الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التعليم العالي والبحث العلمي

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Mémoire de Mastère

Présenté à l'Université de Guelma Faculté des Sciences et de la Technologie Département de : Génie Civil et Hydraulique Spécialité : Génie Civil Option : Structures

Présenté par :

LATRECHE Hichem

Thème : Etude d'un hangar en charpente métallique par le logiciel robot

Sous la direction de : Dr. MADI RAFIK

Juin 2023

Remerciement

Je remercie tous les chères personnes qui m'ont aidé à réaliser cette étude. En particulier Dr. MADI Rafik ainsi que tous mes collègues pour leur aide et dévouement. Mes remerciements à l'ensemble des enseignants de la faculté des sciences et technologie de l'université de 8 mai 1945, plus particulièrement aux enseignants de spécialité génie civil. Je n'oublie pas mes chers parents pour leur motivation et soutien.

Dédicace

Je tiens est avec grande plaisir que je dédie ce modeste travail

À l'être le plus cher de ma vie, ma mère.

À celui qui m'a fait de moi un homme, mon père.

À Mes chers Sœurs et à mon frère.

À tous mes Camarade de Spécialité génie civile option structure, toute personne qui occupe une place dans mon cœur.

À tous les membres de ma famille, je dédie ce travail à tous ceux qui ont participé à ma réussite.

<u>Résumé</u> :

Ce mémoire porte sur l'étude d'un hangar en charpente métallique avec un pont roulant en utilisant le logiciel Robot Structural Analysis.

Les objectifs étaient de déterminer les charges structurelles, de vérifier la capacité de la charpente métallique à supporter ces charges, et de garantir la sécurité et la stabilité du hangar selon les normes et les codes de construction.

L'étude est composée de sept chapitres : conception des hangars en charpente métallique, présentation de l'ouvrage, calcul des charges climatiques (neige et vent), étude sismique, dimensionnement des éléments de la structure, calcul des assemblages, et calcul des fondations.

L'étude a montré que la charpente métallique est capable de supporter les charges spécifiées avec une marge de sécurité appropriée, et que le logiciel Robot Structural Analysis est un outil utile pour simuler et valider les résultats de l'analyse théorique.

<u>ملخص:</u>

تركز هذه المذكرة على دراسة حظيرة إطار معدني برافعة علوية باستخدام برنامج التحليل الهيكلي للروبوت.

كانت الأهداف هي تحديد الأحمال الهيكلية، والتحقق من قدرة الإطار المعدني على دعم هذه الأحمال، وضمان سلامة واستقرار الحظيرة وفقا للمعايير وقوانين البناء.

تتكون الدراسة من سبعة فصول: تصميم حظائر الإطار المعدني، وعرض العمل، وحساب الأحمال المناخية (الثلج والرياح)، والدراسة الزلزالية، وتحديد أبعاد العناصر الهيكلية، وحساب التجميعات، وحساب الأساسات.

وأظهرت الدراسة أن الإطار المعدني قادر على تحمل الأحمال المحددة بهامش أمان مناسب، وأن برنامج التحليل الهيكلي للروبوت هو أداة مفيدة لمحاكاة نتائج التحليل النظري والتحقق منها.

Summary:

This memory focuses on the study of a metal frame shed with an overhead crane using the Robot Structural Analysis software.

The objectives were to determine the structural loads, to verify the ability of the metal frame to support these loads, and to guarantee the safety and stability of the hangar according to standards and building codes.

The study is composed of seven chapters: design of metal frame sheds, presentation of the work, calculation of climatic loads (snow and wind), seismic study, dimensioning of structural elements, calculation of assemblies, and calculation of foundations.

The study showed that the metal frame is able to withstand the specified loads with an appropriate safety margin, and that the Robot Structural Analysis software is a useful tool for simulating and validating the results of the theoretical analysis.

INTRODUCTION GENERALE	1
CHAPITRE I : CONCEPTION DES HANGARS EN CHARPENTE	
METALLIQUE	

I.1. Les portiques	3
I.2. Les contreventements	3
I.3. Conception des hangars	4

CHAPITRE II : PRESENTATION DU PROJET

II.1. Introduction		
II.2. Objet		
II.3. Descriptif du projet		
1. Les surfaces		
2. Logiciel utilisées7		
3. Règlement et matériaux utilisés7		
3.1. Règlements utilisés		
3.2. Matériaux utilisés		
• Béton		
Etat limite ultime		
Etat limite de service		
• Acier		
4. Données du projet9		
4.1. Pré-dimensionnement des éléments de la structure		
5. Modélisation de la structure10		
6. Evaluation des charges et des surcharges		
CHAPITRE III : ETUDE CLIMATIQUE		
III.1. Introduction		
1. Dimension de l'ouvrage		
2. Les données relatives au site14		
III.2. Etude de la neige14		
1. La charge de la neige sur le sol15		
II.3. Etude de vent		

1. Calcul du coefficient dynamique Cd15
2. Détermination de la pression dynamique de pointe qp16
2.1. Détermination de qref
2.2. Calcul de coefficient d'exposition au vent Ce
Calcul de coefficient de rugosité Cr
• Hauteur de référence :
Intensité de turbulence Iv
3. Calcul de la pression du vent17
3.1. Calcul du Coefficient de pression extérieur pour les toitures à 2 versants
II.4. Conclusion
CHAPITRE IV : ETUDE SISMIQUE
IV.1. Introduction
IV.2 Le choix de la méthode22
1. Condition d'application
2. Principe de la méthode
IV.3 Evaluation de la force sismique
1. Détermination du coefficient d'accélération de zone «A»23
2. Coefficient de comportement global de la structure «R»
3. Détermination du facteur d'amplification dynamique moyen «D»23
 Le pourcentage d'amortissement ξ
• Facteur de correction d'amortissement η
• Facteur de qualité « Q »
4. Poids total de la structure « W »25
• L'effort tranchant a la base produit par le séisme
• L'effort tranchant produit par le vent
IV.4. Conclusion
CHAPITRE V : DIMENSIONNEMENT DES ELEMENTS DE LA STRUCTURE
V.1 Introduction

1. Caractéristiques des barres	

2. Bilan des charges
2.1. Charges permanentes
2.2. Charges d'exploitation
2.3. La charge de la neige
2.4 La charge du vent
3. Répartition des charges sur la structure
V.2. Dimensionnements des éléments secondaires
1. Introduction
2. Les pannes de couverture
2.1 Dimensionnement et vérification des pannes
2.2. La note de calcul
3. Les liernes
4. Les lisses de bardages
4.1 Dimensionnement et vérification des lisses de bardage
4.2. La note de calcul
5. Les potelets
5.1 Vérification et dimensionnement des potelets
5.2. La note de calcul
6. Poutre de chainage (sablière)45
6.1 Vérification et dimensionnement de la poutre de chainage
6.2. La note de calcul
V.3. Etude de chemin de roulement
1. Caractéristique du pont roulant
2. Etude de la poutre de roulement
2.1 Evaluation de charges
Charges permanentes
Charges roulantes
Charges mobiles appliqués sur la passerelle
2.2 Vérification et dimensionnement de la poutre de roulement
2.3. La note de calcul

3. Etude du support du chemin de roulement
3.1. Vérification et dimensionnement du support du chemin de roulement
3.2. La note de calcul
V.4 Etude des contreventements55
1. Introductions
2. Contreventements horizontal
2.1. Vérification et dimensionnement des contreventements horizontal
2.2. La note de calcul
3. Palée de stabilité en long-pan
3.1 Vérification et dimensionnement de palée de stabilité
• Stabilité inférieur
3.2. La note de calcul
Stabilité supérieure
3.3. La note de calcul
Conclusions
V.5 Etude de portique
1. Introduction
2. Diagrammes des efforts internes65
2.1 Diagrammes des efforts internes à l'ELS
2.2. Diagrammes des efforts internes à l'ELU
3. Tableaux des résultats
3.1. Réactions extrêmes par rapport au Repère global
3.2. Déplacements Extrêmes des nœuds
3.3 Les Efforts extrêmes
3.4 Les Contraintes extrêmes
3.5 Flèches extrêmes
4. Vérification et dimensionnement du portique70
4.1 Vérification des traverses
4.2. Dimensionnement des traverses
4.3. Note de calcul

4.4. Vérification des poteaux	73
4.5. Dimensionnement des poteaux	
4.6. La note de calcul	
Conclusions	75
CHAPITRE VI : CALCUL DES ASSEMBLAGES	
VI.1 Introduction	76
VI.2 Calcul des assemblages par boulons	76
VI.2.1 Assemblage de rive (Poteau-Traverse)	76
1. Les composants de l'assemblage	
2. Disposition des boulons	
3. La note de calcul	
VI.2.2 Assemblage du Faitage (Traverse-Traverse)	85
1. Les composants de l'assemblage	
2. Disposition des boulons	
3. La note de calcul	
VI.2.3 Assemblage poutre-poteau (âme)	91
1. Les composants de l'assemblage	
2. détails de l'assemblage poutre-poteau (âme)	
3. La note de calcul	
VI.2.4 Assemblage poteau – console	99
1. Les composants de l'assemblage	
2. détails d'assemblage poteau – console	
3. La note de calcul	
VI.2.5 Assemblage au gousset	
VI.2.5.1 Assemblages au gousset – barre simple	
1. Les composants de l'assemblage	
2. détails d'assemblage	
La note de calcul	
VI.2.5.2 Assemblages au gousset – deux barres	114
1. Les composants de l'assemblage	

2. détails d'assemblage
3. La note de calcul
VI.2.6 Assemblage des pieds de poteaux encastré121
1. Les composants de l'assemblage
2. détails d'assemblage
3. La note de calcul
VI.2.7 Assemblage des pieds de poteaux articulé132
1. Les composants de l'assemblage
2. détails d'assemblage
3. La note de calcul
VI.3 Conclusion139
CHAPITRE VII : CALCUL DES FONDATIONS
VII.1 Introduction140
VII.2 Fondation des poteaux140
2.1. La note de calcul
VII.3 Fondation des potelets145
3.1. La note de calcul
CONCLUSION GENERALE

Tableau II.1 : Pré-dimensionnement des éléments de la structure	9
Tableau II.2 : Evaluation des charges et surcharges	13
CHAPITRE III : ETUDE CLIMATIQUE	
Tableau III.1 : Charge de la neige sur le sol dans chaque zone	15
Tableau III.2 : valeurs de la pression dynamique de référence	16
Tableau III.3 : Définition de catégorie de terrain	17
Tableau III.4 : Tableau des valeurs de pression dynamique	17
Tableau III.5 : Cpe pour les parois verticales des bâtiments à base rectangulaire	18
Tableau III.6 : Cpe /Zone pour vent de direction 0°	18
Tableau III.7 : Cpe /Zone pour vent de direction 90°	18
Tableau III.8 : Surfaces du vent parois verticales 90°	19
Tableau III.9 : Surfaces du vent Toiture 90°	19
Tableau III.10 : Surfaces du vent parois verticales 0°	19
Tableau III.11 : Surfaces du vent Toiture V1 0°	19
Tableau III.12 : Surfaces du vent Toiture V2 0°	19
Tableau III.13 : Vent perpendiculaire au pignon 1 V1	20
Tableau III.14 : Vent perpendiculaire au pignon 1 V2	20
Tableau III.15 : Vent perpendiculaire au long pan 2 V3	20
Tableau III.16 : Vent perpendiculaire au long pan 2 V4	21
Tableau III.17 : Vent perpendiculaire au long pan 4 V5	21
Tableau III.18 : Vent perpendiculaire au long pan 4 V6	21

CHAPITRE II : PRESENTATION DE PROJET

CHAPITRE IV : ETUDE SISMIQUE

Fableau IV.1 : valeurs des pénalités	s Pq	.24
---	------	-----

CHAPITRE V : DIMENSIONNEMENT DES ELEMENTS DE LA STRUCTURE

Tableau V.1 : Caractéristiques des barres	27
Tableau V.2 : Vérification des pannes	35
Tableau V.3 : Dimensionnement des pannes	
Tableau V.4 : Vérification des lisses	

LISTE DES TABLEAUX

Tableau V.5 : dimensionnement des lisses	40
Tableau V.6 : Vérification des potelets	42
Tableau V.7 : Dimensionnement des potelets	43
Tableau V.8 : Vérification de la poutre de chainage	45
Tableau V.9 : les réactions max et min du pont	48
Tableau V.10 : Vérification de la poutre de roulement	50
Tableau V.11 : Dimensionnement de la poutre de roulement	50
Tableau V.12 : Vérification de support du chemin de roulement	53
Tableau V.13 : Dimensionnement de support du chemin de roulement	53
Tableau V.14 : Vérification des contreventements horizontal	57
Tableau V.15 : Dimensionnement des contreventements horizontal	
Figure V.22 : disposition de palée de stabilité	60
Tableau V.16 : Vérification de stabilité inférieur	60
Tableau V.17 : Dimensionnement de stabilité inférieur	62
Tableau V.18 : Vérification de stabilité supérieure	62
Tableau V.19 : Dimensionnement de stabilité supérieure	69
Tableau V.20 : Réactions extrêmes par rapport au Repère global	69
Tableau V.21 : Déplacements Extrêmes des nœuds	69
Tableau V.22 : Les Efforts extrêmes	70
Tableau V.23 : Les Contraintes extrêmes	70
Tableau V.24 : Flèches extrêmes	
Tableau V.25 : Vérification des traverses	70
Tableau V.26 : Dimensionnement des traverses	71
Tableau V.27 : Vérification des poteaux	73
Tableau V.28 : Dimensionnement des poteaux	73

CHAPITRE I : CONCEPTION DES HANGARS EN CHARPENTE METALLIQUE

	: Terminologie d'une ossature métallique5
--	---

CHAPITRE II : PRESENTATION DE PROJET

Figure II.1 : Modèle numérique de la structure 3D (Profilés)	10
Figure II.2 : Modèle numérique de la structure (cotations pignon file 1 et 2)	11
Figure II.3 : Modèle numérique de la structure (long-pan file A et E)	11
Figure II.4 : Modèle numérique de la structure (toiture)	12
Figure II.5 : Modèle numérique de la structure (implantation)	12

CHAPITRE III : ETUDE CLIMATIQUE

Figure III.1 : Toitures à deux versants à angles égaux	.14
Figure III.3 : Vent perpendiculaire au pignonV1	.18
Figure III.2 : Vent perpendiculaire au long pan V2	.18

CHAPITRE IV : ETUDE SISMIQUE

Figure IV.1 : L'effort tranchant à la base produit par le séisme sens X.	
Figure IV.2 : L'effort tranchant à la base produit par le séisme sens Y.	26

CHAPITRE V : DIMENSIONNEMENT DES ELEMENTS DE LA STRUCTURE

Figure V.1 : Distribution des charges permanentes	.28
Figure V.2 : Distribution des charges d'exploitation	.29
Figure V.3 : Distribution des charges de neige	.29
Figure V.4 : Distribution des charges de vent V1	.30
Figure V.5 : Distribution des charges de vent V2	30
Figure V.6 : Distribution des charges de vent V3	.31
Figure V.7 : Distribution des charges de vent V4	.31
Figure V.8 : Distribution des charges de vent V5	.32
Figure V.9 : Distribution des charges de vent V6	.32
Figure V.10 : Zones de répartition de la charge	.33
Figure V.11 : Disposition des pannes	
Figure V.12 : disposition des liernes	

LISTE DES FIGURES

Figure V.13 : Disposition des lisses au pignon
Figure V.14 : Disposition des lisses au long-pan
Figure V.15 : Disposition des potelets
Figure V.16 : Disposition de la poutre de chainage
Figure V.17 : Représentation d'un pont roulant
Figure V.18 : Disposition de la poutre de roulement
Figure V.19 : Les réactions du pont roulant
Figure V.20 : Disposition du support du chemin de roulement
Figure V.21 : Détails des contreventements
Figure V.22 : Disposition de contreventement horizontal
Figure V.23 : Disposition de palée de stabilité
Figure V.24 : Vue de face du portique
Figure V.25 : Numérotation des nœuds
Figure V.26 : Diagramme des efforts normaux à l'ELS65
Figure V.27 : Diagramme des efforts tranchant à l'ELS66
Figure V.28 : Diagramme des moments fléchissent à l'ELS66
Figure V.29 : Diagramme des efforts normaux à l'ELU67
Figure V.30 : Diagramme des efforts tranchant à l'ELU67
Figure V.31 : Diagramme des moments fléchissent à l'ELU68

CHAPITRE VI : CALCUL DES ASSEMBLAGES

Figure VI.1 : Représentation de l'assemblage poteau traverse	76
Figure VI.2 : Disposition des boulons de l'assemblage poteau traverse	77
Figure VI.3 : Représentation de l'assemblage traverse-traverse	85
Figure VI.4 : Disposition des boulons de l'assemblage traverse-traverse	85
Figure VI.5 : Représentation de l'assemblage poutre-poteau (âme)	91
Figure VI.6 : Détails sur l'assemblage pied de poteau articulé	91
Figure VI.7 : Représentation de l'assemblage poteau - console	99
Figure VI.8 : Détails sur l'assemblage poteau - console	100
Figure VI.9 : Représentation de l'assemblage au gousset barre simple	108

LISTE DES FIGURES

Figure VI.10 : Détails sur l'assemblage au gousset barre simple	
Figure VI.11 : Représentation de l'assemblage au gousset – deux barres	114
Figure VI.12 : Détails sur l'assemblage au gousset - deux barres	115
Figure VI.13 : Représentation de l'assemblage pied poteau encastré	
Figure VI.14 : Détails sur l'assemblage pied de poteau encastré	
Figure VI.15 : Représentation de l'assemblage pied poteau articulé	132
Figure VI.16 : Détails sur l'assemblage pied de poteau articulé	

CHAPITRE VII : CALCUL DES FONDATIONS

Figure VII.1 : Détails de la fondation des poteaux	140
Figure VII.2 : Détails de la fondation des potelets	145

Introduction générale :

Au fil du temps, l'architecture ne cesse de s'améliorer à chaque changement, multipliant le nombre de programmes et de techniques en modifiant l'approche selon les méthodes et les matériaux utilisés dans la conception, selon les besoins et les capacités, tout en respectant les différentes réglementations. Maintenant, nous avons une variété d'options dans les matériaux tels que : béton armé, béton précontraint et acier.

L'acier dans la construction a longtemps été utilisé de façon marginale, l'acier n'a pas tout de suite trouvé son alphabet aristocratique, mais a été utilisé dans la construction de charpentes, dissimulées derrière des façades retenues dans la pierre.

Actuellement, la construction en Algérie est davantage basée sur des structures en béton, et l'utilisation de l'acier est limitée, bien que les structures en acier présentent plus d'avantages, tels que la légèreté, le montage rapide sur site, le démontage si nécessaire, et leur haute résistance à la traction permet l'utilisation de grandes portées et sa ductilité sismique.

Cela nous a poussés à choisir notre projet et à étudier dans ce domaine celui de la construction métallique.

La construction métallique est un domaine de la construction basé sur la construction mécanique des métaux, notamment de l'acier, regroupant toutes les disciplines visant à utiliser les métaux sous toutes leurs formes, quelle que soit le métal et sa forme. Constitué d'éléments usinés en atelier et assemblés sur place, il constitue une alternative économique aux châssis traditionnels.

La charpente métallique présente de nombreux avantages, parmi lesquels sa simplicité de mise en œuvre et les possibilités techniques qu'elle offre :

- **mise en œuvre rapide** : les éléments sont produits en usine, sur plans, seulement l'assemblage est effectué sur le chantier, ce qui permet un gain de temps ;
- **facilité du montage** : il existe des charpentes en kit pour tous ceux qui veulent pratiquer l'auto-construction. Cette solution ne convient évidemment pas à de grandes charpentes, nécessitant des engins de levage. Dans ce cas, il faudra faire appel à une entreprise spécialisée dans l'assemblage de charpentes métalliques ;
- **une solution économique** : la charpente métallique permet un gain financier d'environ 10% sur une charpente traditionnelle
 - ✓ des frais d'entretien pour ainsi dire inexistants
 - ✓ une charpente durable et robuste, tout en étant légère ;
- **une solution écologique**, contrairement au bois, la charpente métallique n'a pas à être imprégnée de fongicide.

L'inconvénient majeur de la charpente métallique est le manque de résistance au feu, car la structure peut se déformer en raison des températures élevées. Une protection incendie est donc nécessaire.

L'ensemble de la structure doit être conçu de manière à ce que les efforts extérieurs appliqués à la structure traversent ces différents éléments et les fixations qui assurent la liaison entre ces éléments, jusqu'à la fondation, sans endommager la structure.

Dans le présente mémoire nous allons essayer d'appliquer toutes les connaissances acquises durant notre cursus sur un projet réel, un hangar industriel avec un pont roulant. L'objectif principal sera de comprendre et de compléter les informations déjà acquises dans le cours de charpente métallique, ensuite viendra le second but qui est de présenter un travail satisfaisant en vue d'obtenir le diplôme de master II.

CHAPITRE I :

Conception des structures de

halles

I.1. Les portiques :

Un portique est un système de tiges situées dans le même plan, capable de résister aux charges verticales et horizontales agissant sur ce plan grâce à la liaison encastrée entre les tiges et les supports. Les connexions entre les barres encastrées sont également appelées connexions "rigides". Les charges agissant sur le cadre induisent des contraintes de flexion, des forces axiales et des forces de cisaillement dans tout ou partie des armatures. Les portiques peuvent être à une travée ou à plusieurs travées.

Dans une ossature, certaines liaisons poutre-poutre, poutre-poteau et poteau-fondation peuvent être des rotules, et d'autres peuvent être des contraintes. S'il y a trop de joints, le système structurel devient instable, c'est-à-dire qu'il ne peut pas équilibrer les charges : la structure s'effondre, certains mouvements se produisent librement et les tiges ne se déforment pas. Lorsqu'un système structurel est instable, il restera stable même avec une résistance accrue du renforcement.

Différentes dispositions de montage permettent le type de raccordement choisi (connecteur ou encastré). Pour les poutres et poteaux en treillis, il existe une rotule à l'intersection des membrures et un encastrement dans le cas contraire.

Le remplacement des charnières par des charnières encastrées permet d'économiser la quantité d'acier nécessaire à la tige, mais augmente les coûts de montage.

I.2. Les contreventements :

Les contreventements sont le système structurel à travers lequel les charges horizontales agissant sur un bâtiment s'écoulent jusqu'à la fondation. Les principaux systèmes sont :

- Les portiques, qui sont capables reprendre les charges horizontales agissant dans leur plan;
- Les ensembles contreventement de versants et palées de stabilité, qui constituent une grande barre à treillis de forme brisée, composée de deux portiques. Ils sont destinés à reprendre les charges horizontales agissant perpendiculairement au plan des portiques.

Dans les contreventements et stabilisateurs de talus, les diagonales sont généralement des éléments minces (coins ou cercles pleins), disposés en croix de Saint-André. Ensuite, seules les diagonales tendues sont considérées, car les diagonales comprimées ont relativement peu de résistance due au flambage ; selon la direction de la force horizontale, l'une ou l'autre branche de la croix est étirée. Si un tuyau de bonne résistance à la compression est utilisé comme diagonale, au lieu d'un angle ou d'un congé, une seule diagonale suffit au lieu d'une croix : elle est soit en traction, soit en compression, selon la direction de la charge horizontale.

Les contreventements de talus et les contreventements stabilisateurs jouent également un rôle important dans l'instabilité pouvant affecter les barres d'acier qui composent l'ouvrage (flambement des poteaux, flambement des poutres) : ils ont pour effet de réduire la longueur de flambement ou le renversement de ces barres.

I.3. Conception des hangars :

Pour tout bâtiment, on doit définir une conception de structure, puis effectuer le dimensionnement des barres et assemblages :

-une conception de structure est satisfaisante si elle est économique, réalisable et si elle assure la stabilité d'ensemble du bâtiment. Pour cela, il faut que les éléments de structure soient disposés de telle sorte qu'ils permettent aux charges verticales et aux charges horizontales (longitudinales et transversales) de circuler depuis leur point d'application jusqu'aux fondations ;

-un dimensionnement est satisfaisant s'il est économique, si chaque élément est capable de résister aux sollicitations maximales dues aux charges de calcul et autres actions, et si les déplacements de la structure restent inférieurs aux limites admissibles.

On parle de bâtiments (bâtiments industriels, salles de sport ou de spectacle, etc.) dont les structures supportent simplement les façades et masquent les halles. Ces bâtiments ont généralement une base rectangulaire. Les systèmes suivants sont les plus couramment utilisés :

-une ossature principale constituée de portiques, régulièrement espacés ;

-une ossature secondaire constituée d'éléments plus fins (pannes et lisses), reliant ces portiques et assemblés par des articulations à ceux-ci ;

-un dispositif de contreventement disposé entre deux portiques :

Contreventement(s) de versant et palées de stabilité.

Les efforts horizontaux longitudinaux (vent agissant sur le pignon) sont repris par les raidisseurs de pignon et les colonnes de porche en bordure, les transférant en partie aux blocs de fondation sous les pieds et en partie au niveau du platelage où ils se déplacent. Soutenu par la pente, puis abaissé à la fondation par les colonnes stabilisatrices. Les efforts latéraux horizontaux (vent agissant sur les grands côtés du bâtiment) et verticaux (charges permanentes, neige, composante verticale du vent sur le toit) sont portés par le portique

La portée de tels portiques est généralement comprise entre 10 m et 15 m. Pour les portées inférieures à 20 m, des armatures laminées IPE et HEA sont généralement utilisées, et la hauteur de la section de poutre est d'environ 1/35 à 1/40 de celle des portées supérieures à 30 m. Taille insuffisante des poutres laminées disponibles. Utilisez ensuite des PRS (Restructuration des Sections Soudées) ou des poutres en treillis.

L'espacement des cadres des cadres de petite portée (10m-20m) est d'environ 5m-6m, et l'espacement des cadres des cadres de longue portée (30m-50m) peut atteindre 10m-12m.

Lorsque la longueur du bâtiment est inférieure à 50 m, il n'y a généralement qu'un seul contreventement diagonal, qui est placé sur le plan horizontal de la colonne stabilisatrice. Lorsque cette longueur est comprise entre 50 m et 10 m, les poteaux stabilisateurs sont situés dans la longueur médiane du bâtiment, auquel cas un contreventement diagonal est parfois placé à chaque extrémité du bâtiment, entre l'ossature de rive et le porche adjacent entre les deux.

Les colonnes stabilisatrices sont généralement en forme de croix de Saint-André, mais d'autres dispositions sont également possibles, par exemple : tubes diagonaux simples, V inversé, double croix de Saint-André... Elles sont parfois remplacées par des portiques stabilisateurs, qui sont plus coûteux et plus déformable, mais permet un passage sans entrave entre les poteaux.

Figure I.1 : Terminologie d'une ossature métallique.

CHAPITRE II :

Présentation du projet

II.1. Introduction :

La charpente métallique, ou même l'ossature métallique, sont traditionnellement utilisées dans les bâtiments industriels ou agricoles. Ils peuvent couvrir de grandes surfaces structurelles dans les salles de stockage. Aujourd'hui, les charpentes métalliques sont également utilisées pour les toitures de garages ou d'abris de jardin. Il est encore peu utilisé dans la construction de logements, mais son utilisation dans l'habitat collectif ou privé est appelée à se développer.

L'ensemble de la structure doit être conçu de manière à ce que les efforts extérieurs appliqués à la structure traversent ces différents éléments et les fixations qui assurent la liaison entre ces éléments, jusqu'à la fondation, sans endommager la structure.

II.2. Objet :

Ce projet a pour but de calcul et dimensionnement de la structure métallique d'un hangar métallique (20X60X8) m, avec un pont roulant de 5 tonnes à usage industriel, située à GUELMA.

II.3. Descriptif du projet :

- Longueur : 60 m
- Largeur : 20 m
- La hauteur totale H= **9.5 m**
- La hauteur de la toiture h= **1.5 m**
- Pente : **9%**
- Couverture en panneau sandwich TL75 et bardage en panneau sandwich LL35 sur les deux long-pans.
- Ossature contreventée par portiques/palées triangulées en X et V.

1. Les surfaces :

- Surface d'un pignon = 175 m^2
- Surface d'un long-pan = 480 m^2
- Surface d'un versant de la toiture = 607 m^2
- Les ouvertures :
- Un portail pour le pignon de dimension (6 x 5) m²
- 4 porte pour long-pan droite de dimension (6 x 8) m

2. Logiciel utilisées :

- Logiciel de calcul robot RSA 2017.
- AutoCAD 2019.

3. Règlement et matériaux utilisés :

3.1. Règlements utilisés :

- DTR BC 2.2 : charges permanentes et charges d'exploitation.
- DTR BC 2.48 : RPA99 v.2003 règle parasismique.
- DTR C 2-4.7 : Règlement neige et vent RNV 2013.
- CCM97 : Règles de conception de calcul les structures en acier DTR BC 2.44.

3.2. Matériaux utilisés :

• <u>Béton :</u>

Le béton sera confectionné suivant une composition établie par le laboratoire selon les hypothèses du BET fc₂₈= 25MPa pour, les éléments, structuraux.

a)	f_{c28}	= 25 MPa	résistance à la compression

b) $f_{t28} = 2,10$ MPa résistance à la traction

Etat limite ultime :

$$fbu = \frac{0.85 * fc_{28}}{\theta * \gamma_b}$$

 θ = 1 situation normale.

 θ = 0.85 situation accidentelle

 $\gamma_b = 1.5$ (situation normale)

 $\gamma_b = 1.15$ (situation accidentelle)

 $f_{bu} = 14.17$ MPa (situation normale)

 $f_{bu} = 21.74$ MPa (situation accidentelle)

Etat limite de service :

La contrainte de compression dans le béton est limitée à $0.6 \times f_{c28}$.

$$f_{bs} = 0.6 \times f_{c28}$$
.

$$f_{bs} = 15 \text{ MPa}$$

Module de déformation longitudinale CBA art (A.2.1.2.1 et A .2.1.2.2)

 $f_{c28} = 25 \text{ MPa}$

 $E_{i28} = 11000 \sqrt[3]{f_{c28}}$ module instantané

E_{i28} = 32164.195 MPA

 $E_{d28} = 3700 \sqrt[3]{f_{c28}}$ module différé

E_{d28}= 10818.865 MPa.

• <u>Acier :</u>

Résistance caractéristique de calcul

1) Acier Haute à adhérence (FeE400) :

- Sollicitations sous actions fondamentale :

$$\sigma_{\rm s} = rac{f_{\rm e}}{\gamma_{\rm s}} = rac{400}{1,15} = 348 \; {
m MPa}$$

- Sollicitations sous actions accidentelles :

$$\sigma_s = \frac{f_e}{\gamma_s} = \frac{400}{1} = 400 \text{ MPa}$$

2) Acier doux (FeE215):

Sollicitations sous actions normales :

$$\sigma_{\rm s} = rac{f_{\rm e}}{\gamma_{\rm s}} = rac{215}{1,15} = 187 \; {
m MPa}$$

Sollicitations sous actions accidentelles :

$$\sigma_{\rm s} = rac{f_{\rm e}}{\gamma_{\rm s}} = rac{215}{1,15} = 187 \; {
m MPa}$$

- Nuance d'acier S275.
- Boulons à haute résistance de classe 8-8
- Boulons ordinaires de classe 4-6.

4. Données du projet :

- Site d'implantation : Guelma
- Zone de vent : (Zone II)
- Surcharge de neige : Se=18 kg/m2 (Région A)
- Altitude géographique : H=100m

Selon le rapport géotechnique :

• La contrainte admissible du sol = 2 Bars

4.1. Pré-dimensionnement des éléments de la structure :

On adopte les profilés suivants pour chaque élément de structure :

Eléments	Profilé
Poteaux	HEA320
Traverses	IPE 360
Potelets	IPE 220
Lisses	UPN 120
Pannes	IPE 120
Contreventements horizontales	CAE 60×60×6
Palée de stabilité inférieure	CAE 120×120×12
Palée de stabilité supérieure	CAE 80×80×8
Poutre de chainage	HEA 120
Support de poutre de roulement	HEA 320
Poutre de roulement	HEA 260

Tableau II.1 : Pré-dimensionnement des éléments de la structure.

5. Modélisation de la structure :

Au démarrage du logiciel, une fenêtre apparaît pour sélectionner le type de structure qu'on veut étudier, pour faciliter la modélisation on a choisi le module 3D « Etude d'une coque ».

La première chose qui nous devons faire est d'ajuster les préférences de l'affaire (unités et formats, matériaux, catalogues, normes de conception...).

Pour la représentation d'une structure réelle, par un modèle numérique dans le logiciel Robot, on a besoin de :

- La définition des lignes de construction de la structure suivant les trois directions ;
- La définition des sections des éléments qui constituent la structure ;
- La représentation et le dessin de la structure graphiquement par les éléments définis ;
- La définition des appuis dans la structure ;
- La définition des cas de charge et des combinaisons et application des charges sur la structure.

Après la modélisation, la structure est présentée sur les figures suivantes :

Figure II.1 : Modèle numérique de la structure 3D (Profilés)

CHAPITRE II : PRESENTATION DU PROJET

Figure II.2 : Modèle numérique de la structure (cotations pignon file 1 et 2)

Figure II.3 : Modèle numérique de la structure (long-pan file A et E)

CHAPITRE II : PRESENTATION DU PROJET

Figure II.4 : Modèle numérique de la structure (toiture)

Figure II.5 : Modèle numérique de la structure (implantation)

|--|

Charge permanente G					
Panneau sandwich TL 75	14 Kg/m ²				
Panneau sandwich LL 35	14 Kg/m ²				
Mur maçonnerie 15 cm	26.2 Kg/m ²				
Charge d'exploitation Q					
Q Entretien (Terrasse Inaccessible)	100 Kg/m ²				
Pont roulant	5000 Kg				
Réactions Pont roulant	Rmax	5200 Kg			
	R _{min}	2200 Kg			
	Rvmax	6000 Kg			
	Rvmin	2600 Kg			
	R Lmax	1100 Kg			
	R Lmin	500 Kg			
	R _{Hmax}	600 Kg			
	R _{Hmin}	250 Kg			

Tableau II.2 : Evaluation des charges et surcharges

CHAPITRE III :

Etude climatique

III.1. Introduction :

Les effets du vent et de la neige sur les structures métalliques tendent à être plus prédominants et une étude approfondie et détaillée doit être menée avec soin pour déterminer les différentes actions et demandes.

La réglementation en vigueur (**RNV 2013**) nous donne les principes généraux et les procédures à suivre pour mieux anticiper ces phénomènes et effectuer les calculs de conformité.

<u>1. Dimension de l'ouvrage :</u>

- Longueur : $\mathbf{a} = 60 \text{ m}$
- Largeur : $\mathbf{b} = 20 \text{ m}$
- Hauteur totale : H = 9.5 m
- Hauteur des poteaux : **h= 8.00 m**
- Toiture double versant de degré $\alpha = 9^{\circ}$.

2. Les données relatives au site :

- Lieu de réalisation : GUELMA
- Altitude géographique (par rapport au niveau de la mer) : $H_G = 100m$
- Zone de neige : A
- Zone de vent : **I**
- Site plat : C_t(z)=1
- Catégorie du terrain : III

III.2. Etude de la neige :

Le but principal de cette étude est de définir les valeurs représentatives de la charge statique de la neige sur toute la surface située au-dessus du sol et soumise à l'accumulation de la neige notamment sur la toiture.

- Altitude géographique : H_G=100m
- Zone de neige : A

La charge de la neige sur la toiture est donnée par la formule suivante :

```
S =µ. Sк 'R.N.V.2013' р18
```

Toitures à deux versants à angles égaux :

 $\alpha_1 = \alpha_2 = 9^\circ$

*Coefficient d'ajustement des charges μ :

On est dans le cas :

0≤ α=8°≤30° **(R.N.V.2013'tableau 2 p25**

Donc le coefficient de forme II

Figure III.1 : Toitures à deux versants à angles

1. La charge de la neige sur le sol :

Notre projet est implanté dans la wilaya de GUELMA classé en zone A selon **'R.N.V.2013' p37**

ZONE	Α	B	С	D
Sk	0.07. H + 15	0.04. H + 10	0.0325. H + 10	Pas de charge
	100	100	100	de neige

Tableau III.1 : Charge de la neige sur le sol dans chaque zone

Guelma Zone A : $S_{k=} \frac{0.07 * H + 15}{100} = \frac{0.07 * 100 + 15}{100} = 0.22 \text{ KN/m}^2$

Terrasse inaccessible : $p: 0 \le \alpha \le 30^\circ$. $0 \le 9^\circ \le 30^\circ$ p=0.8

 \Rightarrow S = 0.18 KN/m²

II.3. Etude de vent :

Le vent est une action horizontale très importante, qui agit directement sur la structure dans ces deux directions principales, pour laquelle il a été intensivement étudié lors du dimensionnement de la charpente métallique. L'étude a été réalisée à partir des propriétés dépendantes du vent des structures et des sites d'implantation dans notre cas comme suit :

- Wilaya de GUELMA appartient à zone de vent II
- Le terrain est de catégorie III
- Le site d'implantation est un site plat Ct(z)=1.0

La pression aérodynamique due au vent est donnée par la formule suivante :

 $W(z) = q_p(z) \times (C_{pe} - C_{pe})$ (Formule 2-6 RNV/2013) p57

La pression due au vent :

 $q = Cd \times W(z)$

 $\mathbf{q} = \mathbf{C}\mathbf{d} \times \mathbf{q}_{p}(\mathbf{z}) \times (\mathbf{C}_{pe} - \mathbf{C}_{pe})$

<u>1. Calcul du coefficient dynamique Cd :</u>

Le coefficient dynamique Cd est donné en chapitre 3 de RNV/2013. Dans le cas de notre projet la hauteur totale de la structure H=9.5 m est strictement inférieur à 15 m donc on peut prendre la valeur simplifiée de Cd

Cd = 1

CHAPITRE III : ETUDE CLIMATIQUE

	▲/ ■			
qp(z)=qref .Ce(z)	(2.1 RNV/2013) p50	Zone	q_{ref} (daN/m ²)	
2.1. Détermination de qref	:	T	37.5	
Zone II \rightarrow qref = 43.5 daN/m	² [Tableau 2.2 R.N.V/2013] P5	0 II	43.5	
2.2. Calcul de coefficient d'	exposition au vent Ce :	III	50.0	
$C_{e}(z) = C_{t}^{2}(z), C_{r}^{2}(z) [1 + 7]_{v}(z)$	[(2.2)-R.N.V/2013] P51	IV	57.5	
Tel que :		Tableau pressio	Tableau III.2 : valeurs de la pression dynamique de	
$C_{\mathbf{I}}(z)$: Le coefficient de rugo	sité		lefefence.	
Ct(z) : Le coefficient de topo	graphie			
Iv(z) : Intensité de la turbuler	nce			
• Calcul de coefficien	t de rugosité Cr :			
$Cr(z) = kT \times Ln(\frac{-z}{z_0})$ pour z	$zmin \le z \le zmax=200m$			
$C_{\mathbf{r}}(z) = C_{\mathbf{r}}(z_{\min})$ pour	z < zmin	[(2.3)-R.N.V	//2013] P53	
• Hauteur de référence	ce :			
- Parois verticale $h = 8.00 \text{m} \le b = 20.7 \text{m}$				
Ze = h = 8.00 m				
- Toiture Ze est pris égale à la hauteur	maximale H			
Ze= H = 9.5 m (Selon [RN	V 2013 § 2 (2.3.2)])			
Ce qui fait :				
$z_{min} = 5.00 \text{m} \le z \le z_{max} = 20$	0m			
Donc :				

 $Cr(z) = kT \times Ln(^{Z}/_{Z0})$ Terrain catégorie III :

(selon [R.N.V.2013]tableau 2.4 P53)
CHAPITRE III : ETUDE CLIMATIQUE

Catégorie de terrain	KT	Z ₀ (m)	Z _{min} (m)	3
III zone à couverture végétale régulière ou des bâtiments ou des obstacles isolés séparés d'au plus 20 fois leur hauteur (par exemple des villages, des zones suburbaines, des forets permanents)	0.215	0.3	5	0.61

Tableau III.3 : Définition de catégorie de terrain.

Tel que :

 K_T : facteur du terrain.

 Z_0 : paramètre de la rugosité [m].

 Z_{min} : hauteur minimale [m].

• Intensité de turbulence Iv :

$$Iv(z) = \frac{1}{Ct(z)Ln\frac{z}{zo}} \quad \text{pour } z > z\min$$
$$Iv(z) = \frac{1}{Ct(z)Ln\frac{zmin}{zo}} \quad \text{pour } z \le z\min$$

On est dans le cas ou z > zmin avec Ct(z) =1.0

 $CD = 1 < 1.2 \Rightarrow$ structure peu sensible

2.3. Tableau des valeurs de pression dynamique :

	Ze(m)	Cr(Ze)	Iv(Z)	Ce(Ze)	q réf (N/m ²)	q_{dyn} (N/m ²)
Parois	8	0.70	0.30	1.52	435	661
Toiture	9.5	0.74	0.29	1.66	435	721

[(2.5)-R.N.V/2013] P57

 Tableau III.4 : Tableau des valeurs de pression dynamique.

3. Calcul de la pression du vent :

W(z) = qdyn(z) * (Cpe - Cpi)

Vent⊥Pignon → V1

Vent \perp long pan \rightarrow V2

Figure III.2 : Vent perpendiculaire au long pan V2

Pour les coefficients de pression intérieur on prend les deux valeurs extrêmes (les plus défavorables) : (+0.8 ; -0.5)

Α	B	С	D	E
-1.0	-0.8	-0.5	+0.8	-0.3

Tableau III.5 : Cpe pour les parois verticales des bâtiments à base rectangulaire.

3.1. Calcul du Coefficient de pression extérieur pour les toitures à 2 versants :

Puisque $\alpha = 9^\circ$, donc les valeurs de Cpe sont déterminées par l'interpolation linéaire entre les deux valeurs de Cpe (5°) et Cpe (15°) par la formule suivante :

Zone	F	G	H	J	Ι
$C_{pe}(5^{\circ})$	-1.7	-1.2	-0.6	-0.6	-0.6
C _{pe} (15°)	-0.9	-0.8	-0.3	-0.4	-1.0
C _{pe} (9°)	-1.38	-1.04	-0.48	-0.52	-0.76

Tableau III.6 : Cpe /Zone pour vent de direction 0°

Zone	F	G		Ι
$C_{pe}(5^{\circ})$	-1.6	-1.3	-0.7	-0.6
C _{pe} (15°)	-1.3	-1.3	-0.6	-0.5
C _{pe} (9°)	-1.41	-1.3	-0.64	-0.54

Tableau III.7 : Cpe /Zone pour vent de direction 90°

Surfaces du vent parois verticales 90°						
	е	e < d				
	Cpe S (Cpe)					
(Zone A)	-1	30.4	-0.62			
(Zone B)	-0.8	152				
(Zone C)	-0.5	328				
(Zone D)	0.8	160	0.8			
(Zone E)	-0.3	160	-0.3			

Les tableaux suivant présentes les surfaces du vent dans chaque direction :

Surfaces du vent Toiture 90°						
	e < d et e ≥	d				
	Cpe S (Cpe)					
S (Zone F)	-1.48	9.03	-0.61			
S (Zone G)	-2	9.98				
S (Zone H)	-0.66					
S (Zone I)	-0.56	505.00				

Tableau III.8 : Surfaces du vent parois verticales 90°**Tableau III.9 :** Surfaces du vent Toiture 90°

Surfaces du vent parois verticales 0°						
	e < d					
	Cpe S (Cpe)					
(Zone A)	-1	32.49	-0.82			
(Zone B)	-0.8	137.18				
(Zone C)	-0.5	8.55				
(Zone D)	0.8	480	0.8			
(Zone E)	-0.3	480	-0.3			

Surfaces du vent Toiture V1 0°						
	e < d et e ≥	d				
	Cpe S (Cpe)					
S (Zone F)	-1.38	9.03	-0.61			
S (Zone G)	-1.04	95.95				
S (Zone H)	-0.48	486.00				
S (Zone I)	-0.52	114.00	-0.71			
S (Zone J)	-0.76	486				

Tableau III.10 : Surfaces du vent parois verticales 0°

Tableau III.11 : Surfaces du vent Toiture V1 0°

Surfaces du vent Toiture V2 0°					
	e < d et e	≥d			
Cpe S (Ce1)					
S (Zone F)	0.2	9.03	0.20		
S (Zone G)	0.2	95.95			
S (Zone H)	0.2	486.00			
S (Zone I)	-0.4	114.00	-0.89		
S (Zone J)	-1	486			

Tableau III.12 : Surfaces du vent Toiture V2 0°

RECAPITULATIF (2 DIRECTIONS)						
	V1 : Vent perp	endicula	aire au	pignon 1	Cpi = + 0.8	
	qdy (dan/m²)	Сре	Срі	Cpe-Cpi	W(dan/m ²)=qdy.(Cpe-	
					Cpi)	
Pignon 1 (Zone D)	66.1	0.80	0.80	0.00	0	
Pignon 2 (Zone E)	66.1	-0.30	0.80	-1.10	-72.71	
Long pan 1 (Zone A-B-C)	66.1	-0.62	0.80	-1.42	-93.80	
Long pan 2 (Zone A-B-C)	66.1	-0.62	0.80	-1.42	-93.80	
Toiture	72.1	-0.61	0.80	-1.41	-101.69	

Les valeurs finales de pression du vent sont mentionnées dans les tableaux suivant :

 Tableau III.13 : Vent perpendiculaire au pignon 1 V1

	V2 : Vent per	pendicul	Cpi = - 0.5		
	qdy (dan/m ²)	Сре	Срі	Cpe-Cpi	W(dan/m ²)=qdy.(Cpe-
					Cpi)
Pignon 1 (Zone D)	66.1	0.80	-0.50	1.30	85.93
Pignon 2 (Zone E)	66.1	-0.30	-0.50	0.20	13.22
Long pan 1 (Zone A-B-C)	66.1	-0.62	-0.50	-0.12	-7.87
Long pan 2 (Zone A-B-C)	66.1	-0.62	-0.50	-0.12	-7.87
Toiture	72.1	-0.61	-0.50	-0.11	-7.96

Tableau III.14 : Vent perpendiculaire au pignon 1 V2

	V3 : Vent perp	endicula	Cpi = +0.8; variante 1		
	qdy (dan/m ²)	Сре	Срі	Cpe-Cpi	W(dan/m ²)=qdy.(Cpe-
					Cpi)
Pignon 1 (Zone A-B-C)	66.1	-0.82	0.80	-1.62	-107.22
Pignon 2 (Zone A-B-C)	66.1	-0.82	0.80	-1.62	-107.22
Long pan 1 (Zone D)	66.1	0.80	0.80	0.00	0.00
Long pan 2 (Zone E)	66.1	-0.30	0.80	-1.10	-72.71
Toiture (Versant au vent)	72.1	-0.61	0.80	-1.41	-101.35
Toiture (Versant SOUS vent)	72.1	-0.71	0.80	-1.51	-109.19

Tableau III.15 : Vent perpendiculaire au long pan 2 V3

CHAPITRE III : ETUDE CLIMATIQUE

	V4 : Vent perp	pendicul	Cpi = - 0.5 ; variante 1		
	qdy (dan/m ²)	Сре	Срі	Cpe-Cpi	W(dan/m ²)=qdy.(Cpe-
					Cpi)
Pignon 1 (Zone A-B-C)	66.1	-0.82	-0.50	-0.32	-21.29
Pignon 2 (Zone A-B-C)	66.1	-0.82	-0.50	-0.32	-21.29
Long pan 1 (Zone D)	66.1	0.80	-0.50	1.30	85.93
Long pan 2 (Zone E)	66.1	-0.30	-0.50	0.20	13.22
Toiture (Versant au vent)	72.1	-0.61	-0.50	-0.11	-7.62
Toiture (Versant SOUS vent)	72.1	-0.71	-0.50	-0.21	-15.46

Tableau III.16 : Vent perpendiculaire au long pan 2 V4

	V5 : Vent perp	pendicul	Cpi = +0.8; variante 2		
	qdy (dan/m ²)	Сре	Срі	Cpe-Cpi	W(dan/m ²)=qdy.(Cpe-
					Cpi)
Pignon 1 (Zone A-B-C)	66.1	-0.82	0.80	-1.62	-107.22
Pignon 2 (Zone A-B-C)	66.1	-0.82	0.80	-1.62	-107.22
Long pan 1 (Zone D)	66.1	0.80	0.80	0.00	0.00
Long pan 2 (Zone E)	66.1	-0.30	0.80	-1.10	-72.71
Toiture (Versant au vent)	72.1	0.20	0.80	-0.60	-43.26
Toiture (Versant SOUS vent)	72.1	-0.89	0.80	-1.69	-121.56

Tableau III.17 : Vent perpendiculaire au long pan 4 V5

	V6 : Vent perp	pendicul	Cpi = - 0.5 ; variante 2		
	qdy (dan/m ²)	Сре	Срі	Cpe-Cpi	W(dan/m ²)=qdy.(Cpe-
					Cpi)
Pignon 1 (Zone A-B-C)	66.1	-0.82	-0.50	-0.32	-21.29
Pignon 2 (Zone A-B-C)	66.1	-0.82	-0.50	-0.32	-21.29
Long pan 1 (Zone D)	66.1	0.80	-0.50	1.30	85.93
Long pan 2 (Zone E)	66.1	-0.30	-0.50	0.20	13.22
Toiture (Versant au vent)	72.1	0.20	-0.50	0.70	50.47
Toiture (Versant SOUS vent)	72.1	-0.89	-0.50	-0.39	-27.83

Tableau III.18 : Vent perpendiculaire au long pan 4 V6

II.4. Conclusion :

A la fin de ce chapitre on a arrivées à déterminer les différentes charges climatiques auxquels notre structure est exposée.

CHAPITRE IV :

Etude sismique

IV.1. Introduction :

De toutes les catastrophes naturelles qui affectent la surface de la Terre, les tremblements de terre sont sans doute les plus dévastateurs dans les zones urbaines. Face à ce risque et à l'impossibilité de le prévoir, il est nécessaire de construire des ouvrages capables de résister à de tels phénomènes afin de protéger au moins de manière tolérable la vie humaine. Ces dernières sont généralement basées sur des études dynamiques de structures en mouvement.

L'objet de ce chapitre est d'évaluer les contre-mesures sismiques susceptibles d'être nécessaires.

Notre structuration. Il existe plusieurs méthodes et approches pour évaluer et calculer. Parmi elles on peut citer :

- La méthode statique équivalente
- La méthode d'analyse modale spectrale
- La méthode d'analyse dynamique par accélérographe.

Les deux dernières méthodes sont utilisées dans tous les cas. Mais pour appliquer la méthode statique équivalente, La structure doit répondre à plusieurs conditions.

IV.2 Le choix de la méthode :

Dans notre projet on a utilisé La méthode statique équivalente.

<u>1. Condition d'application :</u>

Pour notre étude nous avons choisi l'approche statique équivalente dont le choix dépend surtout de la simplicité de la structure (symétrie essentielle), de sa hauteur limitée (h = 10m < 65m (zone II)) et de sa présence dans la régularité en plan (24/20= 1,2 < 4) et l'altitude. Globalement, notre structure satisfait à toutes les conditions listées dans l'article RPA 99 version 2003 (4.1.2).

2. Principe de la méthode :

Le principe de cette méthode est de remplacer les forces dynamiques réelles présentes. Elle se produit pendant la construction à travers un système fictif de forces statiques, dont l'effet est considéré comme équivalent à celui de l'action sismique.

IV.3 Evaluation de la force sismique :

La force sismique totale V appliquée à la base de la structure est calculée pour les deux directions horizontales orthogonales selon la formule suivante :

$$V = \frac{A.D.Q}{R} W \qquad \qquad \text{* Formule 4.1 - RPA99 / 2003 }$$

Avec :

A : Coefficient d'accélération de zone.

D : Facteur d'amplification dynamique moyen

- R : Coefficient de comportement global de la structure
- Q : Facteur de qualité
- W : Poids totale de la structure

<u>1. Détermination du coefficient d'accélération de zone « A » :</u></u>

L'ouvrage sera implanté à la ville de GUELMA qui est classé selon le règlement parasismique Algérien RPA 99 version 2003 :

Zone sismique et le groupe d'usage du bâtiment :

Zone sismique : IIa

Groupe d'usage : $2 \rightarrow A = 0.15$ (Tableau 4.1 - RPA99 / 2003)

2. Coefficient de comportement global de la structure « R » :

Selon le RPA la valeur de R est donnée par le tableau **4.3 du RPA99 V2003** en fonction du système de contreventement.

Notre structure qui est une Ossature contreventée par palées triangulées en X

 \rightarrow R=4

3. Détermination du facteur d'amplification dynamique moyen « D » :

Ce coefficient est fonction de la catégorie du site, du facteur de correction d'amortissement

 (η) et de la période fondamentale de la structure (T).

$$D = - \begin{cases} 2.5\eta & 0 \le T \le T2 \\ 2.5\eta \left(\frac{T2}{T}\right)^{2/3} & T2 \le T \le 3.0s \end{cases}$$
 « Formule 4.2 - RPA99/2003»
$$2.5\eta \left(\frac{T2}{3.0}\right)^{2/3} \left(\frac{3.0}{T}\right)^{5/3} & T \ge 3.0s \end{cases}$$

Avec :

- $\boldsymbol{\eta}$: facteur de correction d'amortissement
- T2 : Période caractéristique associée à la catégorie du site.
- T : la période fondamentale de la structure

• Le pourcentage d'amortissement ξ :

Le pourcentage d'amortissement ξ est donné en fonction du matériau constitutif, du type et de l'importance du remplissage.

Pour acier/léger $\rightarrow \xi = 4\%$ (tableau 4.2 du RPA 99 V2003)

• Facteur de correction d'amortissement η :

Facteur de correction d'amortissement est donné par la formule :

 $\eta = \sqrt{7/(2 + \xi)} \ge 0.7$ « Formule 4.3 - RPA99 / 2003 »

Ce qui fait : $\eta = \sqrt{7/(2 + 4)} = 1.08 \ge 0.7$

$$T = C_T \cdot (h_N)^{3/4}$$
 « Formule 4.6 - RPA99 / 2003 »

 h_N : Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau (N)

$$\rightarrow h_N = 9.5m.$$

 C_T : Coefficient qui dépend du système de contreventement et du type de remplissage, il est donné par le tableau 4.6.

Portiques auto-stables en acier avec remplissage en maçonnerie ce qui donne : $\rightarrow C_T = 0.050$

On aura alors :

 $T=0.050. (10)^{3/4}=0.281s$

 $0s \le T = \! 0.281s \le T2 \! = \! 0.50s$

 $T2 = 0.50 \text{ s} \ll \text{Site S3} - \text{Tableau } 4.7 - \text{RPA } 99/2003 \gg$

→ $D = 2.5 \eta = 2.5 \times 1.08 = 2.7$

• Facteur de qualité « Q » :

La valeur de Q est déterminée par la formule :

 $Q = 1 + \sum Pq$ **« Formule 4.4 - RPA99 / 2003 »**

Critère	Sens longitudinal	Sens transversal
1-conditions minimales sur les files de contreventements.	0	0.05
2-redondance en plan.	0.05	0
3-régularité en plan.	0	0
4-régularité en élévation.	0	0
5-control de la qualité des matériaux.	0.05	0.05
6-contrôle de la qualité de l'exécution.	0.10	0.10

Tableau IV.1 : valeurs des pénalités Pq

$Q_x = 1.2$ et $Q_y = 1.2$

4. Poids total de la structure « W » :

Poids total de la structure donné par la formule suivante :

 $W = \sum Wi n i = 1$ Avec : $Wi = WGi + \beta WQi$

« Formule 4.4 - RPA99 / 2003 »

WGi : Poids due aux charges permanentes

WQi : Charges d'exploitations.

 β : Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.

 $\beta = 0.5 \rightarrow (hangar)$ (tableau 4-5 RPA99 / version 2003)

On trouve que le poids de notre structure modélisée dans le logiciel robot est égale à :

W = **192939.11** kg

• L'effort tranchant a la base produit par le séisme :

- Dans le sens X \rightarrow Ex = 4336.50 daN
- Dans le sens Y \rightarrow EY = 290 daN

Figure IV.1 : l'effort tranchant à la base produit par le séisme sens X

CHAPITRE IV : ETUDE SISMIQUE

Figure IV.2 : l'effort tranchant à la base produit par le séisme sens Y

• L'effort tranchant produit par le vent :

- Dans le sens X \rightarrow Vx=36177 daN
- Dans le sens Y \rightarrow Vy=11804.96 daN

IV.4. Conclusion :

Les sollicitations dues au vent sont plus importantes que celles dues au séisme, ainsi nous retiendrons uniquement l'action du vent pour le dimensionnement des éléments de l'ouvrage.

CHAPITRE V :

Dimensionnement des éléments

de la structure.

V.1 Introduction :

Pour effectuer l'étude des éléments de notre structure on a utilisé le logiciel Robot Structural Analysis 2017. Ce logiciel utilise la méthode d'analyse par éléments finis pour étudier les structures planes et spatiales de type : Treillis, portique, structures mixtes...

Le calcul permet d'examiner toutes les charges appliquées à la structure en tenant compte des différentes combinaisons et fourni des résultats avec une meilleure précision.

Barre	Noeud 1	Noeud 2	Section	Matériau	Longueur [m]	Gamma [Deg]	Type de barre	Élément de construction
1	1	2	HEA380	S 275	8,00	0,0	Poteaux	Barre
4	5	4	IPE360	S 275	10,11	0,0	Traverses	Barre
6	8	9	HEA320	S 275	0,90	0,0	Porte CDR	Barre
13	4	13	HEA120	S 275	6,00	0,0	Sablière	Barre
17	7	12	CAE 80×8	S 275	8,49	0,0	Stabilités INF	Barre
19	7	19	CAE 120×12	S 275	3,61	0,0	Stabilités SUP	Barre
25	23	46	IPE 120	S 275	6,00	-8,5	Pannes	Barre
27	44	48	IPE 120	S 275	6,00	-90,0	Lisses	Barre
50	74	75	HEA 260	S 275	6,00	0,0	Cdr	Barre
52	2	51	CAE 60×6	S 275	7,05	0,0	Contreventements	Barre
413	432	433	IPE 220	S 275	9,05	90,0	Potelets	Barre

1. Caractéristiques des barres :

 Tableau V.1 : Caractéristiques des barres

2. Bilan des charges :

2.1. Charges permanentes :

Pour la charge permanente on a :

- > Poids propre de la structure PP calculé automatiquement par logiciel Robot 2017 ;
- Une charge permanente $G = 14 \text{ kg/m}^2$ répartie sur les pannes IPE 120 ;

Figure V.1 : Distribution des charges permanentes

2.2. Charges d'exploitation :

Pour la charge d'exploitation on a :

Une charge d'entretien égale à Q Entretien = 100 kg/m² répartie sur la couverture de toiture.

Figure V.2 : Distribution des charges d'exploitation

2.3. La charge de la neige :

D'après les calculs qui nous avons fait dans le chapitre 3, on trouve que la charge de la neige sur notre structure égale à : $S = 18 \text{ daN/m}^2$.

La charge de la neige est appliquée sur la toiture.

Figure V.3 : Distribution des charges de neige

2.4 La charge du vent :

Pour la charge du vent on a 6 charges appliquées sous forme de pression et dépression sur la structure entière, les figures suivantes présentes chaque charge avec leurs valeurs dans chaque direction.

Figure V.4 : Distribution des charges de vent V1

Figure V.5 : Distribution des charges de vent V2

Figure V.6 : Distribution des charges de vent V3

Figure V.7 : Distribution des charges de vent V4

Figure V.8 : Distribution des charges de vent V5

Figure V.9 : Distribution des charges de vent V6

3. Répartition des charges sur la structure :

La répartition et les chemins des charges sur tous les éléments porteurs de la structure du sommet aux fondations sont très importants pour le dimensionnement de ces derniers.

La figure suivante présente les zones de répartition des charges sur notre structure.

Figure V.10 : Zones de répartition de la charge

V.2. Dimensionnements des éléments secondaires :

<u>1. Introduction :</u>

Les éléments secondaires représentent l'ossature nécessaire au support de la couverture et du Bardage.

Dans cette partie on s'intéresse à définir les profilés qui devrons résister aux déférentes sollicitations suivant les règlements de l'EUROCODE3. Le principe de la vérification nécessite la résistance et la stabilité, les profilés concernés par cette étude sont :

-Les pannes

-Les liernes

-Les lisses de bardages

-Les potelets

-La poutre de chainage

2. Les pannes de couverture :

Les pannes sont généralement des poutres conçus en IPE, le but de leur existence est de transmettre les charges et surcharges de la couverture à la traverse.

En plus de leurs poids propre et le poids de la couverture, elles soumises aux actions climatique et aux charges d'entretien.

Il y a deux charges sur la panne : une charge parallèle au versant et une autre normale à la panne.

Donc elle travaille en flexion déviée.

Figure V.11 : Disposition des pannes.

2.1 Dimensionnement et vérification des pannes :

Vérification :

🗾 NF EN 1993-1-	1:20							
Résultats Messa	iges							Note de calcul Fermer
Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille: 4 F	ANN	ES						Taux de travail
390 Pannes_390		PANNES	S 275	122.34	414.59	2.94	20 ELU /274/	Analyse Cartographie
								Points de calcul division: n = 7 extrêmes: aucun additionnels: aucun

Tableau V.2 : Vérification des pannes.

La stabilité de la barre n'est pas vérifiée, donc le profilé IPE 120 n'est pas vérifié.

FORMULES DE VERIFICATION :

 $\begin{aligned} & \textit{Contrôle de la résistance de la section:} \\ & \textit{N,Ed/Nc,Rd} = 0.01 < 1.00 \quad (6.2.4.(1)) \\ & (My,Ed/MN,y,Rd)^2 2.00 + (Mz,Ed/MN,z,Rd)^1.00 = 0.72 < 1.00 \quad (6.2.9.1.(6)) \\ & \textit{Tau,ty,Ed/(fy/(sqrt(3)*gM0))} = 0.00 < 1.00 \quad (6.2.6) \\ & \textit{Tau,tz,Ed/(fy/(sqrt(3)*gM0))} = 0.00 < 1.00 \quad (6.2.6) \\ & \textit{Contrôle de la stabilité globale de la barre:} \\ & \textit{My,Ed,max/Mb,Rd} = 2.90 > 1.00 \quad (6.3.2.1.(1)) \\ & \textit{N,Ed/(Xy*N,Rk/gM1)} + kyy*My,Ed,max/(XLT*My,Rk/gM1) + \\ & kyz*Mz,Ed,max/(Mz,Rk/gM1) = 2.94 > 1.00 \quad (6.3.3.(4)) \\ & \textit{N,Ed/(Xz*N,Rk/gM1)} + kzy*My,Ed,max/(XLT*My,Rk/gM1) + \\ & kzz*Mz,Ed,max/(Mz,Rk/gM1) = 2.94 > 1.00 \quad (6.3.3.(4)) \\ & \textit{Profil incorrect !!!} \end{aligned}$

Dimensionnement :

ésultats Message	es						Note de calcul Fermer
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille: 4 PA	NNES						
00 00000000000	HEA 100	0.075	147.96	239.02	0.96	20 51 11 (220)	Changer tout
90 Pannes_390	HEA 120	32/5	122.67	198.75	0.67	20 ELU /320/	
[IPE 160		91.22	325.39	1.37		Points de calcul
90 Pannes_390	K IPE 180	S 275	80.91	292.38	0.98	20 ELU /328/	division: $n = 7$
Ī	IPE 200	7	72.64	268.38	0.73		extrêmes: aucun

 Tableau V.3 : Dimensionnement des pannes.

On adopte le profilé HEA 100 comme pannes de couverture.

2.2. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 4 PANNES

COORDONNEE: x = 0.50 L = 3.00 mPIECE: 293 Pannes 293 **POINT:** 4

CHARGEMENTS:

Cas de charge décisif: 14 ELU /328/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 10*1.35 + 13*1.35

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

PARAMETRES DE LA SECTION: HEA 100

h=9.6 cm	gM0=1.00	gM1=1.00	
b=10.0 cm	Ay=18.44 cm2	Az=7.56 cm2	Ax=21.24 cm2
tw=0.5 cm	Iy=349.23 cm4	Iz=133.81 cm4	Ix=5.26 cm4
tf=0.8 cm	Wply=83.01 cm3	Wplz=41.14 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 477.57 daN	My,Ed = 1428.59 daN*m	Mz,Ed = 14.76 daN*m
Nc,Rd = 58410.00 daN	My,Ed,max = 1428.59 daN*m	Mz,Ed,max = 14.76 daN*m
Nb,Rd = 58410.00 daN	My,c,Rd = 2282.78 daN*m	Mz,c,Rd = 1131.35 daN*m
MN,y,Rd = 2282.78 daN	J*m	MN,z,Rd = 1131.35 daN*m
Mb,Rd = 2002.88 daN*n	m	Tt,Ed = 0.00 daN*m

Classe de la section = 1

	IETRES DE DEVERS	SEMENT:	
z = 1.00	Mcr = 4819.06 daN	*m Courbe,LT -	XLT = 0.84
Lcr,upp=3.00 m	Lam_LT = 0.69	fi,LT = 0.79	XLT,mod = 0.88
PARAMETRES D	E FLAMBEMENT:		

X

en y:

1.1 ±___


```
kyy = 1.00
```

kzz = 1.00

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

N,Ed/Nc,Rd = 0.01 < 1.00 (6.2.4.(1))

 $(My,Ed/MN,y,Rd)^{2.00} + (Mz,Ed/MN,z,Rd)^{1.00} = 0.40 < 1.00$ (6.2.9.1.(6))

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre:

My,Ed,max/Mb,Rd = 0.71 < 1.00 (6.3.2.1.(1))

$$\begin{split} N, Ed/(Xy*N, Rk/gM1) + kyy*My, Ed, max/(XLT*My, Rk/gM1) + kyz*Mz, Ed, max/(Mz, Rk/gM1) = 0.73 < 1.00 \quad (6.3.3.(4)) \end{split}$$

$$\begin{split} \text{N,Ed} &(Xz^*\text{N,Rk/gM1}) + kzy^*\text{My,Ed,max} / (XLT^*\text{My,Rk/gM1}) + kzz^*\text{Mz,Ed,max} / (Mz,\text{Rk/gM1}) = \textbf{0.73 < 1.00} (6.3.3.(4)) \end{split}$$

Profil correct !!!

Conclusion:

Le profilé en **HEA 100** est vérifié dans le cas de charge décisif donc vérifié à la sécurité et convient comme panne de toiture.

3. Les liernes :

Les liernes sont des tirants qui travaillent en traction disposés à mi-portée des pannes perpendiculairement à ces dernières dans le plan de la toiture, ils sont généralement formés barres rondes ou de petites cornières.

Leurs rôle principale est d'éviter la déformation la latérale des pannes, mais aussi à limiter la longueur de déversement et le flambement latérale pour les parties comprimées.

Figure V.12 : Disposition des liernes.

On a supposé pour les liernes une barre ronde de 10mm de diamètre.

Calcul de la section des liernes :

 $Nsd \leq Npl.Rd$

« Formule 5.16 – Page 5-55 – EC3 »

 $Nsd = L_{520} = 746.56 \text{ daN} = 7.47 \text{ kN}$ Car la lierne le plus sollicitée est L_{520}

$$N_{pl.Rd} = \frac{A \times fy}{\gamma_{M0}} \quad \Rightarrow A \ge \frac{Nsd \times \gamma_{M0}}{Fy} = \frac{7.47 \times 1.1}{275} \times 10 = 0.298 \text{ cm}^2$$
$$A = \frac{\pi \times \emptyset^2}{4} \ge 0.298 \text{ cm}^2 \Rightarrow \emptyset \ge \sqrt{\frac{4 \times 0.298}{\pi}} = 0.61 \text{ cm}$$

Pour des raisons sécuritaire et pratique on opte pour une barre ronde de diamètre Ø=10mm

4. Les lisses de bardages :

En général les lisses de bardage sont constituées de poutrelles (IPE, UAP, HEA) ou de profilés minces pliés.

Elles sont posées horizontalement sur les poteaux de portique « long-pan » et aussi sur les potelets intermédiaires «pignon».

En plus de leurs poids propre et le poids du bardage, elles sont soumises aux actions du vent transmises par ce dernier.

Figure V.13 : Disposition des lisses au pignon.

Figure V.14 : Disposition des lisses au long-pan.

4.1 Dimensionnement et vérification des lisses de bardage :

Vérification :

1	NF EN 1993-1-1:	2005/NA:2013/A1	:2014 - Vérifica	ation des f	amilles (E	LU) 5		
	Résultats Message	Note de calcul Fermer						
	Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
	Famille : 5 LIS	SSES						Taux de travail
	424 Lisses_424	🙁 LISSES	S 275	150.71	438.25	2.76	20 ELU /35/	
								Analyse
								Points de calcul
								division: n = 7
								extremes: aucun
Ľ								audiuorineis; aucun

Tableau V.4 : Vérification des lisses.

La résistance de déversement des barres n'a pas été calculée conformément à la méthode détaillée définie dans le point 6.3.2.3. D'après la norme NF EN 1993-1-1/NA, les sections de ces barres ne satisfont pas à toutes les conditions d'application de cette méthode. L'analyse du déversement a été effectuée suivant la méthode générale 6.3.2.2.

FORMULES DE VERIFICATION :

 $\begin{array}{l} \textit{Contrôle de la résistance de la section:} \\ \textit{N,Ed/Nc,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 1.51 > 1.00} & (6.2.1(7)) \\ \textit{Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00} & (6.2.6) \\ \textit{Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00} & (6.2.6) \\ \textit{Contrôle de la stabilité globale de la barre:} \\ \textit{My,Ed,max/Mb,Rd = 2.42 > 1.00} & (6.3.2.1.(1)) \\ \textit{N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed,max/(XLT*My,Rk/gM1) + kyz*Mz,Ed,max/(Mz,Rk/gM1) = 2.76 > 1.00} & (6.3.3.(4)) \\ \textit{N,Ed/(Xz*N,Rk/gM1) + kzy*My,Ed,max/(XLT*My,Rk/gM1) + kzz*Mz,Ed,max/(Mz,Rk/gM1) = 2.76 > 1.00} & (6.3.3.(4)) \\ \textit{Profil incorrect !!!} \end{array}$

Dimensionnement :

🗲 NF EN 1993-1	NF EN 1993-1-1:2005/NA:2013/A1:2014 - Code Group Design (ULS) 5							
Results Messages	s							Calc. Note Close
Member		Section	Material	Lay	Laz	Ratio	Case	Help
Code group :	5	LISSES						
499 1 10000 499	ОК	HEA 100	6.075	172.62	278.86	0.85	44 51 11 /257	Change all
400 LISSES_400	Ŧ	HEA 120] 32/3	143.11	231.88	0.59	14 ELU 735/	
	T	IPE 160		106.42	379.62	1.01		Calculation points
488 Lisses_488	ОК	IPE 180	S 275	94.39	341.11	0.73	14 ELU /35/	Division: n = 7
	Ŧ	IPE 200		84.75	313.11	0.55		Extremes: none
								Additional: none

 Tableau V.5 : Dimensionnement des lisses.

On adopte le profilé en HEA 100 comme lisses de bardage.

4.2. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 5 LISSES

PIECE: 488 Lisses_488 **POINT:** 4 **COORDONNEE:** x = 0.50 L = 3.50 m

CHARGEMENTS:

Cas de charge décisif: 14 ELU /35/ 1*1.35 + 2*1.35 + 7*1.50

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

┘ PARAMETRES DE LA SECTION: HEA 100

h=9.6 cm	gM0=1.00	gM1=1.00	
b=10.0 cm	Ay=18.44 cm2	Az=7.56 cm2	Ax=21.24 cm2
tw=0.5 cm	Iy=349.23 cm4	Iz=133.81 cm4	Ix=5.26 cm4
tf=0.8 cm	Wply=83.01 cm3	Wplz=41.14 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 17.98 daN	My,Ed = 1175.72 daN*m	Mz,Ed = 273.58 daN*m
	Vy,Ed = -0.03 daN	

Nc,Rd = 58410.00 daN Mz,Ed,max = 273.58 d	N daN*m	My,Ed,max = 1175.72 daN*m Vy,T,Rd = 29228.80 daN		
Nb,Rd = 58410.00 daN Mz,c,Rd = 1131.35 da	N ìN*m	My,c,Rd = 2282. Vz,Ed = 0.28 dal	78 daN*m N	
MN,y,Rd = 2282.78 d	daN*m MN,z,Rd =	1131.35 daN*m	Vz,T,Rd = 11990.66 daN	
Mb,Rd = 1943.30 daN	J*m		Tt,Ed = 0.43 daN*m	
		Classe de la secti	on = 1	
PARAME	TRES DE DEVERSEN	MENT:		
z = 1.00	Mcr = 4095.50 daN*n	n Courbe,LT -	XLT = 0.81	
Lcr,upp=3.50 m	Lam_LT = 0.75	fi,LT = 0.84	XLT,mod = 0.85	
PARAMETRES DE	FLAMBEMENT:			
en y:		en z:		
	kyy = 1.00		kzz = 1.00	
FORMULES DE VE	RIFICATION:			
Contrôle de la résistat	nce de la section:			
N,Ed/Nc,Rd = 0.00 < 1	1.00 (6.2.4.(1))			
$(My,Ed/MN,y,Rd)^{2}$.	.00 + (Mz,Ed/MN,z,Rd)	^1.00 = 0.51 < 1.0	0 (6.2.9.1.(6))	
Vy,Ed/Vy,T,Rd = 0.00	0 < 1.00 (6.2.6-7)			
Vz,Ed/Vz,T,Rd = 0.00) < 1.00 (6.2.6-7)			
Tau,ty,Ed/(fy/(sqrt(3)*	(gM0)) = 0.00 < 1.00	(6.2.6)		
Tau,tz,Ed/(fy/(sqrt(3)*	(gM0)) = 0.00 < 1.00 ((6.2.6)		
Contrôle de la stabilit	é globale de la barre:			
My,Ed,max/Mb,Rd =	0.61 < 1.00 (6.3.2.1.(1))		
N,Ed/(Xy*N,Rk/gM1) kyz*Mz,Ed,max/(Mz,) + kyy*My,Ed,max/(X Rk/gM1) = <mark>0.85 < 1.00</mark>	LT*My,Rk/gM1) - (6.3.3.(4))	F	
N,Ed/(Xz*N,Rk/gM1) kzz*Mz,Ed,max/(Mz,I) + kzy*My,Ed,max/(Xl Rk/gM1) = <mark>0.85 < 1.00</mark>	LT*My,Rk/gM1) + (6.3.3.(4))	-	
Profil correct !!!				

Conclusion:

Le profilé en **HEA 100** est vérifié dans le cas de charge décisif donc vérifié à la sécurité et convient comme lisse de bardage.

5. Les potelets :

Les potelets sont des éléments profilés en I ou en H fixés sur des murs pignons pour réduire la portée entre les poteaux et pour supporter le revêtement isolant. Ils sont sollicités en flexion composée :

-une flexion sous action du vent sur la paroi du pignon ;

-une compression sous l'action des charges permanentes dues au poids propre des lisses, de bardages, et celui du potelet lui-même.

Figure V.15 : Disposition des potelets.

5.1 Vérification et dimensionnement des potelets :

Vérification :

🗲 NF EN 1993-1-1:	:2005/NA:2013/A1	:2014 - Vérifica	ation des fa	amilles (E	LU) 3			
Résultats Messag	Résultats Messages							
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide	
Famille : 3 PC	DTELETS						Taux de travail	
414 Potelets_414	U POTELETS	S 275	99.30	365.24	99.88	20 ELU /351/	Analyse Cartographie	
							Points de calcul division: n = 7 extrêmes: aucun additionnels: aucun	

Tableau V.6 : Vérification des potelets.

Le profilé en IPE 220 est instable, donc pas vérifié.

INSTABLE

$\begin{array}{l} \textit{Contrôle de la stabilité globale de la barre:} \\ \textit{Lambda,y} = 99.30 < \textit{Lambda,max} = 210.00 \\ \textit{Lambda,z} = 365.24 > \textit{Lambda,max} = 210.00 \\ \textit{My,Ed,max/Mb,Rd} = \textbf{1.33} > \textbf{1.00} \quad (6.3.2.1.(1)) \\ \textit{N,Ed/(Xy*N,Rk/gM1)} + \textit{kyy*My,Ed,max/(XLT*My,Rk/gM1)} + \\ \textit{kyz*Mz,Ed,max/(Mz,Rk/gM1)} = \textbf{67.09} > \textbf{1.00} \quad (6.3.3.(4)) \\ \textit{N,Ed/(Xz*N,Rk/gM1)} + \textit{kzy*My,Ed,max/(XLT*My,Rk/gM1)} + \\ \textit{kzz*Mz,Ed,max/(Mz,Rk/gM1)} = \textbf{1.13} > \textbf{1.00} \quad (6.3.3.(4)) \\ \textit{Profil instable !!!} \end{array}$

Dimensionnement :

NF EN 1993-1-1:2005/NA:2013/A1:2014 - Vérification des familles (ELU) 3							
ésultats Messag	Note de calcul Fermer						
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille : 3 PC	DTELETS						Town do how of
483 Potelets_483	K IPE 240	S 275	90.74	204.26	0.53	14 ELU /300/	Taux de travail
				,			Analyse Cartographie
							Points de calcul
							avtrêment aver
							extremes: aucun
							additionnels: aucun

 Tableau V.7 : Dimensionnement des potelets.

On adopte le profilé en IPE 240.

5.2. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 3 POTELETS

PIECE: 483 Potelets_483 **POINT:** 2 **COORDONNEE:** x = 0.10 L = 0.90 m

CHARGEMENTS:

Cas de charge décisif: 14 ELU /300/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 6*1.35 + 12*1.35

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

PARAMETRES DE LA SECTION: IPE 240

h=24.0 cm	gM0=1.00	gM1=1.00	
b=12.0 cm	Ay=27.32 cm2	Az=19.15 cm2	Ax=39.12 cm2

CHAPITRE V : DIMENSIONNEMENT DES ELEMENTS DE HANGAR

tw=0.6 cm	Iy=3891.63 cm4	Iz=283.63 cm4	Ix=12.95 cm4
tf=1.0 cm	Wply=366.65 cm3	Wplz=73.92 cm3	
EFFORTS INTERNE	ES ET RESISTANCES	ULTIMES:	
N,Ed = 6125.20 daN	My,Ed = 472.73	daN*m Mz,Ed	= -1.14 daN*m
Vy,Ed = 1.27 daN			
Nc,Rd = 107580.00 da	N My,Ed,max = 28	91.21 daN*m Mz	z,Ed,max = -6.96 daN*m
Vy,c,Rd = 43368.70 da	iΝ		
Nb,Rd = 16800.7	My,c,Rd = 10082.88 da1	N*m Mz,c,Rd =	2032.80 daN*m
Vz,Ed = 525.25 daN			
MN,y,Rd = 10082.88	daN*m MN,z,Rd = 2	2032.80 daN*m	/z,c,Rd = 30400.90 daN
		Classe de la section =	1

X

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

1.0 en y:		en z:	
Ly = 9.05 m	Lam_y = 1.05	Lz = 9.05 m	Lam_z = 2.35
Lcr,y = 9.05 m	Xy = 0.63	Lcr, z = 5.50 m	Xz = 0.16
Lamy = 90.74	kzy = 0.56	Lamz = 204.26	kzz = 0.86

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

N,Ed/Nc,Rd = 0.06 < 1.00 (6.2.4.(1))

 $(My,Ed/MN,y,Rd)^{2.00} + (Mz,Ed/MN,z,Rd)^{1.00} = 0.00 < 1.00$ (6.2.9.1.(6))

Vy,Ed/Vy,c,Rd = 0.00 < 1.00 (6.2.6.(1))

Vz,Ed/Vz,c,Rd = 0.02 < 1.00 (6.2.6.(1))

Contrôle de la stabilité globale de la barre:

Lambda, y = 90.74 < Lambda, max = 210.00

Lambda, z = 204.26 < Lambda, max = 210.00

STABLE

$$\begin{split} & \text{N,Ed}/(Xy^*\text{N,Rk/gM1}) + kyy^*\text{My,Ed,max}/(XLT^*\text{My,Rk/gM1}) + \\ & \text{kyz^*\text{Mz,Ed,max}}/(\text{Mz,Rk/gM1}) = \textbf{0.41 < 1.00} \quad (6.3.3.(4)) \end{split}$$

N,Ed/(Xz*N,Rk/gM1) + kzy*My,Ed,max/(XLT*My,Rk/gM1) + kzz*Mz,Ed,max/(Mz,Rk/gM1) = 0.53 < 1.00 (6.3.3.(4))

Profil correct !!!

Conclusion :

Le profilé en IPE 240 est vérifier et convient comme potelet.

6. Poutre de chainage (sablière) :

Les poutres de chainage assurent la liaison entre les différents portiques de la structure. Elles sont sollicitées principalement par des efforts normaux mais aussi par des moments fléchissant due à leurs poids propres et aux charges de vents.

Figure V.16 : Disposition de la poutre de chainage.

6.1 Vérification et dimensionnement de la poutre de chainage :

Vérification :

ø	🗲 NF EN 1993-1-1:2005/NA:2013/A1:2014 - Vérification des familles (ELU) 6							
F	ésultats Messag	Note de calcul Fermer						
	Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
	Famille : 6 SA	ABLIERES						Tauru da traunil
	77 Sablieres_77	SABLIERE	S 275	122.67	198.75	0.17	20 ELU /348/	
Γ								Analyse Cartographie
								Points de calcul
								division: n = 7
								extrêmes: aucun
								additionnels: aucun

Tableau V.8 : Vérification de la poutre de chainage.

Le profilé en HEA 120 est vérifié, donc le dimensionnement n'est pas nécessaire.

6.2. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 6 SABLIERES

PIECE: 17 Sabliéres_17 **POINT:** 7 **COORDONNEE:** x = 0.50 L = 3.00 m

CHARGEMENTS:

Cas de charge décisif: 14 ELU /40/ 1*1.00 + 2*1.00 + 6*1.50

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

PARAMETRES DE LA SECTION: HEA 120

h=11.4 cm	gM0=1.00	gM1=1.00	
b=12.0 cm	Ay=21.64 cm2	Az=8.46 cm2	Ax=25.34 cm2
tw=0.5 cm	Iy=606.15 cm4	Iz=230.90 cm4	Ix=5.63 cm4
tf=0.8 cm	Wply=119.50 cm3	Wplz=58.85 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 1317.08 daN Vy,Ed = -0.00 daN	My,Ed = -22.71 daN*m	Mz,Ed = 0.01 daN*m
Nc,Rd = 69674.27 daN Vy,T,Rd = 34342.30 daN	My,Ed,max = -22.71 daN*m	Mz,Ed,max = 0.01 daN*m
Nb,Rd = 10797.42 daN daN*mVz,Ed = -36.84 da1	My,c,Rd = 3286.25 daN*m N	Mz,c,Rd = 1618.49
MN,y,Rd = 3286.25 daN*	m MN,z,Rd = 1618.49 daN*m	Vz,T,Rd = 13423.51 daN
Mb,Rd = 2118.81 daN*m	Tt,	Ed = -0.08 daN*m
	Classe de la sec	ction = 1

PARAMETRES DE DEVERSEMENT:

z = 1.00	Mcr = 2520.67 daN*r	n Courbe,LT -	XLT = 0.63
Lcr,low=6.00 m	Lam_LT = 1.14	fi,LT = 1.20	XLT,mod = 0.64

PARAMETRES DE FLAMBEMENT:

1.0 en y:		i en z:	
Ly = 6.00 m	Lam_y = 1.41	Lz = 6.00 m	Lam_z = 2.29
Lcr, y = 6.00 m	Xy = 0.38	Lcr, z = 6.00 m	Xz = 0.15
Lamy = 122.67	kzy = 0.53	Lamz = 198.75	kzz = 0.97
FORMULES DE VEI	RIFICATION:		
Contrôle de la résistan	ce de la section:		
N,Ed/Nc,Rd = 0.02 < 1	.00 (6.2.4.(1))		
(My,Ed/MN,y,Rd)^ 2.0	$00 + (Mz,Ed/MN,z,Rd)^{4}$	$^{1.00} = 0.00 < 1.00$ (6.	2.9.1.(6))
Vy,Ed/Vy,T,Rd = 0.00	< <u>1.00</u> (6.2.6-7)		
Vz,Ed/Vz,T,Rd = 0.00	< 1.00 (6.2.6-7)		
Tau,ty,Ed/(fy/(sqrt(3)*	gM0)) = 0.00 < 1.00 (6.2.6)	
Tau,tz,Ed/(fy/(sqrt(3)*	gM0)) = 0.00 < 1.00 (6.2.6)	
Contrôle de la stabilité	é globale de la barre:		
Lambda,y = 122.67 < 1	Lambda, $max = 210.00$		
Lambda,z = 198.75 < I	Lambda, $max = 210.00$		STABLE
My,Ed,max/Mb,Rd =).01 < 1.00 (6.3.2.1.(1)))	
N,Ed/(Xy*N,Rk/gM1) kyz*Mz,Ed,max/(Mz,F	+ kyy*My,Ed,max/(XI Rk/gM1) = <mark>0.06 < 1.00</mark>	LT*My,Rk/gM1) + (6.3.3.(4))	
N,Ed/(Xz*N,Rk/gM1) kzz*Mz,Ed,max/(Mz,F	+ kzy*My,Ed,max/(XL Rk/gM1) = <mark>0.13 < 1.00</mark>	T*My,Rk/gM1) + (6.3.3.(4))	

Profil correct !!!

Conclusions :

L'étude que nous avons fait nous a permis de déterminer les profilées des éléments secondaires, qui devront résister aux différentes sollicitations et voici les profilés qui ont été retenus après les vérifications et les dimensionnements :

- Les pannes : **HEA 100**
- Les lisses de bardages : HEA 100
- Les potelets : IPE 240
- Poutres de chainage : HEA 120
- Les liernes : barre ronde de 10 mm de diamètre.

V.3. Etude de chemin de roulement :

La manutention d'objets lourds dans un hall industriel nécessite souvent l'emploi d'engins spéciaux dits engins de manutention ou de levage. Parmi les plus courants on trouve les ponts roulants, qui ont des caractéristiques fixes fournis par le constructeur. Les éléments mobiles (chariot, crochet, pont) d'un engin de manutention permettent d'effectuer simultanément trois genres de mouvement :

- Levage : mouvement vertical de la charge levée.
- Direction : mouvement du chariot transversalement.
- Translation : mouvement du pont roulant le long du bâtiment.

Figure V.17 : Représentation d'un pont roulant.

<u>1. Caractéristique du pont roulant :</u>

Notre hangar sera doté d'un pont roulant de capacité de levage de 5t.

Pont roulant	5000 Kg		
	R _{max}	5200 Kg	
	R _{min}	2200 Kg	
	R _{Vmax}	6000 Kg	
Réactions Pont roulant	R _{Vmin}	2600 Kg	
	R _{Lmax}	1100 Kg	
	R _{Lmin}	500 Kg	
	R _{Hmax}	600 Kg	
	R _{Hmin}	250 Kg	

Tableau V.9 : Les réactions max et min du pont roulant.

2. Etude de la poutre de roulement :

Figure V.18 : Disposition de la poutre de roulement.

<u>2.1 Evaluation de charges :</u>

• <u>Charges permanentes</u>

Elle comprend tous les poids propre de tous les éléments constituant le chemin déroulement : Rail de roulement, poutre verticale de roulement, passerelle, poutre verticale latérale à la console supportant la passerelle.

<u>Charges roulantes</u>

Toutes les réactions verticales et horizontales des galets de roulement et Éventuellement de guidage du pont.

Ces réactions sont fonction de :

- Poids du pont et son équipement.
- Poids du chariot et son équipement.
- La charge à lever et de ses accessoires.
- Charges mobiles appliqués sur la passerelle

Elles sont dues à la circulation du personnel assurant la manœuvre d'entretien du pont ainsi qu'au poids du matériel nécessaire à la réparation éventuelle.

Figure V.19 : Les réactions du pont roulant.

2.2 Vérification et dimensionnement de la poutre de roulement :

Vérification :

🗾 NF EN 1993-	-1-1:20	05/NA:2013/A1	I:2014 - Vérifica	ition des fa	amilles (E	LU) 10		
Résultats Me	ssages							Note de calcul Fermer
Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille : 1	10 CDF	RS						Taux de travai
267 Cdr_26	7 <mark>0</mark> K	CDR	S 275	54.68	92.31	0.85	20 ELU /9/	Analyza Castagraphia
								Analyse Cartographie
								Points de calcul
								division: n = 7
								extrêmes: aucun
1								additionnels: aucun

Tableau V.10 : Vérification de la poutre de roulement.

Le profilé HEA 260 est vérifié.

Dimensionnement :

Tableau V.11 : Dimensionnement de la poutre de roulement.
Le profilé **HEA 240** n'est pas vérifié donc nous ne pouvons pas changer le profilé **HEA 260** et il reste comme poutre de roulement.

2.3. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 10 CDRS

PIECE: 273 CDR_273 **POINT:** 7 **COORDONNEE:** x = 0.50 L = 3.00 m

CHARGEMENTS:

Cas de charge décisif: 20 ELU /9/ 1*1.35 + 2*1.35 + 3*1.50 + 11*1.50 + 12*1.50 + 13*1.50

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

PARAMETRES DE LA SECTION: HEA 260

h=25.0 cm	gM0=1.00	gM1=1.00	
b=26.0 cm	Ay=73.54 cm2	Az=28.76 cm2	Ax=86.82 cm2
tw=0.8 cm	Iy=10455.00 cm4	Iz=3667.56 cm4	Ix=46.30 cm4
tf=1.2 cm	Wply=919.86 cm3	Wplz=430.18 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 3257.32 daN Vy,Ed = 419.20 daN	My,Ed = 9450.16 daN*m $Mz,Ed = -565.03 daN*m$
Nc,Rd = 238753.35 daN	My,Ed,max = 9450.16 daN*m Mz,Ed,max = 877.36 daN*m
Vy,T,Rd = 107463.07 daN	
Nb,Rd = 120352.59 daN	My,c,Rd = 25296.07 daN*m Mz,c,Rd = 11829.92 daN*m
Vz,Ed = 4569.85 daN	
MN,y,Rd = 25296.07 daN*	m MN,z,Rd = 11829.92 daN*m Vz,T,Rd = 43511.35 daN
Mb,Rd = 23516.77 daN*m	Tt,Ed = 112.48 daN*m
	Classe de la section -1

Classe de la section = 1

PARAMETRES DE DEVERSEMENT:

z = 1.00	Mcr = 76929.17 daN* XLT = 0.89	m	Courbe,LT -
Lcr,upp=6.00 m	Lam_LT = 0.57	fi,LT = 0.71	XLT,mod = 0.93
PARAMETRES DE	FLAMBEMENT:		
1.0 en y:		to auto en z:	
Ly = 6.00 m	Lam_y = 0.63	Lz = 6.00 m	Lam_z = 1.06
Lcr, y = 6.00 m	Xy = 0.82	Lcr, z = 6.00 m	Xz = 0.50
Lamy = 54.68	kyy = 1.01	Lamz = 92.31	kyz = 0.89
FORMULES DE VE	RIFICATION:		
Contrôle de la résistar	nce de la section:		
N,Ed/Nc,Rd = 0.01 < 1	1.00 (6.2.4.(1))		
(My,Ed/MN,y,Rd)^ 2.0	00 + (Mz,Ed/MN,z,Rd)	$^{1.00} = 0.19 < 1.00$ (6)	5.2.9.1.(6))
Vy,Ed/Vy,T,Rd = 0.00	<mark>) < 1.00</mark> (6.2.6−7)		
Vz,Ed/Vz,T,Rd = 0.11	< 1.00 (6.2.6-7)		
Tau,ty,Ed/(fy/(sqrt(3)*	fgM0)) = 0.19 < 1.00 ((6.2.6)	
Tau,tz,Ed/(fy/(sqrt(3)*	(gM0)) = 0.11 < 1.00 (6.2.6)	
Contrôle de la stabilite	é globale de la barre:		
Lambda,y = 54.68 < L	ambda, $max = 210.00$		
Lambda,z = 92.31 < La	ambda,max = 210.00		STABLE
My,Ed,max/Mb,Rd =	0.40 < 1.00 (6.3.2.1.(1)))	
N,Ed/(Xy*N,Rk/gM1) kyz*Mz,Ed,max/(Mz,I	+ kyy*My,Ed,max/(XI Rk/gM1) = <mark>0.49 < 1.00</mark>	LT*My,Rk/gM1) + (6.3.3.(4))	
N,Ed/(Xz*N,Rk/gM1) kzz*Mz.Ed.max/(Mz.F	+ kzy*My,Ed,max/(XI Rk/gM1) = $0.31 < 1.00$	LT*My,Rk/gM1) + (6.3.3.(4))	

Profil correct !!!

3. Etude du support du chemin de roulement :

Le chemin de roulement est supporté par des consoles soudées sur le poteau de l'ossature principale du hangar. Ces consoles sont sollicitées par :

- Leurs poids propres
- Le poids propre du chemin de roulement
- Les charges verticales et horizontales transmises par les galets

Figure V.20 : Disposition du support du chemin de roulement

3.1. Vérification et dimensionnement du support du chemin de roulement :

Vérification :

NF EN 1993-1-1	:2005/NA:2013/A1	:2014 - Vérifica	ation des fa	amilles (E	LU) 11		
ésultats Messag	jes						Note de calcul Fermer
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille : 11 P	ORTE CDRS						Taux de travail
201 Porte CDR_2	PORTE CDR	S 275	5.24	11.87	0.14	20 ELU /16/	Analyse Cartographie
							Points de calcul division: n = 7 extrêmes: aucun additionnels: aucun

Tableau V.12 : Vérification de support du chemin de roulement.

Le profilé en HEA 320 est vérifié.

Dimensionnement :

🗲 NF EN 1993-1-1:	:2005/NA:2013/A	l:2014 - Vérifica	ation des f	amilles (E	LU) 11				
Résultats Messag	jes						Note de calcul Fermer		
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide		
Famille : 11 P	Famille : 11 PORTE CDRS								
206 Porte CDR_2	K HEA 260	S 275	6.49	13.67	0.22	14 ELU /1/			
							Analyse Cartographie		
							Points de calcul		
							division: n = 7		
							extrêmes: aucun		
							additionnels: aucun		

 Tableau V.13 : Dimensionnement de support du chemin de roulement.

Pour des raisons économiques et pratiques on prend le profilé **HEA 260** comme support du chemin de roulement.

3.2. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 11 PORTE CDRS

PIECE: 206 Porte CDR_206 **POINT:** 7 **COORDONNEE:** x = 0.86 L = 0.77 m

CHARGEMENTS:

Cas de charge décisif: 14 ELU / 1 / 1*1.35 + 2*1.35 + 3*1.50 + 11*1.50 + 12*1.50 + 13*1.50

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

PARAMETRES DE LA SECTION: HEA 260

h=28.1 cm	gM0=1.00	gM1=1.00	
b=26.0 cm	Ay=65.00 cm2	Az=19.17 cm2	Ax=120.67 cm2
tw=0.8 cm	Iy=15847.89 cm4	Iz=5498.46 cm4	Ix=62.90 cm4
tf=1.2 cm	Wely=950.60 cm3	Welz=422.96 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = -454.14 daN	My,Ed = -0.84 daN*m	Mz,Ed = 362.55 daN*m
Vy,Ed = -385.21 daN		
Nt,Rd = 331852.31 daN	My,el,Rd = 26141.40 daN*m	Mz,el,Rd = 11631.35 daN*m
Vy,T,Rd = 101963.40 da	N	
My,c,Rd = 26141.40 daN	[*] m Mz,c,Rd = 11631.35 daN*m	Vz,Ed = 6011.52 daN
Vz,T,Rd = 30212.68 daN		
Mb,Rd = 26141.40 daN*	m	Tt,Ed = 14.18 daN*m
	Classe de la sec	extinction = 3

PARAMETRES DE DEVERSEMENT:

z = 1.00 d	Mcr = 2198341.62 daN XLT = 1.00	Courbe,LT -	
Lcr,low=1.80 m	Lam_LT = 0.11	fi,LT = 0.47	XLT,mod = 1.00

PARAMETRES DE FLAMBEMENT:

en y:

X		
	en	z:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

N,Ed/Nt,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.03 < 1.00 (6.2.1(7))

 $sqrt(Sig,x,Ed^{*}2 + 3^{*}(Tau,z,Ed+Tau,tz,Ed)^{2})/(fy/gM0) = 0.22 < 1.00$ (6.2.1.(5))

Vy,Ed/Vy,T,Rd = 0.00 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.20 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.03 < 1.00 (6.2.6)

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.02 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre:

My,Ed/Mb,Rd = 0.00 < 1.00 (6.3.2.1.(1))

Profil correct !!!

Conclusions :

L'étude que nous avons fait nous a permis de déterminer les profilées des éléments du chemin de roulement, qui devront résister aux différentes sollicitations et voici les profilés qui ont été retenus après les vérifications et les dimensionnements :

- Poutre de roulement en HEA260
- Support de chemin de roulement en HEA260

V.4 Etude des contreventements :

<u>1. Introductions :</u>

Les contreventements sont un système statique conçu pour assurer la stabilité globale d'une structure vis-à-vis des influences horizontales de toute action (ex. : vent, séisme, choc, etc.). Elles sont conçues pour prendre les forces de la structure dans le vent et les amener au sol. Ils sont disposés soit en toiture du plan incliné (poutres à vent), soit en façade (colonnes de stabilisation) et doivent résister aux efforts du vent exercés sur les pignons et longs côtés.

Figure V.21 : Détails des contreventements

2. Contreventements horizontal :

Figure V.22 : Disposition de contreventement horizontal

2.1. Vérification et dimensionnement des contreventements horizontal :

Vérification :

NF EN 1993-1-1	:2005/NA:2013/A	1:2014 - Vérificat	tion des fa	amilles (E	LU)7		
Résultats Messag	jes						Note de calcul Fermer
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille: 7 C		TS S 275	194.06	194.06	1 34	20 EL IL /327/	Taux de travail
TTO CONTEVENTE		3213	134.00	134.00	1.54	20 220 13211	Analyse Cartographie
							Points de calcul
							Points de calcul division: n = 7

 Tableau V.14 : Vérification des contreventements horizontal.

La cornière **CAE 60×6** n'est pas vérifiée au flambement par rapport à l'axe à plus faible inertie du repère principal.

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:	
My,Ed/My,c,Rd = $0.17 < 1.00$ (6.2.5.(1))	
N,Ed/Nc,Rd + My,Ed/My,c,Rd = $0.33 < 1.00$ (6.2.1(7))	
Vz,Ed/Vz,T,Rd = 0.00 < 1.00 (6.2.6-7)	
Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = $0.01 < 1.00$ (6.2.6)	
Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = $0.01 < 1.00$ (6.2.6)	
Contrôle de la stabilité globale de la barre:	
Lambda, $y = 194.06 < Lambda, max = 210.00$	
Lambda, $z = 194.06 < Lambda, max = 210.00$	STABLE
$N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed,max/(XLT*My,Rk/gM1) = \frac{1.29 > 1.00}{1.29 > 1.00}$	(6.3.3.(4))
$N,Ed/(Xz*N,Rk/gM1) + kzy*My,Ed,max/(XLT*My,Rk/gM1) = \frac{1.29 > 1.00}{1.29 > 1.00}$	(6.3.3.(4))

Profil incorrect !!!

Dimensionnement :

🗾 NF EN 199	93-1-1:	200)5/NA:2013/A1	l:2014 - Dimen	sionneme	nt des fam	nilles (ELU)7	
Résultats N	Messag	es							Note de calcul Fermer
Pièce			Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille	: 7 CC	DNT	REVENTEMENT	۲S					
119		1	CAE 70x5		164.91	164.91	1.07		Changer tout
Contrevente	ments	0K	CAE 70x6	S 275	165.45	165.45	0.92	20 ELU /327/	
_119		Ŧ	CAE 70x7		166.12	166.12	0.81		Points de calcul
									division: n = 7 extrêmes: aucun additionnels: aucun

 Tableau V.15 : Dimensionnement des contreventements horizontal.

Pour plus de sécurité, on adopte la cornière CAE 70×7.

2.2. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 7 CONTREVENTEMENTS

PIECE: 125 Contreventements_125 **POINT:** 2 **COORDONNEE:** x = 0.17 L = 1.17 m

CHARGEMENTS:

Cas de charge décisif: 14 ELU /273/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 9*1.35 + 11*1.35 + 12*1.35 + 13*1.35

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

PARAMETRES DE LA SECTION: CAE 70x7

h=7.0 cm	gM0=1.00	gM1=1.00	
b=7.0 cm	Ay=4.90 cm2	Az=4.90 cm2	Ax=9.40 cm2
tw=0.7 cm	Iy=42.30 cm4	Iz=42.30 cm4	Ix=1.52 cm4
tf=0.7 cm	Wely=8.41 cm3	Welz=8.41 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 2934.38 daN	My,Ed = 33.61 daN*m	
Nc,Rd = 25850.00 daN	My,Ed,max = 60.50 daN*m	
Nb,Rd = 5853.64 daN	My,c,Rd = 231.26 daN*m	Vz,Ed = 22.89 daN
Vz,T,Rd = 7765.65 daN		Tt,Ed = -0.13 daN*m

Classe de la section = 3

Y PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

en y:		en z:	
Ly = 7.05 m	Lam_y = 1.91	Lz = 7.05 m	$Lam_{z} = 1.91$
Lcr,y = 3.52 m	Xy = 0.23	Lcr, z = 3.52 m	Xz = 0.23
Lamy = 166.15	kyy = 1.12	Lamz = 166.15	kzy = 1.12

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:							
My,Ed/My,c,Rd = $0.15 < 1.00$ (6.2.5.(1))							
N,Ed/Nc,Rd + My,Ed/My,c,Rd = $0.26 < 1.00$ (6.2.1(7))							
Vz,Ed/Vz,T,Rd = 0.00 < 1.00 (6.2.6-7)							
Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = $0.00 < 1.00$ (6.2.6)							
Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = $0.00 < 1.00$ (6.2.6)							
Contrôle de la stabilité globale de la barre:							
Lambda, $y = 166.15 < Lambda, max = 210.00$							
Lambda, $z = 166.15 < Lambda, max = 210.00$	STABLE						
$N, Ed/(Xy*N, Rk/gM1) + kyy*My, Ed, max/(XLT*My, Rk/gM1) = \frac{0.79 < 1.00}{0.79 < 1.00}$	(6.3.3.(4))						
$N, Ed/(Xz*N, Rk/gM1) + kzy*My, Ed, max/(XLT*My, Rk/gM1) = \frac{0.79 < 1.00}{0.79 < 1.00}$	(6.3.3.(4))						
Profil correct !!!							

3. Palée de stabilité en long-pan :

Les palées de stabilité doivent supporter les efforts horizontaux dus à la réaction de la poutre au vent (contreventement des versants) et la réaction horizontale longitudinale due aux freins de service. Pour ces dernières dimensions, les diagonales compressées seront ignorées et seules les diagonales tendues seront utilisées, en supposant qu'elles sont courbes.

Figure V.23 : disposition de palée de stabilité

3.1 Vérification et dimensionnement de palée de stabilité :

```
• Stabilité inférieur :
```

Vérification :

NF EN 1993-1-1:2005/NA:2013/A1:2014 - Vérification des familles (ELU) 8							
ésultats Messag	jes						Note de calcul Fermer
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille : 8 ST 18 Stabilités INF	STAB1	S 275	116.11	80.48	0.24	20 ELU /107/	Taux de travail
							Analyse Cartographie
							Points de calcul
							division: n = 7 extrêmes: aucun
							additionnels: aucun

Tableau V.16 : Vérification de stabilité inférieur.

Le profilé en CAE 120×12 est vérifié.

Dimensionnement :

ultats Messa	iges						Note de calcul Fermer
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille: 8 S	TABILITES INF						
	CAE 100x8		138.87	138.87	1.09		Changer tout
8 Stabilites	CAE 100x10	S 275	139.69	139.69	0.90	20 ELU /352/	
	L CAE 100x12	7	140.64	140.64	0.78		Pointe de calcul
		,					division: n = 7
							extrêmes: aucun
							additionnels: aucun

Tableau V.17 : Dimensionnement de stabilité inférieur.

Pour des raisons économiques nous choisissons la cornière en CAE 100×10.

3.2. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 8 STABILITES INF

PIECE: 24 Stabilités INF_24 **POINT:** 1 **COORDONNEE:** x = 0.92 L = 7.78 m

CHARGEMENTS:

Cas de charge décisif: 14 ELU /33/ 1*1.35 + 2*1.35 + 5*1.50

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

PARAMETRES DE LA SECTION: 2 CAE 100x10

h=10.0 cm	gM0=1.00	gM1=1.00	
b=20.8 cm	Ay=20.00 cm2	Az=18.00 cm2	Ax=38.31 cm2
tw=1.0 cm	Iy=353.40 cm4	Iz=750.60 cm4	Ix=12.67 cm4
tf=1.0 cm	Wely=49.22 cm3	Welz=72.17 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = -2259.60 daN M Vy,Ed = 229.08 daN	y,Ed = -225.93 daN*m	Mz,Ed = 161.99 daN*m
Nt,Rd = 105349.75 daN Mz,el,Rd = 1984.77 daN*m	My,el,Rd = 1353 Vy,T,Rd = 3175	3.55 daN*m 4.26 daN
My,c,Rd = 1353.55 daN*m	Mz,c,Rd = 1984.	77 daN*m
Vz,Ed = 329.48 daN	Vz,T,Rd = 28578	.84 daN
	Tt, Ed = -3.01 da	N*m
	Classe de la sect	ion = 3

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

en y:

X		
\sim	en	

en z:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

N,Ed/Nt,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.19 < 1.00 (6.2.1(7))

 $sqrt(Sig,x,Ed^2 + 3*Tau,y,Ed^2)/(fy/gM0) = 0.26 < 1.00$ (6.2.1.(5))

Vy,Ed/Vy,c,Rd = 0.01 < 1.00 (6.2.6.(1))

Vz,Ed/Vz,c,Rd = 0.01 < 1.00 (6.2.6.(1))

Profil correct !!!

• <u>Stabilité supérieure :</u>

Vérification :

ésultats Messag	jes						Note de calcul Fermer
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
2 Stabilités SUP	STAB2	S 275	148.57	100.13	0.15	20 ELU /328/	Taux de travail
							Analyse Cartographie
							Points de calcul division: n = 7
							extrêmes: aucun
							additionnels: aucun

Tableau V.18 : Vérification de stabilité supérieure.

La cornière en CAE 80×8 est vérifiée.

Dimensionnement :

NF EN 1993-1-1	:200	05/NA:2013/A1	l:2014 - Dimen	sionnemer	nt des fam	nilles (ELU) 9	
Résultats Messag	jes							Note de calcul Fermer
Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille: 9 S	ТАВ	ILITES SUP						
00 Ctobation	1	CAE 60x4		197.02	197.02	1.02		Changer tout
SUP 82	ок	CAE 60x5	S 275	197.61	197.61	0.87	20 ELU /328/	
0002	₽	CAE 60x6		198.52	198.52	0.76		Points de calcul
								division: n = 7
								extrêmes: aucun
								additionnels: aucun

Tableau V.19 : Dimensionnement de stabilité supérieure.

Pour des raisons pratiques nous choisissons la cornière en CAE 70×7 pour la stabilité supérieure.

3.3. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 9 STABILITES SUP

PIECE: 87 Stabilités SUP_87**POINT:** 6 **COORDONNEE:** x = 0.83 L = 3.00 m

CHARGEMENTS:

Cas de charge décisif: 20 ELU /328/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 9*1.35 + 13*1.35

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

PARAMETRES DE LA SECTION: 2 CAE 70x7

h=7.0 cm	gM0=1.00	gM1=1.00	
b=14.8 cm	Ay=9.80 cm2	Az=8.82 cm2	Ax=18.79 cm2
tw=0.7 cm	Iy=84.60 cm4	Iz=190.16 cm4	Ix=3.04 cm4
tf=0.7 cm	Wely=16.82 cm3	Welz=25.70 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 1510.03 daN	My,Ed = 14.68 daN*m
Nc,Rd = 51683.01 daN	My,Ed,max = 26.42 daN*m
Nb,Rd = 11246.36 daN	My,c,Rd = 462.52 daN*m
Vz,Ed = -19.54 daN	Vz,T,Rd = 14003.63 daN
Tt,Ed = -0.09 daN*m	Classe de la section $= 3$

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

1.0 en y:		1.0 en z:			
Ly = 3.61 m	Lam_y = 1.96	Lz = 3.61 m	Lam_z = 1.31		
Lcr, y = 3.61 m	Xy = 0.22	Lcr, z = 3.61 m	Xz = 0.42		
Lamy = 169.94	kyy = 1.03	Lamz = 113.35	kzy = 1.10		

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

My,Ed/My,c,Rd = 0.03 < 1.00 (6.2.5.(1))

N,Ed/Nc,Rd + My,Ed/My,c,Rd = 0.06 < 1.00 (6.2.1(7))

 $sqrt(Sig,x,Ed^{*}2 + 3^{Tau,z,Ed^{2}})/(fy/gM0) = 0.06 < 1.00$ (6.2.1.(5))

Vz,Ed/Vz,c,Rd = 0.00 < 1.00 (6.2.6.(1))

Contrôle de la stabilité globale de la barre:

Lambda, y = 169.94 < Lambda, max = 210.00

Lambda, z = 113.35 < Lambda, max = 210.00

N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed,max/(XLT*My,Rk/gM1) = 0.19 < 1.00 (6.3.3.(4))

N,Ed/(Xz*N,Rk/gM1) + kzy*My,Ed,max/(XLT*My,Rk/gM1) = 0.13 < 1.00 (6.3.3.(4))

Profil correct !!!

63

STABLE

Conclusions :

L'étude que nous avons fait nous a permis de déterminer les profilées des éléments des contreventements, qui devront résister aux différentes sollicitations et voici les profilés qui ont été retenus après les vérifications et les dimensionnements :

- Contreventements horizontales CAE 70×7
- Stabilité inférieur 2 CAE 100×10
- Stabilité supérieur 2 CAE 70×7

V.5 Etude de portique :

<u>1. Introduction :</u>

Le portique est l'ossature principale de la structure, il est composé de traverses (fermes) qui portent les pannes, et des poteaux qui portent les traverses. Destiné à permettre le cheminement progressif des actions mécaniques vers les appuis et les fondations tout en assurant la stabilité de l'ouvrage et en limitant les déformations de la structure.

L'étude des portiques nécessite au préalable l'évaluation de toutes les charges (permanentes, d'exploitations, climatiques et séismiques) qui lui seraient appliquées. Les calculs se fait sous les combinaisons d'actions les plus défavorables auxquelles il pourrait être soumis durant toute la période d'exploitation de l'ouvrage, en d'autres termes il sert à estimer les éléments de réduction (M, N, T) concernant les poteaux et les traverses.

Figure V.24 : Vue de face du portique

Figure V.25 : Numérotation des nœuds

2. Diagrammes des efforts internes :

2.1 Diagrammes des efforts internes à l'ELS :

Figure V.26 : Diagramme des efforts normaux à l'ELS

Figure V.27 : Diagramme des efforts tranchant à l'ELS

Figure V.28 : Diagramme des moments fléchissent à l'ELS

Figure V.29 : Diagramme des efforts normaux à l'ELU

Figure V.30 : Diagramme des efforts tranchant à l'ELU

Figure V.31 : Diagramme des moments fléchissent à l'ELU

<u>3. Tableaux des résultats :</u> 3.1. Réactions extrêmes par rapport au Repère global :

	FX [daN]	FY [daN]	FZ [daN]	MX [daNm]	MY [daNm]	MZ [daNm]
MAX	7611,28	4900,16	22164,15	104,84	23433,02	11,99
Noeud	273	1	234	275	234	236
Cas	ELU/292	ELU/279	ELU/340	ELU/11	ELU/338	ELU/13
MIN	-7804,22	-6286,78	-6939,57	-18,25	-24975,91	-11,99
Noeud	236	434	82	10	236	234
Cas	ELU/269	ELU/41	9	ELU/41	ELU/274	ELU/1

Tableau V.20 : Réactions extrêmes par rapport au Repère global.

3.2. Déplacements Extrêmes des nœuds :

	UX [cm]	UY [cm]	UZ [cm]	RX [Rad]	RY [Rad]	RZ [Rad]
MAX	6,7	5,8	8,4	0,101	0,024	0,020
Noeud	22	452	253	56	287	55
Cas	ELU/274	ELU/41	ELU/41	ELU/300	ELU/352	ELU/276
MIN	-3,5	-5,8	-14,9	-0,101	-0,101	-0,020
Noeud	244	451	291	136	57	65
Cas	ELU/338	ELU/41	ELU/352	ELU/348	ELU/7	ELU/300

Tableau V.21 : Déplacements Extrêmes des nœuds.

3.3 Les Efforts extrêmes :

	FX [daN]	FY [daN]	FZ [daN]	MX [daNm]	MY [daNm]	MZ [daNm]
MAX	21591,16	2805,82	13595,88	423,95	33311,86	2826,93
Barre	197	10	235	9	234	10
Noeud	234	14	274	14	276	14
Cas	ELU/340	ELU/276	ELU/328	ELU/300	ELU/352	ELU/276
MIN	-8966,08	-2805,82	-11151,31	-423,95	-36093,02	-2723,19
Barre	10	9	236	10	233	72
Noeud	14	14	276	14	274	93
Cas	ELU/39	ELU/300	ELU/240	ELU/276	ELU/328	ELU/328

Tableau V.22 : Les Efforts extrêmes.

3.4 Les Contraintes extrêmes :

	S max [daN/m2]	S min [daN/m2]	S max(My) [daN/m2]	S max(Mz) [daN/m2]	S min(My) [daN/m2]	S min(Mz) [daN/m2]	Fx/Ax [daN/m2]
MAX	31022235,16	4487420,31	24399300,53	23044271,36	0,00	0,00	4487420,31
Barre	9	62	233	10	55	53	62
Noeud	14	40	274	14	5	28	40
Cas	ELU/300	ELU/300	ELU/328	ELU/276	ELU/338	ELU/329	ELU/300
MIN	-4413243,59	- 28921618,74	-0,00	-0,00	- 24399300,53	- 23044271,36	-4413243,59
Barre	124	10	52	118	233	10	124
Noeud	93	14	51	93	274	14	93
Cas	ELU/352	ELU/300	ELU/51	ELU/41	ELU/328	ELU/276	ELU/352

3.5 Flèches extrêmes :

	UX [cm]	UY [cm]	UZ [cm]
MAX	0,1	13,9	7,8
Barre	267	424	425
Cas	ELU/28	ELU/35	ELU/35
MIN	-0,2	-0,8	-7,8
Barre	46	18	424
Cas	ELU/13	ELU/352	ELU/43

Tableau V.24 : Flèches extrêmes.

4. Vérification et dimensionnement du portique :

4.1 Vérification des traverses :

F NF EN 1993-1-1	:2005/NA:2013/A	1:2014 - Vérifica	ation des f	amilles (E	LU) 2		
Résultats Messag	jes						Note de calcul Fermer
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille : 2 TR	RAVERSES	-					Taux de travai
127 Traverses_1	C TRAVERS	S 275	62.26	266.04	1.72	20 ELU /328/	Analyza Contacontia
							Points de calcul division: n = 7 extrêmes: aucun additionnels: aucun

Tableau V.25 : Vérification des traverses.

Le profilé en IPE 360 n'est pas vérifié.

Les barres 3 4 9 10 65 66 71 72 127A343P36 128A344P36 possèdent des âmes dont l'élancement dépasse la valeur limite donnée dans le point 6.2.6(6). Pour ces sections, le contrôle de la stabilité locale de l'âme en cisaillement doit être effectué, conformément à la norme EN 1993-1-5.

Contrôle de la stabilité globale de la barre:

 $\begin{array}{l} My, Ed/Mb, Rd = 1.60 > 1.00 \quad (6.3.2.1.(1)) \\ N, Ed/(Xy*N, Rk/gM1) + kyy*My, Ed/(XLT*My, Rk/gM1) + kyz*Mz, Ed/(Mz, Rk/gM1) = \\ \hline 1.65 > 1.00 \quad (6.3.3.(4)) \\ N, Ed/(Xz*N, Rk/gM1) + kzy*My, Ed/(XLT*My, Rk/gM1) + kzz*Mz, Ed/(Mz, Rk/gM1) = \\ \hline 1.65 > 1.00 \quad (6.3.3.(4)) \end{array}$

Profil incorrect !!!

4.2. Dimensionnement des traverses :

🗾 NF EN 1993-1-1	NF EN 1993-1-1:2005/NA:2013/A1:2014 - Vérification des familles (ELU) 2							
Résultats Messag	jes							Note de calcul Fermer
Pièce	PI	rofil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille : 2 TF	Famille : 2 TRAVERSES							Taux do travail
132 Traverses_1	K IPE 4	450	S 275	50.33	244.67	0.87	14 ELU /352/	
								Analyse Cartographie
								Points de calcul
								division: n = 7
								extrêmes: aucun
1								additionnels: aucun
1								

Tableau V.26 : Dimensionnement des traverses.

Nous choisissons le profilé en IPE 450.

4.3. Note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 2 TRAVERSES

PIECE: 132 Traverses_132 **POINT:** 1 **COORDONNEE:** x = 0.00 L = 0.00 m

CHARGEMENTS:

Cas de charge décisif: 14 ELU /352/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 10*1.35 + 12*1.35 + 13*1.35

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

	2
- 11	εĭ
	3-

PARAMETRES DE LA SECTION: IPE 450

h=85.5 cm	gM0=1.00	gM1=1.00						
b=19.0 cm	Ay=55.48 cm2	Az=77.63 cm2	Ax=163.26 cm2					
tw=0.9 cm	Iy=145295.48 cm4	Iz=2513.07 cm4	Ix=93.20 cm4					
tf=1.5 cm	Wely=3381.00 cm3	Welz=264.53 cm3						
EFFORTS INTERNE	ES ET RESISTANCES	ULTIMES:						
N,Ed = 9268.55 daN	My,Ed = -34561.54 da	N*m	Mz,Ed = 36.63 daN*m					
Vy,Ed = -59.60 daN								
Nc,Rd = 448960.60 da	N My, $el,Rd = 92977.$	62 daN*m Mz,el,Rd	= 7274.69 daN*m					
Vy,T,Rd = 87158.36 d	aN							
Nb,Rd = 448960.60 da	N My,c,Rd = 9297	7.62 daN*m Mz,c,Ro	d = 7274.69 daN*m					
Vz,Ed = 14332.02 daN	Vz,T,Rd = 12	2412.19 daN						
Mb,Rd = 40806.93 dat	N*m Tt,Ed = 17.74	daN*m						
		Classe de la section $= 3$	3					
PARAME	FRES DE DEVERSEN	IENT:						
z = 1.00 d	Mcr = 77418.52 daN*r XLT = 0.42	n	Courbe,LT -					
Lcr,low=5.06 m	Lam_LT = 1.10	fi,LT = 1.44	XLT,mod = 0.44					
PARAMETRES DE I	FLAMBEMENT:							
en y:		en z:						
	kyy = 1.00		kzz = 1.00					
FORMULES DE VE	RIFICATION:							
Contrôle de la résistan	nce de la section:							
N,Ed/Nc,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = $0.40 < 1.00$ (6.2.1(7))								
$sqrt(Sig,x,Ed^{*}2 + 3^{*}(Tau,z,Ed+Tau,tz,Ed)^{2})/(fy/gM0) = 0.40 < 1.00$ (6.2.1.(5))								
Vy,Ed/Vy,T,Rd = 0.00 < 1.00 (6.2.6-7)								
Vz,Ed/Vz,T,Rd = 0.12	<1.00 (6.2.6-7)							
Tau,ty,Ed/(fy/(sqrt(3)*	gM0)) = 0.03 < 1.00 (0	6.2.6)						
Tau,tz,Ed/(fy/(sqrt(3)*	gM0)) = 0.02 < 1.00 (6	5.2.6)						

Contrôle de la stabilité globale de la barre:

My,Ed/Mb,Rd = 0.85 < 1.00 (6.3.2.1.(1))

N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed/(XLT*My,Rk/gM1) + kyz*Mz,Ed/(Mz,Rk/gM1) = 0.87< 1.00 (6.3.3.(4))

N,Ed/(Xz*N,Rk/gM1) + kzy*My,Ed/(XLT*My,Rk/gM1) + kzz*Mz,Ed/(Mz,Rk/gM1) = 0.87< 1.00 (6.3.3.(4))

Profil correct !!!

4.4. Vérification des poteaux :

NF EN 1993-1-1:	:2005/NA:2013/A1	:2014 - Vérifica	ation des fa	amilles (E	LU)1		
Résultats Messag	es						Note de calcul Fermer
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	Aide
Famille : 1 PC	DTEAUX						Taun da trausil
197 Poteaux_197	M POTEAUX	S 275	29.46	74.72	0.95	20 ELU /340/	
							Analyse Cartographie
							Points de calcul
							division: n = 7
							extrêmes: aucun
							additionnels: aucun

Tableau V.27 : Vérification des poteaux.

Le profilé HEA 320 est vérifié.

4.5. Dimensionnement des poteaux :

ésultats Messages	;							Note de calcul Fermer
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	^	Aide
1	HEA 300		31.40	74.79	1.12		1	7.000
97 Poteaux_197 📴	HEA 320	S 275	29.46	74.72	0.95	20 ELU /340/		Changer tout
I	HEA 340	1	27.77	75.03	0.84			
1	HEB 260	1	35.64	85.05	1.20		1	- Pointe de calcul
97 Poteaux_197 📴	HEB 280	S 275	33.03	79.04	0.99	20 ELU /340/		division: n = 7
I	HEB 300	1	30.79	73.89	0.79			extrêmes: aucun

 Tableau V.28 : Dimensionnement des poteaux.

Pour des raisons de sécurité on adopte le profilé en HEB 300.

4.6. La note de calcul :

NORME: NF EN 1993-1-1:2005/NA:2013/A1:2014, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des familles

FAMILLE: 1 POTEAUX

PIECE: 202 Poteaux_202 **POINT:** 5 **COORDONNEE:** x = 0.45 L = 3.60 m

CHARGEMENTS:

Cas de charge décisif: 20 ELU /340/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 10*1.35 + 11*1.35 + 13*1.35

MATERIAU:

S 275 (S 275) fy = 27500000.00 daN/m2

PARAMETRES DE LA SECTION: HEB 300

h=30.0 cm	gM0=1.00	gM1=1.00	
b=30.0 cm	Ay=126.20 cm2	Az=47.43 cm2	Ax=149.08 cm2
tw=1.1 cm	Iy=25165.70 cm4	Iz=8562.83 cm4	Ix=185.77 cm4
tf=1.9 cm	Wply=1868.67 cm3	Wplz=870.14 cm3	

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 22738.76 daN	My,Ed = -5401.45 daN Vy,Ed = -8.51 daN	I*m	Mz, Ed = d	4.69 daN*m
Nc,Rd = 409970.00 da = 104.35 daN*m	N Vy,T,Rd = 200326.98	My,Ed,max = -33977.0 daN)6 daN*m	Mz,Ed,max
Nb,Rd = 258329.46 da 23928.85 daN*m	N Vz,Ed = -7328.09 daN	My,c,Rd = 51388.43 d	aN*m	Mz,c,Rd =
daN*m	MN,y,Rd = 51388.43 d Vz,T,Rd = 75296.01 d	laN*m aN	MN,z,Rd	= 23928.85
daN*m	Mb,Rd = 51388.43 daN	N*m	Tt,Ed =	= -0.82

Classe de la section =

1

BARAMETRES DE DEVERSEMENT:

z = 0.00	$Mcr = 372142.80 \text{ daN}^{3}$ XLT = 0.97	*m	Courbe,LT -
Lcr,low=4.00 m	Lam_LT = 0.37	fi,LT = 0.58	XLT,mod = 1.00
PARAMETRES DE	FLAMBEMENT:		
I en y:		en z:	

Ly = 8.00 m	Lam_y = 0.35	Lz = 8.00 m	Lam_z = 0.85
Lcr,y = 4.00 m	Xy = 0.94	Lcr, z = 5.60 m	Xz = 0.63

Lamy = 30.79	kyy = 1.00	Lamz = 73.89	kyz = 0.69
FORMULES DE VI	ERIFICATION:		
Contrôle de la résiste	ance de la section :		
N,Ed/Nc,Rd = 0.06 <	(1.00 (6.2.4.(1))		
(My,Ed/MN,y,Rd)^ 2	2.00 + (Mz,Ed/MN,	z,Rd)^1.00 = <mark>0.01 < 1.00</mark>	(6.2.9.1.(6))
Vy,Ed/Vy,T,Rd = 0.0) 0 < 1.00 (6.2.6-7)		
Vz,Ed/Vz,T,Rd = 0.1	0 < 1.00 (6.2.6-7)		
Tau,ty,Ed/(fy/(sqrt(3)	$(*gM0)) = \frac{0.00 < 1}{0.00}$.00 (6.2.6)	
Tau,tz,Ed/(fy/(sqrt(3)	$(*gM0)) = \frac{0.00 < 1}{0.00}$.00 (6.2.6)	
Contrôle de la stabili	ité globale de la bar	rre:	
Lambda,y = 30.79 < 2	Lambda,max = 210	.00	
Lambda,z = 73.89 <	Lambda, $max = 210$).00	STABLE
My,Ed,max/Mb,Rd =	= <mark>0.66 < 1.00</mark> (6.3.2	2.1.(1))	
N,Ed/(Xy*N,Rk/gM1 kyz*Mz,Ed,max/(Mz	l) + kyy*My,Ed,ma z,Rk/gM1) = <mark>0.73 <</mark>	ux/(XLT*My,Rk/gM1) + 1.00 (6.3.3.(4))	
N,Ed/(Xz*N,Rk/gM1 kzz*Mz,Ed,max/(Mz	l) + kzy*My,Ed,ma z,Rk/gM1) = <mark>0.44 <</mark>	x/(XLT*My,Rk/gM1) + 1.00 (6.3.3.(4))	

Profil correct !!!

Conclusions :

D'après les calculs, nous déterminons les profilées des éléments du portique qui devront résister aux différentes sollicitations et voici les profilés qui ont été retenus après les vérifications et les dimensionnements:

- Les poteaux en HEB 300
- Les traverses en IPE 450

CHAPITRE VI :

Calcul des assemblages

VI.1 Introduction :

Les assemblages constituent les dispositifs permettant de réunir et de solidariser les pièces d'une structure. Ils doivent assurer la transition et la répartition des divers efforts et sollicitations entre les pièces assemblées. Les assemblages ne doivent en aucun cas constituer le point faible de la structure Il existe plusieurs modes d'assemblages fondamentales utilisés dans la construction métallique, dont les principaux modes sont :

- Le rivetage
- Le boulonnage
- Le soudage

VI.2 Calcul des assemblages par boulons :

Il existe deux types de boulons

- Les boulons ordinaires : non précontraints, ce type d'assemblage, de moins en moins utilisé aujourd'hui, est pratiquement réservé aux constructions provisoires, donc démontables, ou aux constructions sommaires et secondaires.

- Les boulons HR : pressente le même aspect qu'un boulon ordinaire, un boulon HR (Haute Résistance) est constitué d'acier à haute limite élastique et comporte une rondelle incorporée à la tête. Donc le coefficient de frottement () entre les éléments d'une connexion joue un rôle prépondérant.

VI.2.1 Assemblage de rive (Poteau-Traverse) :

- L'assemblage poteau – traverse - Comme montre le schéma ci-après, la liaison poteau traverse est assurée par un assemblage boulonné reliant la platine soudée sur l'extrémité de la traverse à la semelle du poteau. L'assemblage est sollicité par un moment fléchissant, effort tranchant et un effort normal.

Figure VI.1 : Représentation de l'assemblage poteau-traverse

Cet assemblage constitué de 7 boulons 8.8 de diamètre de 22mm, La platine a une épaisseur de 15mm.

1. Les composants de l'assemblage

- Poteau HEB300
- Traverse IPE450
- Jarret IPE450
- Platine 880× 200× 15

2. Disposition des boulons :

Les raidisseurs utilisés sont des raidisseurs de 10mm.

3. La note de calcul :

Autodesk Robot Structural Analysis Professional 2017					
EN 1993-1-8:2005/AC:2009	Ratio 0,67				

GENERAL

Assemblage N°:

Nom de l'assemblage : Angle de portique

6

CHAPITRE VI : CALCUL DES ASSEMBLAGES

Assemblage N°:	6
----------------	---

Noeud de la structure: 236

Barres de la structure: 167, 169

GEOMETRIE

POTEAU

Profilé:	HEB 300
Barre N°:	167
$I_{xc} =$	25165,70 [cm ⁴] Moment d'inertie de la section du poteau
Matériau:	S 275
$f_{yc} = 275$	00000,00 [daN/m ²] Résistance

POUTRE

Profile	5:	IPE 450
Barre	N°:	169
I _{xb} =	33742,90 [cm ⁴] Moment d'inertie de la	poutre

Matériau: S 275

 $f_{yb}=~27500000,00\,[daN/m^2]\,R\acute{e}sistance$

BOULONS

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

d =	22 [r	mm]	Diamètre du boulon
Classe =	8.8		Classe du boulon
F _{tRd} =	17452,80 [d	laN]	Résistance du boulon à la traction
$n_h =$	2		Nombre de colonnes des boulons
$n_v =$	7		Nombre de rangéss des boulons
$h_1 =$	80 [r	mm]	Pince premier boulon-extrémité supérieure de la platine d'about
Ecartement	$e_i = 90 [mm]$	n]	
Entraxe p _i =	100;100	0;100	;160;100;100 [mm]

PLATINE

$h_p =$	880	[mm]	Hauteur de la platine
$b_p =$	200	[mm]	Largeur de la platine
$t_p =$	15	[mm]	Epaisseur de la platine
Matériau:		S 275	

 $f_{yp}= \qquad 27500000,00\,[\text{daN/m}^2]\,\text{R}\acute{e}sistance$

JARRET INFERIEUR

$\mathbf{w}_{d} =$	190	[mm]	Largeur de la platine
t _{fd} =	15	[mm]	Epaisseur de l'aile
$h_d =$	405	[mm]	Hauteur de la platine
t _{wd} =	9	[mm]	Epaisseur de l'âme
$l_d =$	1011	[mm]	Longueur de la platine
a =	29,0	[Deg]	Angle d'inclinaison
Matériau	:	S 235	

 $f_{ybu}= \qquad 23500000,00\,[daN/m^2]\,R\acute{e}sistance$

RAIDISSEUR POTEAU

Supérieur

$h_{su} =$	262	[mm]	Hauteur du raidisseur
$b_{su} =$	145	[mm]	Largeur du raidisseur
t _{hu} =	10	[mm]	Epaisseur du raidisseur
Matériau:	S 27	5	

 $f_{ysu}\,{=}\,27500000,\!00\,[\text{daN}/\text{m}^2]\,\text{R}\acute{e}sistance$

Inférieur

h _{sd} =	262	[mm]	Hauteur du raidisseur
b _{sd} =	145	[mm]	Largeur du raidisseur
t _{hd} =	10	[mm]	Epaisseur du raidisseur

CHAPITRE VI : CALCUL DES ASSEMBLAGES

 $h_{sd} = 262$ [mm] Hauteur du raidisseur

Matériau: S 275

 $f_{ysu} = 27500000,00 \, [daN/m^2] \, Résistance$

SOUDURES D'ANGLE

$a_w =$	10	[mm]	Soudure âme
$a_f =$	10	[mm]	Soudure semelle
$a_s =$	10	[mm]	Soudure du raidisseur
$a_{fd} =$	10	[mm]	Soudure horizontale

COEFFICIENTS DE MATERIAU

$g_{M0} =$	1,00	Coefficient de sécurité partiel	[2.2]
g _{M1} =	1,00	Coefficient de sécurité partiel	[2.2]
g _{M2} =	1,25	Coefficient de sécurité partiel	[2.2]
g _{M3} =	1,25	Coefficient de sécurité partiel	[2.2]

Efforts

Etat limite: ultime

Cas: 14: ELU /274/ 1*1,35 + 2*1,35 + 3*1,35 + 4*1,35 + 10*1,35 + 11*1,35 + 12*1,35 + 13*1,35

M_{b1,Ed} = 32389,88 [daN*m] Moment fléchissant dans la poutre droite

 $V_{b1,Ed} = 12215,12$ [daN] Effort tranchant dans la poutre droite

 $N_{b1,Ed} = -7809,13$ [daN] Effort axial dans la poutre droite

M_{c1,Ed} = 32389,87 [daN*m] Moment fléchissant dans la poteau inférieur

 $V_{c1,Ed} = 7809,13$ [daN] Effort tranchant dans le poteau inférieur

 $N_{c1,Ed} = -12373,17$ [daN] Effort axial dans le poteau inférieur

RESULTATS

RESISTANCES DE LA POUTRE

COMPRESSION

CHAPITRE VI : CALCUL DES ASSEMBLAGES

$N_{cb,Rd} =$	271757,2 [daN]	Résistance de calcul de la compression	section à la	EN1993-1- 1:[6.2.4]
CISAIL	LEMENT			
$V_{cb,Rd} =$	141171,84 [daN]	Résistance de calcul de la cisaillement	section au	EN1993-1- 1:[6.2.6.(2)]
$V_{b1,Ed}$ / V	$V_{\rm cb,Rd} \leq 1,0$	0,09 < 1,00	vérifié	(0,09)

FLEXION - MOMENT PLASTIQUE (SANS RENFORTS)

M	46902 90 [doN*	Résistance plastique de la section à la	EN1993-1-
I vi b,pl,Rd —	40002,00 [uain · III]	flexion (sans renforts)	1:[6.2.5.(2)]

FLEXION AU CONTACT DE LA PLAQUE AVEC L'ELEMENT ASSEMBLE

M_{cb,Rd} = 97597,63 [daN*m] Résistance de calcul de la section à la flexion EN1993-1-1:[6.2.5]

AILE ET AME EN COMPRESSION

M _{cb,Rd} =97597,63 [daN*m]	Résistance de calcul d	le la section à la	a flexion EN1	1993-1-1:[6.2.5]
$F_{c,fb,Rd} = 115595,40$	[daN]	Résistance de l'aile et	de l'âme compr	rimées	[6.2.6.7.(1)]

AME OU AILE DU RENFORT EN COMPRESSION - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

$F_{c,wb,Rd1} = 247803,03$ [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
$F_{c,wb,Rd2} = 211490,64$ [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
$F_{c,wb,Rd3} = 95356,25$ [daN] Résistance de l'aile du renfort	[6.2.6.7.(1)]
Résistance finale:	
$F_{c,wb,Rd,low} = Min (F_{c,wb,Rd1}, F_{c,wb,Rd2}, F_{c,wb,Rd3})$	
$F_{c,wb,Rd,low} = 95356,25$ [daN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]

RESISTANCES DU POTEAU

PANNEAU D'AME EN CISAILLEMENT

$M_{b1,Ed} = 1$	32389,88	[daN*m]	Moment fléchissant dans la poutre droite	[5.3.(3)]
$M_{b2,Ed} =$	0,00	[daN*m]	Moment fléchissant dans la poutre gauche	[5.3.(3)]
$V_{c1,Ed} =$	7809,13	[daN]	Effort tranchant dans le poteau inférieur	[5.3.(3)]

PANNEAU D'AME EN CISAILLEMENT

$M_{b1,Ed} = 32389,88$ [da	N*m] Mon	nent fléchissant dans la	a poutre droite	[5.3.(3)]
$V_{c2,Ed} = 0,00$ [c	laN] Effo	rt tranchant dans le po	teau supérieur	[5.3.(3)]
z = 732 [r	mm] Bras	de levier		[6.2.5]
$V_{wp,Ed} = (M_{b1,Ed} - M_{b2})$	e, _{Ed}) / z - (V	c1,Ed - Vc2,Ed) / 2		
$V_{wp,Ed} = 40362,93$ [da	aN] Panne	au d'âme en cisailleme	ent	[5.3.(3)]
$M_{pl,fc,Rd} = 744,56$ [d	laN*m] Rés flex	sistance plastique de l'a	aile du poteau en	[6.2.6.1.(4)]
$M_{pl,stu,Rd} = 206,25$ [d	laN*m] Rés sup	sistance plastique du ra érieur en flexion	aidisseur transversal	[6.2.6.1.(4)]
$M_{pl,stl,Rd} = 206,25$ [d	laN*m] Rés	sistance plastique du ra érieur en flexion	aidisseur transversal	[6.2.6.1.(4)]
$V_{wp,Rd} = 70011,83$	[daN] Rési cisai	stance du panneau d'âr llement	ne au	[6.2.6.1]
$V_{wp,Ed} / V_{wp,Rd} \le 1,0$		0,58 < 1,00	vérifié	(0,58)
AME EN COMPRE DE LA POUTRE	SSION TR	ANSVERSALE - NI	VEAU DE L'AILE II	NFERIEURE
$s_{com,Ed} = 14215433,9$	95 [daN/m ²]	Contrainte de compre l'âme	ession maximale dans	[6.2.6.2.(2)]
F _{c,wc,Rd1} = 151288,65	[daN] Rési	stance de l'âme du pot	eau	[6.2.6.2.(1)]

Flambement:

 $F_{c,wc,Rd2} = 148385,10$ [daN] Résistance de l'âme du poteau [6.2.6.2.(1)]

Résistance finale:

 $F_{c,wc,Rd,low} = Min (F_{c,wc,Rd1}, F_{c,wc,Rd2})$

 $F_{c,wc,Rd} = 148385,10$ [daN] Résistance de l'âme du poteau [6.2.6.2.(1)]

AME EN TRACTION TRANSVERSALE - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

Pression diamétrale:

F _{c,wc,Rd1} = 151011,60 [daN] Résistance de l'âme du poteau	[6.2.6.2.(1)]
---	---------------

CHAPITRE VI : CALCUL DES ASSEMBLAGES

Flambement:					
$F_{c,wc,Rd2} = 148261,31$ [daN] Résistar	nce de l'âme du pot	eau	[6.2.6.2.(1)]		
Résistance finale:					
$F_{c,wc,Rd,upp} = Min \; (F_{c,wc,Rd1} \; , \; F_{c,wc,Rd2})$					
Fc,wc,Rd,upp = 148261,31 [daN] Résista	ance de l'âme du po	oteau	[6.2.6.2.(1)]		
RESISTANCE DE L'ASSEMBLAGE A L	A COMPRESSION				
$N_{j,Rd}=Min$ ($N_{cb,Rd}2\;F_{c,wb,Rd,low}$, 2 F_{c}	c,wc,Rd,low , $2 F_{c,wc,Rd}$	l,upp)			
N _{j,Rd} = 190712,50 [daN] Résistance	e de l'assemblage à	la compression	[6.2]		
$N_{b1,Ed} \ / \ N_{j,Rd} \leq 1,0$	0,04 < 1,00	vérifié	(0,04)		
RESISTANCE DE L'ASSEMBLAGE A LA FLEXION					

$F_{t,Rd} =$	t,Rd = 17452,80 [daN] Résistance du boulon à la traction				[Tableau 3.4]

 $B_{p,Rd} = 32097,02$ [daN] Résistance du boulon au cisaillement au poinçonnement [Tableau 3.4]

TABLEAU RECAPITULATIF DES EFFORTS

N r	hj	F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	B _{p,Rd}
1	782	28515,40	34905,60	32610,27	28515,40	47079,63	34905,60	64194,05
2	682	22126,81	34905,60	32610,27	28153,24	47079,63	34905,60	64194,05
3	582	19238,20	34905,60	32610,27	28153,24	47079,63	34905,60	64194,05
4	482	131,41	34905,60	32610,27	28153,24	47079,63	34905,60	64194,05
5	322	-	34905,60	32610,27	28153,24	47079,63	34905,60	64194,05
6	222	-	34905,60	32610,27	28153,24	47079,63	34905,60	64194,05
7	122	-	34905,60	32610,27	28153,24	47079,63	34905,60	64194,05

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION M_{j,Rd}

 $M_{j,Rd} = \sum \, h_j \; F_{tj,Rd}$

 $M_{j,Rd} = 48627,48$ [daN*m] Résistance de l'assemblage à la flexion

[6.2]

CHAPITRE VI	: CALCUL DI	ES ASSEMBLAGES
-------------	-------------	----------------

$M_{b1,Ed} \ / \ M_{j,Rd} \leq 1,0$	0,67 < 1,00	vérifié	(0,67)					
RESISTANCE DE L'ASSEMBLAGE AU CISAILLEMENT								
$a_v = 0,60$ Coeff	ïcient pour le calcul de	F _{v,Rd}	[Tableau 3.4]					
$b_{Lf} = 0,93$ Coeff	ïcient réducteur pour le	es assemblages longs	[3.8]					
$F_{v,Rd} = 13502,31$ [daN] Résis	tance d'un boulon au ci	saillement	[Tableau 3.4]					
$F_{t,Rd,max} = 17452,80$ [daN] Résis	tance d'un boulon à la t	raction	[Tableau 3.4]					
$F_{b,Rd,int} = 28380,00$ [daN] Résis	tance du boulon intérie	ur en pression diamé	trale [Tableau 3.4]					
V _{j,Rd} = 165160,23 [daN] Résista	ance de l'assemblage au	ı cisaillement	[Tableau 3.4]					
$V_{b1,Ed} \ / \ V_{j,Rd} \le 1,0$	0,07 < 1,00	vérifié	(0,07)					
RESISTANCE DES SOUDURES								
$\ddot{O}[s_{max}^{2} + 3^{*}(t_{max}^{2})] \le f_{u}/(b_{w}^{*}g_{M})$	M2) 10346425,87 < 404	-70588,24 vérifié	(0,26)					
$\ddot{O}[s^{^2} + 3^*(t^{^2} + t_{II}^2)] \le f_u/(b_w * g_{M2}$) 9942967,09 < 4047	0588,24 vérifié	(0,25)					
$s_{\text{A}} \leq 0.9^* f_{\text{u}}/g_{\text{M2}}$	5173212,93 < 3096	0000,00 vérifié	(0,17)					
RIGIDITES DES RANGEES	DE BOULONS							
$S_{j,ini} = 16314239, 15 [daN*m] Rig$	[6.3.1.(4)]							
$S_j = 16314239, 15 [daN*m] Rig$	[6.3.1.(4)]							
Classification de l'assemblage	par rigidité.							
$S_{j,rig} = 5606089,52 [daN*m] Rigi$	dité de l'assemblage rig	gide	[5.2.2.5]					
$S_{j,pin} = 350380,59 [daN*m] Rigi$	dité de l'assemblage ar	ticulé	[5.2.2.5]					
S _{j,ini} B S _{j,rig} RIGIDE								

COMPOSANT LE PLUS FAIBLE:

PANNEAU D'AME DU POTEAU EN CISAILLEMENT

Assemblage satisfaisant vis à vis de la Norme Ratio 0,67

VI.2.2 Assemblage du Faitage (Traverse-Traverse) :

Figure VI.3 : Représentation de l'assemblage traverse-traverse.

Cet assemblage constitué de 7 boulons 8.8 de diamètre de 22mm.

1. Les composants de l'assemblage

- Traverse IPE450
- Jarret IPE450
- Platine 880× 200× 15

<u>2. Disposition des boulons :</u>

3. La note de calcul :

Autodesk Robot Structural Analysis Professional 2017 Calcul de l'Encastrement Poutre-Poutre EN 1993-1-8:2005/AC:2009

GENERAL

Assemblage	N°:	35
------------	-----	----

Nom de l'assemblage : Poutre - poutre

Noeud de la structure: 360

Barres de la structure: 276, 277

GEOMETRIE

GAUCHE

POUTRE

Profilé:	IPE 450
Barre N°:	276
$I_{xbl} = 33742,90 \text{ [cm}^4\text{]}$ Moment d'inertie de la po	outre
Matériau: S 275	
$f_{yb}=27500000,00[daN/m^2]R\acute{e}sistance$	
<u>Droite</u>	
Poutre	
Profilé:	IPE 450
Barre N°:	277
$I_{xbr} = 33742,90$ [cm ⁴] Moment d'inertie de la po	outre

Matériau: S 275

 $f_{yb} = \ 27500000, 00 \, [daN/m^2] \, R\acute{e}sistance$

BOULONS

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

d =	22	[mm]	Diamètre du boulon
Classe =	8.8		Classe du boulon
F _{tRd} =	17452,80	[daN]	Résistance du boulon à la traction
$n_{\rm h} =$	2		Nombre de colonnes des boulons
$n_v =$	7		Nombre de rangéss des boulons
$h_1 =$	80	[mm]	Pince premier boulon-extrémité supérieure de la platine d'about
Ecartement	$e_i = 90 [n]$	nm]	
Entraxe p _i =	= 100;1	100;100	0;140;100;100 [mm]

PLATINE

$h_{pr} =$	880	[mm]	Hauteur de la platine
$b_{pr} =$	190	[mm]	Largeur de la platine
t _{pr} =	15	[mm]	Epaisseur de la platine
Matériau:		S 275	

 $f_{ypr}= \qquad 27500000,00\,[daN/m^2]\,R\acute{e}sistance$

JARRET INFERIEUR

$w_{rd} =$	190	[mm]	Largeur de la platine
t _{frd} =	15	[mm]	Epaisseur de l'aile
h _{rd} =	405	[mm]	Hauteur de la platine
t _{wrd} =	9	[mm]	Epaisseur de l'âme
l _{rd} =	1011	[mm]	Longueur de la platine
a _d =	29,0	[Deg]	Angle d'inclinaison
Matériau	:	S 235	
$f_{ybu} =$	23500	0000,00	[daN/m ²] Résistance

SOUDURES D'ANGLE

$a_w =$	5	[mm]	Soudure âme
$a_f =$	5	[mm]	Soudure semelle
a _{fd} =	5	[mm]	Soudure horizontale

COEFFICIENTS DE MATERIAU

g _{M0} =	1,00	Coefficient de sécurité partiel	[2.2]
g _{M1} =	1,00	Coefficient de sécurité partiel	[2.2]
g _{M2} =	1,25	Coefficient de sécurité partiel	[2.2]
g _{M3} =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite: ultime

Cas: 14: ELU /340/ 1*1,35 + 2*1,35 + 3*1,35 + 4*1,35 + 10*1,35 + 11*1,35 + 13*1,35

M_{b1,Ed} = -23278,31 [daN*m] Moment fléchissant dans la poutre droite

 $V_{b1,Ed} = -1504,07$ [daN] Effort tranchant dans la poutre droite

 $N_{b1,Ed} = -9080,86$ [daN] Effort axial dans la poutre droite

RESULTATS

RESISTANCES DE LA POUTRE

COMPRESSION

Nah Dd -	271757 20) [daN	Résistance de calcul de la	section à la	EN1993-1-
1 C D,Ku —	271757,20		compression		1:[6.2.4]
CISAIL	LEMENT				
V	141171 04	[doN]	Résistance de calcul de la se	ection au	EN1993-1-
v cb,Rd −	1411/1,04	[uain]	cisaillement		1:[6.2.6.(2)]
$V_{b1,Ed}$ / V	$V_{\rm cb,Rd} \leq 1,0$		0,01 < 1,00	vérifié	(0,01)
FLEXIO	N - MOME	ENT PI	LASTIQUE (SANS RENF	ORTS)	
			Résistance plastique de la	section à la	EN1993-1-

$M_{\rm M} = 1690$	Resistance plastique de la section a la	EN1993-1-
$101_{b,pl,Rd} = 4080$	flexion (sans renforts)	1:[6.2.5.(2)]

FLEXION AU CONTACT DE LA PLAQUE AVEC L'ELEMENT ASSEMBLE

M_{cb,Rd} = 97597,63 [daN*m] Résistance de calcul de la section à la flexion EN1993-1-1:[6.2.5]

AILE ET AME EN COMPRESSION

M_{cb,Rd} = 97597,63 [daN*m] Résistance de calcul de la section à la flexion EN1993-1-1:[6.2.5]

 $F_{c,fb,Rd} = 115595,40$ [daN] Résistance de l'aile et de l'âme comprimées [6.2.6.7.(1)]

AME OU AILE DU RENFORT EN COMPRESSION - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

Pression diamétrale:

$F_{c,wb,Rd1} = 72912,47$ [daN]	Résistance de l'âme de la po	outre	[6.2.6.2.(1)]
Flambement:			
$F_{c,wb,Rd2} = 57189,86$ [daN]	Résistance de l'âme de la po	outre	[6.2.6.2.(1)]
$F_{c,wb,Rd3} = 95356,25$ [daN]	Résistance de l'aile du renfo	ort	[6.2.6.7.(1)]
Résistance finale:			
$F_{c,wb,Rd,low} = Min (F_{c,wb,Rd1},$	$F_{c,wb,Rd2}$, $F_{c,wb,Rd3}$)		
$F_{c,wb,Rd,low} = 57189,86$ [daN] Résistance de l'âme de la	poutre	[6.2.6.2.(1)]
RESISTANCE DE L'ASSEMB	LAGE A LA COMPRESSION		
$N_{j,Rd}=Min$ ($N_{cb,Rd}2\;F_{c,wb,R}$	_{d,low})		
$N_{j,Rd} = 114379,73$ [daN] R	ésistance de l'assemblage à	la compression	[6.2]
$N_{b1,Ed}$ / $N_{j,Rd} \le 1,0$	0,08 < 1,00	vérifié	(0,08)

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION

$F_{t,Rd} = 1$	17452,80 [dal	N] Résistance du bou	lon à la traction	['	Tableau 3.4]

B_{p,Rd} = 32097,02 [daN] Résistance du boulon au cisaillement au poinçonnement [Tableau 3.4]

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION M_{j,Rd}

$IV_{i,Rd} = 2$, $\Pi_{i} \Gamma_{ti,Rd}$	$M_{i,Rd} =$	$\sum h_i F_{ti,Rd}$
--	--------------	----------------------

$M_{j,Rd} = 54907,62 [daN*m]$ Résistance de l'assemblage à la flexion

$M_{\text{b1,Ed}} \ / \ M_{j,\text{Rd}} \le 1,0$	0,42 < 1,00	vérifié	(0,42)	
RESISTANCE DE L'ASSEMBLAGE AU	J CISAILLEMENT			
$F_{v,Rd} = 13568,66$ [daN] Résistan	ce d'un boulon au	cisaillement	[Tableau 3.4]	
Ft,Rd,max =17452,80 [daN] Résistan	ce d'un boulon à la	a traction	[Tableau 3.4]	
F _{b,Rd,int} = 28380,00 [daN] Résistan	ce du boulon intér	ieur en pression diamétr	ale [Tableau 3.4]	
$F_{b,Rd,ext} = 28380,00$ [daN] Résistan	ce du boulon de ri	ve en pression diamétral	e [Tableau 3.4]	
V _{j,Rd} = 167069,01 [daN] Résistanc	e de l'assemblage	au cisaillement	[Tableau 3.4]	
$V_{b1,Ed} / V_{j,Rd} \leq 1,0$	0,01 < 1,00	vérifié	(0,01)	
RESISTANCE DES SOUDURES				
$\ddot{O}[s_{max}^{2} + 3*(t_{max}^{2})] \le f_{u}/(b_{w}*g_{M2})$	14167476,26 < 4	0470588,24 vérifié	(0,35)	
$\ddot{O}[s^{_{\!\!\!\!\!\!\!\!}}^2+3^*(t^{_{\!\!\!\!\!\!\!\!}}^2\!+\!t_{\rm II}^2)]\leq f_{\!$	13071785,16 < 40	0470588,24 vérifié	(0,32)	
$s_{\text{A}} \leq 0.9 * f_u/g_{M2}$	7083738,13 < 309	960000,00 vérifié	(0,23)	
RIGIDITE DE L'ASSEMBLAGE				
$S_{j,ini} = 82638416,57 [daN*m] Rigidi$	té en rotation initi	ale	[6.3.1.(4)]	
$S_j = 82638416,57 [daN*m]$ Rigidité en rotation finale [6				
Classification de l'assemblage par	r rigidité.			
$S_{j,rig} = 5606089,52 [daN*m] Rigidit$	é de l'assemblage	rigide	[5.2.2.5]	
$S_{j,pin} = 350380,59 [daN*m] Rigidit$	é de l'assemblage	articulé	[5.2.2.5]	
COMPOSANT LE PLUS FAIBLE:				
AILE ET AME DE LA POUTRE F	EN COMPRESSIO	DN		
Assemblage satisfaisant vis à vis	de la Norme		Ratio 0,42	

VI.2.3 Assemblage poutre-poteau (âme) :

Figure VI.5 : Représentation de l'assemblage poutre-poteau (âme).

Cet assemblage constitué de 8 boulons 4.6 de diamètre de 12mm, avec des cornière CAE 100×10 de 95mm de longueur.

<u>1. Les composants de l'assemblage :</u>

- Poteau HEB 300
- Cornière CAE 100×10
- Poutre HEA 120

2. détails de l'assemblage poutre-poteau (âme) :

Figure VI.6 : détails sur l'assemblage pied de poteau articulé.

3. La note de calcul :

Autodesk Robot Structural Analysis Professional 2017 Calculs de l'assemblage poutre-poteau (âme) EN 1993-1-8:2005/AC:2009

GENERAL

Assemblage N°: 36

Nom de l'assemblage : Poutre-poteau (âme)

Noeud de la structure: 4

Barres de la structure: 2, 13

GEOMETRIE

POTEAU

Profilé:	HEB 300
1 101110.	1120 200

Barre N°: 2

$I_{yc} =$	25165,70	$[cm^4]$	Moment d'inertie de la section du poteau
------------	----------	----------	--

Matériau: S 275

 $f_{yc}= \qquad 27500000,00\,[daN/m^2]\,R\acute{e}sistance~de~calcul$

 $f_{uc} = \qquad 43000000,00\, [\text{daN}/\text{m}^2]\, \text{R}\acute{e}sistance~\grave{a}~la~traction$

POUTRE

- Profilé: HEA 120
- Barre N°: 13

 $I_{yb} = 606,15$ [cm⁴] Moment d'inertie de la poutre

Matériau: S 275

 $f_{yb}= \qquad 27500000,00\,[daN/m^2]\,R\acute{e}sistance~de~calcul$

 $f_{ub}= \qquad 43000000,00\, [daN/m^2]\, \text{Resistance à la traction}$

CORNIERE

Profilé: CAE 100x10

Matériau: S 275

 $f_{yk}= \qquad 27500000,00\,[\text{daN/m}^2]\,\text{R}\acute{e}sistance~de~calcul}$

 $f_{uk} = 43000000,00 \, [daN/m^2] \, \text{Résistance à la traction}$

BOULONS

BOULONS ASSEMBLANT LE POTEAU A LA CORNIERE

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe =	4.6		Classe du boulon
d =	12	[mm]	Diamètre du boulon
$d_0 =$	13	[mm]	Diamètre du trou de boulon
$A_s =$	0,84	[cm ²]	Aire de la section efficace du boulon
$A_v =$	1,13	[cm ²]	Aire de la section du boulon
$f_{ub} =$	4000000,00[daN/m ²]Résistance à la traction
k =	1		Nombre de colonnes des boulons
w =	2		Nombre de rangéss des boulons
$e_1 =$	23	[mm]	Niveau du premier boulon
$p_1 =$	50	[mm]	Entraxe

BOULONS ASSEMBLANT LA CORNIERE A LA POUTRE

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe =	4.6		Classe du boulon
d =	12	[mm]	Diamètre du boulon
$d_0 =$	13	[mm]	Diamètre du trou de boulon
$A_s =$	0,84	[cm ²]	Aire de la section efficace du boulon
$A_v =$	1,13	[cm ²]	Aire de la section du boulon

Classe =	4.6		Classe du boulon	
$f_{ub} =$	40000000,00[daN/m ²	Résistance à la traction	
k =	1		Nombre de colonnes des boulons	
w =	2		Nombre de rangéss des boulons	
$e_1 =$	23	[mm]	Niveau du premier boulon	
$p_1 =$	50	[mm]	Entraxe	
COEFFIC	CIENTS DE MAT	ERIAU		
g _{M0} =	1,00	Coeffi	cient de sécurité partiel	[2.2]
g _{M2} =	1,25	Coeffi	cient de sécurité partiel	[2.2]

EFFORTS

Cas:	14: ELU	J /279/ 1	*1,35 + 2*1,35 + 3*1,35 + 4*1,35 + 9*1,35
$N_{b,Ed} =$	1876,26	[daN]	Effort axial
$V_{b,Ed} =$	29,97	[daN]	Effort tranchant
$M_{b,Ed} =$	0,00[daN*m]Moment fléchissant
-			

RESULTATS

BOULONS ASSEMBLANT LE POTEAU A LA CORNIERE

RESISTANCE DES BOULONS

 $F_{v,Rd} = 2171,47 \text{ [daN]} \frac{\text{Résistance du boulon au cisaillement dans la partie non filetée}}{d'un boulon}$

 $F_{t,Rd} = 2419,20$ [daN] Résistance d'un boulon à la traction

Pression du boulon sur l'âme du poteau

Direction x

$k_{1x} > 0.0$	2,50 > 0,00	vérifié
$a_{bx} > 0.0$	0,93 > 0,00	vérifié

 $F_{b,Rd1x} = 10560,00$ [daN] Résistance d'un boulon en pression diamétrale

Direction z

$k_{1z} > 0.0$			2,50 > 0,00	vérifié	
a _{bz} > 0.0		0	,93 > 0,00	vérifié	
F _{b,Rd1z} =	10560	,00 [dal	N] Résistance d'ur	n boulon en pres	sion diamétrale
Pression	du boul	lon sur l	a cornière		
Direction	X				
$k_{1x} > 0.0$			2,50 > 0,00		vérifié
$a_{bx} > 0.0$			0,93 >	> 0,00	vérifié
$F_{b,Rd2x} =$	9600,	00 [daN	I] Résistance d'ur	n boulon en pres	sion diamétrale
Direction	Z				
$k_{1z} > 0.0$			2,50 > 0,00	vérifié	
$a_{bz} > 0.0$		0	,58 > 0,00	vérifié	
F _{b,Rd2z} =	595	3,85 [d	aN] Résistance c	l'un boulon en p	ression diamétrale
Forces a cornieri	A GISSAN E	T SUR LE	S BOULONS DANS	L'ASSEMBLAGE	POTEAU -
cisailleme	ent des	boulons			
e =	63	[mm]	Distance du centre cornière du centre	e de gravité du g e de l'âme de la p	roupe de boulons de la outre
$M_0 =$	0,94 [[daN*m]	Moment fléchissa	nt réel	
$F_{Vz} =$	7,49	[daN]	Force résultante d tranchant	ans le boulon du	e à l'influence de l'effort
F _{Mx} =	18,73	[daN]	Effort composant	dans le boulon c	lû à l'influence du moment

$F_{x,Ed} =$	18,73	[daN]	Effort de calcul total dans le boulon sur la direction x
--------------	-------	-------	--

$F_{z,Ed} =$	7,49	[daN]	Effort de calcul total dans le boulon sur la direction z
--------------	------	-------	--

- $F_{Ed} = 20,17$ [daN] Effort tranchant résultant dans le boulon
- $F_{Rdx} = 9600,00$ [daN] Résistance résultante de calcul du boulon sur la direction x
- $F_{Rdz} = 5953,85$ [daN] Résistance résultante de calcul du boulon sur la direction z
- $$\begin{split} |F_{x,Ed}| &\leq F_{Rdx} & |18,73| < 2171,47 & vérifié & (0,00) \\ |F_{z,Ed}| &\leq F_{Rdz} & |7,49| < 2171,47 & vérifié & (0,00) \end{split}$$

$ F_{x,Ed} \leq F_{Rdx}$		18	3,73 < 2171,4	7 vérifié		(0,00)
$F_{Ed} \leq F_{v,Rd}$		20	,17 < 2171,47	vérifié		(0,01)
Traction des	boulons					
e = 6	6 [mm]	Distance du c boulons du ce	entre de gravit entre de l'âme o	té du groupe de du poteau		
$M_{0t} = 0,98$	8 [daN*m]	Moment fléch	nissant réel			
$F_{t,Ed} = 488,69$	9 [daN]	Effort de trac	tion dans le bo	oulon extrême		
$F_{t,Ed} \le F_{t,Rd}$		48	8,69 < 2419,2	0 vérifié		(0,20)
Action simul	tanée de l'	effort de tracti	on et de cisail	lement dans le	boulon	
$F_{v,Ed} = 20,17$	[daN] Ef	fort tranchant re	ésultant dans le	e boulon	$F_{v,Ed} = \ddot{O}[F_{x,Ed}^2 +$	$F_{z,Ed}^2$]
$F_{v,Ed}/F_{v,Rd} + F$	$F_{t,Ed}/(1.4*F_{t,Ed})$	$_{\rm Rd}) \le 1.0$ 0,2	15 < 1,00	vérifié		(0,15)
BOULONS ASS	SEMBLANT	LA CORNIERE A	LA POUTRE			
RESISTANCE	DES BOULO	NS				
$F_{v,Rd} = 4342,$	94 [daN]	Résistance du b filetée d'un bou	ooulon au cisai llon	illement dans la	a partie non	
Pression du	boulon sur	la poutre				
Direction x						
$k_{1x} > 0.0$		2,50 > 0	,00	vé	rifié	
$a_{bx} > 0.0$		0,	93 > 0,00	vé	rifié	
$F_{b,Rd1x} = 48$	00,00 [dal	N] Résistance d	l'un boulon en	pression diame	étrale	
Direction z						
$k_{1z} > 0.0$		2,50 > 0,	00 vé	érifié		
$a_{bz} > 0.0$		0,82 > 0,00	vérifié			
$F_{b,Rd1z} = 4$	233,85 [da	N] Résistance	d'un boulon e	n pression dian	nétrale	

Pression du boulon sur la cornière

Direction x

$k_{1x} > 0$.0		2,50 > 0,00		vérifié		
$a_{bx} > 0.$.0		0,93 > 0),00		vérifié	
F _{b,Rd2x}	= 19200	,00 [daN	[] Résistance d'un b	oulon e	en pressio	on diamétrale	
Directi	on z						
$k_{1z} > 0$.0		2,50 > 0,00	V	vérifié		
$a_{bz} > 0.$	0	C	,58 > 0,00	vérifi	é		
F _{b,Rd2z} :	= 11907	,69 [daN	[] Résistance d'un b	oulon e	en pressio	on diamétrale	
Force poutr	S AGISSAN E	NT SUR LI	ES BOULONS DANS L	ASSEN	IBLAGE (CORNIERE -	
cisaille	ement des	boulons					
e =	66	[mm]	Distance du centre l'âme du poteau	de grav	vité du g	roupe de boulons du centre	e de
$M_0 =$	1,96	[daN*m]	Moment fléchissar	nt réel			
$F_{Nx} =$	938,13	[daN]	Force résultante da	ans le b	oulon du	e à l'influence de l'effort a	xial
$F_{Vz} =$	14,98	[daN]	Force résultante da tranchant	ans le b	oulon du	e à l'influence de l'effort	
F _{Mx} =	39,26	[daN]	Force résultante da x	ans le b	oulon du	e au moment sur la directi	on
$F_{Mz} =$	0,00	[daN]	Force résultante da	ans le b	oulon du	e au moment sur la directi	on z
$F_{x,Ed} =$	977,39	[daN]	Effort de calcul tot	al dans	le boulo	on sur la direction x	
$F_{z,Ed} =$	14,98	[daN]	Effort de calcul tot	al dans	le boulo	on sur la direction z	
$F_{Ed} =$	977,50	[daN]	Effort tranchant ré	sultant	dans le b	ooulon	
F _{Rdx} =	4800,00	[daN]	Résistance résultar	nte de c	alcul du	boulon sur la direction x	
$F_{Rdz} =$	4233,85	[daN]	Résistance résultar	nte de c	alcul du	boulon sur la direction z	
$ F_{x,Ed} \leq$	$\leq F_{Rdx}$		977,39	< 4800	0,00	vérifié	(0,20)
$ F_{z,Ed} \leq$	$\leq F_{Rdz}$		14,98	< 4233,	85	vérifié	(0,00)
$F_{Ed} \leq F$	v,Rd		977,50	< 4342	,94	vérifié	(0,23)

VERIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC (EFFORT AXIAL)

CORNIERE

 $V_{effRd} = 23365,68$ [daN] Résistance de calcul de la section affaiblie par les trous

0.5*N _{b,E}	$ d \leq V_{effRd}$	938	,13 < 23365,68	vérifié	(0,04)
POUTRE					
$V_{effRd} =$	12476,70 [daN] Résistance	de calcul de la se	ection affaiblie par les tro	ous
$ N_{b,Ed} \leq 1$	V _{effRd}		1876,26 < 1247	6,70 vérifié	(0,15)
VERIFIC	ATION DE LA	A SECTION POUR	LE CISAILLEMEN	NT DE BLOC (EFFORT TRA	NSVERSAL)
Cornie	RE				
$V_{effRd} =$	14176,88 [daN] Résistance	de calcul de la se	ection affaiblie par les tro	ous
0.5*V _{b,E}	$ \leq V_{effRd}$	14,98	8 < 14176,88	vérifié	(0,00)
Poutre					
$V_{effRd} =$	8272,60 [d	aN] Résistance	de calcul de la se	ection affaiblie par les tro	ous
$ V_{b,Ed} \leq 1$	VeffRd		29,97 < 8272,60	0 vérifié	(0,00)
VERIFIC	ATION DE LA	A RESISTANCE D	E LA SECTION DE	LA CORNIERE AFFAIBLI	E PAR LES
TROUS	0.50 [am ²]	Aine de le zone	tandua da la casi	tiony heatto	
$A_t =$	9,50 [cm ⁻]	Aire de la zone	e tendue de la seci	ionu brutte	
$A_{t,net} =$	6,90 [cm ²]	Aire nette de la	a zone de la sectio	on en traction	
0.9*(A _{t,n}	$_{\rm et}/A_t) \ge (f_y * g$	$g_{M2})/(f_u * g_{M0})$	0,65 < 0,80	vérifié	
$W_{net} =$	11,54	[cm ³] Facto	eur élastique de la	a section	
M _{c,Rdnet} =	= 317,45	[daN*m] Rési	stance de calcul d	le la section à la flexion	
$ \mathbf{M}_0 \leq \mathbf{M}$	c,Rdnet		0,98 < 317,45	vérifié	(0,00)

 $A_v =$ 9,50 [cm²] Aire de la section efficace en cisaillement

 $A_{v,net} = 6,90 \text{ [cm}^2\text{]}$ Aire de la section efficace nette en cisaillement

 $V_{pl,Rd} = 15083,28$ [daN] Résistance plastique de calcul pour le cisaillement

$A_v =$	9,50 [cn	n ²] Aire de la	section efficace	en cisaillemei	nt	
0.5*V _{b,E}	$ d \leq V_{pl,Rd}$		14,98 < 15083,2	28 vé	rifié	(0,00)
VERIFICA	ATION DE LA I	RESISTANCE D	E LA SECTION D	E LA POUTRE A	AFFAIBLIE PAR LES	<u>S TROUS</u>
$A_t =$	5,70 [cm ²]	Aire de la zo	one tendue de la s	sectionu brutte	e	
$A_{t,net} =$	4,40 [cm ²]	Aire nette de	e la zone de la se	ction en tracti	on	
0.9*(A _{t,ne}	$e_t/A_t) \ge (f_y * g_M)$	$_{2})/(f_{u}*g_{M0})$	0,69 < 0,80			
M _{c,Rdnet} =	= 263,38 [daN	*m] Résistanc	e de calcul de la	section à la fl	exion	
$ \mathbf{M}_0 \leq \mathbf{M}_0$	c,Rdnet		1,96 < 263,38	vérifi	é	(0,01)
$V_{pl,Rd} =$	9049,97 [da	N] Résistance	e plastique de ca	lcul pour le ci	saillement	
$V_{b,Ed} \leq V$	pl,Rd	2	29,97 < 9049,97	véri	fié	(0,00)

Assemblage satisfaisant vis à vis de la Norme Ratio 0,23

VI.2.4 Assemblage poteau - console :

Figure VI.7 : Représentation de l'assemblage poteau - console.

Cet assemblage constitué de 8 tiges boulons 8.8 de diamètre de 20mm, avec une platine de 20mm d'épaisseur.

<u>1. Les composants de l'assemblage :</u>

- Poteau HEB300
- Console HEA 260
- Jarret 225×260×8
- Platine 495×260×20

2. détails d'assemblage poteau - console :

Figure VI.8 : détails sur l'assemblage poteau - console.

La longueur de jarret est 891mm.

3. La note de calcul :

GENERAL

Assemblage N°:	34
----------------	----

Nom de l'assemblage : Poutre - poteau

Noeud de la structure: 282

Barres de la structure: 203, 207

Assemb	lage N°: 34
GEOME	TRIE
<u>Poteau</u>	I
Profilé:	HEB 300
Barre N	°: 203
I _{xc} =	25165,70 [cm ⁴] Moment d'inertie de la section du poteau
Matéria	u: \$ 275
$f_{yc} =$	27500000,00 [daN/m ²] Résistance
POUTRE	
Profilé:	HEA 260
Barre N	°: 207
a =	-0,0 [Deg] Angle d'inclinaison
$h_b =$	250 [mm] Hauteur de la section de la poutre
$b_{\rm f}$ =	260 [mm] Largeur de la section de la poutre
$t_{wb} =$	8 [mm] Epaisseur de l'âme de la section de la poutre
$t_{\rm fb} =$	13 [mm] Epaisseur de l'aile de la section de la poutre
r _b =	24 [mm] Rayon de congé de la section de la poutre
r _b =	24 [mm] Rayon de congé de la section de la poutre
$A_b =$	86,82 [cm ²] Aire de la section de la poutre
$I_{xb} = 1$	10455,00 [cm ⁴] Moment d'inertie de la poutre
Matéria	u: S 275

 $f_{yb}=~27500000,00\,[daN/m^2]\,R\acute{e}sistance$

BOULONS

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

d =	20	[mm]	Diamètre du boulon
Classe =	8.8		Classe du boulon
F _{tRd} =	14112,00	[daN]	Résistance du boulon à la traction
$n_{\rm h} =$	2		Nombre de colonnes des boulons
$n_v =$	4		Nombre de rangéss des boulons
$h_1 =$	60	[mm]	Pince premier boulon-extrémité supérieure de la platine d'about
Ecartement	$e_i = 120$ [mm]	
Entraxe p _i =	130;1	10;120) [mm]

PLATINE

$h_p =$	495	[mm]	Hauteur de la platine
$b_p =$	260	[mm]	Largeur de la platine
$t_p =$	20	[mm]	Epaisseur de la platine
Matériau:		\$ 275	
$\mathbf{f}_{yp} = \mathbf{f}_{yp}$	27500	000,00 [daN/m ²] Résistance

JARRET INFERIEUR

$w_d =$	260	[mm]	Largeur de la platine
t _{fd} =	13	[mm]	Epaisseur de l'aile
h _d =	225	[mm]	Hauteur de la platine
t _{wd} =	8	[mm]	Epaisseur de l'âme
$l_d =$	891	[mm]	Longueur de la platine
a =	14,2	[Deg]	Angle d'inclinaison
Matériau:		S 235	

 $f_{ybu} = 2350000,00 \, [daN/m^2] \, R\acute{e}sistance$

RAIDISSEUR POTEAU

Supérieur

$h_{su} =$	262	[mm]	Hauteur du	ı raidisseur
su		Luuni	Indatear a	a rararoo e ar

b_{su} = 145 [mm] Largeur du raidisseur

t_{hu} = 10 [mm] Epaisseur du raidisseur

Matériau: S 275

 $f_{ysu} = 27500000,00 \, [daN/m^2] \, \text{Résistance}$

Inférieur

h _{sd} =	262	[mm]	Hauteur du raidisseur
b _{sd} =	145	[mm]	Largeur du raidisseur
t _{hd} =	10	[mm]	Epaisseur du raidisseur
Matériau:	S 27	5	

 $f_{ysu} = 27500000,00 \, [daN/m^2] \, \text{Résistance}$

SOUDURES D'ANGLE

$a_w =$	10	[mm]	Soudure âme
$a_f =$	10	[mm]	Soudure semelle
$a_s =$	10	[mm]	Soudure du raidisseur
a _{fd} =	10	[mm]	Soudure horizontale

COEFFICIENTS DE MATERIAU

$g_{M0} =$	1,00	Coefficient de sécurité partiel	[2.2]
g _{M1} =	1,00	Coefficient de sécurité partiel	[2.2]
g _{M2} =	1,25	Coefficient de sécurité partiel	[2.2]
g _{M3} =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite: ultime

Cas: 14: ELU /12/ 1*1,35 + 2*1,35 + 11*1,50 + 13*1,50

$M_{b1,Ed} =$	4653,27	[daN*m]	Moment fléchissant dans la poutre droite
$V_{b1,Ed} =$	6057,42	[daN]	Effort tranchant dans la poutre droite
N _{b1,Ed} =	71,54	[daN]	Effort axial dans la poutre droite
$M_{c1,Ed} =$	7408,78	[daN*m]	Moment fléchissant dans la poteau inférieur
$V_{c1,Ed} =$	2298,79	[daN]	Effort tranchant dans le poteau inférieur
$N_{c1,Ed} =$	-10563,08	[daN]	Effort axial dans le poteau inférieur
$M_{c2,Ed} =$	2755,56	[daN*m]	Moment fléchissant dans la poteau supérieur
$V_{c2,Ed} =$	-2370,33	[daN]	Effort tranchant dans le poteau supérieur
$N_{c2,Ed} =$	-4347,61	[daN]	Effort axial dans le poteau supérieur

RESULTATS

RESISTANCES DE LA POUTRE

TRACTION

$A_b = 86,82 \text{ [cm}^2\text{]}$ Aire de la section	EN1993-1-1:[6.2.3]
$N_{tb,Rd} = A_b \ f_{yb} \ / \ g_{M0}$	
$N_{tb,Rd} = 238753,35$ [daN] Résistance de calcul de la section à la traction	EN1993-1-1:[6.2.3]
CISAILLEMENT	
	EN1993-1-

$V_{cb,Rd} = 72450,37$ [dal	N] Résistance de calcul de la section au cisaille	ment $1:[6.2.6.(2)]$
$V_{\rm b1Ed} / V_{\rm cbRd} < 1.0$	0.08 < 1.00 vérifié	(0.08)

FLEXION - MOMENT PLASTIQUE (SANS RENFORTS)

$M_{b,pl,Rd}$	25296,	[daN*	Résistance plastique de la section à la flexion	EN1993-1-
=	07	m]	(sans renforts)	1:[6.2.5.(2)]

FLEXION AU CONTACT DE LA PLAQUE AVEC L'ELEMENT ASSEMBLE

M_{cb,Rd} = 46984,76 [daN*m] Résistance de calcul de la section à la flexion EN1993-1-1:[6.2.5]

FLEXION AVEC EFFORT AXIAL AU CONTACT DE LA PLAQUE AVEC L'ELEMENT ASSEMBLE

M _{Nb,Rd} =	46970,68 [daN*m]	Résistance réduite (effort axial) de la	EN1993-1-
		section à la flexion	1:[6.2.9.2.(1)]

AILE ET AME EN COMPRESSION

M _{cb,Rd} =46984,76 [daN*m]	Résistance de calcul de la sectio	n à la flexion EN1993	3-1-1:[6.2.5]
$F_{c,fb,Rd} = 101631,78$ [daN]	Résistance de l'aile et de l'âme co	omprimées	[6.2.6.7.(1)]
AME OU AILE DU REN INFERIEURE DE LA PO	FORT EN COMPRESSION - N DUTRE	NIVEAU DE L'AILH	£
Pression diamétrale:			
$s_{com,Ed} = 3930683,86 [daN/n]$	n ²]Contrainte de compression ma	ximale dans l'âme	[6.2.6.2.(2)]
$F_{c,wb,Rd1} = 168739,32$ [daN]	Résistance de l'âme de la poutre		[6.2.6.2.(1)]
Flambement:			
$F_{c,wb,Rd2} = 138292,26$ [daN]	Résistance de l'âme de la poutre		[6.2.6.2.(1)]
Résistance finale:			
$F_{c,wb,Rd,low} = Min (F_{c,wb,Rd1},$	F _{c,wb,Rd2})		
$F_{c,wb,Rd,low} = 138292,26$ [dat	N] Résistance de l'âme de la pout	re	[6.2.6.2.(1)]
RESISTANCES DU POTEAU			
PANNEAU D'AME EN C	ISAILLEMENT		
$M_{b1,Ed} = 4653,27 \ [daN*m]$	Moment fléchissant dans la pout	re droite	[5.3.(3)]
$M_{b2,Ed} = 0,00 [daN*m]$	Moment fléchissant dans la pout	re gauche	[5.3.(3)]
$V_{c1,Ed} = 2298,79$ [daN]	Effort tranchant dans le poteau in	nférieur	[5.3.(3)]
$V_{c2,Ed} = -2370,33$ [daN]	Effort tranchant dans le poteau se	upérieur	[5.3.(3)]
$M_{pl,fc,Rd} = 744,56 \ [daN*m]$	Résistance plastique de l'aile d' en flexion	u poteau	[6.2.6.1.(4)]
$M_{pl,stu,Rd} = 206,25 $ [daN*m	Résistance plastique du raidiss supérieur en flexion	eur transversal	[6.2.6.1.(4)]
$M_{pl,stl,Rd} = 206,25 \ [daN*m]$	Résistance plastique du raidiss transversal inférieur en flexion	eur	[6.2.6.1.(4)]
$V_{wp,Rd} = 71864,23$ [daN] F	Résistance du panneau d'âme au c	isaillement	[6.2.6.1]
$V_{wp,Ed} / V_{wp,Rd} \le 1,0$	0,15 < 1,00	vérifié	(0,15)

AME EN COMPRESSION TRANSVERSALE - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

Pression diamétrale:

s _{com,Ed} =	3770308,93	[daN/m ²] Cor dan	ntrainte de com 1s l'âme	pression	ı maximale	[6.2.6.]	2.(2)]
F _{c,wc,Rd1} =	152161,91 [d	aN] Résistand	ce de l'âme du j	ooteau		[6.2.6.]	2.(1)]
Flambeme	ent:						
$F_{c,wc,Rd2} =$	148766,76 [d	aN] Résistand	ce de l'âme du j	ooteau		[6.2.6.]	2.(1)]
Résistance	e finale:						
$F_{c,wc,Rd} = 1$	48766,76 [da	N] Résistanc	e de l'âme du p	oteau		[6.2.6.]	2.(1)]
<u>Resistan</u>	CE DE L'ASSE	MBLAGE A LA	TRACTION				
$F_{t,Rd} = 141$	112,00 [daN]	Résistance du	u boulon à la tr	action		[Tableau	u 3.4]
$B_{p,Rd} = 369$	960,21 [daN]	Résistance du	u boulon au cis	aillemen	ıt au poinço	onnement [Tableau	u 3.4]
$N_{j,Rd} = 112$	2896,00 [daN]] Résistance o	de l'assemblage	à la trac	ction		[6.2]
$N_{b1,Ed} / N_{j}$	$_{\rm Rd} \leq 1,0$		0,00 < 1,00		vérifié	((0,00)
RESISTAN	<u>CE DE L'ASSE</u>	MBLAGE A LA	FLEXION				
$F_{t,Rd} = 141$	112,00 [daN]	Résistance du	u boulon à la tr	action		[Tableau	u 3.4]
$B_{p,Rd} = 369$	960,21 [daN]	Résistance du	u boulon au cis	aillemen	ıt au poinço	onnement [Tableau	u 3.4]
Réduction	n supplément	aire de la rés	sistance d'une	rangée (de boulons		
$F_{t2,Rd} = 194$	457,82 [daN]	Résistance re	éduite d'une rar	igée de b	ooulon	[6.2.7.]	2.(9)]
Réduction	n supplément	aire de la rés	sistance d'une	rangée (de boulons		
$F_{t3,Rd} = 120$	040,27 [daN]	Résistance re	éduite d'une rar	igée de b	ooulon	[6.2.7.]	2.(9)]
Réduction supplémentaire de la résistance d'une rangée de boulons							
$F_{t4,Rd} = 394$	48,41 [daN] I	Résistance réc	luite d'une rang	ée de bo	oulon	[6.2.7.]	2.(9)]

TABLEAU RECAPITULATIF DES EFFORTS

Nr	hj	Ftj,Rd	Ft,fc,Rd	Ft,wc,Rd	Ft,ep,Rd	Ft,wb,Rd	Ft,Rd	B _{p,Rd}
1	419	28224,00	28224,00	54869,47	28224,00	58233,25	28224,00	73920,42

Nr	h _j	F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	B _{p,Rd}
2	289	19457,82	28224,00	54869,47	28224,00	55119,32	28224,00	73920,42
3	179	12040,27	28224,00	54869,47	28224,00	55119,32	28224,00	73920,42
4	59	3948,41	28224,00	54869,47	28224,00	55119,32	28224,00	73920,42

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION M_{j,Rd}

$M_{j,Rd} = 19808,92 [daN*m] Re$	[6.2]		
$M_{b1,Ed}$ / $M_{j,Rd} \le 1,0$	0,23 < 1,00	vérifié	(0,23)

RESISTANCE DE L'ASSEMBLAGE AU CISAILLEMENT

F _{v,Rd} =	11882,76	[daN]	Résistance d'un boulon	au cisaillement	[Tableau 3.4]
F _{t,Rd,max} =	14112,00	[daN]	Résistance d'un boulon	à la traction	[Tableau 3.4]
F _{b,Rd,int} =	32680,00	[daN]	Résistance du boulon in	ntérieur en pression diamé	trale [Tableau 3.4]
F _{b,Rd,ext} =	32680,00	[daN]	Résistance du boulon de	e rive en pression diamétra	ale [Tableau 3.4]
$V_{j,Rd} = 86$	023,32 [d	aN] Re	sistance de l'assemblag	e au cisaillement	[Tableau 3.4]
V _{b1,Ed} / V	j,Rd ≤ 1,0		0,07 < 1,00	vérifié	(0,07)
RESISTAL	NCE DES SO	DUDUR	<u>28</u>		

$A_w =$	217,22	$[cm^2]$	Aire de toutes les soudures	[4.5.3.2(2)]
$A_{wy} =$	139,40	[cm ²]	Aire des soudures horizontales	[4.5.3.2(2)]
$A_{wz} =$	77,82	[cm ²]	Aire des soudures verticales	[4.5.3.2(2)]
$I_{wy} =$	64558,65	[cm ⁴]	Moment d'inertie du système de soudures par rapport à l'axe horiz.	[4.5.3.2(5)]
s _{^max} =t _{^max}	1282794,49	[daN/m ²]	Contrainte normale dans la soudure	[4.5.3.2(5)]
s^=t^ = -	-1093464,55	[daN/m ²]	Contraintes dans la soudure verticale	[4.5.3.2(5)]
$t_{II} =$	778373,69	[daN/m ²]	Contrainte tangentielle	[4.5.3.2(5)]
$b_w =$	0,85		Coefficient de corrélation	[4.5.3.2(7)]
$\ddot{O}[s_{max}^2 + 3]$	$3^*(t_{\max}^2)] \leq f$	$f_u/(b_w * g_{M2})$) 2565588,97 < 40470588,24 vérifié	(0,06)
$\ddot{O}[s^2 + 3^*($	$t^{2}+t_{II}^{2})]\leq f_{u}/$	$(b_w * g_{M2})$	2569096,27 < 40470588,24 vérifié	(0,06)

$\ddot{O}[s_{max}^2 + 3*(t_{max}^2)] \le f_u/(b_w * g_u)$	M2) 2565588,97 < 40470588,24 vérifié	(0,06)
$s_{\text{A}} \leq 0.9^* f_{\text{u}}/g_{M2}$	1282794,49 < 30960000,00 vérifié	(0,04)
RIGIDITE DE L'ASSEMBLAGE		
t _{wash} = 4 [mm] Epaisse	eur de la plaquette	[6.2.6.3.(2)]
$h_{head} = 14 [mm]$ Hauteur	r de la tête du boulon	[6.2.6.3.(2)]
$h_{nut} = 20 \text{ [mm]}$ Hauteur	r de l'écrou du boulon	[6.2.6.3.(2)]
$L_b = 64 [mm]$ Longue	eur du boulon	[6.2.6.3.(2)]
$k_{10} = 6$ [mm] Coeffic	ient de rigidité des boulons	[6.3.2.(1)]
RIGIDITES DES RANGEES	DE BOULONS	
S _{j,ini} = 6394686,69 [daN*m] Rigi	dité en rotation initiale	[6.3.1.(4)]
$S_j = 6394686,69 [daN*m] Rig$	idité en rotation finale	[6.3.1.(4)]
Classification de l'assemblage	par rigidité.	
$S_{j,rig} = 19516000,00 [daN*m] Ri$	gidité de l'assemblage rigide	[5.2.2.5]
$S_{j,pin} = 1219750,00 [daN*m] Ri$	gidité de l'assemblage articulé	[5.2.2.5]
$S_{j,pin} \leq S_{j,ini} < S_{j,rig}$ SEMI-RIGID	E	

COMPOSANT LE PLUS FAIBLE:

PANNEAU D'AME DU POTEAU EN CISAILLEMENT

Assemblage satisfaisant vis à vis de la Norme Ratio 0,23

VI.2.5 Assemblage au gousset :

Nous avons deux types d'assemblage au gousset, un pour les cornières à une seule barre et l'autre pour les cornières à deux barres.

VI.2.5.1 Assemblages au gousset – barre simple :

Figure VI.9 : Représentation de l'assemblage au gousset barre simple.

Cet assemblage constitué de 3 boulons 4.6 de diamètre de 12mm, avec un gousset de 8 mm d'épaisseur.

1. Les composants de l'assemblage :

- Cornière CAE 70×7
- Gousset 300×270×8

2. détails d'assemblage :

Figure VI.10 : détails sur l'assemblage au gousset barre simple.

La note de calcul :

Autodesk Robot Structural Analysis Professional 2017 Calcul de l'assemblage au gousset EN 1993-1-8:2005/AC:2009

GENERAL

Assemblage N°: 37

Nom de l'assemblage : Gousset - barre simple

GEOMETRIE

BARRES

		BARRE 4	
PROFILE:		CAE 70x7	
	h	70	mm
	b_{f}	70	mm
	tw	7	mm
	t _f	7	mm
	r	9	mm
	A	9,40	cm2
MATERIAU:		S 235	
	fy	23500000,00	daN/m2
	$\mathbf{f}_{\mathbf{u}}$	3600000,00	daN/m2
ANGLE	a	90,0	Deg

BOULONS

Barre 4

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe =	4.6		Classe du boulon
d =	12	[mm]	Diamètre du boulon
$d_0 =$	13	[mm]	Diamètre du trou de boulon
$A_s =$	0,84	[cm ²]	Aire de la section efficace du boulon
$A_v =$	1,13	[cm ²]	Aire de la section du boulon

Le plan de cisaillement passe par la partie NON FILETÉE du boulon						
Classe	= 4.6	Classe du boulon				
$f_{yb} =$	2400000,00 [daN/m ²]	Limite de plasticité				
$f_{ub} =$	4000000,00 [daN/m ²]	Résistance du boulon à la traction				
n =	3	Nombre de colonnes des boulons				
Espace	ment des boulons	50;50 [mm]				
$e_1 = -4$	40 [mm] Distance du cer	ntre de gravité du premier boulon de l'extrémité de la barre				
$e_2 = 2$	35 [mm] Distance de l'ax	e des boulons du bord de la barre				
$e_c =$	0 [mm] Distance de l'ex	trémité de la barre du point d'intersection des axes des barres				

SOUDURES

Soudures d'angle du gousset

b = 10 [mm] Bord b

GOUSSET

$l_p =$	300	[mm]	Longueur de la platine
$h_p =$	270	[mm]	Hauteur de la platine
t _p =	8	[mm]	Epaisseur de la platine

Paramètres

$h_1 =$	115	[mm]	Grugeage
$\mathbf{v}_1 =$	200	[mm]	Grugeage
$h_2 =$	115	[mm]	Grugeage
$v_2 =$	200	[mm]	Grugeage
h ₃ =	0	[mm]	Grugeage
v ₃ =	0	[mm]	Grugeage
$h_4 =$	0	[mm]	Grugeage
$v_4 =$	0	[mm]	Grugeage

Centre de gravité de la tôle par rapport au centre de gravité des barres

(150;108)

- ev 80 [mm Distance verticale de l'extrémité du gousset du point d'intersection des axes des] barres
- e_H 13 [mm Distance horizontale de l'extrémité du gousset du point d'intersection des axes
 5] des barres

Matériau: S 275

 $f_y= \qquad 27500000,00\,[daN/m^2]\,R\acute{e}sistance$

COEFFICIENTS DE MATERIAU

g _{M0} =	1,00	Coefficient de sécurité partiel	[2.2]
g _{M2} =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

 $N_{b4,Ed} = 3021,00$ [daN] Effort axial

RESULTATS

BARRE 4

RESISTANCE DES BOULONS

 $F_{v,Rd} = 2171,47$ [daN] Résistance de la tige d'un boulon au cisaillement

Pression du boulon sur la barre

Direction x

$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,l}	$k_{1x} = \min[2.8*(e$	$_{2}/d_{0}$)-1.7, 2.5]
$k_{1x} > 0.0$	2,50 > 0,00	vérifié	
$a_{bx} = 1,00$	Coefficient dépendant de l'espa	acement des boulons	
$a_{bx} > 0.0$	1,00 > 0,00	vérifié	
$F_{b,Rd1x} = 6048,00$	[daN] Résistance de calcul à l'éta plastification de la paroi d	at limite de lu trou	
Direction z			
$k_{1z} > 0.0$	2,50 > 0,00	vérifié	

$a_{bz} > 0.0$)		0	,90 > 0,00		vérifié	
F _{b,Rd1z} =	= 542	27,69 [[daN] R	ésistance d'un bo	ulon en pi	ession diamétrale	
Pressio	n du boul	on sur la p	olatine				
Directio	on x						
$k_{1x} > 0.0$	0		2,50 > 0	,00	•	vérifié	
$a_{bx} > 0.0$)	1,0	0 > 0,00			vérifié	
F _{b,Rd2x} =	= 8256,00	[daN] Rés	sistance de o	calcul à l'état limi	te de plas	tification de la paroi du	
Directio	on z						
$k_{1z} > 0.0$)		2,50 > 0),00		vérifié	
$a_{bz} > 0.0$)		1	,00 > 0,00		vérifié	
F _{b,Rd2z} =	8256,00) [daN]]	Résistance o	d'un boulon en pro	ession dia	métrale	
VERIFIC	CATION DE	L'ASSEMI	BLAGE POU	R LES EFFORTS AG	GISSANT S	UR LES BOULONS	
cisailleı	nent des l	ooulons					
e =	15	[mm]	Excentrici	té de l'effort axial	par rappo	ort à l'axe des boulons	
$M_0 =$	46,18	[daN*m]	Moment f	léchissant réel			
F _{NSd} =	1007,00	[daN]	Force résu axial	ltante dans le bou	llon due à	l'influence de l'effort	
F _{MSd} =	461,82	[daN]	Effort con	posant dans le bo	oulon dû à	l'influence du moment	
$F_{x,Ed} =$	1007,00	[daN]	Effort de c	calcul total dans le	e boulon s	ur la direction x	
F _{z,Ed} =	461,82	[daN]	Effort de c	calcul total dans le	e boulon s	ur la direction z	
$F_{Ed} =$	1107,85	[daN]	Effort tran	chant résultant da	ins le bou	lon	
F _{Rdx} =	6048,00	[daN]	Résistance	e résultante de cal	cul du boi	lon sur la direction x	
$F_{Rdz} =$	5427,69	[daN]	Résistance	e résultante de cal	cul du boi	ulon sur la direction z	
$ F_{x,Ed} \leq$	F _{Rdx}		1	007,00 < 6048,00)	vérifié	(0,
$ F_{z,Ed} \leq$	F _{Rdz}		4	61,82 < 5427,69		vérifié	(0,
$F_{Ed} \leq F_v$	'Rd		11	07,85 < 2171,47		vérifié	(0,

e =	15	[mm]	Excentricité de l'effort axial par rapport à l'axe des boulons					
VERIFICA	TION DE L	A SECTIO	ON DE LA POUTRE AFFAIBLIE PAR	LES TROUS				
N _{u,Rd} =	14858,81	[daN]	Résistance de calcul de la section	on nette				
N _{pl,Rd} =	19881,00	[daN]	Résistance de calcul plastique d	le la section brute				
$ \mathbf{N}_{\mathrm{b4,Ed}} \leq N$	N _{u,Rd}		3021,00 < 14858,81	vérifié	(0,20)			
$ N_{b4,Ed} \leq N_{pl,Rd}$			3021,00 < 19881,00	vérifié	(0,15)			

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

$A_{nt} =$	1,99	$[cm^2]$	Aire nette de la zone de la section en traction	
$A_{nv} =$	7,52	[cm ²]	Aire de la zone de la section en traction	
$V_{effRd} =$	13082,52	[daN]	Résistance de calcul de la section affaiblie par les trous	
$ N_{b4,Ed} \leq$	V _{effRd}		3021,00 < 13082,52 vérifié	(0,23)

ATTACHE GOUSSET

VERIFICATION DES SOUDURES D'ANGLE

$M_0 =$	22,66	[daN*m]	Moment fléchissant réel			
$A_w =$	30,00	$[cm^2]$	Aire de la section de la soudure			
s =	654550,00	[daN/m ²]	Contrainte normale dans la soudure			
s^ =	462836,74	[daN/m ²]	Contrainte normale perpendiculaire dar	is la sou	dure	
$ \mathbf{s}_{\uparrow} \leq 0.$	$9*f_u/g_{M2}$		462836,74 < 30960000,00 véri	fié		(0,01)
t^ = 46	2836,74 [dal	N/m ²]Cont	rainte tengentielle perpendiculaire			t∧=s∧
$b_w =$	0,85	Coef	ficient de corrélation		[Tab	leau 4.1]
Ö[s^2+3	$3*t^2] \leq f_u/(b_v)$	_w *g _{M2}) 92	5673,49 < 40470588,24 vérifié	(0,02)		
Assem	ıblage satisfa	aisant vis	à vis de la Norme		Ratio	0,51

VI.2.5.2 Assemblages au gousset – deux barres :

Figure VI.11 : Représentation de l'assemblage au gousset – deux barres.

Cet assemblage constitué de 3 boulons 4.6 de diamètre de 12mm, avec un gousset de 8 mm d'épaisseur.

1. Les composants de l'assemblage :

- 2 Cornière CAE 70×7
- Gousset 300×270×8

2. détails d'assemblage :

Figure VI.12 : détails sur l'assemblage au gousset - deux barres

3. La note de calcul :

GENERAL

Assemblage N°: 38

Nom de l'assemblage : Gousset - barre simple

GEOMETRIE

Autodesk Robot Structural Analysis Professional 2017 Calcul de l'assemblage au gousset EN 1993-1-8:2005/AC:2009 OK Ratio 0,12

BARRES

		BARRE 4	
PROFILE:		2 CAE 70x7	
	h	70	mm
	b _f	70	mm
	tw	7	mm
	t _f	7	mm
	r	9	mm
	A	18,79	cm2
MATERIAU:		S 275	
	fy	27500000,00	daN/m2
	fu	4300000,00	daN/m2
ANGLE	a	90,0	Deg

BOULONS

Barre 4

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe	= 4.6		Classe du boulon
d =	12	[mm]	Diamètre du boulon
$d_0 =$	13	[mm]	Diamètre du trou de boulon
$A_s =$	0,84	[cm ²]	Aire de la section efficace du boulon
$A_v =$	1,13	[cm ²]	Aire de la section du boulon
$f_{yb} =$	24000000,00	[daN/m ²]	Limite de plasticité
$f_{ub} =$	4000000,00	[daN/m ²]	Résistance du boulon à la traction
n =	3		Nombre de colonnes des boulons
Espace	ement des boulo	ns	50;50 [mm]
$e_1 =$	40 [mm] Dista	nce du cer	ntre de gravité du premier boulon de l'extrémité de la barre
$e_2 =$	35 [mm] Dista	nce de l'ax	te des boulons du bord de la barre
$e_c =$	0 [mm] Dista	nce de l'ex	trémité de la barre du point d'intersection des axes des barres
Soudi	JRES		

Soudures d'angle du gousset

b = 10 [mm] Bord b

GOUSSET

$l_p =$	300	[mm]	Longueur de la platine	
$h_p =$	270	[mm]	Hauteur de la platine	
$t_p =$	8	[mm]	Epaisseur de la platine	
Para	mètres			
$h_1 =$	115	[mm]	Grugeage	
$\mathbf{v}_1 =$	200	[mm]	Grugeage	
$h_2 =$	115	[mm]	Grugeage	
$\mathbf{v}_2 =$	200	[mm]	Grugeage	
$h_3 =$	0	[mm]	Grugeage	
v ₃ =	0	[mm]	Grugeage	
$h_4 =$	0	[mm]	Grugeage	
$\mathbf{v}_4 =$	0	[mm]	Grugeage	
Centr	e de gravi	té de la	tôle par rapport au centre de gravité des barres (150;10	8)
ev =	80 ^{[mm Di}] ba	istance v arres	verticale de l'extrémité du gousset du point d'intersection des axes	des
e _H =	13 [mm Di 5] de	istance l es barres	norizontale de l'extrémité du gousset du point d'intersection des ax	es
Maté	riau: S	S 275		
$f_y =$	275000	000,00 [daN/m ²] Résistance	
<u>Coef</u>	FICIENTS	DE MAI	TERIAU	
g м0 =	1,00		Coefficient de sécurité partiel	[2.2]
g _{M2} =	1,25		Coefficient de sécurité partiel	[2.2]
Effo	RTS			

Cas: Calculs manuels

 $N_{b4,Ed} = 1440,00$ [daN] Effort axial

RESULTATS

BARRE 4

RESISTANCE DES BOULONS

$F_{v,Rd}$	4342,9 4	[daN]	Résistanc cisaillem	e de la tige ent	d'un boul	on au			$F_{v,Rd}$ = 0.6* f_{ub} * A_v * m/g_{M2}
Press	ion du bo	oulon	sur la ba	rre					
Direc	tion x								
$k_{1x} =$	2,50	С	oefficient	pour le calc	cul de F _{b,R}	d	k _{1x} =	=min[2.	$8*(e_2/d_0)-1.7, 2.5$
k _{1x} >	0.0			2,50 > 0,00)	vérifié			
a_{bx}),9 Coeffi 3 boulor	cient 1s	dépendan	t de l'espace	ement des		a _{bx} =min	e ₁ /(3*c	f_0 , p ₁ /(3*d ₀)-0.25 f_{ub}/f_u , 1
$a_{bx} > 0$).0 (0,93 :	> 0,00			vérifié			
F _{b,Rd1} ; =	(13440, [00]	[da R N] la	ésistance a paroi du	de calcul à l trou	l'état limit	te de pla	stificatio	n de F _t	$_{b,Rd1x}=k_{1x}*a_{bx}*f_{u}*c_{bx}*f_{u}*c_{bx}*t_{i}/g_{M2}$
Direc	tion z								
$k_{1z} > 0$	0.0			2,50 > 0,00	0	vérifié			
$a_{bz} =$	0,90	(Coefficien	t pour le cal	cul de F _{b,}	Rd	ab	z=min[$e_2/(3*d_0), f_{ub}/f_u, 1$
a _{bz} > ().0			0,90	> 0,00		vérif é	i	
F _{b,Rd1} =	, 12966,	1 [dal 5]	N Résistan	ce d'un bou	lon en pre	ession di	amétrale	F _{b,Rd}	ız=kız*a _{bz} *fu*d*ti gm2
Press	ion du bo	oulon	sur la pla	atine					
Direc	tion x								
$k_{1x} =$	2,50	C	Coefficient	pour le cale	cul de F _{b,F}	Rd	k1=	=min[2.	$8^{*}(e_2/d_0)$ -1.7, 2.5
k _{1x} >	0.0			2,50 > 0,00)	vérifié			
a_{bx} (9,9 Coeffio 3 boulon	cient s	dépendant	t de l'espace	ment des	a _{bx} =m	nin[e ₁ /(3*	d ₀), p ₁ /	(3*d ₀)-0.25, f _{ub} /f _u
$a_{bx} > 0$	0.0		0,93 >	0,00	V	vérifié			
$F_{b,Rd2}$	7680, [0 00 N	da Ro N] la	ésistance o paroi du t	le calcul à l' rou	'état limite	e de plas	stificatior	ide F	$f_{b,Rd2x} = k_1 * a_b * f_u * d^* t_i / g_{M2}$

Direct	ion z				
$k_{1z} = 2$	2,50	Coef	ficient pour le calcul de F _{b,Rd} k _{1z}	$= \min[2.8*(e_1/d_0)]$	$-1.7, 1.4*(p_1/d_0)-1.7, 2.5]$
$k_{1z} > 0$).0		2,50 > 0,00	vérifié	
a _{bz} =	0,93		Coefficient pour le calcul de F _{b,I}	≀d at	$p_{z}=min[e_{2}/(3*d_{0}), f_{ub}/f_{u}, 1]$
$a_{bz} > 0$).0		0,93 > 0,00	V	érifié
F _{b,Rd2z}	768	0,0 [da 0]	N Résistance d'un boulon en pre diamétrale	ssion	$F_{b,Rd2z} = k_{1z} * a_{bz} * f_u * d * t_i / g_M$
VERIF	FICATIO	ON DE L	'ASSEMBLAGE POUR LES EFFOR	TS AGISSANT SU	R LES BOULONS
cisaill	ement	des bo	ulons		
e =	15	[mm]	Excentricité de l'effort axial par boulons	rapport à l'axe c	les
M ₀ =	22,01	[daN* m]	Moment fléchissant réel		$M_0\!\!=\!\!N_{b4,Ed}*e$
F _{NSd} =	480,0 0	[daN]	Force résultante dans le boulon l'effort axial	due à l'influence	$e \ de \qquad \qquad F_{NSd} = N_{b4,Ed}/n$
F _{MSd}	220,1 3	[daN]	Effort composant dans le boulo moment	n dû à l'influence	e du $F_{MSd}=M_0*x_{max}/Sx_i^2$
$F_{x,Ed}$	480,0 0	[daN]	Effort de calcul total dans le bo x	ulon sur la direct	tion $F_{x,Ed} = F_{NSd}$
$F_{z,Ed}$	220,1 3	[daN]	Effort de calcul total dans le bo z	ulon sur la direct	tion $F_{z,Ed} = F_{MSd}$
$F_{Ed} =$	528,0 7	[daN]	Effort tranchant résultant dans l	e boulon	$\begin{split} F_{Ed} &= \ddot{O}(\ F_{x,Ed}{}^2 + \\ F_{z,Ed}{}^2 \) \end{split}$
F _{Rdx} =	7680, 00	[daN]	Résistance résultante de calcul direction x	du boulon sur la	$F_{Rdx}=min(F_{bRd1x}, F_{bRd2x})$
F _{Rdz} =	7680, 0	[daN]	Résistance résultante de calcul direction z	du boulon sur la	$F_{Rdz}=min(F_{bRd1z}, F_{bRd2z})$
$ F_{x,Ed} $	\leq F _{Rdx}		480,00 < 7680	,00 véi	rifié (0,06)
$ \mathbf{F}_{z,\mathrm{Ed}} $	\leq F _{Rdz}		220,13 < 7680	,00 véi	rifié (0,03)
$F_{Ed} \leq 1$	F _{vRd}		528,07 < 4342,	94 véi	rifié (0,12)

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

 $N_{u,Rd} = 17741,56$ [daN] Résistance de calcul de la section nette

 $N_{pl,Rd}$ =23257,35 [daN] Résistance de calcul plastique de la section brute

$ 0.5^*N_{b4,Ed} \leq N_{u,Rd}$	720,00 < 17741,56	vérifié	(0,04)
$ 0.5^*N_{b4,Ed} \leq N_{pl,Rd}$	720,00 < 23257,35	vérifié	(0,03)

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

 V_{effRd} = 15378,94 [daN] Résistance de calcul de la section affaiblie par les trous

120,00 < 122,00 < 122,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102,00 < 102	$ 0.5^*N_{b4,Ed} \leq V_{effRd}$	720,00 < 15378,94	vérifié	(0,05)
---	-----------------------------------	--------------------	---------	--------

ATTACHE GOUSSET

VERIFICATION DES SOUDURES D'ANGLE

e =	15 [mm]	Excentricité de l'effort axial par rapport au centre de gravité du groupes de boulons	
M ₀ =	10,80 [daN *m]	Moment fléchissant réel	$M_0 = 0.5*N_{b1,Ed}*sin(a)*e$
A _w =	30,00 [cm ²]	Aire de la section de la soudure	$A_w = a*l$
s =	31200 [daN/ 0,00 m ²]	Contrainte normale dans la soudure	$\label{eq:states} \begin{split} & s \\ = & 0.5*N_{b1,Ed}*sin(a)/A_w \\ & + M_0/W_{yw} \end{split}$
S^ =	22061 [daN/ 7,32 m ²]	Contrainte normale perpendiculaire dans la soudure	s^=s/Ö2
s^ ≤	$\leq 0.9*f_u/g_{M2}$	220617,32 < 30960000,00 véri	fié (0,01)
t^ =	220617,32[daN/m ²] Contrainte tengentielle perpendiculaire	t^=s^
b _w =	. 0,85	Coefficient de corrélation	[Tableau 4.1]
Ö[s∕	$x^2+3*t^2] \leq f_u$	$(b_w * g_{M2})$ 441234,63 < 40470588,24 vérifié	(0,01)
Ass	emblage sat	isfaisant vis à vis de la Norme	Ratio 0,12

VI.2.6 Assemblage des pieds de poteaux encastré :

Figure VI.13 : Représentation de l'assemblage pied poteau encastré.

Cet assemblage constitué de 8 tiges d'ancrage 8.8 de diamètre de 30mm, avec un raidisseur de forme trapézoïdale a une épaisseur de 15mm et un platine de 30mm d'épaisseur.

1. Les composants de l'assemblage :

- Poteau HEB300
- Plaque d'assise 600×600×30
- Raidisseur de forme trapézoïdale 600×300×600×1

2. détails d'assemblage :

3. La note de calcul :

Autodesk Robot Structural Analysis Professional 2017 **Calcul du Pied de Poteau encastré** Eurocode 3: EN 1993-1-8:2005/AC:2009 + CEB Design Guide: Design of fastenings in concrete

GENERAL

Assemblage N°: 26

Nom de l'assemblage : Pied de poteau encastré

Noeud de la structure: 276

Barres de la structure: 203

GEOMETRIE

POTEAU

Profilé:	HEB 300	

Barre N°:

203

 $I_{yc} = 25165,70$ [cm⁴] Moment d'inertie de la section du poteau

Matériau: S 275

 $f_{yc}=~27500000,00\,[daN/m^2]\,R\acute{e}sistance$

 $f_{uc} = 43000000,00 \, [daN/m^2]$ Résistance ultime du matériau

PLATINE DE PRESCELLEMENT

	$l_{pd} =$	600	[mm]	Longueur
--	------------	-----	------	----------

	b _{pd} =	600	[mm]	Largeu
--	-------------------	-----	------	--------

$t_{pd} =$	30	[mm]	Epaisseur
------------	----	------	-----------

Matériau: S 275

 $f_{ypd} = 27500000,00 \, [\text{daN}/\text{m}^2] \, \text{Résistance}$

 $f_{upd} = 43000000,00 \, [daN/m^2]$ Résistance ultime du matériau

ANCRAGE

Ratio

0,73

Classe =	8.8		Classe de tiges d'ancrage
$f_{yb} =$	5500000,00	[daN/m ²]	Limite de plasticité du matériau du boulon
$f_{ub} =$	8000000,00	[daN/m ²]	Résistance du matériau du boulon à la traction
d =	30	[mm]	Diamètre du boulon
$A_s =$	5,61	[cm ²]	Aire de la section efficace du boulon
$A_v =$	7,07	[cm ²]	Aire de la section du boulon
$n_{\rm H} =$	2		Nombre de colonnes des boulons
$n_V =$	4		Nombre de rangéss des boulons
Ecartement $e_{Hi} = 450 \text{ [mm]}$			

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Dimensions des tiges d'ancrage

150;150 [mm]

$L_1 =$	80	[mm]
$L_2 =$	650	[mm]
$L_3 =$	120	[mm]
$L_4 =$	120	[mm]

Entraxe $e_{Vi} =$

Platine

$l_{wd} =$	60	[mm]	Longueur
b _{wd} =	60	[mm]	Largeur
$t_{wd} =$	10	[mm]	Epaisseur

RAIDISSEUR

$l_s =$	600	[mm]	Longueur
$w_s =$	600	[mm]	Largeur
$h_s =$	300	[mm]	Hauteur
$t_s =$	15	[mm]	Epaisseur
$d_1 =$	20	[mm]	Grugeage
d ₂ =	20	[mm]	Grugeage

$l_s = 600 \text{ [mm]}$ Longueur

COEFFICIENTS DE MATERIAU

$g_{M0} =$	1,00	Coefficient de sécurité partiel
g _{M2} =	1,25	Coefficient de sécurité partiel
$g_{\rm C} =$	1,50	Coefficient de sécurité partiel

SEMELLE ISOLEE

L =	1000	[mm]	Longueur de la semelle
B =	1000	[mm]	Largeur de la semelle
H =	1000	[mm]	Hauteur de la semelle

Béton

Classe	2	User
$\mathbf{f}_{ck} =$	39750000,00 [daN/m ²]	Résistance caractéristique à la compression

Mortier de calage

$t_g =$	0 [mm]	Epaisseur du mortier de calage
$f_{ck,g} =$	1200000,00 [daN/m ²]	Résistance caractéristique à la compression
$C_{f,d} =$	0,30	Coef. de frottement entre la plaque d'assise et le béton

SOUDURES

$a_p =$	10	[mm]	Plaque principale du pied de poteau
$a_s =$	10	[mm]	Raidisseurs

EFFORTS

Cas 14: ELU /274/ 1*1,35 + 2*1,35 + 3*1,35 + 4*1,35 + 10*1,35 + 11*1,35 + 12*1,35 + 13*1,35N_{j,Ed} = -21153,78 [daN] Effort axial V_{j,Ed,y} = 2,25 [daN] Effort tranchant V_{j,Ed,z} = -3409,16 [daN] Effort tranchant M_{j,Ed,y} = 22477,99 [daN*m] Moment fléchissant $N_{j,Ed} = -21153,78$ [daN] Effort axial

 $M_{j,Ed,z} = 8,69 \, [daN^*m] \, Moment \, fl\acute{e}chissant$

RESULTATS

ZONE COMPRIMEE

COMPRESSION DU BETON

f . –	26500000 00 [d ₂ N/m ²	Présistance de calcul à la compression	EN 1992-
I_{cd} –	2050000,00 [uan/iii] Resistance de calcul à la compression	1:[3.1.6.(1)]
$f_{j} =$	29444444,44 [daN/m ²	Résistance de calcul du matériau du joir sous la plaque d'assise	t [6.2.5.(7)]
A _{c1} =	1574,33 [cm ²] Aire de c	calcul maximale de la répartition de la cha	rge EN 1992- 1:[6.7.(3)]
$F_{rdu} = 1$	390959,45 [daN] Rési	stance du béton à l'appui rigide	EN 1992-1:[6.7.(3)]
$f_{jd} = $	52988528,57 [daN/m ²] I	Résistance de calcul du matériau du joint	[6.2.5.(7)]
F _{c,Rd,n} =	6318479,33 [daN] Re	ésistance du béton à la compression	[6.2.8.2.(1)]
F _{c,Rd,y} =	2296201,87 [daN] Re	ésistance du béton à la flexion My	[6.2.8.3.(1)]
F _{c,Rd,z} =	2148825,64 [daN] Re	ésistance du béton à la flexion Mz	[6.2.8.3.(1)]
AILE I	ET AME DU POTEAU	U EN COMPRESSION	
M _{c,Rd,y} :	= 157380,30 [daN*m] Résistance de calcul de la section à la flo	exion EN1993-1- 1:[6.2.5]
$F_{c,fc,Rd,y}$	=467659,56 [daN]	Résistance de l'aile et de l'âme comprim	ées [6.2.6.7.(1)]
M _{c,Rd,z} =	= 150339,48 [daN*m]	Résistance de calcul de la section à la fle	exion EN1993-1- 1:[6.2.5]
F _{c,fc,Rd,z}	=415136,66 [daN] R	ésistance de l'aile et de l'âme comprimées	[6.2.6.7.(1)]
RESIS	FANCE DE LA SEMI	ELLE DANS LA ZONE COMPRIMEE	

$N_{j,Rd} = 6318479,33$ [daN] Résistance de la semelle à l'effort axial	[6.2.8.2.(1)]
$F_{C,Rd,y} = 467659,56$ [daN] Résistance de la semelle dans la zone comprimée	[6.2.8.3]
F _{C,Rd,z} = 415136,66 [daN] Résistance de la semelle dans la zone comprimée	[6.2.8.3]

ZONE TENDUE

RUPTURE DU BOULON D'ANCRAGE

$F_{t,Rd,s1} = 27466,56$ [daN] Résistance du boulon à la rupture	[Tableau 3.4]
$F_{t,Rd,s2} = 25712,50$ [daN] Résistance du boulon à la rupture	CEB [9.2.2]
$F_{t,Rd,s} = 25712,50$ [daN] Résistance du boulon à la rupture	
ARRACHEMENT DU BOULON D'ANCRAGE DU BETON	
$f_{ck} = 39750000,00 \text{ [daN/m2]} \frac{\text{Résistance caractéristique du béton à la compression}}{compression}$	a EN 1992- 1:[3.1.2]
$f_{ctd} = 756866,80 \text{ [daN/m2]}$ Résistance de calcul à la traction	EN 1992- 1:[8.4.2.(2)]
$f_{bd} = 1702950,31 [daN/m^2]$ Adhérence de calcul admissible	EN 1992-1:[8.4.2.(2)]
$F_{t,Rd,p} = 104324,54$ [daN] Résistance de calc. pour le soulèvement	EN 1992-1:[8.4.2.(2)]
ARRACHEMENT DU CONE DE BETON	
$N_{Rk,c}^{0} = 37118,63$ [daN] Résistance caractéristique du boulon d'ancrage	CEB [9.2.4]
$F_{t,Rd,c} = 17184,55$ [daN] Résistance de calcul du boulon d'ancrage à l'arrachement du cône de béton	EN 1992- 1:[8.4.2.(2)]
FENDAGE DU BETON	
$N_{Rk,c}^{0} = 247799,18$ [daN] Résistance de calc. pour le soulèvement	CEB [9.2.5]
$F_{t,Rd,sp} = 26005,96$ [daN] Résistance de calcul du boulon d'ancrage au du béton	fendage CEB [9.2.5]
RESISTANCE DU BOULON D'ANCRAGE A LA TRACTION	

 $F_{t,Rd} = min(F_{t,Rd,s}, F_{t,Rd,p}, F_{t,Rd,c}, F_{t,Rd,sp})$

 $F_{t,Rd} = 17184,55$ [daN] Résistance du boulon d'ancrage à traction

FLEXION DE LA PLAQUE DE BASE

Moment fléchissant M_{j,Ed,y}

$M_{pl,1,Rd} =$	2156,31	[daN*m]	Résistance plastique de la dalle pour le mode 1	[6.2.4]
$M_{pl,2,Rd} =$	2156,31	[daN*m]	Résistance plastique de la dalle pour le mode 2	[6.2.4]
F _{T,1,Rd} =	135433,47	[daN]	Résistance de la dalle pour le mode 1	[6.2.4]

$F_{T,2,Rd} =$	68269,14	[daN]	Résistance de la dalle p	our le mode 2	[6.2.4]
F _{T,3,Rd} =	68738,21	[daN]	Résistance de la dalle p	our le mode 3	[6.2.4]
$F_{t,pl,Rd,y} =$	min(F _{T,1,Rd}	, $F_{T,2,Rd}$,	F _{T,3,Rd})		
$F_{t,pl,Rd,y} =$	68269,14 [[daN] R	ésistance de la dalle pour	le mode à la traction	[6.2.4]
Moment	fléchissant	M _{j,Ed,z}			
$M_{pl,1,Rd} =$	2156,31	[daN*m]	Résistance plastique de	la dalle pour le mode 1	[6.2.4]
$M_{pl,2,Rd} =$	2156,31	[daN*m]	Résistance plastique de	la dalle pour le mode 2	[6.2.4]
F _{T,1,Rd} =	135433,47	[daN]	Résistance de la dalle p	our le mode 1	[6.2.4]
F _{T,2,Rd} =	49682,71	[daN]	Résistance de la dalle p	our le mode 2	[6.2.4]
F _{T,3,Rd} =	34369,11	[daN]	Résistance de la dalle p	our le mode 3	[6.2.4]
$F_{t,pl,Rd,z} =$	min(F _{T,1,Rd}	, F _{T,2,Rd} ,	F _{T,3,Rd})		
$F_{t,pl,Rd,z} =$	34369,11 [[daN] R	ésistance de la dalle pour	le mode à la traction	[6.2.4]
RESIST	ANCES DE	SEME	LLE DANS LA ZONE	FENDUE	
$F_{T,Rd,y} = 6$	8269,14 [d	aN] Rési	stance de la semelle dan	s la zone tendue	[6.2.8.3]
$F_{T,Rd,z} = 3$	4369,11 [d	aN] Rési	stance de la semelle dan	s la zone tendue	[6.2.8.3]
CONTROL	LE DE LA RE	ESISTANC	E DE L'ASSEMBLAGE		
N _{j,Ed} / N _{j,j}	$_{\rm Rd} \le 1,0 \ (6.2)$	24)	0,00 < 1,00	vérifié	(0,00)
e _y =	1063 [mm] E	centricité de l'effort axia	ıl	[6.2.8.3]
$z_{c,y} =$	168 [mm] B	ras de levier F _{C,Rd,y}		[6.2.8.1.(2)]
$z_{t,y} =$	225 [mm] B	ras de levier F _{T,Rd,y}		[6.2.8.1.(3)]
$M_{j,Rd,y} = 3$	31899,02 [da	aN*m]Re	ésistance de l'assemblage	à la flexion	[6.2.8.3]
$M_{j,Ed,y}$ / N	$I_{j,Rd,y} \leq 1,0$	(6.23)	0,70 < 1,00	vérifié	(0,70)
e _z =	0 [mi	m] Exce	entricité de l'effort axial		[6.2.8.3]
$z_{c,z} =$	181 [mi	m] Bras	de levier F _{C,Rd,z}		[6.2.8.1.(2)]
$z_{t,z} =$	225 [mi	m] Bras	de levier F _{T,Rd,z}		[6.2.8.1.(3)]
$M_{j,Rd,z} = 3$	340,27 [daN	*m] Rési	stance de l'assemblage à	la flexion	[6.2.8.3]
$M_{j,Ed,z}$ / N	$I_{\mathrm{j,Rd,z}} \leq 1,0$	(6.23)	0,03 < 1,00	vérifié	(0,03)

$M_{j,Ed,y} \ / \ M_{j,Rd,y} + M_{j,Ed,z} \ / \ M_{j,Rd,z} \le 1,0 \ 0,73 < 1,00$	vérifié	(0,73)
<u>CISAILLEMENT</u>		
PRESSION DU BOULON D'ANCRAGE SUR L	A PLAQUE D'ASSISE	
Cisaillement par l'effort V _{j,Ed,y}		
$F_{1,vb,Rd,y} = 60468,75$ [daN] Résistance du boulon plaque d'assise	d'ancrage à la pression sur la	¹ [6.2.2.(7)]
Cisaillement par l'effort V _{j,Ed,z}		
$F_{1,vb,Rd,z} = 60468,75$ [daN] Résistance du boulon d plaque d'assise	'ancrage à la pression sur la	[6.2.2.(7)]
CISAILLEMENT DU BOULON D'ANCRAGE		
$f_{ub} = 80000000,00 [daN/m^2]$ Résistance du matéri	au du boulon à la traction	[6.2.2.(7)]
$F_{2,vb,Rd} = 12440,71$ [daN] Résistance du boulon au o	cisaillement - sans bras de le	vier [6.2.2.(7)]
RUPTURE DU BETON PAR EFFET DE LEVI	ER	
$N_{Rk,c} = 37118,63$ [daN] Résistance de calc. pour le	soulèvement	CEB [9.2.4]
$F_{v,Rd,cp} = 34369,11$ [daN] Résistance du béton à l'e	ffet de levier	CEB [9.3.1]
ECRASEMENT DU BORD DU BETON		
Cisaillement par l'effort V _{j,Ed,y}		
$V_{Rk,c,y}^{0} = 189741,75 $ [daN] Résistance caractéri	stique du boulon d'ancrage C	CEB [9.3.4.(a)]
$F_{v,Rd,c,y} = 52706,04$ [daN] Résistance du béton pou	ır l'écrasement du bord	CEB [9.3.1]
Cisaillement par l'effort V _{j,Ed,z}		
$V_{Rk,c,z}^{0} = 189741,75$ [daN] Résistance caractéristi	ique du boulon d'ancrage	CEB [9.3.4.(a)]
$F_{v,Rd,c,z} = 52706,04$ [daN] Résistance du béton pou	r l'écrasement du bord	CEB [9.3.1]
GLISSEMENT DE LA SEMELLE		
$N_{c,Ed} = 21153,78$ [daN] Effort de compression		[6.2.2.(6)]
$F_{f,Rd} = 6346,14$ [daN] Résistance au glissement		[6.2.2.(6)]
CONTROLE DU CISAILLEMENT		

$V_{j,Rd,y} = n_b * min(F_{1,vb,Rd,y}, F_{2,vb,Rd}, F_{v,x})$	$_{\mathrm{Rd,cp}}, F_{\mathrm{v,Rd,c,y}}) + F_{\mathrm{f,Rd}}$		
$V_{j,Rd,y} = 105871,79$ [daN] Résistance	e de l'assemblage au cis	aillement	CEB [9.3.1]
$V_{j,Ed,y} / V_{j,Rd,y} \leq 1,0$	0,00 < 1,00	vérifié	(0,00)
$V_{j,Rd,z} = n_b * min(F_{1,vb,Rd,z}, F_{2,vb,Rd}, F_{v,z})$	$R_{d,cp}, F_{v,Rd,c,z}) + F_{f,Rd}$		
V _{j,Rd,z} = 105871,79 [daN] Résistance	e de l'assemblage au cis	aillement	CEB [9.3.1]
$v_{j,Ed,z} / v_{j,Rd,z} {\leq} 1,0$	0,03 < 1,00	vérifié	(0,03)
$V_{j,Ed,y} / V_{j,Rd,y} + V_{j,Ed,z} / V_{j,Rd,z} \le 1,0$	0,03 < 1,00	vérifié	(0,03)

CONTROLE DES RAIDISSEURS

Plaque trapézoïdale parallèle à l'âme du poteau

$M_1 =$	1804,00	[daN*m] I	Moment fléchissant du raidisseur				
$Q_1 =$	24053,30	[daN]	Effort tranchant du raidisseur				
$z_s =$	70	[mm]	Position de l'axe neutre (à partir de la base de la plaque)	Position de l'axe neutre (à partir de la base de a plaque)			
$I_s =$	11610,00	[cm ⁴]	Moment d'inertie du raidisseur				
s _d =	621532,21	[daN/m ²]	Contrainte normale au contact du raidisseur et de la dalle	EN 1993-1- 1:[6.2.1.(5)]			
$s_g =$	4039959,35	[daN/m ²]	Contrainte normale dans les fibres supérieures	EN 1993-1- 1:[6.2.1.(5)]			
t =	5345176,98	[daN/m ²]	Contrainte tengentielle dans le raidisseur	EN 1993-1- 1:[6.2.1.(5)]			
$s_z =$	9278957,55	[daN/m ²]	Contrainte équivalente au contact du raidisseur et de la dalle	EN 1993-1- 1:[6.2.1.(5)]			
max (s _g , 1	t / (0.58), s _z)	$/(f_{yp}/g_{M0})$	≤ 1.0 (6.1) 0,34 < 1,00 vérifié	(0,34)			
Raidisse	ur perpendio	culaire à l'a	âme (sur le prolongement des ailes du poteau)				
$M_1 =$	743,16 [daN*m] M	oment fléchissant du raidisseur				
$Q_1 =$	11009,81	[daN] Ef	ffort tranchant du raidisseur				
_	70	Po	osition de l'axe neutre (à partir de la				

 $I_s =$ 11610,00 [cm⁴] Moment d'inertie du raidisseur

base de la plaque)

70 [mm]

 $z_s =$

$M_1 =$	743,16 [daN*m] Mo	oment fléch	issant du raidisse	eur	
s _d =	256042,03 [daN/m ²] Co rai	ntrainte noi disseur et d	rmale au contact e la dalle	du	EN 1993-1- 1:[6.2.1.(5)]
s _g =	1664273,17 [daN/m ²] Co sup	ntrainte noi périeures	male dans les fil	bres	EN 1993-1- 1:[6.2.1.(5)]
t =	2446623,80 [daN/m ²] Co	ntrainte ten	gentielle dans le	raidisseur	EN 1993-1- 1:[6.2.1.(5)]
$s_z =$	4245404,77 [daN/m ²] Co rai	ntrainte équ disseur et d	uvalente au cont e la dalle	act du	EN 1993-1- 1:[6.2.1.(5)]
max (s	s_{g} , t / (0.58), s_{z}) / (f_{yp}/g_{M0}) \leq	5 1.0 (6.1)	0,15 < 1,00	vérifié	(0,15)
Soudi	JRES ENTRE LE POTEAU ET	LA PLAQUE	D'ASSISE		
s^ =	2288176,05 [daN/m ²] Cont	rainte norm	ale dans la soud	ure	[4.5.3.(7)]
t^ =	[4.5.3.(7)]				
t _{yII} =	94,68 [daN/m ²] Cont	rainte tenge	entielle parallèle	à $V_{j,Ed,y}$	[4.5.3.(7)]
t _{zII} =	-116592,19 [daN/m ²] Cont	rainte tenge	entielle parallèle	à $V_{j,Ed,z}$	[4.5.3.(7)]
bw =	0,85 Coef	ficient dépe	endant de la résis	tance	[4.5.3.(7)]
s^ / (0.	$9*f_u/g_{M2})) \le 1.0 (4.1)$		0,07 < 1,00	vérifie	6 (0,07)
Ö(s^² -	+ 3.0 $(t_{yII}^2 + t^2)) / (f_u/(b_W * g$	$_{M2}))) \le 1.0$	(4.1)0,11 < 1,00	vérifie	6 (0,11)
Ö(s^² -	+ 3.0 $(t_{zII}^2 + t^2)) / (f_u/(b_W * g$	M2))) ≤ 1.0	(4.1) 0,09 < 1,00	vérifie	5 (0,09)

SOUDURES VERTICALES DES RAIDISSEURS

Plaque trapézoïdale parallèle à l'âme du poteau

s^ =	0,00 [daN/m ²]Contrainte normale dans la soudu	re	[4.5.3.(7)]
t^ =	0,00 [daN/m ²	²]Contrainte tengentielle perpendic	ulaire	[4.5.3.(7)]
$t_{II} =$	4077706,34 [daN/m ²	²]Contrainte tengentielle parallèle		[4.5.3.(7)]
$s_z =$	0,00 [daN/m ²]Contrainte totale équivalente		[4.5.3.(7)]
bw =	0,85	Coefficient dépendant de la résist	ance	[4.5.3.(7)]
max (s	s^, t _{II} * Ö3, s _z) / (f _u /(b	$W^*g_{M2})) \le 1.0 (4.1) 0,17 < 1,00$	vérifié	(0,17)

Raidis	Raidisseur perpendiculaire à l'âme (sur le prolongement des ailes du poteau)							
s^ =	1751649,59 [daN/m ²]Contrainte normale dans la soudure	e	[4.5.3.(7)]				
t^ =	1751649,59 [daN/m ²]Contrainte tengentielle perpendicu	laire	[4.5.3.(7)]				
$t_{II} =$	1834967,85 [daN/m ²]Contrainte tengentielle parallèle		[4.5.3.(7)]				
$s_z =$	4730161,32 [daN/m ²]Contrainte totale équivalente		[4.5.3.(7)]				
$b_W =$	0,85	Coefficient dépendant de la résistat	nce	[4.5.3.(7)]				
max (s	s^, t _{II} * Ö3, s _z) / (f _u /(b	$W^*g_{M2})) \le 1.0 (4.1) 0.12 < 1.00$	vérifié	(0,12)				

SOUDURES HORIZONTALES DES RAIDISSEURS

Plaque trapézoïdale parallèle à l'âme du poteau

s^ =	5669416,33[da	N/m ²] Contrainte normale dans la soudu	re	[4.5.3.(7)]
t^ =	5669416,33[da	N/m ²] Contrainte tengentielle perpendic	ulaire	[4.5.3.(7)]
$t_{II} =$	5127735,39[da	N/m ²] Contrainte tengentielle parallèle		[4.5.3.(7)]
$s_z =$	14403129,42 [da	N/m ²] Contrainte totale équivalente		[4.5.3.(7)]
bw =	0,85	Coefficient dépendant de la résist	ance	[4.5.3.(7)]
max (s	s^, t _{II} * Ö3, s _z) / (f	$G_u/(b_W * g_{M2})) \le 1.0 (4.1) 0.36 < 1.00$	vérifié	(0,36)
Raidi	sseur perpendicu	ılaire à l'âme (sur le prolongement de	s ailes du poteau)	
s^ =	2883373,80[daN	J/m ²] Contrainte normale dans la soudur	e	[4.5.3.(7)]
t^ =	2883373,80 [daN	J/m ²]Contrainte tengentielle perpendicu	laire	[4.5.3.(7)]
$t_{II} =$	2230459,72 [daN	J/m ²]Contrainte tengentielle parallèle		[4.5.3.(7)]
$s_z =$	6941197,99[daN	J/m ²]Contrainte totale équivalente		[4.5.3.(7)]
bw =	0,85	Coefficient dépendant de la résista	nce	[4.5.3.(7)]

RIGIDITE DE L'ASSEMBLAGE

max $(s_{1}, t_{II} * \ddot{O}3, s_{z}) / (f_{u}/(b_{W}*g_{M2})) \le 1.0 (4.1) 0.17 < 1.00$

Moment fléchissant M_{j,Ed,y}

$S_{j,ini,y} = 8154097,21 [daN*m]$ Rigidité en rotation initiale	[Tableau 6.12]
$S_{j,rig,y} = 19817988,75 [daN*m]$ Rigidité de l'assemblage rigide	[5.2.2.5]
$S_{j,ini,y} < S_{j,rig,y}$ SEMI-RIGIDE	[5.2.2.5.(2)]

vérifié

(0, 17)

Moment fléchissant M_{j,Ed,z}

$S_{j,ini,z} = 212318195,96 [daN*m]$ Rigidité en rotation initiale	[6.3.1.(4)]
$S_{j,rig,z} = 6743228,63 [daN*m]$ Rigidité de l'assemblage rigide	[5.2.2.5]
S _{j,ini,z} B S _{j,rig,z} RIGIDE	[5.2.2.5.(2)]
COMPOSANT LE PLUS FAIBLE:	

PLAQUE D'ASSISE A LA FLEXION

Assemblage satisfaisant vis à vis de la Norme Ratio 0,73

VI.2.7 Assemblage des pieds de poteaux articulé :

Figure VI.15 : Représentation de l'assemblage pied poteau articulé.

Cet assemblage constitué de 2 tiges d'ancrage 8.8 de diamètre de 22mm, avec un raidisseur de forme trapézoïdale a une épaisseur de 15mm et un platine de 20mm d'épaisseur.

<u>1. Les composants de l'assemblage :</u>

- Poteau IPE 140
- Platine 400×300×20
- Raidisseur 400×200×15

2. détails d'assemblage :

Figure VI.16 : détails sur l'assemblage pied de poteau articulé.

3. La note de calcul :

Autodesk Robot Structural Analysis Professional 2017 Calcul du Pied de Poteau articulé				
Eurocode 3: EN 1993-1-8:2005/AC:2009 + CEB Design Guide: Design of fastenings in concrete	Ratio 0,47			

GENERAL

Assemblage N°: 27

Nom de l'assemblage : Pied de poteau articulé

Noeud de la structure: 520

Barres de la structure: 478

GEOMETRIE

POTEAU

Profilé: IPE 240

Barre N°:

478

3891,63 [cm⁴] Moment d'inertie de la section du poteau $I_{vc} =$

Matériau: S 275

$f_{yc} = 2750000,00 [daN/m^2]$ Résistar	nce
--	-----

 $f_{uc} = 43000000,00 \, [daN/m^2]$ Résistance ultime du matériau

PLATINE DE PRESCELLEMENT

$l_{pd} =$	400	[mm]	Longueur
b _{pd} =	300	[mm]	Largeur
$t_{pd} =$	20	[mm]	Epaisseur
Matériau:		S 275	
$f_{ypd} =$	2750	0000,00	[daN/m ²] Résistance

 $f_{upd} = 4300000,00 \, [daN/m^2] \, \text{R} \acute{e}sistance \, ultime \, du \, mat\acute{e}riau$

ANCRAGE

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe =	8.8		Classe de tiges d'ancrage
$f_{yb} =$	5500000,00	[daN/m ²]	Limite de plasticité du matériau du boulon
$f_{ub} =$	8000000,00	[daN/m ²]	Résistance du matériau du boulon à la traction
d =	22	[mm]	Diamètre du boulon
$A_s =$	3,03	[cm ²]	Aire de la section efficace du boulon
$A_v =$	3,80	$[cm^2]$	Aire de la section du boulon
n =	2		Nombre de rangéss des boulons
ev =	150	[mm]	Entraxe

Dimensions des tiges d'ancrage

$L_1 =$	80	[mm]
$L_2 =$	500	[mm]
$L_3 =$	120	[mm]
L ₄ =		[mm]

Platine

$l_{wd} =$	40	[mm]	Longueur
b _{wd} =	50	[mm]	Largeur
t _{wd} =	10	[mm]	Epaisseur

RAIDISSEUR

$l_s =$	400	[mm]	Longueur
$h_s =$	200	[mm]	Hauteur
$t_s =$	15	[mm]	Epaisseur
$d_1 =$	20	[mm]	Grugeage
d ₂ =	20	[mm]	Grugeage

COEFFICIENTS DE MATERIAU

g _{M0} =	1,00	Coefficient de sécurité partiel
g _{M2} =	1,25	Coefficient de sécurité partiel
$g_{\rm C} =$	1,50	Coefficient de sécurité partiel

SEMELLE ISOLEE

L =	600	[mm]	Longueur de la semelle
B =	500	[mm]	Largeur de la semelle
H =	1000	[mm]	Hauteur de la semelle

Béton

Classe User

 $f_{ck} = 39750000,00 \, [daN/m^2]$ Résistance caractéristique à la compression

Mortier de calage

t _g =	0 [mm]	Epaisseur du mortier de calage
$f_{ck,g} =$	1200000,00 [daN/m ²] Résistance caractéristique à la compression
$C_{f,d} =$	0,30	Coef. de frottement entre la plaque d'assise et le béton

SOUDURES

$a_p =$	10	[mm]	Plaque	principale	du	pied	de poteau
---------	----	------	--------	------------	----	------	-----------

 $a_s = 4$ [mm] Raidisseurs

EFFORTS

Cas:	14: El	LU /43/	1*1,00 + 2*1,00 + 9*1,50
N _{j,Ed} =	727,63	[daN]	Effort axial
$V_{j,Ed,y} =$	1,02	[daN]	Effort tranchant
$V_{j,Ed,z} = -6$	5292,12	[daN]	Effort tranchant

RESULTATS

ZONE TENDUE

RUPTURE DU BOULON D'ANCRAGE

$F_{t,Rd,s1} = 14834,88$ [daN] Résistance du boulon à la rupture	[Tableau 3.4]
$F_{t,Rd,s2} = 13887,50$ [daN] Résistance du boulon à la rupture	CEB [9.2.2]
$F_{t,Rd,s} = 13887,50$ [daN] Résistance du boulon à la rupture	
ARRACHEMENT DU BOULON D'ANCRAGE DU BETON	
$F_{t,Rd,p} = 58849,74$ [daN] Résistance de calc. pour le soulèvement EN	[1992-1:[8.4.2.(2)]
ARRACHEMENT DU CONE DE BETON	
$N_{Rk,c}^{0} = 30262,85$ [daN] Résistance caractéristique du boulon d'ancrage	CEB [9.2.4]
$F_{t,Rd,c} = 10216,05 \text{ [daN]} $ Résistance de calcul du boulon d'ancrage à l'arrachement du cône de béton	EN 1992- 1:[8.4.2.(2)]
FENDAGE DU BETON	
$N_{Rk,c}^{0} = 167180,20$ [daN] Résistance de calc. pour le soulèvement	CEB [9.2.5]
$F_{t,Rd,sp} = 14512,17$ [daN] Résistance de calcul du boulon d'ancrage au fer du béton	ndage CEB [9.2.5]
RESISTANCE DU BOULON D'ANCRAGE A LA TRACTION	

 $F_{t,Rd}$ =10216,05 [daN] Résistance du boulon d'ancrage à traction

FLEXION DE LA PLAQUE DE BASE

$F_{T,1,Rd} = 27233,88$ [daN] Résistance de la dalle pour le mode 1	[6.2.4]			
$F_{T,2,Rd} = 17386,76$ [daN] Résistance de la dalle pour le mode 2	[6.2.4]			
$F_{T,3,Rd} = 20432,09$ [daN] Résistance de la dalle pour le mode 3	[6.2.4]			
$F_{t,pl,Rd} = 17386,76$ [daN] Résistance de la dalle pour le mode à la traction	[6.2.4]			
RESISTANCE DE L'AME DU POTEAU A LA TRACTION				
$F_{t,wc,Rd} = 22373,38$ [daN] Résistance de l'âme du poteau	[6.2.6.3.(1)]			
RESISTANCES DE SEMELLE DANS LA ZONE TENDUE				
$N_{j,Rd} = 17386,76$ [daN] Résistance de la semelle à la traction axiale	[6.2.8.3]			
Controle de la resistance de l'assemblage				
$N_{j,Ed} \ / \ N_{j,Rd} \le 1,0 \ (6.24) \qquad \qquad 0,04 < 1,00 \qquad \qquad \text{vérifié}$	(0,04)			
<u>CISAILLEMENT</u>				
PRESSION DU BOULON D'ANCRAGE SUR LA PLAQUE D'ASSISE				
Cisaillement par l'effort V _{j,Ed,y}				
$F_{1,vb,Rd,z} = 37840,00$ [daN] Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]			
CISAILLEMENT DU BOULON D'ANCRAGE				
$F_{2,vb,Rd} = 6690,34$ [daN] Résistance du boulon au cisaillement - sans bras de levier [6.2.2.(7)]				
RUPTURE DU BETON PAR EFFET DE LEVIER				
$N_{Rk,c} = 22066,66$ [daN] Résistance de calc. pour le soulèvement	CEB [9.2.4]			
$F_{v,Rd,cp} = 20432,09$ [daN] Résistance du béton à l'effet de levier	CEB [9.3.1]			
ECRASEMENT DU BORD DU BETON				
Cisaillement par l'effort V _{j,Ed,y}				
$F_{v,Rd,c,y} = 32277,32 \text{ [daN]}$ Résistance du béton pour l'écrasement du bord	CEB [9.3.1]			
Cisaillement par l'effort V _{j,Ed,z}				
$F_{v,Rd,c,z} = 23928,16$ [daN] Résistance du béton pour l'écrasement du bord	CEB [9.3.1]			
GLISSEMENT DE LA SEMELLE				
N _{c,Ed} =0,00 [daN] Effort de compression	[6.2.2.(6)]			

$F_{f,Rd} = 0,00$ [daN] Résistance au glis	ssement		[6.2.2.(6)]
CONTROLE DU CISAILLEMENT			
V _{j,Rd,y} = 13380,67 [daN] Résistance de l'ass	semblage au cisaille	ement	CEB [9.3.1]
$V_{j,Ed,y} / V_{j,Rd,y} \le 1,0$ 0,0	00 < 1,00	vérifié	(0,00)
V _{j,Rd,z} = 13380,67 [daN] Résistance de l'ass	semblage au cisaille	ement	CEB [9.3.1]
$V_{j,Ed,z} / V_{j,Rd,z} \le 1,0$ 0,4	7 < 1,00	vérifié	(0,47)
$V_{j,Ed,y} / V_{j,Rd,y} + V_{j,Ed,z} / V_{j,Rd,z} \le 1,0$ 0,47	/ < 1,00	vérifié	(0,47)
Controle des raidisseurs			
Raidisseur parallèle à l'âme (sur le prol	ongement de l'âm	e du poteau)	
max (s _g , t / (0.58), s _z) / (f_{yp}/g_{M0}) \leq 1.0 (6.1)	1)0,00 < 1,00	vérifié	(0,00)
Soudures entre le poteau et la plac	UE D'ASSISE		
$s_{n} / (0.9*f_u/g_{M2})) \le 1.0 (4.1)$	0,00 < 1,00) vérifié	(0,00)
$\ddot{O}(s_{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^$	1.0 (4.1) 0,00 < 1,00) vérifié	(0,00)
$\ddot{O}(s^2 + 3.0 (t_{zII}^2 + t^2)) / (f_u/(b_W^*g_{M2}))) \le 1$	1.0 (4.1) 0,05 < 1,00) vérifié	(0,05)
Soudures verticales des raidisseurs	5		
Raidisseur parallèle à l'âme (sur le prol	ongement de l'âm	e du poteau)	
max $(s_{, t_{II}} * \ddot{O}3, s_z) / (f_u/(b_W * g_{M2})) \le 1.0$	(4.1) 0,00 < 1,00	vérifié	(0,00)
SOUDURES HORIZONTALES DES RAIDISSE	URS		
Raidisseur parallèle à l'âme (sur le prol	ongement de l'âm	e du poteau)	
max $(s_{, t_{II}} * \ddot{O}3, s_z) / (f_u/(b_W * g_{M2})) \le 1.0$	(4.1) 0,00 < 1,00	vérifié	(0,00)
Assemblage satisfaisant vis à vis de la M	Norme	F	Ratio 0,47

VI.3 Conclusion :

Dans ce chapitre, nous sommes arrivés à la conclusion qu'un assemblage correct assure la transmission des efforts entre les éléments de la structure.

CHAPITRE VII :

Calcul des fondations

VII.1 Introduction :

Les fondations représentent la partie de l'ouvrage en contact avec le sol d'assise. Ces dernières doivent pouvoir lui transmettre tous les efforts de la superstructure sans dépassement des paramètres indiqués sur le rapport géotechnique en particulier la contrainte admissible.

Les fondations doivent aussi résister à l'agressivité du sol, au gel et aux venues d'eau, d'où la nécessité de leurs conception en béton armé avec fissuration préjudiciable.

Dans notre projet, nous avons deux types de fondation :

- Fondation pour les poteaux de rive
- Fondation pour les potelets

VII.2 Fondation des poteaux :

Figure VII.1 : détails de la fondation des poteaux.

2.1 La note de calcul :

1 Semelle isolée : Semelle12

1.1 Données de base

1.1.1 Principes

- Norme pour les calculs géotechniques : DTU 13.12
- Norme pour les calculs béton armé : BAEL 91 mod. 99
- Forme de la semelle : libre

Nombre : 1

1.1.2 Géométrie:

1.1.3 Matériaux

Béton : C25/30 ;

- Résistance caractéristique = 2500000,00 daN/m2 •
- Poids volumique = 2501,36 (kG/m3) •
- Armature longitudinale : type HA 400 résistance caractéristique = 40000000,00 daN/m2 •
- Armature transversale : type HA 400 résistance caractéristique = 40000000,00 daN/m2 •
- Armature additionnelle : type HA 400 résistance caractéristique = 40000000,00 daN/m2 •

	Charge	es sur la sen	nelle :				
Cas	Nature	Groupe	Ν	Fx	Fy	Mx	My
			(daN)	(daN)	(daN) (daN*m)	(daN*m)
PP	permanente	12	3525,35	805,02	105,29	5,67	2414,07
PERM2	permanente	12	1641,85	347,58	-21,69	2,34	1054,56
PERM21	d'exploitation	12	4139,11	2524,61	-368,18	16,28	7622,75
PERM211	neige	12	745,04	454,43	-66,27	2,93	1372,09
PERM2111	vent	12	-3433,06	867,95	717,88	-25,66	-6673,08
PERM21111	vent	12	1753,40	243,48	788,97	-14,53	-21,76
PERM211111	vent	12	-5757,42	-3122,46	-120,73	-17,70	-10135,51
PERM211111	1 vent	12	-569,30	-3745,92	-49,80	-6,56	-3481,13
PERM211111	11 vent	12	-6226,00	-2398,91	-246,26	-9,81	-6943,96
PERM211111	111 vent	12	-1037,88	-3022,37	-175,32	1,33	-289,59
PERM3	d'exploitation	12	-47,30	-3,17	-3,82	0,34	-6,27
PERM31	d'exploitation	12	-22,68	-1,65	-7,78	1,21	-7,50
PERM311	d'exploitation	12	540,10	1,63	242,35	-16,6	3 4,57

1.1.4 Chargements:

1.2 Dimensionnement géotechnique

1.2.1 Principes

Dimensionnement de la fondation sur :

- Capacité de charge
- Glissement
- Renversement
- Soulèvement

1.2.2 Sol:

Contraintes dans le sol: $q_{ELU} = 30000.00 (daN/m2)$ $q_{ELS} = 20000.00 (daN/m2)$ Niveau du sol: $N_1 = 0,00 (m)$ Niveau maximum de la semelle: $N_a = 0,00 (m)$ Niveau du fond de fouille: $N_f = 0,00 (m)$

Argiles et limons fermes

0	
• Niveau du sol:	0.00 (m)
• Poids volumique:	2039.43 (kG/m3)
• Poids volumique unitaire:	2692.05 (kG/m3)
• Angle de frottement interne:	30.0 (Deg)
Cohésion:	2000.00 (daN/m2)

1.2.3 États limites

Calcul des contraintes

Type de sol sous la fondation: uniforme Résultats de calculs: au niveau du sol Poids de la fondation et du sol au-dessus de la fondation: Gr = 43799,92 (daN) Charge dimensionnante: **Nr = 60271,16 (daN) Mx = -1681,26 (daN*m) My = 28513,12 (daN*m)** Dimensions équivalentes de la fondation: B' = 1 L' = 1 Épaisseur du niveau: Dmin = 2,00 (m)

Méthode de calculs de la contrainte de rupture: pressiométrique de contrainte (ELS), (DTU 13.12, 3.22)

q ELS = 20000.00 (daN/m2)qu = 60000.00 (daN/m2)

 $\frac{\text{Butée de calcul du sol:}}{\text{qlim} = \text{qu / yf} = 30000.00 \text{ (daN/m2)}}$ yf = 2,00

Contrainte dans le sol:qref = 12132.68 (daN/m2)Coefficient de sécurité:qlim / qref = 2.473 > 1

Soulèvement

Soulèvement ELU Poids de la fondation et du sol au-dessus de la fondation: Gr = 32444,39 (daN) Charge dimensionnante: Nr = 27178,24 (daN) Mx = 268,37 (daN*m) My = -23734,34 (daN*m) $s_{lim} = 10,00$ (%) Surface de contact s = 62.66 (%) Soulèvement ELS Poids de la fondation et du sol au-dessus de la fondation: Gr = 32444,39 (daN) Charge dimensionnante: Nr = 38718,61 (daN) Mx = -390,66 (daN*m)My = 8042,79 (daN*m) $s_{lim} = 100,00$ (%) Surface de contact s = 100.00 (%) Glissement Poids de la fondation et du sol au-dessus de la fondation: Gr = 32444,39 (daN) Charge dimensionnante: Nr = 27178,24 (daN) Mx = 268,37 (daN*m)My = -23734,34 (daN*m) Dimensions équivalentes de la fondation: A = 3,00 (m)B = 2,50 (m)Surface du glissement: 4,70 (m2) Cohésion: C = 2000.00 (daN/m2)Coefficient de frottement fondation - sol: $tg(\propto) = 0.58$ Valeur de la force de glissement F = 4475.01 (daN) Valeur de la force empêchant le glissement de la fondation: F(stab) = 22988,74 (daN) - su niveau du sol: Stabilité au glissement: 5.137 > 1.5 Renversement Autour de l'axe OX Poids de la fondation et du sol au-dessus de la fondation: Gr = 32444,39 (daN) Charge dimensionnante: Nr = 26334,80 (daN)Mx = 734,46 (daN*m) My = -15384,78 (daN*m)Moment stabilisateur: $M_{stab} = 40563,58 (daN*m)$ Moment de renversement: $M_{renv} = 8379,54 (daN*m)$ Stabilité au renversement: 4.841 > 1.5 Autour de l'axe OY Poids de la fondation et du sol au-dessus de la fondation: Gr = 32444,39 (daN) Charge dimensionnante: Nr = 27178.24 (daN) Mx = 268,37 (daN*m)My = -23734,34 (daN*m) Moment stabilisateur: $M_{stab} = 48666,58 (daN*m)$ $M_{renv} = 31633,55 (daN*m)$ Moment de renversement: 1.538 > 1.5Stabilité au renversement:

1.3 Dimensionnement Béton Armé

1.3.1 Principes

- FissurationMilieu
 - : préjudiciable : non agressif
- Prise en compte de la condition de non-fragilité : oui

1.3.2 Analyse du poinçonnement et du cisaillement

Cisaillement

Charge dimensionnante:		
Nr = 48915,62 (daN)	Mx = -1681, 26 (daN*m)	My = 28513,12 (daN*m)
Longueur du périmètre critique:	2,5	0 (m)
Effort tranchant:	11:	504,15 (daN)
Hauteur efficace de la section	het	f = 0,54 (m)
Surface de cisaillement:	A	= 1,35 (m2)
Contrainte de cisaillement:	852	21,59 (daN/m2)
Contrainte de cisaillement admissi	ible: 110	6666,67 (daN/m2)
Coefficient de sécurité:	13.	69 > 1

1.3.3 Ferraillage théorique Semelle isolée :

Aciers inférieurs :	
ELU:	
My = 14564,95 (daN*m)	$A_{SX} = 5,94 \text{ (cm2/m)}$
ELU:	
Mx = 3918,42 (daN*m)	$A_{SY} = 5,94 \text{ (cm2/m)}$
	$A_{s min} = 5,40 (cm2/m)$

Aciers supérieurs :

 $\begin{array}{ll} A'_{SX} &= 0,00 \; (cm2/m) \\ A'_{SY} &= 0,00 \; (cm2/m) \end{array}$

 $A_{s min} = 0,00 (cm2/m)$

Espacement réglementaire maximal $e_{max} = 0,25 (m)$

Fût :Armature longitudinaleA = 17,52 (cm2) $A_{\min.} = 12,80 \text{ (cm2)}$ A = 2 * (Asx + Asy)Asx = 7,35 (cm2)Asy = 1,41 (cm2)

1.3	.4	Ferrailla	ge réel	
		2.3.1	Semelle	isolée :
Aciers	inf	érieurs :		
En X :				
	14	HA 400 12	2 1	= 2,90 (m)
En Y :				
	16	HA 400 12	2 1	= 2,40 (m)

Aciers supérieurs :	
2.3.2 Fut	
Armature longitudinale	
En X :	
2 HA 400 12	l = 4,66 (m)
En Y :	
7 HA 400 12	l = 4,71 (m)
Armature transversale	
8 HA 400 8	l = 3,12 (m)

VII.3 Fondation des potelets :

Figure VII.2 : détails de la fondation des potelets.

3.1. La note de calcul :

1 Semelle isolée: Semelle529

1.1 Données de base

1.1.1 Principes

- Norme pour les calculs géotechniques : DTU 13.12
- Norme pour les calculs béton armé : BAEL 91 mod. 99
- Forme de la semelle : libre
- 1.1.2 Géométrie:

Nombre: 1

CHAPITRE VII : CALCUL DES FONDATIONS

Béton : C25/30 ;

- résistance caractéristique = 2500000,00 daN/m2
- Poids volumique = 2501,36 (kG/m3)
- Armature longitudinale : type HA 400résistance caractéristique = 40000000,00 daN/m2
- Armature transversale : type HA 400résistance caractéristique = 40000000,00 daN/m2
- Armature additionnelle : type HA 400résistance caractéristique = 40000000,00 daN/m2

1.1.4 Chargements:

	Charges s	ur la sem	elle :				
Cas	Nature	Groupe	Ν	Fx	Fy	Mx	My
			(daN)	(daN)	(daN)	(daN*m)	(daN*m)
PP	permanente	529	1580,60	0,17	5,93	0,00	0,00
PERM2	permanente	529	1119,52	0,08	4,78	-0,00	0,00
PERM21	d'exploitation	529	2300,05	0,56	0,01	0,00	-0,00
PERM211	neige	529	414,01	0,10	0,00	0,00	0,00
PERM2111	vent	529	-2261,68	-0,56	-0,01	0,00	-0,00
PERM21111	vent	529	-364,13	0,04	1975,46	0,00	-0,00
PERM211111	vent	529	-1708,42	-0,81	-2464,92	2 -0,00	0,00
PERM2111111	vent	529	190,06	-0,22	-489,44	-0,00	0,00
PERM2111111	vent	529	-2568,12	-0,85	-2464,91	0,00	0,00
PERM2111111	1 vent	529	-669,64	-0,25	-489,44	-0,00	-0,00
PERM3	d'exploitation	529	-0,10	-0,00	0,00	0,00	-0,00
PERM31	d'exploitation	529	1,19	-0,01	0,00	0,00	-0,00
PERM311	d'exploitation	529	-5,09	-0,00	0,00	-0,00	0,00

1.2 Dimensionnement géotechnique 1.2.1 Principes

Dimensionnement de la fondation sur :

- Capacité de charge
- Glissement
- Renversement
- Soulèvement

1.2.2 Sol:

Contraintes dans le sol:

Niveau du sol: Niveau maximum de la semelle: Niveau du fond de fouille:	N1 Na Nf	= 0,00 (m) = 0,00 (m) = 0,00 (m)
Niveau maximum de la semelle: Niveau du fond de fouille:	N _a Nf	= 0,00 (m) = 0,00 (m)
Niveau du fond de fouille:	Nf	= 0,00 (m)
Argiles et limons fermes		
• Niveau du sol: 0,00 (m)		
• Poids volumique: 2039,43	(kG/m3)	
• Poids volumique unitaire: 2692,05 (kG/m3)	
• Angle de frottement interne: 30,0 (Deg	5) da N (2)	
• Conesion: 2000,00 (123 États limites	uain/iii2)	
1.2.5 Etats mintes		
Calcul des contraintes		
Type de sol sous la fondation: uniforme		
Résultats de calculs: au niveau du sol		
Poids de la fondation et du sol au-dessus	de la fondation:	Gr = 19960, 12 (daN)
Charge dimensionnante:		
Nr = 26827, 17 (daN) $Mx = -47$	/0,32 (daN*m)	My = 2,51 (daN*m)
B'-1 $I'-1$	1.	
Épaisseur du niveau: $Dmin = 2.00 (m)$		
Méthode de calculs de la contrainte de	e rupture: pressi	ométrique de contrainte (ELS),
(DTU 13.12, 3.22)		
- ELS _ 20000 00 (d-N/2)		
q ELS = 20000,00 (daN/m2) qu = 60000,00 (daN/m2)		
qu = 00000,00 (uarv/m2)		
Butée de calcul du sol:		
$\overline{\text{qlim}} = \text{qu} / \text{yf} = 30000,00 \text{ (daN/m2)}$		
yf = 2,00		
	6	2590.07 (1-N1/2)
Contrainte dans le sol:	qret = 9	7580, 97 (dain/m2) ref = 3.131 > 1
Coentelent de securite.	quint / Q	$\mu = -3, 131 > 1$
Soulèvement		

Soulèvement ELUPoids de la fondation et du sol au-dessus de la fondation:Gr = 14785,28 (daN)Charge dimensionnante:Mx = 8852,27 (daN*m)My = -2,56 (daN*m)Surface de contacts = 60,20 (%) $s_{lim} = 10,00$ (%)Soulèvement ELSSoulèvement ELS

Source vention PLSPoids de la fondation et du sol au-dessus de la fondation:Gr = 14785,28 (daN)Charge dimensionnante:Mx = -21,43 (daN*m)My = 0,69 (daN*m)Surface de contacts = 100,00 (%) $s_{lim} = 100,00$ (%)

Glissement

Poids de la fondation et du sol au-dessus de la fondatio	n: $Gr = 14785,28$ (daN)
Charge dimensionnante:	
Nr = 12857,60 (daN) $Mx = 8852,27 (daN*m)$	m) $My = -2,56 (daN*m)$
Dimensions equivalentes de la fondation: $A_{\perp} = 1,50$	$B_{-} = 2,30 \text{ (m)}$
Surface du glissement:	2,08 (m2)
Cohesion:	C = 2000,00 (daN/m2)
Coefficient de frottement fondation - sol:	$tg(\alpha) = 0.58$
Valeur de la force de glissement	F = 4426, 13 (daN)
Valeur de la force empêchant le glissement de la fonda	
- su niveau du sol:	f(stab) = 10582,44 (daN)
Stabilité au glissement: 2	,391 > 1,5
Renversement	
Autour de l'axe OX	
Poids de la fondation et du sol au-dessus de la fondatio	n: $Gr = 14785,28$ (daN)
Charge dimensionnante:	
Nr = 12857,60 (daN) $Mx = 8852,27 (daN)$	*m) $My = -2,56 (daN*m)$
Moment stabilisateur: $M_{stab} = 17003,07$ (daN*	m)
Moment de renversement: M _{renv} = 11069,09 (daN*	m)
Stabilité au renversement: $1,536 > 1,5$	
Autour de l'axe OYPoids de la fondation et du sol au-dessus de la fondatioCharge dimensionnante: $Nr = 12857,60$ (daN) $Mx = 8852,27$ (daN*Moment stabilisateur: $M_{stab} = 11088,96$ (daN*Moment de renversement: $M_{renv} = 1448,31$ (daN*nStabilité au renversement: $7,656 > 1,5$ 1.3 Dimensionnement Béton Armé1.3.1 Principes• Fissuration• Milieu• Mise en compte de la condition de non-fragilité1.3.2 Analyse du poinçonnement et du cisailler	n: Gr = 14785,28 (daN) *m) My = -2,56 (daN*m) m) n) : préjudiciable : non agressif : oui ment
Charge dimensionnente:	
Charge dimensionnance. Nr = 17962.52 (doN) Mr = 9944.75 (doN*w	$\mathbf{M}_{\mathbf{W}} = 10 \mathbf{f} (\mathbf{d}_{0} \mathbf{N}^{*} \mathbf{m})$
$INF = 17803,55 (uain) \qquad INIX = 8644,75 (uain*ii)$	NIy = -1,00 (ualv*III)
Effort transhant:	1,30 (m) 4248.85 (doN)
Enort tranchant.	4240,03 (ual)
Surface de cisaillement:	$\Lambda = 0.66 (m^2)$
Contrainte de cisaillement:	A = 0,00 (III2) 6/37 65 (deN/m2)
Contrainte de cisaillement admissible:	0+37,03 (uain/1112) 116666 67 (doN/m2)
Contrainte de cisamenten admissible.	120000,07 (uain/iii2)
	10,12 / 1

1.3.3 Ferraillage théo Semelle isolé	orique e :		
Aciers inférieurs : ELU :			
My = 770,99 (daN*m)		A _{SX}	=4,84 (cm2/m)
ELU: $M_{x} = 4122.36 (deN*m)$		٨	-4.84 (cm ² /m)
WX = 4123,30 (ual V III)		A _{sy} A _{s min}	= 4,34 (cm2/m) = 4,40 (cm2/m)
Aciers supérieurs :			
		A' _{SX}	= 0,00 (cm2/m)
		A'sy	= 0,00 (cm2/m)
		A _{s min}	= 0,00 (cm2/m)
Espacement réglementaire n	naximal	$e_{max} = 0,2$	25 (m)
Fût :			
Armature longitudinale	A = 9	,48 (cm2)	A min. $= 8,80 \text{ (cm2)}$
	A = 2	* (Asx +	Asy)
	Asx $= 0$,29 (cm2)	Asy $= 4,45 \text{ (cm2)}$
1.3.4 Ferraillage réel 2.3.1 Semelle isolée :			
Acters inferieurs :			
11 HA 400 12	l = 1,40 (m	ı)	
En Y : 7 HA 400 12	l = 2,20 (m	ı)	
Aciers supérieurs :			
2.3.2 Fût Armature longitudinale En X ·			
4 HA 400 12	l = 4,36 (m	l)	

4 IIA 400 12	1 = 4,50 (m)
En Y :	
2 HA 400 12	l = 4,51 (m)
Armature transversale	
8 HA 400 8	l = 2,12 (m)

Conclusion générale

Le projet de fin d'études est une étape importante du cycle de formation, et c'est la meilleure option pour les étudiants qui répondent à la valeur des connaissances théoriques acquises au fil des années et de cultiver l'esprit de recherche, et permet également de mettre ces connaissances en pratique, notamment par l'étude de cas réels de structures métalliques.

La complexité des travaux de recherche nous a permis d'avoir une approche globale de la conception et du dimensionnement des structures métalliques (composants de pont roulant, assemblages et fondations) et de connaître les différentes normes et réglementations régissant le domaine. Telles que l'Eurocode3, CCM97, RNV99, RPA99.

L'utilisation du logiciel ROBOT STRUCTURAL ANALYSIS dans nos études nous permet d'effectuer des calculs tridimensionnels et dynamiques dans le but de faciliter les calculs et de mieux se rapprocher de la réalité.

Par ailleurs cette étude nous a conduits à certaines conclusions :

- Les actions du vent sont les plus défavorables dans les structures métalliques.

- La vérification du cadre de l'instabilité est une étape primordiale et nécessaire pour un dimensionnement adéquat.

- La bonne conception des assemblages est essentielle pour la stabilité des structures métalliques.

- La modélisation doit être aussi proche que possible de la réalité, afin d'approcher le comportement réel de la structure et obtenir de meilleurs résultats.

- L'agression sismique constitue un vrai test qui met le bâtiment à l'épreuve, pour ce la tout ouvrage doit être réalisé conformément aux normes et règles parasismiques.

- Le poids léger de la structure permet d'économiser sur les fondations et cela en utilisons des fondations superficielle types semelle isolées, ce qui signifie que de grandes structures peuvent être construites sur des sols à faible capacité portante. De construire des ouvrages importants sur des sols ayant une faible capacité portante.

En fin de compte, notre objectif ultime dans cette recherche est d'obtenir un travail de résistance et d'assurer la sécurité de la vie humaine et des biens, et nous espérons que ce travail soutiendra nos futurs étudiants intéressés par cette approche.

Référence bibliographique

- Conception des structures de bâtiments, livre de Yvon LESCOUARCH ingénieur ECP, master of science (stanford), docteur-ingénieur, et professeur à l'ENPC.
- Charges permanentes et charges d'exploitation « D.T.R-B.C-2.2 ».
- Le Règlement Algérien Neige et Vent version 2013 « D.T.R C 2-4.7» (pour l'étude climatique).
- ✤ Règle de calcul des structures en acier « EC3. ENV 1993-1-1 ».
- Cours de modélisation des structures élaboré par DR LAFIFI Brahim.
- Règles parasismiques algériennes « RPA99 / version 2003, D.T.R.-B.C-2.48 ».
- ✤ Règles de calcul des fondations « DTU 13.12 ».
- Règlement béton armé BAEL 91 modifié 99
- Logiciels :
- Robot structural analysis 2017.
- Autocade 2019

PIGNON AXE:1 et 11

