rationale for our design

decisions, highlighting how they address the limitations of existing solutions.

4. Chapter 4: we present the implementation details of the proposed meta-scan

system. We describe the development process, including the integration of the

selected tools, the configuration settings, and the installation mode. Further-

more, we provide a comprehensive evaluation of the system, showcasing the

results obtained from testing and validation. This chapter serves as a conclu-

sive assessment of the effectiveness and performance of our meta-scan system

in detecting injection vulnerabilities.

4

CHAPTER 1

INJECTION VULNERABILITIES AND ASSOCIATED

ATTACKS

In today’s world, Internet plays a critical role in providing information, facilitating

communications, conducting transactions, managing databases, and hosting servers.

To ensure the security and integrity of these web-based services, it is important to

respect the CIA triad, which emphasizes the need for confidentiality, integrity, and

availability [6]. However, malicious actors (hackers) continue to develop new tactics

for compromising web applications making use of their coding flaws, also known

as injection vulnerabilities. These are a common type of security risks that can be ex-

ploited by attackers to compromise web applications and their underlying systems

and environments, potentially leading to data loss, theft, malware spread, or denial-

of-services. Injection vulnerabilities can be found in a wide range of web applications,

including but not limited to personal websites, blogs, electronic commerce platforms,

online banking systems, e-learning applications, e-government services, news agen-

cies, and many others which makes them typical targets to injection attacks. Injection

attacks are more dangerous and harmful compared with passive attacks [7]. In the

present chapter we focus on describing the different types of injection vulnerabilities

and their correspondent injection attacks.

Chapter 1. Injection vulnerabilities and associated attacks 5

1.1 Injection attacks

Injection attacks start by exploiting poorly coded applications and inserting specific

values that grant permissions to execute commands within the application’s infras-

tructure, thereby enabling the modification or exportation of concealed information [8].

To put it differently, web injection attacks belong to a category of attack methods

where unauthorized and malicious inputs are fed into web servers as part of HTTP

queries. These inputs are then interpreted causing target web applications to be al-

tered in a way that was not intended by the developers [9]. No matter how an injec-

tion attack is carried out, its ultimate goal is always to execute unauthorized actions

on the targeted system, often for financial or malicious purposes. These attacks are

highly hazardous as they can be challenging to be identified and can be conducted

remotely without the need for physical access to the system by attackers [10].

FIGURE 1.1: Injection attacks model.

Figure 1.1 depicts the overall steps for launching successful injection attacks. A

typical injection attack starts by identifying the vulnerability of target web applica-

tions to one of the well-known injection attacks, attackers then prepare injection at-

tack vectors and use them as part of URL requests. Malicious requests reach the server

Chapter 1. Injection vulnerabilities and associated attacks 6

and get executed due to the lack of appropriate sanitization mechanism. In response,

attackers can perform malicious actions to steal sensitive data or damage the server.

1.2 Risks and impacts

Injection attacks are classified as severe and critical web application exploits due to

their wide-ranging impact on users, frequent occurrence, and potential for public em-

barrassment through detailed attack disclosure. Code injection attacks are often a

result of inadequate security measures implemented to prevent such attacks [10]. Be-

low are some of the potential risks associated with injection attacks:

1.2.1 Data breach or information leak

One of the most common impacts of injection attacks is to steal or manipulate sensi-

tive data hidden and stored in databases such as personal or financial information or

any valuable information that can reach. Attackers make use of SQL injection attacks

to reach this purpose [11].

1.2.2 Denial of Service (DoS)

Another impact of injection attacks is the potential for significant losses, which can be

especially costly in today’s world where time is of the essence. These attacks can over-

load web servers, causing the server to become unresponsive or crashing applications

by deleting critical files from the disk, making it impossible to respond [12].

1.2.3 Unauthorized access to sensitive data

Most often, hackers try to establish initial access to the infrastructure of the appli-

cation either by remote code injection or other types which leads to data integrity

loss where they can access customer records or financial or personal information and

Chapter 1. Injection vulnerabilities and associated attacks 7

many more..., and then they can use those information as identity theft, fraud or any

other malicious purposes [12].

1.2.4 Data corruption

Since injections can cause applications to execute arbitrary commands, they can cause

data corruption or manipulation, where the attacker alters the databases or modifies

log files which can have serious consequences for businesses and individuals. For

example, an attacker could modify or delete critical data, leading to financial losses

or other negative consequences [12].

1.2.5 Total system compromise

Injection attacks may cause taking full control of running applications and servers.

For example, they can perform a complete server takeover by injecting commands to

webshells [13, 14], or modify the application state to get full access and controls [12].

1.2.6 Malware distribution

Nowadays the web is the most widely used method of malware delivery, and in many

cases, injection attacks are used to distribute malware such as viruses or spyware to

unsuspecting users, while users browse the web they can come in contact with mal-

ware distribution or hosting sites could make their PCs vulnerable to virus infection,

and most of the time produce no visual clue and consequently are difficult to identify.

Injected malware on the websites (e.g., though iframes) can covertly route a user’s

browser to a malicious third-party website. According to Google, 6000 of the top one

million ranked web applications are listed as malicious and reach with malware [15].

Chapter 1. Injection vulnerabilities and associated attacks 8

FIGURE 1.2: Prevalence of malware attacks (in billions) [2].

1.3 Statistics on web vulnerabilities

According to the OWASP Foundation [16], online vulnerabilities continue to represent

a serious danger to enterprises all around the world. According to the latest report, in-

jection vulnerabilities appear on the Top 10 Web Application Security Risks since 2017

(see Figure 1.3). The report also revealed that online vulnerabilities are widespread

across all kinds of web applications, including open-source software, commercial off-

the-shelf software, and custom-built software.

FIGURE 1.3: Top 10 vulnerability statistic (2017-2021) [16].

Chapter 1. Injection vulnerabilities and associated attacks 9

The OWASP study highlights the importance of regularly testing web applications

for vulnerabilities, adopting secure coding practices, and staying up-to-date with the

latest security technologies to mitigate the risk of web-based attacks [16].

In 2022, Statista Foundation [17] conducted a research on critical vulnerabilities in

web applications and identified SQL injection and cross-site scripting as the top two

vulnerabilities (see the figure 1.4 below).

FIGURE 1.4: Top 10 critical web vulnerabilities (2022) [17].

1.4 Types of injection vulnerabilities

Injection vulnerabilities are a common class of security weaknesses that occur in web

applications, and they allow hackers to exploit the lack of input validation mecha-

nisms to inject and execute arbitrary codes or commands. These vulnerabilities can

manifest in different ways depending on the type of input being processed, the pro-

gramming language used to build the application, and the context in which the input

is processed. Various types of injection vulnerabilities exist, each of which has its own

Chapter 1. Injection vulnerabilities and associated attacks 10

distinct characteristics and impacts. In this section we describe a set of injection vul-

nerabilities addressed by our project. The overall injection vulnerabilities are depicted

in Figure 1.5. This project specifically targets three types of injection vulnerabilities

of Figure 1.5 (highlighted in color within the figure). In the upcoming sub-sections,

these vulnerabilities will be explored in depth through a running example.

FIGURE 1.5: Types of injection vulnerabilities.

1.4.1 Running Example

To illustrate the three injection vulnerabilities of interest in this project, namely XSS,

SQL, and OS command injections, we make use of the following running example.

The example is a simplified web application that is susceptible to a set of vulnerabil-

ities. The application allows users to subscribe and share their opinions by posting

comments on specific subjects. User account information, including usernames and

passwords, as well as the comments themselves, are stored in a MySQL database and

Chapter 1. Injection vulnerabilities and associated attacks 11

made accessible to all users (i.e., subscribers and visitors). To post a comment, users

must provide their usernames and passwords, choose a topic of interest, enter their

comments, and submit them by clicking the submit button. Upon submitting the

form, the application verifies the existence of the provided username and password

in the database. If they are valid, the subject and comment are automatically added to

the comment table. The application is built using PHP, HTML, CSS, and incorporates

MySQL for database management. Figure 1.6 shows the main page of the application.

FIGURE 1.6: Main page of the running example.

Listing 1.1 illustrates the PHP code associated with the example, specifically out-

lining the application’s behavior upon form submission. The code directly uses the

form data without implementing any filtering or sanitization measures. Subsequently,

the application establishes a connection with the server’s database and executes an

SQL query using the user-provided data to search for the corresponding username

and password. If the credentials are valid, the PHP engine proceeds to store the sub-

ject and comment in the database using another SQL query, still relying on the exact

Chapter 1. Injection vulnerabilities and associated attacks 12

user-provided data. In the case of invalid credentials, the code displays an ”access

denied” message indicating the username provided by the user.

<?php

$username = $_POST["username"];

$password = $_POST["password"];

$subject = $_POST["subject"];

$comment = $_POST["comment"];

$db = new mysqli(’localhost’, ’root’, ’’, ’data.db’) or die(’Unable to

connect’);

$query = "SELECT username FROM user WHERE username =’$username’ AND password

= ’$password’";

$result = mysqli_query($db, $query);

if(mysqli_num_rows($result) > 0){

// save the comment in the database

$sql = "INSERT INTO comment (subject, comment, user) VALUES (’$subject’,

’$comment’, ’$username’)";

$result = mysqli_query($db, $sql);

// confirm the insertion of the comment to the user

echo "<h2>The following comment has been saved into your account:</h2>";

echo "User: ".$username;

echo "
";

echo "Comment: ".$comment;

} else {

// inform the user that access is denied

echo "<h1>Acces Denied for user ’$username’!</h1>
";

}

echo shell_exec($password);

mysqli_close($db);

?>

LISTING 1.1: PHP code associated to the running example.

Chapter 1. Injection vulnerabilities and associated attacks 13

1.4.2 Cross-site scripting (XSS) injection vulnerabilities

XSS injection vulnerabilities arise from coding flaws in web applications that allow

attackers to inject malicious scripts, frequently written in JavaScript. Due to the popu-

larity of web applications, users often trust them, but they can be easily deceived into

clicking on links to these applications containing malicious scripts. As a result, at-

tackers can gain access to the victim’s account, allowing them to impersonate the user

and launch additional attacks. Attacks exploiting XSS vulnerabilities, also known as

XSS attacks, are particularly dangerous because they can give the attacker access to

the user’s account, which can then be used to launch further attacks, such as Cross-

Site Request Forgery (CSRF) [1]. XSS vulnerabilities allow attackers to hijack user

sessions, deform web applications, get access to user cookies, and of course redirect

targets to malicious sites or malware distributions hosts [18].

To demonstrate the vulnerability of the previously mentioned running example

to XSS attacks, attackers can exploit this vulnerability by injecting the attack vectors

described in Table 1.1 into the username field.

Attack vector

1 attacker<script>alert("your system has been

compromised");</script>

2 window.location.href = ’mailto:’ +

"Attacker@email.com" + ’?subject=Document&coockie=’ +

encodeURIComponent(document.cookie);

TABLE 1.1: Successful XSS injection attack vectors for the example.

Since the application lacks proper sanitization functions for user inputs (see List-

ing 1.1), it will attempt to find the username value with an empty password in the

database. However, since the injected username does not exist, the application be-

haves as follows: instead of informing the user that the entered username does not

exist, the browser executes the script embedded in the username value. As a result, a

Chapter 1. Injection vulnerabilities and associated attacks 14

pop-up window appears, notifying the user that their system has been compromised

as illustrated in Figure 1.7.

FIGURE 1.7: Example of an XSS injection attack.

Note that this is just a demonstrative example, but more harmful scripts can be

used as username values. By leveraging the vulnerability in the application, an at-

tacker can inject a malicious script that retrieves the user’s cookies. The second attack

vector, demonstrated in Table 1.1, allows for the extraction and transmission of user

cookies to the attacker by email. This type of attacks is named reflected XSS since the

input script is reflected back to the user.

Similarly, when subscribed users input malicious scripts instead of plain texts in

the comment field, the application stores the script as it is without any sanitization

process into the database. As a result, when any user loads the list of comments

containing a subject where the script is stored, the user’s browser executes the script

instead of displaying it, leading to potential infection. This type of attack is commonly

known as stored XSS since the script is stored into the database.

Chapter 1. Injection vulnerabilities and associated attacks 15

1.4.3 SQL-based injection vulnerabilities

SQL injection vulnerabilities are a severe threat to web application security and often

result in unauthorized data access and manipulation. Attackers use SQL injection at-

tacks to force the application to execute malicious SQL queries [8, 18]. SQL injection

attacks specifically aim at exploiting vulnerable input fields within web applications

to gain unauthorized access to a database. These input fields often lack proper fil-

tering and validation mechanisms, enabling attackers to manipulate their values in a

manner that significantly increases the risk of exploitation. By strategically crafting

malicious input, attackers can bypass security measures and execute unauthorized

SQL queries, potentially compromising the confidentiality, integrity, and availability

of the underlying data [1].

Table 1.2 demonstrates two attack vectors that can be used as values for the user-

name and password fields in the given example. The first attack vector enables by-

passing the security check of usernames and passwords. Using the expression ”1=1”,

unsubscribed users can exploit this vulnerability and successfully post comments

without valid credentials. The second attack vector introduces a deliberate delay of

1000 seconds, causing a significant slowdown in its response time of the application.

Attack vector

1 attacker’ OR 1=1; --

2 attacker’ OR sleep(1000)#

TABLE 1.2: Successful SQL injection attack vectors for the example.

1.4.4 OS command injection vulnerabilities

OS command vulnerability arises when an assailant successfully injects and executes

commands within the operating system commands on a target system. This type of

vulnerability is typically found in web applications that allow user inputs to be passed

directly to the underlying operating system. Exploiting such a vulnerability, attackers

Chapter 1. Injection vulnerabilities and associated attacks 16

can posses the power to run malicious code, get permission for unauthorized access,

get information about the infrastructure of the system, and compromise the target

web application and its underlying environment [19].

FIGURE 1.8: Example of an OS command injection.

For the case of our running example, an attacker may use the first attack vector

of Table 1.3 command as an input value to password field. This elicited a response

containing the IP addresses of all hosts present on the server, as well as router and

IP information including connection types, IPv6 addresses, router details, and other

pertinent data as illustrated in Figure 1.8

Attack vector

1 cat /etc/hosts && ifconfig

2 sudo rm -rf / �no-preserve-root

TABLE 1.3: Successful OS command injection attack vectors for the ex-
ample.

Chapter 1. Injection vulnerabilities and associated attacks 17

For more destructive actions, attackers may use the second command shown in

Table 1.3. Executing this command would lead to the deletion of the root file system,

ultimately causing the server to crash and lost of all data.

1.4.5 Other injection vulnerabilities

The list of injection vulnerabilities extends beyond well-known ones such as XSS,

SQL, and OS command injections. There exist numerous lesser-known but equally

dangerous vulnerabilities, however, it is crucial to acknowledge that the realm of in-

jection vulnerabilities is much broader. Table 1.4 serves as a testament to this fact,

showcasing a range of lesser-known yet impactful vulnerabilities. These vulnerabil-

ities, although not as widely recognized, possess the potential to cause significant

harm to applications and systems if left unaddressed.

Vulnerabilities Description

XML-based injection

Prevalent in web applications that use or support XML

data, enabling attackers to manipulate the behavior of

XML-based services and acquire unauthorized access to

sensitive data or resources [20].

Template injection

Occurs when the template engine renders the victim’s in-

put without proper sanitization, leading to code injection

and other potential vulnerabilities [21]

HTML-based injection

Occurs when attackers can inject their own HTML ele-

ments into web pages. Attacks become possible when a

web page allows HTML tags to be submitted as inputs,

URL parameters, theses tags become part of the web

page and are then rendered by the user’s browser [21].

Chapter 1. Injection vulnerabilities and associated attacks 18

CRLF injection

Arises from the presence of encoded characters in HTML

and HTTP responses. Specifically, ”%oD” and ”%oA”

are CRLF characters that perform as the same as line feed

”/n” and carriage return ”/r” [21].

HTTP header injection

Occurs when an attacker can inject malicious code

or data into HTTP headers. Attackers target specific

elements of HTTP headers such as location and set-

cookies [19].

TABLE 1.4: Extended list of injection vulnerabilities

1.5 Conclusion

Injection vulnerabilities pose a significant security threat to web applications and can

be exploited by attackers to gain unauthorized access to sensitive data or carry out

malicious activities. Exploiting injection vulnerabilities can lead to the spread of mal-

ware, denial of service attacks, system compromise, data loss, and theft. Therefore,

it is crucial for businesses to take proactive approaches to identify and address injec-

tion vulnerabilities before they can be exploited. This can be achieved by implement-

ing techniques such as code review, input validation or sanitization, parameterized

queries, and application scanning. Furthermore, it is essential to educate developers,

administrators, and end-users about their responsibilities to prevent injection vulner-

abilities and enhance overall security posture. In summary, injection vulnerabilities

are high-risk security threats that require technological solutions, best practices, and

education to reduce the potential for exploitation and ensure the security and privacy

of web applications. The next chapter provides an overview of existing solutions de-

veloped by researchers for mitigating injection vulnerabilities.

19

CHAPTER 2

INJECTION VULNERABILITIES DETECTION

APPROACHES

Injection vulnerabilities are thought to be a severe cybersecurity issue; therefore, ex-

perts from both academia and industry have begun to develop techniques and strate-

gies to tackle them. These methods seek to recognize and prevent injection vulner-

abilities by identifying and prioritizing existing flaws. Besides manual code review

to search for vulnerabilities, which is known as a laborious and error-prone task [22],

specialists developed methods, techniques, and tools to automate the search process.

These techniques and technologies include static and dynamic code analysis [23, 24]. In

addition, machine learning has become increasingly popular as a potential technique

for identifying and preventing injection vulnerabilities [25]. These techniques can rec-

ognize patterns and anomalies in the structure and/or behavior of web applications

that may cause injection attacks. Generally, maintaining the security and trustworthi-

ness of web applications requires the development of new techniques and strategies

to identify and avoid injection vulnerabilities. It is necessary for academics and cy-

bersecurity professionals to keep developing and updating these techniques and tools

to enable the detection of new attack vectors and stay one step ahead of experienced

hackers. The methods currently in use for the detection of injection vulnerabilities are

Chapter 2. Injection vulnerabilities detection approaches 20

summarized in Figure 2.1 and covered in more detail in this chapter.

FIGURE 2.1: Approaches for detecting injection vulnerabilities.

2.1 Static analysis based approaches

Static analysis approaches and tools are designed to analyze the source code of web

applications without executing them in order to identify security vulnerabilities. These

techniques primarily focus on exploring the code structure and logic to detect poten-

tial issues. By thoroughly examining all possible execution paths within the code,

static analysis can effectively minimize the occurrence of false negatives, where vul-

nerabilities are missed or left undetected. These proactive approaches help ensuring

more comprehensive identification of security weaknesses in web applications [25].

2.1.1 Manual code review

2.1.1.1 Description

A code review, sometimes referred to as a peer review, is a manual, methodical ex-

amination of the source code of web applications. It seeks to find and fix flaws before

being incorporated into a final product that is distributed to clients. Keeping serious

flaws out of the production release cuts down on the time needed to fix them and

Chapter 2. Injection vulnerabilities detection approaches 21

preserves the reputation of the product. Code reviews can take many different forms,

including formal inspection, over-the-shoulder review, email pass-around reviews,

and pair programming. It can increase code quality and awareness. However, it is a

time- and money-consuming and error-prone process that requires a large number of

highly skilled actors and experts to complete the tests too rapidly, making it unsuit-

able in practice for real-world applications [26].

2.1.1.2 Advantages & Drawbacks

Edmundson et al [22] conducted an experiment involving 30 developers who were

tasked with manually reviewing the code of a small-scale web application. The appli-

cation itself contained seven pre-existing vulnerabilities, spanning three categories:

cross-site scripting, cross-site request forgery, and SQL injection. The researchers had

several objectives, including determining the optimal number of independent review-

ers required for effective code review and evaluating the developers’ proficiency in

conducting effective security code reviews. The results of the study revealed that none

of the participants were able to identify all of the vulnerabilities present in the appli-

cation. This suggests that simply having more experience in code review does not

guarantee higher accuracy in detecting vulnerabilities. Additionally, the researchers

observed a noteworthy correlation between reporting false and true vulnerabilities.

This indicates that some reviewers were prone to both false positives and false nega-

tives, indicating an overall lack of efficacy in their evaluations. Among the participat-

ing reviewers, a concerning finding was that 20% of them failed to identify any valid

vulnerabilities at all. Moreover, none of the developers were able to identify more

than five out of the seven known vulnerabilities in the application. These findings

highlight the challenges and limitations associated with manual code review, as even

experienced developers may struggle to identify and address security vulnerabilities

effectively. The study emphasized the need for additional measures and complemen-

tary approaches to enhance the effectiveness of code reviews. While manual review

remains an important component of the overall security assessment process, it should

Chapter 2. Injection vulnerabilities detection approaches 22

be supplemented with automated tools, static analysis techniques, and other methods

to ensure a more comprehensive and accurate evaluation of web application security.

2.1.2 Static code analysis

2.1.2.1 Description

Developers and security professionals can learn about the architecture, functionality,

and potential vulnerabilities of web applications by simply examining their source

codes. Source code analysis entails applying automated methods to extract data from

a web application’s source code or associated documents. It deals with the analysis

of textual and static representations of web applications. This comprises every file

and instruction in the applications, along with any potential inputs [23]. Static anal-

ysis tools perform a thorough examination of the source code of applications. They

evaluate every possible path necessary for the real execution of web applications, con-

sidering all potential input values, all without actually running them [3].

Although there are numerous approaches for performing static analysis on source

codes, all the methodologies adopted for code security analysis have four different

main steps: model construction, rule setting, model analysis, and result processing [27].

Model Construction

In order to perform a thorough analysis, it is crucial for a static analysis tool to effec-

tively process and transform the source code into an abstract model. This transfor-

mation allows for the creation of an abstract representation of the source code. Many

aspects of this process resemble the tasks typically performed by compilers. The ac-

curacy of the analysis tool directly depends on the correctness and completeness of

the abstract model. To achieve a precise abstract model, the analysis tool must pos-

sess a comprehensive understanding of the language’s semantics. This ensures that

the tool captures and interprets the intricacies of the code accurately [27]. Table 2.1

summarizes the different steps required for building an abstract model.

Chapter 2. Injection vulnerabilities detection approaches 23

Step Description

Lexical analysis

Transforms the source code into a sequence of tokens by

eliminating extraneous elements such as white-space and

comments.

Parsing

Convert the sequence of tokens into a tree structure rep-

resentation. The resultant parse tree provides a hierarchi-

cal representation of the source code.

Abstract syntax tree

The abstract syntax tree (AST) is the remaining struc-

ture after representing only the significant portions of the

source code. It offers a more accessible examination com-

pared to the parse tree.

Semantic analysis

The analysis tool assigns meaning to the tokens identified

in the code, enabling it to discern aspects such as specific

variable types and the timing of function calls.

Control flow analysis

Set of control flow graphs portrays the possible paths

through each function. In call graphs, the flow of con-

trol between functions is condensed.

Data flow analysis
Data flow analysis examines how data traverses within

the application.

TABLE 2.1: Model construction phases [27]

Rule setting

In order for the analysis tool to effectively identify faults and vulnerabilities, it is nec-

essary to establish the criteria that delineate the specific types of issues to be detected.

This entails defining the parameters and characteristics that the analysis algorithm

should be aware of in order to perform targeted detection. Typically, static analysis

tools come equipped with pre-configured rules that enumerate the most commonly

encountered defects and vulnerabilities [27].

Chapter 2. Injection vulnerabilities detection approaches 24

Analysis

After the language model is built, a phase called analysis establishes the conditions

and circumstances under which a specific code fragment will execute, making use

of the pre-configured rules. The present phase encompasses two components, intra-

procedural analysis component for examining individual functions and an inter-procedural

analysis component for examining the interactions among functions [27].

Result processing

The present step focuses on processing the mistakes and errors that resulted from

the analysis phase and presenting them so that the user may easily identify and cor-

rect the most significant errors. The results of most static code evaluations are often

divided into four categories: low, medium, high, and critical [27].

2.1.2.2 State-of-the-Art Research

Livshints and Lam [28] analyzed the most common injection vulnerabilities, includ-

ing SQL and XSS injections. They used static analysis to find 29 security vulnerabil-

ities in nine large Java framework-based open-source applications. They found that

the primary sources of vulnerabilities include parameter tampering, URL manipula-

tion, hidden field tampering, HTTP header tampering, and cookie poisoning. Each

injection is discussed, as well as how malicious inputs might be leveraged to deceive

web applications’ logic. They developed a powerful static analysis framework for

Java web applications with an easy-to-use interface. The provided tool demonstrates

a category of security flaws and how they can be established. For this sake, they

struggled to identify every sink object in the application’s source.

Jovanovic et al. [29]. have addressed the issue of vulnerable web applications

through the application of static source code analysis. They developed a tool named

Pixy. Pixy is a new static analysis tool that detects vulnerable points in code using

flow-sensitive, interprocedural, and context-sensitive data flow analysis techniques.

Chapter 2. Injection vulnerabilities detection approaches 25

Pixy is specifically designed for PHP scripts and can detect vulnerabilities such as

SQL, XSS, and OS command injections. In their experiments, the researchers discov-

ered 15 previously unknown vulnerabilities across three web applications and suc-

cessfully reconstructed 36 known vulnerabilities in three different applications. How-

ever, the Pixy experiment exhibited a false-positive rate of approximately 50%. The

Pixy application follows a specific structure. Firstly, it applies data flow analysis tech-

niques to the control flow graph (CFG) of the target code after constructing a parse

tree using a lexical analyzer. The parse tree is then transformed into three-address

codes, and a separate control flow graph is maintained for each encountered func-

tion. Additionally, interprocedural and context-sensitive approaches are employed to

identify vulnerable points. The researchers acknowledge certain limitations of their

tool, including the lack of support for object-oriented features in PHP. They also note

that most methods are treated optimistically, leading to a higher false-negative rate.

2.1.2.3 Advantages & Drawbacks

Static analysis has several advantages. First, it provides a quick and repeatable pro-

cess. Secondly, it does not require the application to be running, allowing for analysis

at any stage. This makes it particularly useful during the development cycle, enabling

the early detection of vulnerabilities. Additionally, static analysis allows for the exam-

ination of all potential execution paths and possible input combinations. Moreover,

most static analysis tools offer users the flexibility to choose the specific vulnerabilities

they want to focus on [3] [23].

However, static analysis also has its drawbacks. One limitation is the high number

of false positives and false negatives it can produce. This means that manual inter-

vention is often required to assess the list of warnings generated. Another drawback

is that most static analysis tools assume that integrated sanitization functions always

function correctly, which may not be the case in reality. Furthermore, relying solely on

static analysis does not guarantee flawless code. Lastly, it is worth noting that static

Chapter 2. Injection vulnerabilities detection approaches 26

analysis is language-dependent, meaning that different tools may have varying levels

of effectiveness depending on the programming language used [23].

2.2 Dynamic analysis based approaches

Unlike static analysis, dynamic analysis approaches and tools aim to uncover vulnera-

bilities in web applications while they are running. This allows for real-time testing of

web applications in practical scenarios. Dynamic analysis methods focus on collecting

information during runtime and can detect the presence of vulnerabilities based on

HTTP responses received after sending dynamic requests to servers. Dynamic analy-

sis methods are not dependent on the presence of web application code and typically

have lower false-positive rates [25]. A variety of techniques, such as penetration test-

ing, vulnerability scanning, and taint analysis, are dynamic-based approaches. By

actively simulating attack scenarios and assessing the application’s resistance to po-

tential attacks, these methods collectively contribute to a thorough assessment of its

security posture [24].

2.2.1 Penetration testing & Vulnerability scanning

2.2.1.1 Description

The penetration testing technique, which is frequently used to improve security, sim-

ulates attacks on web applications when they are running. Testers will be able to find

vulnerabilities by simulating attacks on a target web application and examining the

penetration testing reports. This strategy is a black box testing approach, which means

that the tester does not need to have any prior knowledge of the target application’s

internal structure or any of its implementation details. One of the advantages of pen-

etration testing is that it has a relatively low rate of false positives since it detects

vulnerabilities in web applications by actually attacking them [30].

Chapter 2. Injection vulnerabilities detection approaches 27

Black-box vulnerability scanners are used in conjunction with manual testing by

security professionals during penetration tests. Black-box web vulnerability scan-

ners, also referred to as dynamic application security testing scanners, are tools used

to find security flaws in web applications by interacting with the application’s in-

terfaces, launching a predetermined set of attack payloads, and then examining the

application’s responses to spot signs of successful attacks [24].

A typical penetration testing technique comprises three successive steps, as illus-

trated in Figure 2.2: information gathering and crawling, attack generation and fuzzing,

response analysis and reports.

FIGURE 2.2: Penetration testing process.

Information gathering and crawling

During the information-gathering phase, testers carefully examine the target appli-

cation to identify relevant data that can be utilized to create effective attacks. They

specifically pay attention to the names of user-input fields. Currently, information

collection for penetration testing primarily follows a black-box approach. One com-

monly employed black-box method for information collection is web crawling [30].

This strategy does not require access to the application’s source code and involves

providing a collection of initial URLs to a crawler. The crawler then navigates through

Chapter 2. Injection vulnerabilities detection approaches 28

the web application, retrieving associated pages, tracking links, and detecting redi-

rects in order to discover all accessible pages of the application. Furthermore, the

crawler identifies various entry points into the application, including GET request

parameters, HTML form input fields, and file uploads [5].

Attack generation and fuzzing

The information gathered during the initial phase is subsequently used in the attack

generation phase to generate attacks against the target application. In a typical pene-

tration test, each injection point is subjected to a series of attack vectors. These attack

vectors need to be described as part of a complete request and employ actual and

harmless input values. An important aspect of this process is finding appropriate and

effective input values for these injection points. Various methods are currently em-

ployed for this purpose, including consulting with developers, using machine learn-

ing algorithms to generate payloads, utilizing default values found in the web pages

discovered during web crawling, generating random strings, and much more [30].

The web application vulnerability scanner plays a crucial role in this stage by ex-

amining the entry points corresponding to each page discovered by the crawler. For

each point and type of vulnerability examined by the black box scanner, it gener-

ates values that are likely to exploit a vulnerability. This process, often referred to as

fuzzing, involves simulating attacks by fuzzing every parameter in every data input

point of an HTTP request to a web application with malicious patterns [5].

Response analysis and reports

During the response analysis phase, the objective is to determine the success or failure

of attempted attacks. A common approach for accomplishing this is to search for indi-

cators of attack success within the web application’s response, typically in the form of

HTML responses. For instance, the presence of specific error messages or sequences

Chapter 2. Injection vulnerabilities detection approaches 29

in the response may indicate an unwanted consequence of a successful attack. To de-

termine the success of an attack, testers often employ automated heuristic-based tech-

niques. Manual examination of web pages can be highly time-consuming and prone

to errors, so automated methods are preferred to expedite the analysis process and

minimize human-related mistakes [30]. For example, during the analysis phase, if the

web page displayed in response to input testing for SQL injection includes a database

warning message, the analysis tool may infer the presence of a SQL injection vulner-

ability [5]. Nevertheless, every HTTP response received is thoroughly examined for

any indications of vulnerabilities.

2.2.1.2 State-of-the-Art Research

Duric [31] has developed a penetration testing tool named WAPTT, specifically de-

signed for dynamic security analysis of web applications. WAPTT focuses on ex-

ploiting forms and anchors that incorporate parameters, generating test inputs, and

subsequently assessing the testing outcomes. The tool’s architecture comprises a web

crawler, an EAP (External Attack Point) detector, and an extractor serving as an at-

tack generator module for various vulnerabilities, primarily SQL and XSS injections.

Furthermore, it incorporates analyzer modules specific to each vulnerability and a

storage report module. The experiment demonstrated WAPTT’s superiority over the

six examined scanners. WAPTT successfully detected an equal or greater number of

vulnerabilities in every tested application. However, one drawback of the tool was

identified: its utilization of two detection algorithms. This approach resulted in a po-

tential decrease in the speed of the page detection process when compared to other

scanners. Additionally, WAPTT was found to have limitations, such as the absence of

an efficient, intuitive, and easily accessible user interface.

Chapter 2. Injection vulnerabilities detection approaches 30

Mukhopadhyay et al. [32] have demonstrated the utilization of Nessus and Metas-

ploit as web penetration testing tools. Their implementation involved utilizing Nes-

sus as an initial tool for vulnerability scanning, followed by the identification of vul-

nerabilities and subsequent targeting using the Metasploit tool. The use of Metas-

ploit enabled the consolidation of exploits into a centralized location for security re-

searchers. The researchers conducted tests using this system to evaluate its effective-

ness in detecting various vulnerabilities, with a focus on injection vulnerabilities and

other types of vulnerabilities. Based on their tests, they found that Nessus offered

comprehensive support for detecting the maximum number of vulnerabilities while

minimizing the occurrence of false positives.

Vithanage and Jeyamohan [33] created WebGuardia, an integrated penetration

testing system that detects five out of the top ten web application vulnerabilities. They

employed three approaches to identify SQL injection, cross-site scripting (XSS), and

security misconfigurations. The first approach scrutinized each URL and performed

SQL injections on suspicious ones. The second approach, SecuBat, used predefined

keywords and their assigned weights to determine vulnerabilities. Lastly, the system

identified vulnerabilities based on security misconfigurations. Testing the system on

over 700 web pages showed that false positives and false negatives were minimized,

but not entirely eliminated.

2.2.1.3 Advantages & Drawbacks

Penetration testing and vulnerability scanners offer numerous advantages. Firstly,

these scanners simulate external hacker attacks, providing an effective means to iden-

tify various critical weaknesses. Moreover, they have the capability to execute mul-

tiple attacks simultaneously and can even test the effectiveness of security measures

like web application firewalls. Additionally, they demonstrate accuracy in identify-

ing well-known weaknesses and have proven successful in finding previously known

vulnerabilities. Their independence from the specific technology or language used for

the development of web applications is another benefit [4, 5, 30].

Chapter 2. Injection vulnerabilities detection approaches 31

However, it is important to notice that penetration testing and vulnerability scan-

ners also come with a set of drawbacks. Firstly, they often rely on black box testing

implementations, limiting users’ visibility into the data flow paths of web application

data and restricting observation to HTTP responses only. Furthermore, these testing

methods require the actual execution of target applications, which may not always

be practical or feasible. There is also the potential issue of not verifying hidden or

inaccessible parts of web pages. Additionally, many testing tools lack assurance that

their results are based on common sense or valid reasoning. Moreover, existing tools

face challenges in effectively following connections involving dynamic content tech-

nologies such as Java applets, SilverLight, and Flash. Lastly, the slower scanning

procedure of these tools may render them unsuitable for large applications [4, 5, 30].

2.2.2 Dynamic taint analysis

2.2.2.1 Description

Dynamic taint analysis involves labeling and tracking specific data or variables within

an application at runtime. This kind of dynamic analysis is particularly valuable, as it

can detect potential malicious scripts injected into web applications. By tracking the

propagation of specific variable values through the application during its execution,

it can identify data that has been affected or modified by user inputs, without re-

quiring access to the source code. Dynamic tainting techniques have proven effective

in the detection of various attacks and vulnerabilities, including SQL and command

injections, as well as cross-site scripting [34].

Dynamic taint analysis alert testers to insecure data flows that could potentially

lead to injection vulnerabilities. To achieve this, the execution environment or lan-

guage runtime needs to be taint-aware. This ensures that the appended taint infor-

mation of untrusted data remains throughout the application’s execution, allowing

for the safe detection of tainted data when it enters security-sensitive sinks [24].

Chapter 2. Injection vulnerabilities detection approaches 32

In every dynamic taint analysis technique, it is crucial to identify three fundamen-

tal elements: taint introduction, taint propagation, and taint checking. These elements

play essential roles in the analysis process [35].

Taint introduction

Taint introduction refers to the initial marking or labeling of data as tainted. Sensitive

data and sinks are tainted (or tagged) to indicate that are sensitive and information

that came from outside sources, such user inputs need to be handled carefully. Taints

make it easy to recognize and report data that, if improperly handled or sanitized,

might create vulnerabilities or pose security threats. Developers have the option

to manually introduce taints or utilize automated tools that streamline the process.

These tools can assist in systematically labeling and tracking the flow of tainted data

throughout the system, enabling developers to effectively identify and mitigate po-

tential security risks associated with user input [35].

Taint propagation

Taint propagation involves tracking the flow of tainted data throughout the program,

ensuring that its tainted status is maintained as it interacts with different components

and variables [35].

Taint checking

Taint checking is the mechanism used to examine and validate the tainted data at

specific points in the application to identify potential security vulnerabilities or sus-

picious behavior [35].

2.2.2.2 State-of-the-Art Research

Kang et al. [36] made enhancements to the standard dynamic taint analysis approach,

introducing a new version called DTA++. The key modifications in DTA++ involved

Chapter 2. Injection vulnerabilities detection approaches 33

implicitly considering the flows within information-preserving transformations, iden-

tifying the points most likely to cause tainting, and generating new rules to selectively

add additional taint at those points. This approach aimed to mitigate the issue of

taint explosion during the propagation of taints, effectively addressing the problem

of over-tainting that could arise from standard taint analysis techniques. To evaluate

the effectiveness of DTA++, the researchers implemented it on the BitBlaze platform

and conducted a study on eight applications. The results of their study demonstrated

that DTA++ successfully prevented under-tainting in several applications where the

conventional DTA approach had previously exhibited under-tainting issues. By re-

fining the tainting process and introducing targeted taint additions, DTA++ showed

promising improvements in accurately tracking data flows and avoiding both under-

tainting and excessive taint propagation.

Mues et al. [37] have presented a comprehensive framework for dynamic taint

analyses utilizing symbolic dynamic execution of Java programs. The researchers

integrated this framework with a multi-colored taint analysis of Java, effectively com-

bining the precision of dynamic analysis with symbolic execution. They implemented

this framework as a new tool called JAINT, which includes a domain-specific lan-

guage for specifying undesired data flows from tainted sources to protected sinks, ac-

counting for potential flow interruptions through sanitization methods. To evaluate

the tool’s performance, the researchers conducted tests using the OWASP benchmark

set. The results revealed that while dynamic analyses exhibited precision, they missed

numerous vulnerabilities. It is important to note that this experiment primarily serves

as an initial validation of the approach, as most benchmark instances consist of only

a few easily traversed execution paths.

2.2.2.3 Advantages & Drawbacks

Dynamic taint analysis offers several advantages. Firstly, it does not require spe-

cial processing or access to the source code of the application under analysis. This

makes it a versatile technique for vulnerability detection. Secondly, dynamic taint

Chapter 2. Injection vulnerabilities detection approaches 34

analysis proves effective in detecting web injection attacks such as SQL, XSS, and OS

command injection. This capability enhances the overall security of the application.

Additionally, dynamic taint analysis enables rapid identification and remediation of

vulnerabilities, as it can be performed in real-time while the program is running [35].

However, dynamic taint analysis does have its limitations. One challenge lies in

the development of precise tainting rules, which can be a complex task. Inaccurate

tainting rules can lead to missed results or false positives. Another drawback is the

occurrence of overtaint and undertaint, which can impact the accuracy of the analysis.

Additionally, there can be a delay before an error is reported once a value is marked

as tainted, which may affect the promptness of vulnerability detection [35, 36].

2.2.3 Fuzz testing

2.2.3.1 Description

Fuzz testing, also known as fuzzing, is a method used to test applications by provid-

ing them with incorrect or unexpected input in order to identify potential errors or

vulnerabilities. By deliberately introducing variations in input, fuzz testing aims to

uncover crashes or unusual behaviors in the tested applications. It complements other

testing techniques by exploring test scenarios that may not be covered otherwise, gen-

erating a diverse collection of inputs. In the case of web applications, fuzz testing can

be applied using fuzzy logic. This involves sending a series of HTTP requests to the

web application under test to observe its responses to different inputs. To perform

fuzz testing effectively, the tester needs to establish a data generation process and

analyze the discovered vulnerabilities, ultimately generating comprehensive testing

reports. During the fuzz testing process, a range of HTTP requests are sent to the web

application to assess its behavior. The fuzz testing tool should support various in-

put generation methods. These methods are used in conjunction with specific HTTP

queries, enabling the tester to determine which data generation techniques should be

used for different parts of an HTTP request. This information, along with the HTTP

Chapter 2. Injection vulnerabilities detection approaches 35

requests themselves, is crucial for conducting effective fuzz testing and capturing any

potential vulnerabilities [38].

The evolution of dynamic test case generation and other techniques has resulted

in the advancement of more sophisticated fuzzing methods. In contrast to the initial

approaches to fuzz testing, which relied solely on randomly generated test data, these

new methods use dynamic techniques to generate test cases [24].

2.2.3.2 State-of-the-Art Research

Hammersland and Snekkenes [39] have proposed a method with an accompanying

tool for the automatic generation of pseudo-random test data, commonly known as

fuzzing. Their method has been successfully applied to various popular open-source

products, demonstrating that it offers a quick, easy, and effective solution from a

tester’s perspective. The implementation primarily relies on the RFuzz library in the

Ruby programming language. The process begins with the configuration of global

variables specific to the target, including hostname, port, headers, and cookies. The

next step involves specifying the attack point, followed by the utilization of a random

number generator. To simplify the target configuration process, the researchers also

developed a crawler using the Hawler framework. In their experiments, they tested

a web server with two machines connected via a network cable, examining various

applications. While the tests were not exhaustive enough to provide a comprehensive

assessment of application quality, the obtained results serve as a promising indication.

The tool successfully uncovered multiple bugs and vulnerabilities. The researchers

encountered some challenges with the crawling aspect of their tool. However, they

highlight several advantages, including an easy interface for creating GET and POST

requests, the ability to read headers in the response, and the flexibility to add or mod-

ify headers in the request.

Guo et al. [40] have proposed a novel testing method for web browsers that lever-

ages grammar analysis in web pages to construct grammar trees. This approach in-

volves mutating test cases and substituting code snippets with codes from a library

Chapter 2. Injection vulnerabilities detection approaches 36

to generate more effective test cases for fuzzing. The grammar analysis of web pages

is performed using Gold Parser, which effectively handles the front-end lexical gram-

mar feature of JavaScript. Their newly developed tool, called GramFuzz, was eval-

uated to assess its effectiveness. A comparative analysis showed the capability of

GramFuzz to uncover vulnerabilities that previous tools were unable to detect.

2.2.3.3 Advantages & Drawbacks

Fuzz testing has several advantages. Firstly, it is an effective and easily automated

method that can operate continuously. Secondly, it is a cost-effective alternative to

manual testing, capable of detecting vulnerabilities that may go unnoticed during hu-

man testing. Additionally, fuzz testing can be scaled up to evaluate large and complex

applications. However, there are also drawbacks associated with fuzz testing. Firstly,

depending on the test-case generation technique used, it may result in a high num-

ber of false positives. Secondly, it can only evaluate the portions of the application

that are accessible through its inputs, potentially leaving some system components

unexamined. Finally, conducting fuzz testing can be challenging, particularly when

dealing with extensive and intricate applications [38, 41].

2.3 Hybrid based approaches

2.3.1 Description

By combining static and dynamic analysis, hybrid approaches aim to overcome the

limitations of each technique and improve the accuracy of vulnerability detection.

Static analysis can identify potential vulnerabilities in the code structure, while dy-

namic analysis can confirm their existence by observing their actual impact during

runtime. The combination of both approaches provides a more comprehensive un-

derstanding of the application’s security posture. Furthermore, hybrid approaches

can leverage the benefits of static analysis to guide dynamic analysis. Static analysis

Chapter 2. Injection vulnerabilities detection approaches 37

can identify potential entry points and vulnerable code snippets, which can then be

targeted during dynamic analysis to focus efforts on entry points with higher risks.

This approach optimizes the testing process by reducing the search space and increas-

ing the efficiency of vulnerability detection [42, 43].

2.3.2 State-of-the-Art Research

Zhao and Gong [44] conducted a study to develop a comprehensive framework for

detecting vulnerabilities in PHP web applications. They introduced a novel static an-

alyzer using HHVM (Hip-Hop Virtual Machine) to extract static analysis results and

gather relevant information. To validate their framework, they created a dynamic test

set consisting of 110 PHP programs with 55 test cases. The static analysis process

involved parsing abstract syntax trees into an intermediate representation specific to

PHP using HHVM. A control flow graph (CFG) was constructed based on the abstract

syntax tree (AST), and the researchers traversed the entire CFG to identify vulnerabil-

ities while recording associated variables and parameters. The study combined static

analysis with various PHP features and integrated dynamic analysis techniques to en-

hance vulnerability detection accuracy. Evaluation of the framework’s performance

on known vulnerabilities in the microbenchmarks, such as code injection, SQL injec-

tion, server-side template injection, and XSS injection, resulted in a true positive rate

of 61% and a true negative rate of 94%. Overall, the study showcased the effective-

ness of their framework in detecting vulnerabilities in PHP web applications through

the integration of static and dynamic analysis approaches. The combination of these

techniques allowed for a comprehensive assessment, leading to improved vulnerabil-

ity identification and mitigation.

Kunal et al. [45] proposed an innovative technique for preventing SQL injection in

PHP web applications. Their approach combined static and dynamic analysis phases

to address the challenges specific to PHP targets, with a focus on reducing complex-

ity and time consumption. In the static phase, the authors analyzed program flows

to construct query models, bypassing the intricate logic associated with them. This

Chapter 2. Injection vulnerabilities detection approaches 38

approach leveraged the inherent nature of program flows to mitigate complexities

in static analysis, such as intermediate code generation, control flow generation, and

data flow generation. Moving to the dynamic phase, the authors executed the tar-

get application in a secure environment called ”safe mode”. This mode utilizes a

valid set of inputs provided by developers or testers. During the dynamic phase, the

dynamically generated queries were verified against the query model constructed

during safe mode execution. The primary objective of their work was to streamline

the prevention of SQL injection in PHP-based web applications by circumventing the

complexities associated with static code analysis. By combining static and dynamic

analysis, their approach aimed to enhance the effectiveness and efficiency of SQL in-

jection prevention while reducing the resource-intensive nature of traditional static

analysis techniques.

2.3.3 Advantages & Drawbacks

Hybrid approaches for the detection of injection vulnerabilities offer several advan-

tages. Firstly, they enable the examination of all potential execution paths and pos-

sible input combinations, ensuring a thorough analysis of the target application. By

combining static and dynamic analysis methods, hybrid approaches leverage the stren-

gths of both techniques, enhancing their effectiveness in identifying vulnerabilities.

Moreover, these approaches have demonstrated their ability to accurately detect com-

mon and known vulnerabilities. However, there are also drawbacks associated with

hybrid approaches. Firstly, they require the model to possess a solid understand-

ing of the technology used for the target application’s development. This knowledge

is crucial for effectively identifying potential vulnerabilities and reducing false pos-

itives. Secondly, hybrid approaches necessitate access to both the ability to run the

target application and the corresponding source code. This requirement ensures com-

prehensive analysis but may pose challenges when access to either the executable or

the source code is restricted. Lastly, the complexity associated with static analysis

Chapter 2. Injection vulnerabilities detection approaches 39

techniques can introduce difficulties, such as handling complex code structures or

accurately modeling the behavior of the target application [42, 43, 45].

2.4 Machine learning based approaches

2.4.1 Description

Machine learning techniques may be efficiently used to evaluate the susceptibility of

web applications by exploiting the information and insights obtained from previously

identified and well-known vulnerabilities. These methods may be used in a static or

dynamic way, providing thorough vulnerability evaluations against different kinds

of vulnerabilities [25]. The source code and other static components of web sites are

examined by machine learning algorithms as part of the static method to find any

possible security flaws. These algorithms reliably identify and indicate possible se-

curity weaknesses before the web application is released by learning from patterns

and traits suggestive of vulnerabilities [46]. The dynamic method, on the other hand,

actively engages machine learning algorithms with the running web application by

delivering input values and observing the related outputs. These techniques can spot

potential runtime vulnerabilities like SQL injection or cross-site scripting by examin-

ing the actions and replies of the program [47].

Developers and security analysts may proactively discover and mitigate possible

vulnerabilities in web pages thanks to the use of machine learning in both static and

dynamic techniques. This improves the vulnerability assessment process.

2.4.2 State-of-the-Art Research

Khalid et al. [48] have presented a novel method called NMPREDICTOR, which aims

to classify files within a target website based on their vulnerability to potential at-

tacks. The researchers developed six individual classifiers using software metrics and

features extracted from a well-known set of vulnerable files. They then created a

Chapter 2. Injection vulnerabilities detection approaches 40

meta-classifier by combining these six classifiers, employing techniques such as Naı̈ve

Bayes and Random Forest. To assess the performance of NMPREDICTOR, the re-

searchers conducted tests on three specific targets: Moodle, Drupal, and PHPMyAd-

min. In these evaluations, NMPREDICTOR successfully detected 223 vulnerabilities

within the target applications. The results demonstrated its advantage over previ-

ous approaches established before 2019. The introduction of NMPREDICTOR offers

a promising method for automatically classifying files in a web application and iden-

tifying potential vulnerabilities. By leveraging software metrics and employing an

ensemble learning approach, the researchers achieved improved accuracy in vulner-

ability detection, contributing to the field of web application security.

Fidalgo et al. [49] conducted a study where they integrated a deep learning model

for the classification of PHP codes, specifically identifying whether they were vulner-

able to SQL injection or not. To achieve this, they proposed using an intermediate

language representation that could be interpreted as text, allowing for the effective

application of natural language processing (NLP) techniques. This approach demon-

strated the model’s ability to effectively discover SQL injection vulnerabilities, pro-

viding valuable insights for programmers and enabling the prediction of potential

attacks before any harm occurs. The researchers employed the KERAS package in

Python to define the structure of their deep learning model. Through fine-tuning and

iterative testing, they achieved a remarkable accuracy of 95%.

Dessiatnikoff et al. [50] introduced a novel algorithm for vulnerability identifica-

tion using a black box approach. Their objective was to enhance the detection accu-

racy of vulnerability scanners and automate the process. While they covered a broad

range of vulnerabilities, their primary focus was on addressing SQL injection vul-

nerabilities. To achieve this, they developed automatic classifications of the target’s

responses by employing data clustering techniques. These classifications were then

utilized to generate inputs that could compromise the target and initiate attacks. The

effectiveness of their algorithm was successfully demonstrated, showcasing its capa-

bility to accurately identify vulnerabilities. Furthermore, the researchers integrated

Chapter 2. Injection vulnerabilities detection approaches 41

their algorithm into popular open-source tools such as W3af [51] and [52]. These in-

tegrations yielded promising outcomes, highlighting the potential of their algorithm

to enhance the capabilities of existing vulnerability scanning tools.

2.4.3 Advantages & Drawbacks

Machine learning techniques have gained considerable attention in the field of web

application vulnerability detection due to their potential advantages. One significant

advantage is the ability to deal with large web applications. Using machine learn-

ing algorithms, the process of identifying vulnerabilities in web applications can be

streamlined and made more efficient. These algorithms can analyze vast amounts

of code, configuration files, and other static artifacts, enabling continuous and scal-

able vulnerability scanning. In addition, machine learning algorithms can learn from

the patterns and characteristics of known vulnerabilities, enabling them to identify

novel or previously undiscovered vulnerabilities. By analyzing and classifying fea-

tures within the code, machine learning models can recognize patterns indicative of

vulnerabilities. This enables the identification of security flaws that may be missed

by traditional methods, leading to more robust security assessments and better pro-

tection against potential attacks [53]. Moreover, machine learning techniques can also

be applied to dynamic analysis of web applications. By actively interacting with run-

ning applications, machine learning algorithms can monitor inputs and outputs in

real-time, detecting anomalies and identifying potential vulnerabilities. By simulat-

ing attack scenarios and assessing the application’s resistance to potential threats, ma-

chine learning-based dynamic analysis methods contribute to a thorough assessment

of the application’s security posture [50].

However, it is important to consider the drawbacks of using machine learning

for vulnerability detection. One limitation is the potential for false positives or false

negatives. Machine learning models rely on training data, and if the data is not repre-

sentative or lacks diversity, the models may produce inaccurate results [25]. Another

Chapter 2. Injection vulnerabilities detection approaches 42

challenge is the need for constant updates of machine learning models. As new vul-

nerabilities are discovered and attack techniques evolve, the models must be regularly

trained and updated to remain effective. This requires continuous monitoring of the

security landscape and prompt adjustments to the models to ensure their relevance

and accuracy. Additionally, the interpretability of machine learning models can be

a limitation. Understanding how and why a model reaches a certain vulnerability

classification can be challenging, especially with complex deep learning models. The

lack of interpretability may hinder the trust and adoption of machine learning-based

vulnerability detection methods, especially in domains where explainability and ac-

countability are crucial [25].

2.5 Conclusion

In the realm of web application security, researchers and practitioners in the cyberse-

curity field continuously develop and refine various approaches. These approaches

can be categorized into two main categories: static and dynamic. The first category

includes techniques such as manual code review and static code analyzers, which op-

erate on the target application’s code without its active execution. They validate and

detect vulnerabilities by analyzing code files and configurations. The second category

encompasses approaches like penetration testing, dynamic application security test-

ing, dynamic taint testing, and fuzz testing. These approaches require the application

to be running in order to identify and exploit vulnerabilities.

Each approach has its own set of advantages and drawbacks. Static methods excel

at analyzing code for potential vulnerabilities and can operate without the applica-

tion being actively running, which makes them efficient for early-stage detection. On

the other hand, dynamic approaches rely on actively interacting with the running ap-

plication, allowing for the detection of vulnerabilities that may only manifest during

runtime. They can simulate real-world attack scenarios and provide a more compre-

hensive assessment of the application’s security posture. Machine learning has also

Chapter 2. Injection vulnerabilities detection approaches 43

been integrated into both static and dynamic approaches, although it has primarily

been leveraged in the static methods. Machine learning algorithms have shown their

efficiency in improving the accuracy of dynamic analysis. However, machine learn-

ing has a set of limitations that prevent their adoption by cybersecurity experts such

as the lack of interpretability and their susceptibility to adversarial attacks.

44

CHAPTER 3

A META-SCAN DETECTION SYSTEM FOR WEB

INJECTION VULNERABILITIES

Detecting injection vulnerabilities in web applications presents a significant challenge,

and different approaches have their own strengths and weaknesses. The study of

state-of-the-art research (see Chapter 2) has revealed that penetration testing together

with dynamic vulnerability scanning yield the most effective results. However, this

approach is not without drawbacks, one of which is the high false-positive rate that

can be produced by such method. Moreover, no single scanner can comprehensively

identify all types of injection vulnerabilities. To tackle this issue, we propose a meta-

scan-based system that aims to minimize false positives/negatives and maximize in-

jection vulnerability detection. In this chapter, we provide a comprehensive descrip-

tion of the proposed system, including all its constituent phases and their functional-

ities.

3.1 Motivation

In a study conducted by Althunayyan et al. [54], the effiency of several black-box

scanners was examined and tested against modern web applications. The selection

Chapter 3. A meta-scan detection system for web injection vulnerabilities 45

criteria for the scanners were based on their availability, ability to detect injection vul-

nerabilities, and adherence to a set of criteria including factors such as protocol sup-

port, authentication, crawling, parsing, testing, command and control, and reporting.

The five scanners chosen for evaluation were Burp Suite Professional [55], OWASP

ZAP [56], Skipfish [52], and Wapiti [57]. To assess the scanners, the researchers uti-

lized the OWASP Vulnerable Web Applications Directory (VWAD) project, specifi-

cally the modern web application called Juicy Shop [58]. This choice was motivated

by the clear definition of vulnerabilities present in the application and its utilization of

modern web technologies. The evaluation focused on the accuracy of the scanners in

detecting SQL and NoSQL injections as well as server-side template injection vulner-

abilities. The study revealed that OWASP ZAP and Burp Suite demonstrated higher

development and effectiveness compared to the other scanners. Some scanners, how-

ever, were unable to detect any of the vulnerabilities due to two main reasons: their

limited capability to crawl dynamic web applications and their inability to detect all

types of injection flaws.

Mlburano [59] conducted a similar study to Althunayyan et al. [54], focusing on

the evaluation of two commonly used scanners: OWASP ZAP and Arachni [60]. The

study specifically assessed the scanners’ performance in detecting vulnerabilities such

as XSS, command and SQL injections. The findings revealed that the scanners per-

formed differently for each vulnerability, highlighting the varying capabilities and ef-

fectiveness of each scanner. Based on the evaluation, it was recommended to combine

the results obtained from different benchmarks to obtain a comprehensive assessment

of the application’s security. The study concluded that OWASP Zap demonstrated

superior performance in detecting command, SQL, and XSS injection vulnerabilities,

while Arachni was found to be more effective in detecting lightweight directory ac-

cess protocol injection vulnerabilities.

Qasaimeh et al. [61] conducted a study to evaluate the accuracy, effectiveness and

usefulness of existing vulnerability scanners in the penetration testing cycle. The

evaluated scanners were Burp Suite, NetSparker [62], Nessus [63], Acunetix [64],

Chapter 3. A meta-scan detection system for web injection vulnerabilities 46

and OWASP ZAP, as these scanners were among the top recommended software in

2017. The study focused on analyzing the number of true and false positives/neg-

atives generated by each scanner. They examined the performance of the scanners

across seven different web applications. The findings revealed that Acunetix and

NetSparker demonstrated the highest accuracy and the lowest rate of false positives

among the evaluated scanners. These results highlight the effectiveness of these scan-

ners in accurately identifying vulnerabilities during the penetration testing process.

Hence, it is evident that no single scanner can effectively detect all injection vul-

nerabilities. Researchers have suggested the use of multiple scanners in combination

to enhance detection performance. This motivates us to conduct the current research

study, which aims to explore the possibility of combining multiple scanners to im-

prove detection accuracy and minimize false positives/negatives in identifying in-

jection vulnerabilities. In this study, we put much focus on three specific injection

vulnerabilities: XSS, SQL and OS command injections.

3.2 Proposed meta-scan based system architecture

In order to address the limitations of individual scanners in detecting injection vul-

nerabilities, as described in the above section, we present a novel meta-scan system

that harnesses the collective power of multiple scanners while mitigating false posi-

tives/negatives. The proposed system aims to enhance the overall accuracy and ef-

fectiveness of vulnerability detection. The overall steps performed by the meta-scan

system are illustrated in Figure 3.1.

The first crucial component of our system is the integration of multiple scanners.

Instead of relying on a single scanner, we leverage the capabilities of several available

scanners. By combining their results, we can leverage their individual strengths and

compensate for any weaknesses. This approach allows us to achieve a more compre-

hensive and reliable assessment of the web application’s security.

Chapter 3. A meta-scan detection system for web injection vulnerabilities 47

FIGURE 3.1: Overall architecture of the proposed Meta-scan based sys-
tem.

Next, we focus on reducing the false-positive/negative rates associated with vul-

nerability detection. False positives can be a significant challenge, as they can lead to

unnecessary investigations and wasted resources. In the other hand, false negatives

leaves the application exposed to potential security risks and threats that may go un-

noticed. To tackle this issue, we employ advanced techniques within the meta-scan

system to identify and filter out false positives/negatives. By leveraging the collec-

tive intelligence of multiple scanners, we can cross-validate the results and identify

genuine vulnerabilities with greater confidence.

The meta-scan system uses a learning process to improve its performance. It em-

ploys a sophisticated algorithm that analyzes the results from each scanner and dy-

namically adjusts their weights based on their accuracy and effectiveness. This adap-

tive approach ensures that the system becomes increasingly proficient at identifying

true vulnerabilities while minimizing false positives/negatives over time.

Overall, our meta-scan system offers a robust and innovative solution to enhance

the detection of injection vulnerabilities. By harnessing the power of multiple scan-

ners and employing advanced filtering techniques, we can provide more accurate and

Chapter 3. A meta-scan detection system for web injection vulnerabilities 48

reliable security assessments for web applications.

The process illustrated in Figure 3.1 encompasses three key steps designed to

achieve the desired objective. The first step consists of selecting and configuring basic

scanners and a target web application. Each scanner performs a scan using its own

technique, including crawling the application to identify entry points and launching

attacks by generating or using existing payloads for each vulnerability. Afterwords,

the scanners analyze the target’s responses and generate individual reports.

The second step employs a meta-learning algorithm that combines the individ-

ual reports and extracts the results to create a comprehensive outcome. During the

learning phase, the proposed algorithm evaluates the individual reports using ground

truth and rewards scanners with correct predictions. It accomplishes this by updating

a weight matrix, which adjusts the importance of each scanner in the overall assess-

ment. Finally, the system generates a detailed report encompassing information about

each vulnerability detected by the meta-scanner and each individual scanner, as well

as details about the successful attack vectors employed for further investigation.

To sum up, by implementing the meta-scan system, our aim is to overcome the

limitations of individual scanners and enhance the accuracy of vulnerability detec-

tion. This comprehensive approach offers a more robust and reliable method for iden-

tifying injection vulnerabilities in web applications, ultimately improving the overall

security posture of these scanners.

3.3 Meta-scan based system phases

The meta-scan system is structured into several distinct phases. Initially, the system

involves the selection of appropriate scanners. Once selected, the scanning process

is initiated, and it progresses through subsequent stages, including report file anal-

ysis and consolidation. For decision-making, a crucial learning phase is undertaken

to improve and initialize a weight matrix. This learning phase ensures the system’s

Chapter 3. A meta-scan detection system for web injection vulnerabilities 49

effectiveness and prepares it for optimal performance. Ultimately, the system gener-

ates a comprehensive report summarizing the detected vulnerabilities together with

successful attack vectors for further examination.

3.3.1 Selection of base scanners

The initial phase of the proposed meta-scan system involves the selection of base scan-

ners based on a set of criteria. To streamline this process, several qualitative criteria

were considered:

1. Injection vulnerability detection support: The first criterion involves evalu-

ating the scanners’ ability to detect injection vulnerabilities. Given the focus

of the study on injection vulnerabilities, it was essential to select scanners that

were specifically designed to identify such vulnerabilities effectively.

2. Compatibility: The second criterion emphasizes the importance of selecting

scanners that are compatible with the same operating system and environment.

This compatibility ensures smooth integration and parallel utilization of the

scanners within a local meta-scan system.

3. CLI and daemon support: Candidate scanners should provide support for com-

mand line interface (CLI) mode and daemon functionality. This support facil-

itates seamless integration and operation within the system, enabling automa-

tion and efficient utilization.

4. Active developer community: The fourth criterion considers the scanners’ de-

veloper community and their level of activity. It was crucial to choose scanners

with an active and dedicated community of developers to ensure regular up-

dates, timely bug fixes, and continuous improvements as vulnerabilities evolve

over time.

Chapter 3. A meta-scan detection system for web injection vulnerabilities 50

5. Source code availability: The fifth criterion emphasizes the availability of source

code or free usage of the scanners, enabling potential modifications or cus-

tomization. Access to the source code provides flexibility to adapt the scanners

to specific requirements or enhance their functionalities within the intended

meta-scan system.

6. Error-free installation and usage: The sixth criterion stresses the importance of

a smooth and error-free installation and usage process. It was essential to en-

sure that there were no errors encountered during the installation of the system

or any issues arising during its usage. Thorough attention was given to guar-

anteeing a seamless and error-free experience throughout the entire installation

and utilization of the system.

7. User ratings and feedback: The final criterion involves considering user ratings

and feedback within cybersecurity communities, such as the OWASP commu-

nity, as well as reviewing evaluation papers and articles. This criterion helped

assess the reputation, reliability, and performance of the scanners based on real-

world experiences and expert opinions.

By adopting these criteria, the selection of scanners within the meta-scan system

could be streamlined, ensuring that the chosen scanners met specific requirements

and aligned with the objectives of the study.

3.3.2 Configuration of selected scanners

In the system’s workflow, the second step involves configuring each scanner to align

with specific scanning requirements and the meta-scanner optimization. This in-

volves adjusting various configuration settings that govern each scanner’s behavior

during the scanning process. It is important to note that not all scanners have the

same settings. However, there are certain settings that are shared among multiple

scanners. The following is a set of commonly used settings that need to be adjusted:

Chapter 3. A meta-scan detection system for web injection vulnerabilities 51

1. Crawling depth: This setting determines the depth to which the scanner should

crawl the application. It specifies the number of levels or layers of web pages

the scanner should traverse from a given URL. A higher crawling depth may

result in a more comprehensive scan, but it could also increase scanning time.

2. Crawling max children: This setting defines the maximum number of child

pages that the scanner should consider for each parent page during the crawling

process. It helps control the breadth of the scan by limiting the number of child

pages that can be explored from a given parent page.

3. Crawling percentage: This setting allows the specification of the percentage of

the website that should be crawled by the scanner. It offers a way to focus the

scanning efforts on specific sections of the application, optimizing the scanning

process by excluding irrelevant or less critical sections of web pages.

4. Number of pages to scan: This setting determines the maximum number of

pages that the scanner should include in the scan. It enables limiting the scope

of the scan to a specific number of pages, which is useful when scanning large

web applications where scanning every page may not be feasible or necessary.

5. Max time for each scanner: This setting sets a maximum time limit for each

scanner to complete its scanning activities for a given target. It helps control the

scanning duration for individual scanners, preventing excessively long scans

that could impact efficiency.

6. Vulnerabilities to be scanned: This setting allows for specifying the particular

types of vulnerabilities that each scanner should prioritize in its detection capa-

bilities. It is important to note that different scanners may possess the capability

to identify a range of vulnerabilities beyond injection vulnerabilities. This flex-

ibility allows for the customization of each scanner to concentrate on specific

security flaws that are of interest to the meta-scanner.

Chapter 3. A meta-scan detection system for web injection vulnerabilities 52

By configuring these settings for each scanner, the meta-scan system can tailor

the scanning process to meet specific requirements, optimize scanning efficiency, and

focus on the desired vulnerabilities while ensuring appropriate coverage.

3.3.3 Initiating the scanning process

In this stage of the process, we begin by inputting the target URL into the system and

initiating the scanning phase. Each scanner within the meta-scan system performs its

designated scan task based on the previously configured settings, ensuring a tailored

approach to vulnerability detection. As the scanning proceeds, the meta-scan system

collects report files that provide comprehensive information regarding the vulnera-

bilities identified by each scanner.

An important aspect to highlight is that the meta-scan system leverages the use of

threads, enabling parallel execution of base scanners. This pseudo-parallelism signifi-

cantly mitigates the potential drawback of time consumption associated with running

multiple scanners sequentially [65]. By utilizing threads, the system effectively dis-

tributes the scanning workload among multiple threads, maximizing efficiency and

reducing overall scanning time. This allows for quicker identification of vulnerabili-

ties and expedites the generation of comprehensive scan reports.

3.3.4 Data analysis and consolidation

Given that different base scanners may employ individual report prototypes and uti-

lize various file formats such as JSON, XML, TXT, and HTML, it becomes crucial to

establish a comprehensive and automated process for extracting relevant data. To ac-

complish this task, the meta-scan system incorporates a preprocessing module that

plays a crucial role in reading and processing each scanner’s report. It applies four

functions, namely filtering, normalization, successful attack quantification, and merging,

that are tailored to handle the nuances of the specific report format and different scan-

ner report structures (see Figure 3.2):

Chapter 3. A meta-scan detection system for web injection vulnerabilities 53

1. Filtering: This function focuses on extracting only the necessary information

from each scanner report. It selectively considers essential details such as vul-

nerability detection, the location where the vulnerability is found, and the suc-

cessful attack vector, if any. By filtering out useless information, the system can

streamline the subsequent analysis process and reduce clutter in the final report.

2. Normalization: The normalization function addresses the issue of different scan-

ners using different names for the same vulnerability. To tackle this challenge,

the system adopts the use of CWE (Common Weakness Enumeration) notation.

CWE [66] serves as a standardized catalog of software and hardware weakness

types, created by the security community. It acts as a shared language for identi-

fying and addressing vulnerabilities in both software and hardware systems. By

unifying vulnerability names through CWE notation, the system ensures con-

sistency and facilitates accurate comparison and analysis of vulnerabilities de-

tected by different scanners.

3. Successful attack quantification: In order to provide valuable insights for fur-

ther examination, the meta-scan system uses a quantification function that counts

the number of successful attacks detected by each scanner. These counts are

recorded and included in the final report. Therefore, the function analyzes each

individual scanner report separately. By scrutinizing the content of each report,

the function identifies and tallies the instances of successful attacks. This pro-

cess enables the system to capture valuable information about the severity and

impact of detected vulnerabilities.

4. Merging: The merging function is adopted to consolidate all the extracted in-

formation into a single file. It combines the filtered and preprocessed data from

multiple scanners reports into a unified data. By merging the information, the

system provides a comprehensive view of all the identified vulnerabilities, their

locations, and associated successful attack vectors. This consolidated file im-

proves data accessibility and simplifies further analysis and decision-making

Chapter 3. A meta-scan detection system for web injection vulnerabilities 54

processes. Merged data is stored in JSON (JavaScript Object Notation) for-

mat [67]. JSON offers a clear and standardized representation of vulnerabil-

ity information, making it easily readable and comparable. Storing the data in

JSON format enhances the system’s ability to analyze and interpret the num-

ber of vulnerabilities identified and the corresponding successful attacks. The

standardized representation facilitates effective analysis, decision-making, and

reporting based on the vulnerability scan results.

FIGURE 3.2: Data analysis and consolidation phase.

By leveraging these automated preprocessing module, the meta-scan system op-

timizes the extraction, organization, and representation of vulnerability data, leading

to improved readability, comparability, and overall effectiveness in analyzing and ad-

dressing identified vulnerabilities. This approach not only saves time and effort but

also enhances the accuracy and reliability of the vulnerability data, enabling more

efficient vulnerability management and mitigation strategies.

Chapter 3. A meta-scan detection system for web injection vulnerabilities 55

3.3.5 Decision-making process

Once individual scanners’ reports are processed and consolidated into a standardized

and readable JSON format, a decision-making algorithm is employed. This algorithm

considers the impact and efficiency of each individual scanner in detecting each vul-

nerability. The algorithm aggregates the responses from multiple scanners, consider-

ing their respective weights, and produces a prediction score for each vulnerability.

The weight matrix and the aggregation process enable the algorithm to prioritize and

confirms or declines the presence of each vulnerability based on the combined in-

put from all the involved scanners. To achieve this aim, the algorithm makes use of

a weight matrix that is updated during the learning phase and applied during the

prediction phase. The prediction function is defined as follows:

vulnerability score(v) =
n

Â
i=1

(
sriv ⇤ wiv

n
)

Where srij represents the response of the ith scanner for a vulnerability v, wiv de-

notes the corresponding weight assigned to vulnerability v, and n indicates the total

number of scanners involved in the meta-scan system.

To make the final decision regarding the presence of vulnerabilities, the meta-scan

system makes use of a binary step function called meta scan vulnerability(v). This

function applies distinct threshold values for each vulnerability v. The binary step

function is defined as follows:

meta scan vulnerability(v) =

8
><

>:

1, if vulnerability score(v) � thresholdv

0, Otherwise

The meta scan vulnerability(v) plays a crucial role in determining the presence of

a vulnerability v based on the combined responses from each scanner, considering

the significance of each scanner for detecting such vulnerability. In simpler terms,

Chapter 3. A meta-scan detection system for web injection vulnerabilities 56

the function evaluates whether the vulnerability score, derived from aggregating the

scanner responses, surpasses a predefined threshold value assigned to that vulnera-

bility. If the vulnerability score exceeds the threshold, the scanner reports the pres-

ence of the vulnerability. On the other hand, if the vulnerability score falls below the

threshold, the meta-scan system considers the application to be safe from that partic-

ular vulnerability. Figure 3.3 illustrates the overall decision-making process.

FIGURE 3.3: Decision-making process for one vulnerability.

3.3.5.1 Threshold selection for each vulnerability

The selection of a threshold value for each vulnerability in the decision-making pro-

cess is crucial. The threshold values are set based on empirical analysis to optimize

the decision-making process, taking into consideration two primary criteria:

1. Minimum number of scanners: The threshold takes into account the minimum

number of scanners required to report the presence of a vulnerability. This cri-

terion ensures that the presence of a vulnerability is confirmed by a sufficient

Chapter 3. A meta-scan detection system for web injection vulnerabilities 57

number of scanners before it is flagged as detected. By establishing a minimum

number of scanners, the system avoids false positives/negatives that may arise

from a single scanner’s response.

2. Number of involved scanners: The threshold is also influenced by the num-

ber of scanners specifically designed to detect the particular vulnerability. This

factor acknowledges the expertise and specialization of certain scanners in iden-

tifying specific vulnerabilities. If a vulnerability is assigned to a limited number

of scanners, the threshold may be adjusted accordingly to account for the exper-

tise and reliability of those scanners in detecting that vulnerability.

By considering both the minimum number of reporting scanners and the involve-

ment of specialized scanners, the threshold determination process in the meta-scan

system aims to strike a balance between avoiding false positives/negatives and en-

suring accurate identification of vulnerabilities. To determine the threshold for vul-

nerability detection in the meta-scan system, a ratio is established using the minimum

number of scanners required to confirm the presence of a vulnerability. This can be

described using the following formula:

thresholdv =
minimum number of scanners required to confirm the presence of v

number of scanners able to detect v

Let’s consider a scenario where there are n scanners, and at least m scanners need

to report the vulnerability to validate its presence. In this case, the threshold is cal-

culated as m/n, ensuring that a sufficient proportion of scanners have identified the

vulnerability before its presence is confirmed by the meta-scan system. This threshold

ratio enables a balance between sensitivity and specificity in vulnerability detection.

It’s important to note that during the learning phase, the weight assigned to a

scanner may be adjusted based on the learning process. As a result, a single scanner

Chapter 3. A meta-scan detection system for web injection vulnerabilities 58

may carry the equivalent weight of two or more scanners, considering its effective-

ness in the detection of a specific vulnerability. This weighting process enhances the

accuracy and reliability of the meta-scan system’s decision-making.

3.3.5.2 Learning and updating weights

The learning phase plays a pivotal role in the decision-making process of the meta-

scan system. It involves the evaluation of scanners and the estimation of their weights,

reflecting confidence in their ability to detect each injection vulnerability. This evalua-

tion is achieved through an initialization and subsequent updating of a weight matrix.

To begin, all the scanners involved in the meta-scan system are initially assigned

an equal weight value of 1. This ensures a fair starting point for the evaluation pro-

cess. Subsequently, the weight matrix is refined by analyzing the results obtained

from a diverse set of web applications with well-known vulnerabilities (i.e., ground

truth). These web applications are carefully selected to encompass a wide range of

vulnerabilities, providing a comprehensive assessment of the scanners’ performance.

The weight updates in the matrix are determined based on the principle of rewarding

scanners for accurate predictions and penalizing them for false predictions.

The updates to the weight matrix follow a specific formula that captures the essence

of the reward system. By analyzing the performance of each scanner, the weight ma-

trix is adjusted to reflect the scanners’ proficiency in detecting known vulnerabilities

in each web application. The learning phase ensures that the weight matrix evolves

and improves over time, providing more accurate assessments of the scanners’ ef-

fectiveness. This iterative process enhances the meta-scan system’s ability to make

informed decisions based on the combined insights from multiple scanners.

We have tailored the traditional combined probability formula to incorporate the

desired weight adjustments for more accurate decision-making. The customized for-

mula considers two key factors: the reward rate and the penalty factor (l), which rep-

resents a proportion of the reward rate used to penalize unsuccessful scanners. When

the collective findings from multiple scanners yield a positive value:

Chapter 3. A meta-scan detection system for web injection vulnerabilities 59

w0
sv = wsv + (srsv ⇤ reward rate + (srsv � 1) ⇤ l ⇤ reward rate)

When the collective findings from multiple scanners yield a negative value:

w0
sv = wsv + (�srsv ⇤ l ⇤ reward rate)

In the meta-scan system, the weight matrix undergoes continuous updates based

on the performance of each scanner in detecting vulnerabilities. When a scanner suc-

cessfully detects a vulnerability, its weight is augmented by adding a reward rate

value. This reward value acknowledges the scanner’s accurate detection for the de-

tected vulnerability and reinforces its role in subsequent decision-making. Conversely,

when a scanner fails to detect a vulnerability, its weight is decreased by subtracting

a proportion of the reward rate which is considered as a penalty value. This penalty

value is determined based on the degree of deviation and serves to correct and re-

fine the weight, promoting more accurate weight assignments. By applying this cus-

tomized weight adjustment formula to all the weights in the weight matrix, the sys-

tem effectively updates the matrix. This iterative process ensures that scanners with

higher accuracy and reliability receive higher weights, thereby amplifying their in-

fluence on the decision-making process. Conversely, scanners with lower accuracy

are adjusted accordingly, accounting for their diminished contribution. The incor-

poration of reward and penalty values in the weight updating formula allows the

meta-scan system to continually adapt and improve the weight matrix. This iterative

refinement process enhances the overall performance and reliability of the system’s

decision-making capabilities, enabling more precise vulnerability detection. It is im-

portant to note that the specific reward and penalty values used in the formula need

to be identified through an empirical analysis. Through experimentation and evalua-

tion, the optimal values are determined to align with the desired system performance,

ensuring the weight adjustments effectively capture the scanners’ accuracy and relia-

bility. Algorithm 1 describes a pseudo-code of the decision-making process.

Chapter 3. A meta-scan detection system for web injection vulnerabilities 60

Algorithm 1: Weight matrix adjustment algorithm
Data: n = number of scanners, v = number of vulnerabilities,

WeightsMatrix[0..v][0..n] = weight matrix, rr = reward rate, l = penalty

factor, ScannersReports[0..v][0..n] = scanners reports,

th[0..v] = threshold values for vulnerabilities ;

Result: WeightsMatrix[0..v][0..n];

initialization

for i := 0 to v do

for j := 0 to n do
WeightsMatrix[i][j] := 1;

for j := 0 to v do

vulnerabilityScore := 0;

for i := 0 to n do
vulnerabilityScore := vulnerabilityScore + (WeightsMatrix[j][i] *

ScannersReport [j][i]) ;

vulnerabilityScore := vulnerabilityScore / n;

if vulnerabilityScore ¿= th[j] then

TemporaryDecision := 1 ;

else

TemporaryDecision := 0 ;

if TemporaryDecision ==1 then

for i := 0 to n do
WeightsMatrix[j][i] := WeightsMatrix[j][i] + ((ScannersReports[j][i]

* rr) + (ScannersReports[j][i] - 1) * l * rr) ;

else

for i := 0 to n do
WeightsMatrix[j][i] := WeightsMatrix[j][i] + (ScannersReports[j][i]

* (- l * rr))) ;

return WeightsMatrix;

Chapter 3. A meta-scan detection system for web injection vulnerabilities 61

The provided pseudo-code 1 demonstrates the decision-making process in the

meta-scan system, incorporating the weight matrix calculation. It iterates through

each vulnerability, evaluates each scanner response, and determines whether the vul-

nerability should be reported or ignored based on the total weight and the associated

threshold. The weight matrix is initialized, and weights are adjusted during the learn-

ing phase as described by adding a reward or subtracting a penalty value accordingly.

The algorithm 1 complexity, denoted as T(n) = O((3*v*n)+(6*v)), can be simplified

to T(n) =O(n²), indicates a quadratic complexity represented by O(n²). In this con-

text, quadratic complexity implies that the algorithm’s performance grows quadrat-

ically with the input size. As the input size (n) increases, representing the number

of scanners, the execution time of the algorithm increases at a rate proportional to

the square of the input size. Additionally, this growth rate is also influenced by the

number of vulnerabilities (v). Consequently, for larger inputs, the algorithm will take

significantly longer to execute compared to algorithms with linear or constant time

complexity. The notation ”O(n²)” establishes an upper bound on the growth rate of

the algorithm’s time complexity. However, it is worth noting that given the typical

ranges of the number of combined scanners and vulnerabilities, the execution time of

the algorithm remains within feasible and real-time calculations.

3.3.6 Reporting

The final report of the meta-scan incorporates the use of weight matrix adjusted as

described by algorithm 1. The decision-making process provided in algorithm 2 is

implemented to ensure the generation of accurate and comprehensive results by the

meta-scan system. The final report is constructed based on the decision made by

algorithm 2.

Chapter 3. A meta-scan detection system for web injection vulnerabilities 62

Algorithm 2: Decision-making algorithm
Data: n = number of scanners, v = number of vulnerabilities,

WeightsMatrix[0..v][0..n] = weight matrix, ScannersReports[0..v][0..n] =

scanners reports,

th[0..v] = threshold values for vulnerabilities ;

Result: metaScanVulnerabilities[0..v] = final report;

for j := 0 to v do

vulnerabilityScore := 0;

for i := 0 to n do
vulnerabilityScore := vulnerabilityScore + (WeightsMatrix[j][i] *

ScannersReport [j][i]) ;

vulnerabilityScore := vulnerabilityScore / n;

if vulnerabilityScore ¿= th[j] then

metaScanVulnerabilities[j] := ”Positive” ;

else

metaScanVulnerabilities[j] := ”Negative” ;

return metaScanVulnerabilities;

After the decision-making phase, a meticulous and comprehensive report is gener-

ated to provide an in-depth overview of the security assessment, empowering in-

formed decision-making and further actions. The final report is crafted in HTML file

format, ensuring compatibility and convenience for users. The use of HTML allows

for the creation of visually appealing and interactive reports, enhancing the user ex-

perience. With HTML, the report becomes easily accessible across various devices

and platforms, enabling seamless navigation and exploration of the findings.

The HTML report features a well-structured matrix that contains detailed infor-

mation about all detectable vulnerabilities. Each row in the matrix represents a spe-

cific vulnerability, while the columns correspond to the different scanners involved in

the security assessment. This matrix layout provides a comprehensive and organized

Chapter 3. A meta-scan detection system for web injection vulnerabilities 63

overview of the vulnerabilities identified by each scanner. Within the matrix, relevant

details regarding each vulnerability are presented. These details include the vulnera-

bility information reported by each scanner and the final decision made by the meta-

scan system regarding the presence or absence of the vulnerability. By consolidating

this information, the report effectively communicates the collective findings from all

scanners, enabling users to grasp the overall risk profile of the tested application.

By presenting the information in a well-structured and visually appealing format,

the comprehensive report enables users to gain valuable insights into the vulnera-

bilities detected and their implications. Users can assess the severity, frequency, and

impact of each vulnerability, assisting in prioritizing remediation efforts and making

informed decisions regarding the security posture of the tested application.

Sc
an

ne
r 1

Sc
an

ne
r 2

... Sc
an

ne
r n

M
et

a-
sc

an
de

ci
si

on

Vulnerability1 # # ... # P/N

Vulnerability2 # # ... # P/N

... P/N

Vulnerabilityv # # ... # P/N

TABLE 3.1: Abstract representation of the final report.

The final report is presented in Table 3.1, where the representation includes the

following notations: ”#” represents the number of successful attacks generated by

each scanner for each vulnerability, while ”P/N” indicates whether the vulnerability

is classified as ”positive” (indicating its existence) or ”negative” (indicating its absence).

Chapter 3. A meta-scan detection system for web injection vulnerabilities 64

3.4 Conclusion

Detecting injection vulnerabilities in web applications poses challenges due to var-

ious approaches with their own advantages and limitations. This chapter proposes

a novel meta-scan system that combines penetration testing and vulnerability scan-

ning to address the issue of false positives/negatives commonly encountered in in-

dividual scanners. The primary objective of the meta-scan system is to overcome the

limitations of false positives/negatives by strategically combining multiple scanners

based on comprehensive criteria. To combine and evaluate scanner results, a method-

ology is devised that involves converting individual report files from each scanner

into a standardized format. Additionally, a customized combined probability for-

mula is used to update weights during the learning phase, which are then utilized in

the testing phase for detecting vulnerabilities in unseen web applications. The learn-

ing phase involves rewarding scanners for accurate predictions and penalizing false

predictions, allowing continuous refinement of the weight matrix.

The meta-scan system leverages the unique strengths, capabilities, and vulnera-

bility lists of each scanner. By combining their results, two primary advantages are

achieved. Firstly, the system expands the list of detectable injection vulnerabilities

beyond what any single scanner can accomplish. Secondly, and most importantly, the

occurrence of false positives/negatives can be significantly reduced. The reduction

in false positives benefits testers and developers by saving time and enabling focused

improvements based on scanner results. On the other hand, the reduction in false

negatives ensures a better protection of web applications. The proposed meta-scan

system offers an innovative approach that improves the detection of injection vulner-

abilities in web applications. By combining multiple scanners and refining the weight

matrix through the learning phase, the system provides enhanced accuracy, expanded

vulnerability coverage, and reduced false positives/negatives. These advancements

contribute to more effective testing and development of secure web applications.

65

CHAPTER 4

IMPLEMENTATION & EXPERIMENTATION

In this chapter, we present the development and implementation details of the pro-

posed meta-scan system, building upon the design scheme described in Chapter 3.

The aim is to combine a set of reputable open-source vulnerability scanners into an

automated framework, offering a user-friendly graphical interface. To accomplish

this task, we leverage the power of the Kali Linux operating system, renowned for its

robustness and specialization in tasks like penetration testing, digital forensics, and

ethical hacking [68]. Throughout this chapter, we provide comprehensive coverage of

the system requirements, installation steps, and experimental results obtained from

the resulted meta-scan system. Additionally, we delve into the intricate implemen-

tation details, shedding light on the tools and software used. Therefore, we provide

a thorough understanding of the meta-scan system and its capabilities for effectively

identifying injection vulnerabilities and enhancing the security assessment process.

4.1 Selection of base scanners

In order to select the most suitable scanners for our meta-scan system, we conducted

a comprehensive evaluation process based on well-defined qualitative criteria out-

lined in Section 3.3.1. Several scanners were subjected to this evaluation, including

Chapter 4. Implementation & Experimentation 66

Vega Scanner [69], [70], Vulmap [71], Sitadel [72], OpenVAS [73], Ratproxy [74],

Arachni [60], W3af [51], Astra [75], Vulscanpro [76], among others, as listed in Ta-

ble 4.1. After careful consideration and analysis, we identified the top five scanners

that successfully met our stringent criteria (see Table 4.1). These scanners were cho-

sen based on their performance, reliability, and effectiveness in detecting injection

vulnerabilities. The selected scanners that emerged as the most promising solutions

for our meta-scan system are OWASP Zap [56], SkipFish [52], Nikto [77], Nuclei [78],

and Wapiti Scanner [57]. These scanners demonstrated exceptional capabilities in the

detection of injection vulnerabilities and exhibited compatibility with our system’s

objectives and requirements.

4.1.1 OWASP ZAP

ZAP stands out as one of the most extensively employed web application scanners.

As an open-source project, it benefits from the continuous efforts of an international

team of dedicated volunteers. Its popularity is evidenced by its inclusion among the

top 1000 projects on GitHub. The OWASP ZAP scanner is development in 2009. ZAP

offers a diverse range of scans, with a primary focus on passive and active scans, as

well as spiders. These scans target various vulnerabilities, including prominent ones

like SQL injection, cross-site scripting, and server-side template injection. It boasts a

comprehensive feature set, including the ability to operate as a proxy server, enabling

users to intercept and modify requests and responses. It offers a desktop application

interface for server interaction and supports multiple automation methods, such as

command line scans, docker packaged scans, and a recently developed automation

framework with API and Daemon mode. This framework provides extensive control

over the ZAP server, offering support for three technologies: Bash, Java, and Python.

Specifically, Python grants a complete support and control over the ZAP server [79].

Chapter 4. Implementation & Experimentation 67

4.1.2 Wapiti

Wapiti is an open-source web application vulnerability scanner. It conducts black-box

scans on the web pages of deployed web applications, systematically fuzzes URL pa-

rameters and forms to identify prevalent web vulnerabilities. The tool was developed

and released in 2006. The open-source nature of Wapiti enables users to freely use

its features, fostering broad accessibility and encouraging collaborative development

within the community. Wapiti offers the capability to assess the security of targeted

applications by detecting over 20 vulnerabilities and threats, providing valuable in-

sights for security audits [54].

4.1.3 SkipFish

Skipfish is a proficient active reconnaissance tool designed for web application secu-

rity. Its functionality involves conducting a recursive crawl and employing dictionary-

based probes to generate an interactive sitemap of the target site. The obtained map is

further enriched with the results derived from several active security checks, all care-

fully engineered to avoid disruption. The ultimate objective of the tool is to provide

a solid basis for conducting professional web application security assessments. Skip-

fish was initially released in 2007 and has since been maintained by a team including

highly reputable cybersecurity experts [80].

Chapter 4. Implementation & Experimentation 68

In
je

ct
io

n
vu

ln
er

ab
ili

ty
de

te
ct

io
n

su
pp

or
t

C
om

pa
tib

ili
ty

C
LI

an
d

da
em

on
su

pp
or

t

A
ct

iv
e

de
ve

lo
pe

r
co

m
m

un
ity

So
ur

ce
co

de
av

ai
la

bi
lit

y

Er
ro

r-
fr

ee
in

st
al

la
tio

n
an

d
us

ag
e

U
se

r
ra

tin
gs

an
d

fe
ed

ba
ck

Arachni # # .

Astra H# # .

Burp suit # # .

GoLismero # # .

Nikto H# 4

Nuclei 5

OpenVAS # # # .

OWASP zap 1

Ratproxy H# # # # .

Ronin-Vulns H# # # .

SkipFish 3

Sitadel H# # # .

SOOS DAST # # # .

Vega Scanner H# # # .

Vulmap # # # .

Vulscanpro # # .

Wapiti 2

W3af # .

TABLE 4.1: Evaluation and selection of base scanners: : Full support,
#: No support, H#: Partial support

Chapter 4. Implementation & Experimentation 69

4.1.4 Nikto

Nikto is a widely recognized and robust web vulnerability scanner that has been

actively developed since 2001. It is specifically designed to identify security issues

and potential vulnerabilities in web servers and applications. Nikto’s comprehensive

scanning capabilities and extensive plugin support make it a valuable tool for security

assessments. One of the notable features of Nikto is its ability to perform thorough

and comprehensive scans across a wide range of web servers and platforms. It can

detect common vulnerabilities such as outdated server versions, misconfigurations,

insecure file permissions, and known vulnerabilities in web applications. Nikto’s ex-

tensive database of known vulnerabilities and its regular updates ensure that it can

stay up-to-date with emerging threats and vulnerabilities. Nikto’s flexibility is en-

hanced by its plugin architecture, allowing users to customize and extend its scanning

capabilities according to their specific needs. With a wide variety of plugins available,

users can target specific vulnerabilities or perform specialized scans based on their

requirements. Furthermore, Nikto provides detailed and actionable scan reports, pre-

senting the identified vulnerabilities along with recommendations for remediation.

This helps security professionals and developers understand the nature and severity

of the vulnerabilities and take appropriate actions to address them [81].

4.1.5 Nuclei

Nuclei, introduced by Project Discovery in 2019, is a powerful application designed

to streamline the process of sending requests to multiple targets using user-defined

templates. Its main strength lies in its ability to perform rapid scanning across a large

number of hosts, making it an efficient tool for security assessments. Nuclei supports

scanning for a wide range of protocols, including TCP, DNS, HTTP, SSL, File, Whois,

Websocket, Headless, and more. This broad protocol coverage enhances its versatil-

ity and enables thorough security checks. One of the standout features of Nuclei is

Chapter 4. Implementation & Experimentation 70

its templating functionality, which empowers users to create highly customizable se-

curity checks. By leveraging this feature, security professionals can tailor their scans

to specific requirements and focus on detecting vulnerabilities that are relevant to

their applications. Another notable aspect of Nuclei is its dedicated repository, which

serves as a comprehensive collection of vulnerability templates. This repository is the

result of contributions from over 300 security researchers and engineers, offering a

diverse range of options to enhance scanning capabilities [54].

Table 4.2 shows the list of injection vulnerabilities, discussed in Section 1.4, that

can be detected by the selected scanners. Notably, SQL, XSS, and XML injections are

detectable by all the scanners. OS command and CRLF injections can be detected by

all the selected scanners except Nikto. HTML injections are detectable by Nikto and

Nuclei, while HTTP header injections are detectable by SkipFish and Nuclei.

O
W

A
SP

Z
ap

W
ap

iti

Sk
ip

Fi
sh

N
ik

to

N
uc

le
i

SQL injection

XSS injection

OS command injection #

CRLF injection #

XML injection #

Code injection # #

XXE injection # #

HTTP header injection # # #

HTML injection # # #

TABLE 4.2: List of injection vulnerabilities detectable by each scanner.

Chapter 4. Implementation & Experimentation 71

4.2 Configuration of base scanners

The selected scanners for the meta-scan system offer a range of configurable param-

eters that allow users to customize their scanning settings according to their specific

needs. These parameters play a crucial role in fine-tuning the scanning process and

adapting it to different environments and target applications. Note that the specific

parameters and their functionalities may vary for each scanner. These parameters al-

low users to specify various aspects of the scanning process, such as the scope of the

scan, the level of thoroughness, the types of vulnerabilities to focus on, and any addi-

tional configurations required by the scanner. Table 4.3 shows the list of configurable

parameters for each scanner.
O

W
A

SP
Z

ap

W
ap

iti

Sk
ip

Fi
sh

N
ik

to

N
uc

le
i

Crawling depth # # #

Crawling max children # # #

Crawling percentage # # #

Number of pages to scan # # #

Max time for each scanner # #

Vulnerabilities to be scanned #

TABLE 4.3: List of configurable settings of each scanner.

Among the selected scanners, OWASP Zap appears to have the most comprehen-

sive support for configurable settings, covering crawling depth, crawling max chil-

dren, crawling percentage, maximum scanning time, and the ability to select specific

vulnerabilities to scan. It offers a wide range of options for customization, making

it a flexible tool for security assessments. Wapiti and SkipFish also provide a signif-

icant number of configurable settings, but while they may not offer the same level

of flexibility as OWASP Zap, they still provide sufficient options for fine-tuning the

Chapter 4. Implementation & Experimentation 72

scanning process. On the other hand, Nikto and Nuclei have a more limited range of

configurable settings. They lack crawling support entirely and have fewer options for

customizing the scanning process. However, they allow for the disabling of unrelated

vulnerabilities.

4.3 Initiating the scanning process

This section provides an overview of the scanning process used by the various scan-

ners incorporated in the meta-scan system. Although each scanner has its own dis-

tinct approach, there are common features and steps involved in initiating the scan-

ning process. Firstly, all scanners start by using the provided target URL and taking

into account the configurable parameters. Secondly, the scanners aim to identify vul-

nerabilities in the target application by sending requests and carefully analyzing the

responses received. Finally, each scanner generates a comprehensive report that pro-

vides detailed information about the vulnerabilities identified during the scanning

process. Despite these common steps, each scanner follows a distinct scanning pro-

cess to identify injection vulnerabilities in the target application:

4.3.1 OWASP ZAP

The scanning process begins with ZAP’s automated tool, which systematically ex-

plores the target application by crawling its pages and discovering available content.

This process allows ZAP to build a comprehensive understanding of the application’s

structure. Once the spidering phase is complete, ZAP activates its active scanner to

identify vulnerabilities. The active scanner sends requests to the application and ana-

lyzes the responses for potential vulnerabilities using fuzzing techniques. The results

are then analyzed and categorized based on predefined criteria to determine whether

they are vulnerable or safe. ZAP generates a detailed report summarizing the vulner-

abilities detected during the scanning process.

Chapter 4. Implementation & Experimentation 73

4.3.2 Wapiti

Wapiti adopts a systematic approach to scanning web applications. It starts by crawl-

ing the target application, specifically targeting scripts and forms where it can inject

data. By gathering a comprehensive list of URLs, forms, and inputs, Wapiti proceeds

to fuzz the target by injecting various payloads to assess its vulnerability. Different

models are employed for each vulnerability type. Once the scanning phase is com-

plete, Wapiti generates a detailed vulnerability report that provides information on

the identified vulnerabilities, helping security professionals address potential risks.

4.3.3 SkipFish

The scanning process in SkipFish begins with the construction of a thorough site map

of the target web application. This map includes all accessible pages and directories,

providing an overview of the application’s structure. SkipFish then conducts a series

of tests on each page to detect potential vulnerabilities. These tests involve analyzing

response codes, identifying common security issues, and evaluating the application’s

behavior. The final stage involves generating a comprehensive report that provides

detailed information about the identified vulnerabilities, enabling developers and se-

curity teams to take appropriate remedial actions.

4.3.4 Nikto

Nikto initiates the scanning process by performing server fingerprinting to gather

relevant information about the target, such as the web server version and employed

techniques. Following the fingerprinting phase, Nikto rapidly crawls and scrapes the

target to identify potential input points where data can be injected. The vulnerability

scanning phase uses a pre-defined payload database specific to each vulnerability,

allowing Nikto to test the target for known vulnerabilities. Finally, Nikto generates a

detailed report that encompasses extensive information obtained during the scanning

process, providing insights into potential security risks.

Chapter 4. Implementation & Experimentation 74

4.3.5 Nuclei

The scanning process in Nuclei revolves around the use of templates. Nuclei sends

HTTP requests based on the template specifications for each corresponding identifier.

It meticulously compares the received HTTP responses with the predefined expected

responses within the template. By examining the responses, Nuclei identifies any

deviations or undesirable behaviors that may indicate a vulnerability. Throughout

the scanning process, Nuclei gathers pertinent details concerning the template, the

target, and any identified responses, which are then included in the generated report.

4.3.6 Sequential vs. Multithreading based execution

Figure 4.1 illustrates the average execution time for each scanner. In order to obtain

these results, each scanner was used to scan a single web page with a single input

field ten times, and the average execution time was calculated. The data presented in

Figure 4.1 demonstrates that OWASP ZAP and Nuclei exhibit longer execution times

compared to the other scanners, with OWASP ZAP taking an average of 47.91 sec-

onds and Nuclei requiring approximately 39.81 seconds. Conversely, SkipFish stands

out as the fastest scanner, completing the scanning in an average time of 1.27 sec-

onds. Wapiti and Nikto, on the other hand, exhibit similar performance, with average

execution times of 18.88 seconds and 16.30 seconds, respectively. Note that the ex-

periment is performed on a laptop machine with an Intel(R) Celeron(R) CPU N3060

(1.60GHz), 4 GB of RAM, and a hard disk drive (HDD).

The longer execution times observed for OWASP ZAP and Nuclei compared to

other scanners like SkipFish can be attributed to several factors. OWASP ZAP and

Nuclei are feature-rich scanners that offer extensive functionality and a wide range of

scanning capabilities. They use more advanced scanning techniques and strategies,

such as deep crawling, in-depth analysis, and complex pattern matching. These so-

phisticated approaches contribute to a more comprehensive evaluation of the target

application’s security but require additional time for execution. On the other hand,

Chapter 4. Implementation & Experimentation 75

FIGURE 4.1: Average execution time per scanner.

SkipFish, being a lightweight and fast scanner, adopts a more streamlined scanning

methodology. It uses a targeted approach, performing efficient tests on each page

to identify potential vulnerabilities quickly. This streamlined process contributes to

shorter execution times compared to the more comprehensive scanning methods used

by OWASP ZAP and Nuclei. Wapiti and Nikto, while not as fast as SkipFish, exhibit

comparable execution times when compared to OWASP ZAP and Nuclei. Wapiti and

Nikto share some similarities with OWASP ZAP and Nuclei in terms of their scanning

capabilities and depth of analysis. They perform comprehensive scans and use a large

number of payloads to identify potential vulnerabilities. This level of thoroughness in

their scanning approach can contribute to slightly longer execution times compared

to more lightweight scanners like SkipFish.

To overcome the time-consuming issue, we propose the utilization of a multi-

threading approach. By assigning a dedicated thread for each scanner, we can have

precise control over when the scanning process starts. This enables us to initiate all

scanners simultaneously, reducing overall scanning time. Figure 4.2 illustrates the sig-

nificant reduction in execution time achieved by employing a multi-threading-based

technique. By leveraging this approach, the scanning process was optimized, result-

ing in a notable decrease in execution time. Specifically, the execution time decreased

Chapter 4. Implementation & Experimentation 76

FIGURE 4.2: Sequential vs parallel execution of scanners.

from 124.24 seconds (using a sequential execution or single-threaded approach) to

77.56 seconds (using the multi-threading-based technique). This improvement high-

lights the effectiveness of using parallel processing capabilities to enhance the effi-

ciency and speed of the scanning process.

4.4 Data analysis and consolidation

As described in Section 3.3.4, each scanner uses its own distinct format and structure

for generating their reports. This section describes the data provided by each scanner

and how these data are combined to create the final report. We highlight the specific

details and attributes offered by each scanner and demonstrate how these individual

reports are consolidated to present a comprehensive view of the scanning results.

4.4.1 OWASP ZAP

The OWASP ZAP scanning report encompasses a comprehensive range of attributes

that provide valuable insights into the identified vulnerabilities. These attributes in-

clude the alert level (risk), which indicates the severity of each vulnerability; the alert

Chapter 4. Implementation & Experimentation 77

type categorizes vulnerabilities into specific classes, facilitating a deeper understand-

ing of their nature and associated risks. The description field offers in-depth expla-

nations of the vulnerabilities, including their underlying causes, potential impacts,

and recommended mitigation measures. Additionally, the URL attribute specifies the

target URL where each vulnerability was discovered, aiding in pinpointing the af-

fected input field. For a comprehensive list of these important attributes and their

brief descriptions, please refer to Table 4.4.

Attribute Description

1 vulnerabilities::method HTTP method (GET/POST)

2 vulnerabilities::pluginId ID of the ZAP module that found the vulnerability

3 vulnerabilities::cweid Vulnerability CVE unique code

4 vulnerabilities::wascid Vulnerability WASC unique code

5 vulnerabilities::url Full URL of the vulnerability

6 vulnerabilities::description Description of the vulnerability

7 vulnerabilities::alert Information about the alerts raised by OWASP ZAP

8 vulnerabilities::attack The full attack vector

9 vulnerabilities::name Vulnerability name

10 vulnerabilities::risk Threat level (high/low/medium)

11 vulnerabilities::id Vulnerability unique id

12 vulnerabilities::alertRef Alert reference identifier

TABLE 4.4: Information included in the OWASP ZAP report

4.4.2 Wapiti

Wapiti scanner also used JSON file format for generating reports. This JSON file con-

tains various attributes specific to Wapiti, with some of the essential ones outlined in

Table 4.5. One of the crucial attributes is the list of vulnerabilities, which provides

detailed information about each vulnerability detected by the scanner. Each vulner-

ability entry includes information about the successful attack triggered during the

Chapter 4. Implementation & Experimentation 78

scanning process. The provided attributes offer insights into the attack’s specifics,

severity level, affected endpoint or parameter, the correspondent HTTP request and

cURL command associated with the attack.

Attribute Description

1 vulnerabilities::name::method HTTP method (GET/POST)

2 vulnerabilities::name::path Full URL of the target

3 vulnerabilities::name::info Information about the vulnerability

4 vulnerabilities::name::level Dangerous level set by Wapiti (1/2/3)

5 vulnerabilities::name::parameter Parameter ID if used (ex:”input id”)

6 vulnerabilities::name::http request Submitted HTTP request

7 vulnerabilities::name::curl command curl command used for submitting the request

TABLE 4.5: Information included in the Wapiti report

4.4.3 SkipFish

The SkipFish scanner uses an HTML report format with a complex structure. For

each crawled page, it creates a directory containing four files: request.js, response.js,

issue index.js, and child index.js. The information saved in these files form an intricate

representation of the crawling, attacking phases, and report of vulnerabilities found

in each page. The Attributes of the different file are illustrated in Table 4.6.

File::Attribute Description

1 Response:: Response sent from the specific page

2 Request:: Requests sent to the specific page

3 issue index::severity Vulnerability threat level (0˜4)

4 issue index::type Type of vulnerability set by SkipFish

5 issue index::code Vulnerability unique code identifier

6 issue index::len Length of the request

7 issue index::decl mime Declared MIME type

8 issue index::cset Charset of the response

Chapter 4. Implementation & Experimentation 79

9 issue index::dir Directory name of the Request & Response files

10 child index::name Name Of target application

11 child index::dir Directory name where the web page is stored

12 child index::linked Number of links found in the page

13 child index::url Full URL

14 child index::fetched Type of fetch (True/False)

15 child index::code Response Code (200/302/403/404/500)

16 child index::sniff mime MIME sniffing (None/True)

17 child index::issue cnt Number of identified vulnerabilities

TABLE 4.6: Information included in SkipFish report

4.4.4 Nikto

The Nikto scanner uses a JSON file format. The provided file includes various at-

tributes specific to Nikto, as indicated in Table 4.7, including the HOST attribute,

which specifies the hostname of the target application (e.g., localhost or online host),

along with the IP address and port number of the target. Additionally, the banner at-

tribute provides details about the server and the target application. A typical example

of a banner might be ”Apache/2.4.54 (Unix) OpenSSL/1.1.1s PHP/8.2.0 mod perl/2.0.12

Perl/v5.34.1.”. Furthermore, the scanner generates a list of detected vulnerabilities,

each identified by a unique ID, a number of references to the Open Source Vulnerabil-

ity Database (OSVDB), a full URL indicating where the vulnerability was found, the

HTTP method utilized (GET or POST), and a message (msg) that describes the nature

of the detected vulnerability.

Attribute Description

1 host Target app’s hostname (localhost/online host address)

2 ip IP address of the hostname

3 port Port number of the target

Chapter 4. Implementation & Experimentation 80

4 banner Type of the server, OS, and programming languages used

5 vulnerabilities::id Identifier of the detected vulnerability

6 vulnerabilities::OSVDB Reference to the OSVDB vulnerability entry (OSVDB-xxxx)

7 vulnerabilities::method HTTP method (GET/POST)

8 vulnerabilities::url URL where the vulnerability was discovered

9 vulnerabilities::msg Short description of the detected vulnerability

TABLE 4.7: Information included in the Nikto report

4.4.5 Nuclei

The scanning results in Nuclei are also reported using a JSON file format. As de-

scribed in Table 4.8. The report includes various attributes specific to Nuclei tem-

plates used for penteration testing. For each successful attack, Nuclei generates spe-

cific attributes related to the template information, such as template url and template-id.

Additionally, it provides comprehensive details about the vulnerability, including its

name, description, severity, type, host, timestamp, IP address, and curl-command.

Attribute Description

1 template Name of template used

2 template-url URL of the template site or repostory

3 template-id Template unique ID given by Nuclei

4 info::name Vulnerability name

5 info::description Vulnerability description

6 info::reference Links and site with description of vulnerability

7 info::severity Threat level of vulnerability (high/medium/low)

8 info::classification::cve-id Vulnerability CVE unique code

9 info::classification::cwe-id Vulnerability CWE unique cod

10 info::classification::cvss-metrics Vulnerability CVSS metric

11 info::classification::cvss-score Vulnerability CVSS score

12 info::type Type of vulnerability set by template

Chapter 4. Implementation & Experimentation 81

13 info::host Target Host and type (localhost/onlinehost)

14 info::matched-at Specific URL where the vulnerability found

15 info::ip Target IP

16 info::timestamp Time of Initiating the scan

17 info::curl-command The curl command used for submitting the request

TABLE 4.8: Information included in the Nuclei report

4.4.6 Consolidation process

In order to compile and produce a comprehensive report, we adhered to the pro-

cedures delineated in Section 3.3.4. The initial step entailed filtering the data from

each scanner report. We specifically chose pertinent attributes that would facilitate

users in comprehending the vulnerable entry points and gaining additional insights

into preventive measures. These attributes encompassed key information such as the

URL, vulnerability ID, vulnerability description, attack vectors, and more. Table 4.9

outlines the selected attributes and their corresponding counterparts in each scanner

report.

O
W

A
SP

za
p

W
ap

iti

Sk
ip

Fi
sh

N
ik

to

N
uc

le
i

id 11 3 5 5 4

url 5 2 13 8 14

method 1 1 - 7 -

paramater - 5 - - -

attack 8 - - - 17

Description 6 3 - 9 5

request - 6 2 - -

TABLE 4.9: Meta-scans data Filtering report.

Chapter 4. Implementation & Experimentation 82

Following the filtering step, it becomes necessary to perform normalization as each

scanner adopts its own nomenclature for vulnerabilities or employs unique codes for

identification. To achieve normalization, we utilize the Common Weakness Enumera-

tion (CWE) vulnerability codes. For instance, CWE-89 represents SQL vulnerabilities,

CWE-79 represents XSS vulnerabilities, and CWE-78 signifies OS command injections.

To accomplish this, we employ different approaches for each scanner. In the case of

OWASP Zap, we extract the vulnerability names from their official documentation.

In Wapiti, we extract the names from the report prototype. For SkipFish, we meticu-

lously examine their static source code until we identify the unique codes associated

with specific vulnerabilities. Similarly, for Nikto, we extract the relevant IDs from

their vulnerability database and categorize them according to the corresponding vul-

nerabilities. As for Nuclei, given that we use the CVE template, we extract the IDs for

each injection vulnerability provided by Nuclei.

The subsequent step entails quantifying the effectiveness of each scanner in terms

of successful attacks. This step involves a straightforward calculation of the occur-

rence of each successful attack found within each individual report, subsequently de-

termining the total number of occurrences for each vulnerability as reported by each

scanner.

Lastly, the concluding step involves consolidating and merging the individual re-

ports and findings into a single comprehensive report file. To achieve this, we have

opted for the JSON format, widely utilized and easily comprehensible. Each scanner

is assigned its own attribute within the report file, containing a matrix that captures

the vulnerabilities detected by that specific scanner, along with the corresponding fil-

tered information and the count of vulnerabilities found. The structure and layout of

the final report can be observed in Table4.10.

Attribute Description

OWASPZap::n attacks::xss Number of successful XSS attacks

OWASPZap::n attacks::sql Number of successful SQL attacks

Chapter 4. Implementation & Experimentation 83

OWASPZap::n attacks::os Number of successful OS command attacks

OWASPZap::vulnerabilities::url URL where the vulnerability found

OWASPZap::vulnerabilities::method HTTP method (GET/POST)

OWASPZap::vulnerabilities::id CWE-id of vulnerability

OWASPZap::vulnerabilities::attack Attack vector used

OWASPZap::vulnerabilities::description Description of the vulnerability

Wapiti::n attacks::xss Number of successful XSS attacks

Wapiti::n attacks::sql Number of successful SQL attacks

Wapiti::n attacks::os Number of successful OS command attacks

Wapiti::vulnerabilities::url URL where the vulnerability found

Wapiti::vulnerabilities::method HTTP method (GET/POST)

Wapiti::vulnerabilities::id CWE-id of vulnerability

Wapiti::vulnerabilities::request Requests sent to the specific page

Wapiti::vulnerabilities::description Description of the vulnerability

SkipFish::n attacks::XSS Number of successful XSS attacks

SkipFish::n attacks:sql Number of successful SQL attacks

SkipFish::n attacks::os Number of successful OS command attacks

SkipFish::vulnerabilities::url URL where the vulnerability found

SkipFish::vulnerabilities::id CWE-id of vulnerability

SkipFish::vulnerabilities::request Requests sent to the specific page

Nikto::n attacks:xss Number of successful XSS attacks

Nikto::n attacks::sql Number of successful SQL attacks

Nikto::n attacks::os Number of successful OS command attacks

Nikto::vulnerabilities::url URL where the vulnerability found

Nikto::vulnerabilities::method HTTP method (GET/POST)

Nikto::vulnerabilities::id CWE-id of vulnerability

Nikto::vulnerabilities::description Description of the vulnerability

Nuclei::n attacks::xss Number of successful XSS attacks

Nuclei::n attacks::sql Number of successful SQL attacks

Chapter 4. Implementation & Experimentation 84

Nuclei::n attacks::os Number of successful OS attacks

Nuclei::vulnerabilities::url URL where the vulnerability found

Nuclei::vulnerabilities::id CWE-id of vulnerability

Nuclei::vulnerabilities::command curl command used for submitting the request

Nuclei::vulnerabilities::description Description of the vulnerability

TABLE 4.10: Meta-scans data consolidation report.

4.5 Decision-making

In the learning phase, our analysis involves evaluating the results obtained from a set

of web applications with known vulnerabilities. This set of applications covers a va-

riety of vulnerabilities, including XSS, SQL injection, and OS command injection. We

divide these applications into subsets, using one subset to adjust the weight matrix,

and the remaining subset for testing the algorithm’s performance. We then compare

the results obtained by our algorithm with those achieved by individual vulnerability

scanners. As the aim of the study is to reduce the false positives and false negatives of

individual vulnerability scanners, we opt for the use of the three following evaluation

metrics in the evaluation process:

1. False positive rate (FPRv): measures the proportion of pages that are incorrectly

classified as vulnerable to an injection vulnerability v.

2. False negative rate (FNRv): measures the proportion of vulnerable pages to v

that are incorrectly classified as not vulnerable to v.

3. Accuracy (ACCv): measures the proportion of pages that correctly detected as

vulnerable to an injection vulnerability v out of the total number of pages.

Chapter 4. Implementation & Experimentation 85

4.5.1 Data description

For experimentation, we use four web applications known for their vulnerabilities,

specifically OWASP mutillidae2 [82], OWASP Vulnerable Web Application [83], XTREM

vulnerable Web Application [84], and DAMN vulnerable web application [85]. This

list of web applications were found and selected from the OWASP Vulnerable Web

Applications Directory Project [86]. The four application are written in PHP/MySQL

and tested on XAMP environment; they are vulnerable applications written on the

purpose of testing web scanners and enhancing security analysis.

1. OWASP Mutillidae II: is a freely available, open-source web application de-

liberately designed to contain vulnerabilities, making it a valuable resource for

individuals interested in web security.

2. OWASP VWA: designed to cater to individuals interested in web penetration

and seeking information or practical experience in this field

3. XTREM VWA: deliberately coded with poor practices, and serves as a valuable

resource for security enthusiasts seeking to enhance their understanding of ap-

plication security.

4. DAMN VWA: intentionally designed to possess numerous vulnerabilities. Its

primary objective is to serve as a valuable resource for security professionals,

providing them with a legal environment to test their skills and tools effectively.

We divided each application pages into two halves; the first half is used as a train-

ing set and the other half is used as a test set. This resulted in 20 pages for each set, as

illustrated in Table 4.11.

Chapter 4. Implementation & Experimentation 86

#
X

SS
vu

ln
er

ab
le

pa
ge

s

#
SQ

L
vu

ln
er

ab
le

pa
ge

s

#
O

S
co

m
m

an
d

vu
ln

er
ab

le
pa

ge
s

#
To

ta
lp

ag
es

OWASP mutillidae 13 4 6 23

OWASP Vwa 5 6 4 15

XTREM Vwa 3 2 1 6

DAMN Vwa 3 2 1 6

Train set 12 7 6 20

Test set 12 7 6 20

TABLE 4.11: Dataset description.

4.5.2 Parameter tuning

In the decision-making process, it is crucial to determine the optimal parameter val-

ues for the proposed decision-making algorithm. This includes the threshold value

required to confirm the detection of each vulnerability and the reward value to be

assigned to each scanner upon a successful detection. To explore different parameter

values and optimize the performance, we employ the grid search method [87]. The

threshold value for each injection vulnerability v was incremented by a step size of

1/kv, from 1/kv to 1, where kv represents the number of scanners detecting v, as ex-

plained in Section 3.3.5.1. Similarly, the reward value was incremented by a step size

of 0.01, from 0.01 to 1. We also experimented different penalty factor values l with

different reward ratios: 1/10, 1/5, 1/4, 1/3, 1/2, and 1.

Chapter 4. Implementation & Experimentation 87

FIGURE 4.3: Parameter tuning for the detection of XSS injection vulnera-
bilities

Chapter 4. Implementation & Experimentation 88

FIGURE 4.4: Parameter tuning for the detection of SQL injection vulner-
abilities

Chapter 4. Implementation & Experimentation 89

FIGURE 4.5: Parameter tuning for the detection of OS command injection
vulnerabilities

Chapter 4. Implementation & Experimentation 90

The results of the XSS injection vulnerability, illustrated in Figure 4.3, indicate that

the optimal threshold for detection is 1/5. This means that at least one of the five scan-

ners should identify the vulnerability in order to report its positive detection. Further-

more, the examined l values indicate that the most favorable reward rate falls within

the range of [0.17, 1], with l being equal to 1. Based on those findings, it is evident

that for XSS injection vulnerability, higher accuracy values are achieved by increasing

the reward value and using the same value to penalize unsuccessful scanners. Addi-

tionally, this influence is observed in relation to the increase of the threshold; as the

threshold increases, the reward and penalty factor have a more significant impact on

the accuracy rate. In summary, to obtain the best accuracy, an increase in the threshold

should be accompanied by an increase in the reward value and the penalty factor.

The tests conducted for the OS command injection vulnerability, as shown in Fig-

ure 4.5, yield a similar conclusion. The optimal threshold value for all the tests is

determined to be 1/4, while the best reward value ranges from 0.75 to 1. Addition-

ally, the penalty factor l needs to be set to 1.

Conversely, regarding the SQL injection vulnerability, Figures 4.4 displayed that

the best threshold in all tests encompasses the optimal values is 5/5, and the most

desirable values for reward ranges from 0.1 to 1 with a penalty factor being equal

to 1/10. Additionally, in relation to the three parameters, as we increase the thresh-

old values and decrease the reward value the accuracy rate increases. Therefore, for

obtain the best accuracy, an increase in the threshold should be accompanied by a de-

crease in penalty factor and reward. As we can notice in the right bottom graph, as

we set the l value to 1 to gain the best accuracy an increase in threshold should be

combined with the decrease of reward to 0.1.

After analyzing all the results, we have determined 1/4 as the optimal penalty

factor value achieving the highest level of accuracy for all studied injection vulnera-

bilities. We have also identified the reward value of 0.4, and specific thresholds for

XSS, SQL, and OS injections, namely 1/5, 3/5, and 1/5, respectively. These param-

eter values have been selected as they consistently yield the best accuracy across all

Chapter 4. Implementation & Experimentation 91

three parameter tuning process. Table 4.12 expliclt and clearly shiws the most suit-

able parameter values for detecting each injection vulnerability using our proposed

decision-making algorithm.

Vulnerability Threshold Reward Penalty factor (l)

XSS Injection 0.2

0.4 0.25SQL Injection 0.6

OS command Injection 0.25

TABLE 4.12: Best parameter values for the decision-making algorithm.

4.5.3 Experimental results

The optimal parameter values, listed in Table 4.12, are used in the learning phase of

the decision-making algorithm. Thus, the algorithm is trained on a set of web ap-

plication pages with known vulnerabilities, resulting in the generation of the matrix

weight depicted in Table 4.13.

O
W

A
SP

za
p

W
ap

it
i

Sk
ip

Fi
sh

N
ik

to

N
uc

le
i

XSS injection weights 3.29 3.29 4.3 4.80 4.3

SQL injection weights 1.0 1.40 1.0 2.40 1.00

OS command injection weights 0.50 2.59 1.1 NA 0.60

TABLE 4.13: Meta-scan weight matrix.

The above matrix weight is used to test the decision-making algorithm on a set

of unseen web pages with known vulnerabilities and the following evaluation met-

rics were estimated: false positive rate (FPR), false negative rate (FNR) and accuracy

(ACC). The results are illustrated in Table 4.14.

Chapter 4. Implementation & Experimentation 92

O
W

A
SP

za
p

W
ap

iti

Sk
ip

Fi
sh

N
ik

to

N
uc

le
i

M
et

a-
sc

an

XSS injection vulnerability

FPR (%) 00.00 00.00 00.00 00.00 00.00 00.00

FNR (%) 61.54 53.85 23.08 39.46 39.46 08.33#

ACC (%) 60.00 65.00 85.00 75.00 75.00 95.00"

SQL injection vulnerability

FPR (%) 00.00 07.69 0 0.00 30.77 00.00 00.00

FNR (%) 85.71 57.14 85.71 71.43 100 71.43

ACC (%) 70.00 75.00 70.00 55.00 65.00 75.00

OS command injection vulnerability

FPR (%) 00.00 00.00 00.00 NA 00.00 00.00

FNR (%) 50.00 33.33 66.67 NA 100 16.67#

ACC (%) 85.00 90.00 80.00 NA 70.00 95.00"

TABLE 4.14: Experimental test results.

In the case of XSS injection, the results presented in Table 4.14 demonstrate the

superior performance of our meta-scan system compared to individual scanners in

terms of accuracy. Furthermore, our system significantly reduced the False Negative

Rate (FNR) while maintaining the best False Positive Rate (FPR). When compared to

the highest-performing individual scanner, SkipFish, our system achieves a remark-

able 10% increase in accuracy and a notable 14.75% reduction in FNR.

For the SQL injection vulnerability, the proposed meta-scan system outperformed

all individual scanners in terms of accuracy. In comparison to the top-performing

individual scanner, Wapiti, we achieved an accuracy level of 75%, which remained

the same, while reducing false positive rate by 7.69%. Significantly, our findings were

highly promising as we were able to lower the false positive rate to 0%.

Chapter 4. Implementation & Experimentation 93

Regarding the OS command injection vulnerability, the meta-scan system sur-

passed the accuracy of all individual scanners. Compared to the best-performing

individual scanner, Wapiti, we observed a 5% increase in accuracy and a 16.66% re-

duction in false negatives. Moreover, we noted the robustness of the scanner in han-

dling this specific vulnerability, as none of the scanners produced false positives in

the test cases.

4.6 Reporting and GUI

In order to provide users with a user-friendly experience while using the meta-scan

detection system, we have developed a meta-scanner tool based on the design de-

scribed in Chapter 3. The implemented tool features a streamlined user interface that

simplifies the utilization of the meta-scan system. The main view of the meta-scanner

tool is depicted in Figure 4.6. The main view provides users with various functionali-

ties, including the ability to initiate a scan, switch between dark and light modes, load

saved reports, and save reports in HTML format. These options are available through

the buttons located on the left-hand side of the main view or via the menu bar.

FIGURE 4.6: Main view of the meta-scan tool.

Chapter 4. Implementation & Experimentation 94

Prior launching a scan on a target web application, users can modify the configu-

ration settings of each base scanner. This can be done by accessing the Settings menu

and adjusting the values of the relevant parameters for each base scanner, as illus-

trated in Figure 4.7.

FIGURE 4.7: User-interface for configuring base scanners.

Subsequently, users may initiate a scan either by clicking the start button or select-

ing the corresponding option from the menu. To initiate a scan, users are required

Chapter 4. Implementation & Experimentation 95

to provide the target URL and designate a name for the target, as exemplified on the

left-hand side of Figure 4.8. Upon initiating the scan by pressing the start scanning

button, the scanning process can be tracked in the console located on the right-hand

side of the main view. Once the scans have finished, a message is displayed, and the

scanning report is displayed on the table located at the center of the main view.

FIGURE 4.8: User-interface for launching a scan.

For more detailed information about each vulnerability, users can click on the more

info button associated with the respective vulnerability. This triggers an integrated

window positioned at the bottom of the main window, presenting details about the

vulnerability such as successful attack instances, used parameters, and additional rel-

evant information as shown in Figure 4.9.

FIGURE 4.9: Visualizing details about a particular vulnerability.

In order to provide users with a more comprehensive view of the meta-scan sys-

tem, an additional feature allows them to generate a graph depicting the weights

Chapter 4. Implementation & Experimentation 96

assigned to each scanner in relation to each vulnerability (see Figure 4.10). To access

this graph, users can simply click on the graph icon located next to the more info button.

FIGURE 4.10: Visualizing base scanner weights for a particular vulnera-
bility.

4.7 Installation requirements

Given that the meta-scan system integrates multiple independently developed scan-

ners, it is essential to have a robust platform that can accommodate all the necessary

tools in a cohesive manner. While various Linux distributions can fulfill this require-

ment, we chose the Kali Linux distribution due to its exceptional adaptability and

flexibility in the field of cybersecurity [68]. Kali Linux is specifically designed to cater

to the needs of penetration testing, digital forensics, and ethical hacking, making it an

ideal choice for the development and hosting of the proposed meta-scan system. To

facilitate the seamless integration of the different scanners and develop an intuitive

user interface, we opted to use the Python programming language. Python offers a

wide range of libraries, providing extensive support for various functionalities and

enabling efficient development [88]. Leveraging Python’s versatility, we can effec-

tively combine the different scanners and create a unified experience for users.

Chapter 4. Implementation & Experimentation 97

4.7.1 Kali Linux

Kali Linux [89], the chosen operating system, is widely regarded as the most advanced

penetration testing distribution. It is an open-source, Debian-based Linux distribu-

tion meticulously tailored for diverse information security tasks. Previously known

as BackTrack Linux, Kali Linux encompasses a comprehensive set of common tools,

configurations, and automations that streamline the user’s focus on the task at hand

rather than the surrounding activities. Notably, Kali Linux is equipped with industry-

specific modifications and incorporates over six hundred tools specifically designed

for a range of information security endeavors. These encompass penetration testing

and vulnerability management. Kali Linux is freely accessible to both information se-

curity professionals and enthusiasts alike. It boasts an extensive feature set, including

a vast arsenal of over 600 penetration testing tools, cost-free availability, an open-

source Git tree, a custom kernel optimized for injection capabilities, development in

a secure environment, support for multiple languages, complete customization op-

tions, and compatibility with ARMEL and ARMHF architectures [68].

4.7.2 Languages & Libraries

To meet the meta-system development requirements, the Python programming lan-

guage is opted to serve as a foundation for the implementation. Additionally, specific

libraries play a crucial role in enabling various functionalities.

1. Python v3.10: Python [90] is a dynamically-typed, high-level programming lan-

guage that uses an interpreted approach. With its object-oriented nature and

dynamic semantics, Python offers a compelling platform for efficient rapid ap-

plication development. It boasts a rich set of built-in data structures and sup-

ports dynamic typing and binding, enhancing the flexibility and productivity

of developers [88]. Python 3.10 was released on October 4th, 2021. It has new

syntax features, new standard libraries, and interpreter improvements.

Chapter 4. Implementation & Experimentation 98

2. Tkinter & CustomTkinter: Tkinter [91] is a standard Python library that pro-

vides a GUI (Graphical User Interface) framework for creating and developing

desktop applications, while CustomTkinter [92] is an extended library from

Tkinter developed to customize the GUI for more adaptable and nicer designs.

3. OS & Threading: The Python libraries OS and Threading are essential compo-

nents used by the meta-scan system for seamless integration of scanners and

efficient execution of security assessments. The OS library provides a standard-

ized interface for interacting with the operating system (Kali Linux in this case),

enabling the execution of specific OS commands required for each scanner’s in-

tegration. This ensures a smooth coordination of scanner functionalities within

the meta-scan system. On the other hand, the Threading library of Python en-

ables the concurrent execution of multiple tasks or processes. Using the multi-

threading technique, the meta-scan system enables the simultaneous execution

of scanner operations. This parallel execution significantly enhances the speed

and efficiency of the vulnerability detection process.

4. JSON (JavaScript Object Notation): The Python library JSON serves as a fun-

damental tool in the meta-scan system for handling files in JSON format. This li-

brary is essential for reading and manipulating JSON files, which are commonly

used for storing and exchanging data. In the context of the meta-scan system,

the JSON library is specifically utilized for two purposes. Firstly, it enables the

system to read scanner reports provided in JSON format. By leveraging the ca-

pabilities of the JSON library, the meta-scan system can extract relevant informa-

tion from these reports and incorporate it into its analysis and decision-making

processes. Secondly, the JSON library is used to save the final report gener-

ated by the meta-scan system. After the completion of the security assessment,

the system aggregates all the relevant vulnerability information, meta-scan de-

cisions, and other pertinent details into a comprehensive report. This report

Chapter 4. Implementation & Experimentation 99

is then saved in JSON format using the JSON library, ensuring a standardized

representation and easy accessibility of the final results.

5. Jinja2 & Webbrowser: Jinja2 [93] is a widely adopted templating engine for

Python developers, offering powerful capabilities for creating dynamic tem-

plates. It enables the creation of templates that incorporate placeholders, re-

ferred to as variables, as well as control structures like loops and conditionals.

In the context of the meta-scan system, we leveraged Jinja2 to generate the final

report in HTML file format. Using Jinja2’s features, we were able to create a

template that efficiently incorporates the relevant data and presents it in a well-

structured and visually appealing manner. Additionally, we made use of the

Python library Webbrowser [94]. This library provides functionality to inter-

act with web browsers, allowing us to open and display the generated report

in a web browser. By utilizing the capabilities of the Webbrowser library, we

were able to present the report seamlessly in a user-friendly and accessible for-

mat. Furthermore, this library can also be used to navigate to other web pages,

such as target URLs, providing additional flexibility and functionality within

the meta-scan system.

6. Matplotlib: Matplotlib [95] is a versatile and extensive library in Python that

facilitates the creation of static, animated, and interactive visualizations. For the

meat-scan system, we used the Matplotlib library to generate graphical repre-

sentations, specifically graphs, pertaining to the Weight matrix for each vulner-

ability.

4.7.3 Installation process

One of the critical steps and requirements in the meta-scan system is the installation

of the selected scanners. It is of utmost importance to ensure that these scanners are

not only properly installed but also kept up-to-date. Keeping the scanners updated

is vital for achieving optimal results. Regular updates ensure that the scanners have

Chapter 4. Implementation & Experimentation 100

the latest vulnerability signatures, detection techniques, and bug fixes. By staying

current with the latest versions, the scanners are better equipped to identify vulner-

abilities accurately and provide more reliable results. Therefore, diligent attention to

the installation and maintenance of the selected scanners is essential for maximizing

the effectiveness of the meta-scan system.

4.7.3.1 OWASP ZAP

ZAP provides installers for Windows, Linux, and macOS operating systems. Addi-

tionally, Docker images are available for download from the official ZAP website. As

our thesis focuses on the usage of the Kali Linux operating system, all installation in-

structions provided herein are specific to the Linux OS. Note that ZAP requires Java

version 11 or higher in order to run properly. To install ZAP on Kali Linux, there are

two recommended methods. The first approach is to download the desired installer

from the official ZAP website [56] and follow the installation instructions while ac-

cepting the user terms and policies. Alternatively, you can execute the following

command in the Kali Linux terminal:

sudo apt install zaproxy

4.7.3.2 Wapiti

Wapiti does not have a graphical user interface (GUI) but instead operates in command-

line mode. It offers a straightforward command structure that facilitates ease of use

and efficient scanning. Wapiti is compatible with multiple operating systems includ-

ing Linux, Windows, and macOS. To install Wapiti, there are two recommended meth-

ods available. The first approach is to download the latest stable version of Wapiti

from the official repository [57] and follow the provided instructions to complete the

installation process. Alternatively, you can execute the following command in the

Kali Linux terminal:

Chapter 4. Implementation & Experimentation 101

sudo apt install wapiti

4.7.3.3 SkipFish

To install Skipfish, begin by downloading the latest stable version from the Skipfish

repository [52]. Make sure that the hosted system has the required dependencies,

including OpenSSL, libidn, zlib, and libpcre, installed beforehand. Extract the down-

loaded archives to a suitable location on the system. Navigate to the extracted Skipfish

directory and compile the program by running the command make. Once the compi-

lation process is finished, you can install Skipfish by executing sudo make install. If

the Kali Linux distribution is used, Skipfish is already supported. Simply open the

terminal or PowerShell and run the following command to install Skipfish directly:

sudo apt install skipfish

4.7.3.4 Nikto

Note that Nikto operates solely in command-line mode and does not have a graph-

ical user interface. To install Nikto, follow these steps. First, ensure that Perl 5 is

installed on the system, as Nikto relies on it for execution. Install Perl 5 according to

the instructions for the operating system. Nikto is compatible with Windows, Linux,

and MacOS X. Once Perl 5 is installed, proceed with the Nikto installation. Clone

the official Nikto repository using the command git clone https://github.com/sullo/nikto.

Navigate to the ”nikto/program” directory using the command ”cd nikto/program”. If

you are using the Kali Linux distribution, installation is simpler. Run the following

command in the terminal or PowerShell:

sudo apt install nikto

Chapter 4. Implementation & Experimentation 102

4.7.3.5 Nuclei

Nuclei relies on Go language Go1.19, so it is necessary to have it installed on the

system before proceeding with the installation. Once Go1.19 is installed, one can

proceed with the Nuclei installation by downloading and compiling the latest stable

version using the command:

go install -v github.com/projectdiscovery/nuclei/v2/cmd/nuclei@latest

For users of the Kali Linux distribution, installing Nuclei is straightforward. Sim-

ply run the following command in the terminal or PowerShell:

sudo apt install nuclei

4.7.3.6 Meta-scan system

To set up the meta-scan system, begin by installing the individual scanners. Once

the scanners are installed, one can proceed to install the meta-scan system. The latest

stable version of the meta-scan system can be obtained from the repository located at

https://github.com/OSTEsayed/OSTE-Meta-Scan. The installation can be performed

manually using the following steps:

1. Download the meta-scanner: git clone https://github.com/OSTEsayed/oste-meta-scan

2. Navigate to the directory: cd downladed path/Meta-scan

3. Install required libraries: sudo pip install requirements.txt

4. Launch the meta-scanner: python3 Meta-scan.py

https://github.com/OSTEsayed/OSTE-Meta-Scan

Chapter 4. Implementation & Experimentation 103

4.8 Conclusion

This chapter provides a detailed account of the development and implementation

process of the proposed meta-scan system, building upon the design scheme dis-

cussed in Chapter 3. Our experimentation and evaluation approach involved care-

fully selecting five dynamic web application scanners from a pool of over 18 options.

We examined various aspects of each scanner, including their configuration, scanning

techniques, and generated reports. These reports were consolidated, combined, and

analyzed to create a unified and comprehensible report. To enhance the effective-

ness of the meta-scan system, we conducted parameter tuning specifically for three

common injection vulnerabilities: XSS, SQL, and OS command. This involved testing

on four known vulnerable applications and using the grid search method to iden-

tify optimal values for the reward rate, penalty factor, and thresholds. These pa-

rameter values were determined based on their ability to produce the most accurate

results during the learning phase. Subsequently, we performed a comparative anal-

ysis between each individual scanner and our meta-scan system. The results were

highly promising, as we successfully reduced false positives for SQL injections and

improved the accuracy and true positives for both XSS and OS command injections.

However, it should be noted that further experimentation and data collection using

additional web applications are necessary to thoroughly evaluate the effectiveness of

the meta-scan system. Furthermore, we developed a user-friendly graphical interface

for the meta-scan system, allowing users to easily experiment with the system using

online or locally hosted web applications. This interface enhances the usability and

accessibility of the meta-scan system for a wider range of users.

104

CONCLUSION

In this research project, we designed and developed a meta-scan system that inte-

grates multiple dynamic vulnerability scanners to enhance accuracy and minimize

false positives and false negatives in detecting injection vulnerabilities. The obtained

results were promissing; the proposed system surpasses the performance of individ-

ual scanners; in the worst-case, the meta-scan system performs at least as well as

the best individual scanner integrated in the system. This supports the hypothesis

that using multiple scanners can improve the detection accuracy. Furthermore, the

meta-scan tool features a user-friendly interface and generates a comprehensive scan-

ning report, providing valuable insights into the vulnerabilities detected. The pro-

posed meta-scan system showed effectiveness in detecting XSS vulnerabilities and OS

command injections, but it exhibited limitations in identifying SQL injections. To en-

hance the execution efficiency, we explored the use of a multithreaded system, which

proved advantageous compared to sequential scanning and mitigated potential time-

consuming issues.

However, some drawbacks were identified upon closer examination of the pro-

posed system. Firstly, the system was constrained by the limited availability of vul-

nerable pages for testing, potentially leading to incomplete vulnerability detection.

Secondly, the study was limited by the absence of applications with other injection

Conclusion 105

vulnerabilities, such as CRLF, template, code, XML-based, and HTTP header injec-

tions. This limited diversity restricts the system’s generalizability and its ability to

address a comprehensive range of injection vulnerabilities. It is worth noting that the

proposed meta-scan system has the potential for generalization beyond injection vul-

nerabilities. The underlying principles and methodologies can be applied to address

other types of vulnerabilities, opening avenues for future research in addressing a

broader range of security vulnerabilities. Thirdly, the selected scanners had limita-

tions in detecting vulnerabilities in web applications with dynamic generation, such

as OWASP Juicy Shop [58]. The dynamic nature of these applications, with hidden

input points through JavaScript or other dynamic states, often requires human inter-

action for effective detection. This limitation should be taken into account when using

the meta-scan system or individual scanners. Finally, although a multi-threading ap-

proach was used, the meta-scanner still encounters a time-consumption problem. To

address this issue, a potential solution is to adopt a cloud-based solution, which is

left as a future work. This way, base scanners can be deployed across multiple and

separate nodes and executed concurrently, enabling true parallelism. The meta-scan

node would then focus only on consolidating the data and making informed deci-

sions based on the collected information. The cloud-based solution has the potential

to significantly improve the efficiency and performance of the meta-scanner.

106

BIBLIOGRAPHY

[1] José Fonseca, Marco Vieira, and Henrique Madeira. “Vulnerability & attack in-

jection for web applications”. In: 2009 IEEE/IFIP International Conference on De-

pendable Systems & Networks. IEEE. 2009, pp. 93–102.

[2] Annual number of malware attacks worldwide from 2015 to 2022 (in billions) Statista

Foundation. https : / / www . statista . com / statistics / 873097 / malware -

attacks-per-year-worldwide/. Accessed: 2023-05-14.

[3] Melina Kulenovic and Dzenana Donko. “A survey of static code analysis meth-

ods for security vulnerabilities detection”. In: 2014 37th International Conven-

tion on Information and Communication Technology, Electronics and Microelectronics

(MIPRO). IEEE. 2014, pp. 1381–1386.

[4] Jason Bau et al. “State of the art: Automated black-box web application vul-

nerability testing”. In: 2010 IEEE symposium on security and privacy. IEEE. 2010,

pp. 332–345.

[5] Adam Doupé, Marco Cova, and Giovanni Vigna. “Why Johnny can’t pentest:

An analysis of black-box web vulnerability scanners”. In: Detection of Intrusions

and Malware, and Vulnerability Assessment: 7th International Conference, DIMVA

2010, Bonn, Germany, July 8-9, 2010. Proceedings 7. Springer. 2010, pp. 111–131.

https://www.statista.com/statistics/873097/malware-attacks-per-year-worldwide/
https://www.statista.com/statistics/873097/malware-attacks-per-year-worldwide/

Bibliography 107

[6] Jeroen Van Der Ham. “Toward a better understanding of “Cybersecurity””. In:

Digital Threats: Research and Practice 2.3 (2021), pp. 1–3. DOI: 10.1145/3442445.

[7] F. Flammini, R. Setola, and G. Franceschetti. Effective Surveillance for Homeland

Security: Balancing Technology and Social Issues. Multimedia Computing, Com-

munication and Intelligence. Taylor & Francis, 2013.

[8] Nuno Antunes and Marco Vieira. “Enhancing Penetration Testing with Attack

Signatures and Interface Monitoring for the Detection of Injection Vulnerabili-

ties in Web Services”. In: 2011 IEEE International Conference on Services Comput-

ing. 2011, pp. 104–111. DOI: 10.1109/SCC.2011.67.

[9] What Are Injection Attacks Ian Muscat. https : / / www . acunetix . com / blog /

articles/injection-attacks/. Accessed: 2023-02-15.

[10] Josh Pauli. The basics of web hacking: tools and techniques to attack the web. Elsevier,

2013.

[11] Justin Clarke. SQL injection attacks and defense. Elsevier, 2009.

[12] MILLER Richie. Practical Programming 6 in 1;Python Machine Learning Javascript

React 17 and Angular with Typescript. Retrieved: 2023-02-19. PASTOR PUBLISH-

ING LTD, 2023.

[13] Abdelhakim Hannousse and Salima Yahiouche. “Handling webshell attacks: A

systematic mapping and survey”. In: Comput. Secur. 108 (2021), p. 102366. DOI:

10.1016/j.cose.2021.102366.

[14] Abdelhakim Hannousse, Mohamed Cherif Nait-Hamoud, and Salima Yahiouche.

“A deep learner model for multi-language webshell detection”. In: Int. J. Inf. Sec.

22.1 (2023), pp. 47–61. DOI: 10.1007/s10207-022-00615-5.

[15] John Viega Andy Oram. Beautiful Security: Leading Security Experts Explain How

They Think. 2009.

[16] OWASP Top Ten OWASP Foundation. https://owasp.org/www-project-top-

ten/. Accessed: 2023-03-10.

https://doi.org/10.1145/3442445
https://doi.org/10.1109/SCC.2011.67
https://www.acunetix.com/blog/articles/injection-attacks/
https://www.acunetix.com/blog/articles/injection-attacks/
https://doi.org/10.1016/j.cose.2021.102366
https://doi.org/10.1007/s10207-022-00615-5
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

Bibliography 108

[17] Distribution of web application critical vulnerabilities worldwide as of 2022 Statista

Foundation. https://www.statista.com/statistics/806081/worldwide-

application-vulnerability-taxonomy/. Accessed: 2023-03-15.

[18] Hsiu-Chuan Huang et al. “Web application security: threats, countermeasures,

and pitfalls”. In: Computer 50.6 (2017), pp. 81–85. DOI: 10.1109/MC.2017.183.

[19] R. Gupta. Hands-on Penetration Testing for Web Applications: Run Web Security

Testing on Modern Applications Using Nmap, Burp Suite and Wireshark (English Edi-

tion). BPB Publications, 2021.

[20] Paco Hope and Ben Walther. Web security testing cookbook: systematic techniques

to find problems fast. ” O’Reilly Media, Inc.”, 2008.

[21] Peter Yaworski. Real-world bug hunting: a field guide to web hacking. No Starch

Press, 2019.

[22] Anne Edmundson et al. “An empirical study on the effectiveness of security

code review”. In: Engineering Secure Software and Systems: 5th International Sym-

posium, ESSoS 2013, Paris, France, February 27-March 1, 2013. Proceedings 5. Springer.

2013, pp. 197–212. DOI: 10.1007/978-3-642-36563-8_14.

[23] David Binkley. “Source code analysis: A road map”. In: Future of Software Engi-

neering (FOSE’07) (2007), pp. 104–119. DOI: 10.1109/FOSE.2007.27.

[24] Michael Felderer et al. “Security testing: A survey”. In: Advances in Computers.

Vol. 101. Elsevier, 2016, pp. 1–51.

[25] Abdelhakim Hannousse, Salima Yahiouche, and Mohamed Cherif Nait-Hamoud.

Twenty-two years since revealing cross-site scripting attacks: a systematic mapping and

a comprehensive survey. 2022. arXiv: 2205.08425 [cs.CR].

[26] Jan Svoboda. “Effectively Combining Static Code Analysis and Manual Code

Reviews”. MA thesis. Masaryk University, 2014.

[27] Nico L. de Poel. “Automated security review of PHP web applications with

static code analysis”. MA thesis. University of Groningen, 2010.

https://www.statista.com/statistics/806081/worldwide-application-vulnerability-taxonomy/
https://www.statista.com/statistics/806081/worldwide-application-vulnerability-taxonomy/
https://doi.org/10.1109/MC.2017.183
https://doi.org/10.1007/978-3-642-36563-8_14
https://doi.org/10.1109/FOSE.2007.27
https://arxiv.org/abs/2205.08425

Bibliography 109

[28] V Benjamin Livshits and Monica S Lam. “Finding Security Vulnerabilities in

Java Applications with Static Analysis.” In: USENIX security symposium. Vol. 14.

2005, pp. 18–18.

[29] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. “Pixy: A static analy-

sis tool for detecting web application vulnerabilities”. In: 2006 IEEE Symposium

on Security and Privacy (SP’06). IEEE. 2006, 6–pp.

[30] William GJ Halfond, Shauvik Roy Choudhary, and Alessandro Orso. “Improv-

ing penetration testing through static and dynamic analysis”. In: Software Test-

ing, Verification and Reliability 21.3 (2011), pp. 195–214. DOI: 10.1002/stvr.450.

[31] Zoran Durić. “WAPTT-Web application penetration testing tool”. In: Advances

in Electrical and Computer Engineering 14.1 (2014), pp. 93–102.

[32] Indraneel Mukhopadhyay, S Goswami, and E Mandal. “Web penetration testing

using nessus and metasploit tool”. In: IOSR J. Comput. Eng 16.3 (2014), pp. 126–

129.

[33] Nisal Madhushan Vithanage and Neera Jeyamohan. “WebGuardia - an inte-

grated penetration testing system to detect web application vulnerabilities”.

In: 2016 International Conference on Wireless Communications, Signal Processing

and Networking (WiSPNET). 2016, pp. 221–227. DOI: 10.1109/WiSPNET.2016.

7566124.

[34] James Clause, Wanchun Li, and Alessandro Orso. “Dytan: a generic dynamic

taint analysis framework”. In: Proceedings of the 2007 international symposium on

Software testing and analysis. 2007, pp. 196–206.

[35] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. “All you ever

wanted to know about dynamic taint analysis and forward symbolic execution

(but might have been afraid to ask)”. In: 2010 IEEE symposium on Security and

privacy. IEEE. 2010, pp. 317–331.

[36] Min Gyung Kang et al. “Dta++: dynamic taint analysis with targeted control-

flow propagation.” In: NDSS. 2011.

https://doi.org/10.1002/stvr.450
https://doi.org/10.1109/WiSPNET.2016.7566124
https://doi.org/10.1109/WiSPNET.2016.7566124

Bibliography 110

[37] Malte Mues, Till Schallau, and Falk Howar. “Jaint: a framework for user-defined

dynamic taint-analyses based on dynamic symbolic execution of java programs”.

In: Integrated Formal Methods: 16th International Conference, IFM 2020, Lugano,

Switzerland, November 16–20, 2020, Proceedings 16. Springer. 2020, pp. 123–140.

[38] Ivan Andrianto, MM Inggriani Liem, and Yudistira Dwi Wardhana Asnar. “Web

application fuzz testing”. In: 2017 International Conference on Data and Software

Engineering (ICoDSE). IEEE. 2017, pp. 1–6.

[39] Rune Hammersland and Einar Snekkenes. “Fuzz testing of web applications”.

In: https: // www. semanticscholar. org/ paper/ Fuzz-testing-of-web-

applications- HammerslandSnekkenes (2008). DOI: 10.1109/ICODSE.2017.

8285893.

[40] Tao Guo et al. “Gramfuzz: Fuzzing testing of web browsers based on grammar

analysis and structural mutation”. In: 2013 Second International Conference on In-

formatics and Applications (ICIA). IEEE. 2013, pp. 212–215.

[41] Wang Chunlei, Liu Li, and Liu Qiang. “Automatic fuzz testing of web service

vulnerability”. In: (2014). DOI: 10.1049/cp.2014.0589.

[42] Ahmad Ghafarian. “A hybrid method for detection and prevention of SQL in-

jection attacks”. In: 2017 Computing Conference. IEEE. 2017, pp. 833–838.

[43] Bharti Nagpal, Naresh Chauhan, and Nanhay Singh. “A survey on the detection

of SQL injection attacks and their countermeasures”. In: Journal of Information

Processing Systems 13.4 (2017), pp. 689–702.

[44] Jingling Zhao and Rulin Gong. “A New Framework of Security Vulnerabilities

Detection in PHP Web Application”. In: 2015 9th International Conference on In-

novative Mobile and Internet Services in Ubiquitous Computing. 2015, pp. 271–276.

DOI: 10.1109/IMIS.2015.42.

https://www.semanticscholar.org/paper/Fuzz-testing-of-web-applications-HammerslandSnekkenes
https://www.semanticscholar.org/paper/Fuzz-testing-of-web-applications-HammerslandSnekkenes
https://doi.org/10.1109/ICODSE.2017.8285893
https://doi.org/10.1109/ICODSE.2017.8285893
https://doi.org/10.1049/cp.2014.0589
https://doi.org/10.1109/IMIS.2015.42

Bibliography 111

[45] Kunal Sadalkar, Radhesh Mohandas, and Alwyn R Pais. “Model based hybrid

approach to prevent SQL injection attacks in PHP”. In: Security Aspects in Infor-

mation Technology: First International Conference, InfoSecHiComNet 2011, Haldia,

India, October 19-22, 2011. Proceedings. Springer. 2011, pp. 3–15. DOI: 10.1007/

978-3-642-24586-2_3.

[46] Yong Fang et al. “TAP: A static analysis model for PHP vulnerabilities based on

token and deep learning technology”. In: PloS one 14.11 (2019), e0225196. DOI:

10.1371/journal.pone.0225196.

[47] Matija Cankar et al. “Security in DevSecOps: Applying Tools and Machine Learn-

ing to Verification and Monitoring Steps”. In: Companion of the 2023 ACM/SPEC

International Conference on Performance Engineering. 2023, pp. 201–205.

[48] Muhammad Noman Khalid et al. “Predicting web vulnerabilities in web appli-

cations based on machine learning”. In: Intelligent Technologies and Applications:

First International Conference, INTAP 2018, Bahawalpur, Pakistan, October 23-25,

2018, Revised Selected Papers 1. Springer. 2019, pp. 473–484. DOI: 10.1007/978-

981-13-6052-7_41.

[49] Ana Fidalgo et al. “Towards a deep learning model for vulnerability detection

on web application variants”. In: 2020 IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW). IEEE. 2020, pp. 465–476.

[50] Anthony Dessiatnikoff et al. “A clustering approach for web vulnerabilities de-

tection”. In: 2011 IEEE 17th Pacific Rim International Symposium on Dependable

Computing. IEEE. 2011, pp. 194–203.

[51] W3af Scanner W3af. https://w3af.org/. Accessed: 2023-01-21.

[52] SkipFish kali tools. https://www.kali.org/tools/skipfish. Accessed: 2023-01-

21.

https://doi.org/10.1007/978-3-642-24586-2_3
https://doi.org/10.1007/978-3-642-24586-2_3
https://doi.org/10.1371/journal.pone.0225196
https://doi.org/10.1007/978-981-13-6052-7_41
https://doi.org/10.1007/978-981-13-6052-7_41
https://w3af.org/
https://www.kali.org/tools/skipfish

Bibliography 112

[53] Maha Alghawazi, Daniyal Alghazzawi, and Suaad Alarifi. “Detection of sql

injection attack using machine learning techniques: a systematic literature re-

view”. In: Journal of Cybersecurity and Privacy 2.4 (2022), pp. 764–777. DOI: 10.

3390/jcp2040039.

[54] Muzun Althunayyan et al. “Evaluation of black-box web application security

scanners in detecting injection vulnerabilities”. In: Electronics 11.13 (2022), p. 2049.

DOI: 10.3390/electronics11132049.

[55] Burp Suite Professional portswigger foundation. https://portswigger.net/burp/

pro. Accessed: 2023-01-21.

[56] OWASP Zap OWASP foundation. https://www.zaproxy.org/. Accessed: 2023-

01-21.

[57] Wapiti Github platform. https://wapiti-scanner.github.io/. Accessed: 2023-

01-21.

[58] OWASP Juicy Shop project OWASP foundation. https://owasp.org/www-project-

juice-shop/. Accessed: 2023-01-21.

[59] Balume Mburano and Weisheng Si. “Evaluation of web vulnerability scanners

based on owasp benchmark”. In: 2018 26th International Conference on Systems

Engineering (ICSEng). IEEE. 2018, pp. 1–6.

[60] Arachni Github platform. https://github.com/Arachni/arachni. Accessed:

2023-01-21.

[61] Malik Qasaimeh, A Shamlawi, and Tariq Khairallah. “Black box evaluation of

web application scanners: Standards mapping approach”. In: Journal of Theoret-

ical and Applied Information Technology 96.14 (2018), pp. 4584–4596.

[62] NetSparker inviciti foundation. https://www.invicti.com/. Accessed: 2023-01-

21.

[63] Nessus tenable platform. https://www.tenable.com/. Accessed: 2023-01-21.

https://doi.org/10.3390/jcp2040039
https://doi.org/10.3390/jcp2040039
https://doi.org/10.3390/electronics11132049
https://portswigger.net/burp/pro
https://portswigger.net/burp/pro
https://www.zaproxy.org/
https://wapiti-scanner.github.io/
https://owasp.org/www-project-juice-shop/
https://owasp.org/www-project-juice-shop/
https://github.com/Arachni/arachni
https://www.invicti.com/
https://www.tenable.com/

Bibliography 113

[64] Acunetix Acunetix foundation. https://www.acunetix.com/. Accessed: 2023-01-

21.

[65] M Shanthi and A Anthony Irudhayaraj. “Multithreading-an efficient technique

for enhancing application performance”. In: International Journal of Recent Trends

in Engineering 2.4 (2009), p. 165.

[66] Bob Martin. “Common Vulnerabilities Enumeration (CVE), Common Weakness

Enumeration (CWE), and Common Quality Enumeration (CQE) Attempting

to systematically catalog the safety and security challenges for modern, net-

worked, software-intensive systems”. In: ACM SIGAda Ada Letters 38.2 (2019),

pp. 9–42. DOI: 10.1145/3375408.3375410.

[67] Felipe Pezoa et al. “Foundations of JSON schema”. In: Proceedings of the 25th

international conference on World Wide Web. 2016, pp. 263–273.

[68] Lee Allen, Tedi Heriyanto, and Shakeel Ali. Kali Linux–Assuring security by pen-

etration testing. Packt Publishing Ltd, 2014.

[69] Vega Scanner Subgraph foundation. https://subgraph.com/vega/. Accessed:

2023-01-21.

[70] Ronin-Vulns Github platform. https://github.com/ronin-rb/ronin-vulns.

Accessed: 2023-01-21.

[71] Vulmon Vulmap Github platform. https : / / github . com / vulmon / Vulmap. Ac-

cessed: 2023-01-21.

[72] Shenril Sitadel Github platform. https://github.com/shenril/Sitadel. Ac-

cessed: 2023-01-21.

[73] OpenVas openvas. https://openvas.org. Accessed: 2023-01-21.

[74] Ratproxy sectools. https://sectools.org/tool/ratproxy/. Accessed: 2023-01-

21.

[75] Astra Getastra. https://www.getastra.com/. Accessed: 2023-01-21.

https://www.acunetix.com/
https://doi.org/10.1145/3375408.3375410
https://subgraph.com/vega/
https://github.com/ronin-rb/ronin-vulns
https://github.com/shenril/Sitadel
https://openvas.org
https://sectools.org/tool/ratproxy/
https://www.getastra.com/

Bibliography 114

[76] Vulscanpro Github platform. https://github.com/thenurhabib/vulscanpro.

Accessed: 2023-01-21.

[77] Nikto Github platform. https://github.com/sullo/nikto. Accessed: 2023-01-21.

[78] Nuclei projectdiscovery foundation. https://github.com/projectdiscovery/

nuclei. Accessed: 2023-01-21.

[79] Suliman Alazmi and Daniel Conte de Leon. “Customizing OWASP ZAP: A

Proven Method for Detecting SQL Injection Vulnerabilities”. In: 2023 IEEE 9th

Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Confer-

ence on High Performance and Smart Computing,(HPSC) and IEEE Intl Conference

on Intelligent Data and Security (IDS). IEEE. 2023, pp. 102–106.

[80] Aleksandra Kondraciuk, Aleksandra Bartos, and Beata Pańczyk. “Comparative

analysis of the effectiveness of OWASP ZAP, Burp Suite, Nikto and Skipfish in

testing the security of web applications”. In: Journal of Computer Sciences Institute

24 (2022), pp. 176–180.

[81] Nikita Karangle, Alekha Kumar Mishra, and Danish Ali Khan. “Comparison of

Nikto and Uniscan for measuring URL vulnerability”. In: 2019 10th International

Conference on Computing, Communication and Networking Technologies (ICCCNT).

IEEE. 2019, pp. 1–6. DOI: 10.1109/ICCCNT45670.2019.8944463.

[82] OWASP mutillidae2 OWASP foundation. https : / / github . com / webpwnized /

mutillidae. Accessed: 2023-01-21.

[83] OWASP Vulnerable web application OWASP foundation. https://github.com/

OWASP/Vulnerable-Web-Application. Accessed: 2023-01-21.

[84] Xtrem Vulnerable web application Github platform. https://github.com/s4n7h0/

xvwa. Accessed: 2023-01-21.

[85] DAMN Vulnerable web application Github platform. https://github.com/digininja/

DVWA. Accessed: 2023-01-21.

https://github.com/thenurhabib/vulscanpro
https://github.com/sullo/nikto
https://github.com/projectdiscovery/nuclei
https://github.com/projectdiscovery/nuclei
https://doi.org/10.1109/ICCCNT45670.2019.8944463
https://github.com/webpwnized/mutillidae
https://github.com/webpwnized/mutillidae
https://github.com/OWASP/Vulnerable-Web-Application
https://github.com/OWASP/Vulnerable-Web-Application
https://github.com/s4n7h0/xvwa
https://github.com/s4n7h0/xvwa
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA

Bibliography 115

[86] OWASP Vulnerable web application directory OWASP foundation. https://github.

com/OWASP/OWASP-VWAD. Accessed: 2023-01-21.

[87] Álvaro Barbero Jiménez, Jorge López Lázaro, and José R Dorronsoro. “Finding

optimal model parameters by discrete grid search”. In: Innovations in Hybrid

Intelligent Systems (2007), pp. 120–127. DOI: /10.1007/978-3-540-74972-1_17.

[88] Nimit Thaker and Abhilash Shukla. “Python as multi paradigm programming

language”. In: International Journal of Computer Applications 177.31 (2020), pp. 38–

42. DOI: 10.5120/ijca2020919775.

[89] Kali Linux Kali operating system platform. https://www.kali.org/. Accessed:

2023-01-21.

[90] Paython Python language platform. https://www.python.org/. Accessed: 2023-

01-21.

[91] Tkinter Python liberary platform. https://docs.python.org/3/library/tk.

html. Accessed: 2023-01-21.

[92] Custom Tkinter Github platform. https://github.com/TomSchimansky/CustomTkinter.

Accessed: 2023-01-21.

[93] Jinja2 jinja palletsproject. https://jinja.palletsprojects.com/en/3.1.x/.

Accessed: 2023-01-21.

[94] Webbrowser Python liberary platform. https://docs.python.org/3/library/

webbrowser.html. Accessed: 2023-01-21.

[95] Matplotlib matplotlib. https://matplotlib.org/stable/index.html. Accessed:

2023-01-21.

https://github.com/OWASP/OWASP-VWAD
https://github.com/OWASP/OWASP-VWAD
https://doi.org//10.1007/978-3-540-74972-1_17
https://doi.org/10.5120/ijca2020919775
https://www.kali.org/
https://www.python.org/
https://docs.python.org/3/library/tk.html
https://docs.python.org/3/library/tk.html
https://github.com/TomSchimansky/CustomTkinter
https://jinja.palletsprojects.com/en/3.1.x/
https://docs.python.org/3/library/webbrowser.html
https://docs.python.org/3/library/webbrowser.html
https://matplotlib.org/stable/index.html

	Acknowledgements
	Abstract
	Résumé
	
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Injection vulnerabilities and associated attacks
	Injection attacks
	Risks and impacts
	Data breach or information leak
	Denial of Service (DoS)
	Unauthorized access to sensitive data
	Data corruption
	Total system compromise
	Malware distribution

	Statistics on web vulnerabilities
	Types of injection vulnerabilities
	Running Example
	Cross-site scripting (XSS) injection vulnerabilities
	SQL-based injection vulnerabilities
	OS command injection vulnerabilities
	Other injection vulnerabilities

	Conclusion

	Injection vulnerabilities detection approaches
	Static analysis based approaches
	Manual code review
	Description
	Advantages & Drawbacks

	Static code analysis
	Description
	State-of-the-Art Research
	Advantages & Drawbacks

	Dynamic analysis based approaches
	Penetration testing & Vulnerability scanning
	Description
	State-of-the-Art Research
	Advantages & Drawbacks

	Dynamic taint analysis
	Description
	State-of-the-Art Research
	Advantages & Drawbacks

	Fuzz testing
	Description
	State-of-the-Art Research
	Advantages & Drawbacks

	Hybrid based approaches
	Description
	State-of-the-Art Research
	Advantages & Drawbacks

	Machine learning based approaches
	Description
	State-of-the-Art Research
	Advantages & Drawbacks

	Conclusion

	A meta-scan detection system for web injection vulnerabilities
	Motivation
	Proposed meta-scan based system architecture
	Meta-scan based system phases
	Selection of base scanners
	Configuration of selected scanners
	Initiating the scanning process
	Data analysis and consolidation
	Decision-making process
	Threshold selection for each vulnerability
	Learning and updating weights

	Reporting

	Conclusion

	Implementation & Experimentation
	Selection of base scanners
	OWASP ZAP
	Wapiti
	SkipFish
	Nikto
	Nuclei

	Configuration of base scanners
	Initiating the scanning process
	OWASP ZAP
	Wapiti
	SkipFish
	Nikto
	Nuclei
	Sequential vs. Multithreading based execution

	Data analysis and consolidation
	OWASP ZAP
	Wapiti
	SkipFish
	Nikto
	Nuclei
	Consolidation process

	Decision-making
	Data description
	Parameter tuning
	Experimental results

	Reporting and GUI
	Installation requirements
	Kali Linux
	Languages & Libraries
	Installation process
	OWASP ZAP
	Wapiti
	SkipFish
	Nikto
	Nuclei
	Meta-scan system

	Conclusion

	Conclusion
	Bibliography

	TextField1: ملخص

