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Abstract 

 

Due to the hazardous and hostile conditions that arise following a natural disaster, multi-robot 

systems are employed as substitutes for human beings in the task of searching and rescuing 

victims. The exploration of unknown environments is considered as a paramount concern in 

the field of mobile robotics. It consists a foundational stage for various applications such as 

search and rescue, cleaning tasks, and foraging.    

We proposed in this work, a new swarm robotic search strategy for search and rescue 

operations. The proposed strategy is inspired by the hunting behavior of Penguins. It hybridizes 

the Penguin Search Optimization Algorithm with the Random Walk Algorithm to modulate the 

global and local search behaviors of robots. To evaluate the effectiveness of our strategy, we 

implemented it in the ARGoS multi-robot simulator and conducted a series of experiments. The 

results obtained from these experiments clearly demonstrate the efficiency and effectiveness of 

our proposed search strategy. 

Keywords 

swarm intelligence, swarm robotics, search and rescue problem, Penguin Search Optimization 

Algorithm, Random Walk Algorithm.
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General introduction 

 

1. Scientific positioning 

To determine whether a machine is conscious, Alan Turing proposed an experiment known as 

the Turing test in 1950. Based on this experiment, the term "Artificial Intelligence" was coined, 

which is defined as the development of computer programs that simulate human intelligent 

behavior to solve problems using high-level cognitive capabilities. The latter include learning, 

memory organization, and reasoning. An overall objective of this discipline is to make 

machines rational by using autonomous decision-making and perception functions in an 

unknown environment (Zedadra, 2016). 

Unlike AI, which models the intelligent behavior of a single entity, Distributed Artificial 

Intelligence (DAI) is a distributed group of entities that collaborate to solve global problems. 

An entity may range from a simple processing element to a complex entity that exhibits rational 

behavior. Collaborative problem-solving or task performance implies that information must be 

shared between the group as a whole to accomplish a task (Demazeau et al., 1990). 

Through the expansion of DAI, new research fields have emerged, such as “Multi-Agent 

Systems”, and “Swarm Intelligence”. This latter, aims to emulate the behavior of some living 

organisms such as ants, bees, termites, fireflies…etc. 

2. Problematic, objectives, and contributions 

The exploration of unknown environments is a fundamental and pivotal concern within the 

realm of mobile robotics. It serves as a primary stage for a diverse range of applications, 

spanning domains such as cleaning, search and rescue, and foraging, among others. This 

dissertation introduces a new contribution aimed at addressing the challenge of achieving 

efficient exploration in the context of Search and Rescue operations. This is accomplished 

through the utilization of a coordinated swarm of robots, inspired by the behavior of Penguins. 

The proposed algorithm uses two swarm intelligence-based algorithms: The Penguin Search 

Optimization Algorithm (PeSOA) and the Random Walk Algorithm (RWA). The proposed 

algorithm has been successfully implemented on the ARGoS mobile robotics platform, 

showcasing its effectiveness in various mobile robotics experiments. 
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3. Structure of the dissertation 

This manuscript is organized in four different chapters. A brief description of these chapters is 

given in below: 

The first chapter: This chapter provides an overview of the research domains of swarm 

intelligence and swarm robotics. 

The second chapter: Within this chapter, we undertake a comprehensive synthesis of pertinent 

research in the field of search and rescue. Subsequently, we present a comparative analysis in 

tabular form, where we evaluate the various search and rescue approaches against a 

predetermined set of criteria that we consider valuable for assessment.  

The third chapter: In this chapter, we delve into the domain of problem design, addressing the 

research problem, stating the objectives, and presenting our proposed solution. Furthermore, 

our focus is directed toward the MPeSOA algorithm, as we illustrate its flowchart, expound 

upon the textual description of its states, and provide the accompanying pseudocodes for 

effective implementation. 

The fourth chapter: Within this chapter, we provide a comprehensive presentation of the 

outcomes derived from the implementation and rigorous testing of the proposed algorithm. 

Additionally, we offer an in-depth overview of the ARGoS simulation platform, along with a 

detailed description of the characteristics of the employed robots (footbots). 

We conclude this manuscript with a general conclusion and some future works.
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Chapter 1: Swarm Intelligence and Swarm Robotics: 

definitions and principles 

 

1. Introduction 

Interest in technology has refreshingly grown in recent decades and has resulted in 

revolutionary changes in all life domains. The recent technological development led plenty of 

new and complex problems to emerge, among which are optimization problems. In order to 

solve such type of problem, many solutions have been proposed, including swarm intelligence. 

Swarm intelligence is considered as one of the most efficient ways to solve complex 

problems in fields such as computer science, engineering, business, etc. It takes inspiration from 

the biological systems and the behaviors of living organisms, as it ensures good communication 

between members (direct and indirect). 

Research about the insect world has found that each member of the colony works 

according to its own specifications, without receiving central orders. This leads us to ask the 

following questions:  What shapes the identity of the leader? who makes future expectations? 

and who is responsible for improving strategies and achieving balance?  

This chapter is dedicated to answer the aforementioned questions, by diving more into 

the realm of swarm intelligence, shedding light on its algorithms, applications. It also aims at 

finding out more about swarm robotics, and its characteristics, strengths, behaviors, 

applications, and simulators. 

2. Swarm Intelligence 

2. 1  Definitions 

The term Swarm Intelligence was used for the first time by Gerardo Beni and Jing Wang in 

their study of Cellular Robotic Systems. They defined this discipline as a collective behavior 

of Autonomous, self-organized Systems (Beni and Wang, 1989). 

Swarm Intelligence can also be defined as an emerging field inspired by the biological nature 

system that ensures the cooperative work between simple entities (individuals). These latter 



Chapter 1: Swarm Intelligence and Swarm Robotics: definitions and principles 

9 

 

have the ability to work collectively in decentralized, self-organized environments and to 

interact harmoniously without taking orders from each other (Sadiku et al. ,2021). 

Natural Swarm Intelligence Systems include colonies of ants, bird flocks, animal herds, bees, 

etc. In this sense, swarms can be defined as large numbers of homogeneous (or heterogeneous) 

individuals (Sadiku et al. ,2021).  

(a) swarm of ants[1] (b) Swarm of bees [2] 

(c) Swarm of fish[3] (d) Swarm of birds[4] (e) Swarm of penguins [5] 

Figure 1.1: shows some examples of swarm intelligence systems observed in nature, where 

Figure 1.1(a) shows a colony of ants, Figure 1.1(b) shows swarm of bees, Figure 1.1(c) shows 

a group of fish, Figure 1.1(d) shows a group of birds, and Figure 1.1(d) shows a swarm of 

penguins. 

Íñiguez introduced in (Íñiguez, 2017) five principles of swarm intelligence: awareness, 

autonomy, solidarity, expandability, and resiliency. We explain in below each of these 

principles: 

 Awareness: each member must be aware of the surroundings and abilities. 

 Autonomy: each member must operate as an autonomous master (not as a slave); 

this is essential to self-coordinate allocation of labor. 

 Solidarity: cooperation is needed when a team achieves a task that could not be done 

by a single individual. Each member must cooperate in solidarity. When a task is 

completed, each member should autonomously look for a new task. 
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 Expandability: the system must permit expansion where members are dynamically 

aggregated. 

 Resiliency: the system must be self-healing; when members are removed, the 

remaining members should undertake the unfinished tasks. 

2. 2  Swarm Intelligence-based Algorithms 

Swarm Intelligence-based algorithms are computational models inspired by the nature system. 

Several algorithms have been proposed based on natural phenomena (systems) which have 

proven their effectiveness in solving various real-life problems (Ahmed et Glasgow ,2012). 

In below we present the most ones: Ant Colony Optimization (ACO), Practical Swarm 

Optimization (PSO), Bees Algorithm (BA), and Firefly Algorithm (FA). 

1) Ant Colony Optimization: The ACO algorithm is used to solve optimization problems 

inspired by ant colony behavior. Each ant of the colony lays some pheromone (in 

varying quantities) on the way to mark the path for other ants to follow and find the 

resources located (considering the shortest schema) (Colorni et al.,1991). 

2) Practical Swarm Optimization: The PSO algorithm is a search technique introduced 

by Kennedy and Eberhart (1995). It is inspired by the flocking behavior of birds and 

schooling behavior of fish in nature (Ahmed et Glasgow ,2012). PSO is used for 

nonlinear function optimization and neural network training, in addition to several other 

real-life problems. PSO aims at finding the near-optimal solution, respecting particular 

rules and criteria. 

3) Bees Algorithm: Food foraging is considered as one of the primary purposes behind 

the existence of living beings. Each animal has its own method of finding food 

resources. An example would be the foraging behavior of honey bees, which inspired 

researchers to develop a new search algorithm called Bees Algorithm. This algorithm is 

used to solve optimization problems by finding the optimal solution. 

4) Firefly Algorithm: The firefly is an insect which produces flashlights called 

bioluminescence. The latter is used for three main purposes, namely mating, preying, 

and protecting. This phenomenon (the flashing behavior of fireflies and bioluminescent 

communication) inspired Yang to introduce a new Metaheuristic algorithm for solving 

several problems (Yang, 2010).  
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2. 3 Domain Applications 

The basic principles of Swarm Intelligence, like any other modernistic field of study, can be 

applied to different life domains in order to achieve further growth and development. Some of 

the areas in which swarm intelligence principles are applied include: 

 Swarm robotics: Researchers worked on implementing the principles of swarm 

intelligence on the robot system, which resulted in the emergence of swarm robotics as 

a refreshingly new field of study. The latter strived to accomplish difficult tasks that are 

impossible to execute by one single individual, through the simulation of certain 

cooperative and collective behaviors of some natural entities. Nevertheless, swarm 

robotics promotes principles of autonomy and self-organization within the robot swarm 

system (Sadiku et al., 2021). 

 Engineering: The use of SI-based algorithms can be beneficial in solving practical 

engineering problems, such as optimization problems in mechanical engineering and 

transportation engineering. As a part of the Swarm Engineering approach, a large 

number of simple robots, whose interactions produce a global behavior, are used 

(Sadiku et al., 2021). 

 Business: The evolution of Swarm intelligence in recent years has forced businesses to 

keep up with changing markets. Several optimization problems have been solved by 

using business systems that mimic swarm behavior. Examples of these include freight 

logistics, telecommunication network routing, and distribution warehouse planning 

workflows (Sadiku et al., 2021). 

3. Swarm Robotics 

3. 1 Definitions 

The collective behavior of natural swarms has inspired researchers to apply different principles 

of swarm life to the robotics field in order to accomplish complex tasks that are impossible for 

single individuals to perform. Consequently, the term "Swarm Robotics" was coined. Several 

definitions have been given in literature, in below we present some of them:   

Definition 3.1: “Swarm robotics is the study of how large number of relatively simple 

physically embodied agents can be designed such that a desired collective behavior emerges 

from the local interactions among agents and between the agents and the environment.” (Şahin, 

2005) 
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Definition 3.2: "Swarm robotics is defined following the principles that a swarm sys-tem should 

have a large number of robots, tasks should be solved and improved using a swarm system, and 

that the robots exchange local information through limited com-munication distances" (Huang 

et al., 2019). 

Definition 3.3: "Swarm robotics is the study of how to create groups of robots that operate 

without dependence on external infrastructure or any form of centralized control. In a robot 

swarm, the collective behavior of the robots results from the local inter-action between the 

robots and the environment in which they interact"(Dorigo et Gambardella, 1997).  

(a) Swarmanoids [6] (b) Drones [7] 

(c) Kilobots [8] (d)Nanobots [9] (e) Tymio [10] 

 

Figure 1.2: shows some examples of swarm robotic systems, where Figure 1.2(a) shows a 

group of Swarmanoids, Figure 1.2(b) shows a group of drones, Figure 1.2(c) shows Kilobots, 

Figure 1.2(d) shows Nanobots, and Figure 1.2(e) shows Tymio robots. 

3. 2 Characteristics of swarm robots 

Ekelhof and Paoli (Ekelhof and Paoli, 2020) have presented the five main characteristics of 

swarm robotics: 

1. Mass: Mass refers to the size of a particular swarm. The number of members belonging 

to a single swarm can range from a few to thousands of individuals. Swarms cannot be 

defined, however, in terms of a specific number for that the optimal size of a swarm will 

ultimately be dictated by the its capabilities and the mission assigned to it.  
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2. Diversity: A robotic swarm is not necessarily composed of identical robotic units, as 

they can be heterogeneous in their composition. In other words, a robotic swarm can 

mix simple robots with more complex robots or manned systems with unmanned 

systems. Additionally, the swarm can operate across multiple domains with robots 

operating both on land and at sea. 

3. Collective and Collaborative Behavior:  This characteristic is considered the most 

important one in the world of swarms. The reason is that we do not focus on the 

identification of individuals' numbers in the swarm, but we rather show interest in how 

the members of a swarm engage in collective and collaborative behavior to achieve 

common goals. This collaborative behavior can be both internal (between the members 

themselves) and external (between the members and the environment). For instance, 

when a basketball team participates in a competition, each individual develops a specific 

mental representation of his mission and role in the team. However, actual success 

cannot be achieved unless members of the team effectively execute the plan that governs 

their missions and roles in the game. 

4. Intra-swarm Communication: Collaborative behavior can be achieved through 

different forms of communication in order to facilitate information exchange among 

robots. Communication between swarm members can be either direct or indirect. 

Usually, direct communication is based on observing the behavior of a neighbor or a 

fellow member, unlike indirect communication, which depends on environmental 

changes. 

5. Autonomy and Decentralization: Within the swarm, each robotic unit functions as an 

autonomous member that reacts in accordance with internal rules and environmental 

conditions. It can make its own decisions without referring to a central entity to control 

its actions. 

3. 3 The strengths of Swarm Robotics 

According to Cheraghi et al. (Cheraghi et al., 2021) some of the strengths of swarm robotics 

are: 

 Flexibility: Flexibility is the ability of individuals to adapt and change their roles 

quickly in response to changes in the external environment and new assignments. 
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 Robustness: Robustness refers to the ability of the group to continue working even if 

one or more units fail, which means that its performance is not impacted by the failure. 

Instead, the group attempts to find and fix all errors as quickly as possible. 

 Self-Organization: A self-organizing robot is one that is capable of interacting with the 

environment and reorganizing itself as needed. In other words, a self-organizing system 

is a system in which members of a group aim to accomplish tasks cooperatively without 

relying on a central authority to coordinate their actions. 

3. 4 Swarm robotic behaviors 

Schranz et al. (Schranz et al., 2020) have classified and listed the basic swarm robotic 

behaviors as follows: 

3.4.1. Spatial Organization 

Using these behaviors, robots can move in a swarm while spatially organizing themselves or 

other objects in the environment: 

1) Aggregation: Aggregation involves each robot congregating spatially in a specific 

region of the environment. By doing so, individuals of the swarm are able to get spatially 

close to one another for more efficient interaction. 

 

Figure 1.3: Examples of the aggregation collective behavior (Brambilla et al., 2013)  

 

2) Pattern formation: The pattern formation of robots is the process by which robots in 

the swarm arrange themselves into a specific shape. It is possible for them to create a 

chain in which they form a line, typically in order to establish multi-hop communication 

between two points. 
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Figure 1.4: Examples of the pattern formation collective behavior (Brambilla et al., 2013)  

 

3) Self-assembly: Self-assembly works on establishing strong connections between 

robots, for the purpose of forming structures. In this sense, robots can either be 

connected physically or virtually through communication links. One special case is 

morphogenesis, in which the swarm evolves into a predefined shape. 

 

Figure 0.5: Examples of the self-assembly collective behavior (Brambilla et al., 2013)  

4) Object clustering and assembly: A swarm of robots can manipulate spatially 

distributed objects by clustering and assembling them. In order for construction 

processes to be successful, objects must be properly clustered and assembled. 

 

Figure 1.6:  Examples of the object clustering and assembling collective behavior (Brambilla 

et al., 2013)  
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3.4.2. Navigation 

As a result of the following behaviors, swarms of robots are able to move in harmony 

throughout an environment: 

1) Collective exploration: During collective exploration, a swarm of robots explores the 

environment cooperatively. A situational overview, object search, environmental 

monitoring, or network communication can be accomplished using this behavior. 

 

Figure 0.7:  Examples of the collective exploration behavior (Brambilla et al., 2013)  

2) Coordinated motion: Coordinated motion is used to move a swarm of robots in a 

formation. Depending on the formation, the swarm can take the form of a well-defined 

shape, such as a line, or can be arbitrary, such as a flock. 

 

Figure 1.8: Examples of the coordinated motion behavior (Brambilla et al., 2013)  

3) Collective transport: The collective transportation of objects by a swarm of robots is 

an efficient method of moving heavier and larger objects that would not be possible for 

a single robot to move or bear. 
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Figure 0.9: Examples of the collective transport behavior (Brambilla et al., 2013) 

 

4) Collective localization: The concept of collective localization refers to the mechanism 

by which a local coordinate system is established in order to allow robots in a particular 

swarm to locate their positions and orientations relative to each other. 

 

3.4.3. Decision Making 

These behaviors allow the robots in a swarm to take a common decision on a given issue. 

1) Consensus: refers to the ability of swarm robots to agree on a single common choice 

among several alternatives. 

 

Figure 1.10:  Examples of the consensus behavior (Brambilla et al., 2013)  

2) Task allocation: In the swarm, tasks are dynamically allocated to individual robots. 

This aims to maximize the performance of the entire swarm system. In the case of a 

heterogeneous swarm, the performance of the system can be further enhanced by 

distributing tasks in accordance with the robots’ heterogeneity.  
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Figure 0.11: Examples of the task-allocation behavior (Brambilla et al., 2013)  

3) Collective fault detection: In a swarm of robots, collective fault detection determines 

the robots’ deficiencies. In other words, collective fault detection decides which robots 

are deviant from the desired behavior of the swarm. 

4) Collective perception: Through collective perception, robots in the swarm are able to 

combine the data they sense locally into a more comprehensive view. This process 

enables the swarm to make informed decisions collectively, such as the accurate 

classification of objects, the allocation of the appropriate fraction of robots to each task, 

and the determination of the ideal solution for a global problem. 

5) Synchronization: Synchronization involves aligning the phase and frequency of the 

oscillators of the robots within the swarm. Thus, robots are able to perform tasks in a 

synchronous manner as a result of sharing a common understanding of time. 

6) Group size regulation: this behavior is used for establishing groups of desired size. 

When the swarm size overrides the desired group size, the swarm will be divided into 

multiple groups. 

3.4.4. Miscellaneous 

1) Self-healing: this behavior refers to the swarm's ability to recover from errors caused 

by deficient robots in order to minimize the impact of robot failure on the rest of the 

swarm. 

2) Self-reproduction: Swarms of robots can reproduce themselves by creating new robots 

or replicating patterns that have been created by many individuals. Self-reproduction is 

intended to enhance the autonomy of the swarm by eliminating the need for a human 

engineer to create new robots. 
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3) Human-swarm interaction: In the context of human-swarm interaction, humans can 

control robots in the swarm or receive information from them. Interaction can occur 

remotely, or proximally in a shared environment. 

 

3. 5 Applications of swarm robotics 

 Agriculture: In agriculture, swarm robotics plays a significant role. An example would 

be the SAGA platform. The latter is an experimental platform in precision farming 

where swarms of unmanned aerial vehicles (UAVs) monitor and weed the field as well 

as count and detect areas where there is a sufficient amount of weed [11]. 

 Medical: A wide range of treatments have been provided for almost all types of cancer. 

Although these treatments are effective, the possibility of side effects remains a serious 

concern. One of the major concerns is the attack on healthy cells. Swarming nanorobots 

are one such approach to treating cancer without harming healthy cells. Nanorobots can 

be designed to target only cancer cells. To identify cancer cells, they must have the 

ability to navigate their environment - the human body - and recognize specific objects 

that constitute cancer cells. Using nanorobots, cancer cells can either be found and 

injected with medications to kill them or drilled and broken without the use of 

medications. Whenever nanorobots move in swarms within a cancerous body, they can 

quickly eliminate cancer cells [30]. 

 Hazardous Zones: Snake robots are designed to fit through narrow passageways and 

tunnels inaccessible to humans or other machines. These metal-bodied robots have the 

ability to climb, swim, and crawl. A camera and light are also mounted on the snake 

robots so that the control center can monitor the entire area [11].  

 Military: In order to perform various military tasks, Endeavor Robotics developed 

several robots. An example is the Cobra robots, which are designed to lift heavy objects 

that weigh up to 150 kilograms. Packbots are other military robots that are used to 

dispose of bombs. AlphaDogs, which have been developed by Boston Dynamics, are 

robots that resemble dogs and have the ability to transport heavy loads for soldiers. 

These robots are capable of walking up to 20 miles, carrying 180 kilograms. This type 

of robots has the intriguing property of being able to move in any direction without the 

need for any control. AlphaDogs follow their leader automatically, thanks to computer 

vision [11]. 
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 Household: An automated cleaning system called "MAB" consists of miniature flying 

robots designed by the Colombian designer Adrian Perez Zapata. The flying robots are 

equipped with cleaning supplies, which can clean most of the surfaces in a house. Dust 

and dirt flakes can be transported and deposited on the surface. Direct communication 

between miniature robots is used to exchange environmental data [11]. 

 Astronomy: One of the interesting new fields for swarm robotic systems is Astronomy. 

Researchers are trying to find out how robots can help with the exploration of non-earth 

environments like Mars, the sun, and the moon. The “robotic telescope” concept was 

introduced in the early 1980s. As a result, the eSTAR project was developed for 

telescopic tasks, which consists of a multi-agent system that is considered as a collection 

of diverse robotic telescopes [11]. 

3. 6 Swarm robotics simulators 

Simulators are an intermediate step between abstraction (such as mathematical models) and real 

validation, using physical robots. These are considered the most effective tools for analyzing 

and validating swarm robotic systems. In this section, we will list some simulators that help 

with swarm robotics validation (Calderón-Arce et al., 2022): 

1) Stage: Stage is a free C++ library that simulates a large number of mobile robots with 

a capacity of up to 100,000 agents. Code reuse, transparency, replication of experiments, 

and modification are some of the advantages of this simulator. There are several sensors 

and actuator models that can be simulated by Stage. Examples are infrared rangefinders, 

scanning laser rangefinders, color-blob tracking, fiducial tracking, bumpers, grippers, 

and mobile robot bases with global localization (odometric). In terms of exploration and 

foraging, Stage performs well, but it does not perform well when modeling trail-

following or cooperative behaviors. 

2) Bio-PEPA: As a high-level modeling language, Bio-PEPA is intended for the analysis 

of biochemical systems, enabling stochastic simulation, fluid flow analysis, and model 

checking. Moreover, its structure is capable of modeling scalable systems and space-

time characteristics that are suitable for swarm robotics. Bio-PEPA, from this point, 

models specific behaviors of individual entities, such as robots, defining how they 

interact. 

3) TeamBots: TeamBots is a 2D simulator for multi-agent mobile robotics research that 

is easy to use, free, and capable of running simulation codes on actual robots. 
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Prototyping simulations can be conducted with TeamBots using the same control 

systems that can be used on real mobile robots. 

4) Gazebo: Gazebo is a 3D simulator designed for outdoor environments. The system 

generates realistic sensor feedback and physically consistent interactions between 

objects. As a result, the user has the option of selecting between multiple dynamics 

engines. Nevertheless, it is known for being slow when running with large populations. 

In a controlled environment, Gazebo has been used to compare algorithms for 

navigation and grasping. 

5) ARGoS: As a modular and multi-engine simulation for heterogeneous swarm robotics, 

ARGoS allows for the assignment of different physics engines to different parts of the 

environment. A design robot may be equipped with controllers, sensors, actuators, 

physics engines and visualizations. 

6) USARSim: USARSim is a free, open-source 3D simulator similar to Gazebo, Webots, 

and Microsoft Robotics Studio. This simulator may be used for educational and research 

purposes and was initially developed for the RoboCup Urban Search and Rescue 

Competition. USARSim can be used to model different application scenarios. 

3. 7 Comparative Analysis: Swarm Robotics Versus Multi-Robot System 

Within the confines of this particular subsection, we aim to explicate a comparative analysis 

between the utilization of swarm robotics and multi-robot system. 

Swarm Robotics Multi-Robot System 

Variation in a great range of population size. Small population size 

Decentralized and autonomous control. Usually centralized control 

Homogeneous and heterogeneous  entities. Usually uses heterogeneous  entities. 

High flexibility. Low flexibility. 

High scalability. Low scalability. 

Unknown environment. Unknown or known  environment. 

Each robot is unable to do anything 

meaningful. 

Each robot can do some meaningful part of a 

task. 

Complex task that is impossible for a single 

robot. 

Simple (or complex) task that is possible for 

a single robot to do a part of it. 

Table 1.1: Comparison of SR and MRS (Tan et Zheng, 2013)  
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4. Conclusion 

In this chapter, we aim to provide a solid foundation for understanding the research domain 

and its key concepts. We provide an overview of the research domain by introducing the key 

concepts of swarm intelligence and swarm robotics. We begin by defining swarm intelligence 

and exploring some of its algorithms, along with highlighting the diverse range of 

applications within its domain. Subsequently, we delve into swarm robotics, starting with 

comprehensive definitions and an exploration of the characteristics that define this field. We 

also discuss the strengths of swarm robotics, highlighting its unique attributes and advantages. 

Additionally, we examine the fundamental behaviors exhibited by swarm robotics systems, 

emphasizing their collective and emergent properties. Moreover, we provide insights into the 

applications of swarm robotics across various domains. To facilitate experimentation and 

evaluation, we also discuss some commonly used simulators in the field of swarm robotic. 
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1. Introduction 

In search and rescue operations, multi-robot systems have demonstrated promising 

outcomes by leveraging their ability to cover larger areas, collect more data, and enhance 

operational efficiency. These systems are deployed to perform tasks that are either perilous, 

time-consuming, or beyond the capabilities of human rescuers. 

However, coordinating and communicating among the robots pose significant 

challenges in multi-robot search and rescue operations. Effective collaboration and 

information sharing are vital to ensure comprehensive coverage of the search area. Designing 

systems that enable seamless coordination and communication becomes crucial to maximize 

the effectiveness of the multi-robot team. Another critical factor is the ability of these systems 

to operate in environments with limited communication and navigation capabilities. Search 

and rescue scenarios often involve areas where communication infrastructure may be 

damaged or non-existent. Therefore, multi-robot systems need to be equipped with robust 

communication and search methods that can adapt to such challenging environments. 

In this chapter, our primary focus is on defining the multi-robot search and rescue 

problem. We begin by providing a clear and concise definition of the problem, outlining its 

scope and key challenges. We proceed to summarize a selection of relevant and recent works 

that are closely related to the field of multi-robot search and rescue. These works represent the 

current state-of-the-art and highlight the various approaches and methodologies employed in 

tackling this problem. After that, we employ a table with predefined characteristics to compare 

and evaluate the reviewed works. After the comparisons, we engage in a thorough discussion 

of the results. We analyze and interpret the findings from the comparison, highlighting notable 

trends, patterns, and insights. Additionally, we explore the implications of the comparisons and 

identify potential areas for further research and improvement. 

2. Swarm Robotics for Search and Rescue 

The main purposes of using swarm robotics in search and rescue operations are the reduction 

search and rescue time and the safe transportation of survivors to the depots. 
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2. 1 Definition 

Search and rescue operations play a critical role in disaster management, aiming to ensure the 

safety of individuals and minimize rescue time. While these operations can be challenging for 

human rescuers, mobile robots are utilized to navigate and explore disaster-stricken areas, 

locate targets, and perform various tasks that enhance the effectiveness and efficiency of rescue 

operations. They can access hazardous or inaccessible areas, gather information, and provide 

assistance to human responders. 

However, we must consider the limitations and challenges of this technology, such as 

obstacles (robot energy, rough surface, inability to see due to rain, smoke, sandstorms, etc.) 

2. 2 Related works 

The use of SR in search and rescue operations can significantly enhance the efficiency and 

effectiveness of search and rescue efforts. In this Section, we start with summarizing some 

relevant and recent works related to the search and rescue problem. Then, we compare them 

qualitatively using predefined characteristics. Finally, we present a discussion that may help 

in producing new research ideas and orientations. 

1) Multiple oriented robots for search and rescue operations (Firthous and Kumar, 

2020) 

Firthous and Kumar proposed in (Firthous and Kumar, 2020) a new algorithm called 

Artificial Bee Colony with Modified Evolutionary Programming (ABCMEP). This latter, is 

based on the combination of two algorithms Artificial Bee Colony (ABC) and Modified 

Evolutionary Programming (MEP). The authors used the ABC algorithm to avoid obstacles 

and the MEP algorithm to find the shortest and smoothest path (path optimization). The 

ABCMEP algorithm allows the robots that have been deployed in an unknown region to find 

targets by avoiding obstacles and reaching them efficiently. 

The simulation of this algorithm was performed in MATLAB Ra2018 software, by creating 

different complex environments and setting different parameters (population, number of 

iterations) to test them for each algorithm (ABC, ABCEP, and ABCMEP). For each chosen 

path, the cost value is calculated based on the cost function, which uses the position of the 

bees in the field and takes the lowest value calculated based on the path that took the best 

cost. After each simulation, an optimal path is found relying on the respective algorithms 

(ABC, ABCEP, ABCMEP), and the best cost values are found after several iterations for each 
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environment. According to this work, a comparison between the above three algorithms was 

presented and listed their best cost values for different environments, including the best cost 

seen in the proposed algorithm. 

2) Comparative Analysis of Fruit Fly-Inspired Multi-Robot Cooperative Algorithm for 

Target Search and Rescue (Garg et al., 2022) 

A search strategy is presented in (Garg et al., 2022) for faster victim search and real-time 

assessment and management of search and rescue operations. This strategy is named Velocity-

inspired Robotic Fruit Fly Algorithm (VRFA). The proposed strategy is based on: (1) the Fruit 

Fly Optimization algorithm (FOA) which helps the proposed system in searching and tracking 

multiple targets, and (2) the Particle Swarm Optimization (PSO) algorithm, which aims to 

update the position and velocity of fruit flies. While interacting with the systems, the 

independent robot performs four activities, including local computation:  

1) Recording and processing data locally.  

2) Sharing data between all robots. 

3) Formulating a movement plan. 

4) Generating timelines for executing the actual movement. 

To evaluate this algorithm, other techniques such as PSO, FOA, and BSO were tested in parallel 

with the VRFA algorithm using two approaches (centralized and decentralized cooperation 

strategy) for static and dynamic targets. The authors studied the impact and effect of the number 

of targets, the complexity of the environment, and the number of robots on the system 

performance. The obtained results show that the performance is better when the robots work in 

decentralized cooperation with less search and rescue time and the best average is shown by the 

VRFA algorithm. 

3) Leader-follower Behavior in Multi-agent Systems for Search and Rescue Based on 

PSO Approach (Gomez et al., 2022) 

Authors in (Gomez et al., 2022) proposed a leader-follower behavior based on the PSO 

approach. This approach aims to guide a multi-robot group in search and rescue operations by 

a leader team that already knows the location of victims. This guided group loads the necessary 

supplies to provide them to the victims. The entire system has the ability to avoid collisions and 

obstacles, which considers non-navigable locations as static obstacles and other robots as 

dynamic obstacles. To address this multi-agent navigation problem, the authors proposed an 
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objective function that dictates the navigation path. A cost function is calculated based on the 

interaction between the agents' repulsion and attraction forces.  

In order to make sure that agents are kept at a safe distance from each other and to avoid 

collisions, the navigation cost function is described as a plane in which repulsion forces are 

expressed as Gaussian functions. The second part of the objective function is a negative 

Gaussian function, which acts as a global minimum. Lead agent distance and position are used 

to determine this function. In this work the PSO algorithm is used to minimize the objective 

function. Even though the system's behavior demonstrated the effectiveness of leader tracking, 

the position of the agents failed to take into consideration their size. This made their 

implementation impossible due to the collisions that occurred, which led the authors to resort 

to a repulsion algorithm. 

To evaluate the proposed model, two simulations were performed. The first one is a visual 

representation of the mathematical model in Python, which offers the possibility to evaluate it 

without physical interaction and to observe its behavior. The second part of the simulation uses 

Pybullet as a development environment. It simulates physical robotic interaction using models 

of physical drone platforms. The result of this experimentation showed satisfactory 

performance. 

4) Multi-robot cooperative rescue based on two-stage task allocation algorithm (Huang 

et al., 2022)  

Huang et al. proposed in (Huang et al., 2022) a new algorithm for task allocation problems in 

a multi-robot cooperative rescue system based on the Ant Colony Contract Net Protocol (CNP). 

The authors used the ACO algorithm to determine the initial allocation results, and the CNP to 

adjust these results when the environment changes dynamically. The advantages of the 

proposed algorithm are parallel computation, time-efficient computation, and the ability to 

quickly adapt to changes in the environment. 

Experiments were conducted on the scenario of a fire in an underground garage to rescue all 

the targets present in the garage and provide them with the necessary rescue equipment. The 

simulation was carried out using python 3.7 by setting some parameters 

(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑑𝑒𝑟𝑔𝑟𝑜𝑢𝑛𝑑 𝑔𝑎𝑟𝑎𝑔𝑒 =  100 × 100, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑏𝑜𝑡𝑠 =  3, 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 =  21,  𝑟𝑜𝑏𝑜𝑡 𝑠𝑝𝑒𝑒𝑑 =  1𝑚/𝑠). To verify the performance of the 

proposed algorithm in a dynamic environment, the authors implemented three dynamic 

scenarios and tested them using the classical ACO algorithm and the proposed CNP algorithm 
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using three performance metrics: computation time (seconds), average task completion cost (m) 

and average task completion time (seconds).  

According to the experimental results, the CNP algorithm gave satisfactory results compared 

to the ACO algorithm in terms of the used metrics, which led to revealing clear advantages in 

solving the multi-robot task assignment problem in a dynamic environment. 

5) Research on Artificial Bee Colony Method Based Complete Coverage Path Planning 

Algorithm for Search and Rescue Robot (Yang et al., 2022) 

In order to solve the problems of full-coverage path planning in search and rescue operations, 

which strive to completely cover the area of interest in a limited time and avoid obstacles 

autonomously in unknown areas, the authors in (Yang et al., 2022) proposed a new neural 

network algorithm through the ABC method. The neural network takes as input information 

about obstacles and coverage in the five directions and gives as output the speed of the left and 

right wheels. In the initial situation, the parameters are randomly generated, which makes the 

path planned by the neural network has a lower score. 

According to the advantages of the ABC algorithm, such as the increased probability of finding 

the optimal solution and the robustness of the system, the authors used this method to optimize 

the parameters of the neural network and improve the training efficiency and effects of the 

entire system. 

To analyze the performance of the algorithm, the authors define an evaluation function, which 

is divided into three parts: the coverage rate, the path repetition rate, and the failure rate. Based 

on experimental results, the ABC method, combined with a neural network path planning 

algorithm, can effectively control rescue robots to plan complete coverage paths effectively and 

can be migrated to various environments with high robustness. 

6) Distributed Particle Swarm Optimization for Multi-Robot System in Search and 

Rescue Operations (Paez et al., 2021) 

Authors in (Paez et al., 2021) proposed a new multi-robot exploration strategy for search and 

rescue operations, called distributed particle swarm optimization (DPSO). In their work, the 

authors focus on how a swarm of robots can navigate the search space avoiding collisions and 

obstacles and locating victims by modeling the problem by defining some general concepts 

listed below: 

 Robots cannot cross static obstacles and other robots considered as dynamic obstacles. 
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 Victims are randomly scattered in the environment, which means they are in unknown 

locations for the robots. 

 The robots can sense their local environment and acquire local information about 

obstacles, other robots, and victims. 

 All robots can share their position with other robots working in the environment. 

The authors proposed the DPSO algorithm to eliminate the drawbacks of the classical PSO 

algorithm, which are: (1) poor performance, (2) slower convergence speed, (3) trapping in a 

local optimum, (4) and the non-consideration of collision avoidance. 

Two main functions are applied in the DPSO algorithm, the first is the artificial potential 

function, which attracts forces to an unknown area and victims, and the second is the repulsion 

forces function, which helps to avoid collisions. The repulsion function is divided into two sub-

functions, namely intra and inter repulsion forces. 

To perform the experiments, the authors implemented the multi-agent model and environment 

using Python and VRep. They used the Python environment to implement the proposed 

mathematical model and evaluate the performance of its features in different cases, the VRep 

to observe the behavior of the proposed model in 3D environments, and validate the 

decentralized multi-robot navigation using distributed multi-swarm systems in realistic disaster 

scenarios. 

Four experiments were performed to evaluate the proposed algorithm. After analyzing the 

results of the experiments, the authors concluded that the DPSO algorithm helps the robots to 

escape from the local minimum and find alternative paths through disaster scenarios to reach 

an optimum. 

7) AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement Learning 

(Rahman et al., 2022) 

In (Rahman et al., 2022) authors describe an adversarial Multi-Agent Reinforcement Learning 

(MARL) approach to learning efficient coordination and collaboration strategies to achieve 

SAR mission objectives in the presence of adversarial communications. A Centralized Training 

approach with Decentralized Execution (CTDE) is used in this training approach. The authors 

presented some goals to be achieved in their system, such as coordinating the respective search 

to avoid visiting the same location multiple times and reducing the overall target exploration 

time by cooperative agents in the presence of adversaries. 
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The realization of the proposed algorithmic approach was divided into three main concepts 

described as follows: 

 Adversarial modeling: aims to increase the time taken by cooperative agents to find 

missing assets. 

 Reward structure for optimal coverage: aims to extend the MARL algorithm for a 

general optimal coverage problem and to encourage cooperative agents to explore the 

environment, 

 Training algorithm: aims to train cooperative agents in the presence of interference 

from adversarial agents to provide a certain degree of robustness to the overall system. 

To investigate how adversary interference can derail the performance of cooperative agents in 

a SAR mission and to what extent the proposed training algorithm can mitigate adversary 

actions, the authors conducted four case studies to evaluate the proposed model. According to 

the results of each case, the agents were able to locate the targets more successfully in case with 

the modified reward structure. 

8) Area-Optimized UAV Swarm Network for Search and Rescue Operations (Ruetten 

et al., 2020) 

The difficulties of search and rescue operations when the space is difficult to cover by human 

rescuers and ground robots, have led to the emergence of a new technology for use, namely 

unmanned aerial vehicles (UAVs). Authors in (Ruetten et al., 2020) proposed a self-organizing 

mesh network that is optimized for area coverage by maximizing the search area and 

maintaining wireless communication. 

This new system lays the groundwork for the behavior of more than two unmanned aerial 

vehicles. Whenever a UAV is connected to more than one other UAV, it will attempt to remain 

within the range of all of them. Additionally, this system prevents UAVs belonging to the same 

swarm from colliding with one another. Rather than having a leading coordinator UAV, all of 

the UAVs adjust based on each other. The authors proposed a Mesh Reliance architecture, 

which works by assigning the swarm a connectivity matrix, with each UAV’s connections being 

a rep, and a swarm controller based on Genetic Algorithm (GA) and Neural Network (NN) 

Based on the simulation results, the proposed methods are valid for organizing swarms. 

However, they are not as effective for swarm travel, and adding each drone did increase 

computation time.GA runs very slowly, making it a poor choice in emergencies. 
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9) Search and rescue with sparsely connected swarms (Dah-Achinanon et al., 2022) 

A SAR algorithm based on ad-hoc networks accepting sporadic connectivity was proposed by 

(Dah-Achinanon et al., 2022), to bridge the gap between theoretical approaches and practical 

applications. This work aims to provide autonomy, decentralization, and an effective research 

strategy for the system by ensuring communication links between the swarm members to inform 

others about target findings and share its location. A base station receives this information to 

rescue the targets. The search method is based on the belief space exploration in order to 

incorporate crucial priors from the authorities, such as the last known locations of the targets. 

Following is a description of the principles of the above algorithm: 

 Each drone executes its search for the target based on the available belief information 

 The belief information, represented as a map, is updated and distributed to neighbors 

during the search to avoid searching the same area multiple times. 

 The distribution of the belief map performed by the virtual stigmergy 

To validate the presented algorithm and evaluate the necessary time required to find targets and 

obtain the final relay chain, the authors performed a series of tests in the ARGOS simulator 

platform and real-world experiments.  

The results obtained during simulations and real-world experiments confirmed the feasibility 

of the proposed approach compared to a random walk. 

10) Cooperative USV–UAV marine search and rescue with visual navigation and 

reinforcement learning-based control (Wang et al., 2023) 

Naval operations such as marine search and rescue operations require a higher performance and 

efficient control to rescue survivors. The authors (Wang et al., 2023) presented new method 

for visual navigation and USV control. 

The authors divided their work into two main parts summarized as follows:  

 Deep learning-based visual navigation architecture for USV and floating object 

positioning in USV-UAV operations. This approach improves visual positioning 

accuracy and computational efficiency by introducing a soft-max spatial layer and a 

two-stage structure. 
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 Reinforcement learning-based USV control strategy approaches and encircles a floating 

object. The trained control policy can improve the performance of the control system 

under wave disturbances by adding observable wave features to the state space. 

The proposed visual navigation architecture consists of two stages: the first consists of 

estimating the position of the USV and the floating object, and the second stage consists of 

estimating the heading angle of the USV. This two-stage architecture is built based on CNN 

and the network structure. 

USV controller based on RL is developed for avoiding collisions with floating objects. The 

basic principle of RL is to maximize the accumulated reward at every step by iteratively 

optimizing a policy. 

The authors conducted several experiments to evaluate the performance of the visual navigation 

model and the USV controller model by evaluating four network models (CNN-SS, CNN, FCN, 

YOLOv5) for the first proposed algorithm and designing three tasks to evaluate the second 

algorithm. 

Therefore, the proposed visual navigation architecture can provide high-accuracy position, 

velocity, and handing angle estimations under most weather conditions. However, this latter 

still has some limitations in heavy foggy weather. Finally, after the simulation, the authors 

demonstrated the effectiveness and superiority of the proposed algorithms. 

11) Ant colony optimization for path planning in search and rescue operations (Morin et 

al., 2022) 

Authors in (Morin et al., 2022) developed a new algorithm called the Ant Search Path with 

Visibility algorithm (ASPV) for the NP-hard optimal search path problem with visibility. This 

algorithm draws inspiration from ACO principles, which define 96 variants based on four key 

components of traditional ACO: pheromone initialization, pheromone update, restart, and 

boosting. 

To identify the best variant of the 96 proposed ACO algorithm variants, the authors conducted 

several experiments. In these experiments, three phases were conducted:  

 Configuration phase, which determines the optimal parameter pairs for each variant.  

 Multi-run evaluation (M-Eval) phase allows for determining how the performance of an 

ACO varies between runs on a given instance.  



Chapter 2: Search and Rescue: state of the art 

32 

 

 The across-instance evaluation (A-Eval) phase provides a better understanding of an 

ACO's performance in a variety of instances. 

The authors compared the performance of the best ASPV algorithm variants with that obtained 

through a Mixed-Integer Linear Program (MILP) and with a simple greedy heuristic. Results 

indicated that the proposed algorithm produced search paths with higher success probabilities 

in a shorter period. 

12) Coverage path planning for maritime search and rescue using reinforcement learning 

(AI et al., 2021) 

The maritime SAR environment is complex and time-varying, which led (AI et al., 2021) to 

present an autonomous coverage planning model for maritime SAR operations based on 

reinforcement learning. The contributions presented by the authors are summarized in below: 

 A method for building a complex environment model for marine search and rescue is 

proposed. 

 A reinforcement learning algorithm is proposed, which designs a multi-objective reward 

function that specifies the learning goal. This reward function consists of avoiding 

maritime obstacles, avoiding repeated paths, and preferentially searching for high-

probability areas. It better identifies the good and bad actions of the vessel agent in the 

learning process, effectively solves the problem of sparse rewards and sub-goal 

conflicts, and reduces overlapping paths. 

 An action selection policy is developed to balance exploitation and exploration to 

determine the global-optimal solution, which uses the sine function to improve the 

model's stability. In the later stage of the model calculation process, the probability of 

random action selection gradually decreases so that the model can converge stably. 

Experiments are conducted in the simulation area to demonstrate the model's validity. A 

comparison of different trajectory planning algorithms is performed in several maritime SAR 

simulations. The proposed algorithm was tested in different scenarios and compared to the 

Boustrophedon Motion Algorithm (BM), the Boustrophedon Cell Decomposition Algorithm 

(BCD), and the Boustrophedon Motion Algorithm with A* Search (BA*). 

The comparison of results indicates that the search path generated by the model can cover the 

entire SAR area safely, maintain a low repetition rate, and prioritize the high-probability areas 

for searching. 
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13) Multi-UAV Search and Rescue with Enhanced A∗ Algorithm Path Planning in 3D 

Environment 

Authors in (Du, 2023) proposed a new extension of the A* algorithm for the 3D SAR 

environment. This algorithm is based on the A* and task allocation algorithms to obtain a 

faster and more efficient path-planning method. The objectives achieved by the author are 

summarized in below: 

 General 2D and 3D trajectory planning of UAVs. 

 Granting UAVs the ability to avoid obstacles when performing tasks. 

 Identifying the shortest path for all UAVs in a minimum of time. 

In this paper, the task allocation algorithm provides advantages to the system, such as a 

parallel search of the environment, allowing the drones to complete the entire task by 

distributing the assignments to each drone, helping to reduce the total route planning time and 

memory space of each drone. Moreover, the A* algorithm is generally used for the path 

planning optimization problem. 

To evaluate the performance of the proposed algorithm, the author created a 2D and 3D 

simulation scenarios to test the functionality of the task allocation algorithm and performed 

experiments in a 3D environment to verify and evaluate the performance of the improved A* 

algorithm compared to the classical A* algorithm. According to the results obtained from the 

simulation it can be observed that the improved algorithm has better running time, speed, and 

efficiency than the classical algorithm and has higher efficiency of the coverage environment 

and reduces the amount of storage required. 

14) Coverage path planning for multiple unmanned aerial vehicles in maritime search 

and rescue operations (Cho et al., 2021) 

Because of the increase in the number of casualties in the maritime sector, maritime 

authorities and operation centers are trying to develop a quick search for survivors at sea 

using different technologies such as USV, UUV, and UAV. (Cho et al., 2021) introduced a 

new contribution by using a UAV swarm. This latter was divided into a two-phase method to 

solve the (CPP) problem. The first phase presents a methodology for transforming the search 

area into a graph consisting of vertices and edges using grid-based area decomposition. 

Hence, the proposed method takes into account the angle at which the area is decomposed to 

minimize the size of the coverage area. 
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The second phase focuses on determining the optimal path for multiple UAVs based on the 

results of the first phase to reduce the completion time. The authors developed a mixed-

integer linear programming (MILP) model that minimizes the time required to cover the 

search area. As a constraint, the region (position of nodes, the angle between nodes, etc.) and 

the dynamics of the robot covering the nodes are considered. 

The researchers in this paper observed that the proposed MILP model was time-consuming 

for large-scale real-world problems. To solve this problem, a new algorithm called 

Randomness Search Heuristic (RSH) was developed. This approach consists of three phases 

in each iteration:  

1) Random construction: constructs the coverage path of UAVs by sequentially selecting 

the adjacent nodes. 

2) Repair: repairs the generated roads if all nodes are uncovered to recover the feasibility. 

3) Local search: improves the constructed path for each UAV to obtain high-quality 

solutions that are close to the optimal road. 

Numerical experiments to validate the efficiency and effectiveness of the proposed approach 

and real-world experiments with two UAVs to verify the validity of the proposed algorithm in 

real-world were considered in this paper. 

According to the results of the numerical experiments, the RSH algorithm can produce near-

optimal solutions in a much shorter computational time than a commercial solver. In contrast 

to the real-world experiments, the mission execution time was longer due to the influence of 

wind or network communication uncertainty. 

2. 3 Qualitative comparison of related work 

After comprehensively reading, understanding, and summarizing the related works in the field 

of search and rescue operations with Multi-Robot Systems, the next step is to qualitatively 

compare them using several characteristics. This comparison allows us to identify the 

strengths and weaknesses of each work, providing valuable insights into their contributions 

and limitations. 
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Environmen

t 

Search 

space 

Complexity Obstacles X X   X X X  X   X   

Obstacles-

free 

  X X    X  X X  X X 

Sinks  Number  Single  - X X X - X - - X X - - X - 

Multiple  -    -      - -  - 

Position  Center  -    -      - -  - 

Fixed  - X X X - X - - X X - - X - 

Objects  Nature  Dynamic   X   -     X X -  - 

Static  X X X X - X X - X X  - X - 

Position  Fixed  X   X -       -  - 

Random   X   - X X - X X X - X - 

Clustered    X  -       -  - 

uniform     -       -  - 

Collective  Robot  Number  single X    X       X   

Multiple   X X X  X X X X X X  X X 

Initial 

location 

Random   X X   X X X X X X  X  

Fixed  X   X X       X  X 

nest               

compositi

on 

Architecture  Homogenou

s  

X X X X X X X X X  X X X X 

Heterogeneo

us 

         X     

Strategy Control Centralized   X X            

Decentralize

d  

X X  X X X X X X X X X X X 

Cooperative Yes   X X X  X X X X X X  X  

No  X    X       X  X 

Communication Direct  - X X X - X  X X X X - X - 
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Table 2.1: Qualitative comparison of the summarized related works 

2. 4 Discussions of related works 

Based on Table 2.1, we can group the research according to the scenarios used in the different 

SAR operations (Based-ground SAR, Maritime SAR, and Aerial SAR). 

Scenarios       References 

Based-ground (Firthous and Kumar, 2020) 

indirect -    -  X     -  - 

Exploratio

n 

Redundancy Yes   X   X      X    

No  X  X X  X X X X   X X X 

Type ABCEMP X              

VRFA  X             

CNP    X           

MARL       X        

ABC     X          

ANN     X   N       

belief-based 

search 

        X      

GA        X       

Leader-

Follower 

  X            

D-PSO      X         

DL          X     

RL          X  X   

ASPV           X    

Enhanced 

A∗ 

            X  

RSH              X 

Homing Type ...               

Simulation metrics time                

execution R.W  

experiment 

         X     X 

Simulating ARGOS         X      

Netlogo  X             

Python   X X   X   X  X  X 

Pybullet   X  - X  -       

VRep      X         

Matlab X            X  

C++           X    
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(Huang et al., 2022) 

(Yang et al., 2022) 

(Paez et al., 2021)  

(Rahman et al., 2022)    

(Morin et al., 2022)  

Aerial (Garg et al., 2022) 

(Gomez et al., 2022)  

(Ruetten et al., 2020)   

(Dah-Achinanon et al., 2022) 

(Du, 2023)  

Maritime (Wang et al., 2023) 

(AI et al., 2021)  

(Cho et al., 2021)   

 

2.4.1. Based-ground SAR 

 The majority of the work used an obstacle environment.  

 Some works used a single sink with a fixed position, the others did not specify the 

number of sinks and their positions. 

 Most of the works have used static targets with a random position. 

 The majority of the works used multiple robots with a random position. 

 All research done in the based-ground SAR focuses on homogeneous robots and is 

based on decentralized control. 

 Most research focuses on cooperation between robots using direct communication. 

 The majority of studies take into account the lack of redundancy in space exploration 

and all of these studies use different search methods. 

 In the SAR based-ground, all research experiments were conducted by simulation using 

different simulators 

2.4.2. Aerial SAR 

 The majority of the work used an obstacle environment. 

 Most works used a single sink with a fixed position. 

 Most of the works have used static targets with a random position unless in (Garg et 

al., 2022), which use both dynamic and static targets. 

 All articles used multiple robots with a random position. 

 All the research done in aerial SAR focuses on homogeneous robots and is based on 

decentralized control, except for (Gomez et al., 2022), which is based on centralized 

control. 
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 All research focuses on cooperation between robots using direct communication. 

 The majority of studies take into account the lack of redundancy in space exploration 

and all of these studies use different search methods. 

 In the airborne SAR domain, all research experiments were conducted by simulation 

using different simulators, except for (Dah-Achinanon et al., 2022), who performed 

the experiments in both simulations with the ARGoS simulator and the real world. 

2.4.3. Maritime SAR 

 All works used an obstacle-free environment except for (AI et al., 2021). 

 In maritime SAR, the research did not specify the number of sinks and their position 

except (Wang et al., 2023) used a single sink with a fixed position. 

 (Wang et al., 2023) have set static and dynamic targets with a random position. The 

others did not specify the object's type and position. 

 The majority of the works used multiple robots and setting fixed positions. 

 All works done in the maritime SAR focus on homogeneous robots and are based on 

decentralized control except for (Wang et al., 2023), which used a heterogeneous 

system containing UAVs and USVs. 

 Most research focuses on the absence of cooperation between robots. 

 The majority of studies take into account the lack of redundancy in space exploration 

and all of these studies use different search methods. 

 In the maritime SAR, all research experiments were conducted by simulation using 

different simulators, except for (Cho et al., 2021), who performed the experiments in 

both simulation and the real world. 

As for all the works the sue of swarm intelligence based algorithms is very weak, and 

need to be investigated since these algorithms provide scalable, flexible and robust 

solutions to systems like search and rescue one. 

3. Conclusion 

In the aim to make a valuable contribution to the SAR problem, we conducted in this chapter 

a review of related works. We first started with a definition of the problem. Then, we 

presented a summary of the related works through an in-depth analysis of the proposed 

methods and contributions. After that, we qualitatively compared the reviewed related works 

through some important characteristics. Finally, and using the comparison table, we discussed 

and concluded some important points which helped us in proposing our contribution. 
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The next chapter, will present a new strategy of multi-robot search using a swarm 

intelligence-based algorithm.
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Chapter 3 : Conception 

1. Introduction 

In this work, we are interested in modeling and solving the multi robot search and rescue 

problem in unknown environments. Since the SAR problem is a large scale one, the use of 

swarm intelligence algorithms is one of the best solutions. Based on the review and the 

comparisons presented in Chapter 3, we proposed a multi robot search and rescue problem. 

This latter, is inspired by the hunting behavior of penguins. It uses Penguin Search 

Optimization (PeSOA) and the Random Walk Algorithm (RWA) to search for survivors in 

catastrophic environments.   

We start this chapter by describing the problem, objectives, and proposition. After that, we 

present the related algorithm (PeSOA and RWA). Then, we present the details of the 

proposed algorithm: the state machine, the formulations, and the pseudo codes of different 

states. We finish the chapter with a conclusion. 

2. Problematic, Objectives, and proposition 

 Mobile robotics has applications in a wide range of fields, including SAR. Essentially, 

it involves navigating through catastrophic space to search for and transport victims to a 

central depot. The task consists of two basic behaviors: exploration and homing. A well-

chosen exploration strategy can improve rescue performance in terms of people rescued or 

located, and time reduction. Swarm intelligence has been a source of inspiration for various 

applications of mobile robotics. For example, the exploration, return, and communication 

strategies of some animals have shown great effectiveness, especially in the field of mobile 

robot exploration. 

In this work, we proposed a new SAR strategy based on SI algorithms to achieve the 

following objectives: 

1) Increase the explored areas ; 

2) Disperse robots widely in their environment to increase the number of found victims; 

3) Reduce search time. 

In the preceding chapter, our observations revealed that the majority of research in the SAR 

field predominantly relies on old SI algorithms (mature algorithms such as ACO, PSO, 
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ABC…etc). Consequently, we aim to use in our contribution a SI-based algorithm that was 

not yet used in multi robot exploration and specifically in SAR problems. At the best of our 

knowledge, the PeSOA was used for optimizing mathematical benchmark function and not 

yet used in multi robot related problems. That is why, we adapted and used the PeSOA in 

SAR problem. In our proposition robots move collectively from an area to another following 

their best local position. They can change (migrate) their group based on the fluctuation of the 

surroundings groups. Whenever, a group of robots is in exploration of a rich region, it emits 

light to attract robots from other groups. 

3. Analysis of Related Algorithms 

In this Section, we present the related algorithms: The PeSOA, and the RWA algorithms. We 

first present the original version of the PeSOA. After that, we present its adaptation to the 

SAR problem. 

3. 1. Penguin Search Optimization Algorithm 

Penguins are seabirds and cannot fly due to their aquatic adaptation. Their wings are ideal for 

swimming and can be considered fins. The behavioral ecology of penguin foraging has many 

similarities to modern metaheuristics. As a result of this nature's intelligence, the PeSOA 

algorithm was developed for the first time by (Gheraibia and Moussaoui, 2012). 

Subsequently, this algorithm was further elucidated by (Gheraibia et al., 2018). 

 

Figure 3.1: Hunting behavior of penguins [13] 

The authors summarized their algorithm with simple rules described as follows: 

 A penguin population consists of several groups. Each group contains a number that 

varies according to the food availability in the corresponding foraging region. 
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 Each group of penguins starts foraging in a specific depth under the water according to 

the information about the energy gain and the cost to obtain it. 

 They feed as a team and follow the local guide who fed the most on the last dive. The 

penguins scan the water for food until their oxygen reserves are exhausted. 

 After a number of dives, the penguins come to the surface to share the location and 

abundance of food sources with their local affiliates through intra-group 

communication. 

 If food resources are insufficient for the penguins in a given group to live on, part of the 

group (or the entire group) migrates to another location through inter-group 

communication. 

Penguin hunting behaviors Optimization heuristic principles 

The sea  Solution space 

Most abundant shoals of fish Global optimum 

Penguin position A candidate solution 

Energy content of prey Fitness of solution 

Oxygen reserve  Acceleration coefficient  

Penguin swimming Solution update 

Intra-group communication Intensification search 

Inter-group communication Diversification search 

Table 3.1: Metaphors of penguin hunting behaviors for optimization heuristic principles 

(Gheraibia et al., 2018). 

 Parametric formulas: 

In this section, we will define the basic expressions of the PeSOA algorithm (Gheraibia et 

al., 2018): 

 the movement of the Penguin is done according to the following expression: 

𝑥𝑗
𝑖(𝑡 + 1) = 𝑥𝑗

𝑖(𝑡) + 𝑂𝑗
𝑖(𝑡) × 𝑟𝑎𝑛𝑑() × |𝑥𝐿𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡

𝑖 − 𝑥𝑗
𝑖(𝑡)| (1) 

 After each dive, the penguin's oxygen reserve is updated as follows: 

𝑂𝑗
𝑖(𝑡 + 1) = 𝑂𝑗

𝑖(𝑡) + (𝑓(𝑥𝑗
𝑖(𝑡 + 1))−𝑓(𝑥𝑗

𝑖(𝑡))) × ‖𝑥𝑗
𝑖(𝑡 + 1) − 𝑥𝑗

𝑖(𝑡)‖ (2) 
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 The food abundance degree can be estimated by the Quantity of Eaten Fish (QEF), 

which is expressed as follows: 

𝑄𝐸𝐹𝑖(𝑡 + 1) = 𝑄𝐸𝐹𝑖(𝑡) + ∑(𝑂𝑗
𝑖(𝑡 + 1) − 𝑂𝑗

𝑖(𝑡))

𝑑𝑖

𝑖=1

 

 

(3) 

 

 The penguin updates its group membership by referring to a function related to the 

degree of food abundance of the different groups. Thus, the penguin joins a group with 

a probability proportional to the QEF of the corresponding group given below: 

Pi(t + 1) =  
𝑄𝐸𝐹𝑖(𝑡)

∑ 𝑄𝐸𝐹𝑗(𝑡)𝐾
𝐼=1

 
(4) 

 

Notations Descriptions 

𝑁 Number of total penguins 

𝐾 Number of groups 

𝑓 Objective function of the problem 

𝑂𝑗
𝑖(𝑡) The oxygen reserve of the jth penguin of the ith group 

𝑥𝑗
𝑖(𝑡) The position of penguin j allocated to the ith group at tth instance 

𝑥𝐿𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡
𝑖  The best solution found by the ith group 

𝑄𝐸𝐹𝑖(𝑡) Quantity of eaten fish of the ith group at the tth instance 

Pi(t) Probability of existence of fish of gth group at tth instance 

𝑟𝑎𝑛𝑑() A random number drawing from (0, 1) 

Table 3.2: Notation description (PeSOA) (Gheraibia et  al., 2018) 

3. 2. Random Walk Algorithm 

The random walk algorithm is a mathematical concept used in various fields. It simulates the 

movement of a particle or entity in a series of random steps within a given space. At each 

step, the particle randomly chooses a direction and magnitude for its movement. The 

algorithm is based on the principle that the cumulative effect of numerous random steps can 

lead to interesting patterns and behavior. Random walk algorithms have been applied to 

diverse problems, such as modeling diffusion processes, generating random numbers, 

optimizing search strategies, and simulating financial market movements (Du et al., 2003). 
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4. Proposed algorithm: Modified Penguin Search Optimization 

Algorithm (MPeSOA) 

In this Section, we present the proposed SAR algorithm named: The Modified Penguin Search 

Optimization Algorithm (MPeSOA). First, we present the state machine showing the behavior 

of our robots with a textual description of each behavior. After that, we introduce the 

parametric structure of MPeSOA. Finally, we present the pseudo code of the different 

behaviors. 

4.1. Robots State machine 

During its life cycle, the robot can be in one of the four behaviors: Global Serach, Local 

Serach, Migrayion and Obstacle Avoidance. The robots start all from the central depot and 

change their behaviors according to input data gathered by their sensors. The state machine 

representing the bahvior of the robots is given by Figure 3.1. 

 

Figure 3.2: MPeSOA's State Machine 

In below, we explain the different behaviors of the state machine: 

1) Global search: During this phase, each group of robots undergoes a relocation process 

to a new position, guided by the LocalBest solution obtained from the previous dive. 

This relocation is executed by employing the penguin search position equation as 

depicted in Equation 5 (Section 3.1). Throughout the search process, individual robots 

may encounter obstacles or victims, prompting distinct decision-making. For instance, 
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when faced with barriers, a robot must navigate around them to avoid any obstacles. 

Conversely, upon discovering victims, the robot must prioritize their rescue and 

subsequent safety. Once the group reaches a new position, all group members must shift 

their state to the Local Search state. 

2) Local Search: Before starting the local search, the robots must patiently await the 

arrival of all group members, ensuring the collective initiation of the search procedure 

employing the Random Walk Algorithm (RWA). As in the Global search, the robots 

have to get around obstacles and effectively rescue victims encountered along the way.  

However, the key distinction lies in the search duration. In this case, the robots apply 

the RWA for a predefined period and subsequently repeat this process in the absence of 

victim discoveries, thereby providing additional opportunities to locate victims. In 

instances where no victims are detected, the robots must undergo migration by reverting 

to the Migration state. Conversely, upon successful victim detection, the group updates 

their local best and transitions to the Global search state. 

3) Migration State: When the group fails to detect or rescue victims, it becomes 

imperative for them to migrate and join another group that has achieved notable success 

in locating victims. As a result, the group will divide into two sub-groups, each 

following the RWA for movement. It is important to note that the sub-groups will take 

opposite directions, ensuring that all members within a specific sub-group share the 

same step length and move coherently in a consistent orientation. 

4) Obstacle avoidance: Our explorer robot is equipped with 24 IR proximity sensors 

positioned strategically around its structure. These sensors possess detect obstacles 

within a proximity range of 30 cm. In accordance with the readings obtained from these 

sensors, if the robot identifies the presence of an obstacle, it retrieves the angle 

information and adjusts its movement accordingly. When encountering a negative 

angle, the robot executes a right turn, whereas a positive angle prompts a left turn. 

4.2. Parametric structure 

Throughout the subsequent rules, the oxygen reserve O(t) will be treated as a constant value 

set to 1: 

1) Global search: The Penguin Update Position method, as expressed by Equation (5), is 

used in the MPeSOA Global search. This method is specifically employed when the 

robots change their position.  
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𝑥𝑗
𝑖(𝑡 + 1) = 𝑥𝑗

𝑖(𝑡) + 𝑟𝑎𝑛𝑑() × |𝑥𝐿𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡
𝑖 − 𝑥𝑗

𝑖(𝑡)| (5) 

 

2) Local search: In local search, we employ the RWA defined by the Equation (6). This 

search methodology is implemented when the robots explore within the current 

subspace. The RWA is represented as 

𝑠𝑙𝑖 = 𝑟𝑎𝑛𝑑(𝑎, 𝑏) (6) 

 

3) Group migration: If victims remain undetected, the group will initiate migration and 

merge with another group. Before the migration process, it is necessary to compute the 

probabilities of the existence of fish for all groups using Equation (4). However, if all 

computed probabilities are found to be less than 0.5, the current group will refrain 

from migrating and takes a random LocalBest. Conversely, if at least one probability 

exceeds or equals 0.5, the group will initiate migration based on the aforementioned 

approach outlined in the Migration State. It is important to highlight that the equation 

governing the update of the Quantity of Eating Fish will be as follows: 

𝑄𝐸𝐹𝑖(𝑡) = ∑ 𝐸𝑗
𝑖(𝑡)

𝑑𝑖

𝑗=1

 

 

(7) 

 

4.3. Pseudocodes 

In this subsection, we provide an overview of the pseudocodes required for the development 

of our proposed algorithm. We have formulated the MPeSOA algorithm, presented in 

Algorithm 1 pseudocode, which encompasses four key functions: Global_search (Algorithm 

5), Local_search (Algorithm 2), Obstacle_avoidance (Algorithm 3), and Migration (Algorithm 

4). 

Algorithm 1 : MPeSOA 

1 Initialize the number of groups 

Notations Descriptions 

𝐸𝑗
𝑖(𝑡) Quantity of eaten fish of the jth robot of ithgroup at the tth 

instance 

𝑠𝑙𝑖 Step length for ith robot 

𝑟𝑎𝑛𝑑(𝑎, 𝑏) A random number drawing from (a, b) 

Tableau 3.3: hunting ecology of penguins 
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2 Initialize the total number of robots 

3 Generate a random local best for each group 

4 Distribute randomly the robots in groups 

5 while stopping criterion is not reached do 

6 for each group i do 

7   go to Global_Search 

8   Update the food abundance degree for this group by equation (7) 

9 end for 

10 Update the totale eating food 

11 Update the global best solution 

12 Update membership function values for each group by equation (4) 

13 end while 

 

Algorithm 2 : Local_search 

1 while (repetition_process > 0) do 

2 while (the duration has not expired) do 

3 While(∄ obstacle or victim or pheromone)do  

4   Random walk by using equation (5) 

5 end while 

6 if(∃ obstacle) then go to Obstacle-avoidance 

7 else (∃ victim) then 

8   Get the victim 

9   Update the number of victim rescued 

10   Update the quantity of eating fish for this goup   

11   Update duration for this goup   

12 end if  

13 end while 

14 Update LocalBest for this goup 

15 if(new localbest == the last localbest) 

16   repetition_process— 

17   If (repetition_process==0) 

18     go to Migration 

19 else 

20   go to Global_Search 

21 end while 
 

Algorithm 3 : Obstacle_avoidance 

1 Get readings from all proximity sensors 

2 Accumulate all readings and get the accumulated value and the 

angle 

3 if(accumulated value > 0) then 

4   if(accumulated angle > 0) then turn left 



Chapter 3 : Conception 

48 

 

5   else turn right 

6 end if 

 

Algorithm 4 : Migration 

1 return to the last position 

2 calc Pi using equation (4) 

3 if (all probabilities <0.5) 

4   set a random localbest 

5   go to Global_Search 

6 else 

7   divide the group into two subgroups 

8   Give the sub groups an opposite directions 

9   While(∄ obstacle or victim or pheromone)do  

10     Use the same random step for all members within the same 

group until they reach the hunting group 

11   end while 

12   if(∃ obstacle) then go to Obstacle-avoidance 

13   else (∃ victim) then 

14     Get the victim 

15     Update the number of victim rescued 

16     Update LocalBest for this goup 

17     Update the quantity of eating fish for this goup 

18     go to Global_Search 

 

Algorithm 5 : Global_Search 

1 calculate new position using the equation (5) 

2 while(the group does not reach the new position) do 

3   if(∃ obstacle) then go to Obstacle-avoidance 

4   else (∃ victim) then 

5     Get the victim 

6     Update the number of victim rescued 

7     Wait for few time before update LocalBest for this group 

8     if (the time is expired)  

9       Update LocalBest for this goup 

10     Update the quantity of eating fish for this goup 

11     go to Global_Search 

12 End while 

13 if (the group reached the new position) 

14   go to Local_Search 
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5. Conclusion 

We presented in this chapter our contribution to the resolution of SAR problem. We proposed 

a multi robot search and rescue algorithm based on the hunting behavior of penguins and the 

random walks. Each robot passes through different states according to its surrounding events. 

We described in detail the different behaviors and the state machine of our rescuing robots. We 

also presented the equations used as adaptation of the penguin algorithm and we presented the 

pseudo code of the different states.  

Our system meticulously delineates each step required to construct a highly efficient model. 

Subsequently, the next chapter will elucidate the implementation particulars of our application
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Chapter 4 : Implementation and Results 

 

1. Introduction 

In order to validate the proposed algorithm (MPeSOA) discussed in the previous chapter, we 

implemented it using the ARGoS mobile robotics simulator. Subsequently, we conducted 

simulations encompassing various environmental configurations to evaluate the performance 

of our proposed algorithm. 

This chapter begins with an introduction to the ARGoS simulator, followed by an overview of 

the characteristics exhibited by the robots employed in our study. Subsequently, we propose a 

series of simulation scenarios designed to evaluate the performance of the proposed algorithm. 

Furthermore, we present and analyze the outcomes attained through the application of these 

scenarios. 

2. Development environment 

ARGoS (Autonomous Robots Go Swarming) (Pinciroli, 2012) is a simulator created by Carlo 

Pinciroli as part of the Swarmanoid project. This simulator is based on new design principles, 

the main purpose of which is to achieve both flexibility and efficiency.  The attainment of 

flexibility in ARGoS is facilitated through the implementation of a modular framework. Each 

fundamental architectural element is realized as a software module that possesses the ability to 

be dynamically selected during runtime, known as plug-ins. These plug-ins encompass diverse 

functionalities, including robot control code, sensors, actuators, physical engines, 

visualizations, and simulated entities such as robots and other objects. Efficiency in ARGoS is 

accomplished through the utilization of a parallel architecture that capitalizes on the capabilities 

of multi-core processors while ensuring the calculation of only the essential components. 

ARGoS is an openly accessible simulator, implemented using the programming languages of 

C++ and Lua and other frameworks. 

3. ARGoS Modular feature 

The ARGoS simulator has three main features. In this section, we will focus only on the 

modular structure. This structure is designed to enhance code reuse and facilitate customization, 

allowing users to choose which modules have to use for their experiments, bringing accuracy 

and rapidity to the experience. Figure 4.1 shows the ARGoS architecture. 
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Figure 4.1: ARGoS Architecture (Pinciroli, 2012) 

1) The simulated 3D space: the 3D simulation space consists of a collection of data 

structures containing the complete state of the simulation. Object position and 

orientation are part of the state information. In addition, the object state can be 

composed of specially equipped devices. All this information is stored in space. The 

development team, therefore, offers basic entities to organize this data, enabling users 

to customize them or add new ones as required. 

2) Sensors and Actuators: Sensors and actuators are plug-ins that access the state of 

the simulated 3D space. Sensors are granted exclusive read-only access to the simulated 

3D space, allowing them to retrieve relevant information. In contrast, actuators possess 

the capability to modify specific aspects of the state information contained within the 

simulated 3D space. 

3) Physics engines: The physics engine is responsible for updating the embodied 

entities that occupy their assigned portion of space. By adopting this design approach, 
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ARGoS enables the simultaneous execution of multiple engines of varying types in 

parallel throughout an experiment. 

4)  Visualizations: Visualizations are also plug-ins that operate by accessing the state 

information of the simulated 3D space and generating an output that visually represents 

the simulation. 

5) Controllers: The robot controller is also plugins that contain the logical control of 

robot behavior within an experiment. 

6) Loop Functions: Loop functions are considered user-defined function hooks, which 

allow you to customize the initialization and end of an experiment and add personalized 

functionality executed before and (or) after each simulation step. Loop functions allow 

access and modify the entire simulation, including adding, moving, or deleting entities 

in the environment and other functionalities. 

4. System components modeling 

Within our system, there exists five principal components that collectively contribute to its 

functionality: the environment, robots, victims, obstacles, and light. In the following of this 

section, we elucidate the proposed modeling approach for each of these components: 

 The environment is modeled by a continuous 3D space. 

 The used robots are Foot-bots (a detailed explanation of its characteristics is given in 

below).  

 The light zone of a robot is represented by a faded yellow circle. 

 Victims are represented by a gray 3D cylinder 5cm X 6.5cm in size. 

 Obstacles are represented by 3D gray boxes of 150cm X 150cm. 

4.1. Foot-bot characteristics 

The foot-bot represents a specific arrangement of modules built upon the marXbot robotic 

platform. This configuration encompasses several key elements, including a top CPU and vision 

module, a distance scanner, a range and bearing module, a self-assembling module, as well as 

a fundamental mobility and battery module. This robot has a compact size: 17 cm diameter x 

29 cm, 1.8 kg and two wheels. 
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Figure 4.1: Foot-bot components (Pinciroli, 2012) 

 

In our simulation, the foot-bot incorporates the following features: 

 24 IR Proximity sensors with detection range = 0.3m. 

 24 Light sensors with detection range = 0.3m. 

 13 Led actuators. 

 A constant velocity V= 50 cm/s. 

4.2. Controller analysis 

1) Navigation: The Foot-bot maneuvers within the environment by utilizing a wheel pair 

for locomotion. In the control code, we employ the "setLinearVelocity(l, r)" procedure to 

drive the robots, where "l" and "r" represent the respective speeds of the left and right 

wheels. To detect obstacles and victims in the proximity of the robots, we employ 

proximity sensors. Each sensor possesses a range of 0.3 meters and provides a reading 

comprising an angle in radians and a value within the interval [0, 1]. The value is 

contingent upon the distance between the sensor and the detected object, where a value 

of 0 indicates no detection and the value exponentially increases to 1 as the object 

approaches closer. The angle measurement is determined between the local X-axis and 

the position of the sensor on the robot body. For the detection of light sources, we utilize 

light sensors. These sensors also yield a value ranging between 0 and 1, with 0 denoting 

the absence of any light within range, while 1 signifies saturation due to the perceived 
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light. The values between 0 and 1 are influenced by the distance from the perceived light 

source. Additionally, the light sensors provide an angle measurement in radians. 

2) Obstacle avoidance: During each step of the simulation, the robot's proximity sensors 

gather information regarding nearby objects. Following this, the robot analyzes the sensor 

values and calculates the sum of all the reading values. This computation enables the 

robot to determine the distance between itself and the detected obstacle. When the robot 

detects an obstacle (value > 0), it evaluates whether it can proceed forward safely or if it 

needs to turn in the opposite direction of the reading angle. 

 

5. Simulations and analysis of results 

Finding the right parameters for the algorithm will certainly increase its efficiency. In our 

proposed algorithm, we can manipulate parameters to improve simulation results 

(performance). The parameters chosen are the number of robots, the number of groups, the 

number of clusters, and the environment size. In addition, we used as performance criterion the 

number of collected victims in a fixed time (20 minutes). 

5.1. Simulation scenarios 

Within this subsection, we provide an overview of four simulation scenarios, each 

corresponding to one of the aforementioned parameters. We test by these scenarios the 

influence of robots’ number, group numbers, clusters number and environment size on the 

performances of the proposed strategy. Table 4.1 shows the different proposed scenarios: 

Scenario 1: The influence of robot 

numbers 

Scenario 2: The influence of group 

numbers 

Number of robots: 30, 40, 50, 60. 

Target distribution: Clusters. 

Number of groups: 6. 

Number of clusters: 12. 

Number of victims in environment: 910. 

Obstacle density: 10% of environment size 

environment size. 

Environment size: 120m X 120m. 

Number of robots: 50. 

Target distribution: Clusters. 

Number of groups: 3, 5, 6, 8. 

Number of clusters: 12. 

Number of victims in environment: 910. 

Obstacle density: 10% of environment size 

environment size. 

Environment size: 120m X 120m. 

Scenario 3: The influence of cluster 

numbers 

Scenario 4: The influence of  environment 

size 
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Number of robots: 50. 

Target distribution: Clusters. 

Number of groups: 6. 

Number of clusters: 2, 4, 8, 16. 

Number of victims in environment: 1000. 

Obstacle density: 10% of environment size 

Environnement size: 120m X 120m. 

Number of robots: 50. 

Target distribution: Clusters. 

Number of groups: 6. 

Number of clusters: 12. 

Number of victims in environment: 910. 

Obstacle density: 10% of environment size 

Environment size: 802 m2, 1002 m2, 1502 m2, 

1902 m2. 

Table 4.1: The proposed simulation scenarios 

5.2. Performance criteria 

As delineated in the preceding chapter, this research study is guided by two primary objectives: 

1. To maximize the successful rescue of victims within the specified timeframe. 

2. To minimize the overall duration of the rescue operations. 

To assess the efficacy of our proposed solution, we will adopt specific performance criteria 

centered around the number of victims successfully rescued within a predetermined timeframe 

of 20 minutes. 

5. 3. Results, and comparisons 

The performance evaluation of the PeSOA algorithm has been conducted using the simulation 

scenarios presented in the preceding table. In the subsequent section, we introduce and analyze 

the results obtained by applying this algorithm across diverse scenarios. It is important to note 

that the reported results represent the average outcome from five simulations. 

1) Scenario 1 

With this scenario, we intend to study the impact of the number of robots on the performances 

of the MPeSOA algorithm. With increasing the number of robots the total number of found 

victims increases accordingly. Table 5.4 shows the results obtained by this scenario. 

 30 40 50 60 

MPeSOA 360 387 434 590 

Table 4.2 : Influence of robot number on performance. 

2) Scenario 2 
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In this scenario, our investigation focuses on evaluating the impact of varying the number of 

groups, specifically ranging from 3 to 7, on the performance of our algorithm. The increase in 

the number of groups increases accordingly the number of found victims. Table 5.5 shows the 

results obtained by this scenario. 

 3 4 5 7 

MPeSOA 350 433 586 659 

Table 4.3: Influence of group numbers on performance. 

3) Scenario 3 

We investigate in this scenario the influence of the number of clusters, spanning from 2 to 16, 

on the performance of the proposed algorithm. The number of found victims decreases 

accordingly with the increase in the number of clusters. This is due to the density of victims in 

the clusters. 

 2 4 8 16 

MPeSOA 1000 748 603 572 

Table 4.3 : Influence of cluster numbers on performance. 

4) Scenario 4 

In this scenario, we examine the impact of varying the environment size on the performance of 

the MPeSOA. Each simulation involves an incremental increase in the environment size, 

ranging from 802m to 2002m. With increasing the size of the environment, the number of found 

victims decreases. This decrease is related to the large size of the environment and the number 

of obstacles. Table 5.7 shows the obtained results. 

 802 m2 1002 m2 1502 m2 1902 m2 

MPeSOA 763 734 636 353 

Table 4.4 :  Influence of environment size on performance. 

6. Conclusion 

In this chapter, we presented the ARGoS platform as the framework used to implement our 

algorithm and its corresponding architecture. Additionally, we provided an overview of the 
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Foot-bot robots and their distinctive features. Furthermore, we conducted a comprehensive 

analysis of our algorithm's performance by proposing a series of scenarios featuring variations 

in specific parameters to ascertain their impact on the simulation performance. The results 

obtained from each simulated scenario consistently demonstrate the performances of the 

proposed algorithm. 
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General conclusion 

 

The utilization of Swarm Intelligence (SI) algorithms for collaborative problem solving has 

gained significant popularity within the field of mobile robotics. These algorithms have found 

application in diverse problem domains, such as foraging, cleaning tasks, and search and rescue 

operations. One of the fundamental aspects of these applications is the exploration of the 

environment, where swarm of robots navigate through space in accordance with a 

predetermined deployment strategy, with the objective of locating valuable targets. 

In the context of this study, our focus lies in the dispersion of robot groups achieved through 

an implicit division of the environment based on the positions of each group. To address this, 

we propose a swarm robot search and rescue algorithm, MPeSOA (Modified Penguin Search 

Optimization Algorithm). The algorithm has been successfully implemented within the ARGoS 

simulation platform, and the simulation results have demonstrated that our proposed algorithm 

is capable of producing satisfactory outcomes, even when exposed to the influence of the 

random walk strategy. 

Moving forward, we envision several perspectives for further enhancing this work. Firstly, we 

aim to extend the robot's behavior to incorporate considerations for energy limitations. 

Secondly, we aspire to develop a more efficient local search strategy that surpasses the 

randomness of the current approach. Lastly, we aim to implement mechanisms for implicitly 

saving search spaces, thereby preventing redundant exploration of previously examined areas 

and consequently reducing the overall search time. 
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