
People’s Democratic Republic of Algeria

Ministry of Higher Education for Scientific Research

University 8 May 45 –Guelma-

Faculty of Mathematics, Computer Science and Sciences of Matter

Department of Computer Science

Master Thesis

Specialty : Computer science

Option:

Science and Technology of Information and Communication

Theme

Algerian license plate detection and recognition
using deep learning

Presented by: Mihoub Imane

Jury Members

Chairman: Pr. Kouahla Mohamed Nadjib

Supervisor: Dr. Bouressace Hassina

Examiner: Ms. Madi Leyla

June 2023

Acknowledgments

Alhamdulillah who made it possible for me. Alhamdulillah, for granting me the opportu-
nity, strength, and capability to undertake this. I extend my heartfelt thanks to my supervisor,
Dr.Bouressace Hassina whose unwavering support, wisdom, and guidance have been instru-
mental in shaping this dissertation. Their expertise, constructive feedback, and dedication have
been invaluable, and I am truly grateful for their mentorship.

I am truly blessed to have an exceptional family my little family who has been my rock
and source of unwavering support. To my loving father, caring mother, dear sister Wejdane ,
and the best brother Abdou, I cannot find the words to express my deep gratitude for everything
you have done for me. Your love, encouragement, and unwavering presence in my life have
given me the strength and motivation to pursue my dreams. Thank you for always being by my
side, believing in me, and providing the support and guidance I needed. I am forever grateful
for the love and support you have given me.

I am incredibly grateful to Ghada for being a sister to me, not by blood but by the
connection of our souls. I consider myself fortunate to have her in my life. Ghada, thank you
for always being there for me, providing unwavering support, and giving me the strength to
persevere. I am deeply appreciative of our friendship and the bond we share. I also want to
express my thanks to our university for bringing us together and giving us the opportunity to
meet.

I am sincerely grateful to my loving and supportive big family, as well as those who
genuinely care for me an loves me. Your unwavering support and well wishes have been a
constant source of strength and motivation for me. I am truly fortunate to have you all in my life,
encouraging me to be the best version of myself. Additionally, I want to acknowledge and thank
myself for the determination and resilience I have demonstrated throughout my journey. Despite
the challenges, I have persevered and grown. I will continue to move forward, embracing new
opportunities, and reminding myself to never give up.

Abstract

License plate detection and recognition systems play a crucial role in various applications such
as traffic surveillance, parking management, and law enforcement. In this paper, we propose
a deep learning-based license plate detection and recognition system. We leverage the power
of the YOLOv5 model for license plate detection, which provides efficient and accurate object
detection capabilities. For Algerian license plate recognition, we employ a CNN model trained
on a large dataset of labeled license plate images.

Through extensive experiments and evaluations, we achieve outstanding results. Our sys-
tem achieves an impressive precision of 87% in license plate detection, accurately identifying
license plates in diverse environmental conditions. Moreover, in the license plate recognition
phase, our CNN model achieves a remarkable accuracy of 93%, successfully recognizing and
extracting characters from the detected license plates.

The combination of YOLOv5 for efficient license plate detection and the CNN model for
accurate recognition results in a robust and effective license plate detection and recognition
system. The system’s high precision in detection and accuracy in recognition make it suitable
for real-world applications requiring reliable license plate analysis.

Keywords: License plate detection,License plate Recognition, ALPR, Yolov5, (CNN),Deep
learning.

Résumé

Les systèmes de détection et de reconnaissance de plaques d’immatriculation jouent un rôle
crucial dans diverses applications telles que la surveillance du trafic, la gestion du station-
nement et l’application de la loi. Dans cet article, nous proposons un système de détection
et de reconnaissance de plaques d’immatriculation basé sur l’apprentissage profond. Nous ex-
ploitons la puissance du modèle YOLOv5 pour la détection des plaques d’immatriculation,
qui offre des capacités de détection d’objets efficaces et précises. Pour la reconnaissance des
plaques d’immatriculation algériennes, nous utilisons un modèle de réseau de neurones convo-
lutif (CNN) entraîné sur un grand ensemble de données d’images de plaques d’immatriculation
annotées.

Grâce à des expérimentations et évaluations approfondies, nous obtenons des résultats ex-
ceptionnels. Notre système atteint une précision impressionnante de 87% dans la détection des
plaques d’immatriculation, identifiant avec précision les plaques d’immatriculation dans des
conditions environnementales diverses. De plus, dans la phase de reconnaissance des plaques
d’immatriculation, notre modèle CNN atteint une précision remarquable de 93%, reconnaissant
et extrayant avec succès les caractères des plaques d’immatriculation détectées.

La combinaison de YOLOv5 pour une détection efficace des plaques d’immatriculation et
du modèle CNN pour une reconnaissance précise permet d’obtenir un système de détection
et de reconnaissance de plaques d’immatriculation robuste et efficace. La haute précision de
détection et la précision de reconnaissance du système le rendent adapté à des applications
réelles nécessitant une analyse fiable des plaques d’immatriculation.

Mots clés: Détection de plaques d’immatriculation, Reconnaissance de plaques d’immatriculation,
ALPR, Yolov5, CNN, Apprentissage profond.

Contents

General Introduction . 1

1 Object detection and deep learning 3
1.1 Introduction . 3
1.2 Object detection . 3

1.2.1 Models of object detection . 3
1.2.2 Object detection application . 6

1.3 Deep Learning . 9
1.3.1 Deep Learning Methods . 9

1.4 Conclusion . 13

2 State-of-the-Art 14
2.1 Introduction . 14
2.2 Automatic license plate detection and recognition 14
2.3 License plate detection . 14

2.3.1 Edge detection . 14
2.3.2 Texture-Based Methods . 16
2.3.3 Convolutional neural network CNN 17
2.3.4 You-only-look-once (YOLO) . 17

2.4 Character Segmentation . 19
2.4.1 Character Segmentation Using Pixel Connectivity 19
2.4.2 Character segmentation using projection profiles 19
2.4.3 Character segmentation using deep learning 20

2.5 License plate recognition . 20
2.5.1 Convolutional Neural Network . 20
2.5.2 Recurrent Neural Network (RNN) . 21
2.5.3 Optical Character Recognition (OCR) 22
2.5.4 K-means Clustering-based Approach 23
2.5.5 Template matching . 23

2.6 Conclusion . 23

3 Conception 24
3.1 Introduction . 24
3.2 System goals . 24
3.3 Characteristics of Algerian plates . 24
3.4 Architecture of the system . 25
3.5 License plate detection . 26

3.5.1 Yolov5 model learning . 26
3.5.2 License plate detection . 28

i

3.5.3 Extract the license plate . 28
3.6 License plate recognition . 28

3.6.1 Preprocessing of extracted image . 28
3.6.2 Character segmentation . 33
3.6.3 Convolutional Neural Network (CNN) learning model 34
3.6.4 Character recognition . 35
3.6.5 Classification . 35

3.7 Conclusion . 36

4 Implementation 37
4.1 Introduction . 37
4.2 Environment . 37
4.3 Programming language . 37

4.3.1 Python . 37
4.3.2 Jupyter notebook . 38

4.4 Libraries . 38
4.4.1 Tensorflow . 38
4.4.2 Keras . 38
4.4.3 PyTorch . 38
4.4.4 OpenCv . 38
4.4.5 Matplotlib . 39
4.4.6 NumPy . 39
4.4.7 scikit-image (skimage) . 39
4.4.8 Tkinter . 39
4.4.9 Customtkinter . 40
4.4.10 PIL (Python Imaging Library) . 40

4.5 System overview . 40
4.6 Usage scenario . 41
4.7 Results analysis . 45

4.7.1 Results of detection model . 45
4.7.2 Results of recognition model . 47

4.8 Discussion . 48
4.9 Conclusion . 49
General Conclusion . 50

ii

List of Figures

1.1 Architecture of R-CNN . 4
1.2 Architecture of SPP-net . 4
1.3 Architecture of YOLO . 5
1.4 Architecture of SSD . 6
1.5 Example of medical imaging . 6
1.6 Example of robotic . 7
1.7 Example of facial expression detection . 8
1.8 Pictures of real-life applications of ALPR system: ALPR system in (a) traffic

law enforcement, (b) automatic toll collection, and (c) parking automation. . . 9
1.9 Basic convolutional neural network architecture 10
1.10 Example of max pooling and average pooling operations 11
1.11 Basic Recurrent neural network architecture. 12
1.12 A deep neural network architecture . 13

2.1 Basic organization of an ALPR system. 15
2.2 CNN architecture for the MD-YOLO model 19

3.1 Algerian license plate. 24
3.2 The architecture of the proposed license plate recognition system. 25
3.3 The Basic Phases of YOLOv5 Model. 26
3.4 Example Of Gray-Scale License Plate. 29
3.5 Example Enhanced License Plate. 30
3.6 Example of blurred image. 30
3.7 Example of Otsu’s thresholding license plate 31
3.8 Example 1 of morpholoical operation. 32
3.9 Example 2 of morpholoical operation. 32
3.10 Example of skew correction. 33
3.11 Example of classification. 36

4.1 The home interface of our system. 40
4.2 Open an image. 41
4.3 License plate detetion. 42
4.4 License plate extration. 42
4.5 License plate pre_processed. 43
4.6 Character segmentation. 43
4.7 Character Recognition. 44
4.8 Character Classification. 44
4.9 Example of non-Algerian plate. 45
4.10 The training results of YOLOv5. 46
4.11 The output of running model on a test image. 46

iii

4.12 Accuracy Curve. 47
4.13 Training Loss Curve. 47
4.14 Correct vs incorrect characters recognized . 48

iv

List of Tables

4.1 Characteristics of the material used. 37
4.2 The training result statistics. 45

v

General Introduction

In today’s world, there is a growing demand for automatic license plate detection and recog-
nition systems. These systems offer numerous benefits, including enhanced security and law
enforcement, improved traffic management and surveillance, streamlined parking systems and
access control, efficient toll collection and electronic payment processes, and support for smart
city initiatives. With advancements in deep learning techniques, these systems have become
more accurate and efficient, making them indispensable for addressing contemporary challenges
and ensuring public safety and convenience.

Taking into account that each country has its specific license plate, these differences can
manifest in various forms, including plate types and plate structures. In the case of Algerian
license plates, they have their unique design and formatting rules that must be considered. The
Algerian license plate system consists of a combination of numbers arranged in a particular
sequence. Moreover, the color scheme and overall layout of the plate also contribute to its dis-
tinctiveness. Creating a powerful system that can accurately recognize and process the diverse
range of Algerian license plate variations poses a significant challenge. The system needs to
be adaptable enough to handle changes in font styles, plate sizes, and any future modifications
to the Algerian license plate format. To achieve this, extensive research and data collection on
Algerian license plates are necessary. The system should be trained using a large dataset of
genuine Algerian license plates, encompassing various styles and variations. Additionally, it
should be equipped with advanced image processing techniques and algorithms to accurately
recognize and extract information from the license plate images. By developing a comprehen-
sive and adaptable system that can handle the diversity of Algerian license plates, it would
contribute to improved efficiency in traffic enforcement, vehicle identification, and overall road
safety in Algeria.

In this thesis, we propose a comprehensive system for Algerian license plate detection and
recognition that can handle the diverse range of plate variations with utmost efficiency. Our
work is organized into four chapters, each focusing on key aspects of the system development
and evaluation.

First Chapter: Dedicated to the exploration of object detection and deep learning tech-
niques. We provide an in-depth analysis of various object detection algorithms, such as Faster
R-CNN, YOLO, and SSD, emphasizing their strengths and limitations in the context of license
plate detection.

Second Chapter: Dedicated to exploring the state-of-the-art techniques in license plate de-
tection and recognition. We conduct an extensive review of existing methods, including deep
learning-based approaches, traditional computer vision techniques, and hybrid models.

1

Third Chapter The third chapter focuses on the conception of our system. In this chapter,
we delve into the initial stages of the system development process.

Fourth Chapter The fourth chapter typically delves into the implementation phase of the
system development project. Introduces working environment and the results obtained from
evaluating the performance of the algorithms.

2

Chapter 1

Object detection and deep learning

1.1 Introduction
Deep learning has revolutionized the field of computer vision by providing the ability to learn
complex features directly from raw image data. CNNs, a specific type of deep learning model,
have shown remarkable success in a wide range of computer vision tasks, including object
detection. Recently, there has been an explosion of research in object detection using deep
learning, such as region-based convolutional neural networks (R-CNNs), single shot multibox
detectors (SSDs), and you only look once (YOLO) models.
This chapter provides an overview of object detection techniques, with a focus on deep learning-
based approaches, and discusses the different types of deep learning models used for object
detection.

1.2 Object detection
Object detection is an important area in image processing and computer vision. It involves us-
ing deep learning and computer vision techniques to identify various types of objects in video
streams and files. While humans can effortlessly recognize objects in the real world, machines
require advanced algorithms to perform this task. Object detection is a critical aspect of com-
puter vision, and it involves locating and identifying specific objects in an image. Object recog-
nition is a fundamental task in computer vision that involves finding and identifying objects in
digital images, as well as in stored and real-time videos. In other words, object recognition is
the process of determining the identity of an object being observed in an image or video .[51]

1.2.1 Models of object detection
Region-based Convolutional Neural Networks RCNN

The RCNN (Region-based Convolutional Neural Network) works by first extracting a set of
object proposals using selective search. These object candidate boxes are then rescaled to a
fixed size image and passed through a CNN model, such as AlexNet that has been pre-trained
on ImageNet to extract features. The features are then fed to linear SVM classifiers that predict
the presence of an object within each region and recognize object categories. (see Figure 1.1)

3

Figure 1.1: Architecture of R-CNN
[47]

RCNN has shown significant improvement in mean Average Precision (mAP) on VOC07
compared to DPM-v5 . However, it has a major drawback of redundant feature computations on
a large number of overlapped proposals, leading to a slow detection speed of around 14 seconds
per image with GPU.
To solve this problem, SPPNet (Spatial Pyramid Pooling Network) was proposed later in the
same year. [63]

Spatial Pyramid Pooling (SPP-net)

SPP-Net is an improved version of the RCNN that offers faster speed. It introduces a spa-
tial pyramid pooling (SPP) layer that eliminates the restriction on network fixed size. Unlike
RCNN, SPP-Net only runs the convolution layer once for the whole image, regardless of size,
and then uses the SPP layer to extract features. This approach helps avoid repeat convolution
operations on the candidate area, reducing the number of convolution times required.(see figure
1.2) [61]

Figure 1.2: Architecture of SPP-net
[47]

Compared to RCNN, SPP-Net calculates the convolution on the Pascal VOC 2007 dataset
by 30-170 times faster, and its overall speed is 24-64 times faster than the RCNN. This improved
speed is achieved because SPP-Net eliminates the need for redundant feature computations on a

4

large number of overlapped proposals, making it more efficient and faster for object detection.
[61]

You Only Look Once (Yolo)

YOLO was introduced in 2015 by R. Joseph et al. and was the first one-stage detector in the
deep learning era. [8] YOLO is known for its speed and can run at 155fps with a VOC07 mAP
of 52.7% . An enhanced version of YOLO can run at 45fps with a VOC07 mAP of 63.4%.
YOLO uses a different approach from two-stage detectors as it applies a single neural network
to the full image. This network divides the image into regions and simultaneously predicts
bounding boxes and probabilities for each region. (see figure 1.3) [63]

Figure 1.3: Architecture of YOLO
[57]

Although YOLO has made significant improvements in detection speed, it suffers from a
drop in localization accuracy compared to two-stage detectors, especially for small objects.
Subsequent versions of YOLO and the proposed SSD have focused on this problem. Recently,
YOLOv7, a follow-up work from the YOLOv4 team, was proposed. It outperforms most exist-
ing object detectors in terms of speed and accuracy (ranging from 5 FPS to 160 FPS) by intro-
ducing optimized structures like dynamic convolution and cross-stage partial connections.[63]

Single Shot MultiBox Detector (SSD)

The single shot multibox detection (SSD) model is an object detection algorithm that takes an
entire image as input and uses multiple convolutional layers with varying filter sizes (10×10,
5×5, and 3×3) to extract feature maps at different scales as showing in figure 1.4 . These feature
maps are then used to predict bounding boxes for objects in the image.[6] To refine the bounding
box predictions, SSD uses extra feature layers with 3×3 filters. The anchor box of SSD is similar
to the default box of Fast R-CNN and has parameters that include the center coordinates, width,
and height.
To handle objects of different scales, SSD predicts bounding boxes after multiple convolutional
layers. Since each convolutional layer operates at a different scale, the model can detect objects
of various sizes. (see figure 1.4)
[47]

Finally, SSD produces a vector of probabilities for each class of object, indicating the con-
fidence level of the predicted bounding box. This approach achieves a good balance between
accuracy and speed, making SSD a popular choice for object detection in various real-world
applications. [47] .

5

Figure 1.4: Architecture of SSD
[47]

1.2.2 Object detection application
Object detection has a wide range of applications in computer vision and artificial intelligence,
including:

Medical imaging

In medical imaging, object detection is a crucial tool in assisting healthcare providers in identi-
fying and diagnosing various conditions. The technique is used to detect and segment various
structures within medical images such as tumors, organs, or blood vessels. The output from
the object detection algorithms provides valuable information that helps healthcare providers
make informed decisions about patient treatment. By detecting these objects in medical im-
ages, object detection in medical imaging saves time, reduces human error, and helps improve
the accuracy of diagnoses.[51]

Figure 1.5: Example of medical imaging
[51]

6

Robotic

This requires autonomous assistive robots to have the capability to efficiently process visual
information in real-time, enabling them to quickly adapt and respond to changes in their envi-
ronment. Object detection and recognition is a crucial first step in achieving this goal and is
necessary for the robots to function effectively .[51]

Figure 1.6: Example of robotic
[51]

Facial expression detection

Human faces provide a wealth of information that can help in understanding the user’s current
state of mind, making it a valuable tool for constructing effective human-computer interactions.
Over the past decade, facial expression classification and recognition have been extensively
studied, resulting in a wide range of applications. These include socially intelligent robots with
emotional intelligence, assistance systems for autistic individuals, emotion detection systems
for the disabled, pain or stress detection systems for psychological studies, intelligent tutor-
ing systems, and portable mobile applications that can automatically insert emotions in chat
applications.[12]

To be effective, facial expression detection systems must be capable of real-time operation.
As these expression recognition systems become more robust and able to work in real-time,
they will open up new avenues for innovation and lead to many other applications. [12]
Overall, the research and development of facial expression detection systems have significant
potential to improve human-computer interactions and have a positive impact on various areas,
including healthcare, education, and social interactions. (see figure 1.7)[12]

7

Figure 1.7: Example of facial expression detection
[51]

License plate detection

Automatic License Plate Recognition (ALPR) systems are becoming increasingly popular be-
cause of their wide range of applications in intelligent transportation systems, such as traffic law
enforcement, traffic monitoring, vehicle park management, toll collection, and security control
in restricted areas like military campsites and protected sanctuaries. These systems are designed
to prevent fraud and intensify security in specific areas, such as searching for missing vehicles
or vehicles related to crimes. Without ALPR systems, such tasks would require a significant
amount of labor, time, and resources. Additionally, manual intervention in such tasks may lead
to erroneous interpretations, and it is practically challenging for a human to remember or read
a license plate of a moving vehicle efficiently.(see figure 1.8)[43]

8

Figure 1.8: Pictures of real-life applications of ALPR system: ALPR system in (a) traffic law
enforcement, (b) automatic toll collection, and (c) parking automation.

[6]

1.3 Deep Learning
Deep learning is a subset of machine learning that involves building and training neural net-
works with multiple layers to learn from large amounts of data, in order to make predictions
or decisions on new data. It has been successfully applied to a wide range of tasks, including
image and speech recognition, natural language processing, and recommendation systems.

1.3.1 Deep Learning Methods
Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) was originally introduced by LeCun [16] in 1998
and is a type of neural network that incorporates the concepts of receptive fields, weight sharing,
and subsampling. It is a special kind of multilayer perceptron that is trained using supervised
learning and backpropagation. CNN has proven to be highly successful in computer vision and
has achieved state-of-the-art results in tasks such as character recognition, object recognition,
face detection, pose estimation, speech recognition, license plate recognition, as well as image
preprocessing and segmentation tasks.[5]

9

A convolutional neural network (CNN) typically consists of three main types of layers: convo-
lutional layers, pooling layers (also called subsampling layers), and fully-connected layers as
showing in image below, these layers work together to learn features and make predictions on
input data, such as images. (see figure 1.9)[60]

Figure 1.9: Basic convolutional neural network architecture
[60]

Convolutional layer The Convolutional Neural Network (CNN) utilizes convolutional layers
to extract features from input images. Neurons in each convolutional layer are arranged into
feature maps, where each neuron has a receptive field connected to a neighborhood of neurons
in the previous layer through trainable weights, also known as a filter bank. The input image is
convolved with the learned weights to generate a new feature map, which is then passed through
a nonlinear activation function denoted by f(·). The k-th output feature map Yk is computed using
the formula:

Yk = f

(
n

∑
i=1

Wki ·Xi +bk

)
where x represents the input image, Wk is the convolutional filter related to the kth feature map,
and represents the 2D convolutional operator that calculates the inner product of the filter model
at each location of the input image. All neurons within a feature map have equal weights, while
different feature maps within the same convolutional layer have different weights to extract
multiple features at each location. The use of nonlinear activation functions such as the rectified
linear unit (ReLU) enables the extraction of nonlinear features from the feature maps. The
ReLU function has gained popularity due to its success in improving the performance of CNNs.
Further research focuses on the development and application of novel activation functions to
enhance the performance of CNNs. [38]

pooling layers After the convolutional layer detects features in an image, their exact location
becomes less important, as what matters more is their relation to the neighboring features.
Subsampling, achieved through the subsampling layer, enhances translational invariance by
reducing spatial resolution and sensitivity to shifts and distortions.

10

Pooling is used to further subsample the feature maps by sliding a window across them and
computing a single output value per window, thus reducing the size of the feature maps. The
size of the window used for pooling can be adjusted based on the requirements of the model.[5]
Two pooling operations are defined below:

A verage pooling The average pooling operation computes the average value of the ele-
ments within a receptive field, placed at each position in the input feature map. The resulting
value is then propagated to the corresponding location in the output feature map.[5]

Max pooling Max pooling involves taking the maximum value from each sub-region of
the activation map and using it to create a new matrix. This limits the number of learnable
features while preserving important features of the image. Typically, a 2x2 filter is used for
max pooling. (see figure 1.10)[2]

Figure 1.10: Example of max pooling and average pooling operations
[38]

Fully-connected layers At the end of a CNN there are one or more fully connected layers
(every node in the first layer is connected to every node in the next layer).They consist in per-
forming a classification based on the features extracted from the convolutions. The final layer
contains a Softmax activation function, which generates a probability value from 0 to 1 for each
of the class labels that the model attempts to predict. In some recent CNNs network architec-
tures, the fully connected layers can be replaced by several average pooling layers. This allows
these networks to significantly reduce the total number of parameters and which allows better

11

prevention of overfitting. [30]

Recurrent Neural Network (RNN)

The RNN is a popular algorithm in deep learning, particularly for NLP and speech process-
ing, that utilizes sequential information in the network. This allows for the use of embedded
structures in data sequences to convey useful knowledge, such as understanding the context
of a word in a sentence. An RNN includes an input layer, hidden (state) layer, and output
layer and can be seen as short-term memory units. A deep RNN, which takes advantage of a
deeper network and reduces difficult learning in deep networks, can include three approaches:
deep “Input-to-Hidden,” “Hidden-to-Output,” and “Hidden-to-Hidden”. One issue with RNNs
is their sensitivity to vanishing and exploding gradients, which can cause the network to forget
initial inputs with the entrance of new ones. To address this issue, Long Short-Term Mem-
ory (LSTM) is used to provide memory blocks in its recurrent connections with gated units to
control information flow. Residual connections in very deep networks can also alleviate the
vanishing gradient issue. (see figure 1.11)[34]

Figure 1.11: Basic Recurrent neural network architecture.
[60]

Deep Neural Network (DNN)

Deep Neural Networks (DNNs) are a type of machine learning model that are inspired by the
structure and function of the human brain. They consist of multiple layers of interconnected
nodes, also known as neurons, which process and transform input data to produce an output.
Each layer in a DNN is responsible for learning and extracting different features from the input
data, with the final layer producing the output.
DNNs are called "deep" because they typically have many layers, which allows them to learn
complex representations of data. The number of layers in a DNN can range from a few to hun-
dreds or even thousands, depending on the complexity of the task at hand.
One of the key advantages of DNNs is their ability to automatically learn features from raw
input data without requiring manual feature engineering. This makes them particularly useful
for tasks such as image recognition, where traditional machine learning models would require
hand-crafted features to achieve good performance.
Overall, DNNs have become an important tool in modern machine learning and have been used
to achieve state-of-the-art performance in a wide range of applications.[26]

12

The general design of a DNN is shown in figure 1.12 below.

Figure 1.12: A deep neural network architecture
[29]

1.4 Conclusion
In conclusion, deep learning methods have revolutionized the field of object detection by pro-
viding high accuracy and efficiency. These methods include popular algorithms such as con-
volutional neural networks (CNNs) and recurrent neural networks (RNNs), as well as newer
architectures such as YOLO and SSD. Object detection has a wide range of applications, in-
cluding automatic license plate detection, and continues to be an active area of research with
new advancements and techniques being developed.

13

Chapter 2

State-of-the-Art

2.1 Introduction
License plate detection and recognition is a critical task in many transportation-related applica-
tions, such as traffic monitoring, toll collection, and parking management. Traditional methods
rely on image preprocessing, feature extraction, and classification, while deep learning-based
approaches have shown great potential. CNNs, a specific type of deep learning model, have
been widely used to learn complex features directly from raw image data. This chapter provides
an overview of the techniques used for license plate detection and recognition, and reviews the
traditional image processing techniques and recent advances in deep learning-based approaches
for license plate detection and recognition.

2.2 Automatic license plate detection and recognition
ALPR stands for Automatic License Plate Detection and it refers to the process of identifying
and extracting the license plate area of a vehicle from an image without any human intervention.
This is a crucial step in Automatic License Plate Recognition (ALPR) System which has three
major stages, including image acquisition, LP area detection, and character feature extraction
and recognition. The detection stage is particularly important as it needs to handle various chal-
lenges such as different LP locations, multiple LPs in the image, various LP sizes and colors,
camera tilting and poor lighting, among others. Due to these challenges, ALPR is considered a
difficult research topic in the field of image processing.The general processes involved in ANPR
systems is shown in Figure 2.1. [5]

2.3 License plate detection

2.3.1 Edge detection
The algorithm proposed In [55]for vehicle number plate detection is based on the Euler number
of a binary image and the Mexican hat operator for edge detection. While they claim a high
success rate of 94-99% and an average accuracy of 96.17%, there is a situation where their
algorithm can fail. If the license plate is black, the edge detection system may fail to properly
recognize the edges of the plate. This is because the Mexican hat operator used for edge de-
tection is a high-pass filter that amplifies the high-frequency components of the image. In the
case of a black license plate, the edges may not have sufficient high-frequency components to

14

Figure 2.1: Basic organization of an ALPR system.
[43]

be detected by the operator, leading to a failure of the edge detection system.
To overcome this limitation, one approach could be to use a different edge detection algorithm
that is more suitable for detecting edges in low-contrast images. For example, the Canny edge
detection algorithm is a popular choice for edge detection in computer vision applications and
is known to perform well in low-contrast images.
Alternatively, the algorithm could be modified to incorporate additional features or information
to help detect the edges of black license plates. For example, the algorithm could use color in-
formation to distinguish between the black background and the white characters on the license
plate, and then use this information to locate the edges of the plate. Additionally, the algorithm
could use prior knowledge about the size and shape of license plates to help identify the region
of interest and improve the accuracy of the edge detection process.[55]
The license plate detection system proposed in [10] is based on an enhanced Prewitt arithmetic
operator and uses a projection method to locate the position of the license plate. The system is
designed to work under various backgrounds and lighting conditions and is capable of detecting
license plates in real-time.
The enhanced Prewitt arithmetic operator is a type of edge detection algorithm that is designed
to improve the accuracy of edge detection in low-contrast images. The algorithm uses a combi-

15

nation of horizontal and vertical edge detection filters to identify the edges of the license plate.
Once the edges of the license plate are detected, the projection method is used to determine the
position of the license plate. The projection method works by projecting the edges of the license
plate horizontally and vertically to identify the top and bottom edge areas along the edge. By
analyzing the location of these edge areas, the system can accurately determine the position of
the license plate and extract the license plate number.
According to Chen, their proposed system achieved a precision of 96.75%, indicating a high
level of accuracy in license plate detection. Furthermore, they claim that their system is effi-
cient enough to work in real-time, meaning that it can process video streams and detect license
plates as the vehicle moves.
Overall, the license plate detection system proposed by Chen offers a promising solution for li-
cense plate detection under various backgrounds and lighting conditions. By using an enhanced
Prewitt arithmetic operator and a projection method, their system achieves high accuracy and
real-time efficiency, making it suitable for practical applications such as traffic monitoring and
law enforcement.[10]

2.3.2 Texture-Based Methods
In [54], a Wavelet transform-based method for license plate detection is described. The method
involves using the HL sub-band of the Wavelet transform for feature extraction, and then using
the LH sub-band to verify the presence of a horizontal line around the feature. The authors
report an accuracy of 97.33% for the localization process using this method.
One advantage of texture-based methods, such as the one described in [54], is that they are
robust against license plate deformation. This means that the method can still accurately detect
and recognize license plates even if they are bent or distorted. This is an important advantage
since license plates can become deformed due to various reasons such as damage or natural
wear and tear.
However, a drawback of texture-based methods is that they can involve complex computations
and may not work well with complex backgrounds or different illumination conditions. For
example, if the license plate is located in a scene with a cluttered background or poor lighting
conditions, the texture features may be difficult to extract or may not be robust enough to ac-
curately detect the license plate. Therefore, these methods may not be suitable for all scenarios
and may require further optimization and customization to perform well in different conditions.
In [59], scan-line techniques were used for license plate detection. This method is based on the
observation that the complexity of the plate region in a grayscale image is not seen anywhere
else in the image, meaning that it is a unique feature that can be used for detection. This method
does not depend on the boundary details of the license plate, making it a robust approach to
detect license plates in various scenarios.
Zunino et al. [64] presented a novel method for localization using Vector Quantization (VQ).
This method considers the actual content of the license plate rather than just its features like
edges and contrast, which have been considered in other studies. The authors reported a detec-
tion accuracy of 98% and tested the method in a real-time industrial application.
License plates can create inconsistencies in the texture of the input image, which can disclose
their presence in the image. This is because the letters and numbers on the license plate have
a unique texture and appearance that can be used to distinguish them from the surrounding
background. By using texture-based approaches like VQ, it is possible to leverage these unique
features to accurately detect and recognize license plates in various scenarios. However, as
mentioned earlier, these methods may not be suitable for all scenarios and may require further

16

optimization and customization to perform well in different conditions.

2.3.3 Convolutional neural network CNN
The authors of [14] proposed a convolutional neural network (CNN) based framework for de-
tecting vehicle number plates. Their approach improves upon existing methods for detecting
blurred and obscure images and is designed to work effectively under various lighting condi-
tions.
CNNs are a type of neural network that are commonly used in computer vision applications,
including object detection and image classification. They are well-suited for tasks that involve
processing large amounts of image data, making them an ideal choice for license plate detec-
tion. The authors of [14] trained their CNN on a large dataset of license plate images to learn
the features that are most relevant for detecting license plates. By training the network on a
diverse range of images, the CNN is able to learn to detect license plates under various lighting
conditions and in different environments.
The accuracy obtained by their proposed method is reported to be around 100%. This indicates
that their system is able to correctly identify license plates in all cases, achieving a perfect score
on their test dataset. However, it is important to note that the accuracy reported on a test dataset
may not necessarily translate to real-world performance. In practice, there may be additional
challenges such as variations in lighting and environmental conditions that could affect the ac-
curacy of the system.
Overall, the CNN based framework proposed by the authors of [14] offers a promising solution
for license plate detection. By using a neural network approach, their system is able to learn to
detect license plates under a wide range of conditions and achieves high accuracy on their test
dataset.
In the study by Selmi et al. [41], a CNN-based localization method was proposed. The method
involved two major steps - preprocessing and classification. In the preprocessing stage, the in-
put image was processed to remove noise and extract finer details. In the classification stage, a
CNN classifier was used to distinguish possible bounding boxes as either license plate or non-
plate regions. The method was evaluated on the Caltech data set and achieved a recall accuracy
of 93.8% and f-score accuracy of 91.3%.
In another study by Zou et al. [62], two CNNs - shallow CNN and deep CNN were trained end-
to-end for license plate detection. The shallow CNN was used to reduce the computational cost
by removing most of the background regions from the image, while the deep CNN was used to
detect the license plate from the remaining regions. Finally, non-maximum suppression (NMS)
was applied to locate the exact plate region. The experimental results showed above-average
accuracy with less computational cost. Overall, these studies demonstrate the effectiveness of
deep learning neural networks, particularly CNNs, for license plate detection. These methods
have shown promising results and can be further improved for real-world applications.

2.3.4 You-only-look-once (YOLO)
The success of real-time object detectors such as You-only-look-once (YOLO) has inspired
many recent studies on automatic license plate recognition (ALPR). YOLO is a state-of-the-art
object detection algorithm that uses a single neural network to predict bounding boxes and class
probabilities for detected objects in real-time.
Silva et al. in [45] used YOLOv2, a popular object detection network, to detect vehicles with-
out any modifications or fine-tuning. They treated the network as a black box and merged the

17

two classes of cars and buses on the PASCAL-VOC dataset, ignoring other classes. In con-
trast, WPOD-NET was specifically designed to detect license plates in a variety of different
distortions. It was inspired by three other deep learning techniques: YOLO, SSD (Single Shot
Detector), and STN (Spatial Transformer Network). WPOD-NET regresses coefficients of an
affine transformation that unwarps the distorted license plate into a rectangular shape resem-
bling a frontal view. This allows for more accurate detection and recognition of the license
plate.
Overall, both approaches highlight the power and flexibility of deep neural networks in object
detection tasks, and demonstrate how they can be adapted and refined for specific use cases.

In [25], Min proposed a vehicle license plate location system using the latest YOLO-L
model and pre-identification plate to accurately detect the location of the license plate. The pro-
posed method comprises two parts. First, the k-means++ clustering algorithm was used to select
the appropriate size and number of candidate boxes for the license plate. Next, the YOLOv2
network model and depth were modified to detect the license plate accurately. In addition, a
pre-identification algorithm was employed to separate license plates from other objects.
The proposed system was tested on a dataset containing different types of license plates and
achieved a precision and recall of 98.86%. The high accuracy achieved by the proposed method
demonstrates the effectiveness of using the YOLO-L model and pre-identification algorithm
for license plate detection. This system can be useful for various applications such as traffic
management, law enforcement, and toll collection system Parvin.

In [58], Xie et al. presented an approach that improved upon the original YOLO framework
for license plate detection. Their proposed framework, called MDYOLO, is able to handle
multi-directional license plates by providing information about the angle of rotation in addition
to the object’s center coordinates, height, and width.
To achieve this, Xie et al. redesigned the CNN architecture of YOLO by adding an extra branch
to the output layer for predicting the angle of rotation. The model was trained on a large dataset
of labeled license plate images captured under various lighting conditions and with different
degrees of occlusion.
Experimental results showed that the MDYOLO framework outperformed other state-of-the-art
license plate detection methods, including the original YOLO framework, in terms of accuracy
and robustness to poor lighting conditions and occlusions. The authors attributed this improve-
ment to the ability of the model to capture multi-directional license plates and to the use of a
novel loss function that penalized the model for false positives and false negatives.
Overall, the MDYOLO framework offers a promising approach to license plate detection, par-
ticularly in scenarios where multi-directional license plates are common and lighting conditions
may be poor. The figure 2.2 below shows the redesigned CNN architecture for the MDYOLO
model.

18

Figure 2.2: CNN architecture for the MD-YOLO model
[58]

2.4 Character Segmentation

2.4.1 Character Segmentation Using Pixel Connectivity
In [31] and [56] used Pixel connectivity , It is a method commonly used for character segmenta-
tion in license plate recognition. It involves labeling connected pixels in the license plate image
and extracting character regions based on predetermined size or aspect ratio criteria. This ap-
proach is relatively simple to implement and is robust against rotated license plates. However,
pixel connectivity-based methods may struggle with broken characters or joined characters re-
sulting from binarization threshold issues. Nonetheless, they offer a streamlined solution by
eliminating the need for extensive pre-processing steps to handle license plate rotation, making
them an attractive choice in license plate recognition systems.

2.4.2 Character segmentation using projection profiles
Projection profile methods take advantage of the contrast between character and background
pixels in the binarized license plate image. Typically, vertical projections are used to identify
the starting and ending positions of each character, while horizontal projections are used to
extract the individual characters. This approach is not affected by the specific positions of the

19

characters, making it robust and independent of character arrangement. However, projection-
based techniques are sensitive to image quality and noise, which can negatively impact their
performance. To mitigate this, a denoising stage is often included in the pre-processing phase of
the recognition pipeline. While projection-based methods may have lower robustness compared
to pixel connectivity-based methods for rotations, they still offer good rotation robustness and
can effectively handle license plates with varying character positions.[13]

2.4.3 Character segmentation using deep learning
Character segmentation using deep learning has gained popularity as a modern approach in
license plate recognition. It involves utilizing convolutional neural networks (CNNs) for com-
puter vision tasks [20]. The process entails feeding a localized license plate image into the
CNN, which then generates bounding boxes around individual characters as its output. Al-
though deep learning-based segmentation achieves accurate results, it typically requires more
time and computational resources compared to traditional computer vision techniques, depend-
ing on the dataset. However, some recent license plate recognition pipelines using deep learning
have opted for implicit character segmentation in later stages, reducing the number of parame-
ters and computational costs involved [27], [21].

2.5 License plate recognition

2.5.1 Convolutional Neural Network
In the study referenced in [3], Alam proposed a method for identifying and recognizing Bengali
language vehicle number plates using Convolutional Neural Network (CNN) and Deep Learn-
ing strategies. The main idea behind this method was to develop a system that can accurately
recognize and store vehicle numbers in a cloud-based system. To achieve this goal, the proposed
system utilized a super-resolution technique with CNN in the recognition portion to reconstruct
the pixel quality of the input image. This technique helped to improve the image resolution and
overall accuracy of the recognition process.

The number plate recognition process involved segmenting each character of the number
plate using a bounding box technique. This allowed the system to accurately identify each char-
acter and recognize the entire number plate.
To test the effectiveness of the proposed system, Alam used 700 vehicles and evaluated the
outcomes on a validation set and an evaluation set. The results showed that the CNN achieved
98.2% accuracy in the validation set and 98.1% accuracy in the evaluation set, with an error rate
of 1.8%.[3]
In the study referenced in [42], Shaifur Rahman proposed a Bangla license plate recognition
system (BLPRS) based on Convolutional Neural Networks (CNN). The primary aim of this
system was to develop an efficient and accurate method for recognizing Bangla license plates
that could be used for various purposes, such as roadside assistance and vehicle license status
identification.
To achieve this goal, the authors used six CNN layers and a fully connected layer for training
the BLPRS. These layers were designed to extract and analyze the relevant features of the li-
cense plate images and recognize the license plate numbers accurately. To test the effectiveness
of the proposed BLPRS, the authors used a testing dataset and reported that they achieved 89%
testing precision, indicating that the system was highly accurate in recognizing Bangla license

20

plates.[42]

In their work, Liu et al. [24] proposed a method for license plate recognition that combined
connected component analysis and projection analysis for segmentation, as well as two CNNs
for character recognition. The proposed method was capable of handling overexposed license
plates by first converting them to grayscale and enhancing the contrast ratio of images. Then,
breadth-first search algorithm was used to obtain the connected components and determine
whether there were any missing or redundant characters.
Two CNNs were designed for character recognition, one for Chinese characters and the other
for recognizing numbers and letters. The SCNN and RCNN were designed to be simple and
recurrent, and were trained on a dataset of 2189 images. The authors reported a segmentation
rate of 96.58% and a recognition rate of 98.09%. The proposed method outperformed previous
methods in terms of accuracy and robustness to overexposed license plates.[24]

2.5.2 Recurrent Neural Network (RNN)
Li et al in [22]. proposed a license plate recognition system based on a Bidirectional Recurrent
Neural Network (BRNN) with Connectionist Temporal Classification (CTC) loss. The system is
designed to process the license plate features extracted by the Region Proposal Network (RPN)
and recognize the license plate characters. The BRNN architecture consists of two recurrent
neural networks (RNNs), one that processes the input sequence in the forward direction and an-
other that processes it in the backward direction. The outputs of these two RNNs are combined
to generate the final output. The use of BRNNs allows the system to capture both past and
future contextual information in the input sequence, which is important for accurate character
recognition.
The CTC loss function is used to train the BRNN model. It allows the model to learn to recog-
nize sequences of characters without the need for explicit alignment between the input sequence
and the output sequence. This is important for license plate recognition, where the number of
characters in a license plate may vary and the characters may be arranged in different ways.
Overall, the proposed system achieved high accuracy in character recognition on various datasets,
demonstrating the effectiveness of the BRNN with CTC loss for license plate recognition.
Wang, Yi, et al. "Rethinking and designing a high-performing automatic license plate recog-
nition approach." IEEE Transactions on Intelligent Transportation Systems 23.7 (2021): 8868-
8880.[22]
The study referenced in [23] proposed a method for license plate recognition based on recur-
rent neural networks (RNNs) with Long Short-Term Memory (LSTM) to recognize sequential
features extracted from the license plate images via convolutional neural networks (CNNs). In
this approach, each detected license plate image was first converted to a grayscale image and
resized to 24x94 pixels. Then, a sliding window technique was used to partition the image into
sub-windows of 24x24 pixels with a step size of 1. Each partitioned image patch was fed into a
36-class CNN classifier to extract sequence features.
The fourth convolutional layer and the first fully connected layer were concatenated together
into one feature vector with a length of 5096. Principal Component Analysis (PCA) was used
to reduce the feature dimension to 256 dimensions, followed by feature normalization. Finally,
Connectionist Temporal Classification (CTC) was designed to decode the predicted probability
sequence into output labels directly, with an average recognition rate of around 92.47%.
The proposed method demonstrated significant improvements in license plate recognition ac-
curacy compared to previous methods. The use of RNNs with LSTM allowed for better recog-

21

nition of sequential features in the license plate images, leading to higher accuracy in license
plate recognition. The approach showed promising results for real-world applications such as
traffic monitoring, toll collection, and parking management.[23]

2.5.3 Optical Character Recognition (OCR)
In the study referenced in [11], Kashyap introduced an automated number plate recognition
(ANPR) system that uses image processing techniques to recognize license plate characters.
The system was designed to automatically capture and analyze license plate images to extract
the necessary information, such as the license plate number. To recognize the characters on the
license plate, the system used Optical Character Recognition (OCR) technology. OCR is a pro-
cess that converts the lettering on an image to text, allowing the system to read and recognize
the license plate number.
To evaluate the performance of the proposed ANPR system, Kashyap used a testing dataset
and reported that they achieved an accuracy of about 82.6%. While this level of accuracy is
relatively high, it still leaves room for improvement, as it may not be sufficient for certain ap-
plications, such as law enforcement or toll collection.[11]

In the study referenced in [19], Pechiammal proposed an effective process for automatic
license plate recognition (ALPR). The proposed method consisted of three portions: segmen-
tation of characters, identification of optical characters, and matching of models. The primary
objective of the proposed method was to extract the characters from the license plate accurately
and efficiently.
The first portion of the proposed method was the segmentation of characters, which involved
identifying the characters on the license plate image and separating them from the background.
This step was crucial, as it allowed the system to focus only on the characters and ignore any
irrelevant information.
The second portion of the proposed method was the identification of optical characters. In this
step, Optical Character Recognition (OCR) technology was used to recognize the characters on
the license plate and convert them into machine-readable text.
The final portion of the proposed method was the matching of models. In this step, the system
compared the recognized characters with a pre-defined database of license plate characters to
identify the license plate number accurately.
To evaluate the effectiveness of the proposed method, Pechiammal used a testing dataset and
reported that they achieved an 85% extraction rate. This means that the proposed method was
able to extract the license plate characters accurately in 85% of the cases.[19]

In the study referenced in [39], Rehman proposed an innovative vehicle number plate recog-
nition method using Optical Character Recognition (OCR) and template matching strategies for
the Pakistani language. The proposed method was evaluated on several real-time images of
different formats of number plates used in Pakistan.
The primary objective of the proposed method was to develop an Automatic Number Plate
Recognition (ANPR) system that could be used by law enforcement agencies and private orga-
nizations to enhance home security, while also providing time and money-saving benefits.
To achieve this objective, the proposed ANPR system used OCR technology to recognize
the characters on the license plate and convert them into machine-readable text. The system
also used template matching strategies to compare the recognized characters with pre-defined
database of license plate characters to identify the license plate number accurately. Rehman

22

reported that their proposed ANPR approach achieved an accuracy of 93%, indicating that the
system was able to identify the license plate numbers accurately in 93% of the cases.[39]

2.5.4 K-means Clustering-based Approach
In [35], Pustokhina proposed an efficient deep learning-based approach for license plate recog-
nition for vehicles. The proposed approach consists of two main stages: optimal K-means clus-
tering segmentation and Convolutional Neural Network (CNN) based character recognition.
The proposed method first uses the Bernsen Algorithms (IBA) and the Connected Component
Analysis (CCA) models to classify and locate the license plates. Then, the optimal K-means
clustering algorithm is used to segment the license plate. Finally, a Convolutional Neural Net-
work (CNN) is employed to recognize the characters of the segmented license plate. The pro-
posed method was evaluated on different datasets, and the results showed that the maximum ac-
curacy obtained by the proposed Optimal K-Means with Convolutional Neural Network (OKM-
CNN) system on the datasets is about 98.1%. The proposed method is efficient and accurate,
and it can be used for real-time applications such as traffic monitoring, parking management,
and toll collection systems.[35]

2.5.5 Template matching
In [46], the Template Matching technique was used to recognize the characters segmented from
Moroccan format number plates. This method involves matching the segmented characters with
a pre-defined template of characters to identify the characters accurately. The proposed system
was evaluated on four different sets of Moroccan format number plates, and the success rates
achieved were 98.1%, 96.37%, 93.07%, and 92.52%, respectively. These results indicate the
effectiveness of the Template Matching technique in recognizing characters from Moroccan
format number plates. However, it is worth noting that this method may not be as robust as
other deep learning-based methods and may have limitations in handling variations in license
plate formats and lighting conditions.[46]

2.6 Conclusion
In conclusion, there are various methods for license plate detection and recognition, each with
its strengths and weaknesses. Deep learning-based approaches, particularly those using con-
volutional neural networks (CNNs), have shown promising results in recent years, achieving
high accuracy rates in both detection and recognition tasks. Other techniques such as template
matching, Recurrent neural network (RNN), and optical character recognition (OCR) have also
been used in combination with deep learning approaches to further improve performance. Over-
all, the choice of method depends on the specific application, the type of license plate, and the
available resources.

23

Chapter 3

Conception

3.1 Introduction
In this chapter, we propose an approach for license plate detection and recognition using deep
learning techniques. Our system combines the power of the YOLO algorithm for license plate
detection and a CNN model for character recognition. The goal is to efficiently detect li-
cense plates and accurately recognize the characters on them. By leveraging deep learning,
we overcome challenges such as varying license plate styles and lighting conditions. This chap-
ter presents the objectives of our system, the architecture, the design steps, and the proposed
algorithms. We conclude with insights into the potential applications of our approach.

3.2 System goals
The primary goal of this project is to create a deep learning system capable of detecting and
extracting license plate images from a given input, as well as accurately recognizing and ex-
tracting the content of the license plates. By leveraging advanced deep learning techniques, the
system aims to identify and extract the necessary information, specifically the vehicle number,
from the license plate images.

3.3 Characteristics of Algerian plates
The Algerian license plate contain ten or eleven numbers as showing in the image bellow:

Figure 3.1: Algerian license plate.

The registration mark of the Algerian license plate follows a specific format consisting of
four groups of digits. It is important to note that these groups are read from right to leftas follow:

• The first two-digit identifies the wilaya or province in which the vehicle was first regis-
tered.

24

• The second tow-digit indicate the year in which the vehicle was manufactured.

• The first digit in the 3-digit group indicates the class of the vehicle.

• The rest of the number indicate the vehicle’s serial number.

3.4 Architecture of the system
The architecture diagram below illustrates how this comprehensive workflow enables accurate
identification and classification of license plate characters from image inputs. The proposed
system consists of the following phases:

• License Plate Detection: This phase detects the license plate from the image, even in
challenging conditions such as skew problems and unbalanced lighting.

• License Plate Extraction: This phase completes the previous phase by extracting and
segmenting the license plate from the detected image.

• License Plate Preprocessing: In this phase, necessary filtering, correction, and enhance-
ment techniques are applied to prepare the license plate image for the next steps.

• Character Segmentation and Character Recognition: At this stage, the enhanced and ex-
tracted license plate image is used for character box extraction, followed by digitization
of the extracted boxes.

• Character Classification: The final phase involves classifying the digitized character boxes
into numbers.

This systematic approach ensures the accurate identification and classification of license plate
characters, even in various challenging scenarios.

Figure 3.2: The architecture of the proposed license plate recognition system.

25

3.5 License plate detection

3.5.1 Yolov5 model learning
YOLOv5 is the latest iteration of the YOLO object detection algorithm, introduced in 2020. It
offers four versions: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, with increasing depth
and feature map width. The network structure consists of four components: input, backbone,
neck, and prediction. During input processing, data augmentation and anchor frame calculation
are performed, enhancing detection capabilities. The backbone incorporates the Focus and CSP
structures, while the neck combines FPN and PAN structures for feature fusion. The prediction
stage utilizes the CIOU loss function and DIOU_nms operation to improve accuracy. These
design choices contribute to the efficiency, precision, and lightweight nature of YOLOv5.[44]
Figure 3.3 illustrates the architectural overview of the main steps involved in the YOLOv5
algorithm.

Figure 3.3: The Basic Phases of YOLOv5 Model.

Prepare the dataset The process of dataset selection posed a significant challenge due to
the unavailability of a pre-existing dataset specifically focused on Algerian vehicle plates. To
overcome this obstacle, a multi-faceted approach was adopted. Initially, a series of images
capturing Algerian vehicle plates were obtained using a camera phone. Additionally, images
featuring Algerian vehicle plates were collected from online platforms such as Ouedkniss [1]
. In order to enhance the dataset’s diversity and expand its scope, an additional dataset from
Kaggle [4] , comprising 432 annotated images of vehicle plates from various countries, was

26

incorporated. By combining these datasets. The dataset collected was meticulously annotated to
provide accurate and detailed information about the objects of interest. Following the annotation
process, the dataset was divided into two distinct folders: a training folder, and a validation
folder. This division ensured a well-balanced distribution of data for training, and evaluation
purposes.
Subsequently, the annotations for each image were converted from their original XML format
to a YOLO readable format. This conversion involved transforming the annotations into text
files, with each file corresponding to an individual image and stored in a designated "labels"
folder.
To streamline the training process, the number of classes within the dataset was standardized to
a single class, specifically labeled as "license_plate ". This simplification allowed for a focused
and efficient model development, where the primary objective was the accurate detection and
classification of license plates.

Download YOLO The first step it was download yolov5 [50], Next, navigate to the yolov5/data
folder and create license_plate.yaml file.
The license_plate.yaml file is a configuration file used for training an object detection model
with YOLOv5. It specifies the paths to the training, and validation images directories. Addi-
tionally, it defines that there is one class to be detected, which is "license_plate". The file pro-
vides the necessary information for setting up the training process, including the class names
and the number of classes.

Train model The training process for the license plate detection model is initiated using the
YOLOv5 architecture. The input images are resized to a resolution of 640x640 pixels, allowing
the model to process images at this size. The batch size is set to 32, which means that during
each iteration of training, the model processes 32 images together. This helps optimize the
training process.
The training is carried out for 60 epochs, where each epoch represents a complete iteration over
the entire training dataset. By training the model over multiple epochs, it has the opportunity to
learn and improve its performance on the license plate detection task.
The license_plate.yaml file is utilized to provide the necessary configuration for the training
process.

Model Evaluation To assess the effectiveness of the trained license plate detection model,
an evaluation process is conducted using the YOLOv5 architecture. The command initiates the
evaluation by executing the val.py script. This script is responsible for evaluating the model’s
performance in accurately detecting license plates. The trained model’s weights, specifically
the best-performing ones, are provided through the –weights parameter, pointing to the best.pt
file. The configuration of the evaluation is specified by the license_plate.yaml file, which con-
tains essential details about the dataset and class information. During the evaluation, images are
resized to 640x640 pixels using the –img parameter to maintain consistency with the training
process. The –task test argument indicates that the evaluation is conducted on the evaluation
dataset, which ensures a reliable assessment of the model’s ability to generalize to unseen li-
cense plate images. By executing this command, the val.py script evaluates the trained model’s
performance, providing valuable insights into its accuracy and its potential applicability in prac-
tical scenarios.

27

3.5.2 License plate detection
In this step, the YOLOv5 model is utilized to detect the license plate from the input image. The
following is a more formal explanation of the process:

1. Load the YOLOv5 model: The pre-trained YOLOv5 model is loaded using the torch.hub.load()
function from the ultralytics/yolov5 repository [50]. The path to the trained weights file
is provided through the path parameter. Setting force_reload=True ensures that the latest
version of the model is loaded.

2. The loaded YOLOv5 model is used to perform inference on the input image by passing
it as an argument to the model() function. The results of the inference, containing the
bounding box coordinates and class labels, are stored in the results variable.

3.5.3 Extract the license plate
The license plate region is extracted by utilizing the image with detection, which provides the
necessary bounding box coordinates. The YOLOv5 model identifies the region of interest based
on these coordinates. Subsequently, the extracted license plate is resized to the desired dimen-
sions. This resizing operation ensures that the license plate image conforms to the specific size
requirements for further processing. Finally, the resized license plate image is saved, ensuring
its availability for subsequent steps in the workflow.

3.6 License plate recognition

3.6.1 Preprocessing of extracted image
These steps collectively preprocess the license plate image, enhancing its clarity, removing
noise, and potentially correcting any misalignment caused by the plate’s orientation.Here’s a
step-by-step explanation of each operation:

Resize The input image is resized to a specific size of 333 pixels width and 75 pixels height.
This resizing step ensures that the license plate image has a consistent size for further process-
ing. By enforcing a standardized size, the subsequent algorithms and models can operate on
images with consistent dimensions, facilitating reliable and efficient processing.

Grayscale The resized image is converted from the BGR color space to grayscale . This
conversion simplifies subsequent image processing steps.Figure 3.4 displays an example of a
gray-scale license plate.

28

Figure 3.4: Example Of Gray-Scale License Plate.

Histogram Equalization Histogram equalization is a contrast enhancement technique that
redistributes the pixel intensities of an image to improve its contrast. The algorithm for his-
togram equalization is presented below:

Let H(i) denote the histogram of the input image, where i ranges from 0 to L−1, and L is
the number of intensity levels.

Calculate the cumulative distribution function (CDF) by summing up the histogram values:

CDF(i) =
i

∑
j=0

H(j), for j = 0 to i. (3.1)

Normalize the CDF values by dividing each CDF value by the total number of pixels in the
image, denoted as N:

CDFnorm(i) =
CDF(i)

N
. (3.2)

Map the intensity values using the normalized CDF values:

M(i) = round(CDFnorm(i) · (L−1)). (3.3)

Create an equalized image by assigning the mapped intensity values to the corresponding
pixels.

By applying this algorithm, the intensities of the image are spread evenly across the entire
range, resulting in enhanced contrast and improved visibility of details in the image.[7] Figure
3.5 showcases an example of image light enhancement.

29

Figure 3.5: Example Enhanced License Plate.

Gaussian blur Gaussian blur is an image filtering technique that applies a blur effect by con-
volving the image with a Gaussian kernel. It is particularly useful for enhancing the character
segmentation phase, which in turn improves the accuracy of subsequent phases in the license
plate recognition system. Mathematically, the convolution operation between the input image
(I) and the Gaussian kernel (G) can be represented as follows:

O(x,y) = ∑
a

∑
b
[I(a,b) ·G(x−a,y−b)], (3.4)

where (a,b) represents the kernel coordinates.[53] Here is an example of applying gaussian blur
on license plate:

Figure 3.6: Example of blurred image.

Otsu’s thresholding Otsu’s binarization calculates the threshold by considering the variance
σ within each class (foreground and background) and aims to minimize the variance within

30

each class while maximizing the variance between the classes. The formula for finding the
within-class variance at any threshold t is given by:

σ
2(t) = ωbg(t) ·σ2

bg(t)+ω f g(t) ·σ2
f g(t) (3.5)

Where ωbg(t) and ω f g(t) represent the probabilities of the number of pixels. This threshold is
essential for preparing the license plate image to be segmented into characters. By determining
the optimal threshold value using Otsu’s thresholding technique, the license plate image can be
effectively separated into foreground (characters) and background regions. This segmentation
step is crucial for further processing and accurately recognizing the characters on the license
plate.[32] Here is an examle in Figure 3.7

Figure 3.7: Example of Otsu’s thresholding license plate .

Morphological operations Morphological operations [37] are image processing techniques
used to modify the shape and structure of objects in an image (I). They involve simple opera-
tions such as dilation (D) and erosion (E). These operations are performed using a small matrix
called a structuring element (SE) that slides over the image, defined as follows:

E(I,SE) = {x | SE is a subset of I, centered at x} (3.6)

D(I,SE) = {x | ∃y in SE such that I(x− y) = 1} (3.7)

We utilized these two morphological operations, erosion and dilation, to enhance the char-
acter extraction process and eliminate small regions that could potentially mislead the results.
By applying erosion, we could shrink the boundaries of the characters, helping to separate them
from the background and reduce any noise or unwanted artifacts. On the other hand, dilation
expanded the character boundaries, filling in any gaps and ensuring the characters were well-
connected. By iteratively applying these operations with Square structuring element, we could
refine the character regions and improve the accuracy of subsequent recognition and classifi-
cation steps in the license plate recognition system. Here are two examples in Figures 3.8 and
3.9.

31

Figure 3.8: Example 1 of morpholoical operation.

Figure 3.9: Example 2 of morpholoical operation.

Straighten the license plate This method aims to correct any skew that may be present in
the license plate image. The following steps are involved in the skew correction process:

• Edge Detection: The first step is to perform edge detection on the license plate region of
the image. This helps in identifying the edges or boundaries of objects within the plate.

• Hough Transform: The detected edges are then passed through the Hough transform
algorithm. This algorithm identifies lines in the image by looking for patterns of points
that form a line. In this case, the cv2.HoughLinesP function is used, which returns a list
of line segments

• Angle Calculation: For each line segment detected, the angle is calculated using the
coordinates of the start and end points. This is done by applying the inverse tangent
function (np.arctan2) to the difference in y-coordinates and x-coordinates. The resulting
angle is converted from radians to degrees.

32

• Median Angle: The list of calculated angles is then used to find the median angle. The
median angle helps to estimate the overall skew of the license plate.

• Rotation: With the median angle determined, a rotation matrix (cv2.getRotationMatrix2D)
is created. The rotation matrix specifies the transformation required to rotate the image
by the median angle around a specific center point. The center point is typically set as the
center of the image.

• Warped Affine Transformation: The rotation matrix is applied to the license plate re-
gion of the image using the cv2.warpAffine function. This function performs an affine
transformation on the image, applying the rotation specified by the rotation matrix. The
resulting image is straightened or aligned based on the estimated skew.As shown in the
example in Figure 3.10.

Figure 3.10: Example of skew correction.

3.6.2 Character segmentation
We utilized a specialized function designed specifically for segmenting and extracting individ-
ual characters from a given license plate image. This function takes the pre-processed license
plate image as input and executes a sequence of operations to identify and extract the characters.

Initially, the function defines the ‘find_contours(dimensions, img)‘ nested function, which
utilizes OpenCV’s contour detection algorithm to identify contours within the image. The con-
tours are then sorted based on their area in descending order, with the intention of selecting the
largest contours that correspond to the license plate and characters.

The function iterates through the sorted contours and checks their dimensions against prede-
fined lower and upper bounds. This filtering step helps eliminate noise and select contours that
are likely to represent characters. The function extracts each character by defining a bounding
rectangle around the contour and resizing it to a standard size of 20x40 pixels.

33

To visualize the segmentation process, the function draws rectangles around the identified
characters on the license plate image. The modified image is saved as ‘predict.jpg‘.

The characters are further processed to prepare them for classification. The function inverts
the colors of the characters and resizes them to a final size of 24x44 pixels, with a black border.
The processed character images are stored in a list called ‘img_res‘.

To ensure the correct order of the characters, the function sorts the contour indices based on
their x-coordinates. The character images are then rearranged according to the sorted indices.
The final sorted character images are stored in the ‘img_res‘ list.

Lastly, the function returns the sorted character images as a NumPy array.

3.6.3 Convolutional Neural Network (CNN) learning model
Prepare the dataset We have obtained a character recognition dataset from GitHub for our
project.[15] GitHub is a widely used platform for hosting and sharing code repositories, includ-
ing datasets. By accessing a character recognition dataset from GitHub, we aim to leverage
the existing data to train and develop our own character recognition models or perform various
analyses.

Explain the model A convolutional neural network (CNN) model is proposed for image clas-
sification. The model is implemented using TensorFlow’s Keras [48] module. The CNN archi-
tecture consists of several layers designed to extract meaningful features from input images and
make accurate predictions.

The first layer is a 2D convolutional layer with 32 filters of size 5x5. It applies these filters
to the input images and uses the Rectified Linear Unit (ReLU) activation function to introduce
non-linearity. The output feature maps have the same spatial dimensions as the input images
due to the "same" padding used.

Next, a max pooling layer with a pool size of 2x2 is applied. This layer reduces the spatial
dimensions of the feature maps, capturing the most important features while reducing compu-
tational complexity.

To prevent overfitting, a dropout layer with a dropout rate of 0.4 is included. This layer
randomly sets a fraction of the input units to zero during training, increasing the model’s ro-
bustness.

The flattened feature maps are then passed to a fully connected layer with 128 units and a
ReLU activation function. This layer learns complex patterns and relationships from the flat-
tened feature vectors.

Finally, a dense output layer with 10 units is added. It uses the softmax activation function
to generate class probabilities for multi-class classification. The model is trained to minimize
the categorical cross-entropy loss and maximize the accuracy of the predictions.

34

The model is compiled with the Adam optimizer, which adjusts the learning rate during
training, and a learning rate of 0.00001 is set. The metrics used to evaluate the model’s perfor-
mance during training are accuracy.

Train the model We trained the model using ‘fit()‘ function by iteratively processing batches
of training data over a specified number of epochs. In our case, the batch size is set to 20,
meaning that the model processes one sample at a time. During training, the model adjusts
its parameters to minimize the loss function using the specified optimizer. The validation data
is used to evaluate the model’s performance after each epoch. By training the model for 200
epochs, this step aims to optimize the model’s performance by iteratively adjusting its parame-
ters based on the training data and monitoring its performance on the validation data.

Evaluate model The evaluation of the model on the validation data is an important step in
assessing its performance. By using the ‘evaluate()‘ function with the validation data generator,
the model’s loss and accuracy on the validation set are calculated. The validation loss indicates
the level of agreement between the model’s predictions and the actual labels, with lower values
indicating better performance. The validation accuracy represents the percentage of correctly
classified samples. These metrics provide valuable insights into the model’s effectiveness in
generalizing to unseen data. In the context of my dissertation, this evaluation step is crucial for
evaluating the model’s performance and validating its ability to accurately classify the target
classes.

3.6.4 Character recognition
License plate number extraction using predictive image analysis involves iterating over each
character in the predicted images. The character images are prepared and processed for clarity.
the pre_trained model of CNN is utilized to predict the class probabilities for each character.
The character with the highest probability is selected, resulting in the extraction of the text
number of the license plate. This procedure enables accurate and efficient recognition of license
plate numbers .

3.6.5 Classification
In this step the process involves reading license plate numbers from a file. It then proceeds
to match the extracted characters from the license plate with corresponding values in different
database files. To obtain the final result which is the classification of the number plate recog-
nized before.As shown in Figure 3.11.

35

Figure 3.11: Example of classification.

3.7 Conclusion
In conclusion, the conception chapter has presented the global architecture that forms the basis
of our project. It has outlined the fundamental steps involved in our work, providing a clear
overview of the process. The next chapter will delve into the implementation details, where we
will translate the architectural framework into practical solutions.

36

Chapter 4

Implementation

4.1 Introduction
In the preceding chapter, we discussed the conception of our system in detail. In this chap-
ter, we will focus on the development environment and the libraries employed in our system.
Additionally, we will provide an overview of the key components of our code and present the
obtained results.

4.2 Environment
to realize our application we used a pc which has the following specifications :

Model Part Used Laptop
Processor Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz 2.50 GHz

RAM 8.00 GB
System type 64-bit operating system, x64-based processor

Edition Windows 10 Pro

Table 4.1: Characteristics of the material used.

4.3 Programming language

4.3.1 Python
Python is described as a high-level programming language that emphasizes code readability and
simplicity. It is known for its clear and concise syntax, which allows programmers to express
concepts in fewer lines of code compared to other programming languages. Python supports
multiple programming paradigms, including procedural, object-oriented, and functional pro-
gramming styles. It has a vast standard library and a large ecosystem of third-party packages,
making it suitable for a wide range of applications. Python is widely used in various fields
such as web development, scientific computing, data analysis, artificial intelligence, and au-
tomation. It is an open-source language, freely available for use and distribution, with an active
community contributing to its development and improvement.[36]

37

4.3.2 Jupyter notebook
Jupyter Notebook is an open-source web application that allows you to create and share docu-
ments containing live code, equations, visualizations, and explanatory text. It supports various
programming languages, including Python, R, and Julia. Jupyter Notebook provides an inter-
active computational environment where you can write and execute code in a structured and
organized manner. It has gained popularity among data scientists, researchers, and educators
for its ability to combine code, documentation, and visualizations into a single, easily shareable
document.[17]

4.4 Libraries

4.4.1 Tensorflow
TensorFlow is an open-source machine learning framework developed by Google. It provides a
comprehensive ecosystem of tools, libraries, and resources for building and deploying machine
learning models. TensorFlow supports both deep learning and traditional machine learning al-
gorithms and offers high-level APIs for easy model development, as well as lower-level APIs for
greater flexibility and customization. It is widely used in various domains, including computer
vision, natural language processing, speech recognition, and more.[16]

4.4.2 Keras
Keras is a user-friendly, high-level neural networks API in Python. It provides a simple and
efficient way to build and experiment with deep learning models. With Keras, developers can
easily define and configure neural networks using intuitive building blocks, making it accessible
to both beginners and experienced researchers. It supports multiple backends and offers tools
for fast experimentation, making it a popular choice for deep learning tasks.[18]

4.4.3 PyTorch
PyTorch is a widely used open-source machine learning framework and scientific computing
library. It offers a flexible and intuitive approach to building and training deep learning models.
With its dynamic computation graph and seamless integration with NumPy, PyTorch simpli-
fies the process of manipulating tensors and performing mathematical operations. It prioritizes
GPU acceleration, enabling faster training and inference, and supports parallel computing and
distributed training. PyTorch’s rich ecosystem includes specialized libraries for computer vi-
sion, natural language processing, and audio processing, along with pre-trained models and
extensive learning resources. Its popularity stems from its user-friendly interface and powerful
capabilities, making it a preferred choice for researchers and practitioners in the deep learning
community.[28]

4.4.4 OpenCv
OpenCV (Open Source Computer Vision) is a versatile and widely used open-source library for
computer vision tasks. It offers an extensive collection of functions and algorithms for tasks
like image and video processing, object detection, and feature extraction. OpenCV is known

38

for its cross-platform compatibility and is available in multiple programming languages, includ-
ing Python. With its user-friendly API and comprehensive documentation, OpenCV enables
developers to integrate computer vision capabilities into their projects seamlessly. Its broad
range of applications, from robotics to medical imaging, coupled with its active community
and pre-trained models, makes OpenCV a popular choice for computer vision enthusiasts and
professionals alike.[8]

4.4.5 Matplotlib
Matplotlib is a powerful data visualization library for Python. It provides a wide range of
plotting functions and customization options to create visually appealing and informative plots.
With Matplotlib, users can easily generate line plots, scatter plots, bar plots, histograms, and
more. It offers precise control over plot elements, such as colors, labels, and axes, allowing
for highly customizable visualizations. Matplotlib is compatible with other Python libraries,
making it a popular choice for data analysis and scientific visualization. Its versatility, user-
friendly interface, and extensive documentation make it an essential tool for visualizing data in
a concise and effective manner.[49]

4.4.6 NumPy
NumPy (Numerical Python) is a fundamental library for scientific computing in Python. It
provides efficient and powerful tools for working with multi-dimensional arrays and performing
mathematical operations on them. With NumPy, users can easily manipulate and analyze data,
perform linear algebra operations, generate random numbers, and more. Its integration with
other scientific libraries makes it a popular choice for tasks such as data analysis, machine
learning, and simulation. NumPy’s simplicity, speed, and versatility make it an essential tool
for numerical computing in Python.[9]

4.4.7 scikit-image (skimage)
skimage is a Python library specifically designed for image processing and computer vision
tasks. It offers a wide range of algorithms and functions to manipulate, analyze, and enhance
images efficiently. With skimage, users can perform various operations such as filtering, seg-
mentation, and feature extraction. The library also provides tools for image registration, geo-
metric transformations, and object detection. skimage is known for its user-friendly interface,
well-documented API, and seamless integration with other scientific Python libraries. Its exten-
sive capabilities and ease of use make it a popular choice for image processing tasks in a wide
range of applications.[52]

4.4.8 Tkinter
Tkinter is a Python library that enables the creation of graphical user interfaces (GUI) for desk-
top applications. It provides a range of tools and widgets to design interactive and visually
appealing interfaces. Tkinter is based on the Tk GUI toolkit and offers a straightforward and
intuitive approach to building GUI applications. With Tkinter, developers can create windows,
buttons, menus, text boxes, and other GUI elements, and organize them using layout managers.
The library also includes event handling mechanisms to capture user interactions. Tkinter is

39

widely used due to its simplicity, cross-platform compatibility, and ability to develop GUI ap-
plications in Python with ease.[40]

4.4.9 Customtkinter
"Customtkinter" refers to a customized version of the Tkinter library in Python. It involves mak-
ing modifications or extensions to the standard Tkinter library to cater to specific requirements
or add new features. With "customtkinter," developers have the flexibility to introduce unique
widgets, alter the appearance or behavior of existing widgets, or create custom layout man-
agers. These customizations allow for more tailored and specialized user interfaces in Python
applications. The specific features and enhancements provided by "customtkinter" may vary
depending on the implementation and customization choices made by the developer.[40]

4.4.10 PIL (Python Imaging Library)
PIL is a popular Python library for image processing tasks. It provides a wide range of func-
tionalities to open, manipulate, and save different image file formats. PIL offers capabilities for
resizing, cropping, rotating, and filtering images, as well as adjusting their colors, contrast, and
brightness. The library also supports basic image editing operations like adding text, drawing
shapes, and applying various image effects. PIL is known for its simplicity and ease of use,
making it a versatile tool for working with images in Python. It has been widely adopted and is
often used in applications related to computer vision, graphics, and multimedia processing.[33]

4.5 System overview
We dedicate this part to showing the interface and function of our system, specifically focusing
on the main modules. The figure below illustrates the home interface of our application.

Figure 4.1: The home interface of our system.

40

The main modules of our application are summarized by the following numbers:

1. The initial button enables the user to open an image .

2. The second button is designed to perform the task of license plate detection and subse-
quently draw a bounding box around the identified license plate.

3. The third button is responsible for extracting the detected license plate from the image.

4. The fourth button is responsible for performing preprocessing operations on the detected
license plate in order to facilitate its recognition.

5. The fifth button is utilized for the purpose of segmenting the characters of the license
plate.

6. The sixth button is responsible for recognizing the segmented characters of the license
plate.

7. The seventh button is dedicated to classifying or categorizing the extracted number from
the license plate.

4.6 Usage scenario
In this section, we will provide an overview of the working principles of our system. We will
describe the different stages involved in license plate recognition :

1. To commence the license plate detection process, we start by opening an image file using
the command "open image." This allows us to access the desired image and utilize it for
further analysis and detection procedures.As shown in Figure 4.2.

Figure 4.2: Open an image.

41

2. Once the image is successfully opened. By selecting the "LP detection" button, we initiate
the process of detecting the license plate within the opened image. The YOLOv5 model,
which has been previously trained on a large dataset, enables accurate and efficient license
plate detection by leveraging advanced object detection techniques.The result shown in
Figure 4.3.

Figure 4.3: License plate detetion.

3. The "lp extraction" button initiates the process of extracting the license plate from the
image with detection . It checks if the detected object is indeed a license plate and then
proceeds to extract the corresponding portion of the image based on the bounding box
coordinates using opencv library. The result shown in Figure 4.4.

Figure 4.4: License plate extration.

4. The button "pre_processing" performs several image processing operations on the license
plate image. It resizes the image, converts it to grayscale, applies Gaussian blur for noise
reduction, performs adaptive thresholding to obtain a binary image, applies morphologi-
cal operations for character enhancement, and straightens the license plate if needed using

42

Hough line transform and rotation.

Figure 4.5: License plate pre_processed.

5. The "segmentation" button initiates the process of extracting individual characters from
a pre-processed license plate image. This is achieved by identifying contours within the
image that meet specific size criteria. The result shown in Figure 4.6.

Figure 4.6: Character segmentation.

6. The "Recognition" button initiates the prediction process for the segmented characters us-
ing a trained Convolutional Neural Network (CNN) model. It iterates over the predicted
images, preparing them by resizing and reshaping them to match the model’s input re-
quirements. The model predicts the class probabilities for each character image, and the
character with the highest probability is chosen. By combining the predicted characters,
it constructs the resulting license plate number. This plate number is saved to a text file
and simultaneously displayed in a text box as shown in 4.7.

43

Figure 4.7: Character Recognition.

7. The "Classification" button performs a license plate classification process. It reads license
plate numbers from a file and extracts information from different databases based on the
plate numbers. It retrieves translations for the last two digits, the year of the license plate,
and the type of vehicle. The extracted information is then displayed in a text box, pro-
viding details about the license plate, including its translation, year, type, and remaining
characters. as shown in Figure 4.8.And also we have an example of non-Algerian plate in
Figure 4.9.

Figure 4.8: Character Classification.

44

Figure 4.9: Example of non-Algerian plate.

4.7 Results analysis
Here we present both results of license plate detection and recognition tasks:

4.7.1 Results of detection model
Evaluation indicators When evaluating the performance of the YOLOv5 object detection
algorithm, several indicators are commonly used. These indicators help measure the accuracy
and efficiency of the model. Here are some key evaluation indicators for YOLOv5:

• Precision: Precision measures the proportion of correctly predicted bounding boxes for
objects compared to the total predicted bounding boxes. It indicates the algorithm’s abil-
ity to minimize false positives.

• Recall: Recall calculates the proportion of correctly predicted bounding boxes for objects
compared to the total number of ground truth bounding boxes. It indicates the algorithm’s
ability to detect objects and minimize false negatives.

• Average Precision (AP): AP is a widely used metric that combines precision and recall.
It measures the overall accuracy of the model across different object categories by con-
sidering precision-recall curves. Mean Average Precision (mAP) is the average AP value
across multiple object categories.

In our system we have used YOLO v5s. a miniature version of YOLOv5, for detecting
number plates in images. we explaned the steps in the previous chapter . The training result of
the model is shown in Table 4.2 and Figure 4.10 .

Precision Recall mAP50
0.87 0.84 0.87

Table 4.2: The training result statistics.

45

Figure 4.10: The training results of YOLOv5.

From (a) and (c) in Figure 4.3 , the accuracy and mapping convergence of the model to 0.9,
which means that the model detection accuracy is high enough, In Figure (b) also he recall con-
vergence converges to 0.9 ,indicating that the target can be detected completely.

Figure 4.11: The output of running model on a test image.

46

4.7.2 Results of recognition model
The model achieved a validation loss of 0.3548, indicating that it effectively minimized the dis-
crepancy between the predicted and actual values. This suggests that the model’s predictions
are generally close to the ground truth. Furthermore, the validation accuracy of 0.9386 reveals
that the model correctly classified a significant proportion of the validation samples. These re-
sults indicate that the model exhibits a high level of accuracy in distinguishing between different
classes or categories. Overall, the evaluation results emphasize the efficacy and potential of the
model in solving the problem at hand, validating its capability to make accurate predictions and
contributing to the overall success of your research. The accuracy and loss curve is shown in
Figure 4.12 and Figure 4.13.

Figure 4.12: Accuracy Curve.

Figure 4.13: Training Loss Curve.

The graph below presents character recognition results from 50 license plates. The x-axis
represents the characters found in the license plates, while the y-axis shows the count or percent-

47

age of occurrences. The graph indicates two categories: correct recognition and incorrect recog-
nition. The correct recognition category reveals accurately identified characters, demonstrating
the system’s high accuracy in classifying and recognizing license plate characters. Conversely,
the incorrect recognition category represents characters that were not accurately recognized by
the system, although occurrences are minimal according to the graph.

Figure 4.14: Correct vs incorrect characters recognized

From the graph, it is evident that the number of correctly recognized characters signifi-
cantly outweighs the number of incorrectly recognized characters. The graph illustrates that
the license plate recognition system achieves a high level of accuracy, as the instances of in-
correct character recognition are minimal or almost non-existent. This observation highlights
the effectiveness and robustness of the system in accurately identifying and classifying license
plate characters. The graph’s visual representation further reinforces the system’s overall per-
formance and provides confidence in its ability to consistently recognize license plate characters
with a high degree of accuracy.

4.8 Discussion
From the results, it is evident that our system performs well in both the stages of detection and
recognition, particularly in normal cases. The high precision and recall values indicate that the
system successfully identifies and classifies license plates with a high level of accuracy. This
implies that the system is effective in detecting and recognizing license plates under typical con-
ditions, showcasing its robustness and reliability. These positive results indicate the successful
performance of our system in handling various scenarios and provide confidence in its ability to
accurately process license plate information. To summarize, we can say that our system solved
many problems and handle many obstacles, which can be described as follows:

48

• Our system has the capability to detect various types of license plates with high accuracy
and efficiency.

• Our system excels in both license plate detection and recognition, even in challenging
conditions such as skew problems and varying illuminations.

• Our system demonstrates high precision in license plate detection, ensuring accurate lo-
calization of license plates. Additionally, it achieves exceptional accuracy in license plate
recognition, enabling reliable identification of numeric characters.

However, like any developed system, we encountered several challenges that are still open in
our system, which are presented in the following points:

• The training process requires a substantial amount of time to complete.

• If we initiate the training for a second time, it does not complete the learning on the final
checkpoint.Despite multiple attempts, the training process takes a significant amount of
time but fails to reach completion.

• In the segmentation phase, we encounter challenges where certain characters may not
be correctly segmented due to character connections or the presence of stickers or other
non-relevant characters on the license plate.

4.9 Conclusion
In this chapter, we present the implementation details of our license plate detection and recog-
nition system. For the license plate detection task, we utilize the YOLOv5 model, which has
shown remarkable performance in object detection. Additionally, we employ a CNN model
for the license plate recognition task. Through extensive experimentation and fine-tuning, we
achieve impressive precision and accuracy results, demonstrating the effectiveness of our sys-
tem.

49

General Conclusion

Automatic license plate detection and recognition systems are increasingly sought after due to
their ability to enhance security, improve traffic management, streamline parking systems, en-
able efficient toll collection, and support smart city initiatives. In the context of Algerian license
plates, our developed system specifically caters to the unique characteristics and requirements
of this region.

We have meticulously designed a robust and efficient system for automatic Algerian license
plate detection and recognition. Leveraging advancements in deep learning techniques, our
system integrates the YOLOv5 algorithm, which excels in license plate detection, with a cus-
tomized Convolutional Neural Network (CNN) model tailored for accurate plate recognition.
This powerful combination allows our system to achieve remarkable precision in identifying
and processing Algerian license plates.

Through extensive experimentation and validation, our system has demonstrated superior
performance in Algerian license plate detection and recognition tasks. It exhibits high levels
of accuracy, efficiency, and robustness, making it suitable for various real-world applications
such as traffic surveillance, vehicle identification, parking management, and law enforcement
in Algeria.

In our future works, we have outlined several perspectives and goals to further enhance our
system for Algerian license plate detection and recognition. These include:
Training the model with a large dataset: While our current system has been trained on a com-
prehensive dataset of Algerian license plates, we recognize the importance of continuously
expanding the dataset.

Enhancing segmentation phases: The segmentation phase is a critical step in license plate
recognition. In our future works, we aim to refine and optimize the segmentation algorithms
used in our system.

Achieving real-time processing: In our future works, we intend to optimize our system’s
algorithms and hardware infrastructure to achieve real-time performance.

By focusing on these perspectives in our future works, we aim to elevate the performance
and capabilities of our system for Algerian license plate detection and recognition.

50

Bibliography

[1] Ouedkniss: Algeria’s online marketplace. https://www.ouedkniss.com/. Accessed:
April , 2023.

[2] Arohan Ajit, Koustav Acharya, and Abhishek Samanta. A review of convolutional neural
networks. In 2020 international conference on emerging trends in information technology
and engineering (ic-ETITE), pages 1–5. IEEE, 2020.

[3] Nur-A Alam, Mominul Ahsan, Md Abdul Based, and Julfikar Haider. Intelligent system
for vehicles number plate detection and recognition using convolutional neural networks.
Technologies, 9(1):9, 2021.

[4] Andrewmvd. Car Plate Detection Dataset. https://www.kaggle.com/datasets/
andrewmvd/car-plate-detection. Accessed: March, 2023.

[5] Naga Surya Sandeep Angara. Automatic license plate recognition using deep learning
techniques. 2015.

[6] Samiul Azam and Md Monirul Islam. Automatic license plate detection in hazardous con-
dition. Journal of Visual Communication and Image Representation, 36:172–186, 2016.

[7] Nikoletta Bassiou and Constantine Kotropoulos. Color image histogram equalization by
absolute discounting back-off. Computer Vision and Image Understanding, 107(1-2):108–
122, 2007.

[8] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. " O’Reilly Media, Inc.", 2008.

[9] Eli Bressert. Scipy and numpy: an overview for developers. 2012.

[10] Rongbao Chen and Yunfei Luo. An improved license plate location method based on edge
detection. Physics Procedia, 24:1350–1356, 2012.

[11] Masahiro Daibo. Toroidal vector-potential transformer. In 2017 Eleventh International
Conference on Sensing Technology (ICST), pages 1–4. IEEE, 2017.

[12] Shubhada Deshmukh, Manasi Patwardhan, and Anjali Mahajan. Survey on real-time facial
expression recognition techniques. Iet Biometrics, 5(3):155–163, 2016.

[13] Shan Du, Mahmoud Ibrahim, Mohamed Shehata, and Wael Badawy. Automatic license
plate recognition (alpr): A state-of-the-art review. IEEE Transactions on circuits and
systems for video technology, 23(2):311–325, 2012.

[14] N Eswar and D Gowri Shankar Reddy. Morphological operation based vehicle number
plate detection. International Journal of Engineering Research And, 9(2):428–433, 2020.

51

https://www.ouedkniss.com/
https://www.kaggle.com/datasets/andrewmvd/car-plate-detection
https://www.kaggle.com/datasets/andrewmvd/car-plate-detection

[15] Faizan387. Car Number Plate Recognition Repository. https://github.com/
faizan387/Car-Number-Plate-Recognition/tree/master/Car%20plate%
20recognition%20Punjab/data. Accessed: April , 2023.

[16] M Icaza. Tensorflowsharp: Tensorflow api for .net languages. Accessed: January,
18:2019, 2019.

[17] Jupyter Project. Jupyter Documentation. https://jupyter.org/. Accessed: june, 2023.

[18] Keras Team. Keras Documentation. https://keras.io/. Accessed: june, 2023.

[19] Julia Krasevec, Xiaoyi An, Richard Kumapley, France Bégin, and Edward A Frongillo.
Diet quality and risk of stunting among infants and young children in low-and middle-
income countries. Maternal & child nutrition, 13:e12430, 2017.

[20] Rayson Laroca, Evair Severo, Luiz A Zanlorensi, Luiz S Oliveira, Gabriel Resende
Gonçalves, William Robson Schwartz, and David Menotti. A robust real-time automatic
license plate recognition based on the yolo detector. In 2018 international joint conference
on neural networks (ijcnn), pages 1–10. IEEE, 2018.

[21] Rayson Laroca, Luiz A Zanlorensi, Gabriel R Gonçalves, Eduardo Todt, William Rob-
son Schwartz, and David Menotti. An efficient and layout-independent automatic license
plate recognition system based on the yolo detector. IET Intelligent Transport Systems,
15(4):483–503, 2021.

[22] Hui Li, Peng Wang, and Chunhua Shen. Toward end-to-end car license plate detection and
recognition with deep neural networks. IEEE Transactions on Intelligent Transportation
Systems, 20(3):1126–1136, 2018.

[23] Hui Li, Peng Wang, Mingyu You, and Chunhua Shen. Reading car license plates using
deep neural networks. Image and Vision Computing, 72:14–23, 2018.

[24] Yujie Liu, He Huang, Jinde Cao, and Tingwen Huang. Convolutional neural networks-
based intelligent recognition of chinese license plates. Soft Computing, 22(7):2403–2419,
2018.

[25] Weidong Min, Xiangpeng Li, Qi Wang, Qingpeng Zeng, and Yanqiu Liao. New approach
to vehicle license plate location based on new model yolo-l and plate pre-identification.
IET Image Processing, 13(7):1041–1049, 2019.

[26] Rahul Mishra, Hari Prabhat Gupta, and Tanima Dutta. A survey on deep neural network
compression: Challenges, overview, and solutions. arXiv preprint arXiv:2010.03954,
2020.

[27] Sérgio Montazzolli and Claudio Jung. Real-time brazilian license plate detection and
recognition using deep convolutional neural networks. In 2017 30th SIBGRAPI conference
on graphics, patterns and images (SIBGRAPI), pages 55–62. IEEE, 2017.

[28] Jojo Moolayil, Jojo Moolayil, and Suresh John. Learn Keras for deep neural networks.
Springer, 2019.

[29] Michael A Nielsen. Neural networks and deep learning, volume 25. Determination press
San Francisco, CA, USA, 2015.

52

https://github.com/faizan387/Car-Number-Plate-Recognition/tree/master/Car%20plate%20recognition%20Punjab/data
https://github.com/faizan387/Car-Number-Plate-Recognition/tree/master/Car%20plate%20recognition%20Punjab/data
https://github.com/faizan387/Car-Number-Plate-Recognition/tree/master/Car%20plate%20recognition%20Punjab/data
https://jupyter.org/
https://keras.io/

[30] IKRAME NOUAR. La détection des attaques botnet dans l’industrie internet des objets
(iiot). 2022.

[31] T Nukano, M Fukumi, and M Khalid. Vehicle license plate character recognition by neural
networks. In Proceedings of 2004 International Symposium on Intelligent Signal Process-
ing and Communication Systems, 2004. ISPACS 2004., pages 771–775. IEEE, 2004.

[32] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE transac-
tions on systems, man, and cybernetics, 9(1):62–66, 1979.

[33] PIL Contributors. Python Imaging Library (PIL) Documentation. https://pillow.
readthedocs.io/en/stable/. Accessed: june, 2023.

[34] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes,
Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. A survey on deep learning:
Algorithms, techniques, and applications. ACM Computing Surveys (CSUR), 51(5):1–36,
2018.

[35] Irina Valeryevna Pustokhina, Denis Alexandrovich Pustokhin, Joel JPC Rodrigues,
Deepak Gupta, Ashish Khanna, K Shankar, Changho Seo, and Gyanendra Prasad Joshi.
Automatic vehicle license plate recognition using optimal k-means with convolutional
neural network for intelligent transportation systems. Ieee Access, 8:92907–92917, 2020.

[36] Python Software Foundation. Python. https://www.python.org/. Accessed on 10th
June 2023.

[37] AM Raid, WM Khedr, MA El-Dosuky, and Mona Aoud. Image restoration based on
morphological operations. International Journal of Computer Science, Engineering and
Information Technology (IJCSEIT), 4(3):9–21, 2014.

[38] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classi-
fication: A comprehensive review. Neural computation, 29(9):2352–2449, 2017.

[39] Saif Ur Rehman, Moiz Ahmad, Asif Nawaz, and Tariq Ali. An efficient approach for
vehicle number plate recognition in pakistan. The Open artificial intelligence journal,
6(1), 2020.

[40] Harshavardhan Seetha, Vimal Tiwari, Kartik Reddy Anugu, DS Makka, and DR Karnati.
A gui based application for pdf processing tools using python & customtkinter. Int. J. Res.
Appl. Sci. Eng. Technol., 2023.

[41] Zied Selmi, Mohamed Ben Halima, and Adel M Alimi. Deep learning system for auto-
matic license plate detection and recognition. In 2017 14th IAPR international conference
on document analysis and recognition (ICDAR), volume 1, pages 1132–1138. IEEE, 2017.

[42] MM Shaifur Rahman, Mst Shamima Nasrin, Moin Mostakim, and Md Zahangir Alom.
Bangla license plate recognition using convolutional neural networks (cnn). arXiv e-prints,
pages arXiv–1809, 2018.

[43] Jithmi Shashirangana, Heshan Padmasiri, Dulani Meedeniya, and Charith Perera. Au-
tomated license plate recognition: a survey on methods and techniques. IEEE Access,
9:11203–11225, 2020.

53

https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://www.python.org/

[44] Hengliang Shi and Dongnan Zhao. License plate recognition system based on improved
yolov5 and gru. IEEE Access, 11:10429–10439, 2023.

[45] Sergio Montazzolli Silva and Claudio Rosito Jung. License plate detection and recognition
in unconstrained scenarios. In Proceedings of the European conference on computer vision
(ECCV), pages 580–596, 2018.

[46] Ibtissam Slimani, Abdelmoghit Zaarane, Abdellatif Hamdoun, and Issam Atouf. Vehicle
license plate localization and recognition system for intelligent transportation applications.
In 2019 6th International Conference on Control, Decision and Information Technologies
(CoDIT), pages 1592–1597. IEEE, 2019.

[47] Farhana Sultana, Abu Sufian, and Paramartha Dutta. A review of object detection models
based on convolutional neural network. Intelligent computing: image processing based
applications, pages 1–16, 2020.

[48] TensorFlow. TensorFlow-Keras Documentation. https://www.tensorflow.org/
guide/keras?hl=fr. Accessed: April, 2023.

[49] Sandro Tosi. Matplotlib for Python developers. Packt Publishing Ltd, 2009.

[50] Ultralytics. YOLOv5 Repository. https://github.com/ultralytics/yolov5. Ac-
cessed: April , 2023.

[51] Abdul Vahab, Maruti S Naik, Prasanna G Raikar, and SR Prasad. Applications of object
detection system. International Research Journal of Engineering and Technology (IRJET),
6(4):4186–4192, 2019.

[52] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne,
Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-image: image
processing in python. PeerJ, 2:e453, 2014.

[53] Frederick M Waltz and John WV Miller. Efficient algorithm for gaussian blur using finite-
state machines. In Machine Vision Systems for Inspection and Metrology VII, volume
3521, pages 334–341. SPIE, 1998.

[54] Yuh-Rau Wang, Wei-Hung Lin, and Shi-Jinn Horng. A sliding window technique for
efficient license plate localization based on discrete wavelet transform. Expert Systems
with Applications, 38(4):3142–3146, 2011.

[55] D Wazalwar, E Oruklu, and J Saniie. Design flow for robust license plate localization.
In 2011 IEEE International Conference on Electro/Information Technology, pages 1–5.
IEEE, 2011.

[56] B-F Wu, S-P Lin, and C-C Chiu. Extracting characters from real vehicle licence plates
out-of-doors. IET Computer Vision, 1(1):2–10, 2007.

[57] Xiongwei Wu, Doyen Sahoo, and Steven CH Hoi. Recent advances in deep learning for
object detection. Neurocomputing, 396:39–64, 2020.

[58] Lele Xie, Tasweer Ahmad, Lianwen Jin, Yuliang Liu, and Sheng Zhang. A new cnn-based
method for multi-directional car license plate detection. IEEE Transactions on Intelligent
Transportation Systems, 19(2):507–517, 2018.

54

https://www.tensorflow.org/guide/keras?hl=fr
https://www.tensorflow.org/guide/keras?hl=fr
https://github.com/ultralytics/yolov5

[59] Hong-ke Xu, Fu-hua Yu, Jia-hua Jiao, and Huan-sheng Song. A new approach of the ve-
hicle license plate location. In Sixth International Conference on Parallel and Distributed
Computing Applications and Technologies (PDCAT’05), pages 1055–1057. IEEE, 2005.

[60] Qingchen Zhang, Laurence T Yang, Zhikui Chen, and Peng Li. A survey on deep learning
for big data. Information Fusion, 42:146–157, 2018.

[61] Xinyi Zhou, Wei Gong, WenLong Fu, and Fengtong Du. Application of deep learning
in object detection. In 2017 IEEE/ACIS 16th International Conference on Computer and
Information Science (ICIS), pages 631–634. IEEE, 2017.

[62] Li Zou, Meng Zhao, Zhengzhong Gao, Maoyong Cao, Huarong Jia, and Mingtao Pei.
License plate detection with shallow and deep cnns in complex environments. Complexity,
2018:1–6, 2018.

[63] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years:
A survey. arXiv preprint arXiv:1905.05055, 2019.

[64] Rodolfo Zunino and Stefano Rovetta. Vector quantization for license-plate location and
image coding. IEEE Transactions on Industrial Electronics, 47(1):159–167, 2000.

55

	General Introduction
	Object detection and deep learning
	Introduction
	Object detection
	Models of object detection
	Object detection application

	Deep Learning
	Deep Learning Methods

	Conclusion

	 State-of-the-Art
	Introduction
	Automatic license plate detection and recognition
	License plate detection
	Edge detection
	Texture-Based Methods
	Convolutional neural network CNN
	You-only-look-once (YOLO)

	Character Segmentation
	Character Segmentation Using Pixel Connectivity
	Character segmentation using projection profiles
	Character segmentation using deep learning

	License plate recognition
	Convolutional Neural Network
	Recurrent Neural Network (RNN)
	Optical Character Recognition (OCR)
	K-means Clustering-based Approach
	Template matching

	Conclusion

	 Conception
	Introduction
	System goals
	Characteristics of Algerian plates
	Architecture of the system
	License plate detection
	Yolov5 model learning
	License plate detection
	Extract the license plate

	License plate recognition
	Preprocessing of extracted image
	Character segmentation
	Convolutional Neural Network (CNN) learning model
	Character recognition
	Classification

	Conclusion

	 Implementation
	Introduction
	Environment
	Programming language
	Python
	Jupyter notebook

	Libraries
	Tensorflow
	Keras
	PyTorch
	OpenCv
	Matplotlib
	NumPy
	scikit-image (skimage)
	Tkinter
	Customtkinter
	PIL (Python Imaging Library)

	 System overview
	Usage scenario
	Results analysis
	Results of detection model
	Results of recognition model

	Discussion
	Conclusion
	General Conclusion

