
People’s Democratic Republic of Algeria 

 Ministry of Higher Education and Scientific Research 

University of 8 May 1945-Guelma- 

Faculty of Mathematics, Computer Science and Science of Matter 
Department of Computer Science 

 

 

Master Thesis 

Specialty: Computer Science 
 

Option: 
 

Computer systems 

 

Theme 
 

 

Dynamic QA System for Nosql Databases  

 

 
 

Presented by: 

Mihoubi Zakaria 

 

 
Jury Members: 

N  Full Name Quality 
1 Dr. KHEBIZI ALI Chairman 
2 Dr. AGGOUNE AICHA Supervisor 
3 Dr. BOUROUAIEH DOUADI Examiner 

June 2023.  



i

Acknowledgements
First and foremost, I would like to express my deepest gratitude to the Almighty

Allah for granting me the strength, energy, determination, and resilience to

successfully complete this humble endeavor.

I would like to extend my sincere appreciation to Dr. Aggoune Aicha, my esteemed

supervisor, for her exceptional guidance, profound expertise, and invaluable advice

throughout the entirety of this project. Her unwavering support and constructive

feedback have played an instrumental role in the improvement and triumphant

achievement of the objectives set forth in this work. Dr. Aggoune Aicha’s dedication

and commitment to my academic growth deserve special recognition, and I am truly

grateful for her unwavering belief in my capabilities.

Furthermore, I would like to express my heartfelt gratitude to the esteemed

members of the jury for their presence during the defense of my thesis and their

meticulous examination of my research. I am profoundly appreciative of the time

they have invested in carefully scrutinizing my work. Their insightful feedback,

given during the presentation, holds immense value and will undoubtedly

contribute to the further refinement of my research.

I would like to express my deep gratitude and heartfelt appreciation to my beloved

family for their unwavering support, love, and encouragement throughout my

academic journey.

To my beloved friends, I want to take a moment to express my heartfelt gratitude to

each and every one of you. Your presence in my life has been an immeasurable gift,

and I am truly thankful for the impact you have had on me. May the blessings of

Allah shower upon each and every one of you, dear friends. The impact you have

had on my life is immeasurable, and I am forever grateful. Regardless of where our

individual paths may lead, I want you to know that I treasure the moments we have

shared, and I harbor no regrets in crossing paths with each and every one of you.



ii

ABSTRACT

Question-answering (QA) systems are crucial for retrieving information from large

databases. While traditional systems focus on structured relational databases, the

rise of NoSQL databases with a variety of query languages like MongoDB requires

adapting these systems. In this study, we propose a NoT5QL (NoSQL T5) model for

dynamic question answering of MongoDB based on fine-tuning of T5, a pre-trained

transformer model for natural language processing (NLP) tasks. The developed dy-

namic question-answering system is specifically tailored for generating queries for

MongoDB from natural language questions. To accomplish this task, a dataset called

"MongoQpedia" (Mongodb Query pedia) was created using diverse questions from

the Movies domain and annotated with MongoDB document-derived answers. The

construction of MongoQpedia is based on data augmentation via paraphrasing, back

translation, and named entity replacement techniques.

The evaluation of the NoT5QL model was performed through various metrics

such as BLEU and ROUGE, comparing fine-tuned T5 small and base models. This

provided insights into the impact of model size and complexity on MongoDB question-

answering capabilities. The results of these experiments demonstrate the effective-

ness of our approach in achieving high accuracy in answering questions related to

MongoDB databases.
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RÉSUMÉ

Les systèmes de question-réponse (QA) sont cruciaux pour récupérer des informa-

tions à partir de grandes bases de données. Alors que les systèmes traditionnels se

concentrent sur les bases de données relationnelles structurées, l’émergence de bases

de données NoSQL avec une variété de langages de requête tels que MongoDB néces-

site d’adapter ces systèmes. Dans cette étude, nous proposons un modèle NoT5QL

(NoSQL T5) pour la question-réponse dynamique de MongoDB basé sur l’affinage de

T5, un modèle de transformation pré-entraîné pour le traitement automatique du lan-

gage naturel (TALN). Le système de question-réponse dynamique développé est spé-

cifiquement conçu pour générer des requêtes pour MongoDB à partir de questions en

langage naturel. Afin d’accomplir cette tâche, un ensemble de données appelé "Mon-

goQpedia" (Mongodb Query pedia) a été créé en utilisant des questions diverses du

domaine des films et annoté avec des réponses dérivées des documents MongoDB.

La construction de MongoQpedia est basée sur l’augmentation des données via des

techniques de paraphrase, de traduction inversée et de remplacement d’entités nom-

mées.

L’évaluation du modèle NoT5QL a été réalisée à l’aide de différentes mesures telles

que BLEU et ROUGE, en comparant les modèles T5 small et base affinés. Cela a per-

mis d’obtenir des informations sur l’impact de la taille et de la complexité du modèle

sur les capacités de question-réponse de MongoDB. Les résultats de ces expériences
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démontrent l’efficacité de notre approche pour atteindre une grande précision dans

la réponse aux questions relatives aux bases de données MongoDB.

Mots-clés : Systèmes de question-réponse, bases de données NoSQL, T5, construction

d’ensemble de données, techniques d’augmentation des données, affinage.
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GENERAL INTRODUCTION

The digital world is experiencing rapid growth and increasing complexity in terms

of its volume (from terabytes to petabytes), variety (including structured, unstruc-

tured, and hybrid data), and velocity (with high-speed growth) [1] . The need to

efficiently access and retrieve this vast volume of data has given rise to advanced

techniques and technologies, including question-answering systems. These systems

enable users to ask questions in everyday language and receive accurate answers,

rather than providing a list of relevant documents like search engines typically do [2].

While question-answering systems have been extensively studied in the context of

traditional relational databases, there has been a noticeable gap in the development

of such systems for NoSQL databases, including MongoDB [3]. The existing works

are based on deep learning and NLP (Natural Language Processing) techniques such

as bag of words and parsing trees. However, these approaches are based on the ex-

ternal source, which is the knowledge graph in order to identify relevant entities and

generate a list of natural language answers. Besides, some works are limited to some

queries and required more details about the architecture and the dataset used. This

thesis addresses these issues by focusing on question answering systems specifically

designed for MongoDB using fine-tuned deep-learning models.

Due to the lack of benchmarks and datasets for deep learning of QA systems for

MongoDB, the main contributions of this thesis lie in the creation of a new large-scale
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dataset, named MongoQpedia, and the proposition of NoT5QL model by fine-tuning

of the T5 (Text-to-Text Transfer Transformer) model for the task of question answering

in MongoDB.

To construct the MongoQpedia dataset, we first identified diverse and represen-

tative questions covering the domain of Movies using the Mongodb Movies Sample

Database. These questions were then annotated with corresponding answers derived

from MongoDB documents. In addition, to increase the diversity and quality of the

dataset, we applied three data augmentation techniques: (1) Paraphrasing was used

to generate alternative versions of the questions while preserving their original mean-

ing, (2) Back translation was employed to translate the questions into a different lan-

guage and then translate them back to English, capturing different phrasings and ex-

pressions, (3) Named entity replacement was used to replace movie-related named

entities with similar entities, further expanding the dataset. By constructing this

dataset, we aim to provide a valuable resource for training and evaluating question

answering systems tailored to the unique characteristics of MongoDB’s document-

oriented structure.

The fine-tuning of the T5 model on the MongoQpedia dataset represents a signif-

icant advancement in the field of question-answering systems for NoSQL databases.

By fine-tuning the T5 model on the MongoQpedia dataset, we enhance its ability to

understand and generate accurate responses to questions posed in natural language

within the context of MongoDB’s document-oriented data model.

It is worth noting that this work represents one of the first attempts to address

the lack of development in question answering systems for NoSQL databases, par-

ticularly MongoDB. While question answering systems have thrived in the realm of

traditional relational databases, the unique characteristics and data model of NoSQL

databases present novel challenges and opportunities. Our research fills this void by

focusing specifically on MongoDB and leveraging deep learning techniques to enable

effective question-answering.

To summarize, the objectives of this thesis are twofold. Firstly, we aim to create the
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MongoQpedia dataset, consisting of movie-related questions and their corresponding

MongoDB query-based answers. This dataset serves as a benchmark for evaluating

the performance of question answering systems in MongoDB. Secondly, we fine-tune

the T5 model on the MongoQpedia dataset to develop a question answering system

tailored to MongoDB. Through extensive experimentation and evaluation, we aim to

demonstrate the effectiveness and practicality of our approach. The findings of this

thesis have far-reaching implications for the field of NoSQL databases and question

answering systems.

This report is divided into four chapters:

1. Chapter One: Querying NoSQL database

This chapter will explore NoSQL databases, covering their various subcate-

gories and principles. We will discuss the different kinds of NoSQL databases,

such as key-value stores, document databases, wide-column stores, and graph

databases. Additionally, we will delve into important topics and examine the

query languages employed in NoSQL databases. By the end of this chapter, you

will have a comprehensive comprehension of NoSQL databases and their role

in handling and analyzing vast amounts of data.

2. Chapter Two: An overview of QA systems for NoSQL databases

The objective of this chapter is to provide an overview of QA (Question-Answering)

systems, focusing on a bibliographic study of deep learning techniques used in

QA systems like BERT, GPT, and others. We will specifically explore the ap-

plication of QA systems for NoSQL querying, with a particular emphasis on

document-oriented databases such as MongoDB.

3. Chapter Three: Deep learning-based QA for MongoDB database
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In this chapter, we offer an extensive and comprehensive contribution. Firstly,

we present a detailed description of the process involved in creating the Mon-

goQpedia dataset. We discuss the various techniques and algorithms used for

data augmentation to enhance the quality and diversity of the dataset. Addi-

tionally, we provide an in-depth explanation of the conceptual architecture of

our NoT5QL model. This encompasses the design and structure of our model

specifically tailored for tackling NoSQL querying challenges. By covering these

aspects, we aim to provide a thorough understanding of the steps involved in

dataset creation, augmentation techniques, and the architecture of our innova-

tive NoT5QL model.

4. Chapter Four: Implementation and Experimentation

This chapter will examine the specific aspects of implementation and the as-

sessment of performance. The chapter is structured into three primary sections.

The initial section concentrates on the development environment, encompassing

the necessary hardware and software prerequisites for establishing the system.

The subsequent section presents a summary of the libraries employed during

the implementation procedure. Lastly, the third section elucidates the princi-

pal components of the implementation and furnishes an intricate analysis of the

outcomes acquired from our Q&A system. At the conclusion of this chapter,

readers will possess a comprehensive comprehension of the development pro-

cedure and the diverse tools employed in implementing our Q&A system.
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CHAPTER 1

QUERYING NOSQL DATABASE

1.1 Introduction

The amount of data that needs to be kept and organized has increased significantly

as a result of the Internet’s recent rapid growth [4]. Traditional relational databases,

which were created for modestly organized data collections, are now difficult to use.

These databases follow a strict schema, which is a preset organization of data in ta-

bles, and require a fixed structure before they can be made. This rigid approach has

problems scaling and handling massive amounts of heterogeneous data, which are

more common in today’s internet-centric environment [4].

NoSQL data stores have become a substitute solution to get around these restrictions.

NoSQL databases, in contrast to relational databases, offer flexible schema that enable

the storage of enormous quantities of heterogeneous data without a predefined struc-

ture.As a result, NoSQL data stores are well suited for managing massive amounts of

data and have shown encouraging results for horizontal scalability [5].

In this chapter, we will examine NoSQL databases, along with the numerous subcat-

egories and guiding principles that surround them. We will talk about the different
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types of NoSQL databases, including key-value stores, document databases, wide-

column stores, and graph databases. We’ll also look at some of the key issues in this

area and the various query languages used for NoSQL databases, giving a thorough

understanding of NoSQL databases and their function in managing and analyzing

enormous volumes of data by the end of this chapter.

1.2 What is NoSQL?

SQL databases struggle to handle an excessive amount of complex or partially struc-

tured data, fast-paced processing, and expanding horizontally. NoSQL databases of-

fer better speed, versatility in terms of scaling, and more adaptable schema design,

which are benefits over SQL databases in these scenarios. This shift towards using

NoSQL databases has arisen due to the recognition of the limitations of SQL in spe-

cific situations [6].

In 1998, Carlo Strozzi coined the term NoSQL to describe a new approach for man-

aging a large amount of heterogeneous data [7]. NoSQL, which stands for "Not Only

SQL," is a type of data storage alternative to traditional databases, designed to handle

large amounts of data, like the constantly growing data on Facebook [6].

NoSQL is a non-relational database management system, known for quick informa-

tion retrieval and portability. It evolved from the traditional relational database (RDB)

system and typically interacts with the UNIX operating system [8]. NoSQL databases

are non-relational, open-source, distributed, and horizontally scalable for high per-

formance. They do not organize data in related tables like relational databases, and

instead store data in a non-normalized manner. Being open-source, the code is pub-

licly available for inspection, modification, and recompilation. The distributed nature

means data is stored across multiple machines and managed through data replication

[9].
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1.3 Categories of NoSQL datastores

Four main categories of NoSQL databases have developed over time: key-value database,

wide-column stores, document databases, and graph databases [6].

1.3.1 Key-value databases

Key-value data stores are basic in nature, but are highly efficient and powerful. They

feature a simple application programming interface (API) and allow users to store

data in a flexible manner, without having to follow a strict schema. The data is stored

as a "key-value" pair, where a string (key) represents the reference to the actual data

(value). These stores operate similarly to hash tables and are quicker than RDBMS

due to their use of keys as indexes.

The key-value data model is simple, with data stored in a dictionary-like format that

can be accessed using the specified key. Modern key-value data stores prioritize scal-

ability over consistency, meaning that advanced querying and analytics functions like

joins and aggregate operations are omitted. Despite this, key-value stores offer high

concurrency, fast lookups, and the ability to store large amounts of data. One weak-

ness of this data model is the lack of a defined schema, making it harder to create

custom views of the data [5].

Some notable DBMS providers using key-value data stores are Amazon DynamoDB,

RIAK, Redis.
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FIGURE 1.1: An example of how key-value pairs are stored in a NoSQL
database [4].

1.3.2 Column-Oriented databases

Column stores in NoSQL are a blend of row and column storage, not just pure colum-

nar databases like in traditional relational systems (see Fig 1.2). Despite borrowing

the concept of column-based storage from columnar databases and adding columnar

capabilities to row-based databases, column stores do not store data in tables, instead

opting for a massively distributed architecture[5].

Column family stores enable searches using range queries and regular expressions on

indexed values or row keys, reducing the impact of the database operations to only

the relevant keys related to the query, rather than the entire row from disk. In addi-

tion to typical accessors and mutators, column-oriented databases commonly support

operations such as OR, IN, and AND. A well-known example is the Cassandra API,

which offers three main functions: get, insert, and delete, with parameters of table,

key, and columnName [10].
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FIGURE 1.2: Example of the records storage example in a column-
oriented database [11]

1.3.3 Document-oriented databases

Document-oriented databases store data in the form of documents, offering high per-

formance and the ability to scale horizontally. The documents within a document-

oriented database resemble records in relational databases, but with more flexibility

as they do not require a specific schema. The documents are in standard formats

such as XML, PDF, JSON, etc. Unlike relational databases, where records in the same

database have the same data fields with empty fields for unused data, each document

in a document store may have similar or dissimilar data. The documents are identi-

fied by a unique key, which can be a simple string or a reference to a URI or path.

Document stores are slightly more complex than key-value stores as they allow for the

key-value pairs to be encapsulated within a document, also known as key-document

pairs [5] .

A document-oriented type of NoSQL database is selected for a question-answering

system because of its flexibility in storing unstructured or semi-structured data, scal-

ability, and speed when it comes to information retrieval operations. The schema-less

nature of document stores also allows for easy integration and management of chang-

ing data structures, making it a suitable choice for a question-answering system.
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Fig. 1.3 gives an example of document-oriented datastore.

FIGURE 1.3: An example of a book stored in a document-oriented NoSQL
database [4]

In this thesis, we focused on MongoDB as an example of NoSQL database, since it

is the most popular NoSQL database and includes JSON-and BSON-based documents

for storing data [12].

1.3.4 Graph databases

Graph databases store information in a graph structure, where nodes represent ob-

jects and edges represent the relationships between these objects. These nodes can

have properties associated with them. The databases use a method called "index-free

adjacency," where each node directly points to the adjacent node, allowing for the

efficient traversal of millions of records. The focus of these databases is on the con-

nections between data and they can handle semi-structured data with ease, providing

schema-less storage.

Queries in graph databases are expressed as traversals, making them faster than tra-

ditional relational databases. They are also scalable and user-friendly while being
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ACID-compliant and offering rollback support [5].

Applications that require managing data with numerous relationships are more ap-

propriate for graph databases. These databases can replace time-consuming opera-

tions as recursive joins with more efficient methods like graph traversal and graph

pattern matching. Graph traversal starts with one node and then follows the descrip-

tion of the query to traverse to other nodes. The graph pattern matching technique

tries to find a specific pattern in the original graph.

In Neo4j graph DBMS, each vertex and edge in the graph has a "mini-index" of con-

nected objects, so the size of the graph doesn’t affect its performance during a traver-

sal and the cost of a single step remains constant. There is also a global adjacency

index, but it is only used to locate the starting point of a traversal. Indexes are crucial

for quickly retrieving vertices based on their values and serve as the starting point for

a traversal [10].

FIGURE 1.4: An example of a Graph NoSQL Database for the distance
between cities[4] .

1.4 CAP and BASE

NoSQL databases are made to meet the scalability and performance needs of web-

based applications that can’t be met by conventional relational databases. These

databases are referred to as "NoSQL" databases since they integrate many more char-

acteristics in addition to the features of traditional databases. This is due to their

contrast in priorities and architecture to typical relational databases utilizing SQL.

While NoSQL databases adhere to BASE (Basically Available, Soft State, Eventual
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consistency) principles or CAP (Consistency, Availability, Partition Tolerance), rela-

tional databases strictly adhere to the ACID (Atomicity, Consistency, Isolation, and

Durability) properties [13].

1.4.1 CAP theory

Professor Eric Brewer proposed the well-known CAP theorem in the year 2000 [14].

The CAP theorem stands for Consistency, Availability, and Partition Tolerance. The

fundamental idea of the CAP theorem is that a distributed system can only satisfy

two of the three district demands at once [15] .

FIGURE 1.5: CAP Theorem [16]

This theorem relies on three properties [17]:

1. Consistency: The first component of CAP. A response that is appropriate to

the desired service specification is what is meant by consistency. Informally

speaking, consistency is the property that each server gives the correct response

to each request.

2. Availability: The second component of CAP. The quality of having a response

for every request at some point. Although it is obvious that a quick response

is better than a slow response. The theorem shows that even the requirement

of a response is enough to cause issues (In most real systems, of course, a late

answer is just as terrible as none at all.).
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3. Partition tolerance: The Third component of CAP. Partition tolerance, in con-

trast to the other two requirements, is more of a statement about the underlying

system than it is about the service itself: communication between the servers is

unreliable, and the servers can be divided into multiple groups that are unable

to communicate with one another. We represent a partition-prone system as a

communication-flawed system, where communications can be lost permanently

or delayed indefinitely (Again, practically speaking, a long-delayed message

may as well not be delivered.).

1.4.2 BASE properties

The term "BASE" was deliberately selected to differentiate from the ACID paradigm,

with a focus on "Availability" and "Performance". Creating a database that follows the

ACID principles can be challenging, so consistency and isolation are often compro-

mised, leading to the widespread adoption of the BASE approach. The fundamental

idea behind BASE is that data consistency is the responsibility of the developer, not

the database [13].

The BASE properties are [18]:

1. Basically-Available: A distributed system must be able to acknowledge any

incoming requests, even if they result in a failure message.

2. Soft-state:As new information is received, the system may continue to change

its states.

3. Eventually-consistent: The system’s parts might not always display the same

value or state of a record. But eventually, they will resolve it with the passage of

time.
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1.5 NoSQL query languages

Query languages are useful for accessing relevant data from data storage. SQL query

standards are being established, and many categories are being offered . NoSQL

queries do not have a universally accepted industry standard [3]. The purpose of

a Query language is to allow us to perform CRUD operations (Create, Read, Update,

and Delete) on databases.

CRUD refers to the four fundamental functions that a software program must be ca-

pable of executing: Create, Read, Update, and Delete. This requires users to be able to

generate data, access the information in the user interface through reading it, modify

or change the data, and erase the data if necessary [19]. We give in the following part

a definition of each operation [20]:

1. Create Operation:

In a database, the CREATE function adds a fresh item. A row in a database table

is referred to as a record in a relational database management system (RDBMS),

and the columns are referred to as attributes or fields. The CREATE operation

updates the table with one or more new records that have distinct field values.

The same idea holds true for NoSQL databases. A new document with its at-

tributes (for instance, a JSON-formatted document) is added to the collection,

which is comparable to a table in an RDBMS, if the NoSQL database employs a

document-oriented approach. The CREATE action adds an item, which is equiv-

alent to a record, to the table in NoSQL databases like DynamoDB.

2. Read Operation:

Based on a set of search parameters, the READ action obtains information from

a database table, collection, or bucket. All records as well as some or all of the

fields within them can be retrieved using the READ function.

3. Update Operation:
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The UPDATE function is used to alter existing records in the database. For in-

stance, it could be used to update a customer’s address or change the price of

a product in a product database. Like the READ operation, the UPDATE func-

tion can modify records across the entire database or just a select few based on

specific criteria. The UPDATE operation can change and persist alterations to

a single field or multiple fields within the record. If multiple fields need to be

updated, the database system makes sure that all changes are made or none at

all. Some big data systems do not support the UPDATE operation and instead

only permit a timestamped CREATE operation, which creates a new version of

the row each time it is executed.

4. Delete Operation:

The DELETE operation enables users to eliminate records from the database. A

hard delete completely removes the record, while a soft delete marks the record

but keeps it in place. This is useful in situations such as payroll, where records

of former employees need to be kept even after they have left the company.

We present in the rest of this section the principal query languages for NoSQL data

stores.

1.5.1 MongoDB Query Language (MQL)

MongoDB offers a JSON-based query language that consists of two main components

[21]:

1. The "find" query retrieves documents that meet a specific set of conditions and

takes a query and a projection parameter. It returns a cursor to the matching

documents, and optional modifiers can be added to impose limits and sort or-

ders.
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2. The "aggregate" query, on the other hand, enables the creation of processing

pipelines, where each document in a collection passes through multiple stages

to perform more complex computations.

A number of users are interested in transitioning from SQL to NoSQL data stores due

to the efficient handling of unstructured data by NoSQL data stores. [22] .

MongoDB Query syntax for the CRUD operations is presented as follows:

• Create: To insert new records into a MongoDB collection, one can utilize func-

tions and BSON objects. "Insert" is the function provided for this purpose. Upon

inserting a new object into a MongoDB collection, a unique field named "_id" is

automatically added to the object, serving as an index [23]. The following exam-

ple demonstrates how to add a new user to the "users" collection in MongoDB

using the MongoDB shell:

FIGURE 1.6: Inserting one document to the "users" collection [24]

• Read: In MongoDB, you can retrieve data by using the "find" function. Un-

like traditional relational databases, MongoDB does not have tables; instead,

it stores data in collections that are flexible in structure. The items within these

collections can have different fields [23]. When using the "find" function in Mon-

goDB, you can specify query filters or conditions that determine which docu-

ments should be returned[24]. The example below shows how to read the spe-

cific document:

FIGURE 1.7: Find all the documents in the "users" collection that satisfy
the filter [24]
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• Update: In MongoDB, updating records, whether it’s just one or many, is made

easy [23]. You can specify criteria, also known as filters, to select the documents

to be updated. The syntax for these filters is the same as that used for read

operations [24].

FIGURE 1.8: Update all the documents in the "users" collection that sat-
isfy the filter [24]

• Delete: In MongoDB, the function for deleting data from a collection is "remove"

[23]. As with updating records, you can specify criteria, or filters, to determine

which documents should be deleted. The syntax for these filters is consistent

with that used in read operations [24].

FIGURE 1.9: Delete all the documents in the "users" collection that satisfy
the filter [24]

MongoDB would be the ideal choice for making a question-answering system be-

cause of its document-oriented design that supports unstructured or semi-structured

data, its ability to scale with large volumes of data, and its capability to manage com-

plex and dynamic data structures. Furthermore, MongoDB has strong community

support and a wide set of tools and services. Its indexing and querying features also

make it perfectly suited for systems that require fast information retrieval and the

ability to retrieve data based on multiple conditions. For these reasons, the use of

MongoDB for the query-answering systems is very suitable to give the opportunity

to easily use NoSQL data via natural language.
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1.5.2 The Cassandra Query Language (CQL):

This query language is used in the Cassandra database. It is also designed to store

data in column-oriented Databases. In CQL (Cassandra Query Langage), columns

are the fundamental data structures, and they can handle both structured and un-

structured data. Furthermore, Key spaces are used as a database in CQL [25].

CQL provides a paradigm similar to SQL in that data is stored in tables with rows of

fields.

• Create:

FIGURE 1.10: Create operation for CQL [26]

• Read:

FIGURE 1.11: Read operation for CQL [26]

• Update:

FIGURE 1.12: Update operation for CQL [26]

• Delete:

FIGURE 1.13: Delete operation for CQL [26]
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1.5.3 UnQL

This language is specifically designed for CouchDB a document-oriented database.

Unstructured Query Language (UnQL) uses structural recursion to extract informa-

tion from semi-structured data. UnQL, unlike to MongoDB, offers a model similar to

SQL in that data is stored in documents.

• Create::

FIGURE 1.14: Create operation for UnQL [27]

• Read: UnQL has a straightforward syntax for selecting and filtering data, which

includes the use of "select" and "where" statements with pattern matching capa-

bilities [28].

FIGURE 1.15: Read operation for UnQL [27]

• Update:

FIGURE 1.16: Update operation for UnQL [27]
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• Delete:

FIGURE 1.17: Delete operation for UnQL [27]

1.5.4 Cypher

Cypher is a query language specifically designed for graph databases. It was first

used with the Neo4j database management system. Cypher allows for simple and

efficient implementation of creating and retrieving values from nodes in a graph

database.

It is similar to SQL for graphs and was influenced by SQL, allowing you to concen-

trate on what data you want from the graph (not how to go get it) [29].

• Create:

FIGURE 1.18: Create operation for Cypher [30]

• Read:

FIGURE 1.19: Read operation for Cypher [30]

• Update:
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FIGURE 1.20: Update operation for Cypher [30]

• Delete:

FIGURE 1.21: Delete operation for Cypher [30]

1.6 Challenges of NoSQL Querying

The fact that NoSQL databases do not allow ACID (atomicity, consistency, isolation,

and durability) transactions across multiple documents is one of the most commonly

stated disadvantages of these databases. Single-record atomicity is suitable for many

applications with proper schema design. Nevertheless, a lot of applications still need

for ACID across several records[31].

Each brand of NoSQL database uses its own unique schema. In some cases (such as

MongoDB), there is a flexible schema. In other situations (such as Redis), it is a pairs

of key and value. In still other designs, it resembles relational databases (for example,

Cassandra). The problem here is that each unique system has its own strengths and

weaknesses, which must be learned before choosing the right NoSQL database for the

situation at hand [32].

The absence of a standard query language in NoSQL databases presents a difficulty

for developers who work with multiple databases. Unlike SQL databases that have

a unified language (SQL), each NoSQL database has its own unique query language

with different syntax, operators, and functions. This makes it hard for developers to

switch between languages and increases development time and costs. Additionally, it

also creates an obstacle for new users who must learn a new query language for each
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NoSQL database they work with. Which in return rise the need for a standard query

language that can be used and understood by everyone.

1.7 Conclusion

NoSQL databases have been a revolutionary invention that helped companies, scien-

tists and programmers in general handle the huge volume of big data that has been

gathered over the past years and it became the optimal choice for systems that don’t

have a fixed schema for their data.

One of those systems is the Question answering system (QA system) that’s made for

improving human-machine interactions by mapping natural language query to re-

spective NoSQL data stores. So, QA systems for NoSQL datastores will be the topic

of our next chapter.
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CHAPTER 2

AN OVERVIEW OF QA SYSTEMS FOR NOSQL

DATABASES

2.1 Introduction

The fast growth in the storage of huge volumes of information and the widespread

usage of the internet allowed researchers to store and share data with the general pub-

lic [2]. While most modern information retrieval systems do not directly answer our

questions, they can be helpful in finding relevant documents that might contain the

desired information. Instead of giving a concise answer, they provide the user with a

list of papers to browse through in order to locate the necessary information. One skill

that is thought to have a lot of promise is the ability to give clear answers to questions

[33]. The Question-Answering system (QA system) allows users to access knowledge

resources naturally by asking questions and receiving relevant and concise responses

[2].

Question Answering (QA) is a research domain that combines various disciplines

such as Information Retrieval (IR), Information Extraction (IE), and Natural Language

Processing (NLP).[34]. Thus, with the diversity of NoSQL query languages, the de-

velopment of a QA system for querying the NoSQL database is very suitable.
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The aim of this chapter is to give an overview of QA systems with a bibliography

study on deep learning of QA systems such as Bert, GPT, etc. the use of QA for NoSQL

querying, especially, document-oriented databases of MongoDB.

2.2 Background

The Natural Language Interface to Databases (NLIDB) was one of the first question-

answering systems that allowed users to input queries in natural language and re-

trieve responses from databases, reducing the need for formal query languages. BASE-

BALL and LUNAR were other notable Question-Answering (QA) systems that pro-

vided information on baseball leagues and soil samples, respectively, but were limited

by their repository’s insufficient domain information despite performing well using

simple pattern matching techniques [35].

As research progressed in the field, QA systems shifted from simple pattern match-

ing to linguistic analysis to understand the intended question requirements. MASQUE

is an example of such a system that maps queries into a logic form and then into a

database query for information retrieval. Semantic and statistical methods were also

used for mapping by some researchers. There has been a shift toward open-domain

QA systems in recent times[35].

In 1999, The TREC (Text REtreival Conference) is a popular information retrieval

benchmark, which focuses on a list of different information retrieval (IR) research

areas [36]. It began Open Domain QA, which has become an annual event to test the

ability of QA systems to respond to different types of queries. These systems have

developed into increasingly complicated systems that now use the internet as a data

source. Factoid queries are the most common type of query that QA systems respond

to, and there are several ways to handle them. Factoid QA systems output text, XML,

or Wiki documents. The abundance of information readily available online is used by

many QA systems to grow their knowledge bases and solve issues [35].
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The QA systems provide a wealth of helpful information to internet consumers.

Famous search engines such as Google and Bing frequently return documents linked

to the terms entered by the user. These engines are open-domain question-answering

systems.

Various approaches for developing QA systems start from the basic NLP (Natu-

ral Language Processing) algorithms-based approach towards the recently proposed

methods of Deep Learning. NLP of question-answering systems frequently adopts an

extractive strategy, with "a retriever" for retrieving relevant documents for the user’s

question, and "a reader" for extracting an answer from the documents it receives [37].

Before presenting the different approaches of deep learning for natural language pro-

cessing of QA systems, we present in the next section the classification of QA systems

according to various criteria.

2.3 Classification of Question-Answering systems

The Question answering systems can vary from one another depending on multiple

factors, such as a domain, question types, data type, and approach [38].

2.3.1 QA systems based on application domain

For this type of classification, we notice two distinct types [39]:

• Closed-domain:

Question-answering systems are designed to answer specific questions within

a particular domain, such as sports, medicine, education, or entertainment. This

task is relatively simple because NLP systems can rely on domain-specific knowl-

edge that is often organized in ontologies. Closed-domain QASs are limited

to a specific domain and cannot provide answers to questions outside that do-

main. Closed-domain can also refer to a situation where only certain types of
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questions, such as those seeking descriptive information rather than procedural

information, are considered.

• Open-domain:

Question-answering systems can handle a wide range of questions from vari-

ous domains, unlike closed-domain QAS which is limited to a specific domain.

General QAS allows users to ask questions from any field, such as sports, poli-

tics, or education. These systems utilize global knowledge and ontologies, and

they typically have access to a vast amount of data from which they retrieve the

most appropriate answer.

2.3.2 QA systems based on the types of questions

The way questions are classified in question-answering systems has a direct impact on

the accuracy of the generated answers, as different types of questions require different

approaches. In 2003, the researchers found that 36.4% of errors in QAs are due to

incorrect classification of questions. Other works use a content-based categorization

method, but it is limited in its application to real-world questions. Another solution is

based on a function-oriented approach that combines pattern matching and machine

learning [38]. This classification system for QAs includes five categories: factoid, list,

hypothetical, confirmation, and causal questions [38]. Each category is explained in

detail in the following subsections.

2.3.2.1 Factoid type questions [what, when, which, who, how]

Factoid questions are simple and require a short phrase or sentence answer, often

starting with a "wh" word, such as "who" or "what" [40]. QASs (Question Answer-

ing Systems) have shown satisfactory performance in answering factoid questions,

with expected answer types generally being named entities that can be traced in doc-

uments through named entity tagging software [41]. This makes accuracy achievable,

and Wikipedia or news wire text can be used as a source of information for QASs.
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However, there are also cons to factoid questions, including the research issue of

identifying and classifying them automatically. Additionally, other types of questions

can be more challenging to answer. Descriptive questions ask for a definition or de-

scription of a term, fuzzy questions are imprecise, and relationship or information

extraction (IE) questions identify the relationships between named entities. Dialogue

questions can be incomplete or syntactically incorrect, and badly worded or ambigu-

ous questions are challenging to process for generating accurate answers [42].

2.3.2.2 List questions

List questions in QASs require a series of entities or facts in their answers, such as "list

the names of employees earning more than 5k." QASs treat these questions as a series

of factoid questions that are asked one after the other, with previous answers being

disregarded for subsequent questions. However, QASs often face difficulty in setting

the threshold for the number or quantity of entities requested in list-type questions.

The benefits of list-type questions in QASs include the use of named entities as

expected answer types, allowing for higher accuracy. Additionally, the techniques

that work well for factoid-type questions can be applied to list-type questions. QASs

also do not require extensive natural language processing to extract answers to list-

type questions.

The downside of list-type questions in QASs is that determining the threshold for

the number or quantity of entities requested can be problematic [40].

2.3.2.3 Hypothetical type questions

To ask about hypothetical events, one might pose a question that begins with "what

would happen if." Hypothetical questions are subjective and cannot be definitively

answered. QASs must use knowledge retrieval techniques to generate responses to

these queries. The advantages of QASs answering hypothetical questions include

catering to expert users who seek optimal solutions through common-sense reasoning

and general knowledge. However, the downsides of hypothetical questions in QASs
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are that the expected answer type is uncertain, making the accuracy of QASs low.

Factoid QAS techniques do not translate well to hypothetical questions, and reliability

is contingent upon the user and context [41].

2.3.2.4 Causal questions [how or why]

Causal questions seek explanations about an entity or event, and the answers are typi-

cally not named entities, as in factoid-type questions. QASs require advanced natural

language processing techniques to analyze the text at the pragmatic and discourse

level to generate answers [43].

The advantages of causal-type questions in QASs include providing users with ex-

planations, reasons, and elaborations related to specific events or objects. The disad-

vantages of causal-type questions are the problems in determining relevant or unique

answers, and problems related to efficient retrieval models, which can cause prob-

lems due to polysemy, homonymy, and synonymy. Furthermore, "why" questions

often have subjective answers, which can range from sentences to paragraphs. The

identification of discourse relationships in source documents is required to generate

answers to such questions [44] [45] [46].

2.3.2.5 Confirmation questions

Confirmation questions in QASs require answers in a binary form, either "yes" or

"no". To generate such answers, the systems require advanced inference mechanisms,

world knowledge, and common sense reasoning.

The advantages of confirmation-type questions in QASs include the potential for

expert users to search for new knowledge that requires these advanced reasoning

techniques.

However, the downside is that answering confirmation questions accurately re-

quires a higher level of knowledge acquisition and retrieval techniques, which are

still under development [38] .
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2.3.3 QA systems based on data type

We classify QASs based on the data type present in the source text. The different

categories are (1) structured data sources, (2) unstructured, and (3) semi-structured

data sources.

2.3.3.1 Structured data source

Structured documents arrange data into semantic sets, with similar entities grouped

into relations, where each entity within a relation shares the same attributes. A schema

describes all the entities within a unit, and the data is organized in a defined format.

When a query is matched with structured data, it is an exact match, and a query lan-

guage is used.

The advantages of using structured data sources in QASs include higher reliability

of answers, as the correct information is stored in the data source, and QASs do not

require complex natural language processing of these data sources. However, based

on the literature reviewed, the drawbacks of structured data sources in QASs are that

they may have limited information stored, reference reconciliation may be necessary,

building the data source can be labor-intensive, and different structured data sources

have varying representations and accept other query languages, which requires the

system to transform questions into queries based on the type of data source being

used [38].

2.3.3.2 Unstructured Data source

Data in an unstructured data source can be of any type and is not arranged in a seman-

tic set with no strict rules governing how it should be organized. QAS which handles

unstructured data requires the use of natural language processing and information

retrieval technologies to find answers.

The advantage of using unstructured data sources in QASs is that information can

be easily added or updated. However, the drawbacks of unstructured data sources in
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QASs are that the representation of unstructured data sources can be problematic, the

reliability of answers is low, and paraphrasing is more prevalent[38].

2.3.3.3 Semi-structured data source

In a semi-structured data source, there is no clear separation between the stored data

and the schema. The advantages of using semi-structured data sources in QASs in-

clude the representation of information in data sources constrained by a schema, pro-

viding a flexible format for exchanging data between different databases, and the

ability to transform structured data into semi-structured formats for web browsing

purposes. However, the drawbacks of semi-structured data sources in QASs are that

reference reconciliation may be necessary, and building the data source can be labor-

intensive [38].

2.3.4 QA systems based on approach

2.3.4.1 Pattern matching approach

• The pattern-matching approach is a technique that focuses on the communica-

tive effect of text patterns, and it differs from other computing methods that

use complex processing. Instead, many QA systems learn text structures from

passages automatically, making them simpler and more favorable for small im-

plementation and use. In pattern-matching QA systems, surface text patterns

are often used to find answers to factual questions, while templates are used

for closed-domain systems. Some systems rely solely on surface patterns, while

others use templates as a response generator [35].

• The surface Pattern approach matches responses from the surface structure of

retrieved texts using a comprehensive list of patterns, which can be manually

crafted or generated automatically. The solution to a query is determined based
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on the similarity between the patterns and their associated semantics. The ap-

proach offers high precision with the level of human involvement in creating

the set of patterns [35].

• The Template-based approach uses pre-formatted patterns for questions and

focuses on illustration rather than interpretation of questions and answers. The

set of templates is designed to cover the problem domain with an optimal num-

ber of templates, with each template representing a range of questions of its

type. Entity slots in the templates include missing elements that must be filled

to generate the query template and retrieve the corresponding response from

the database. The response returned by the query is raw data, which is sent to

the user. This approach is similar to an automated Frequently Asked Questions

(FAQ) system that provides pre-stored answers to user questions. However,

unlike static FAQs, question templates are filled dynamically with parameters

[33].

2.3.4.2 Linguistic based approach

To create a question-answering system, it is necessary to have an understanding of

natural language text, linguistics, and general knowledge. In the past, researchers

have relied on artificial intelligence methods that combine natural language process-

ing techniques and a knowledge base or corpus to construct QA logic. The informa-

tion in the knowledge base is organized in various forms such as production rules,

logics, frames, templates (represented as triple relations), ontologies, and semantic

networks. These are used to analyze the question-answer pair.

Linguistic techniques like tokenization, POS tagging, and parsing are utilized to

formulate the user’s question into a precise query that extracts the relevant response

from a structured database. Building an appropriate knowledge base is a time-consuming

process, so these systems are usually used for problems that have long-term informa-

tion needs for a specific domain [33].
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2.3.4.3 Statistical Approach

The availability of vast amounts of data on the internet has increased the significance

of statistical methods. These methods are particularly useful because they can han-

dle very large amounts of data and the diversities (such as heterogeneity) that the

data may exhibit. Unlike structured query languages, statistical methods can gener-

ate questions in natural language form. However, this method requires a substantial

volume of data to achieve precise statistical learning [35].

Generally, statistical approaches have been successfully utilized in multiple stages

of a Question Answering (QA) system. For instance, methods like Support Vector

Machine (SVM) classifiers, Bayesian classifiers, and Maximum Entropy models have

been explicitly applied to classify questions.

These statistical approaches evaluate questions to anticipate the type of answer

the user is seeking. The models are trained using a corpus of questions or documents

that have been labeled with specific categories within the system [33].

2.4 Deep learning for the NLP of QA

There are different approaches to deep learning for the natural language processing

of QA systems. In this section, we will talk about the known Deep Learning Neural

Networks(DLNN) with a focus on the revolutionary ones, such as Transformer archi-

tecture and the pre-trained models base on it (Bert, T5, GPT...) since they are the most

dominant when it comes to NLP tasks.

2.4.1 Transformer model

In the paper "Attention is All You Need" [47], the authors propose a new deep learning

method of processing data sequences through the "Transformer model".

The Transformer model uses self-attention mechanisms instead of traditional re-

current or convolutional layers. This self-attention mechanism allows the model to
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learn the relationships between elements in the input sequence (natural language),

making it a key innovation in the field of deep learning for processing sequences

of data with more parallelization, which led to the development of pre-trained sys-

tems such as BERT with its variants, T5, GPT, which are trained with large language

datasets, such as the Wikipedia Corpus, and can be fine-tuned for specific tasks.

A set of hidden states that describe the dependencies between the input sequence’s

elements are produced by the Transformer after the input sequence is transformed

into a high-dimensional space and processed through several self-attention layers.

Predictions about the objective job, such as machine translation or text categorization,

are then made using these hidden states. The result of the authors’ work [47] showed

that the Transformer surpasses the performance of prior state-of-the-art models that

utilized recurrent and convolutional neural networks. Additionally, the authors high-

light the efficiency and parallelizability of the Transformer, making it easier to train

compared to previous models.

The work carried out by Vaswani et al [47] is regarded as a turning point in deep

learning and has had a significant impact on the creation of NLP models. Its fun-

damental concepts have been extensively used and developed in a number of later

works. The main architecture of this model is displayed in Fig 2.1.
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FIGURE 2.1: The Transformer architecture [47]

2.4.2 BERT pre-trained model

Jacob Devlin et al. [48] introduce a new pre-training approach for natural language

processing (NLP) called BERT (Bidirectional Encoder Representations from Trans-

formers). The idea is to train a deep bidirectional representation model on a large

corpus of unlabelled text (ex. Wikipedia corpus), and then fine-tune it for specific

NLP tasks. Let’s talk about the main points of BERT:

• Architecture: BERT is a transformer-based neural network architecture, similar

to the one introduced by Vaswani et al. [48]. However, BERT is designed to

be bidirectional, meaning it can take into account the entire context of a word

in a sentence, rather than just the words that come before it or after it. BERT

uses a multi-layer bidirectional transformer encoder to generate a sequence of

contextualized word embeddings. It also introduces two novel training tasks:

masked language modeling and next sentence prediction, which help the model

learn more about the relationships between words in a sentence and between

sentences (see Fig 2.2).
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• Implementation: The authors trained BERT on a large corpus of unlabelled text,

consisting of 3.3 billion words from various sources, including books and web

pages. A pre-training objective was used that involves randomly masking some

of the words in the input sequence and asking the model to predict the masked

words. The next sentence prediction task was later introduced, which involves

feeding two sentences to the model and asking it to predict whether the sec-

ond sentence is the next sentence in the original text. This task helps the model

learn more about the relationships between sentences. BERT was fine-tuned on

a range of target NLP tasks, including question answering, sentiment analy-

sis, and named entity recognition, achieving state-of-the-art results on many of

them.

FIGURE 2.2: Overall pre-training and fine-tuning procedures for BERT.
[48]

• Results: The authors showed that BERT consistently outperforms them on a

range of target NLP tasks. For example, on the GLUE (General Language Un-

derstanding Evaluation) benchmark, which measures performance on a range of

NLP tasks, BERT achieved state-of-the-art results on all 9 tasks. On the SQuAD

benchmark, which measures question-answering performance, BERT achieved

a new state-of-the-art score.

The work concludes that BERT is a powerful pre-training method for NLP tasks

thanks to its bidirectional architecture and innovative pre-training tasks. Further-

more, it is mentioned that BERT is a flexible and robust tool for NLP researchers as

it can be fine-tuned on various downstream tasks with minimal modifications to the
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task-specific architecture.

2.4.3 RoBERTa pre-trained model

In 2019, Yinhan Liu et al. [49], researchers at Facebook AI, present an optimized ver-

sion of BERT, which is a popular pre-training approach for natural language process-

ing (NLP) tasks. The principal goal of this new version called RoBERTa for Robustly

Optimized BERT Approach is to improve the performance of BERT on a wide range

of NLP tasks and make it more robust to domain shifts and different task types.

The main contributions of these researchers are the adjustments made to the orig-

inal BERT training procedure to create RoBERTa:

First, the next sentence prediction (NSP) task got removed because it was found to

be ineffective in the original BERT model. Instead, RoBERTa was trained on longer se-

quences of text, up to 512 tokens, which resulted in a better contextual understanding

of the text.

Second, RoBERTa uses dynamic masking during training, which means that dif-

ferent tokens are masked each time a sequence is presented to the model during train-

ing. This is in contrast to the static masking used in BERT, where the same tokens are

always masked during training. Dynamic masking improves the model’s ability to

handle out-of-vocabulary (OOV) words and unseen data.

Finally, RoBERTa was trained on a larger volume of data than BERT (a dataset

of 160GB of text, which is more than 10 times larger than the dataset used to train

BERT). The increase in the amount of training data improved the model’s robustness

and generalization ability even further.

2.4.4 DistilBERT pre-trained model

Sanh et al. [50] proposed a new model called DistilBERT, which is a distilled version

of BERT. DistilBERT is smaller, faster, and cheaper than BERT, while still maintaining
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similar performance on a variety of natural language processing tasks.

The authors use a technique called distillation, which involves training a smaller

model to mimic the behavior of a larger, more complex model. The resulting Distil-

BERT model is much smaller than BERT, with 40% fewer parameters, a 60% reduction

in memory usage, and 97% of the language understanding capabilities retained.

DistilBERT has neither token_type_ids to indicate which token belongs to which seg-

ment, nor options to select the input positions (position_id input).

Despite its smaller size, DistilBERT achieved similar performance to BERT on sev-

eral benchmark tasks, including question answering and text classification. Besides

its smaller size, DistilBERT is also faster than BERT, with inference times that are two

to five times faster, depending on the task.

2.4.5 DeBERTa pre-trained model

In 2020, He et al. [51] propose a new transformer-based language model called De-

BERTa (Decoding-enhanced BERT with Disentangled Attention) to improve upon the

popular BERT model by incorporating a number of new features and techniques (Dis-

entangled attention and Enhanced mask decoder). In contrast to BERT, which uses a

vector to represent each word in the input layer by combining its content and position

embedding, DeBERTa utilizes two vectors to represent each word separately, one for

its content and another for its position. The attention weights among the words are

then calculated based on disentangled matrices that consider their contents and rela-

tive positions. The reason for this approach is the realization that the attention weight

between a pair of words depends not only on their contents but also on their relative

positions. For example, the relationship between "deep" and "learning" is stronger

when they are adjacent to each other compared to when they are present in different

sentences.

DeBERTa, like BERT, is pre-trained using masked language modeling (MLM) which

is a fill-in-the-blank task, where a model is taught to use the words surrounding a
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mask token to predict what the masked word should be. However, DeBERTa en-

hances the mask decoder by incorporating absolute word position embeddings right

before the softmax layer where the model decodes the masked words based on the

aggregated contextual embeddings of word contents and positions.

The absolute position of words in a sentence is often crucial for prediction be-

cause words’ syntactic roles depend on their absolute positions in the sentence. For

example, consider the sentence "a new store opened beside the new mall" with the

words "store" and "mall" masked for prediction. Although the local contexts of the

two words are similar, they play different syntactic roles in the sentence. Therefore,

DeBERTa takes into account a word’s absolute position in the language modeling pro-

cess by incorporating absolute word position embeddings in the mask decoder.

This enhancement improves the efficiency of pre-training and the performance of

downstream tasks. In the NLP tasks, compared to RoBERTa-Large, a DeBERTa model

trained on half the training data performs consistently better on a wide range of NLP

tasks, achieving improvements on MNLI (Multi-Genre Natural Language Inference),

SQuAD v2.0, and RACE (ReAding ComprEhension) benchmarks.

Overall, DeBERTa outperforms BERT on a variety of benchmark tasks, including

question answering, natural language inference, and text classification. The authors

believe that the use of disentangled attention and other new techniques could be use-

ful for improving the performance of other transformer-based models as well.

2.4.6 T5 pre-trained model

In 2019,Colin Raffel et al published the paper [52] which presents a new approach

to transformer architecture called the "Text-to-Text Transformer" (T5). The authors

propose that casting all NLP tasks as "text-to-text" problems allows for T5 to be trained

on a large amount of text data in a "multi-task" setting, where it learns to generate a

diverse set of output sequences for different input sequences.
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• Methodology: The authors train T5 on a large corpus of text data and evalu-

ate its performance on a variety of NLP tasks, including machine translation,

question answering, and summarization. They also explore the limits of trans-

former architecture with T5 by examining how the performance of the model

varies with the amount of training data and the size of the model. Additionally,

the authors investigate the effectiveness of fine-tuning T5 on smaller datasets

for specific tasks.

• Evaluation: The experimental results demonstrate that T5 outperforms previ-

ous state-of-the-art models on a variety of NLP benchmarks, including Super-

GLUE, a challenging benchmark dataset for evaluating the performance of nat-

ural language understanding models. The authors also find that T5 exhibits

strong performance even with small amounts of training data and that increas-

ing the size of the model can further improve performance, but with diminish-

ing returns. The results also show that fine-tuning T5 on smaller datasets for

specific tasks can achieve competitive performance.

T5 is a novel approach for NLP tasks that achieves state-of-the-art performance

on a variety of benchmarks. It offers a unified approach to the transformer model

that can be applied across a wide range of tasks. The authors suggest that further

exploration is needed to determine the best fine-tuning strategies for specific tasks,

but overall, T5 represents a significant step forward in the field of NLP.

2.4.7 OpenAI GPT-2 pre-trained model

In 2019, Radford, Alec, et al. from OpenAI[53] introduced the concept of pre-training

large-scale language models using self-supervised learning objectives as a way to

learn general-purpose representations of natural language. The authors. They ar-

gue that this approach can address the problem of data scarcity in many NLP tasks,

where annotated training data is limited, and can lead to significant improvements in

model performance.
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• Methodology: The authors present GPT-2 (Generative Pre-trained Transformer),

a transformer-based language model that has been pre-trained on a diverse cor-

pus of text data using a self-supervised learning objective. The model architec-

ture consists of a multi-layer transformer encoder that is trained to predict the

next word in a sentence given the previous words.

The training approach of GPT-2 involves training it on a large corpus of text

data using a masked language modeling objective, where some words in the

input are randomly masked out and the model is trained to predict the masked

words based on the context. They also introduce a new training objective, called

"unsupervised paraphrasing", which involves training the model to generate

alternative phrasings of a given sentence.

• Evaluation: The authors evaluate the performance of the GPT-2 model on sev-

eral NLP tasks, such as language modeling, text generation, summarization,

and machine translation. They show that the model achieves state-of-the-art

performance on these tasks, without requiring task-specific training data or su-

pervision. They introduce a new benchmark dataset, called LAMBADA, for

evaluating the ability of language models to perform language understanding

tasks. The dataset consists of passages of text, where the task is to predict the

last word in the passage based on the context. They show that the GPT-2 model

outperforms several baseline models on the LAMBADA dataset, demonstrating

its ability to capture long-term dependencies and semantic relationships in text.

GPT models can lead to significant improvements in performance on diverse NLP

tasks, including language translation, QA, and text completion. They can enable new

applications in natural language understanding and generation.

GPT-3 is the advanced GPT model, which has 175 billion parameters, whereas

GPT-2 has only 1.5 billion parameters.

GPT-4 is a large multimodal model that can accept both image and text inputs and

generate text outputs. It can generate, edit, and iterate with users on creative and
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technical writing tasks, such as composing songs, writing screenplays, or learning a

user’s writing style.

OpenAI may release new versions of the GPT model in the future with more and more

parameters and sources.

2.4.8 Bart pre-trained model

Lewis et al. [54] introduce a new pre-training method for natural language process-

ing called BART, which stands for "Bidirectional and Auto-Regressive Transformer".

BART is a sequence-to-sequence model that is trained to reconstruct corrupted text

by denoising it.

The BART model is a modified version of the Transformer architecture used in other

sequence-to-sequence models like GPT and BERT. BART is bidirectional, meaning

it can generate output both from left-to-right and right-to-left, and it is also auto-

regressive, meaning that it generates output one token at a time conditioned on the

previous tokens it has generated.

To pre-train BART, the authors use a denoising auto-encoder approach. They cor-

rupt the input text by randomly masking some of the tokens, adding random noise,

and shuffling the remaining tokens. The model is then trained to reconstruct the orig-

inal sequence from the corrupted version. This pre-training approach is similar to

the masked language modeling objective used in BERT, but with additional noise in-

jection. The authors show that this pre-training method can be used to improve the

performance of various natural language tasks, including text generation, translation,

and comprehension.

One notable contribution is the introduction of the XSUM dataset, which consists

of short news articles and their corresponding one-sentence summaries. The authors

demonstrate that BART outperforms previous state-of-the-art models on this dataset,
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achieving a new state-of-the-art performance on both the summarization and sen-

tence compression tasks.

Overall, the work presents a promising new pre-training method for natural lan-

guage processing that can be applied to a wide range of tasks and introduces a new

benchmark dataset for summarization and sentence compression.

2.5 Related works on QA of databases

Question-answering systems have revolutionized the way individuals retrieve infor-

mation by enabling them to obtain answers to their inquiries by asking in every-

day language. As the volume of data being produced continues to grow, NoSQL

databases have become increasingly crucial as they offer the ability to manage big

data and adjust to changing demands. Despite the prevalence of NoSQL databases,

there has been limited advancement in creating question-answering systems that are

compatible with this type of database. One of the key challenges in developing

question-answering systems for NoSQL databases is the diversity of query languages

used in these databases. Unlike SQL databases that use a standard query language,

NoSQL databases often employ their own distinct query languages, making it hard

for question-answering systems to provide a uniform experience while supporting

multiple databases.

In this section, we classify major efforts in the area of QA systems for databases into

two classes: the ones that use SQL databases and works that use NoSQL databases.

2.5.1 QA for SQL databases

Several research works have been proposed for QA of SQL databases, which lead to

translating questions in natural language to SQL queries such as dependency parsing,

Recurrent Neural Networks of deep learning, Seq2Seq, Attention-mechanism, etc.
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Ahkouk, Karam, et al. [55] proposed a new approach to generate SQL queries

from sketches. They note that SQL queries are often complex and difficult for non-

experts to write. To address this issue, they propose a method that allows users to

draw sketches of the desired query, rather than requiring them to write the query

directly.

The SQLSketch approach consists of three main steps:

1. Sketch parsing: The user’s sketch is parsed to identify its components, such as

tables, attributes, and conditions.

2. Query generation: The components identified in step 1 are mapped to corre-

sponding SQL expressions to generate a candidate query.

3. Query ranking: The candidate query is ranked based on its similarity to the

user’s intent, and the top-ranked query is returned as the final result.

The authors evaluate their approach on a dataset of sketches and compare it to

existing sketch-based query generation methods. They demonstrate that SQLSketch

outperforms these methods in terms of accuracy and efficiency. Overall, the work

provides an interesting and innovative approach to generate SQL queries that could

potentially make the process more accessible to non-experts.

Rami Reddy et al [56] presented a dialogue-based question-answering (QA) sys-

tem for the Telugu language. The system combines different machine learning meth-

ods, including natural language processing, deep learning, and semantic similarity

measures together with the purpose of delivering precise and relevant responses to

user questions. The system is designed to comprehend the user’s queries which are

expressed in natural language and extract appropriate responses from a knowledge

base. The authors developed a corpus in the Telugu language that includes numer-

ous questions and their corresponding answers. This corpus was used to train and

evaluate the QA system. The proposed system’s performance was judged by using
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different evaluation metrics which include precision, recall, and F1 score. The result

shows that the system functions effectively in terms of the relevance and precision

of the responses provided to the user. The authors also address the obstacles en-

countered while developing a Telugu-based QA system and propose future research

directions to improve the performance of the system. In summary, the approach out-

lines an efficient method to create a conversation-based QA system in Telugu that can

be extended to other languages.

Ping Wang et al [57] focused on addressing the difficulty in retrieving patient

information from electronic medical records (EMR) by using question-to-SQL gener-

ation methods. However, most existing approaches are not suitable for the healthcare

domain because of the lack of a dedicated healthcare Question-to-SQL dataset and the

complexity introduced by abbreviations and typos in questions. The authors propose

a deep learning-based model called TREQS that directly generates the SQL query for

a given question and performs necessary edits using an attentive-copying mechanism

and task-specific look-up tables. The authors also create a new large-scale Question-

SQL pair dataset called MIMICSQL specifically for the healthcare domain.

Victor Zhong et al. [58] present Seq2SQL, a sequence-to-sequence neural network

that translates natural language questions to their corresponding SQL queries. This

model is based on an attention mechanism to generate a sequence of SQL tokens

that correspond to the input question. The model is trained using a combination of

supervised and reinforcement learning, where the latter is used to optimize the model

for the final query execution accuracy.

The proposed approach includes an encoder-decoder model and a reinforcement

learning (RL) model based on policy (see Fig 2.3). The encoder-decoder model takes

as input a natural language question and generates a sequence of tokens that repre-

sent a SQL query. The RL model interacts with a database, executes the query, and

receives a reward signal based on the precision of the outcome. By optimizing the
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expected reward, the RL model fine-tunes the encoder-decoder model’s parameters.

FIGURE 2.3: The work of Seq2SQl-based model [58]

The proposed method achieves state-of-the-art results on the WikiSQL benchmark

dataset, which contains over 24,000 examples of natural language questions and their

corresponding SQL queries. The authors have examined the impact of various model

components, such as attention mechanisms and the size of the reinforcement learning

training set, on performance. Additionally, they have conducted experiments to ana-

lyze the ability of the model to handle different types of questions and databases.

In 2017, Xiaojun Xu et al [59] present a neural network-based approach for ques-

tion answering over relational databases without the need of reinforcement learning.

The proposed model consists of two components:

1. The question encoder: uses a bidirectional LSTM network to encode the input

question into a vector representation.

2. The SQL generator: is a sequence-to-sequence model that takes the question rep-

resentation and generates a sequence of tokens corresponding to the SQL query.

The model also incorporates a set of SQL grammar rules to ensure that the gener-

ated queries are valid. The authors evaluate the performance of their model on the

Spider dataset and show that it outperforms existing approaches in terms of accuracy

and efficiency.
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2.5.2 QA for NoSQL databases

In this section, we are going to discuss relative works for QA systems for NoSQL

databases. To the best of our knowledge, there are few efforts regarding the issue for

QA systems of NoSQL databases.

Sebastian Blank et al [60] proposed a trainable question-answering system that

enables users to access information stored in a NoSQL database using natural lan-

guage. The system overcomes a major obstacle, the non-differentiability of database

operations, by using policy-based reinforcement learning. The performance of the

system was evaluated using Facebook’s bAbI Movie Dialog dataset and it performed

well, with a score of 84.2% compared to other benchmark models. The authors believe

that the system is ideal for practical situations where knowledge is stored in external

databases and acquiring intermediate labels is too expensive for other non-end-to-end

trainable question-answering systems.

The system is based on the proposed SeqPolicyNet model, which is designed to

solve the KBQueryBot task for converting a natural language query into the domain-

specific query language of an external knowledge source (KB). The main component

of the model is an attention-based pointer network, which fills the slots in a prede-

fined Elasticsearch query template. The output sequence is composed of elements

that either select a column name of the knowledge base (KB) or point to a token of

the question for entity extraction. These outputs are referred to as "selection" or "ex-

traction outputs." The extraction outputs serve as start and end pointers, allowing the

model to extract an entity composed of a span of tokens in the question. For example,

given the question "Who was the director of Gone With the Wind?" the start pointer

would be "Gone" and the end pointer would be "Wind." The model can be seen as a

pointer network for entity extraction with reduced complexity.
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FIGURE 2.4: System architecture of SeqPolicyNet [60]

This work used Elasticsearch (ES) as a NoSQL document-oriented database that

drives the search functions of many modern websites. ES uses a JSON-based query

language to formulate a query template. To evaluate the effectiveness of this proposal,

the authors used two metrics: the accuracy of valid queries (Accvq), which represents

the percentage of questions that generated a valid query, and the accuracy of correct

results (Acccr), which refers to the percentage of questions where they retrieved the

correct answer.

Another interesting work is of Do et al. [61], who developed a QA system for the

tourism industry in Vietnam that blends knowledge graphs and deep learning tech-

niques. The system starts by addressing a user’s inquiry about a particular place in

Vietnam and then goes on to provide comprehensive information, including when

the place was discovered and the reason behind its name. The QA system also offers

recommendations for related tourist destinations. The system employs deep learn-

ing to produce simple natural language answers, while the knowledge graph is used

to identify relevant entities and generate a list of natural language answers. The re-

search was based on a manually created dataset gathered from Vietnamese tourism

websites. The results demonstrate that the QA system combining the two approaches

provides more information than previous systems and achieved an F1 score of 0.83

and a precision of 0.87 on the test set.

The system has seven components, as shown in Fig. 2.5. The first step is for the

user to input a question about visiting places in Vietnam. The system then trans-

forms the question into one-hot encoded vectors, which serve as inputs for the LSTM
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model. The LSTM model searches its knowledge base for the question and outputs

two branches: a simple natural language answer and a graph query. The simple an-

swer is a question-answer pair that has been trained by the LSTM model. The graph

query accesses the Neo4j knowledge graph database to produce a list of natural lan-

guage answers.

FIGURE 2.5: The flow chart of the Vietnamese tourism question answer-
ing system [61].

Pradeep et al [62] proposed the conversion of English queries to MongoDB queries

using an Encoder-Decoder-based machine translation method. The latter involves

creating a thought vector of the given English query using an Encoder neural net-

work and predicting the MongoDB query using a Decoder neural network. The pro-

posed system uses ten separate deep learning models to handle ten types of MongoDB

queries and shows satisfactory results. The proposed system takes an English query

as input and converts it into the appropriate MongoDB format (see Fig 2.6).

The system has a question type detection module that identifies the type of English

query and routes it to the appropriate model. The selected model then generates the

corresponding MongoDB query. The proposed system handles ten different types of

MongoDB queries and has an average accuracy rate of 71.5%.
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FIGURE 2.6: Architecture of conversion system of English queries to
MongoDB queries [62].

Gadekar et al. [63] proposed a novel approach to querying and manipulating

data in MongoDB using natural language commands. This approach consists of an

interface that can understand and translate natural language queries into MongoDB

commands, making it easier for non-technical users to interact with the database.

The system is built using Python and the Natural Language Toolkit (NLTK), and it

includes modules for natural language processing, query parsing, and database com-

munication. The authors describe the architecture of the system and the algorithms

used for query parsing and database communication.

Overall, the work presents an innovative approach to interacting with databases us-

ing natural language queries, which could potentially make it easier for non-technical

users to retrieve and manipulate data.

2.6 Discussion

Most QA systems for databases are built for SQL language and based on machine-

translation techniques on questions written in natural language to transform them

into SQL queries for example, Sketch parsing, Seq2SQL, LSTM deep learning, etc.

Unfortunately, very little research has investigated to study of the NoSQL language

rather than SQL. The existing works are based on deep learning and NLP techniques.

However, these approaches are based on the external source, which is the knowledge
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graph in order to identify relevant entities and generate a list of natural language an-

swers. Besides, some works are limited to some queries and required more details

about the architecture and the dataset used.

The use of NoSQL databases, especially the popular document-oriented database

MongoDB for question-answering systems is still a relatively new area of research.

Despite the increasing popularity of NoSQL databases for handling big data and

semi-structured data, there has been limited research on their use for question-answering

systems. This is due in part to the fact that traditional question-answering systems

have largely relied on relational databases and structured data, rather than unstruc-

tured data commonly stored in NoSQL databases.

In terms of datasets for natural language and their corresponding representation in

MongoDB, there is a lack of publicly available datasets specifically designed for this

purpose. The lack of well-established and widely-used datasets for natural language

in NoSQL databases can make it difficult for researchers to study and evaluate the

use of MongoDB for question-answering systems. And for this reason, to advance

our work on the QA system, we opted to create our own "Question to MongoDB

Query" dataset for a specific domain.

The main objective of this Master’s thesis is to propose a new Question-answering

system to facilitate the querying of the MongoDB database to non-experts by using

natural language.

2.7 Conclusion

Question-answering systems are designed to enable users to ask natural language

questions and receive accurate answers. They involve processing large amounts of

data, including unstructured data, and using various techniques such as natural lan-

guage processing, information retrieval, machine learning, deep learning, etc. They

can be used in various fields and provide an efficient and effective means of access-

ing information. Designing a high-performing question-answering system can be
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challenging, and ensuring accuracy and reliability is crucial. Despite the challenges,

question-answering systems continue to evolve and improve due to advances in tech-

nology and the growing data volume modelled in the NoSQL approach with the need

for fast and accurate access to information using natural language.

Finally, for our next chapter, we will propose a QA system for MongoDB Database.

A Question Answering (QA) system for MongoDB enables users to retrieve answers

to their queries through natural language access to the database. Deep Learning mod-

els are used to improve the performance of these systems by processing large amounts

of unstructured data and learning complex patterns. Implementing a QA system for

MongoDB using Deep Learning requires training the system on a diverse dataset of

questions and answers (Keep in mind there is a lack of a publicly shared Dataset of

this kind which required making one from scratch), integrating it with MongoDB, de-

signing it to handle natural language queries, and evaluating its performance using

metrics. A QA system for MongoDB using Deep Learning can enhance the accuracy

and flexibility of a user’s data access experience.
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CHAPTER 3

DEEP LEARNING-BASED QA FOR MONGODB

DATABASE

3.1 Introduction

In the previous chapter, we discussed the challenges of developing question-answering

systems for NoSQL databases. Despite the increasing popularity of NoSQL databases,

there is a noticeable lack of research work related to developing question-answering

systems for these databases. We also annotate the lack of related datasets for apply-

ing the machine learning algorithms. Therefore, in this chapter, we aim to address

this gap by proposing a novel deep learning-based approach for building a question-

answering system for NoSQL databases.

Our proposed approach involves for the first time, the construction of a new large-

scale dataset, MongoQpedia (Mongo Query-pedia ) for a deep learning model. This

task requires a lot of time and effort for obtaining a high-quality dataset, which will

be used for training and testing our deep-learning model of the QA system.

Moreover, we introduce the conceptual architecture of our deep learning model,

called "NoT5QL" (NoT5QL is a clever wordplay on the term ’NoSQL’, incorporating

’T5’ in the middle and replacing the ’S’ in SQL with a ’5’, resulting in a phrase that
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can be read as "NotSQL".), which involves fine-tuning T5, a pre-trained transformer

model. Our proposed approach is expected to achieve better performance compared

to traditional approaches that rely on manually crafted rules or keyword matching.

Overall, this chapter provides a detailed contribution, including the MongoQpe-

dia dataset creation process,augmentation techniques used (including algorithems),

and the conceptual architecture of our NoT5QL model.

3.2 Motivation and Contributions

With the increasing popularity of NoSQL databases to store and manage large-scale

data, it is becoming crucial to have a system that can help users easily retrieve in-

formation from these databases by using natural language. A Question-Answering

(QA) systems allow users to query an external database by using natural language.

Developing a QA system for NoSQL databases is a good solution, especially when

implementing a deep learning approach to improve the performance of such a sys-

tem. However, the lack of research works in this area has resulted in limited tools and

techniques for building QA systems for NoSQL databases.

Our research work aims to fill this gap by proposing a novel approach for building

a question-answering system for the NoSQL document-oriented database of Mon-

goDB. One of the main reasons for selecting MongoDB is its popularity among devel-

opers and businesses worldwide.

Our approach involves creating a dataset for a deep learning model, using data

augmentation techniques to increase the dataset size, and fine-tuning a pre-trained

transformer model for the task of the dynamic Question Answering related to Mon-

goDB databases.

The major contributions of this work are enlisted as follows:

• MongoQpedia Dataset Creation: Our proposed method involves generating

a high-quality dataset called MongoQpedia for training a question-answering
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system. The dataset is meticulously created by extracting relevant information

from an established MongoDB database and formulating a comprehensive set

of questions along with corresponding answers. By leveraging this dataset, the

resulting question-answering system will possess a deep understanding of the

data and be better equipped to provide accurate responses to complex queries.

• MongoQpedia Dataset validation: By conducting a rigorous validation pro-

cess, we were able to ensure that the data was of high quality, reducing the like-

lihood that future researchers would need to spend significant time cleaning or

correcting the data. This would save time and resources, and allow researchers

to focus on analyzing the data and drawing meaningful insights.

• Data Augmentation Techniques: The accuracy and effectiveness of the deep

learning model are significantly influenced by the amount and quality of the

dataset. Hence, we created a data augmentation pipeline that incorporates sev-

eral data augmentation techniques aimed at expanding the dataset size while

preserving a high level of quality. These techniques include paraphrasing, back-

translation, and named entity replacement. By using paraphrasing, we generate

additional instances of the original data by rewording the existing sentences

while preserving their meaning. Back-translation is another technique we em-

ploy, which involves translating the data into another language and then trans-

lating it back into the original language to create new data samples. We also use

named entity replacement to substitute named entities in the text with similar

entities, which further increases the diversity of the dataset. Overall, by imple-

menting these data augmentation techniques, we aim to improve the model’s

performance and make it more robust to varying inputs.

• Fine-tuning of T5 Pretrained Transformer Model: we present a novel concep-

tual architecture for fine-tuning the T5 pre-trained transformer model [52] to

answer questions related to MongoDB databases. Fine-tuning is a crucial step

in customizing the pre-trained model to our specific task, and involves training
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the model on our dataset to improve its performance on our particular problem

domain. By fine-tuning T5, we aim to create a high-performing and efficient

question-answering system that can accurately respond to complex queries re-

lated to MongoDB databases. Our proposed architecture provides a solid frame-

work for fine-tuning the T5 model, and we expect that it will have a signifi-

cant impact on the performance of question-answering systems in the field of

database management.

• Experimental Results: We evaluated the effectiveness of our proposed approach

by conducting experiments on a test split of the dataset. Our experiments demon-

strate that our approach achieves high accuracy in answering questions related

to the test split (more details in Chapter Four). By fine-tuning the T5 model on

our specific dataset, we were able to train it to accurately capture the nuances

of the test data, enabling it to provide precise and reliable responses to various

queries. To evaluate the performance of our approach, we used several stan-

dard evaluation metrics. Our experimental results show that our approach has

significant potential for efficient and effective question-answering systems, as it

achieved notable accuracy. These findings suggest that our approach can have

a significant impact on various applications that require the ability to accurately

answer complex questions.

Overall, our proposed approach can serve as a useful tool for retrieving infor-

mation from NoSQL databases, and our contributions can pave the way for future

research in this area.

3.3 MongoQpedia dataset Construction

Our dataset-building strategy involves extracting information from a real-world NoSQL

database, specifically the Mflix sample movies database provided by MongoDB. This

database is extensive and complex, containing information about various entities such
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as movies, TV shows, actors, directors, and producers [64]. Our dataset primarily

focuses on questions related to movies and actors. By utilizing the Mflix database

specifically the movies collection, we were able to create a diverse and comprehensive

dataset that accurately reflects the nuances of real-world data. Our dataset enables the

fine-tuned T5 model to capture the complexities of the Mflix database and accurately

answer complex queries related to movies and actors. The use of a real-world NoSQL

database in our dataset construction strategy provides practical relevance to our ap-

proach and ensures that the model can be effectively applied to real-world problems.

3.3.1 Description of Mflix database

The Mflix movies database is a document-oriented NoSQL database that stores data

in JSON format [64]. The database is organized into collections, with the "movies"

collection being the primary collection that contains information about movies. The

collection stores more than 23,000 documents that represent individual movies, with

each document containing detailed information about the movie. The information

stored includes the movie’s title, release date, genre, rating, cast members, and other

related information. The use of a document-oriented NoSQL database like Mflix en-

sures that our dataset is highly structured, this structured organization makes it easier

to generate meaningful and precise queries corresponding to the given questions. The

mflix database is an ideal dataset for creating MongoDB query-based datasets for an-

swering questions. It offers a realistic representation of a movie streaming platform,

with diverse movie information. The database’s richness and relevancy ensure the

capture of a wide range of features, improving the dataset’s quality. Its depth and

breadth of movie details allow for complex queries.
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FIGURE 3.1: Example of a Document from the "movies" collection

3.3.2 Description of MongoQpedia Dataset

The dataset used in our study, called MongoQpedia, (Mongo Query-pedia) is a col-

lection of more than 80,000 question-answer pairs in natural language and their cor-

responding MongoDB queries. The questions were extracted from the Mflix movies

database by identifying common types of questions that users might ask about movies.

Initially, a set of templates was built as a starting point, which was later augmented

using different data augmentation techniques like paraphrasing, back translation and

named entity replacement (further information in Dataset construction section) to cre-

ate a diverse and comprehensive set of questions. These questions cover various as-

pects of movies, such as release dates, genres, ratings, and cast members.

To obtain the MongoDB queries corresponding to each question-answer pair, we

executed code that returns the desired answer. The annotation process was performed

by a single annotator, who has experiences in the domain of movies and databases.

The annotation process involved reviewing each question and identifying the corre-

sponding MongoDB query that retrieves the answer from the Mflix movies database.

The annotator employed a trial and error approach to generate the queries, testing
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the queries against the database to ensure their accuracy. The annotation process took

approximately 300 hours to complete and validate the obtained dataset.

The dataset comprises a diverse set of questions and queries, including a variety

of wh-questions such as "What is the release date of the movie?", "Who is the direc-

tor of the movie?", and "How long is the movie?". The dataset also includes different

types of MongoDB queries, such as find, count, distinct, and aggregate queries.

An example of the content of MongoQPedia dataset is presented in Table 3.1. It com-

prises a set of question-query pairs.

Question MongoDB Query

What movie directed by Oliver Stone has

the shortest running time?

db.movies.find({"directors":"Oliver Stone"},

{"title": 1, "runtime": 1}).sort({"runtime":

1}).limit(1)

what are the genres directed by Steven

Spielberg?

db.movies.distinct("genres", {"directors":

"Steven Spielberg" })

How many movies have the genre ’Action’? db.movies.countDocuments({"genres":

"Action"})

Who are the main actors in The Land

Beyond the Sunset ?

db.movies.find({ "title": "The Land Beyond

the Sunset" }, { "cast": 1})

TABLE 3.1: Example of question-query pairs.

To evaluate the performance of machine learning models trained on the dataset,

we split the data into three parts: a training set, a validation set, and a test set. The

split used was 80/10/10, with 80% of the data used for training, 10% for validation,

and 10% for testing. The split was randomized to ensure that the data in each set was

representative of the entire dataset.

It is important to note that the queries are tailored specifically to the Mflix movies

database and may not be generalizable to other databases or contexts. Despite the

limitations, the dataset provides a valuable resource for studying natural language
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processing and database querying, particularly in the domain of movie-related infor-

mation. Further augmentation of the dataset may be necessary to expand the variety

of questions and queries in the dataset.

3.3.2.1 The MongoQpedia Dataset Statistics

As stated earlier, our MongoQpedia dataset encompasses a diverse array of questions

and queries. In order to enhance the comprehensiveness of our findings, we con-

ducted an exploratory analysis of MongoQpedia dataset, including the distribution

(Dist) of wh-question types (Figure 3.2c), MongoDB query types (Figure 3.2d), and

statistics pertaining to query and natural language (NL) question lengths(Figure 3.2b

, 3.2a).

(A) Dist. of length of NL questions. (B) Dist. of length of Mongodb queries.

(C) Dist. of types of NL questions. (D) Dist. of types of Mongodb queries.

FIGURE 3.2: Distribution of questions and queries in MongoQpedia
dataset.
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In the next part, we present the detail of the process of MongoQpedia dataset-

building.

3.3.3 The MongoQPedia Construction Process

In order to provide a comprehensive understanding of the dataset construction pro-

cess, it is essential to first explore the intricacies of the data augmentation pipeline.

This involves a closer examination of the specific techniques employed for natural

language processing (NLP) data augmentation.

3.3.3.1 The Data Augmentation Pipeline

The data augmentation pipeline proposed for this study comprises four distinct steps,

with steps 1, 2, and 4 involving the utilization of data augmentation techniques.

The first technique employed in the pipeline is paraphrasing (refer to "Paraphras-

ing" in Figure 3.4 and implementation in Algorithm 1). It involves leveraging a lan-

guage model to rephrase sentences multiple times, thereby generating diverse ques-

tion templates. Extensive research has demonstrated the effectiveness of this tech-

nique [65].

The second technique in the augmentation pipeline is back translation (refer to

"Back Translation" in Figure 3.4 and implementation in Algorithm 2), is a widely used

NLP data augmentation method known for its ability to produce high-quality out-

comes. It entails translating a sentence from one language to another (or multiple

languages) and then back to the original language (in this case, English). This process

yields new templates that differ from the original ones. To facilitate this technique, the

pipeline utilizes the Google Translate API, which is widely recognized for its reliable

translation capabilities and extensive usage in various applications. Back translation

has proven particularly valuable in scenarios where training resources for models are

limited [66, 67, 68].
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Finally, the last step of the pipeline introduces a technique called named entity re-

placement (refer to "Named Entity replacement" in Figure 3.4 and implementation in

Algorithm 3), which operates at the sentence level. This technique involves modifying

the templates by substituting the values of entities with others of the same type. For

example, in a template containing the name of a director, the name is replaced with

another director’s name extracted from a database. This technique can be considered

an extension of some approaches mentioned in [69, 70], which further confirms the

validity of this methodology.

3.3.3.2 The Construction Process

MongoQPedia is a closed-domain dataset comprising a large collection of movie-

related questions and their corresponding MongoDB queries. To create this dataset,

we used data augmentation techniques to generate a diverse set of high-quality ques-

tions and queries.

Creating a high-quality dataset for natural language processing requires a well-

designed protocol for question creation and annotation. The one we adopt is as fol-

lowed: The questions in the dataset should be simple, clear, and unambiguous, with

no limit on their length. They should be written in a way that reflects natural hu-

man communication, and the dataset should be regularly reviewed and corrected to

ensure semantic similarity between the questions. To be clear, Figure 3.3. shows a

general overview of the Mongopedia Dataset creation workflow.

The first step in this process after the "Database Collection & Creation" was to

create a set of human-annotated question templates. We created around 200 tem-

plates covering various aspects of movies, such as release dates, genres, ratings, and

cast members. These templates were then augmented using three data augmenta-

tion methods: paraphrasing using a transformer model, back-translation, and named

entity replacement.

Using the first two augmentation methods (see Algorithms 1 and 2), we were able

to increase the number of templates to over 1000. However, the resulting templates
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were of varying quality and required cleaning. To ensure the quality of the dataset,

we used a combination of automation scripts and human assistance to clean the tem-

plates, resulting in a final set of 700 high-quality templates. Figure 3.4 depicts a detail

of the dataset augmentation techniques used with the validation step.

Although this process was time-consuming, it was crucial to ensure that the dataset

is of high quality and can be effectively used for training machine learning mod-

els. The resulting dataset provides a valuable resource for developing and evaluating

question-answering systems for movie-related queries.

FIGURE 3.3: Overview of the Mongopedia Dataset creation.
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Algorithm 1 get_paraphrased_sentences function

Input: A language model model, a tokenizer tokenizer, and a sentence sentence

Output: A list of paraphrased sentences as strings

1: function GET_PARAPHRASED_SENTENCES(model, tokenizer, sentence)

2: inputs← tokenizer([sentence]) ▷ Tokenize the input sentence to get a list of

token IDs

3: outputs← model.generate(**inputs) ▷ Generate the paraphrased sentences

using the language model

4: paraphrased_sentences← tokenizer.batch_decode(outputs) ▷ Decode the

generated sentences using the tokenizer to get them back to text

5: return paraphrased_sentences ▷ Return the paraphrased sentences as a list of

strings

6: end function

Algorithm 2 back_translation function

Input: A template string template

Output: A back translated string

1: function BACK_TRANSLATION(template)

2: translator ← Translator(service_urls = [′translate.google.com′]) ▷ Create a

translator object

3: translation← translator.translate(template, src =′ en′, dest =′ f r′) ▷ Translate

the text from English to French

4: back_translation ← translator.translate(translation.text, src =′ f r′, dest =′

en′) ▷ Translate the French translation back to English

5: return back_translation.text ▷ Return the back translated string

6: end function

To further increase the size of the MongoQPedia dataset, we used named entity

replacement (see Algorithm 3). Using a Python script, we replaced entities in the

question templates with similar ones that exist in the Mflix movies database. This
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process generated a dataset with more than 80,000 rows, significantly increasing the

dataset’s size.

FIGURE 3.4: The Dataset Augmentation and Validation pipeline.

One of the benefits of using data augmentation techniques is that they can generate

new data points that are similar but not identical to the original ones. This variability

helps to reduce the risk of overfitting in machine learning models. In the case of

MongoQPedia, the use of named entity replacement helped to further increase the

dataset’s size while preserving the semantic meaning of the questions.

The resulting dataset provides a valuable resource for training and evaluating ma-

chine learning models for question answering on MongoDB databases.
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Algorithm 3 named_entity_replace function

Input: A template string template with placeholders for named entities, and a

dictionary named_entities mapping entity types to lists of entity names

Output: A list of output templates with named entities replaced by their corre-

sponding entity names

1: function NAMED_ENTITY_REPLACE(template, named_entities)

2: Initialize an empty list output_templates

3: for each entity type entity_type in named_entities do

4: for each entity name entity_name in the list of entity names for entity_type

do

5: Replace the named entity placeholder in template with the current

entity_name, and store the result in replaced_template

6: Append replaced_template to the list of output templates

output_templates

7: end for

8: end for

9: return output_templates

10: end function

Overall, the creation of MongoQPedia is a testament to the effectiveness of com-

bining manual human effort with data augmentation techniques to produce high-

quality datasets for natural language processing tasks, even when resources are lim-

ited. Our approach involved starting with a set of human-annotated question tem-

plates extracted from the Mflix movies database, followed by augmenting this set

using paraphrasing and back-translation to generate a larger set of templates. Finally,

named entity replacement was applied to further increase the dataset’s size while

preserving the semantic meaning of the questions.

This approach resulted in a dataset of more than 80,000 rows, which can be used

for a variety of NLP tasks, including question answering and query generation. The



Chapter 3. Deep learning-based QA for MongoDB database 62

importance of data cleaning and quality control was emphasized throughout the pro-

cess to ensure the resulting dataset is of high quality and useful for machine learning

tasks. Ultimately, the creation of MongoQPedia showcases the potential of data aug-

mentation techniques to generate large, high-quality datasets and highlights the im-

portance of combining human effort with automation in the dataset creation process.

3.4 Conceptual study of the proposed approach

Our Question Answering system based on the NoT5QL model for NoSQL databases

using Transformer models falls under the category of a closed-domain factoid question-

answering system for movie-related questions.

A closed-domain question-answering system is designed to operate within a spe-

cific domain or subject area. In this case, the subject area is movies. Closed-domain

systems have the advantage of being more accurate and efficient than open-domain

systems because they operate within a well-defined context.

A factoid question is a type of question that can be answered with a short, factual

response. For example, "What is the release date of the movie ’Titanic’?" is a factoid

question that can be answered with a specific date.

Our system is designed to generate MongoDB queries in response to factoid ques-

tions about movies. The queries generated by our system are specific to the movie-

related domain and can be used to retrieve relevant data from a MongoDB database.

By using Transformer models, our system can understand natural language queries

and generate accurate MongoDB queries to answer factoid questions about movies.

3.4.1 Conceptual Architecture

Our proposed approach for building a question-answering system for NoSQL databases

involves fine-tuning a pre-trained transformer model using our constructed dataset

(see Figure 3.5). NoT5QL employs a pair of inputs: the task prefix (P) and the user

question (Q). The task prefix guides the model by providing context for the query
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generation task. Initially, the input (P, Q) is encoded into a numerical representation

that captures the meaning and context. This encoded representation is then used by

the decoder component to generate the MongoDB Query (MQ), which corresponds to

the user question.

Let’s denote the task prefix as P and the user question as Q. To encode the input

(P, Q) into a numerical representation, we can use a function E, which maps the input

to the encoded representation.

The encoding function can be defined as:

Enc : (P, Q)→ Encoded representation

Once we have the encoded representation, it is used by the decoder component to

generate the MongoDB Query (MQ). Let’s denote the decoder function as D.

The decoder function can be defined as:

Dec : Encoded representation→ MongoDB Query (MQ)

Combining these elements, we can express the process of generating the MongoDB

Query as follows:

MQ = Dec(Enc(P, Q))

In this formula, Enc(P, Q) represents the encoded representation of the input (P, Q),

and Dec(Enc(P, Q)) represents the MongoDB Query generated by the decoder using

the encoded representation.
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FIGURE 3.5: The architecture of the NoT5QL-based approach.

• Preprocessing: The preprocessing step in fine-tuning a T5 model involves in-

troducing a task-specific prefix to provide context for the input sequence and

specify the task being fine-tuned. For example, the prefix "Translate Question

To MongoQuery:" is the one we picked for specific task. The input sequence is

then tokenized and encoded before being fed into the T5 model for fine-tuning.

The model learns to associate the task-specific prefix with the desired output

for the given task, allowing it to generate accurate and relevant output for new

input sequences.

• Improved Tokenizer Vocabulary: The T5 tokenizer is a powerful tool that can

handle a wide variety of text inputs, but like any machine learning model, it has

limitations. One of the limitations of the T5 tokenizer is that it encodes some

code tokens, such as brackets and dollar signs, as unknown tokens or "unk"
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tokens. This can be a problem when working with specific programming lan-

guages, such as MongoDB, where these tokens are commonly used. To address

this issue, our solution is to expand the vocabulary of the T5 tokenizer to include

these code tokens. Once the vocabulary has been expanded, the T5 tokenizer can

encode these code tokens correctly, without treating them as unknown tokens.

This can be especially important when working with large datasets or complex

codebases, where missing or incorrectly encoded code tokens can cause errors

or inaccuracies in the analysis.

• Fine-Tuning: We fine-tune a pre-trained transformer model using the prepro-

cessed dataset.

• Inference: We use the fine-tuned model to answer new questions related to

NoSQL databases.

3.4.2 Pretrained Model

The pre-trained transformer model that we use for fine-tuning is the T5 model, which

is a state-of-the-art transformer model for natural language processing (NLP) tasks

[52]. T5 employs the transformer architecture introduced in [47], which includes ex-

tra decoder layers for sequence generation. T5 treats all NLP tasks as sequence to

sequence generation and is pre-trained on a data-rich task before being fine-tuned for

a specific downstream task.

The T5 model is capable of performing a wide range of NLP tasks, including

text classification, machine translation, and question answering. The model achieves

state-of-the-art performance on several benchmark NLP datasets.
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FIGURE 3.6: A diagram of T5’s text-to-text framework. Every task we
consider is cast as feeding our model text as input and training it to gen-

erate some target text [52].

3.5 Conclusion

This chapter presented our conceptual study for developing a dynamic QA system

for the MongoDB database.

The aim of this study is twofold: (1) The dataset building and (2) the proposition

of deep learning model.

We created a new dataset called "MongoQPedia" of movies that we used specifi-

cally to train and evaluate our model. The creation of the "MongoQPedia" dataset rep-

resents an important contribution to the community. By providing a new dataset that

is specifically designed for training and evaluating NoSQL question-answering sys-

tems, we are enabling researchers and practitioners to better understand the strengths

and limitations of different approaches and to develop new and more effective mod-

els in the future.

In addition, our work represents an important contribution to two important fields;

natural language processing (NLP) and database. By developing a model that can

effectively answer questions about NoSQL databases, we have opened up new possi-

bilities for applications in areas such as data analytics, machine learning, and artificial

intelligence.
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Overall, our work represents a significant step forward in the development of nat-

ural language processing systems for NoSQL databases, and we believe that it will

have a positive impact on a wide range of applications and industries.

To validate the performance of our proposal, the experimental study will be the

goal of the next chapter.
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CHAPTER 4

IMPLEMENTATION AND EXPERIMENTATION

4.1 Introduction

In the previous chapter, we discussed the conceptual study of our Q&A system for

MongoDB. In this chapter, we will delve into the implementation details and perfor-

mance evaluation. The chapter is divided into three main sections. The first section

focuses on the development environment, which includes the hardware and software

requirements necessary for setting up the system. The second section provides an

overview of the libraries used in the implementation process. Finally, the third sec-

tion explains the main parts of the implementation and provides a detailed analysis

of the results obtained from our Q&A system and how to do model inference. By

the end of this chapter, readers will have a clear understanding of the development

process and the various tools used in the implementation of our Q&A system.
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4.2 Development environment

4.2.1 Google Colaboratory

Colaboratory, or “Colab” for short, is a product from Google Research. Colab allows

anybody to write and execute arbitrary python code through the browser, and is espe-

cially well suited to machine learning, data analysis and education. More technically,

Colab is a hosted Jupyter notebook service that requires no setup to use, while pro-

viding access free of charge to computing resources including GPUs [71]. Colab also

provides more utilities such as:

• Integration with Google Drive: Google Colab is integrated with Google Drive,

which makes it easy to store and share notebooks and datasets.

• Pre-installed Libraries: Google Colab comes pre-installed with many popular

Python libraries, such as NumPy, Pandas, and Matplotlib. This makes it easy

to get started with data analysis and machine learning without having to install

and configure these libraries manually.

• Pre-installed Deep Learning Frameworks: Google Colab comes pre-installed

with popular deep learning frameworks like TensorFlow, Keras, PyTorch, and

fastai. This saves users a significant amount of time and effort that would oth-

erwise be spent installing and configuring these frameworks.

• High RAM and Disk Space: Google Colab provides users with access to high

RAM and disk space, which can be essential for training large deep learning

models that require significant amounts of memory.

• Easy Access to Pre-trained Models: Google Colab provides easy access to pre-

trained deep learning models that can be used for transfer learning. This can

save significant amounts of time and resources in training deep learning models

from scratch.
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FIGURE 4.1: Colab Interface

4.2.2 Docker

Docker is an open platform for developing, shipping, and running applications [72].

Docker enables you to separate your applications from your infrastructure so you can

deliver software quickly. With Docker, you can manage your infrastructure in the

same ways you manage your applications. By taking advantage of Docker’s method-

ologies for shipping, testing, and deploying code quickly, you can significantly reduce

the delay between writing code and running it in production.

Docker provides the ability to package and run an application in a loosely isolated

environment called a container. The isolation and security allows you to run many

containers simultaneously on a given host. Containers are lightweight and contain

everything needed to run the application, so you do not need to rely on what is cur-

rently installed on the host. You can easily share containers while you work, and be

sure that everyone you share with gets the same container that works in the same

way.

Docker provides tooling and a platform to manage the lifecycle of your containers:

• Develop your application and its supporting components using containers.
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• The container becomes the unit for distributing and testing your application.

• When you’re ready, deploy your application into your production environment,

as a container or an orchestrated service. This works the same whether your

production environment is a local data center, a cloud provider, or a hybrid of

the two.

FIGURE 4.2: Docker Command Line Interface

4.2.3 Hugging Face

HuggingFace is an AI community that promotes open source contributions [73]. It is

a hub of open source models for Natural Language Processing, computer vision, and

other fields where AI plays its role. Even the tech giants like Google, Facebook, AWS,

Microsoft, and others use the models, datasets, and libraries.HuggingFace provides

state-of-the-art models for different tasks. It has a vast number of pre-trained models

for different tasks. At the time of writing this article (August 2022), there were more

than 61k pre-trained models. Following are the tasks supported by HuggingFace:

• NLP tasks: HuggingFace is famous for its contribution to the NLP domain. The

NLP tasks are: Text classification, Text generation, Translation, Summarization,

Fill-mask, Question-Answering, Zero-shot classification, Sentence similarity.
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• Computer vision tasks: The computer vision tasks are as follows: Image classi-

fication, Image segmentation, Object detection.

• Audio tasks: The audio tasks are as follows: Speech recognition, Text-to-speech,

Automatic Speech recognition, Audio classification

In HuggingFace, the Transformers library, allows us to use these models in a way

that abstracts unnecessary details.

FIGURE 4.3: Hugging Face Interface

4.3 Programming Languages and Libraries Used

4.3.1 Programming Languages:

• Python: Python is an easy to learn, powerful programming language. It has

efficient high-level data structures and a simple but effective approach to object-

oriented programming. Python’s elegant syntax and dynamic typing, together

with its interpreted nature, make it an ideal language for scripting and rapid

application development in many areas on most platforms [74].



Chapter 4. Implementation and Experimentation 73

• Mongodb Query Language (MQL): MQL, or MongoDB Query Language, is a

powerful and flexible query language that is specifically designed for querying

and manipulating data in MongoDB databases. MQL is a declarative language,

meaning that users specify what they want the database to do rather than how to

do it. This allows users to write complex queries and manipulate data without

needing to have an in-depth understanding of the underlying database structure

or implementation.

4.3.2 Libraries Used:

• The Natural Language Toolkit (NLTK): is a platform used for building Python

programs that work with human language data for applying in statistical nat-

ural language processing (NLP) [75]. It contains text processing libraries for

tokenization, parsing, classification, stemming, tagging and semantic reasoning

. It also includes graphical demonstrations and sample data sets as well as ac-

companied by a cook book and a book which explains the principles behind the

underlying language processing tasks that NLTK supports.

• Transformer: Transformers provides APIs and tools to easily download and

train state-of-the-art pretrained models [76]. Using pretrained models can re-

duce your compute costs, carbon footprint, and save you the time and resources

required to train a model from scratch. These models support common tasks in

different modalities, such as:

– Natural Language Processing: text classification, named entity recogni-

tion, question answering, language modeling, summarization, translation,

multiple choice, and text generation.

– Computer Vision: image classification, object detection, and segmentation.

– Audio: automatic speech recognition and audio classification.
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– Multimodal: table question answering, optical character recognition, infor-

mation extraction from scanned documents, video classification, and visual

question answering.

4.4 Experimentation and Results

In this section, we will explore the process used to fine-tune the model for the task of

Answering Natural Language Questions and discuss the results achieved.

4.4.1 The Fine Tuning Process

In this subsection, we describe the experimental setup for fine-tuning the T5 model on

the "MongoQpedia" dataset. We discuss the loading of dataset splits, T5 checkpoint,

and tokenizer. We also outline the preprocessing steps performed on the dataset and

the setup of hyperparameters. Finally, we explain the fine-tuning process and the

evaluation metrics used.

• Dataset and T5 Model Loading: We begin by loading the three dataset splits of

"MongoQpedia": train, validation, and test. Each split contains a set of questions

and corresponding queries. Additionally, we load the T5 checkpoint and its

respective tokenizer.

• Preprocessing and Tokenization To prepare the dataset for fine-tuning, we ap-

ply specific preprocessing steps. Firstly, we set the maximum input length to

256 and the maximum target length to 512, considering the limitations of the

T5 model. Next, we utilize the "preprocess_data" function, which preprocesses

the dataset by adding the new prefix "Translate Question To MongoQuery:" to

the elements of the "Questions" column. These elements are considered the

"Source Text." We then tokenize the source text and tokenize the elements of the

"Queries" column, which serve as the target text. Finally, we return the model

inputs required for fine-tuning.
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• Hyper-parameter Setup In this step, we set up the hyper-parameters for the

fine-tuning process. We define the learning rate, batch size, and the number of

training epochs. These hyper-parameters play a crucial role in optimizing the

performance of the fine-tuned model. we experimented with multiple configu-

rations for both the "small" and "base", which are showed in the table 4.1 where

the highlighted ones are the one picked as the final configuration:

TABLE 4.1: Fine tuning hyper-paramaters Configurations

Model Version Batch Size Learning Rate Number of Epochs
T5-Small 16 4e-5 4
T5-Small 16 3e-4 6
T5-Small 8 1e-4 2
T5-Base 8 4e-5 4
T5-Base 16 3e-4 6
T5-Base 8 1e-4 2

• Fine-tuning Process With the dataset preprocessed and the hyperparameters

set, we initiate the fine-tuning process. We train the T5 model using the training

dataset split and perform updates based on the selected hyperparameters. The

model is iteratively fine-tuned over multiple epochs to improve its performance

on the given task.

4.4.2 Evaluation and Results

In this section, we will share the results of the fine tuning process (Model accuracy

and Model loss) for T5-Base then evaluate it using the BLEU and ROUGE Metrics

and compare it to T5-Small.

4.4.2.1 Model Accuracy

Model accuracy is a measure of how well the translation model performs in terms of

correctly predicting the target translations. It is typically calculated by comparing the

predicted translations generated by the model with the reference translations (ground
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truth). The accuracy is determined by the percentage of correct predictions out of the

total number of predictions. Figure 4.4 illustrate the accuracy of the chosen model

(base version).

FIGURE 4.4: Model Accuracy (T5-Base)

4.4.2.2 Model Loss

Model loss, also known as training loss or objective loss, is a quantitative measure

of the dissimilarity between the predicted translations and the ground truth transla-

tions. It represents how well the model is able to minimize the difference between its

predictions and the desired outputs during the training process. Figure 4.5 illustrate

the Loss of the chosen model (base version).
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FIGURE 4.5: Model Loss (T5-Base)

4.4.2.3 Evaluation

While model accuracy and loss are useful for monitoring the performance of The

model during training, they do not provide a complete picture of the translation qual-

ity. To gain a more comprehensive understanding, it is important to perform a final

evaluation using a separate test dataset and metrics such as BLEU (Bilingual Eval-

uation Understudy) and ROUGE (Recall-Oriented Understudy for Gisting Evalua-

tion). By evaluating our models with a test dataset and using metrics like BLEU and

ROUGE, we can obtain a more objective assessment of its performance. These metrics

consider factors such as the coverage of important content, word order, and overall

similarity to human translations.

• BLEU (Bilingual Evaluation Understudy): BLEU [77]is a widely used metric for

evaluating the quality of machine translation systems. It measures the degree of

overlap between the generated output and a set of reference translations based

on n-grams (contiguous sequences of words).
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BLEU score formula:

BLEU = BP× exp

(
N

∑
n=1

wn log Pn

)

where:

BP =

1, if c > r

exp(1− r
c ), if c ≤ r

Pn =
∑clip∈clipn

clip

∑cand∈candn cand

The metric computes a geometric mean of the n-gram precisions, where the n-

gram precision measures the percentage of n-grams in the generated output that

appear in the reference translations. BLEU ranges from 0 to 1, where a higher

score indicates better performance. BLEU has been shown to have a strong cor-

relation with human judgments of translation quality.

• ROUGE (Recall-Oriented Understudy for Gisting Evaluation): ROUGE [78] is

a set of metrics for evaluating the quality of summarization systems. It measures

the overlap between the generated summary and a set of reference summaries

based on n-grams and word sequences.

ROUGE =
ROUGE-N

m
+

ROUGE-L
m

+
ROUGE-S

m

where:

ROUGE-N =
∑reference summaries ∑n-grams count_match(n-gram)

∑reference summaries ∑n-grams count(n-gram)

ROUGE-L =
∑reference summaries longest_common_subsequence

∑reference summaries summary length
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ROUGE-S =
∑reference summaries ∑skip-bigrams count_match(skip-bigram)

∑reference summaries ∑skip-bigrams count(skip-bigram)

ROUGE includes several variants, such as ROUGE-N (based on n-grams), ROUGE-

L (based on longest common subsequence), and ROUGE-W (based on weighted

longest common subsequence). ROUGE ranges between 0 and 1, where a higher

score indicates better performance. ROUGE has been shown to have a high cor-

relation with human judgments of summarization and translation quality.

Due to the absence of base-line model for this specific task, we opted to compare

both of the T5-Base and T5-Small perfromances. The table 4.2 shows the evaluation

results of T5-Small and T5-Base models.

TABLE 4.2: Comparison of BLEU and ROUGE Scores for T5-Base and
T5-Small

Metric T5-Small T5-Base

BLEU 0.89 0.97

ROUGE 0.90 0.98

The T5-base model’s larger architecture and increased parameter count allowed

it to capture more complex query patterns and better understand the structure and

syntax of MongoDB queries. As a result, it exhibited a higher accuracy and efficiency

in generating correct and optimized queries for various question types. The T5-base

model’s enhanced capacity enabled it to handle a wider range of query scenarios,

making it more adept at providing accurate and relevant answers to questions related

to MongoDB. Its superior performance in this specific task demonstrates the advan-

tage of having a larger and more powerful model for handling complex database

query tasks.
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4.4.3 Model Inference

Machine learning (ML) inference is the process of feeding live data points into a ma-

chine learning algorithm (or "ML model") to generate an output such as a single nu-

merical score. This is also known as "operationalizing an ML model" or "putting an

ML model into production." [79]. To perform "inference" on our model you can follow

next steps:

1. Install the required libraries:

2. Load the model and tokenizer: Import the necessary modules and Load the

specified Model.

3. Define the function for generating answers:

4. Use the model for inference: Now The user can ask questions and receive the

answer in type of a MongoDB Query.
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4.5 Conclusion

In conclusion, this chapter presented an experiment focused on fine-tuning T5-base

and T5-Small models on our proprietary dataset, "MongoQpedia" for the task of an-

swering Questions with mongodb queries. The objective was to explore different hy-

perparameter configurations and evaluate their performance using BLUE and ROUGE

metrics.

The results of the experiment revealed that T5-base outperformed T5-Small by

a significant margin of ∼8% . This performance difference suggests that the larger

T5-base model has a greater capacity to capture and generate more accurate and con-

textually relevant responses compared to T5-Small.

The utilization of T5 models in our approach yielded satisfactory results overall.

The fine-tuning process allowed us to tailor the models to our specific dataset, enhanc-

ing their understanding of the context and enabling them to generate more relevant

answers. This demonstrates the effectiveness of T5 models in handling our specific

domain and dataset.

The use of BLUE and ROUGE metrics provided a quantitative assessment of the

model’s performance. These metrics are widely recognized in the natural language

processing community and offer valuable insights into the quality of the generated

responses. By employing these evaluation measures, we were able to objectively com-

pare the performance of the two models and make informed conclusions.

In summary, our experiment demonstrated the superiority of T5-base over T5-

Small for our task of question answering on the MongoQpedia dataset. The fine-

tuning process, combined with the appropriate selection of hyperparameters, played

a crucial role in achieving these results. The satisfactory outcomes obtained through

our approach highlight the potential of T5 models in addressing similar challenges in

the field of natural language processing.
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GENERAL CONCLUSION

Question-answering systems are a prominent area of research in the field of natu-

ral language processing (NLP) and artificial intelligence (AI). They aim to bridge

the gap between human language and machine understanding by enabling comput-

ers to comprehend and respond to questions posed in natural language. Tradition-

ally, question-answering systems were designed to operate on structured and curated

data. However, with the rise of NoSQL databases, such as MongoDB, that store data

in a more flexible and unstructured format, the need for question answering systems

tailored specifically for these databases, has emerged.

In this thesis, we explored the effectiveness of question answering systems for

NoSQL databases, specifically MongoDB, by leveraging the power of the T5 model,

where we proposed the NoT5QL model and carefully created a dataset named Mon-

goQpedia. By employing techniques such as paraphrasing, back translation, and

named entity replacement, the dataset was augmented to improve the model’s un-

derstanding and performance.

The fine-tuning process of the T5 model, utilizing both the small and base vari-

ations, demonstrated promising outcomes. Our experiments revealed that the base

model outperformed the small model, achieving satisfactory results in terms of accu-

racy and effectiveness in answering questions posed to MongoDB.

The augmentation techniques employed in the creation of MongoQpedia proved
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to be valuable in enhancing the model’s comprehension and generating diverse and

accurate responses. Paraphrasing, back translation, and named entity replacement

enriched the dataset, enabling the model to generalize well and provide more robust

answers.

These findings highlight the potential of leveraging NoT5QL-based question an-

swering systems for NoSQL databases, specifically MongoDB. The success of the base

model indicates that larger models may further improve performance, warranting

future exploration. Furthermore, this research opens up avenues for further inves-

tigations into other augmentation techniques and the application of NoT5QL-based

models for other NoSQL databases.

In our future works we aim for the following perspectives:

• Dataset Expansion: Continuously expand and update MongoQpedia with new

Domain-related questions (sports, history, science, ...) and their corresponding

MongoDB queries. This will help improve the coverage and diversity of the

dataset.

• Integration with MongoDB: Explore the possibility of integrating the T5 model

with MongoDB itself, enabling direct querying from within the database. This

would require developing a suitable interface and ensuring compatibility be-

tween your model and MongoDB’s query language.

• Investigate Mongodb Injection: Research the possibility of generating Mon-

goDB Query injection and increasing the security of the system.

• The Creation of a new Mongodb Specific Tokenizer: The creation of a new

tokenizer that’s specialized in Mongodb query language, which can speed up

the inference.

• Chat-like system: exploring the possibility of implementing a chat system that

can handle multi-parts questions.
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• Query Optimization: MongoDB query performance can be affected by various

factors such as indexing, query structure, and data distribution. we can inves-

tigate techniques to optimize generated queries to improve their efficiency and

execution time.

• Query Validation and error handling: Design our model to handle cases where

the generated query may be syntactically or semantically incorrect. we can in-

tegrate query validation mechanisms to ensure that the generated queries are

valid and handle potential errors gracefully.

• Expanding the Data Augmentation pipeline: Research more about NLP aug-

mentation techniques and drawing inspiration from image processing techniques.
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