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Abstarct

Diabetes is a chronic condition that can be caused by the body’s inability to produce
or use insulin effectively. Over time, this can result in damage to various organs, including
the heart, blood vessels, eyes, kidneys, and nerves. The timely detection of diabetes is
essential for its prompt treatment, as it can halt the progression of the disease. In this
study, we propose an hybrid machine learning approach to predict diabetes using a com-
bination of two powerful algorithms. We used an ensemble learning based on Deep Neural
Network and Random Forest classifier, and Support Vector Machine as a meta classifier
(SVC). We trained and tested our model on the Pima Indian diabetes dataset , which
contains 77568 instances and 8 features, using 5-fold cross validation. Our experimental
results show that our proposed approach achieved an accuracy of 95% , outperforming
other state of the art machine learning techniques. We propose also an alternative ap-
proach that combines random forest and XGBoost by a voting technique getting 92.7% of
accuracy. Our findings suggest that the hybrid machine learning approachs we proposed
can be used as a reliable tool for early diabetes detection, enabling more timely and ef-
fective interventions to improve patient outcomes.
Keywords: Diabetes Prediction, DNN, SVM, XGBoost, Random Forest, Stacking, Ma-
chine Learning



Résumé

Le diabète est une maladie chronique qui peut être causée par l’incapacité du corps
à produire ou à utiliser efficacement l’insuline. Avec le temps, cela peut entraîner des
dommages à divers organes, y compris le cœur, les vaisseaux sanguins, les yeux, les reins et
les nerfs. La détection précoce du diabète est essentielle pour un traitement rapide, car elle
peut arrêter la progression de la maladie. Dans cette étude, nous proposons une approche
hybride d’apprentissage automatique pour prédire le diabète en utilisant une combinaison
de deux puissants algorithmes. Nous avons utilisé un apprentissage en ensemble basé sur
un réseau de neurones profonds (DNN) et un classificateur de forêt aléatoire (Random
Forest), ainsi qu’une machine à vecteurs de support (SVC) en tant que méta-classifieur.
Nous avons entraîné et testé notre modèle sur l’ensemble de données du diabète des Indiens
Pima, qui contient 77568 exemples et 8 caractéristiques, en utilisant une validation croisée
à 5 plis. Nos résultats expérimentaux montrent que notre approche proposée a atteint
une précision de 95%, surpassant les autres techniques d’apprentissage automatique de
pointe. Nous proposons également une approche alternative qui combine forêt aléatoire et
XGBoost par une technique de vote obtenant 92,7% de précision. Nos résultats suggèrent
que les approches hybrides d’apprentissage automatique que nous avons proposée peuvent
être utilisées comme un outil fiable pour la détection précoce du diabète, permettant des
interventions plus rapides et plus efficaces pour améliorer les résultats des patients.
Mots clés: Prédiction du diabète, DNN, SVM, XGBoost , Random Forest, Stacking,
Apprentissage automatique.
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General introduction

Diabetes, a chronic metabolic disorder characterized by high blood sugar levels, has
emerged as a significant public health concern worldwide. According to the International
Diabetes Federation (IDF), an estimated 463 million adults were living with diabetes in
2019, and this number is projected to rise to 700 million by 2045. Diabetes not only poses
substantial health risks to individuals but also places a considerable burden on healthcare
systems and economies.

The timely and accurate diagnosis of diabetes is crucial for effective management and
prevention of complications. Traditional diagnostic methods rely on clinical assessments
and laboratory tests, which can be time-consuming, expensive, and dependent on the
availability of healthcare professionals. To address these challenges, researchers and prac-
titioners have turned to machine learning techniques for diabetes prediction.

Machine learning, a branch of artificial intelligence, offers the potential to improve
diabetes prediction by analyzing large volumes of data and identifying patterns that may
not be apparent to human experts.

The problematic of this research lies in the need for more accurate prediction models
for diabetes. Although traditional diagnostic methods and clinical expertise play a crucial
role in diagnosis, the integration of machine learning algorithms can augment the accu-
racy and efficiency of the process. By harnessing the power of ensemble learning, which
combines multiple models to make collective predictions, we aim to overcome the short-
comings of individual models and create a more robust and reliable diabetes prediction
system.

Our objective is to develop a diabetes prediction model using ensemble learning tech-
niques that outperforms the existing state-of-the-art in terms of accuracy, sensitivity, and
specificity. This will facilitate the early identification of individuals at risk of developing
diabetes, enabling timely interventions and preventive measures. Secondly, we aim to ex-
plore and evaluate different ensemble learning algorithms, including stacking approach
based on Deep Neural Network and Random Forest classifier and Support Vector Machine
as a meta classifier (SVC) and voting approach that combines random forest and XG-
Boost. This, in order to determine the most effective approach for diabetes prediction,
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providing insights into the strengths and weaknesses of each algorithm in this specific
context.

The core of this thesis consists of three main chapters. Chapter 1 provides an overview
of diabetes mellitus, including its its definition, types and symptoms, prevalence, compli-
cations, diagnosis, prevention and how to manage it.
Chapter 2 delves into the foundations of machine learning, specifically focusing on super-
vised learning algorithms and their applications in healthcare, including diabetes predic-
tion. We review related works in the field, examining the strengths of existing approaches.
Chapter 3 outlines the methodology and implementation details of our proposed ensemble
learning-based diabetes prediction system. We describe the dataset used for training and
evaluation, discuss the preprocessing steps employed, and present the ensemble learning
algorithms utilized. Furthermore, we evaluate and compare the performance of these algo-
rithms, providing insights into their predictive capabilities and their potential for clinical
adoption. .
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Chapter 1

Diabetes Mellitus

1.1 Introduction
Diabetes mellitus is a significant and chronic condition characterized by inadequate

insulin production by the pancreas or the body’s inability to effectively utilize the insulin
it produces. This metabolic disorder is recognized as a major public health concern and is
among the four priority noncommunicable diseases (NCDs) targeted for action by global
leaders. Over the past few decades, there has been a consistent rise in the number of
diabetes cases and its prevalence, highlighting the urgent need for effective management
and prevention strategies [6].
The purpose of this chapter is to provide a brief overview of diabetes. This overview will
serve as a foundation for the subsequent chapters of this thesis, which will focus on the
application of machine learning techniques for diabetes mellitus prediction. By the end of
this chapter, you will have a good understanding of diabetes mellitus and its impact on
public health, as well as the importance of early detection and prevention of the condition.

1.2 Diabetes Types
1.2.1 Type 1 Diabetes

Type 1 diabetes, formerly referred to as insulin dependent, is marked by inadequate
insulin production within the body. Individuals diagnosed with type 1 diabetes need to
administer insulin on a daily basis in order to control their blood glucose levels. Without
access to insulin, their survival is not possible. The root cause of type 1 diabetes remains
unknown, and currently, there are no preventive measures available. Symptoms of this
condition include frequent urination, persistent hunger, changes in vision, fatigue, weight
loss and increased thirst [6].

2
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1.2.2 Type 2 Diabetes
Type 2 diabetes, previously known as non-insulin-dependent or adult-onset diabetes,

occurs due to the body’s inefficient utilization of insulin. It is the most common form of
diabetes worldwide. Although symptoms of type 2 diabetes may resemble those of type
1 diabetes, they are typically less pronounced or may not be present at all. As a result,
the condition can remain undiagnosed for several years, leading to the development of
complications. While type 2 diabetes was once predominantly observed in adults, it has
now started to affect children as well [6].
Figure 1.1 explains the difference between type 1 and type 2 diabetes.

Figure 1.1: Diabetes type 1 vs 2 [W1].

1.2.3 Gestational Diabetes
Gestational diabetes is a temporary condition that develops during pregnancy and

poses a long-term risk of type 2 diabetes [7]. It is characterized by elevated blood glu-
cose levels that are above normal but below the diagnostic threshold for diabetes [8].
Women diagnosed with gestational diabetes are at an elevated risk of experiencing cer-
tain complications during pregnancy and delivery, as well as their infants. The diagnosis
of gestational diabetes is typically made through prenatal screening rather than relying
on reported symptoms [6].
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1.2.4 Other specific types of diabetes
This category includes a variety of rare forms of diabetes that result from specific

genetic syndromes, pancreatic diseases, or drug-induced causes.

1.3 Global Burden
In 2014, an estimated 422 million adults globally were living with diabetes, compared

to 108 million in 1980. The prevalence of diabetes at a global level, after adjusting for age,
has nearly doubled since 1980, escalating from 4.7% to 8.5% among the adult population.
This increase can be attributed to a rise in associated risk factors, particularly overweight
or obesity. Notably, the prevalence of diabetes has been rising at a faster rate in low- and
middle-income countries compared to high-income countries over the past decade. Dia-
betes accounted for 1.5 million deaths in 2012, while higher-than-optimal blood glucose
levels led to an additional 2.2 million deaths, increasing the risk of cardiovascular and
other diseases. Alarmingly, 43% of these 3.7 million deaths occurred before the age of
70. Low and middle-income countries bear a higher burden, with a larger percentage of
deaths attributable to high blood glucose or diabetes occurring before the age of 70 when
compared to high-income countries. It is important to note that global estimates for dia-
betes prevalence are not distinguished between type 1 diabetes and type 2 diabetes. The
majority of individuals affected by diabetes have type 2 diabetes, which was traditionally
observed predominantly in adults but is now increasingly diagnosed in children as well
[6].

1.4 Complications
All forms of diabetes can result in complications affecting multiple body systems and

raising the overall risk of premature mortality. Potential complications include heart
attacks, strokes, kidney failure, leg amputations, vision loss, and nerve damage. During
pregnancy, inadequate control of diabetes increases the likelihood of fetal death and other
associated complications. [6].

1.5 Diagnosis
Currently, there are four recommended diagnostic tests for diabetes mellitus. These

include the measurement of fasting plasma glucose, the 2-hour post-load plasma glucose
after a 75 g oral glucose tolerance test (OGTT), the HbA1c level, and random blood
glucose in the presence of signs and symptoms of diabetes. Diagnosis of diabetes is
determined based on specific threshold values for each test. Individuals with fasting
plasma glucose levels of 7.0 mmol/L (126 mg/dl), 2-hour post-load plasma glucose levels
11.1 mmol/L (200 mg/dl), HbA1c levels 6.5% (48 mmol/mol), or random blood glucose
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levels 11.1 mmol/L (200 mg/dl) in the presence of signs and symptoms are considered to
have diabetes. In cases where elevated values are detected in asymptomatic individuals,
it is recommended to repeat the testing, preferably with the same test, as soon as feasible
on a subsequent day to confirm the diagnosis [9] [10] [11].

1.6 Preventing Diabetes
The prevention of type 1 diabetes remains challenging with current knowledge, as

there are no known effective approaches for its prevention. However, for type 2 diabetes
and the complications associated with all types of diabetes, effective preventive strategies
exist. These approaches encompass broad policies and practices implemented at both
population and specific setting levels, such as schools, homes, and workplaces, to promote
overall good health for everyone, regardless of their diabetes status. These measures
include regular exercise, healthy eating habits, smoking avoidance, and the management
of blood pressure and lipids.
Adopting a life-course perspective is crucial in preventing type 2 diabetes and many
other health conditions. During early life, when eating habits, physical activity patterns,
and long-term energy balance regulation are established, there is a critical window for
interventions aimed at reducing the risk of obesity and type 2 diabetes later in life. It
is important to recognize that achieving this goal requires a comprehensive approach, as
no single policy or intervention can ensure success. A whole-of-government and whole-
of-society approach is necessary, involving systematic consideration of the health impact
of policies in various sectors such as trade, agriculture, finance, transport, education,
and urban planning. This recognizes that health outcomes are influenced by policies
implemented in these and other areas, and emphasizes the need for collaboration and
coordination across sectors to enhance health and prevent diabetes effectively [6].

1.7 Managing Diabetes
Early diagnosis is crucial for promoting positive health outcomes in individuals liv-

ing with diabetes. Prolonged periods of undiagnosed and untreated diabetes often lead
to worsened health conditions. Thus, it is imperative to ensure easy access to essential
diagnostic tools like blood glucose testing in primary health-care settings. Furthermore,
a well-established system for referral and back-referral is necessary to facilitate periodic
specialist assessment or treatment for complications that may arise. Following a diabetes
diagnosis, implementing a series of cost-effective interventions can significantly improve
outcomes, irrespective of the diabetes type. These interventions encompass blood glucose
control achieved through a combination of diet, physical activity, and, when necessary,
medication. Controlling blood pressure and lipids is also vital to reducing the risk of car-
diovascular complications and other associated health issues. Additionally, regular screen-
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ing for diabetic retinopathy, nephropathy, and foot problems enables early detection and
timely intervention. To enhance diabetes management, the utilization of standards and
protocols is recommended. These frameworks contribute to streamlining care processes,
ensuring consistency in treatment approaches, and improving the overall quality of care
for individuals with diabetes [6].

1.8 Predictive Medicine
A field of medicine known as predictive medicine seeks to locate people who are at

high risk of contracting a disease, allowing for early diagnosis and treatment options. To
find indicators of a person’s propensity for a disease in the future, either single or, more
frequently, several studies are utilized.
Predictive medicine is still under development and requires ongoing efforts to improve
algorithms and data analysis methods. However, it has the potential to provide more
personalized and effective healthcare, by helping doctors make more informed decisions
and enabling patients to benefit from more targeted and tailored treatment based on their
specific needs.

What is prediction:
Prediction is the act of forecasting or estimating a future event, outcome or result

based on past data, information or patterns. It involves using statistical or machine
learning models to analyze data and make educated guesses about what will happen in
the future. Predictive modeling is often used in fields such as finance, economics, weather
forecasting, and healthcare to help decision-makers plan for and manage future risks and
opportunities. The accuracy of predictions can vary depending on the quality and quantity
of available data, the complexity of the problem, and the sophistication of the prediction
model used [12].

In our case, DIABETES PREDICTION refers to using machine learning models
and other statistical techniques to estimate the risk of developing diabetes in an individual
based on their clinical and genetic data. These models analyze large amounts of data from
electronic health records, genetic information, and other sources to identify individuals at
high risk of developing diabetes mellitus.

1.9 Conclusion
Diabetes mellitus is a chronic disease that has become a major public health con-

cern worldwide. In this chapter, we provided a general introduction to diabetes mellitus,
including its definition, types and symptoms, prevalence, complications, diagnosis, pre-
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vention and how to manage it.
While current prevention strategies have shown some success in reducing the risk of dia-
betes, the global burden of diabetes continues to rise, highlighting the need for new and
innovative approaches.

In recent years, machine learning has emerged as a promising tool for diabetes pre-
diction and prevention. In the next chapter, we will explore the role of machine learning
in diabetes mellitus prediction, and review the literature on various machine learning
approaches and their effectiveness.
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Chapter 2

Machine Learning and Diabetes
Prediction

2.1 Introduction
In recent years, machine learning has emerged as a powerful tool for diabetes predic-

tion, offering higher accuracy and efficiency than traditional statistical methods.
This chapter aims to provide a comprehensive understanding of machine learning and its
different types, as well as their applications and evaluation metrics, in the context of dia-
betes prediction. By the end of this chapter, readers will be able to understand machine
learning concepts and techniques, which will enable them to build and evaluate predictive
models for diabetes.

2.2 Definition
Machine learning is a technology that involves developing computer algorithms ca-

pable of imitating human intelligence. It incorporates concepts from various disciplines,
including artificial intelligence, probability, statistics, computer science, and information
theory, among others. This technology has been applied across numerous fields, including
pattern recognition, computer vision, spacecraft engineering and diseases prediction.
A machine learning algorithm is a computational process that can perform a task with-
out being programmed to produce a specific outcome. The most noteworthy aspect of
these algorithms is their ability to learn about the surrounding environment from input
data, with or without guidance from a teacher. This allows them to continually improve
their performance, making them a powerful tool for processing large datasets and making
accurate predictions [1].
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2.3 Machine Learning Approaches
Machine learning techniques can be categorized into four different approaches: super-

vised, unsupervised, semi-supervised, and reinforcement learning based on whether the
output values need to be present in the training data or not[1], as shown in figures 2.1
and 2.2.

2.3.1 Supervised Learning
Supervised learning methods necessitate knowing the output variable value for each

training sample. Therefore, each sample comprises a set of input and output values. The
algorithm then trains a model that utilizes the defined features to predict the output
variable value from the input variables [13] .
Supervised learning can be divided into two main categories: classification and regression.

a) Classification

When the output variables take on a discrete set of values, the predictive model is referred
to as a "classifier." Automated medical diagnosis is an example of a typical classification
problem where a patient’s data must be classified as having a certain disease or not [13].

b) Regression

When the output variables are continuous, the predictive model is known as a "regression
function." For instance, predicting the temperature at a specific time of year is an example
of a regression problem [13].

2.3.2 Unsupervised Learning
Unsupervised learning techniques require only the input feature values in the training

data and the learning algorithm discovers hidden structure in the training data based on
them. Clustering techniques that try to partition the data into coherent groups fall into
this category [13].

2.3.3 Semi-supervised Learning
Semi-supervised learning is a machine learning approach that involves training with a

small set of labeled data along with a larger set of unlabeled data. This type of learning
falls between unsupervised learning, which has no labeled data, and supervised learning,
which solely relies on labeled data [W2].
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Figure 2.1: Categories of ML algorithms [1].

2.3.4 Reinforcement Learning
Reinforcement learning is a type of dynamic programming used in artificial intelli-

gence to train algorithms through a system of rewards and punishments. In this learning
approach, an agent interacts with its environment and receives rewards for performing
tasks correctly or penalties for incorrect performance. Through this process of trial and
error, the agent learns to maximize its rewards and minimize its penalties without any
human intervention. For example, in games, the agent can learn from every move made,
whether it was correct or not [14].

Figure 2.2: The four different Machine Learning types [W3].
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2.4 Machine Learning Algorithms
2.4.1 K-Means

The K-Means clustering algorithm is a widely used and straightforward analytical
technique that involves selecting a training set and a predetermined number of clusters
(k) to identify. The algorithm then groups items in the training set into clusters based on
their similarity, which is often determined by measuring their distance from each other
using metrics like Euclidean distance[15].
Figure2.3 explains the clustering using K-means technique:

Figure 2.3: K-Means clustering algorithm [W4].

2.4.2 Support Vector Machine
Support Vector Machines (SVM) are popular machine learning technique used for clas-

sification and other learning tasks. SVM is a discriminative classifier that is characterized
by an optimal hyperplane. The hyperplane is used to classify new examples, and the
data points that support the hyperplane are called support vectors. In a two-dimensional
region, the hyperplane is a line that separates the data into two segments. The selection
of the optimal hyperplane is not a trivial task, as it should be noise-insensitive and accu-
rately generalize the data set. SVM tries to find an optimized hyperplane that provides
a significant minimum distance to the trained data set. In mathematical notation, for a
two-dimensional space, a line can distinguish linearly separable data, and its equation is
y = ax + b.
Renaming x with x1 and y with x2, the equation becomes ax1 - x2 + b = 0.
By defining X = (x1, x2) and w = (a, -1), we get wx + b = 0, which is known as the
equation of the hyperplane. The figure below shows an example of multiple line data
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classification using two distinct datasets, squares and dots [16].
Figure2.4 shows the data classification using multiple lines vs optimal hyperplane.

Figure 2.4: Data classification using multiple lines vs optimal hyperplane [W5].

2.4.3 Linear Regression
Linear regression is a statistical method that estimates the value of a dependent vari-

able based on one or more independent variables. This technique evaluates the relation-
ship between two variables and predicts the value of the dependent variable using the
independent variable(s) [17].

2.4.4 Logistic Regression
Logistic regression is a statistical technique that employs a logistic function to model

a binary dependent variable. It has extensive applications in biomedical research to
model disease risk and other binary outcomes, especially when the dependent variable is
dichotomous or the relationship between the dependent variable and independent variables
is nonlinear. Logistic regression estimates the probability of an event occurring based on
a set of predictor variables and offers insights into the impact of each predictor variable
on the likelihood of the event taking place [18].
The equation for logistic regression with a single predictor variable is:

logit(p) = 0 + 1x (2.1)
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Where p is the probability of the response variable being equal to 1, x is the value of the
predictor variable, 0 is the intercept, and 1 is the coefficient for the predictor variable.The
logistic function is:

p = 1/(1 + exp(−logit(p))) (2.2)

Where exp() is the exponential function.

2.4.5 Decision Trees
Decision trees are machine learning models that provide a high level of interpretability

by allowing data to be stratified or segmented. These models enable the continuous
splitting of data based on specific parameters until a final decision is reached. it is used
in both classification and regression problems [W6].

a) How does a decision tree decide on the first variable to split on?

Entropy

Entropy is a measure of the purity of a split, indicating how the data is partitioned. This
metric ranges between 0 and 1, where 0 represents a pure split and 1 represents an impure
one. The selection of the first node in a decision tree is always based on the feature with
the lowest entropy [W6].

Information gain

Information gain is a metric used in constructing decision trees that quantifies the reduc-
tion in entropy when making a split. Decision trees can be built in several ways, starting
with the selection of a feature to split on. By using information gain, we can identify the
optimal tree that minimizes entropy. The best possible tree is the one that achieves the
highest information gain [W6].

b) Components of a decision tree

Root node: At the top of a decision tree is the root node, which is the initial feature
used to divide the dataset. The root node represents the best feature that allows for the
optimal split of data [W6].

Internal nodes: After the root node, these are the nodes that divide the data [W6].

Leaf nodes: Nodes located at the bottom of the decision tree are considered terminal
nodes, beyond which additional splits cannot be made [W6].
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Branches: The connections between nodes in a decision tree are known as branches,
which depict the results of a test [W6]

The structure of the decision tree is demonstrated in figure2.5:

Figure 2.5: Components of a decision tree [W6].

c) Advantages and disadvantages of this algorithm [W6]

+The structure of decision trees is straightforward and easy to comprehend, making them
user-friendly for interpretation.
+Decision trees are versatile and can be applied to both classification and regression prob-
lems.
+Decision trees are capable of partitioning data that is not linearly separable, broadening
their applicability to a wide range of scenarios.
-Decision trees are susceptible to overfitting, which occurs when a model is overly complex
and fits to noise in the training data, resulting in poor generalization to new data.
-Decision trees are sensitive to changes in the training dataset, even small ones, which
can lead to significant alterations in the decision logic.
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d) Example

Figure 2.6 shows an example of how to predict whether an individual is diabetic or not,
using a model that includes three attributes: minimum systolic blood pressure, age, and
glucose. The model has two classes, diabetic and non-diabetic. The attributes function as
internal nodes that partition the decision tree into branches. At the end of each branch,
there is a leaf node (the decision point) where no further divisions occur, and we can make
a prediction about whether the person is diabetic or not.

Figure 2.6: Decision tree example.

2.4.6 Random Forest
The decision tree algorithm has a significant flaw, which is its tendency to overfit.

Overfitting leads to complex models with high variance that have good accuracy during
training but poor generalization to other datasets. To address this issue, the random
forest algorithm uses bagging, an extension of a technique that reduces model variance
by averaging a set of observations (we will explain it later). The random forest combines
the predictions from multiple decision trees to produce a single output [W6].

Comparison between Decision Trees and Random Forest

Random forests typically perform better than decision trees due to the following reasons:
Random forests address the issue of overfitting by aggregating the predictions of multiple
decision trees to arrive at a final prediction. Unlike decision trees, where small changes in
data can result in significant changes in the model’s prediction, random forests avoid this
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problem by sampling the data several times to generate a prediction. However, construct-
ing multiple decision trees in a random forest model takes more time, making it slower
than decision trees. Although the accuracy of a random forest model can be improved by
adding more trees, it also increases computation time. Decision trees are simpler and eas-
ier to interpret than random forests. The decision tree algorithm is straightforward and
easy to visualize, making it easier to understand the reasoning behind the algorithm’s out-
come. In contrast, random forests are more complex and combine the output of multiple
decision trees, making them harder to deconstruct [W6].

2.5 Deep learning
Deep learning is a subfield of machine learning that focuses on algorithms utilizing

artificial neural networks with a high number of layers and nodes, resembling the struc-
ture and functioning of the human brain. These algorithms process information through
layers, with each layer receiving and passing on information to the next. In contrast to
traditional machine learning models, deep learning models automatically extract features
without human intervention. Additionally, deep learning models continue to improve per-
formance with larger amounts of data, whereas traditional machine learning models reach
a saturation point. Therefore, deep learning is a specialized form of machine learning and
a component of artificial intelligence[14].

2.5.1 Artificial Neural Network:
The neural network, or artificial neural network (ANN), is a machine learning method

that emulates the functioning of the human brain [2]. As diabetes prediction research
faces a deluge of data, advanced analysis methods are required to identify hidden causal
relationships between various properties and the likelihood of developing diabetes. The
ANN is a versatile tool that can be used for diabetes prediction modeling. Unlike tra-
ditional regression approaches, the ANN can model complex nonlinear relationships and
has excellent fault tolerance [2]. Additionally, the ANN’s fast and highly scalable parallel
processing capabilities make it an efficient option for diabetes prediction research.

a) Biological Neural Network

The brain is composed of specialized cells known as neurons, which when connected to-
gether form a complex neural network. In the human brain, there are approximately
1011 neurons, each with around 10,000 connections to other neurons[19]. Artificial neural
networks (ANNs) seek to replicate this natural neural network by connecting artificial
neurons in a similar fashion. A biological neuron is comprised of a cell body, axon, and
dendrite. The dendrite receives signals from other neurons and transmits them to the cell
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body, while the axon carries the signal from the neuron to other neurons or muscle cells.
The connection between dendrites of two neurons, or between a neuron and muscle cells,
is referred to as a synapse[19] [20], as shown in figure 2.7.
The dendrites of a neuron receive signals from other neurons, and if the strength of the
incoming signal surpasses a specific threshold, the neuron transmits its own signal to
the next neuron via the axon using synapses. The signal sent through synapses triggers
neighboring neurons to fire, and this cycle repeats[21]. A vast number of neurons work
together simultaneously in the brain, allowing it to store and process large amounts of
information[19].

Figure 2.7: Biological neuron [2].

b) Artificial Neuron

Artificial neural networks are made up of individual processing units known as neurons,
which attempt to replicate the behavior and structure of natural neurons. Similar to
natural neurons, an artificial neuron has inputs, which are dendrites, and a single output,
which is a synapse via an axon. The activation of the neuron is determined by a specific
function[19]. (Figure 2.8).
The inputs to a neuron are represented as x1...xn, and a bias value is typically added
alongside these inputs. The bias value is usually initialized to 1. Additionally, the neuron
is connected to other neurons or inputs through weights, which represent the strength of
the signal. Each weight is multiplied by its corresponding input to determine the overall
strength of the signal received by the neuron. A neuron may receive inputs from multiple
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sources, but it only produces a single output[19].

Several activation functions are used in artificial neural networks, with the sigmoid
function being among the most frequently utilized. The sigmoid function can be defined
as follows:

σ(x) =
1

1 + e−sum
(2.3)

where sum is the sum of xi ∗ wi.

A variety of activation functions can be employed, including the step function, linear
function, ramp function, and hyperbolic tangent function. The Hyperbolic tangent (tanh)
function has a similar shape to the sigmoid function, but its output values range from -1
to +1, as opposed to the sigmoid function which ranges from 0 to 1[19].

Figure 2.8: Model of an artificial neuron [3].

By multiplying the inputs with the weights between layers, a sum is obtained. This
sum is weighted and passed through an activation function, which in this case is a sig-
moid function. The sigmoid function is a smooth approximation of a step function and
is both continuous and differentiable, as referenced in [21]. The neural network is formed
by connecting multiple individual neurons together[19].

ANN architecture:
According to [19], the neural network typically consists of three layers, as shown in figure
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2.9
a. Input layer, which receives the input values.
b. Hidden layer(s), which is a set of neurons located between the input and output layers.
There can be a single or multiple hidden layers.
c. Output layer, which usually contains one neuron and produces output ranging between
0 and 1. However, there can be multiple outputs present as well[22].

Figure 2.9: ANN architecture [4].

The processing power of an artificial neural network is stored in the inter unit connection
strengths known as weights, as stated in [23]. The strength of the input signal depends
on the weight value, which can be positive, negative, or zero. A negative weight value
implies a reduction or inhibition of the signal, while a zero weight value indicates no con-
nection between the two neurons. The weights need to be adjusted to produce the desired
output, which can be accomplished using algorithms designed to adjust the weights of the
artificial neural network. This process of modifying weights is referred to as learning or
training, as mentioned in [21].

c) ANN Training

Artificial neural networks (ANNs) are categorized based on supervised and unsupervised
learning methods. The simplest form of ANN architecture is the Perceptron, which con-
tains one neuron with two inputs and one output. The Perceptron utilizes a step or ramp
function as its activation function and is used for the classification of data into two sep-
arate classes. For more complex applications, multilayer Perceptrons (MLPs) are used,
which consist of one input layer, one output layer, and one or more hidden layers[19].
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The most commonly used method for training an ANN is the backpropagation algo-
rithm, which is a supervised learning method that utilizes feed-forward architecture. It
is frequently used for classification and prediction, and the weights between neurons are
adjusted by propagating the difference between the targeted and obtained output back
to the layers. In the backpropagation algorithm, the output of the hidden layers is prop-
agated to the output layer to calculate the output. This output is then compared to the
desired output, and the error is propagated back from the output layer to the hidden
layer and input layer, adjusting the weights between the neurons. This process is called
an epoch, and the network undergoes many epochs until the error is within a certain tol-
erance. Once the network is trained, the weights between the neurons in all layers are set.
These trained weights are then used to calculate the response of the network to unknown
data[19].

2.5.2 Deep Learning Techniques
a) Fully Connected Deep Neural Networks

Fully Connected Neural Networks, commonly referred to as multilayer perceptrons, are a
class of neural networks characterized by the presence of connections between every neuron
in one layer and every neuron in the subsequent layer. These networks demonstrate
notable efficacy in handling tabular datasets formatted in CSV, effectively addressing
classification and regression tasks involving real-valued input variables. Moreover, they
exhibit considerable versatility, allowing their application to a diverse range of problem
domains, akin to other artificial neural network architectures [24].

b) Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm that has
gained significant popularity for their excellent performance in image and video analysis
tasks. They are designed to extract spatial hierarchies of features from input images
by utilizing convolutional layers that apply filters to input data at different resolutions
and positions. The learned features are then merged and passed through fully connected
layers to produce output predictions. CNNs have demonstrated superior performance on
numerous image and video analysis tasks, such as object detection, image segmentation,
and action recognition[25].

c) Recurrent Neural Network

Recurrent neural networks (RNNs) are a specialized type of neural network intended to
process sequential data. Unlike feedforward neural networks that analyze the complete
input all at once, RNNs examine input sequences one by one while keeping an internal
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state that retains information about prior elements. This internal state allows RNNs
to adeptly model the temporal connections in the input data. RNNs have found wide-
ranging applications in various fields, including speech recognition, language modeling,
and machine translation, among others, and have demonstrated impressive results[26].

d) Autoencoders

Autoencoders are a type of neural network that operates without supervision and is de-
signed to encode input data into a reduced-dimensional representation, then decode it
back to its original form, all while minimizing the reconstruction error. Autoencoders
are typically composed of an encoder that takes in the input data and maps it into a
compressed representation called a latent code, and a decoder that generates the recon-
structed output from the latent code. They have found widespread use in applications
like data compression, feature extraction, and dimensionality reduction[27].

2.6 Ensemble Learning
Ensemble learning is a machine learning approach that involves training multiple mod-

els or applying multiple learners to datasets in order to solve the same problem. Each
model generates its own prediction, and these predictions are then combined into a com-
posite prediction. The ensemble consists of a set of models, each trained through a learning
process on the same problem, and their outputs are integrated in some manner to obtain
the final prediction [5].
Ensemble learning can be applied to various types of machine learning algorithms, in-
cluding both supervised and unsupervised learning, as well as regression and classification
tasks. Some popular ensemble methods include:

2.6.1 Bootstrap Aggregating (Bagging)
Bagging, or Bootstrap Aggregating, is an ensemble learning technique where each

model in the ensemble casts an equal-weighted vote. To promote model variance, bagging
trains each model using a randomly sampled subset of the training set. For example, the
random forest algorithm combines bagging with random decision trees to achieve high
classification accuracy [5].
Bagging involves creating multiple training sets of size n (instead of just one training
set) and building a classifier for each training set. The predictions of these classifiers
are then combined through voting or averaging, with each model receiving equal weight.
This "idealized" version of bagging helps to reduce variance error by leveraging different
learners on different subsets of the training data [5].
In generalized bagging, different learners can be used on different populations, further
reducing variance error and improving the ensemble’s performance [5].
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Figure 2.10 shows the different steps of the Bagging technique.

Figure 2.10: Bagging technique [5].

2.6.2 Stacking
Stacking is an ensemble learning technique that involves combining multiple base clas-

sification models using a meta-classifier. This approach aims to create a generalized
machine learning model by training different base learning models (L1, ..., LN) on the
same dataset S, which consists of examples (si = (xi, yi)), where xi is a feature vector
and yi is its corresponding target class. To generate a training set for the meta-level clas-
sifier, a leave-one-out or cross-validation procedure is applied, where the meta-classifier
is trained on the predictions of the base models for the withheld examples. This way,
stacking utilizes the predictions of multiple base models to build a more powerful and
accurate ensemble model [28].

2.6.3 Voting
Voting is a straightforward and effective ensemble algorithm that can be used for both

classification and regression problems. It involves creating multiple sub-models, each of
which makes predictions. These predictions are then combined in some manner, such as
by taking the mean (soft voting) or mode (hard voting) of the predictions, allowing each
sub-model to contribute to the final outcome through voting[5].
Figure 2.11 shows the two types of voting technique.
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Figure 2.11: Voting types [W7].

2.6.4 Boosting
Boosting is a powerful machine learning technique that integrates predictions from

multiple weak learners, such as decision trees or linear models, to create a robust ensem-
ble model with enhanced predictive performance. The boosting algorithm sequentially fits
the weak learners to the training data, with each subsequent learner focusing on samples
that were misclassified by the previous learners. The predictions of the weak learners are
then combined, often using weighted averaging, to generate the final prediction. Boosting
is an iterative process that adjusts the weights of the training samples to emphasize mis-
classified samples, thus assigning more importance to challenging samples that are difficult
to classify accurately. This technique has been proven effective in various machine learn-
ing tasks, including classification, regression, and feature selection, and is widely adopted
in practical applications due to its ability to significantly improve predictive accuracy of
models [29].

Examples of boosting techniques used in machine learning include:

• AdaBoost (Adaptive Boosting).

• Gradient Boosting.

• XGBoost (Extreme Gradient Boosting).
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• LightGBM (Light Gradient Boosting Machine).

• CatBoost (Categorical Boosting).

2.7 Cross Validation

Figure 2.12: Cross validation technique [W8].

Figure 2.13: Cross validation workflow in model training [W8].

The performance of classification algorithms is commonly assessed using k-fold cross-
validation. This evaluation technique involves dividing the dataset into k separate and
non-overlapping folds, ensuring that each fold contains a roughly equal number of in-
stances. Each fold takes turns serving as the testing set, while the model is trained on
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the remaining k-1 folds. This process is repeated k times, with each fold serving as the
testing set exactly once. By using cross-validation, we mitigate the impact of the random
partitioning of the data. So, we can avoid overfitting [30] [31].
Figures 2.12 and 2.13 explain the process of cross-validation technique.

2.8 Evaluation metrics
Being able to evaluate a model’s performance is essential both for assessing risks and

for comparing different algorithms or models. Performance metrics have been mainly
designed to address the question of how reliable a model is at predicting future events.
Furthermore, various parameters need to be computed, including:
True Positive (TP): The cases predicted 1 and the actual output was also 1.
True Negative (TN): The cases predicted 0 and the actual output was 0.
False Positive (FP): The cases predicted 1 and the actual output was 0.
False Negative (FN): The cases predicted 0 and the actual output was 1.

2.8.1 Confusion Matrix
The confusion matrix is a widely used evaluation measure in classification tasks, ap-

plicable to both binary and multiclass classification problems. Table 2.1 illustrates the
confusion matrix.

Predicted classes
class = Negative class = Positive

Actual classes class = Negative TN FP
class = Positive FN TP

Table 2.1: Confusion matrix.

2.8.2 Accuracy
Accuracy can be calculated as follows:

Accuracy =
TP+TN

TP+TN+FP+FN
(2.4)

2.8.3 True Positive Rate/ Recall/ Sensitivity
Recall can be defined as the proportion of true positives with respect to all the posi-

tives that exist in the ground truth.

Recall =
TP

TP+FN
(2.5)
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2.8.4 Precision
Which is the percentage of true positive predictions out of all positive predictions.

Precision =
TP

TP+FP
(2.6)

2.8.5 F-Measure
The F-measure is defined as a harmonic mean of precision and recall.

F1-Mesure = 2 × precision * recall
precision+recall

(2.7)

2.8.6 Precision-Recall curve
A Precision-Recall curve is a graphical representation of the performance of a binary

classifier model, which plots the precision (proportion of true positive predictions among
positive predictions) against the recall (proportion of true positive cases among all actual
positive cases) at different classification thresholds. It is useful in situations where the
class distribution is imbalanced and the accuracy of the classifier is not a good measure
of performance, particularly when false negatives are more important to avoid than false
positives. An ideal classifier would have a PR curve that passes through the point (1,1)
with an area under the curve of 1, while a random classifier would have a diagonal line
with an AUC of 0.5.

2.9 Related Works
Machine learning and deep learning methods have been extensively used in the predic-

tion of diabetes. Many studies have focused on developing accurate and reliable predictive
models for diabetes using various machine learning and deep learning algorithms. We will
show you some studies in this field:

In [32], authors focused on predicting diabetes using a stacking classifier approach.
They employed the Pima dataset, which is commonly used for diabetes prediction. The
stacking classifier methodology involved combining multiple base classifiers and utilizing
a meta classifier for the final prediction. In this study, the authors employed six base
classifiers. The meta classifier utilized in the stacking approach was logistic regression.
The stacking classifier model was trained and evaluated using the Pima dataset. The
results showed that the stacking classifier achieved an accuracy of 82.68 % in predicting
diabetes.

Also, an approach that combines the output probabilities of different machine learn-
ing algorithms, and other algorithms like Xgboost, Bagging, K-Nearest Neighbors, Sup-
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port Vector Machines, Random Forest, and Decision Trees has been proposed in [33].
The study evaluates the proposed approachs using the Pima Indian diabetes dataset and
demonstrates that the ensemble approach with the soft voting classifier outperforms in-
dividual machine learning algorithms, achieving an accuracy of 79.08%.

Moreover, authors in [34] developed a predictive model for the early diagnosis of dia-
betes mellitus using PIMA dataset with The XGBoost algorithm and Data feature stitch-
ing . they achieved an accuracy of 80.2% . The study analyzed the feature importance
of the dataset and identified the top five features that were most relevant for predicting
diabetes.

In the study of Mercaldo et al.[35]. They utilized six distinct classifier algorithms,
including the Multilayer Perceptron, JRip, Hoeffding Tree, J48, BayesNet, and Random
Forest algorithms. The authors focused their research on the PIMA Indian Dataset, using
the Best Initial and Greedy Stepwise algorithms to assess the differential characteristics
that help to define concept classification. Specifically, they examined four characteristics:
age, BMI, plasma glucose concentration, and diabetes pedigree function. The authors
used ten-fold cross-validation on the dataset and evaluated the classifiers based on recall,
accuracy, and F-measure. Their findings indicated an accuracy value of 75.7%, an F-
measure value of 75.9%, and a recall value of 76.2%. Furthermore, the Hoeffding Tree
algorithm performed the best compared to the other algorithms.

Authors in [36] employed the Decision Tree, SVM, and Naive Bayes classifiers algo-
rithms to predict diabetes. Their primary goal was to determine the classifier with the
highest accuracy. The PIMA Indian Dataset was utilized in their research. The authors
conducted 10-fold cross-validation partitioning and evaluated the classifiers based on re-
call, accuracy, precision, and F-measure. According to the authors, "the Naive Bayes
classifier achieved the highest accuracy, with a measurement of 76.30%".

In addition, Sivaranjani et al used machine learning algorithms to predict diabetes in
a sample of patients, and compared the performance of these al- gorithms with and with-
out feature selection and dimensionality reduction techniques. Feature selection involves
selecting a subset of the most relevant features from the data- set, while dimensionality
reduction techniques aim to reduce the number of features in the dataset. The authors
used a number of different machine learning algorithms, including decision trees, k-nearest
neighbors (k-NN), and support vector machines (SVMs), and compared their performance
in terms of accuracy and other metrics. They found that all three algorithms performed
better when used with feature selection and dimensionality reduction techniques, with the
highest accuracy achieved by the Random Forest algorithm (83%) when combined with
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the principal component analysis (PCA) dimensionality reduction technique [37].

Authors in [38] introduced a method called Hierarchical Multi-level classifiers bag-
ging with Multi-objective upgraded Voting (HMBag Moov) for classifying diabetes. They
compared this method with several other strategies, including Naïve Bayes (NB), Sup-
port Vector Machine (SVM), Logistic Regression (LR), Quadratic discriminant analysis
(QDA), K-Nearest Neighbors (k-NN), Random Forest (RF), and Artificial Neural Network
(ANN). However, the authors did not use hyper-tuning and cross-validation techniques
and only considered a limited number of machine learning algorithms for ensembling. The
HM-Bag Moov Voting Classifier achieved an accuracy of 77.21%.

Authors in [39] aims to develop a diabetes prediction model and evaluates the per-
formance of eleven machine learning algorithms on the Pima Indians Diabetes Database.
After cross-validation and hyper-tuning, K-neighbors, SVC, and MLP are identified as the
top three classifiers among eleven classifiers. An Ensemble Voting Classifier combining
these three classifiers achieves an accuracy of 86%, outperforming the other algorithms.

Febrian et al in their study utilized supervised machine learning to predict diabetes
using PIMA dataset. Two k-Nearest Neighbor algorithms and the Naive Bayes algorithm
were compared, and the study concluded that the Naive Bayes algorithm outperformed
KNN. The Confusion Matrix was used to evaluate the algorithms, and the Naive Bayes
algorithm had an average accuracy of 76.07%, precision of 73.37%, and recall of 71.37%,
while KNN had an average accuracy of 73.33%, precision of 70.25%, and recall of 69.37%
[40] .

Yahyaoui et al compared machine learning and deep learning-based algorithms to
predict diabetes using PIMA dataset The results indicated that RF was the most effective
algorithm for classifying diabetes in all rounds of experiments, with an overall prediction
accuracy of 83.67%. SVM had a prediction accuracy of 65.38%, while the DL method
produced a prediction accuracy of 76.81% [41].

El_Jerjawi et Abu-Naser proposed an Artificial Neural Network (ANN) based diabetes
prediction model with an average error function of 0.01% and an accuracy rate of 87.3%.
This model could be very useful for healthcare officials and practitioners, given the severe
complications of the disease [42].

A new model for classifying type 2 diabetes data was proposed by authors in [43].
Which utilized a deep neural network (DNN) constructed by cascading stacked autoen-
coders with a softmax classifier. This model achieved a classification accuracy of 86.26%.
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In their proposal, authors in [44] suggested incorporating a hybrid evolutionary method
with a convolutional neural network (CNN), and customized the number of layers and
filters to suit the specific application and user requirements.

More recently, Rastogi and Bansal (2023) [45] proposed a diabetes prediction model
and they found that the accuracy of the logistic regression method was higher than three
other data mining techniques which are: RF, SVM, and NB. While Hou et al. 2023 [46]
found that Random Forest outperformed Logistic Regression with an AUR of 0.815.

The primary challenge prevalent in previous machine learning methodologies pertains
to the selection of a suitable classifier or the optimal combination of algorithms to attain
superior outcomes. Consequently, our proposed approach relies upon meticulous data
preprocessing and the precise integration of algorithms to surpass alternative techniques.

2.10 Conclusion
In this chapter, we provided an overview of machine learning and deep learning tech-

niques for diabetes prediction. We showed various algorithms and related works in the
field, as well as evaluation metrics for assessing model performance. We found that
machine learning and deep learning methods have the potential to improve diabetes man-
agement, but further research is needed to address the challenges in developing accurate
and reliable predictive models. This chapter provides a foundation for the methodology
and implementation details of our proposed diabetes prediction system, which we will
present in the next chapters.
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Chapter 3

Methodology and Implementaion

3.1 Introduction
The rise of diabetes mellitus has prompted the development of various prediction mod-

els to aid in early detection and prevention. Machine learning techniques, in particular,
have been leveraged to identify individuals at risk of developing diabetes based on a mul-
titude of factors. Our approach to improving the accuracy of these models is through
ensemble learning , where multiple models are combined to provide a more robust pre-
diction. In this chapter, we will present the methodology and implementation of our
proposed model.

3.2 Environment
3.2.1 Hardware

• CPU : Intel(R) Core(TM) i3-3110M CPU @ 2.40GHz

• RAM : 8 GB

• Drive : 1 TB HDD

3.2.2 Software
Jupyter

Jupyter is a freely available web-based tool that enables users to generate and disseminate
documents containing executable code, mathematical expressions, graphics, and written
explanations. It accommodates a wide range of programming languages and creates an
interactive computing workspace for researchers, data scientists, and programmers [W9].
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Python

Python is a dynamically-typed, interpreted high-level programming language that focuses
on simplicity, readability, and maintainability. It features a modular architecture, which
enables developers to organize their code into reusable and extensible components. Python
comes with a comprehensive standard library and a vast collection of third-party packages,
making it a versatile language that can be used for various purposes such as scientific
computing, data analysis, machine learning, and web development. It is also known for
its ease of use, which makes it a popular choice among beginners and experts alike [47].

Used Libraries

NumPy

NumPy is a Python library that supports numerical computing through an extensive
collection of mathematical functions, and offers a flexible and efficient support for large,
multi-dimensional arrays and matrices. It is a critical component of scientific computing
with Python, and its applications are widespread in various fields such as engineering,
physics, and data science.
NumPy’s array objects are more efficient and powerful than Python’s built-in data struc-
tures for numerical calculations. It allows for vectorized operations on arrays, which
can significantly reduce computation time. Additionally, NumPy includes functionalities
such as linear algebra, Fourier analysis, random number generation, and provides tools to
connect with other programming languages and libraries [48].

Pandas

Pandas is a Python library that is open-source and designed to provide data structures for
handling large and complicated data sets in an efficient manner. Additionally, it includes
an array of tools for tasks such as data cleaning, transformation, and exploration. It is
commonly used for managing tabular data, which is frequently encountered in scientific
applications such as social science and bioinformatics [49].

Sklearn

Scikit-learn, or sklearn, is a Python library that offers a wide range of machine learning
algorithms for both supervised and unsupervised learning tasks. It is built on top of
well-established libraries such as NumPy, SciPy, and Matplotlib, and provides a user-
friendly interface that facilitates data manipulation. Scikit-learn includes algorithms for
classification, regression, clustering, and dimensionality reduction, as well as tools for data
preprocessing, model selection, and evaluation.
Due to its ease of use, flexibility, and scalability, Scikit-learn has gained popularity in both
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academic research and industry. Its comprehensive documentation and active community
of users and developers also make it a valuable resource for anyone interested in machine
learning [50].

Matplotlib

Matplotlib is a Python library used for creating 2D plots, including static, animated, and
interactive visualizations. It is a popular tool in scientific computing for data exploration
and visualization. With a comprehensive set of 2D plotting functions and a high degree
of customization, Matplotlib enables users to create sophisticated and complex plots with
ease. It is also compatible with various other Python libraries and frameworks, which
enhances its versatility for visualizing data in different contexts [51].

Seaborn

Seaborn is a Python data visualization library that builds upon matplotlib and is closely
integrated with pandas data structures. Its primary focus is on visualization, making it
a valuable tool for exploring and understanding data [52].

Tkinter

The Tkinter module ("Tk interface") is the standard Python interface to the Tk GUI
toolkit from Scriptics (formerly developed by Sun Labs). Both Tk and Tkinter are avail-
able on most Unix platforms, as well as on Windows and Macintosh systems. Starting
with the 8.0 release, Tk offers a native look and feel on all platforms[53].
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3.3 Data Collection
The dataset used in this study was the Pima Indian Diabetes, which is a well-known

dataset for predicting the onset of diabetes. The original dataset contains 768 instances,
each with eight attributes:

• Pregnancies: Number of times pregnant.

• Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test.

• BloodPressure: Diastolic blood pressure (mm Hg).

• SkinThickness: Triceps skin fold thickness (mm).

• Insulin: 2-Hour serum insulin (mu U/ml).

• BMI: Body mass index.

• DiabetesPedigreeFunction: Diabetes pedigree function.

• Age : Age(years).

And one binary output variable (dependent variable):
Outcome: Class variable (0 or 1).

To improve the performance of the model, we used an augmented dataset with 77,568
instances that was sourced from a reliable external dataset repository, "Kaggle" [W10].
The augmented dataset contains the same attributes as the original dataset.
We acknowledge that the use of an augmented dataset may have limitations, such as
introducing bias and noise into the model. However, we believe that the use of a larger
dataset is necessary to improve the accuracy and robustness of our diabetes prediction
model.
Figure 3.1 represents how we can load the dataset from a CSV file named ’db.csv’ into a
Pandas DataFrame called ’df’ and then display the first five rows of the DataFrame:
The code in figure 3.2 separates the original DataFrame ’df’ into two parts:
X: which contains the features, and y: which contains the corresponding labels (0/1).

CSV files: CSV (Comma-Separated Values) files are used to store tabular data in plain
text format. Each line in the file represents a row of data, and the values within each row
are separated by a delimiter, usually a comma. CSV files are widely adopted for saving
and sharing data due to their simplicity and compatibility with various software tools and
computer languages.
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Figure 3.1: Loading the dataset.

Figure 3.2: Dataset separation.

3.4 Exploratory Data Analysis
Exploratory Data Analysis (EDA) is an approach used in statistics and data analysis

to summarize and visualize datasets, identify patterns and relationships among variables,
and detect potential outliers or anomalies.
Tukey emphasizes that EDA is not a substitute for formal statistical inference, but rather
a complementary approach that can provide valuable insights into the data and guide the
selection of appropriate statistical models and methods. EDA techniques include plotting
histograms, scatter plots, box plots, and other visualizations, as well as calculating sum-
mary statistics such as mean, median, standard deviation, and correlation coefficients [54].

3.4.1 Outcome Distribution
Figure 3.3 represents the pie chart of our dataset, we can see that the dataset is im-

balanced. There are 65.1% negative cases (labeled as 0) and 34.9% positive cases (labeled
as 1) in the dataset. This means that if we were to build a machine learning model to
predict diabetes, it would be biased towards predicting negative cases since they are over-
represented in the dataset.
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Figure 3.3: Outcome distribution.

3.4.2 Features Correlation
As demonstrated in figure 3.4, Age and Pregnancies, SkinThickness and BMI, Insuline

and Glucose are highly correlated.

Figure 3.4: Features correlation.

3.4.3 Checking Missing Values
In our dataset, missing values are represented by zeros for some features such as glu-

cose, blood pressure, and BMI. Therefore, in this case, we need to replace those zeros
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with NaN values before detecting and plotting missing values.
After doing this step, we get this bar plot (figure 3.5):

Figure 3.5: Missing values bar plot.

We see that there are 5 features that contain missing values:
Glucose, BloodPressure, SkinThickness, Insulin, and BMI.

It is important to handle missing values appropriately for the mentioned features by
imputing them., and we will see how in the next section.

3.5 Data Preprocessing
3.5.1 Data Imputaion

Imputation is the process of replacing missing values in a data set with substituted
values. This is a common approach to handling missing values in a data set when there is
insufficient information to infer the actual missing values or when excluding incomplete
data points would result in significant data loss.There are several methods of imputation
that can be used, including: Mean, Mode imputation.
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In our case, we chose median imputation by target, which is a technique that calculates
the median of the values according to the corresponding outcome (diabetic or not).
For the implementation, we implemented two functions:

cal_median() and median_imputation():
cal_median(): the purpose of this function is to calculate the median of a specific variable
(var) based on different groups defined by a target variable (target).
median_imputation() : it iterates over each row in the data frame. It checks specific con-
ditions based on the target variable and the variable of interest (if the variable is equal to
0). If the conditions are met, it assigns specific imputed values to the variable of interest
in the data frame. This process performs median imputation on the variable, filling in
missing or designated values based on the target variable’s values and specific conditions.
Here’s an example of how to call the functions (figure 3.6):

Figure 3.6: Calling functions.

3.5.2 Data Normalization
Normalization is a data transformation method that adjusts the values of numerical

data to a specific range, typically between 0 and 1 or -1 and 1. This technique is partic-
ularly useful for mining algorithms such as classification, clustering, and artificial neural
networks.
In the case of artificial neural networks, normalization can be used to scale the data at-
tributes, which can speed up the learning process, especially for back-propagation neural
network algorithms. Popular normalization techniques include min-max normalization,
z-score normalization, decimal scaling, and other forms that adjust data values to a de-
sired range [55].
We used mix-max normalization, we can express it by this equation:
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xnorm = (x−min)/(max−min) (3.1)

The code in figure 3.7 represents data normalization:

Figure 3.7: Data normalization.

3.5.3 Data Splitting
We split the data set into training and testing sets using a 70%-30% ratio, as shown

in figure 3.8. This ensures that we have a portion of the data reserved for evaluation
purposes.

Figure 3.8: Data splitting.

3.6 Main Approach: "Stacking"
In this section, we present our main model for diabetes prediction, which is a stack-

ing approach. The model combines two base classifiers: random forests and deep neural
networks. The predictions from these base classifiers are then combined using a stacking
ensemble approach with a final estimator of a support vector machine (figure 3.9).
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Figure 3.9: Stacking model architecture.

3.6.1 Base Classifier 1: Random Forest Classifier
The RF classifier is implemented using the BaggingClassifier class from the Sklearn

ensemble module (figure 3.10). We used a decision tree classifier with a random state of
0. For the bagging, we set the number of estimators to 500, the maximum samples per
estimator to 100, and enabled bootstrap sampling with replacement. We also set the
n_jobs parameter to -1 to use all available CPUs and the random_state parameter to 0
for reproducibility. We also enable out-of-bag (OOB) scoring to estimate the generaliza-
tion performance of the RF model.

Figure 3.10: RF implementation.

3.6.2 Base Classifier 2: Deep Neural Network
The DNN is implemented using the MLPClassifier from Sklearn (figure 3.12), which

contains three layers:
Two hidden layers with 12 and 8 units, respectively, and a single output layer with a
sigmoid activation function to predict the probability of having diabetes.
We used the ReLU activation function for the hidden layers and the binary cross-entropy
loss function for training the model.
We compiled the model using the Adam optimizer with a learning rate of 0.001. We set
the number of epochs to 100.
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The sigmoid activation function can be defined as follows:

σ(x) =
1

1 + e−sum
(3.2)

• σ(x) denotes the sigmoid function applied to the input x.

• e represents the mathematical constant Euler’s number, approximately equal to
2.71828.

• −sum signifies the negation of the value of "sum".

• 1 + e−sum calculates the exponential of −sum and adds 1 to it.

• 1
1+e−sum computes the reciprocal of the quantity 1 + e−sum, resulting in a value
between 0 and 1.

The sigmoid function maps any real-valued input x to a value between 0 and 1, this
transforming the input into a probability like value.

ReLU (Rectified Linear Unit) activation function is defined by this equation:

f(x) = max(0, x) (3.3)

• f(x) denotes the ReLU function applied to the input x.

• max(a, b) denotes the maximum value between a and b.

• 0 represents the lower threshold value.

Figure 3.11: Sigmoid vs ReLU [W11].

Loss function: The cross-entropy function quantifies the disparity between the predicted
values and the actual values for each class. It calculates the individual errors for each
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class and then computes the average of these errors to determine the overall loss [56].
The binary cross-entropy is represented by the following equation:

L(y, ŷ) = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (3.4)

• L(y, ŷ) denotes the binary cross-entropy loss between the true labels (y) and the
predicted probabilities (ŷ).

• N represents the total number of samples or instances.

•
∑N

i=1 signifies the summation over all samples, from i = 1 to i = N .

• yi represents the true label (either 0 or 1) for the ith sample.

• ŷi represents the predicted probability (between 0 and 1) for the ith sample.

• log(ŷi) computes the natural logarithm of the predicted probability (ŷi).

• (1− yi) evaluates to 1 if the true label yi is 0, and 0 if yi is 1.

• log(1− ŷi) computes the natural logarithm of 1− ŷi.

The equation calculates the binary cross-entropy loss by summing the individual loss con-
tributions for each sample and then normalizing it by dividing by the total number of
samples (N). The loss penalizes larger differences between the true labels and predicted
probabilities, aiming to minimize the discrepancy between them during model training.

The code below shows the implementation of our DNN model:

Figure 3.12: DNN implementation.
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3.6.3 The Stacking Model With Meta Classifier: "SVC"
To combine the RF and DNN models, we used a stacking ensemble learning method,

where the outputs of the RF and DNN models are used as input to a support vector
classifier, which learns to combine the predictions of the two base models. (The code is
shown in figure 3.13).

• The estimators list defines the individual classifiers to be stacked in the ensemble,
there are two classifiers:

– ’rf’: random forest classifier.

– ’mlp’: Deep neural network.

• The StackingClassifier is then instantiated with the following parameters:

– estimators: The list of individual classifiers specified in the stimators variable.

– final_estimator: The meta-classifier that combines the predictions of the
individual classifiers, which is the support vector classifier.

Figure 3.13: Stacking model.

The StackingClassifier combines the predictions of the individual classifiers using the
specified final_estimator. During training, the base classifiers (RF and DNN) are fitted on
the training data, and their predictions are then used as inputs for the final_estimator.
The final_estimator is trained to make the final predictions based on the combined out-
puts of the base classifiers.

3.7 Train and Evaluation
3.7.1 Applying CV on train set

To evaluate the performance of the stacking ensemble model, 5-fold cross-validation
was applied on the training set. In this study, the stacking ensemble model (stacking_model)
was evaluated using four key evaluation metrics: recall, precision, F1-score, and accuracy.
The cross_val_score function from the scikit-learn library was utilized to calculate the
cross-validated scores for each metric.
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For each metric, the model was trained and evaluated on each fold independently. The re-
sulting individual cross-validated scores were stored in the variables train_cv_scores_recall,
train_cv_scores_precision, train_cv_scores_f1, and train_cv_scores_accuracy.
These scores represent the performance of the stacking ensemble model on each fold of
the training set.
To provide an overall measure of the model’s performance, the mean cross-validated scores
were also calculated. The mean scores were obtained by averaging the individual scores
across all folds. The mean cross-validated scores provide a summarized measure of the
stacking ensemble model’s performance across the entire training set.
The evaluation results, including both the individual cross-validated scores and the mean
cross-validated scores, were printed to assess the stacking ensemble model’s performance.
By employing 5-fold cross-validation and reporting the evaluation results, a rigorous eval-
uation of the stacking ensemble model’s performance is achieved. This evaluation provides
valuable insights into the model’s effectiveness in classifying instances and allows for mean-
ingful comparisons with other models of diabetes prediction
Figure 3.14 represents how we get the results:

Figure 3.14: Train set results.

3.7.2 Model Fitting
After applying cross-validation to the train set, we should train the stacking ensemble

model on the entire training set.
the code stacking_model.fit(X_train, y_train) is used. This code fits the stacking
model (stacking_model) to the training data, where X_train represents the input fea-
tures and y_train represents the corresponding target labels.
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By calling the fit() method on the stacking_model, the individual base classifiers (such
as random forest and neural network) are trained on the training data. Their predictions
are then combined by the final_estimator (support vector classifier) to make the final
predictions of the stacking ensemble model.
After training, the stacking ensemble model is ready for the final evaluation or making
predictions on new, unseen data.

The code in figure 3.15 shows how to fit the stacking model on the entire train set:

Figure 3.15: Model fitting.

3.7.3 Evaluation on test set
The performance of the stacking ensemble model was further assessed on the test set

to evaluate its generalization ability and robustness.

Confusion Matrix

After predicting the x_test, we will obtain the predicted class labels (y_pred). Subse-
quently, the confusion matrix was computed using the predicted labels (figure 3.16). The
confusion matrix provides a tabular representation that summarizes the performance of a
classification model by showing the counts of true positive, true negative, false positive,
and false negative predictions. It serves as a valuable tool for analyzing the model’s per-
formance and assessing the accuracy of its predictions.
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Figure 3.16: Confusion matrix.

As mentioned in the previous chapter, the performance evaluation of a classification
model can be conducted using various metrics, which offer insights into different facets of
the model’s predictive capabilities.
One widely employed metric is "accuracy", which quantifies the ratio of correctly clas-
sified instances to the total number of instances. It can be computed by utilizing the
accuracy_score function. Higher accuracy values are indicative of superior overall per-
formance.
"Precision" constitutes another significant metric, determining the ratio of true positive
predictions to all positive predictions. It specifically focuses on the accuracy of positive
predictions and can be derived through employment of the precision_score function.
"Recall", also known as sensitivity or true positive rate, ascertains the ratio of true pos-
itive predictions to all actual positive instances. It accentuates the model’s capacity to
identify positive instances and can be calculated utilizing the recall_score function.
"F1 score" represents a metric that consolidates precision and recall into a singular
value. This score furnishes a balanced measurement of the model’s performance and can
be computed using the f1_score function. The F1 score takes into account both false
positives and false negatives and is particularly valuable in scenarios characterized by
imbalanced class distributions. Table 3.1 represents the obtained results:

Accuracy Precision Recall F1-score
95% 92.9% 92.8% 92.8%

Table 3.1: Obtained results on test set.
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The obtained results can be expressed using the bar plot in figure 3.17:

Figure 3.17: Bar plot.

Classification Report

Figure 3.18: Classification report.

Precision Recall Curve

Based on the precision-recall curve shown in figure 3.19, it can be observed that the curve
closely aligns with the optimal point, indicating an exceptional performance of our model.
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Figure 3.19: Precision Recall curve.

3.7.4 Evaluating other Meta-Clasifiers
During our extensive research, we employed various techniques and methods to obtain

the best possible results, ultimately leading us to develop the stacking model as our final
approach. Initially, we experimented with different meta classifiers, including KNN and
logistic regression, to enhance the performance of our stacking model (table 3.2). Fur-
thermore, we conducted analyses to evaluate the effects of data imputation on the results
(table 3.3).

The selection of the meta classifier was deliberated between SVM and logistic regres-
sion, given the specific characteristics of the Pima dataset, including class imbalance.
Recognizing that accuracy alone may not sufficiently capture the performance of the
model, we considered additional important metrics, such as precision, recall (table 3.2).
After careful evaluation, we concluded that SVM demonstrated superior performance in
terms of these metrics, leading us to choose it as the preferred meta-classifier.

Meta-classifier Accuracy (%) Precision (%) Recall (%) F1 Score (%)
SVM 95.0 92.9 92.8 92.8

Logistic Regression 95.0 93.0 92.5 92.8
KNN (k=10) 94.7 92.3 92.7 92.5

Table 3.2: Comparison of meta classifiers.

47



3 CHAPTER 3. METHODOLOGY AND IMPLEMENTAION

Based on the presented results in table 3.3, we can see that the approach with imputa-
tion generally performed better than the approach without imputation across all metrics.
Imputation, involving filling in missing values, seems to have positively impacted the per-
formance of our proposed model.

Our approach Accuracy (%) Precision (%) Recall (%) F1 Score (%)
With Imputation 95.0 92.9 92.8 92.8

Without Imputation 86.5 81.9 78.6 80.0

Table 3.3: Results of our approach with and without imputation.

3.8 Alternative Approach: "Voting"
As an additional approach, we have devised an alternative approach within the domain

of ensemble learning, akin to stacking. This technique utilizes a voting mechanism reliant
on the fusion of two algorithms, namely random forest and XGBoost. The accompanying
flowchart in figure 3.20 serves to visually represent our secondary approach.

Figure 3.20: Voting model architecture.

The first constituent of this combination is the random forest model, which is identical
to the one employed in our primary approach "stacking". The second component is XG-
Boost, an ensemble learning algorithm belonging to the boosting family.
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Here’s a simplified explanation of how XGBoost works [W12]:
Base Learners: Decision trees, specifically a particular variety of decision tree known
as a "CART" (Classification and Regression Tree), serve as the foundational learners in
XGBoost. Because these decision trees are shallow, or have a modest depth, overfitting
is less likely to occur.
Objective Function: An objective function that needs to be optimized during training
is defined by XGBoost. The objective function is made up of two parts: a regularization
term that regulates the model’s complexity and a loss function that calculates the dis-
crepancy between predicted and actual values.
for binary classification, the objective function used is the logistic loss function, also known
as the log loss or cross-entropy loss.
The objective function for binary classification in XGBoost can be written as follows:

Objective =
∑

[log(1 + exp(−yi · F (xi))) + λ · Ω(F )] (3.5)

• yi is the true label of the i-th instance (either 0 or 1).

• F (xi) represents the predicted probability for the i-th instance.

• Ω(F ) is a regularization term that controls the complexity of the model, often
incorporating L1 or L2 regularization.

• λ is the regularization parameter that balances the impact of the regularization
term.

Gradient Calculation: The algorithm for XGBoost calculates the gradients of the loss
function with respect to the predicted values in each iteration. The degree to which each
instance was "missed" by the present ensemble of models is indicated by the gradient
information.
Tree Construction:In order to identify the patterns in the gradient information, XG-
Boost constructs decision trees. In greedy tree construction, splits that minimize the
objective function are chosen. To quickly identify the ideal splits, XGBoost employs a
method known as "approximate algorithmic optimization."
Weighted Updates:During training, XGBoost gives the instances weights. Based on
the mistakes produced by the ensemble of models up to that time, the weights are as-
signed. Poorly forecasted instances are given more weight, which increases their influence
on succeeding iterations.
Ensemble Building:Each tree is built, then it is included in the ensemble. By adding
up all of the individual forecasts, weighted by importance, the ensemble of trees produces
predictions collectively.
Regularization and Control Parameters: Regularization techniques are used by XG-
Boost to limit model complexity and avoid overfitting. To achieve the required level of
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regularization, regularization parameters like gamma, L1 and L2 regularization can be
changed.
Prediction: Following training, XGBoost can be used to make predictions on fresh, un-
explored data. The final forecast is generated by adding up all of the ensemble’s guesses,
weighted by importance.
We implemented the model using the parameters outlined in table 3.4.

Parameter Value
learning_rate 0.01
n_estimators 500
max_depth 5

min_child_weight 2
gamma 0.4

subsample 0.8
colsample_bytree 0.8

objective binary:logistic

Table 3.4: XGBoost Parameters.

After obtaining the two fundamental predictions generated by the Random Forest and
XGBoost algorithms, we merge them through a voting classifier employing a hard voting
strategy.
Given N individual models, denoted as f1, f2, . . . , fN , the ultimate prediction for a given
input x can be mathematically expressed using equation 3.6, where argmax selects the
class label with the highest accumulated votes:

ypred = argmax

(
N∑
i=1

fi(x)

)
(3.6)

3.8.1 Evaluation Results
After training the model on the training set, we evaluated its performance on the test

set, obtaining the following results (table 3.5):

Approach Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Voting (RF+XGBoost) 92.7 97.1 81.7 88.7

Table 3.5: Voting technique results.
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3.8.2 Comparaison between Stacking and Voting

Figure 3.21: Stacking vs Voting Confusion matrix.

The primary rationale for selecting stacking over voting as our primary approach stems
from the significance of minimizing false negatives. Given the context of our diabetes
prediction problem, misclassifying an individual as non-diabetic when they are, in fact,
diabetic can have severe consequences. Failure to identify diabetes in a person may lead
to a lack of preventive measures, thereby exacerbating the progression and complications
of the illness. Consequently, our objective is to minimize the occurrence of false negatives,
as a lower incidence of such errors reflects the superior performance of our model.

3.9 Discussion
Our proposed approaches employ ensemble learning techniques, specifically stacking

and voting, are novel techniques to address the task of diabetes prediction is a novel en-
semble learning technique.
Ensemble learning offers several advantages in the context of our research, providing im-
proved prediction accuracy and mitigating overfitting issues.

Firstly, stacking combines the strengths of different classifiers, namely Deep Neu-
ral Networks (DNNs), Random Forests (RF), and Support Vector Machines (SVM). By
leveraging the complementary characteristics of these classifiers, we can achieve higher
accuracy compared to using them individually. Stacking creates a more robust and gen-
eralized model that captures diverse patterns, thus addressing the challenge of overfitting
in complex datasets.

Moreover, our approach benefits from the enhanced feature representation capabilities
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of DNNs, allowing for the capture of complex relationships and patterns in the data. The
inclusion of RF further enhances prediction performance by handling categorical variables
and capturing non-linear relationships. SVM, with its unique decision boundaries, con-
tributes to the overall predictive power of the ensemble.

In addition to stacking, we also explored the voting approach using Random Forest
and XGBoost classifiers. Voting combines the predictions of these models through a vot-
ing scheme, aggregating their outputs to make the final prediction. This approach takes
advantage of the strengths of both Random Forest and XGBoost, which excel in handling
different types of data and capturing diverse patterns.

The Random Forest classifier, with its interpretability and feature importance mea-
sures, aids in identifying relevant factors that contribute to predicting diabetes, providing
valuable insights for medical practitioners and researchers. XGBoost, on the other hand,
offers superior gradient boosting capabilities and efficient handling of large datasets, fur-
ther improving the ensemble’s predictive performance.

Furthermore, ensemble models, whether through stacking or voting, exhibit flexibility
and adaptability. They allow for easy incorporation of new classifiers or modifications,
enabling the model to adapt to evolving data and incorporate the latest advancements in
classifier techniques.

However, it is important to note that stacking can be computationally complex, re-
quiring significant computational resources and time, especially when dealing with large
datasets. This limitation should be taken into consideration when applying ensemble
learning techniques.

Despite the limitations, our novel approaches holds promise for improving prediction
performance and interpretability in the domain of diabetes prediction.

Table 3.6 shows a comparision of accuracy achieved by other state-of-the-art works:
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Technique Author and year Accuracy
Stacking (DNN + RF) 1st contribution 95%
Voting (RF +XGBoost) 2nd contribution 92.7%
Stacking technique [Khilwani et al., 2021] [32] 82.68%
Soft voting classifier [Kumari et al., 2021] [33] 79.08%
XGBoost [Kumari et al., 2021] [33] 75.75%
Bagging [Kumari et al., 2021] [33] 74.89%
Random Forest [Kumari et al., 2021] [33] 77.48%
Support Vector [Kumari et al., 2021] [33] 74.02%
XGBoost+ Data feature stitching [Li et al., 2020] [34] 80.2%
The Hoeffding Tree algorithm Mercaldo et al., 2017] [35] 75.7%
Naive Bayes [Larabi-Marie-Sainte et al., 2019] [36] 76.30%
FS and DR with Random forest [Sivaranjani et al., 2021] [37] 83%
HM-Bag Moov Voting Classifier [Bashir et al., 2016] [38] 77.21%
Voting Classifier [Mahabub, 2019] [39] 86%
KNN [Febrian et al., 2023] [40] 73.33%
Naive Bayes [Febrian et al., 2023] [40] 76.07%
DL [Yahyaoui et al., 2019] [41] 76.81%
ANN [El_Jerjawi et Abu-Naser, 2018] [42] 87.3%
Autoencoders + Softmax classifier [Kannadasan et al., 2019] [43] 86%

Table 3.6: Results comparison table for machine and deep learning approaches.

By comparing our results with these related works, it is evident that our ensemble
learning approaches achieved higher accuracy (92.7 for Voting approach and 95 for Stack-
ing approach) compared to individual algorithms and other ensemble methods.

In conclusion, our ensemble learning approach demonstrates its superiority in diabetes
prediction compared to many other state of the art techniques.

3.10 Model Deployment
3.10.1 Model Saving

We saved our model to a file named "diabetes_prediction_model.joblib" This allows
for easy retrieval and reuse of the model in future tasks or deployments. The "joblib"
format is commonly used for saving Scikit-Learn models.
The code is demonstrated in figure 3.22.
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Figure 3.22: Model saving.

3.10.2 User Interface
To facilitate user interaction and enable the input of new data for predicting the pres-

ence of diabetes, we implemented a user interface using the tkinter library. This graphical
user interface (GUI) provides a platform for users to enter relevant information, such as
medical attributes and health indicators, which is then utilized by the underlying model
to make predictions.
The user interface consists of input labels and entry boxes for each feature, such as "preg-
nancies," "glucose," "blood pressure," and so on. Users can input their values in the
corresponding entry boxes. The interface also includes a "Predict" button, which triggers
the prediction process based on the user’s input as shown in figure 3.23.

Figure 3.23: User interface.
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Here is an example of predicting diabetes for a diabetic individual (figure 3.24):

Figure 3.24: Example of diabetic person.

Result:

Figure 3.25: Result of the prediction.
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Another example of predicting diabetes for a non-diabetic individual (figure 3.26):

Figure 3.26: Example of non-diabetic person.

Result:

Figure 3.27: Result of the prediction.
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3.11 Conclusion
In conclusion, this chapter has provided an overview of the methodology and imple-

mentation for predicting diabetes using ensemble learning. We have outlined the steps
followed to collect and preprocess the dataset, ensuring its suitability for training and
evaluation. Additionally, we have presented the details of our proposed ensemble learning
models and the rationale behind our approachs.
Also, we have shared the code used to build and train the stacking model, as well as the
libraries and software employed in our implementation. By combining the methodology
and implementation sections into a single chapter, we aimed to provide a comprehensive
understanding of our contribution.
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General conclusion

In this thesis, we employed ensemble learning techniques to enhance the accuracy of dia-
betes prediction. Specifically, we applied the stacking approach, combining a Deep Neural
Network (DNN) with Random Forest (RF) as the base classifiers and SVM as the meta-
classifier, as well as the voting technique using XGBoost and Random Forest.

The stacking approach achieved an accuracy of 95%, precision of 92.9%, recall of
92.8%, and an F1 score of 92.8%. Similarly, the voting approach, combining XGBoost
and Random Forest, yielded an accuracy of 92.7%, precision of 97.1%, recall of 81.7%,
and an F1 score of 88.7%.

While these results demonstrate the effectiveness of the ensemble learning models in
improving the accuracy of diabetes prediction, there are still exciting avenues for further
research and improvement.

One perspective to consider is exploring different combinations of algorithms within
ensemble learning frameworks. By testing various combinations of base classifiers and
meta-classifiers, such as Decision Trees, Gradient Boosting Machines, or Neural Networks,
we can potentially discover more powerful models that offer higher accuracy and improved
predictive performance for diabetes prediction. Expanding the scope of the research to
include diverse datasets is also crucial. Working with datasets from different sources
and populations allows us to evaluate the generalizability and robustness of the ensem-
ble learning models. It enables us to assess how well the models perform across various
demographic, ethnic, and geographical groups, ensuring their effectiveness in real-world
scenarios. By conducting extensive experiments with different algorithm combinations
and diverse datasets, we can gain a deeper understanding of the strengths and limitations
of ensemble learning techniques in diabetes prediction. This knowledge will empower us
to refine and optimize the models, pushing the boundaries of accuracy and contributing
to the development of more advanced and reliable prediction systems in healthcare.

In conclusion, while the stacking and voting ensemble learning models have shown
promising results, there is still room for further research to improve the accuracy of
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diabetes prediction. Exploring different algorithm combinations and working with diverse
datasets will open up new possibilities and help us develop more accurate and reliable
prediction models in the field of healthcare.
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