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Abstract

——————————————————————————————————

The present thesis is devoted to study the existence, uniqueness and asymptotic behaviour in

time of solution for damped systems. This work consists of four chapters. In chapter 1, we recall

some fundamental inequalities. In chapter 2, we consider a very important problem from the

point of view of application in science and engineering. A system of three wave equations hav-

ing a different damping effects in an unbounded domain with strong external forces. Using the

Faedo-Galerkin method and some energy estimations, we will prove the existence of global solu-

tion in Rn owing to the weighted function. By imposing a new appropriate conditions, which are

not used in the literature, with the help of some special estimations and generalized Poincaré’s

inequality, we obtain an unusual decay rate for the energy function. In chapter 3, we will be

concerned with a problem for m-nonlinear viscoelastic wave equations, under suitable conditions

we show the effect of weak and strong damping terms on decay rate for systems of nonlinear m-

wave equations in viscoelasticity. In chapter 4, we consider Petrovsky-Petrovsky coupled system

with nonlinear strong damping. We prove, under some appropriate assumptions, that this sys-

tem is stable. Furthermore, we use the multiplier method and some general weighted integral

inequalities to obtain decay properties of solution.

Keywords and phrases: Viscoelastic wave equation, Strong nonlinear system, Global solu-

tion, Faedo-Galerkin approximation, Decay rate, Blow up, Strong damping, Petrovsky-Petrovsky.

AMS Subject Classification: 35L05, 58J45, 35L80, 35B40, 35L20, 58G16, 35B40, 35L70.



Résumé

——————————————————————————————————

La présente thèse est consacrée à l’étude de l’existence, l’unicité et le comportement asymp-

totique en temps de la solution pour quelques systèmes amortis. Cette these se compose de

quatre chapitres. Au chapitre 1, nous rappelons quelques résultats et inégalités fondamen-

tales. Dans le chapitre 2, nous considérons un problème trés important du point de vue de

l’application en sciences et en ingénierie. Un système de trois équations d’onde ayant des ef-

fets d’amortissement différents dans un domaine illimité avec une force externe. En utilisant la

méthode de Faedo-Galerkin et quelques estimations d’énergie, nous prouverons l’existence d’une

solution globale dans Rn grace à la fonction pondérée. En imposant de nouvelles conditions ap-

propriées, qui ne sont pas utilisées dans la littérature, à l’aide de quelques estimations spéciales

et de l’inégalité de Poincaré généralisée, nous obtenons un taux de décroissance inhabituel pour

la fonction énergétique. Dans le chapitre 3, nous traiterons un système de m equations d’onde

en viscoélastique non linéaire avec un amortissement et des termes sources, dans des conditions

appropriées, nous prouvons un résultat d’explosion/croissance des solutions. Dans le chapitre 4,

on considère un système couplé d’équations de Petrovsky-Petrovsky avec des termes dissipatifs

non linéaires. Nous prouvons, sous certaines hypothèses appropriées, que ce système est stable.

De plus, nous utilisons la méthode du multiplicateur et certaines inégalités intégrales pondérées

générales pour obtenir les propriétés de décroissance de la solution.

Mots-clés et phrases : Équation d’onde viscoélastique, Système non linéaire fort, Solution

globale, Approximation de Faedo-Galerkin, Taux de décroissance, Blow up, Fort amortissement,

Petrovsky-Petrovsky.

AMS Subject Classification: 35L05, 58J45, 35L80, 35B40, 35L20, 58G16, 35B40, 35L70.
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Introduction

Stabilization of evolution problems

Problems of global existence and stability in time of Partial Differential Equations are subject,

recently, of many works. In this thesis we are interested in the study of the global existence and

the stabilization of some evolution equations. The purpose of the stabilization is to attenuate

the vibrations by feedback, thus consists in guaranteeing the decrease of energy of the solutions

to 0 in a more or less fast way by a mechanism of dissipation.

More precisely, the problem of stabilization consists in determining the asymptotic behavior

of the energy by E (t), to study its limits in order to determine if this limit is null or not and if

this limit is null, to give an estimations of the decay rate of the energy to zero.

This problem has been studied by many authors for various systems. They are several type

of stabilization,

(1) Strong stabilization: E (t) −→ 0, as t −→ ∞.

(2) Logarithmic stabilization: E (t) ≤ c (log t)−δ , ∀t > 0, (c, δ > 0) .

(3) Polynomial stabilization: E (t) ≤ ct−δ,∀t > 0, (c, δ > 0) .

(4) Exponential stabilization: E (t) ≤ ce−δt,∀t > 0, (c, δ > 0) .

For wave equation with dissipation of the form

u
′′ −∆xu+ g

(
u

′
)
= 0,

stabilization problems have been investigated by many authors:

When g : R → R is continuous and increasing function such that g(0) = 0, global existence

of solutions is known for all initial conditions (u0, u1) given in H1
0 (Ω) × L2 (Ω) .This result is,

for a consequence of the general theory of nonlinear semi-groups of contractions generated by a

maximal monotone operator.
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Moreover, if we impose on the control the condition, ∀λ ̸= 0, g (λ) ̸= 0, then strong asymptotic

stability of solutions occurs in H1
0 (Ω)× L2 (Ω) , i.e.,

(
u, u

′
)
→ (0, 0) strongly in H1

0 (Ω)× L2 (Ω) ,

Without speed of convergence. These results follow, from the invariance principle of Lasalle. If

the solution goes to 0 as time goes to ∞, how to get energy decay rates?

Dafermos has written in 1978 ”Another advantage of this approach is that it is so simple

that it requires only quite weak assumptions on the dissipative mechanism. The corresponding

drawback is that the deduced information is also weak, never yielding, for example, decay rates

of solutions.”

Many authors have worked since then on energy decay rates. First results were obtained for

linear stabilization, then for polynomial stabilization (see A. Haraux [14], V. Komornik [19], and

E. Zuazua [12] ) and then extended to arbitrary growing feedbacks (close to 0). In the same

time, geometrical aspects were considered.

By combining the multiplier method with the techniques of micro-local analysis, Lasiecka

et al [11, 16], have investigated different dissipative systems of partial differential equations

(with Dirichlet and Neumann boundary conditions) under general geometrical conditions with

nonlinear feedback without any growth restrictions near the origin or at infinity. The computation

of decay rates is reduced to solving an appropriate explicitly given ordinary differential equation

of monotone type. More precisely, the following explicit decay estimate of the energy is obtained:

E(t) ≤ h

(
t

t0
− 1

)
,∀t ≥ 0.

where t0 > 0 and h is the solution of the following differential equation:

h
′
(t) + q (h (t)) = 0, t ≥ 0 and h(0) = E(0),

and the function q is determined entirely from the behavior at the origin of the nonlinear feedback

by proving that E satisfies

(Id− q)−1 (E ((m+ 1) t0)) ≤ E (mt0) , ∀m ∈ N.

System of nonlinear wave equations

8
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To enrich this topic, it is necessary to talk about previous works regarding the nonlinear

coupled system of wave equations, from a qualitative and quantitative study.Let us beginning

with the single wave equation treated in [22], where the aim goal was mainely on the system
utt + µut −∆u− ω∆ut = u ln |u|, (x, t) ∈ Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(0.0.1)

where Ω is a bounded domain of Rn, n ≥ 1 with a smooth boundary ∂Ω. The author firstly

constructed a local existence of weak solution by using contraction mapping principle and of

course showed the global existence, decay rate and infinite time blow up of the solution with

condition on initial energy.

In m−equations, paper in [7] considered a system

uitt + γuit −∆ui + ui =
m∑

i,j=1,i ̸=j

|uj|pj |ui|piui, i = 1, 2, . . . ,m, (0.0.2)

where the absence of global solutions with positive initial energy was investigated. Next, a nonex-

istence of global solutions for system of three semilinear hyperbolic equations was introduced in

[5]. A coupled system semilinear hyperbolic equations was investigated by many authors and

a different results were obtained with the nonlinearities in the form f1 = |u|p−1|v|q+1u, f2 =

|v|p−1|u|q+1v.

In the case of non-bounded domain Rn, we mention the paper recently published by T. Miyasita

and Kh. Zennir in [35], where the considered equation as follows

utt + aut − ϕ(x)∆

(
u+ ωut −

∫ t

0

g(t− s)u(s) ds

)
= u|u|p−1, (0.0.3)

with initial data  u(x, 0) = u0(x),

ut(x, 0) = u1(x).
(0.0.4)

The authors was successful in highlighting the existence of unique local solution and they con-

tinued to extend it to be global in time. The rate of the decay for solution was the main result

by considering the relaxation function is strictly convex, for more results related to decay rate

of solution of this type of problems, please see [18, 28, 34].
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Regarding the study of the coupled system of two nonlinear wave equations, it is worth recalling

some of the work recently published. Baowei Feng and al. considered in [? ], a coupled system

for viscoelastic wave equations with nonlinear sources in bounded domain ((x, t) ∈ Ω × (0,∞))

with smooth boundary as follows
utt −∆u+

∫ t
0
g(t− s)∆u(s) ds+ ut = f1(u, v)

vtt −∆v +
∫ t
0
h(t− s)∆v(s) ds+ vt = f2(u, v).

(0.0.5)

Here, the authors concerned with a system in Rn(n = 1, 2, 3). Under appropriate hypotheses,

they established a general decay result by multiplication techniques to extends some existing

results for a single equation to the case of a coupled system.

It is worth noting here that there are several studies in this field and we particularly refer to the

generalization that Shun and all. made in studying a complicate non-linear case with degenerate

damping term in [37]. The IBVP for a system of nonlinear viscoelastic wave equations in a

bounded domain was considered in the problem

utt −∆u+
∫ t
0
g(t− s)∆u(s) ds+ (|u|k + |v|q)|ut|m−1ut = f1(u, v),

vtt −∆v +
∫ t
0
h(t− s)∆v(s) ds+ (|v|θ + |u|ρ)|vt|r−1vt = f2(u, v),

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x)

ut(x, 0) = u1(x), vt(x, 0) = v1(x),

(0.0.6)

where Ω is a bounded domain with a smooth boundary. Given certain conditions on the kernel

functions, degenerate damping and nonlinear source terms, they got a decay rate of the energy

function for some initial data.
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CHAPTER 1. PRELIMINARY

In this preliminary we shall introduce and state some necessary notations needed in the proof

of our results, and some the basic results which concerning the semi-groupe theory and Layponov

functionals and other theorems. The knowledge of all these notations and results are important

for our study.

1.1 Continuous function spaces

We start this work by giving some useful notations and conventions.

Let x = (x1, x2, ..., xn) denote the generic point of an open set Ω of Rn. Let u be a function

defined from Ω to Rn, we designate by Diu (x) = ui (x) =
∂u (x)

∂xi
the partial derivative of u with

respect to xi (1 ≤ i ≤ n) . Let’s also define the gradient and the p-Laplacian from u, respectively

as following

▽u = (
∂u

∂x1
,
∂u

∂x2
, ...,

∂u

∂xn
) T and |▽u|2 =

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2

∆pu (x) = div
(
|∇u|p−2∇u

)
(x) .

Note by C(Ω) the space of continuous functions from Ω to R, C (Ω,Rm) the space of contin-

uous functions from Ω to Rm and Cb
(
Ω
)
the space of all continuous and bounded functions on

Ω, it is equipped with the norm ∥.∥∞ ;

∥u∥∞ = sup
x∈Ω

|u (x)|

For k ≥ 1 integer, Ck (Ω) is the space of functions u which are k times derivable and whose

derivation of order k is continuous on Ω. Ck
c (Ω) is the set of functions of Ck (Ω) whose support

is compact and contained in Ω.

We also define Ck
(
Ω
)
as the set of restrictions to Ω of elements from Ck (Rn) or as being the

set of functions of Ck (Ω) , such that for all 0 ≤ j ≤ k, and for all x0 ∈ ∂Ω, the limit lim
x→x0

Dju (x)

exists and depends only on x0.

C∞
0 (Ω) or D (Ω) , is the space of the infinitely differentiable functions, with compact supports

12



CHAPTER 1. PRELIMINARY

called test function space.

The Hölder space Ck,α (Ω), where Ω is an open subset of Rn and k ≥ 0 an integer, 0 < α ≤ 1,

consists of those real or complex-valued k-times continuously differentiable functions f on Ω

verifying

|fβ (x)− fβ (y) | ≤ C∥x− y∥α

where C > 0, |β| ≤ k.

1.2 Lp Spaces

Let Ω be an open set of Rn, equipped with the Lebesgue measure dx. We denote by L1 (Ω) the

space of integrable functions on Ω with values in R, it is provided with the norm

∥u∥L1 =
∫
Ω

|u (x)| dx.

Let p ∈ R with 1 ≤ p < +∞, we define the space Lp (Ω) by

Lp (Ω) =

{
f : Ω → R, f measurable and (∥f∥Lp)p =

∫
Ω

|f (x)|p dx < +∞
}

equipped with norm

∥u∥Lp =

(∫
Ω

|u (x)|p dx
) 1

p

.

We also define the space L∞ (Ω)

L∞ (Ω) = {f : Ω → R, f measurable, ∃c > 0, so that |f (x)| ≤ c a.e. on Ω} ,

it will be equipped with the essential-sup norm

∥u∥L∞ = ess sup
x∈Ω

|u (x)| = inf {c ; |u (x)| ≤ c a.e. on Ω} .

We say that a function f : Ω → R belongs to Lploc (Ω) if 1Kf ∈ Lp (Ω) for any compact K ⊂ Ω.

Theorem 1. (Dominated convergence Theorem )

Let {fn}n≥1 be a series of functions of L1 (Ω) converging almost everywhere to a measurable

function f . It is assumed that there exists g ∈ L1 (Ω) such that for all n ≥ 1, we get

|fn| ≤ g a.e on Ω.

13



CHAPTER 1. PRELIMINARY

Then f ∈ L1 (Ω) and

lim
n→+∞

∥fn − f∥L1 = 0, and
∫
Ω

f (x) dx = lim
n→+∞

∫
Ω

fn (x) dx.

1.3 Sobolev spaces

Definition 1. Let Ω be an open set of R, and 1 ≤ i ≤ n. A function u ∈ L1
loc (Ω) has an ith

weak derivative in L1
loc (Ω) if there exists fi ∈ L1

loc (Ω) such that for all φ ∈ C∞
0 (Ω) we have∫

Ω

u (x) ∂iφ (x) dx = −
∫
Ω

fi (x)φ (x) dx.

This leads to say that the ith derivative within the meaning of distributions of u belongs to L1
loc (Ω) ,

we write

∂iu =
∂u

∂xi
= fi

1.3.1 W 1,p (Ω) spaces

Let Ω be a bounded or unbounded open set of Rn, and p ∈ R, 1 ≤ p ≤ +∞, the space W 1,p (Ω)

is defined by

W 1,p (Ω) = {u ∈ Lp (Ω) ; such that ∂iu ∈ Lp (Ω) , 1 ≤ i ≤ n}

where ∂iu is the ith weak derivative of u ∈ L1
loc (Ω).

For 1 ≤ p < +∞ we define the space W 1,p
0 (Ω) as being the closure of D (Ω) in W 1,p (Ω) , and

we write

W 1,p
0 (Ω) = D (Ω)W

1,p
.

Theorem 2. (Poincaré’s inequality)

Assume Ω is a bounded open subset of Rn, u ∈ W 1,p
0 (Ω) for some 1 ≤ p < n. Then we have

the estimate

∥u∥Lq(Ω) ≤ C∥∇u∥Lp(Ω)

for each q ∈ [1, p∗], where p∗ =
np

n− p
and the constant C depends only on q, p, n and Ω.

14



CHAPTER 1. PRELIMINARY

Remark 1. In view of this Poincaré’s inequality, if Ω is bounded, then on W 1,p
0 (Ω) the norm

∥u∥W 1,p(Ω) is equivalent to ∥∇u∥Lp(Ω).

Theorem 3. (Rellich-Kondrachov compactness theorem) [10]

Assume Ω is a bounded open subset of Rn with C1 boundary, and 1 ≤ p < n. Then

W 1,p (Ω) ⊂⊂ Lq (Ω)

for each 1 ≤ q < p∗.

1.3.2 Wm,p (Ω) Spaces

Let Ω be an open set of Rn,m ≥ 2 integer number and p real number such that 1 ≤ p ≤ +∞,

we define the space Wm,p (Ω) as following

Wm,p (Ω) = {u ∈ Lp (Ω) , such that ∂αu ∈ Lp (Ω) , ∀α, |α| ≤ m}

where α ∈ Nn, |α| = α1 + ...+ αn the length of α and ∂αu = ∂α1
1 ...∂αn

n is the weak derivative

of a function u ∈ L1
loc (Ω) in the sense of definition (1).

The space Wm,p (Ω) is equipped with the norm

∥u∥Wm,p = ∥u∥Lp +
∑

0<|α|≤m
∥∂αu∥Lp .

For p = 2, the space Wm,2 (Ω) is noted Hm (Ω).

1.4 Semigroups of bounded linear operators

The goal of this section is to prove Lumer-Phillips’ theorem (see Theorems 1.4.3 and 1.4.6 of [8])

in a Hilbert space setting. For that purpose, we first recall the notion of m-dissipative operators.

Definition 2. Let A : D (A) ⊂ X −→ X be a (unbounded) linear operator. A is called dissipative

if R (Av , v)x ≤ 0,∀v ∈ D (A) . The dissipative operator A is called m-dissipative if (λI −A) is

surjective for some λ > 0.

15



CHAPTER 1. PRELIMINARY

Theorem 4. A linear operator A is dissipative if and only if

∥(λI −A)x∥X ≥ λ ∥x∥X , ∀x ∈ D (A) , λ > 0, (1.4.1)

Proof. Assume that A is dissipative and fix x ∈ D (A) and λ > 0. Then

λ ∥x∥2X ≤ R ((λ−A)x, x)X

and by Cauchy-Schwarz’s inequality we conclude that

λ ∥x∥2X ≤ ∥(λ−A)x∥X ∥x∥X ,

that directly leads to (1.4.1). Conversely assume that (1.4.1) holds and fix x ∈ D (A) , then for

all λ > 0, one has

λ2 ∥x∥2X ≤ λ ∥x∥2X − 2λR (Ax, x)x + ∥Ax∥2X .

Dividing this inequality by 2λ, we get equivalently

R (Ax, x)x ≤
1

2λ
∥Ax∥2X , λ > 0.

Passing to the limit as λ goes to infinity yields the dissipatedness of A. Now we can prove some

useful properties of m-dissipative operators.

Theorem 5. Let A be a m-dissipative operator. Then the next properties hold.

1. A is closed.

2. For all λ > 0, the operator λI − A is an isomorphism from D (A) onto X. Moreover

(λI −A)−1is a linear bounded operator such that∥∥(λI −A)−1
∥∥
L(X)

≤ 1

λ
.

3. D (A) is dense in X.

Proof. Let us start with point 1. As A is a m-dissipative operator, there exists λ0 > 0 such that

R (λ0I −A) = X, hence by (1.4.1) it follows that λ0I−A has a bounded inverse. As (λ0I −A)−1

is bounded, it is also closed. Then λ0I −A is closed and therefore A as well. To prove point 2

it suffices to prove that R (λI −A) = X for all λ > 0. For that purpose, we introduce the set

Λ = {λ ∈ (0,∞) such that R (λI −A) = X } .
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First Λ is open. Indeed (1.4.1) implies that Λ is a subset of the resolvent set ρ (A) of A. As ρ (A)

is open, for every λ ∈ Λ, there exists a neighborhood of λ included in ρ (A). The intersection of

this neighborhood with the real line is clearly included into Λ, which proves that Λ is open. Let

us also show that Λ is closed. Let a sequence. (λn)n of elements of Λ such that

λn −→ λ > 0 as n −→ ∞

Then for an arbitrary element y ∈ X, and any n, there exists xn ∈ D (A) such that

(λnI −A)xn = y (1.4.2)

Owing to (1.4.1), it follows that

∥xn∥X ≤ λ−1
n ∥y∥X (1.4.3)

and therefore the sequence (xn)n is bounded. Now we apply (1.4.1) with xn − xm and λm to

obtain

λm ∥xn − xm∥X ≤ ∥λm (xn − xm)−A (xn − xm)∥X ,

and by using (1.4.2) we deduce that

λm ∥xn − xm∥X ≤ |λm − λn| ∥xn∥X .

and by (1.4.3), we deduce that there exists x ∈ X such that xn converges to x in X. But (1.4.2)

then implies that Axn converges to λx − y and since A is closed, we conclude that x ∈ D (A)

with λx−Ax = y. This shows that λ belongs to Λ and the closeness of Λ is proved. In conclusion

Λ is a closed, open and non empty subset of (0,∞) and therefore it coincides with (0,∞).

Let us finish with point 3. Let y ∈ X be such that

(y, x)X = 0, x ∈ D (A) (1.4.4)

If we show that

(y,Ax)X = 0, x ∈ D (A) (1.4.5)

then we will obtain that

(y, x−Ax)X = 0, x ∈ D (A)
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and since R (I −A) = X, we deduce that y = 0.

It then remains to show (1.4.5). Let x ∈ D (A) be fixed, then by point 2, there exists a

sequence (xn)n∈N such that xn ∈ D (A) and

x = xn −
1

n
Axn,∀n ∈ N. (1.4.6)

This implies that

Axn = n (xn − x)

and from the regularity x, xn ∈ D (A), we deduce that xn belongs to D (A2) and that the next

identity holds

Ax = A
(
I − 1

n
A
)
xn.

or equivalently

Axn = A
(
I − 1

n
A
)−1

Ax.

From point 2, we know that ∥∥∥∥∥
(
I − 1

n
A
)−1

∥∥∥∥∥
L(X)

≤ 1

and therefore

∥Axn∥X ≤ ∥Ax∥X .

Moreover as X is a Hilbert space, there exists a subsequence (Axnk) of (Axn)n and z ∈ X

such that Axnk converges weakly to z This implies that the sequence of pairs ((xnk,Axnk))k
converges weakly to(x, z) in X × X.Hence by Mazur’s Lemma there exists another sequence

((x̃l, zl))l made of convex combinations of (xnj,Axnj) (that then guarantees that zl = Ax̃l) such

that (x̃l, zl) = (x̃l,Ax̃l) converges strongly to(x, z) in X ×X as l goes to ∞. As A is closed, we

deduce that z = Ax.

Finally by (1.4.6) and (1.4.4) we have

(y,Axnk)X = nk (y, xnk − x) = 0

and passing to the limit in k, we find that (1.4.5) holds.

Let us now go on with the notion of linear semigroups.
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Definition 3. A one parameter family (S (t))t≥0 of L (X) is a semigroup of bounded linear

operators on X if

1.

S (0) = Idx,

2.

S (t+ s) = S (t)S (s) , ∀t, s ≥ 0.

The linear operator A defined by:

D (A) =

{
z ∈ X; lim

t−→0+

S (t) z − z

t
exists

}
and

Az = lim
t−→0+

S (t) z − z

t
,∀z ∈ D (A)

is called the infinitesimal generator of the semigroup (S (t))t≥0 and D (A) is called the domain

of A.

A semigroup (S (t))t≥0 of bounded linear operators is called a strongly continuous (or a

C0−semigroup)if

lim
t−→0+

S (t) z = z, ∀z ∈ X. (1.4.7)

A strongly continuous (S (t))t≥0 on X satisfying

∥S (t)∥L(X) ≤ 1, ∀t ≥ 0,

is called a C0-semigroup of contractions.

Let us now prove some useful properties of C0- semigroups of contractions.

Theorem 6. Let (S (t))t≥0 be a C0−semigroup of contractions on X. Then

1. For all x ∈ X, the mapping t −→ S(t)x is a continuous function from [0,∞) into X.

2. For all x ∈ X and all t ≥ 0,

lim
h−→0

1

h

∫ t+h

t

S (s)xds = S (s)x. (1.4.8)

3. For all x ∈ X and all t > 0, the element
∫ t
0
S (s)xds belongs to D (A) , and

A
(∫ t

0

S (s)xds

)
= S (t)x− x (1.4.9)
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4. For all x ∈ D (A) and all t > 0, the element S (t)x belongs to D (A) , and the mapping

t −→ S (t)x is a continuous differentiable function from (0,∞) into X and

d

dt
S (t)x = AS (t)x = S (t)Ax, ∀t ≥ 0. (1.4.10)

5. For all x ∈ D (A) and all t > s ≥ 0, we have

S (t)x− S (s)x =

∫ t

s

S (u)Axdu =

∫ t

s

AS (u)xdu.

Proof. For point 1, by (1.4.7), the continuity property trivially holds at t = 0. Now fix x ∈ X

and take an arbitrary t > 0 then for h ≥ 0, we may write

S (t+ h)x− S (t)x = S (t) (S (h)x− x) ,

and consequently

∥S (t+ h)x− S (t)x∥X ≤ ∥S (h)x− x∥X ,

On the other hand for h < 0 such that t+ h > 0, we have,

S (t+ h)x− S (t)x = S (t+ h) (x− S (−h)x) .

In both cases, by (1.4.7) we find that S (t+ h)x− S (t)x goes to zero as h goes to zero. Point 2

directly follows from point 1.

To prove point 3, fix x ∈ X and h > 0. then we clearly have

S (h)− I

h

∫ t

0

S (s)xds =
1

h

∫ t

0

(S (s+ h)x− S (s)x) ds

=
1

h

∫ t+h

0

S (s)xds− 1

h

∫ t

0

S (s)xds

Hence by (1.4.8), we deduce that the right-hand side tends to S (t)x − x as h goes to zero.By

the definition of A this proves the assertions. For point 4, let x ∈ D (A) and t, h > 0,then by the

semigroup property
S (h)− I

h
S (t)x = S (t)

(
S (h)− I

h

)
x.

Hence by the definition of A and the continuity of the semigroup, we get

lim
h−→0+

S (h)− I

h
S (t)x = S (t) lim

h−→0+

(
S (h)− I

h

)
x = S (t)Ax.
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This shows that S (t)x belongs to D (A), that AS (t)x = S (t)Ax and that the right derivative

of S (t)x exists with
d+

dt
S (t)x = AS (t)x = S (t)Ax

For the left derivative, for 0 < h < t we write

S (t)x− S (t− h)x

h
− S (t)Ax = S (t− h)

(
S (h)x− x

h
−Ax

)
+(S (t− h)Ax− S (t)Ax) .

1.5 Lyapunov Stability Theory

The investigation of stability for hereditary systems is often related to the construction of Lya-

punov functionals. The general method of Lyapunov functionals construction which was proposed

by V. Kolmanovskii and L. Shaikhet [? ] and successfully used already for functional differential

equations, for difference equations with discrete time, for difference equations with continuous

time, is used here to investigate the stability of delay evolution equations, in particular, partial

differential equations.

1.5.1 Notations and definitions

Let U and H be two real separable Hilbert spaces such that U ⊂ H ≡ H∗ ⊂ U∗, where the

injections are continuous and dense. Let ∥∥ , || and ∥∥∗ be the norms in U,H and H∗respectively,

((·,·)) and (·,·) be the scalar products in U and H respectively, and ⟨., .⟩ the duality product

between U and U∗. We assume that

|u| ≤ β ∥u∥ , u ∈ U (1.5.1)

Let C(−h, 0, H) be the Banach space of all continuous functions from [−h, 0] to H, xt ∈

C(−h, 0, H) for each t ∈ [0,∞), be the function defined by xt(s) = x(t + s) for all s ∈ [−h, 0].

The space C(−h, 0, U) is similarly defined. Let A(t,·) : U → U∗, f1(t,·) : C(−h, 0, H) → U∗ and
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f2(t,·) : C(−h, 0, U) → U∗ be three families of nonlinear operators defined for t > 0, A(t, 0) =

0, f1(t, 0) = 0, f2(t, 0) = 0.

Consider the equation

du(t)

dt
= A (t, u(t)) + f1(t, ut) + f1(t, ut), t > 0 (1.5.2)

u(s) = ψ(s), s ∈ [−h, 0]

Let us denote by u(·;ψ) the solution of Eq. (1.5.2) corresponding to the initial condition ψ.

Definition 4. The trivial solution of Eq. (1.5.2) is said to be stable if for any ε > 0 there exists

δ > 0 such that

|u (t;ψ)| < ε for all t ≥ 0, if |ψ|CH
= sup

s∈[−h,0]
|ψ (s)| < δ.

Definition 5. The trivial solution of Eq. (1.5.2) is said to be exponentially stable if it is stable

and there exists a positive constant λ such that for any ψ ∈ C(−h, 0, U) there exists C(which

may depend on ψ) such that |u (t;ψ)| ≤ Ce−λt for t > 0.

1.5.2 Lyapunov type stability theorem

Let us now prove a theorem which will be crucial in our stability investigation.

Theorem 7. Assume that there exists a functional V (t, ut) such that the following conditions

hold for some positive numbers c1, c2 and λ:

|u (t;ut)| ≤ c1e
λt |u(t)|2 , t ≥ 0, (1.5.3)

|u (0;u0)| ≤ c2 |ψ|2CH
, (1.5.4)

d

dt
V (t, ut) ≤ 0, t ≥ 0. (1.5.5)

Then the trivial solution of Eq. (1.5.2) is exponentially stable.

Note that Theorem 7 implies that the stability investigation of Eq. (1.5.2) can be reduced to

the construction of appropriate Lyapunov functionals. A formal procedure to construct Lyapunov

functionals is described below.
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1.5.3 Procedure of Lyapunov functionals construction

The procedure consists of four steps.

Step 1.

To transform Eq. (1.5.2) into the form

dz(t, ut)

dt
A1 (t, u(t)) + A2 (t, ut) (1.5.6)

where z(t,·) and A2(t,·) are families of nonlinear operators, z(t, 0) = 0, A2(t, 0) = 0,operator

A1(t,·) only depends on t and u(t), but does not depend on the previous values u(t+ s), s < 0.

Step 2.

Assume that the trivial solution of the auxiliary equation without memory

dy(t)

dt
= A1 (t, y(t)) (1.5.7)

is exponentially stable and therefore there exists a Lyapunov function v(t, y(t)), which satisfies

the conditions of Theorem 7.

Step 3.

A Lyapunov functional V (t, ut) for Eq. (1.5.6) is constructed in the form V = V 1 + V 2, where

V1(t, ut) = v(t, z(t, ut)). Here the argument y of the function v(t, y) is replaced on the

functional z(t, xt) from the left-hand part of Eq. (1.5.6).

Step 4.

Usually, the functional V1(t, ut) almost satisfies the conditions of Theorem 7. In order to fully sat-

isfy these conditions, it is necessary to calculate d
dt
V1(t, ut) and estimate it. Then, the additional

functional V2(t, ut) can be chosen in a standard way.

Note that the representation (1.5.6) is not unique. This fact allows, using different represen-

tations type of (1.5.6) or different ways of estimating d
dt
V1(t, ut), to construct different Lyapunov

functionals and, as a result, to get different sufficient conditions of exponential stability.
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1.6 P -Laplace operator

The study of eigenvalue problems is an important object of research in functional analysis. It is

known that in the framework of the Ljusternik-Schnirelman theory one can find estimates for the

number of critical points of functionals from which some results on eigensolutions for nonlinear

differential equations are deduced.

A nonlinear operator equation can be formulated of the form

Au = λBu.

In the case of p-Laplace operator, the following nonlinear eigenvalue problem has been extensively

investigated in the past thirty years −∆pu = λ|u|p−2u, in Ω

u = 0 on ∂Ω.
(1.6.1)

We are going to state the following definition and some famous results.

Definition 6. We say that u ∈ W 1,p
0 (Ω) , u ̸= 0, is an eigenfunction of the operator −△pu if:

∫
Ω

|∇u|p−2∇u.∇φdx = λ
∫
Ω

|u|p−2 u.φ dx (1.6.2)

for all φ ∈ C∞
0 (Ω) . The corresponding real number λ is called eigenvalue.

Let λ1 defined by

λ1 = inf
u∈W 1,p

0 (Ω),u̸=0

∫
Ω

|∇u|pdx∫
Ω

|u|pdx (1.6.3)

equivalent to

λ1 = inf

{∫
Ω

|∇u|p dx;
∫
Ω

|u|p dx = 1, u ∈ W 1,p
0 (Ω)

}
.

λ1 is the first eigenvalue of the p-Laplacian operator with null Dirichlet conditions at the

edge.

Lemma 1. λ1 is isolated, i.e : there exists δ > 0 such that in the interval (λ1, λ1 + δ) , there is

no other eigenvalues of (1.6.2).
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Lemma 2. The first eigenvalue λ1 is simple, i.e : if u, v are two eigenfunctions associated with

λ1, then, there exists k such that u = kv.

Lemma 3. Let u be an eigenfunction associated with the eigenvalue λ1, then u does not change

sign on Ω. Further if u ∈ C1,α (Ω), then u (x) ̸= 0 , ∀x ∈ Ω.

Definition 7. Let ω be a part of a Banach space X and F : ω → R. If u ∈ ω, we say that F is

Gâteaux differentiable (or G-differentiable ) at u, if there exists l ∈ X ′ such that in each direction

z ∈ X where F (u+ tz) exists for t > 0 small enough, the directional derivative F ′
z (u) exists and

we have

lim
t→0+

F (u+ tz)− F (u)

t
= ⟨l, z⟩ .

We write F ′ (u) = l.

Theorem 8. Let Ω ⊂ Rn an open set, n ≥ 3. For p ∈ (1,+∞), we define a functional

J : W 1,p
0 (Ω) → R by

J (u) =

∫
Ω

|∇u|p dx

then J is differentiable in W 1,p
0 (Ω) and

J ′ (u) (v) = p

∫
Ω

|∇u|p−2∇u.∇vdx,∀v ∈ W 1,p
0 (Ω) .

Proof. We consider the function φ : Rn → R, defined by φ (x) = |x|p , it is a function of class

C1, and ∇φ = p |x|p−2 x.

Then for all x, y ∈ Rn,

lim
t→0

φ (x+ ty)− φ (x)

t
= p |x|p−2 x.y

as a consequence

lim
t→0

|∇u (x) + t∇v (x)|p − |∇u (x)|p

t
= p |∇u (x)|p−2∇u (x) .∇v (x) .

By Mean value theorem, for almost every x ∈ Ω and for t > 0, there exists a function θ that

takes its values in ]0, 1[ and we can write
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|∇u (x) + t∇v (x)|p − |∇u (x)|p − tp |∇u (x)|p−2∇u (x) .∇v (x)

= tp |∇u (x) + θ (t, x) t∇v (x)|p−2 (∇u (x) + θ (t, x) t∇v (x)) .∇v (x)

−tp |∇u (x)|p−2∇u (x) .∇v (x) . (1.6.4)

Dividing by t, we get for almost every x

lim
t→0

|∇ (u+ tv) (x)|p − |∇u (x)|p − tp |∇u (x)|p−2∇u (x) .∇v (x)
t

= 0.

On the other hand, one can see that the second member of the equality (4.2.13) devided by

t is bounded by

h (x) = 2 |∇v (x)| (|∇u (x)|+ |∇v (x)|)p−1 .

Then using the Holder inequality we have

|h| ≤ C ∥∇v∥p
(
∥∇u∥p−1

p + ∥∇v∥p−1
p

)
.

One can apply the Dominated convergence theorem and conclude

J ′ (u) (v) = p

∫
Ω

|∇u|p−2∇u.∇vdx,∀v ∈ W 1,p
0 (Ω) ,

then J is Gâteaux differentiable.

Lemma 4. (Comparison lemma) Let u, v ∈ W 1,p
0 (Ω) satisfying∫

Ω

|∇u|p−2∇u.∇φdx ≤
∫
Ω

|∇v|p−2∇v.∇φdx (1.6.5)

for all φ ∈ W 1,p
0 (Ω) , φ ≥ 0, then u ≤ v a.e in Ω.

Proof. This proof is based on the arguments presented in [10]. We start by defining the function

J : W 1,p
0 (Ω) → R by the formula

J (u) =
1

p

∫
Ω

|∇u|p dx. (1.6.6)
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It is clear that the functional J is Gâteaux differentiable and continuous and its derivative at

u ∈ W 1,p
0 (Ω) is the function J ′ (u) ∈ W−1,p

0 (Ω), i.e

J ′ (u) (φ) =

∫
Ω

|∇u|p−2∇u.∇φdx, ∀φ ∈ W 1,p
0 (Ω) . (1.6.7)

J ′ (u) is continuous and bounded. We will show that J ′ (u) is strictly monotonic in W 1,p
0 (Ω) .

Indeed, for all u, v ∈ W 1,p
0 (Ω) , u ̸= v without loss of generality, we can suppose that∫

Ω

|∇u|p dx ≥
∫
Ω

|∇v|p dx.

Using the Cauchy inequality we have

∇u.∇v ≤ |∇u| |∇v| ≤ 1

2

(
|∇u|2 + |∇v|2

)
. (1.6.8)

From formula (1.6.8) we deduce∫
Ω

|∇u|p dx−
∫
Ω

|∇u|p−2∇u.∇vdx ≥ 1

2

∫
Ω

|∇u|p−2 (|∇u|2 − |∇v|2
)
dx (1.6.9)

∫
Ω

|∇v|p dx−
∫
Ω

|∇v|p−2∇v.∇udx ≥ 1

2

∫
Ω

|∇v|p−2 (|∇v|2 − |∇u|2
)
dx. (1.6.10)

If |∇u| ≥ |∇v|, by using (1.6.6)-(1.6.8) we get

I1 (u) = J ′ (u) (u)− J ′ (u) (v)− J ′ (v) (u) + J ′ (v) (v)

=

(∫
Ω

|∇u|p dx−
∫
Ω

|∇u|p−2∇u.∇vdx
)

−
(∫

Ω

|∇v|p−2∇v.∇udx−
∫
Ω

|∇v|p dx
)

≥
∫
Ω

1
2
|∇u|p−2 (|∇u|2 − |∇v|2

)
dx

− 1
2

∫
Ω

|∇v|p−2 (|∇u|2 − |∇v|2
)
dx
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= 1
2

∫
Ω

(
|∇u|p−2 − |∇v|p−2) (|∇u|2 − |∇v|2

)
dx

≥ 1
2

∫
Ω

(
|∇u|p−2 − |∇v|p−2) (|∇u|2 − |∇v|2

)
dx.

If |∇v| ≥ |∇u| , by changing the role of u and v in (1.6.6)-(1.6.8) we have

I2 (v) = J ′ (v) (v)− J ′ (v) (u)− J ′ (u) (v) + J ′ (u) (u)

=

(∫
Ω

|∇v|p dx−
∫
Ω

|∇v|p−2∇v.∇udx
)

−
(∫

Ω

|∇u|p−2∇u.∇vdx−
∫
Ω

|∇u|p dx
)

≥ 1
2

∫
Ω

|∇v|p−2 (|∇v|2 − |∇u|2
)
dx

−1
2

∫
Ω

|∇u|p−2 (|∇v|2 − |∇u|2
)
dx

= 1
2

∫
Ω

(
|∇v|p−2 − |∇u|p−2) (|∇v|2 − |∇u|2

)
dx

≥ 1
2

∫
Ω

(
|∇v|p−2 − |∇u|p−2) (|∇v|2 − |∇u|2

)
dx.

(1.6.11)

From (1.6.9)-(1.6.10), we have

(J ′ (u)− J ′ (v)) (u− v) = I1 = I2 ≥ 0,∀u, v ∈ W 1,p
0 (Ω) .

In addition, if u ̸= v and (J ′ (u)− J ′ (v)) (u− v) = 0, then we have∫
Ω

(
|∇u|p−2 − |∇v|p−2) (|∇u|2 − |∇v|2

)
dx = 0.
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If |∇u| = |∇v| in Ω, we deduce that

(J ′ (u)− J ′ (v)) (u− v) = J ′ (u) (u− v)− J ′ (v) (u− v)

=
∫
Ω

|∇u|p−2 |∇u−∇v|2 dx = 0,

(1.6.12)

i.e. u − v is a constant. Given u = v = 0 on ∂Ω we are getting u = v, which is contrary with

u ̸= v. Then (J ′ (u)− J ′ (v)) (u− v) > 0 and J ′ (u) is strictly monotonic in W−1,p
0 (Ω) . Let u, v

two functions such that (1.6.7) is satisfied, let’s take φ = (u− v)+ the positive part of u− v as

a test function in (1.6.7), we get

(J ′ (u)− J ′ (v)) (φ) =
∫
Ω

|∇u|p−2∇u.∇φdx−
∫
Ω

|∇v|p−2∇v.∇φdx ≤ 0. (1.6.13)

Relationships (1.6) and (1.6) imply that u ≤ v.
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Chapter 2

System of three nonlinear wave

equations depending on the relaxation

functions

——————————————————————————————————

1- Introduction and preliminaries

2- Main results

3- Proofs

——————————————————————————————————

The main aim of this work is to study the decay rate of a system of three semilinear wave

equations with strong external forces in Rn, including damping terms of memory type with past

history which is very important problem from the point of view of application in sciences and

engineering. We work in a weighted phase spaces where the problem is well defined and deduce a

decay result depending on the relaxation functions. Using the Faedo-Galerkin method and some

energy estimates, we prove the existence of global solution owing to to the weighted function.

By imposing a new appropriate conditions, which are not used in the literature, with the help of

some special estimates and generalized Poincaré’s inequality, we obtain an unusual decay rate for

the energy function. It is a generalization of similar results in [35] and [34] for a single equation
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and [39] for coupled system to the case of a system of three equations. The work is relevant in

the sense that the problem is more complex than what can be found in the literature. However,

the techniques involved in order to study this generalization is a combination of the techniques

used in [35] in order to deal with the memory and weighted spaces with standard techniques in

order to deal with coupled system with nonlinearities.

2.1 Introduction and preliminaries

We consider, for x ∈ Rn, t > 0, the following system

θ(utt + αut)− β∆ut = ∆u−
∫ t
0
ϖ1(t− s)∆u(s) ds+ θh1(u, v, w)

θ(vtt + αvt)− β∆vt = ∆v −
∫ t
0
ϖ2(t− s)∆v(s) ds+ θh2(u, v, w)

θ(wtt + αwt)− β∆wt = ∆w −
∫ t
0
ϖ3(t− s)∆w(s) ds+ θh3(u, v, w)

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x)

ut(x, 0) = u1(x), vt(x, 0) = v1(x), wt(x, 0) = w1(x),

(2.1.1)

where α ∈ R, β > 0, n ≥ 3, the functions hi(., ., .) ∈ (R3,R), i = 1, 2, 3 are given by

h1(ξ1, ξ2, ξ3) = (p+ 1)
[
d|ξ1 + ξ2 + ξ3|(p−1)(ξ1 + ξ2 + ξ3) + e|ξ1|(p−3)/2ξ1|ξ2|(p+1)/2

]
,

h2(ξ1, ξ2, ξ3) = (p+ 1)
[
d|ξ1 + ξ2 + ξ3|(p−1)(ξ1 + ξ2 + ξ3) + e|ξ2|(p−3)/2ξ2|ξ3|(p+1)/2

]
,

h3(ξ1, ξ2, ξ3) = (p+ 1)
[
d|ξ1 + ξ2 + ξ3|(p−1)(ξ1 + ξ2 + ξ3) + e|ξ3|(p−3)/2ξ3|ξ1|(p+1)/2

]
,

with d, e > 0, p > 3. The function θ(x) > 0 for all x ∈ Rn is a density such that

θ ∈ Lτ (Rn) with τ =
2n

2n− rn+ 2r
for 2 ≤ r ≤ 2n

n− 2
. (2.1.2)

It is note hard to see that there exists a function G ∈ C1(R3,R) such that

uh1(u, v, w) + vh2(u, v, w) + wh3(u, v, w) = (p+ 1)G(u, v, w), ∀(u, v, w) ∈ R3. (2.1.3)

satisfies

(p+ 1)G(u, v, w) = |u+ v + w|p+1 + 2|uv|(p+1)/2 + 2|vw|(p+1)/2 + 2|wu|(p+1)/2. (2.1.4)
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We define the function spaces H as the closure of C∞
0 (Rn), as in [30], we have

H = {v ∈ L
2n
n−2 (Rn) | ∇v ∈ L2(Rn)n},

with respect to the norm ∥v∥H = (v, v)
1/2
H for the inner product

(v, w)H =

∫
Rn

∇v · ∇w dx,

and L2
θ(Rn) as that to the norm ∥v∥L2

θ
= (v, v)

1/2

L2
θ
for

(v, w)L2
θ
=

∫
Rn

θvw dx.

For general r ∈ [1,+∞)

∥v∥Lr
θ
=

(∫
Rn

θ |v|r dx
) 1

r

.

is the norm of the weighted space Lrθ(Rn).

The main aim of this work is to consider an important problem from the point of view of

application in sciences and engineering, namely, a system of three wave equations having a

different damping effects in an unbounded domain with strong external forces including damping

terms of memory type with past history. Using the Faedo-Galerkin method and some energy

estimates, we proved the existence of global solution in Rn owing to the weighted function. By

imposing a new appropriate condition, which not be used in the literature, with the help of

some special estimates and generalized Poincaré’s inequality, we obtained an unusual decay rate

for the energy function. The work brings new contributions to the prior literature mainly in

what concerns new decay rate estimates of the energy. The following references in connection to

our system for a single equation [24] and [25]. The work [24] was the pioneer in the literature

for the single equation, source of inspiration of several works, while the work [25] is a recent

generalization of [24] by introducing less dissipative effects.

To enrich our topic, it is necessary to reviewer previous works regarding the nonlinear coupled

system of wave equations, from a qualitative and quantitative study. Let us beginning with the

single wave equation treated in [22], where the aim goal was mainely on the system
utt + µut −∆u− ω∆ut = u ln |u|, (x, t) ∈ Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(2.1.5)
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where Ω is a bounded domain of Rn, n ≥ 1 with a smooth boundary ∂Ω. The author firstly

constructed a local existence of weak solution by using contraction mapping principle and of

course showed the global existence, decay rate and infinite time blow up of the solution with

condition on initial energy.

Next, a nonexistence of global solutions for system of three semilinear hyperbolic equations was

introduced in [5]. A coupled system for semilinear hyperbolic equations was investigated by

many authors and a different results were obtained with the nonlinearities in the form f1 =

|u|p−1|v|q+1u, f2 = |v|p−1|u|q+1v. (Please, see [4], [23], [38], [39], . . . )

In the case of non-bounded domain Rn, we mention the paper recently published by T. Miyasita

and Kh. Zennir in [35], where the considered equation as follows

utt + aut − ϕ(x)∆

(
u+ ωut −

∫ t

0

g(t− s)u(s) ds

)
= u|u|p−1, (2.1.6)

with initial data  u(x, 0) = u0(x),

ut(x, 0) = u1(x).
(2.1.7)

The authors was successful in highlighting the existence of unique local solution and they con-

tinued to extend it to be global in time. The rate of the decay for solution was the main result

by considering the relaxation function is strictly convex, for more results related to decay rate

of solution of this type of problems, please see [13], [28], [18], [34], . . . .

Regarding the study of the coupled system of two nonlinear wave equations, it is worth recalling

some of the work recently published. Baowei Feng et al. considered in [? ], a coupled system for

viscoelastic wave equations with nonlinear sources in bounded domain ((x, t) ∈ Ω× (0,∞)) with

smooth boundary as follows
utt −∆u+

∫ t
0
g(t− s)∆u(s) ds+ ut = f1(u, v)

vtt −∆v +
∫ t
0
h(t− s)∆v(s) ds+ vt = f2(u, v).

(2.1.8)

Here, the authors concerned with a system in Rn(n = 1, 2, 3). Under appropriate hypotheses,

they established a general decay result by multiplication techniques to extends some existing

results for a single equation to the case of a coupled system.
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It is worth noting here that there are several studies in this field and we particularly refer to the

generalization that Shun et al. made in studying a complicate non-linear case with degenerate

damping term in [37]. The IBVP for a system of nonlinear viscoelastic wave equations in a

bounded domain was considered in the problem

utt −∆u+
∫ t
0
g(t− s)∆u(s) ds+ (|u|k + |v|q)|ut|m−1ut = f1(u, v)

vtt −∆v +
∫ t
0
h(t− s)∆v(s) ds+ (|v|θ + |u|ρ)|vt|r−1vt = f2(u, v)

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), v(x, 0) = v0(x)

ut(x, 0) = u1(x), vt(x, 0) = v1(x),

(2.1.9)

where Ω is a bounded domain with a smooth boundary. Given certain conditions on the kernel

functions, degenerate damping and nonlinear source terms, they got a decay rate of the energy

function for some initial data.

The lack of existence (Blow up) is considered one of the most important qualitative studies

that must be spoken of, given its importance in terms of application in various applied sciences.

Concerning the nonexistence of solution for a more degenerate case for coupled system of wave

equations with different damping, we mention the papers [32], [31], [17], [40], . . .

In m−equations, paper in [7] considered a system

uitt + γuit −∆ui + ui =
m∑

i,j=1,i ̸=j

|uj|pj |ui|piui, i = 1, 2, . . . ,m, (2.1.10)

where the absence of global solutions with positive initial energy was investigated.

We introduce a very useful Sobolev embedding and generalized Poincaré inequalities.

Lemma 5. [35] Let θ satisfy (2.1.2). For a positive constants Cτ > 0 and CP > 0 depending

only on θ and n, we have

∥v∥ 2n
n−2

≤ Cτ ∥v∥H ,

and

∥v∥L2
θ
≤ CP ∥v∥H ,

for v ∈ H.
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Lemma 6. [29] Let θ satisfy (2.1.2), then the estimates

∥v∥Lr
θ
≤ Cr ∥v∥H ,

and

Cr = Cτ ∥θ∥
1
r
τ ,

hold for v ∈ H. Here τ = 2n/(2n− rn+ 2r) for 1 ≤ r ≤ 2n/(n− 2).

We assume that the kernel functions ϖ1, ϖ2, ϖ3 ∈ C1(R+,R+) satisfying

1−ϖ1 = l > 0 for ϖ1 =

∫ +∞

0

ϖ1(s) ds, ϖ
′
1(t) ≤ 0, (2.1.11)

1−ϖ2 = m > 0 for ϖ2 =

∫ +∞

0

ϖ2(s) ds, ϖ
′
2(t) ≤ 0, (2.1.12)

1−ϖ3 = ν > 0 for ϖ3 =

∫ +∞

0

ϖ3(s) ds, ϖ
′
3(t) ≤ 0, (2.1.13)

we mean by R+ the set {τ | τ ≥ 0}. Noting by

ϖ(t) = max
t≥0

{
ϖ1(t), ϖ2(t), ϖ3(t)

}
, (2.1.14)

and

ϖ0(t) = min
t≥0

{∫ t

0

ϖ1(s)ds,

∫ t

0

ϖ2(s)ds,

∫ t

0

ϖ3(s)ds
}
. (2.1.15)

We assume that there is a function χ ∈ C1(R+,R+) such that

ϖ′
i(t) + χ(ϖi(t)) ≤ 0, χ(0) = 0, χ′(0) > 0 and χ′′(ξ) ≥ 0, i = 1, 2, 3, (2.1.16)

for any ξ ≥ 0.

Holder and Young’s inequalities give

∥uv∥(p+1)/2

L
(p+1)/2
θ

≤
(
∥u∥2

L
(p+1)
θ

+ ∥v∥2
L
(p+1)
θ

)(p+1)/2

≤
(
l∥u∥2H +m∥v∥2H

)(p+1)/2
, (2.1.17)

and

∥vw∥(p+1)/2

L
(p+1)/2
θ

≤
(
m∥v∥2H + ν∥w∥2H

)(p+1)/2
, (2.1.18)
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and

∥wu∥(p+1)/2

L
(p+1)/2
θ

≤
(
ν∥w∥2H + l∥u∥2H

)(p+1)/2
. (2.1.19)

Thanks to Minkowski’s inequality to give

∥u+ v + w∥(p+1)

L
(p+1)
θ

≤ c
(
∥u∥2

L
(p+1)
θ

+ ∥v∥2
L
(p+1)
θ

+ ∥w∥2
L
(p+1)
θ

)(p+1)/2

≤ c
(
∥u∥2H + ∥v∥2H + ∥w∥2H

)(p+1)/2
.

Then there exist η > 0 such that

∥u+ v + w∥(p+1)

L
(p+1)
θ

+ 2 ∥uv∥(p+1)/2

L
(p+1)/2
θ

+ 2 ∥vw∥(p+1)/2

L
(p+1)/2
θ

+ 2 ∥wu∥(p+1)/2

L
(p+1)/2
θ

≤ η
(
l∥u∥2H +m∥v∥2H + ν∥w∥2H

)(p+1)/2
. (2.1.20)

We need to define positive constants λ0 and E0 by

λ0 ≡ η−1/(p−1) and E0 =
(1
2
− 1

p+ 1

)
η−2/(p−1). (2.1.21)

The main aim of the present section is to obtain a novel decay rate of solution from the convexity

property of the function χ given in Theorem 11.

We denote an eigenpair {(λi, ei)}i∈N ⊂ R×H of

−Θ(x)∆ei = λiei x ∈ Rn,

for any i ∈ N, (Θ(x))−1 ≡ θ(x). Then

0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · ↑ +∞,

holds and {ei} is a complete orthonormal system in H.

Definition 8. The triplet functions (u, v, w) is said a weak solution to (2.1.1) on [0, T ] if satisfies

36



CHAPTER 2. SYSTEM OF THREE NONLINEAR WAVE EQUATIONS DEPENDING ON
THE RELAXATION FUNCTIONS

for x ∈ Rn,

∫
Rn θ(x)uttφdx+ α

∫
Rn θ(x)utφdx− β

∫
Rn ∆utφdx =

∫
Rn ∆u−

∫ t
0
ϖ1(t− s)∆u(s) dsφdx

+
∫
Rn θ(x)h1(u, v, w)φdx,

∫
Rn θ(x)vttψdx+ α

∫
Rn θ(x)vtψdx− β

∫
Rn ∆vtψdx =

∫
Rn ∆v −

∫ t
0
ϖ2(t− s)∆v(s) dsψdx

+
∫
Rn θ(x)h2(u, v, w)ψdx,

∫
Rn θ(x)wttΨdx+ α

∫
Rn θ(x)wtΨdx− β

∫
Rn ∆wtΨdx =

∫
Rn ∆w −

∫ t
0
ϖ3(t− s)∆w(s) dsΨdx

+
∫
Rn θ(x)h3(u, v, w)Ψdx,

(2.1.22)

for all test functions φ, ψ,Ψ ∈ H for almost all t ∈ [0, T ].

2.2 Main results

The next theorem is concerned on the local solution (in time [0, T ]).

Theorem 9. (Local existence) Assume that

1 < p ≤ n+ 2

n− 2
and that n ≥ 3. (2.2.1)

Let (u0, v0, w0) ∈ H3 and (u1, v1, w3) ∈ L2
θ(Rn) × L2

θ(Rn) × L2
θ(Rn). Under the assumptions

(2.1.2)-(2.1.4) and (2.1.11)-(2.1.16), suppose that

α + λ1β > 0. (2.2.2)

Then (2.1.1) admits a unique local solution (u, v, w) such that

∈ X 3
T , XT ≡ C

(
[0, T ];H

)
∩ C1

(
[0, T ];L2

θ(Rn)
)
,

for sufficiently small T > 0.
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Remark 2. The constant λ1 introduced in (2.2.2) being the first eigenvalue of the operator −∆.

We will show now the global solution in time established in Theorem 10. Let us introduce

the potential energy J : H3 → R defined by

J(u, v, w) =

(
1−

∫ t

0

ϖ1(s) ds

)
∥u∥2H + (ϖ1 ◦ u)

+

(
1−

∫ t

0

ϖ2(s) ds

)
∥v∥2H + (ϖ2 ◦ v)

+

(
1−

∫ t

0

ϖ3(s) ds

)
∥w∥2H + (ϖ3 ◦ w) . (2.2.3)

The modified energy is defined by

E(t) = 1

2

(
∥ut∥2L2

θ
+ ∥vt∥2L2

θ
+ ∥wt∥2L2

θ

)
+

1

2
J(u, v, w)−

∫
Rn

θ(x)G(u, v, w)dx, (2.2.4)

here

(ϖj ◦ w) (t) =
∫ t

0

ϖj(t− s) ∥w(t)− w(s)∥2H ds,

for any w ∈ L2(Rn), j = 1, 2, 3.

Theorem 10. (Global existence) Let (2.1.2)-(2.1.4) and (2.1.11)-(2.1.16) hold. Under (2.2.1),

(2.2.2) and for sufficiently small (u0, u1), (v0, v1), (w0, w1) ∈ H×L2
θ(Rn), problem (3.1.1) admits

a unique global solution (u, v, w) such that

(u, v, w) ∈ X 3, X ≡ C
(
[0,+∞);H

)
∩ C1

(
[0,+∞);L2

θ(Rn)
)
. (2.2.5)

The non-classical decay rate for solution is given in the next Theorem

Theorem 11. (Decay of solution) Let (2.1.2)-(2.1.19) and (2.1.11)-(2.1.16) hold. Under con-

ditions (2.2.1), (2.2.2) and

γ = η
(2(p+ 1)

p− 1
E(0)

)(p−1)/2

< 1, (2.2.6)

there exists t0 > 0 depending only on ϖ1, ϖ2, ϖ3, α, β, λ1 and X ′(0) such that

0 ≤ E(t) < E(t0) exp
(
−
∫ t

t0

ϖ(s)

1−ϖ0(t)

)
, (2.2.7)

holds for all t ≥ t0.

38



CHAPTER 2. SYSTEM OF THREE NONLINEAR WAVE EQUATIONS DEPENDING ON
THE RELAXATION FUNCTIONS

In particular, by the positively of ϖ in (2.1.14), we have, as in [33],

0 ≤ E(t) < E(t0) exp
(
−
∫ t

t0

ϖ(s) ds

)
,

for a single wave equation. Condition (2.1.16) is imposed to make a different from [33] and [34],

it leads (ϖ′ + νϖ) ◦ u, here ν ∈ R.

The next, Lemma will play an important role in the sequel.

Lemma 7. For (u, v, w) ∈ X 3
T , the functional E(t) associated with problem (2.1.1) is a decreasing

energy.

Proof. For 0 ≤ t1 < t2 ≤ T , we have

E(t2)− E(t1)

=

∫ t2

t1

d

dt
E(t) dt

= −
∫ t2

t1

(
α ∥ut∥2L2

θ
+ β ∥ut∥2H +

1

2
ϖ1(t) ∥u∥2H − 1

2
(ϖ′

1 ◦ u)
)
dt

−
∫ t2

t1

(
α ∥vt∥2L2

θ
+ β ∥vt∥2H +

1

2
ϖ2(t) ∥v∥2H − 1

2
(ϖ′

2 ◦ v)
)
dt

−
∫ t2

t1

(
α ∥wt∥2L2

θ
+ β ∥wt∥2H +

1

2
ϖ3(t) ∥w∥2H − 1

2
(ϖ′

3 ◦ w)
)
dt

≤ 0,

owing to (2.1.11)-(2.1.16).

The inner product is given as

(v, w)∗ = β

∫
Rn

∇v · ∇w dx+ α

∫
Rn

θvw dx,

and the associated norm is given by

∥v∥∗ =
√
(v, v)∗,

∀v, w ∈ H. By (2.2.2), we get

(v, v)∗ = β

∫
Rn

|∇v|2 dx+ α

∫
Rn

θv2 dx ≥ (βλ1 + a)

∫
Rn

θv2 dx ≥ 0.

The following lemma yields.
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Lemma 8. Let θ satisfy (2.1.2). Under condition (2.2.2), we get√
β ∥v∥H ≤ ∥v∥∗ ≤

√
β + C2

P ∥v∥H ,

for v ∈ H.

2.3 Proofs

We sketch here the outline of the proof for local solution by a standard procedure(See [13], [34]).

Proof. (Of Theorem 9.) Let (u0, u1), (v0, v1), (w0, w1) ∈ H × L2
θ(Rn). For any (u, v, w) ∈ X 3

T , we

can obtain a weak solution of the related system

θ(x)ztt + αθ(x)zt −∆(z + βzt) = −
∫ t
0
ϖ1(t− s)∆u(s) ds+ θ(x)h1(u, v, w)

θ(x)ytt + αθ(x)yt −∆(y + βyt) = −
∫ t
0
ϖ2(t− s)∆v(s) ds+ θ(x)h2(u, v, w)

θ(x)ζtt + αθ(x)ζt −∆(ζ + βζt) = −
∫ t
0
ϖ3(t− s)∆w(s) ds+ θ(x)h3(u, v, w)

z(x, 0) = u0(x), y(x, 0) = v0(x), ζ(x, 0) = w0(x)

zt(x, 0) = u1(x), yt(x, 0) = v1(x), ζt(x, 0) = w1(x).

(2.3.1)

We reduces problem (2.3.1) to Cauchy problem for system of ODE by using the Faedo-Galerkin

approximation. We then find a solution map ⊤ : (u, v, w) 7→ (z, y, ζ) from X 3
T to X 3

T . We are

now ready to show that ⊤ is a contraction mapping in an appropriate subset of X 3
T for a small

T > 0. Hence ⊤ has a fixed point ⊤(u, v, w) = (u, v, w), which gives a unique solution in X 3
T .

We will show the global solution. By using conditions on functions ϖ1, ϖ2, ϖ3, we have

E(t) ≥ 1

2
J(u, v, w)−

∫
Rn

θ(x)G(u, v, w)dx

≥ 1

2
J(u, v, w)− 1

p+ 1
∥u+ v + w∥(p+1)

L
(p+1)
θ

− 2

p+ 1

(
∥uv∥(p+1)/2

L
(p+1)/2
θ

+ ∥vw∥(p+1)/2

L
(p+1)/2
θ

+ ∥wu∥(p+1)/2

L
(p+1)/2
θ

)
≥ 1

2
J(u, v, w)− η

p+ 1

[
l ∥u∥2H +m ∥v∥2H + ν ∥w∥2H

](p+1)/2

≥ 1

2
J(u, v, w)− η

p+ 1

(
J(u, v, w)

)(p+1)/2

= G (ς) , (2.3.2)
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here ς2 = J(u, v, w), for t ∈ [0, T ), where

G(ξ) =
1

2
ξ2 − η

p+ 1
ξ(p+1).

Noting that E0 = G(λ0), given in (2.1.21). Then G′(ξ) ≥ 0 in ξ ∈ [0, λ0]

G′(ξ) < 0 in ξ > λ0.
(2.3.3)

Moreover, lim
ξ→+∞

G(ξ) → −∞. Then, we have the following lemma

Lemma 9. Let 0 ≤ E(0) < E0.

(i) If ∥u0∥2H + ∥v0∥2H + ∥w0∥2H < λ20, then local solution of (2.1.1) satisfies

J(u, v, w) < λ20, ∀t ∈ [0, T ).

(ii) If ∥u0∥2H + ∥v0∥2H + ∥w0∥2H > λ20, then local solution of (2.1.1) satisfies

∥u∥2H + ∥v∥2H + ∥w∥2H > λ21, ∀t ∈ [0, T ), λ1 > λ0.

Proof. Since 0 ≤ E(0) < E0 = G(λ0), there exist ξ1 and ξ2 such that G(ξ1) = G(ξ2) = E(0) with

0 < ξ1 < λ0 < ξ2.

The case (i). By (2.3.2), we have

G(J(u0, v0, w0)) ≤ E(0) = G(ξ1),

which implies that J(u0, v0, w0) ≤ ξ21 . Then we claim that J(u, v, w) ≤ ξ21 , ∀t ∈ [0, T ). Moreover,

there exists t0 ∈ (0, T ) such that

ξ21 < J(u(t0), v(t0), w(t0)) < ξ22 .

Then

G(J(u(t0), v(t0), w(t0))) > E(0) ≥ E(t0),

by Lemma 7, which contradicts (2.3.2). Hence we have

J(u, v, w) ≤ ξ21 < λ20, ∀t ∈ [0, T ).

The case (ii). We can now show that ∥u0∥2H + ∥v0∥2H + ∥w0∥2H ≥ ξ22 and that ∥u∥2H + ∥v∥2H +

∥w∥2H ≥ ξ22 > λ20 in the same way as (i).
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Proof. (Of Theorem 10.) Let (u0, u1), (v0, v1), (w0, w1) ∈ H× L2
θ(Rn) satisfy both 0 ≤ E(0) < E0

and ∥u0∥2H + ∥v0∥2H + ∥w0∥2H < λ20. By Lemma 7 and Lemma 9, we have

1

2

(
∥ut∥2L2

θ
+ ∥vt∥2L2

θ
+ ∥wt∥2L2

θ

)
+ l ∥u∥2H +m ∥v∥2H + ν ∥w∥2H

≤ 1

2

(
∥ut∥2L2

θ
+ ∥vt∥2L2

θ
+ ∥wt∥2L2

θ

)
+

(
1−

∫ t

0

ϖ1(s) ds

)
∥u∥2H + (ϖ1 ◦ u)

+

(
1−

∫ t

0

ϖ2(s) ds

)
∥u∥2H + (ϖ2 ◦ v) +

(
1−

∫ t

0

ϖ3(s) ds

)
∥w∥2H + (ϖ3 ◦ w)

≤ 2E(t) + 2η

p+ 1

[
l ∥u∥2H +m ∥u∥2H + ν ∥w∥2H

](p+1)/2

≤ 2E(0) + 2η

p+ 1

(
J(u, v, w)

)(p+1)/2

≤ 2E0 +
2η

p+ 1
λp+1
0

= η−2/(p−1). (2.3.4)

This completes the proof.

Let

Λ(u, v, w) =
1

2

(
1−

∫ t

0

ϖ1(s) ds

)
∥u∥2H +

1

2
(ϖ1 ◦ u) (2.3.5)

+
1

2

(
1−

∫ t

0

ϖ2(s) ds

)
∥v∥2H +

1

2
(ϖ2 ◦ v)

+
1

2

(
1−

∫ t

0

ϖ3(s) ds

)
∥w∥2H +

1

2
(ϖ3 ◦ w)−

∫
Rn

θ(x)G(u, v, w)dx,

Π(u, v, w) =

(
1−

∫ t

0

ϖ1(s) ds

)
∥u∥2H + (ϖ1 ◦ u) (2.3.6)

+

(
1−

∫ t

0

ϖ2(s) ds

)
∥v∥2H + (ϖ2 ◦ v)

+

(
1−

∫ t

0

ϖ3(s) ds

)
∥w∥2H + (ϖ3 ◦ w)− (p+ 1)

∫
Rn

θ(x)G(u, v, w)dx.

Lemma 10. Let (u, v, w) be the solution of problem (2.1.1). If

∥u0∥2H + ∥v0∥2H + ∥w0∥2H − (p+ 1)

∫
Rn

θ(x)G(u0, v0, w0)dx > 0. (2.3.7)

Then under condition (2.2.6), the functional Π(u, v, w) > 0, ∀t > 0.
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Proof. By (2.3.7) and continuity, there exists a time t1 > 0 such that

Π(u, v, w) ≥ 0,∀t < t1.

Let

Y = {(u, v, w) | Π(u(t0), v(t0), w(t0)) = 0, Π(u, v, w) > 0,∀t ∈ [0, t0)}. (2.3.8)

Then, by (2.3.5), (2.3.6), we have for all (u, v, w) ∈ Y ,

Λ(u, v, w)

=
p− 1

2(p+ 1)

[(
1−

∫ t

0

ϖ1(s) ds

)
∥u∥2H +

(
1−

∫ t

0

ϖ2(s) ds

)
∥v∥2H +

(
1−

∫ t

0

ϖ3(s) ds

)
∥w∥2H

]
+

p− 1

2(p+ 1)

[
(ϖ1 ◦ u) + (ϖ2 ◦ v) + (ϖ3 ◦ w)

]
+

1

p+ 1
Π(u, v, w)

≥ p− 1

2(p+ 1)

[
l ∥u∥2H +m ∥v∥2H + ν ∥w∥2H + (ϖ1 ◦ u) + (ϖ2 ◦ v) + (ϖ3 ◦ w)

]
.

Owing to (2.2.4), it follows for (u, v, w) ∈ Y

l ∥u∥2H +m ∥v∥2H + ν ∥w∥2H ≤ 2(p+ 1)

p− 1
Λ(u, v, w) ≤ 2(p+ 1)

p− 1
E(t) ≤ 2(p+ 1)

p− 1
E(0). (2.3.9)

By (2.1.20), (2.2.6) we have

(p+ 1)

∫
Rn

G(u(t0), v(t0), w(t0)) ≤ η
(
l∥u(t0)∥2H +m∥v(t0)∥2H + ν ∥w(t0)∥2H

)(p+1)/2

≤ η
(2(p+ 1)

p− 1
E(0)

)(p−1)/2

(l ∥u(t0)∥2H +m ∥v(t0)∥2H + ν ∥w(t0)∥2H)

≤ γ(l ∥u(t0)∥2H +m ∥v(t0)∥2H + ν ∥w(t0)∥2H)

<
(
1−

∫ t0

0

ϖ1(s)ds
)
∥u(t0)∥2H +

(
1−

∫ t0

0

ϖ2(s)ds
)
∥v(t0)∥2H

+
(
1−

∫ t0

0

ϖ3(s)ds
)
∥w(t0)∥2H

<
(
1−

∫ t0

0

ϖ1(s)ds
)
∥u(t0)∥2H +

(
1−

∫ t0

0

ϖ2(s)ds
)
∥v(t0)∥2H

+
(
1−

∫ t0

0

ϖ3(s)ds
)
∥w(t0)∥2H

+ (ϖ1 ◦ u) + (ϖ2 ◦ v) + (ϖ3 ◦ w), (2.3.10)

hence Π(u(t0), v(t0), w(t0)) > 0 on Y , which contradicts the definition of Y since Π(u(t0), v(t0), w(t0)) =

0. Thus Π(u, v, w) > 0, ∀t > 0.
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We are ready to prove the decay rate.

Proof. (Of Theorem 11.) By (2.1.20) and (2.3.9), we have for t ≥ 0

0 < l ∥u∥2H +m ∥v∥2H + ν ∥w∥2H ≤ 2(p+ 1)

p− 1
E(t). (2.3.11)

Let

I(t) =
ϖ(t)

1−ϖ0(t)
,

where ϖ and ϖ0 defined in (2.1.14) and (2.1.15).

Noting that lim
t→+∞

ϖ(t) = 0 by (2.1.11)-(2.1.15), we have

lim
t→+∞

I(t) = 0, I(t) > 0, ∀t ≥ 0.

Then we take t0 > 0 such that

0 <
1

2
I(t) < min {2 (βλ1 + a) , χ′(0)} ,

with (2.1.16) for all t > t0. Due to (2.2.4), we have

E(t) ≤ 1

2

(
∥ut∥2L2

θ
+ ∥vt∥2L2

θ
+ ∥wt∥2L2

θ

)
+

1

2
[(ϖ1 ◦ u) + (ϖ2 ◦ v) + (ϖ3 ◦ w)]

+
1

2

(
1−

∫ t

0

ϖ1(s) ds

)
∥u∥2H +

1

2

(
1−

∫ t

0

ϖ2(s) ds

)
∥v∥2H +

1

2

(
1−

∫ t

0

ϖ3(s) ds

)
∥w∥2H

≤ 1

2

(
∥ut∥2L2

θ
+ ∥vt∥2L2

θ
+ ∥wt∥2L2

θ

)
+

1

2
[(ϖ1 ◦ u) + (ϖ2 ◦ v) + (ϖ3 ◦ w)]

+
1

2
(1−ϖ0(t))[∥u∥2H + ∥v∥2H + ∥w∥2H].

Then by definition of I(t), we have

I(t)E(t) ≤ 1

2
I(t)

(
∥ut∥2L2

θ
+ ∥vt∥2L2

θ
+ ∥wt∥2L2

θ

)
+

1

2
ϖ(t)[∥u∥2H + ∥v∥2H + ∥w∥2H]

+
1

2
I(t)[(ϖ1 ◦ u) + (ϖ2 ◦ v) + (ϖ3 ◦ w)], (2.3.12)

and Lemma 7, we have for all t1, t2 ≥ 0

E(t2)− E(t1)

≤ −
∫ t2

t1

(
α ∥wt∥2L2

θ
+ α ∥ut∥2L2

θ
+ β ∥ut∥2H +

1

2
ϖ(t)[∥u∥2H + ∥v∥2H + ∥w∥2H]

)
dt

−
∫ t2

t1

(
α ∥vt∥2L2

θ
+ β ∥vt∥2H + β ∥wt∥2H − 1

2
(ϖ′

1 ◦ u)−
1

2
(ϖ′

2 ◦ v)−
1

2
(ϖ′

3 ◦ w)
)
dt,
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then, by generalized Poincaré’s inequalities, we get

E ′(t) ≤ − (βλ1 + α) [∥ut∥2L2
θ
+ ∥vt∥2L2

θ
+ ∥wt∥2L2

θ
]

− 1

2
ϖ(t)[∥u∥2H + ∥v∥2H + ∥w∥2H]

+
1

2
[(ϖ′

1 ◦ u) + (ϖ′
2 ◦ v) + (ϖ′

3 ◦ w)],

Finally, ∀t ≥ t0, we have

E ′(t) + I(t)E(t)

≤
{
1

2
I(t)− (βλ1 + α)

}(
∥ut∥2L2

θ
+ ∥vt∥2L2

θ
+ ∥wt∥2L2

θ

)
+

1

2
[(ϖ′

1 ◦ u) + (ϖ′
2 ◦ v) + (ϖ′

3 ◦ w)] +
1

2
I(t)((ϖ1 ◦ u) + (ϖ2 ◦ v) + (ϖ3 ◦ w))

≤ 1

2

∫ t

0

{ϖ′
1(t− τ) + I(t)ϖ2(t− τ)} ∥u(t)− u(τ)∥2H dτ

+
1

2

∫ t

0

{ϖ′
2(t− τ) + I(t)ϖ2(t− τ)} ∥v(t)− v(τ)∥2H dτ

+
1

2

∫ t

0

{ϖ′
3(t− τ) + I(t)ϖ3(t− τ)} ∥w(t)− w(τ)∥2H dτ

≤ 1

2

∫ t

0

{ϖ′
1(τ) + I(t)ϖ1(τ)} ∥u(t)− u(t− τ)∥2H dτ

+
1

2

∫ t

0

{ϖ′
2(τ) + I(t)ϖ2(τ)} ∥v(t)− v(t− τ)∥2H dτ

+
1

2

∫ t

0

{ϖ′
3(τ) + I(t)ϖ3(τ)} ∥w(t)− w(t− τ)∥2H dτ

≤ 1

2

∫ t

0

{
−χ
(
ϖ1(τ)

)
+ χ′(0)ϖ1(τ)

}
∥u(t)− u(t− τ)∥2H dτ

+
1

2

∫ t

0

{
−χ
(
ϖ2(τ)

)
+ χ′(0)ϖ2(τ)

}
∥v(t)− v(t− τ)∥2H dτ

+
1

2

∫ t

0

{
−χ
(
ϖ3(τ)

)
+ χ′(0)ϖ3(τ)

}
∥w(t)− w(t− τ)∥2H dτ

≤ 0,

by the convexity of χ and (2.1.16), we have

χ(ξ) ≥ χ(0) + χ′(0)ξ = χ′(0)ξ.

Then

E(t) ≤ E(t0) exp
(
−
∫ t

t0

I(s)ds

)
,
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which completes the proof.
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The chapter discusses the effect of weak and strong damping terms on decay rate for systems

of nonlinear m- wave equations in viscoelasticity. The factors that allowed system (3.1.1) to

coexist for a long time are the strong nonlinearities in the sources. We showed, under a novel

condition on the kernel function in (3.1.14), a new scenario for energy decay in (3.2.7) by using

an appropriate energy estimates. This result extend our last result in [35], [39] for system of

m-equations inspired from the paper [7].

3.1 Introduction and position of problem

We consider, for x ∈ Rn, t > 0, j = 1, 2, . . . ,m, the following system of m equations
(
|ujt|κ−2ujt

)
t
+ aujt −Θ(x)∆

(
uj + ωujt −

∫ t
0
ϖj(t− s)uj(s) ds

)
= fj(u1, u2, . . . , um)

uj(x, 0) = uj0(x),

ujt(x, 0) = uj1(x),

(3.1.1)

where a ∈ R, ω > 0, n ≥ 3, κ ≥ 2.

Various non-linear sources have been combined as follows, we combine all two consecutive equa-

tions together and of course the last equation with the first one, which get the whole system

closely linked by the strong nonlinear sources. The functions fj(u1, u2, . . . , um) ∈ (Rm,R) are

given for j = 1, 2, . . . ,m− 1, by

fj(u1, u2, . . . , um) = (p+ 1)
[
d
∣∣∣ m∑
i=1

ui

∣∣∣(p−1)
m∑
i=1

ui + e|uj|(p−3)/2uj|uj+1|(p+1)/2
]
,

and

fm(u1, u2, . . . , um) = (p+ 1)
[
d
∣∣∣ m∑
i=1

ui

∣∣∣(p−1)
m∑
i=1

ui + e|um|(p−3)/2um|u1|(p+1)/2
]
,

with d, e >, p > 3.

There exists a function F ∈ C1(R3,R) such that

m∑
j=1

ujfj(u1, u2, . . . , um) = (p+ 1)F(u1, u2, . . . , um), ∀(u1, u2, . . . , um) ∈ Rm. (3.1.2)
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satisfies

(p+ 1)F(u1, u2, . . . , um) =
∣∣∣ m∑
j=1

uj

∣∣∣p+1

+ 2
∣∣∣m−1∑
j=1

ujuj+1

∣∣∣(p+1)/2

+ 2|umu1|(p+1)/2. (3.1.3)

In order to use Poincare’s inequality which is a key in calculus for the PDEs, we will study the

problem (3.1.1) in the presence of a density function θ to find a generalized formula for Poincare’s

inequality that can be used in unbounded domain Rn. The function Θ(x) > 0 for all x ∈ Rn is

a density and (Θ)−1 = 1/Θ(x) ≡ θ(x) such that

θ ∈ Lτ (Rn) with τ =
2n

2n− rn+ 2r
for 2 ≤ r ≤ 2n

n− 2
. (3.1.4)

We define a new spaces related to the nature of our system, taking into account the boundless

of spaces Rn. The function spaces H is defined as the closure of C∞
0 (Rn), as in [30], we have

H = {v ∈ L
2n
n−2 (Rn) | ∇v ∈ L2(Rn)n}.

with respect to the norm ∥v∥H = (v, v)
1/2
H for the inner product

(v, w)H =

∫
Rn

∇v · ∇w dx,

and L2
θ(Rn) as that to the norm ∥v∥L2

θ
= (v, v)

1/2

L2
θ
for

(v, w)L2
θ
=

∫
Rn

θvw dx.

For general r ∈ [1,+∞)

∥v∥Lr
θ
=

(∫
Rn

θ |v|r dx
) 1

r

.

is the norm of the weighted space Lrθ(Rn).

The main aim of this work is to consider an important problem from the point of view of

application in sciences and engineering, namely, a system of m wave equations having a different

damping effects in an unbounded domain with strong external forces including damping terms of

memory type with past history. Using the Faedo-Galerkin method and some energy estimates,

we proved the existence of global solution in Rn owing to the weighted function. By imposing

a new appropriate condition, which not be used in the literature, with the help of some special
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estimates and generalized Poincaré’s inequality, we obtained an unusual decay rate for the energy

function. The work brings new contributions to the prior literature mainly in what concerns new

decay rate estimates of the energy. The following references in connection to our system for

a single equation [24] and [25]. The work [24] was the pioneer in the literature for the single

equation, source of inspiration of several works, while the work [25] is a recent generalization of

[24] by introducing less dissipative effects.

With regard to the study of this type of systems without viscoelasticity, with the existence of

both weak damping ut and strong damping ∆ut, under condition (3.2.2), here we mention the

work recently published in one equation in [22]
utt + µut −∆u− ω∆ut = u ln |u|, (x, t) ∈ Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3.1.5)

where Ω is a bounded domain of Rn, n ≥ 1 with a smooth boundary ∂Ω. The aim goal was

mainely on the local existence of weak solution by using contraction mapping principle and of

course the authors showed the global existence, decay rate and infinite time blow up of the

solution with certain conditions on initial energy.

In the case of non-bounded domain Rn, we mention the paper recently published by T. Miyasita

and Kh. Zennir in [35], where the considered equation as follows

utt + aut − ϕ(x)∆

(
u+ ωut −

∫ t

0

g(t− s)u(s) ds

)
= u|u|p−1, (3.1.6)

with initial data  u(x, 0) = u0(x),

ut(x, 0) = u1(x).
(3.1.7)

The authors was successful in highlighting the existence of unique local solution and they con-

tinued to extend it to be global in time. The rate of the decay for solution was the main result,

for more results related to decay rate of solution of this type of problems, please see [13], [28],

[18], [34], . . . .

Regarding the study of the coupled system of two nonlinear wave equations, it is worth recalling

the work by Baowei Feng and al. which was considered in [? ], a coupled system for viscoelastic
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wave equations with nonlinear sources in bounded domain with smooth boundary as follows
utt −∆u+

∫ t
0
g(t− s)∆u(s) ds+ ut = f1(u, v)

vtt −∆v +
∫ t
0
h(t− s)∆v(s) ds+ vt = f2(u, v).

(3.1.8)

Under appropriate hypotheses, they established a general decay result by multiplication tech-

niques to extends some existing results for a single equation to the case of a coupled system.

It is worth noting that there are several studies in this field and we particularly refer to the

generalization that Shun and al. made in studying a complicate non-linear case with degenerate

damping term in [37]. The IBVP for a system of nonlinear viscoelastic wave equations in a

bounded domain was considered in the problem

utt −∆u+
∫ t
0
g(t− s)∆u(s) ds+ (|u|k + |v|q)|ut|m−1ut = f1(u, v),

vtt −∆v +
∫ t
0
h(t− s)∆v(s) ds+ (|v|θ + |u|ρ)|vt|r−1vt = f2(u, v),

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x)

ut(x, 0) = u1(x), vt(x, 0) = v1(x),

(3.1.9)

where Ω is a bounded domain with a smooth boundary. Given certain conditions on the kernel

functions, degenerate damping and nonlinear source terms, they got a decay rate of the energy

function for some initial data.

In n−equations, paper in [7] considered a system

uitt + γuit −∆ui + ui =
m∑

i,j=1,i ̸=j

|uj|pj |ui|piui, i = 1, 2, . . . ,m, (3.1.10)

where the absence of global solutions with positive initial energy was investigated. Next, a nonex-

istence of global solutions for system of three semilinear hyperbolic equations was introduced in

[5]. A coupled system of semilinear hyperbolic equations was investigated by many authors and

a different results were obtained with the nonlinearities in the form f1 = |u|p−1|v|q+1u, f2 =

|v|p−1|u|q+1v. (Please, see [4], [23], [38], . . . )

We introduce a very useful Sobolev embedding and generalized Poincaré inequalities.
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Lemma 11. [35] Let θ satisfy (3.1.4). For positive constants Cτ > 0 and CP > 0 depending

only on θ and n, we have

∥v∥ 2n
n−2

≤ Cτ ∥v∥H ,

and

∥v∥L2
θ
≤ CP ∥v∥H ,

for v ∈ H.

Lemma 12. [29] Let θ satisfy (3.1.4), then the estimates

∥v∥Lr
θ
≤ Cr ∥v∥H ,

and

Cr = Cτ ∥θ∥
1
r
τ ,

hold for v ∈ H. Here τ = 2n/(2n− rn+ 2r) for 1 ≤ r ≤ 2n/(n− 2).

In the fifties and seventies of the last century, the linear theory of viscoelasticity was devel-

oped extensively and at the present, it has become widely used to represent this nucleus using

several improvements to the nature of decreasing the kernel function. We assume that the kernel

functions ϖj ∈ C1(R+,R+) satisfying

1−ϖj = ρj > 0 for ϖj =

∫ +∞

0

ϖj(s) ds, ϖ
′
j(t) ≤ 0, (3.1.11)

we mean by R+ the set {τ | τ ≥ 0}. Noting by

µ(t) = max
t≥0

{
ϖ1(t), ϖ2(t), . . . , ϖm(t)

}
, (3.1.12)

and

µ0(t) = min
t≥0

{∫ t

0

ϖ1(s)ds,

∫ t

0

ϖ2(s)ds, . . . ,

∫ t

0

ϖm(s)ds
}
. (3.1.13)

We assume that there is a function χ ∈ C1(R+,R+), such that the novel properties

ϖ′
j(t) + χ(ϖj(t)) ≤ 0, χ(0) = 0, χ′(0) > 0 and χ′′(ξ) ≥ 0, i = 1, 2, . . . ,m, (3.1.14)
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satisfied for any ξ ≥ 0.

Holder and Young’s inequalities give

∥uiuj∥(p+1)/2

L
(p+1)/2
θ

≤
(
∥ui∥2L(p+1)

θ

+ ∥uj∥2L(p+1)
θ

)(p+1)/2

≤
(
ρi∥ui∥2H + ρj∥uj∥2H

)(p+1)/2
, (3.1.15)

Thanks to Minkowski’s inequality to give∥∥∥∥∥
m∑
j=1

uj

∥∥∥∥∥
(p+1)

L
(p+1)
θ

≤ c

(
m∑
j=1

∥uj∥2L(p+1)
θ

)(p+1)/2

≤ c

(
m∑
j=1

∥uj∥2H

)(p+1)/2

.

Then there exist η > 0 such that∥∥∥∥∥
m∑
j=1

uj

∥∥∥∥∥
(p+1)

L
(p+1)
θ

+ 2
∥∥∥m−1∑
j=1

ujuj+1

∥∥∥(p+1)/2

L
(p+1)/2
θ

+ 2∥umu1∥(p+1)/2

L
(p+1)/2
θ

≤ η

(
m∑
j=1

ρj∥uj∥2H

)(p+1)/2

. (3.1.16)

We need to define positive constants λ0 and E0 by

λ0 ≡ η−1/(p−1) and E0 =
(1
2
− 1

p+ 1

)
η−2/(p−1). (3.1.17)

The mainely aim of the present paper is to obtain a novel decay rate of solution from the convexity

property of the function χ given in Theorem 14.

We denote an eigenpair {(λi, ei)}i∈N ⊂ R×H of

−Θ(x)∆ei = λiei x ∈ Rn,

for any i ∈ N. Then

0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · ↑ +∞,

holds and {ei} is a complete orthonormal system in H.

53



CHAPTER 3. SYSTEMS OF m-NONLINEAR VISCOELASTIC WAVE EQUATIONS

Definition 9. The vectors (u1, u2, . . . , um) is said a weak solution to (3.1.1) on [0, T ] if satisfies

for x ∈ Rn∫
Rn

(
|ujt|κ−2ujt

)
t
φjdx+ a

∫
Rn

ujtφjdx −
∫
Rn

Θ(x)∆

(
uj + ωujt −

∫ t

0

ϖj(t− s)uj(s) ds

)
φjdx

=

∫
Rn

fj(u1, u2, . . . , um)φjdx, (3.1.18)

for all test functions φj ∈ H, j = 1, 2, . . . ,m for almost all t ∈ [0, T ].

3.2 Statement of Main results

The local solution (in time [0, T ]) is given in next Theorem.

Theorem 12. (Local existence) Assume that

1 < p ≤ n+ 2

n− 2
and n ≥ 3. (3.2.1)

Let (u10, u20, . . . um0) ∈ Hm and (u1, u1, . . . , um) ∈ [Lκθ (Rn)]m. Under the assumptions (3.1.4)-

(17) and (3.1.11)-(3.1.14), suppose that

a+ λ1ω > 0. (3.2.2)

Then (3.1.1) admits a unique local solution (u1, u2, . . . , um) such that

(u1, u2, . . . , um) ∈ Xm
T , XT ≡ C

(
[0, T ];H

)
∩ C1

(
[0, T ];Lκθ (Rn)

)
,

for sufficiently small T > 0.

Remark 3. The constant λ1 introduced in (3.2.2) being the first eigenvalue of the operator −∆.

We will show now the global solution in time established in Theorem 13. Let us introduce

the potential energy J : Hm → R defined by

J(u1, u2, . . . , um) =
m∑
j=1

(
1−

∫ t

0

ϖj(s) ds

)
∥uj∥2H + (ϖj ◦ uj) . (3.2.3)

The modified energy is defined by

E(t) = κ− 1

κ

m∑
j=1

∥ujt∥κLκ
θ
+

1

2
J(u1, u2, . . . , um)−

∫
Rn

θ(x)F(u1, u2, . . . , um)dx, (3.2.4)
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here

(ϖj ◦ w) (t) =
∫ t

0

ϖj(t− s) ∥w(t)− w(s)∥2H ds,

for any w ∈ L2(Rn), j = 1, 2, . . . ,m.

Theorem 13. (Global existence) Let (3.1.4)-(17) and (3.1.11)-(3.1.14) hold. Under (3.2.1),

(3.2.2) and for sufficiently small (u10, u11), (u20, u21), . . . , (um0, um1) ∈ H × Lκθ (Rn), problem

(3.1.1) admits a unique global solution (u1, u2, . . . , um) such that

(u1, u2, . . . , um) ∈ Xm, X ≡ C
(
[0,+∞);H

)
∩ C1

(
[0,+∞);Lκθ (Rn)

)
. (3.2.5)

The nonclassical decay rate for solution is given in the next Theorem, where the existing

results are a special case.

Theorem 14. (Decay of solution) Let (3.1.4)-(17) and (3.1.11)-(3.1.14) hold. Under conditions

(3.2.1), (3.2.2) and

γ = η
(2(p+ 1)

p− 1
E(0)

)(p−1)/2

< 1, (3.2.6)

there exists t0 > 0 depending only on ϖj, a, ω, λ1 and X ′(0) such that

0 ≤ E(t) < E(t0) exp
(
−
∫ t

t0

µ(s)

1− µ0(t)

)
, (3.2.7)

holds for all t ≥ t0.

In particular, by the positivity of µ in (3.1.12), we have, as in [33],

0 ≤ E(t) < E(t0) exp
(
−
∫ t

t0

µ(s) ds

)
,

for a single wave equation. Condition (3.1.14) is imposed to make a different from [33] and [34],

it leads (µ′ + νµ) ◦ u, here ν ∈ R.

The next, Lemma will play an important role in the sequel.

Lemma 13. For (u1, u2, . . . , um) ∈ Xm
T , the functional E(t) associated with problem (3.1.1) is a

decreasing energy.
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Proof. For 0 ≤ t1 < t2 ≤ T , we have

E(t2)− E(t1)

=

∫ t2

t1

d

dt
E(t) dt

= −
m∑
j=1

∫ t2

t1

(
a ∥ujt∥2L2

θ
+ ω ∥ujt∥2H +

1

2
ϖj(t) ∥uj∥2H − 1

2
(ϖ′

j ◦ uj)
)
dt

≤ 0,

owing to (3.1.11)-(3.1.14).

We define an inner product as

(v, w)∗ = ω

∫
Rn

∇v · ∇w dx+ a

∫
Rn

θvw dx,

and the associated norm is given by

∥v∥∗ =
√

(v, v)∗,

∀v, w ∈ H. By (3.2.2), we get

(v, v)∗ = ω

∫
Rn

|∇v|2 dx+ a

∫
Rn

θv2 dx ≥ (ωλ1 + a)

∫
Rn

θv2 dx ≥ 0.

The following Lemma yields.

Lemma 14. Let θ satisfy (3.1.4). Under condition (3.2.2), we get

√
ω ∥v∥H ≤ ∥v∥∗ ≤

√
ω + C2

P ∥v∥H ,

for v ∈ H.

3.3 Proofs

3.3.1 Proof of existence results

We sketch here the outline of the proof for local solution by a standard procedure (See [13], [34]).
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Proof. (Of Theorem 12.) Let (u10, u11), (u20, u21), . . . , (um0, um1) ∈ H×Lκθ (Rn). For any (u1, u2, . . . , um) ∈

Xm
T , we can obtain a weak solution of the related system
(
|zjt|κ−2zjt

)
t
+ azjt −Θ(x)∆ (zj + ωzjt) = −Θ(x)∆

∫ t
0
ϖj(t− s)uj(s) ds+ fj(u1, u2, . . . , um)

zj(x, 0) = uj0(x)

zjt(x, 0) = uj1(x).

(3.3.1)

We reduces problem (3.3.1) to Cauchy problem for system of ODE by using the Faedo-Galerkin

approximation. We then find a solution map

⊤ : (u1, u2, . . . , um) 7→ (z1, z2, . . . , zm)

from Xm
T to Xm

T . We are now ready to show that ⊤ is a contraction mapping in an appropriate

subset of Xm
T for a small T > 0. Hence ⊤ has a fixed point

⊤(u1, u2, . . . , um) = (u1, u2, . . . , um),

which gives a unique solution in Xm
T .

We will show the global solution. For this end, by using conditions on functions ϖj, we have

E(t) ≥ 1

2
J(u1, u2, . . . , um)−

∫
Rn

θ(x)F(u1, u2, . . . , um)dx

≥ 1

2
J(u1, u2, . . . , um)−

1

p+ 1

∥∥∥∥∥
m∑
j=1

uj

∥∥∥∥∥
(p+1)

L
(p+1)
θ

− 2

p+ 1

(∥∥∥m−1∑
j=1

ujuj+1

∥∥∥(p+1)/2

L
(p+1)/2
θ

+ ∥umu1∥(p+1)/2

L
(p+1)/2
θ

)

≥ 1

2
J(u1, u2, . . . , um)−

η

p+ 1

[ m∑
j=1

ρj ∥uj∥2H
](p+1)/2

≥ 1

2
J(u1, u2, . . . , um)−

η

p+ 1

(
J(u1, u2, . . . , um)

)(p+1)/2

= G (β) , (3.3.2)

here β2 = J(u1, u2, . . . , um), for t ∈ [0, T ), where

G(ξ) =
1

2
ξ2 − η

p+ 1
ξ(p+1).
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Noting that E0 = G(λ0), given in (3.1.17). Then
G′(ξ) ≥ 0 in ξ ∈ [0, λ0]

G′(ξ) < 0 in ξ ≤ λ0.

(3.3.3)

Moreover, lim
ξ→+∞

G(ξ) → −∞. Then, we have the following Lemma

Lemma 15. Let 0 ≤ E(0) < E0.

(i) If
m∑
j=1

∥uj0∥2H < λ20, then local solution of (3.1.1) satisfies

J(u1, u2, . . . , um) < λ20, ∀t ∈ [0, T ).

(ii) If
m∑
j=1

∥uj0∥2H > λ20, then local solution of (3.1.1) satisfies

m∑
j=1

∥uj∥2H > λ21, ∀t ∈ [0, T ), λ1 > λ0.

Proof. Since 0 ≤ E(0) < E0 = G(λ0), there exist ξ1 and ξ2 such that G(ξ1) = G(ξ2) = E(0) with

0 < ξ1 < λ0 < ξ2.

The case (i). By (3.3.2), we have

G(J(u10, u20, . . . um0)) ≤ E(0) = G(ξ1),

which implies that J(u10, u20, . . . um0) ≤ ξ21 . Then we claim that J(u1, u2, . . . , um) ≤ ξ21 , ∀t ∈

[0, T ). Moreover, there exists t0 ∈ (0, T ) such that

ξ21 < J(u1(t0), u2(t0), . . . , um(t0)) < ξ22 .

Then

G(J(u1(t0), u2(t0), . . . , um(t0)) > E(0) ≥ E(t0),

by Lemma 13, which contradicts (3.3.2). Hence we have

J(u1, u2, . . . , um) ≤ ξ21 < λ20, ∀t ∈ [0, T ).

The case (ii). We can now show that
m∑
j=1

∥uj0∥2H ≥ ξ22 and that
m∑
j=1

∥uj∥2H ≥ ξ22 > λ20 in the same

way as (i).
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Proof. (Of Theorem 13.) Let (u0, u1), (u20, u21), . . . , (um0, um1) ∈ H × Lκθ (Rn) satisfy both 0 ≤

E(0) < E0 and
m∑
j=1

∥uj0∥2H < λ20. By Lemma 13 and Lemma 15, we have

2(κ− 1)

κ

m∑
j=1

∥ujt∥κLκ
θ
+

m∑
j=1

ρj ∥uj∥2H

≤ 2(κ− 1)

κ

m∑
j=1

∥ujt∥κLκ
θ
+

m∑
j=1

[(
1−

∫ t

0

ϖj(s) ds

)
∥uj∥2H + (ϖj ◦ uj)

]
≤ 2E(t) + 2η

p+ 1

( m∑
j=1

ρj ∥uj∥2H
)(p+1)/2

≤ 2E(0) + 2η

p+ 1

(
J(u1, u2, . . . , um)

)(p+1)/2

≤ 2E0 +
2η

p+ 1
λp+1
0

= η−2/(p−1). (3.3.4)

This completes the proof.

3.3.2 Proof of Decay results

Let

Λ(u1, u2, . . . , um) =
1

2

m∑
j=1

[(
1−

∫ t

0

ϖj(s) ds

)
∥uj∥2H + (ϖj ◦ uj)

]
−

∫
Rn

θ(x)F(u1, u2, . . . , um)dx,

Π(u1, u2, . . . , um) =
m∑
j=1

[(
1−

∫ t

0

ϖj(s) ds

)
∥uj∥2H + (ϖj ◦ uj)

]
− (p+ 1)

∫
Rn

θ(x)F(u1, u2, . . . , um)dx.

Lemma 16. Let (u1, u2, . . . , um) be the solution of problem (3.1.1). If

m∑
j=1

∥uj0∥2H − (p+ 1)

∫
Rn

θ(x)F(u1, u2, . . . , um)dx > 0. (3.3.5)

Then under condition (3.2.6), the functional Π(u1, u2, . . . , um) > 0, ∀t > 0.
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Proof. By (3.3.5) and continuity, there exists a time t1 > 0 such that

Π(u1, u2, . . . , um) ≥ 0,∀t < t1.

Let

Y = {(u1, u2, . . . , um) | Π(u1(t0), u2(t0), . . . , um(t0)) = 0, Π(u1, u2, . . . , um) > 0,∀t ∈ [0, t0)}.(3.3.6)

Then, by (3.3.5), we have for all (u1, u2, . . . , um) ∈ Y ,

Λ(u1, u2, . . . , um)

=
p− 1

2(p+ 1)

m∑
j=1

(
1−

∫ t

0

ϖj(s) ds

)
∥uj∥2H +

p− 1

2(p+ 1)

m∑
j=1

(ϖj ◦ uj) +
1

p+ 1
Π(u1, u2, . . . , um)

≥ p− 1

2(p+ 1)

m∑
j=1

[
ρj ∥uj∥2H + (ϖj ◦ uj)

]
.

Owing to (3.2.4), it follows for (u1, u2, . . . , um) ∈ Y

ρj ∥uj∥2H ≤ 2(p+ 1)

p− 1
Λ(u1, u2, . . . , um) ≤

2(p+ 1)

p− 1
E(t) ≤ 2(p+ 1)

p− 1
E(0). (3.3.7)

By (3.1.16), (3.2.6) we have

(p+ 1)

∫
Rn

F(u1(t0), u2(t0), . . . , um(t0)) ≤ η
m∑
j=1

(
ρj ∥uj(t0)∥2H

)(p+1)/2

≤ η
(2(p+ 1)

p− 1
E(0)

)(p−1)/2
m∑
j=1

ρj ∥uj(t0)∥2H

≤ γ
m∑
j=1

ρj ∥uj(t0)∥2H

<

m∑
j=1

(
1−

∫ t0

0

ϖj(s)ds
)
∥uj(t0)∥2H

<
m∑
j=1

(
1−

∫ t0

0

ϖj(s)ds
)
∥uj(t0)∥2H

+
m∑
j=1

(ϖj ◦ uj(t0)), (3.3.8)

hence Π(u1(t0), u2(t0), . . . , um(t0)) > 0 on Y , which contradicts the definition of Y since Π(u1(t0), u2(t0), . . . , um(t0)) =

0. Thus Π(u1, u2, . . . , um) > 0, ∀t > 0.
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We are ready to prove the decay rate.

Proof. (Of Theorem 14.) By (3.1.16) and (3.3.7), we have for t ≥ 0

0 <
m∑
j=1

ρj ∥uj∥2H ≤ 2(p+ 1)

p− 1
E(t). (3.3.9)

Let

I(t) =
µ(t)

1− µ0(t)
,

where µ and µ0 defined in (3.1.12) and (3.1.13).

Noting that lim
t→+∞

µ(t) = 0 by (3.1.11)-(3.1.13), we have

lim
t→+∞

I(t) = 0, I(t) > 0, ∀t ≥ 0.

Then we take t0 > 0 such that

0 <
2(κ− 1)

κ
I(t) < min {2 (ωλ1 + a) , χ′(0)} , (3.3.10)

with (3.1.14) for all t > t0. Due to (3.2.4), we have

E(t) ≤ (κ− 1)

κ

m∑
j=1

∥ujt∥κLκ
θ
+

1

2

m∑
j=1

(ϖj ◦ uj) +
1

2

m∑
j=1

(
1−

∫ t

0

ϖj(s) ds

)
∥uj∥2H

≤ (κ− 1)

κ

m∑
j=1

∥ujt∥κLκ
θ
+

1

2

m∑
j=1

(ϖj ◦ uj) +
1

2
(1− µ0(t))

m∑
j=1

∥uj∥2H .

Then by definition of I(t), we have

I(t)E(t) ≤ (κ− 1)

κ
I(t)

m∑
j=1

∥ujt∥κLκ
θ
+

1

2
µ(t)

m∑
j=1

∥uj∥2H +
1

2
I(t)

m∑
j=1

(ϖj ◦ uj) , (3.3.11)

and Lemma 13, we have for all t1, t2 ≥ 0

E(t2)− E(t1)

≤ −
∫ t2

t1

(
a

m∑
j=1

∥ujt∥2L2
θ
+ ω

m∑
j=1

∥ujt∥2H +
1

2
µ(t)

m∑
j=1

∥uj∥2H

)
dt

+

∫ t2

t1

1

2

m∑
j=1

(ϖ′
j ◦ uj) dt
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then, by generalized Poincaré’s inequalities, we get

E ′(t) ≤ − (ωλ1 + a)
m∑
j=1

∥ujt∥2L2
θ
− 1

2
µ(t)

m∑
j=1

∥uj∥2H +
1

2

m∑
j=1

(ϖ′
j ◦ uj),

Finally, by (3.3.10), ∀t ≥ t0, we have

E ′(t) + I(t)E(t)

≤
{
(κ− 1)

κ
I(t)− (ωλ1 + a)

} m∑
j=1

∥ujt∥2L2
θ

+
1

2

m∑
j=1

(ϖ′
j ◦ uj) +

1

2
I(t)

m∑
j=1

(ϖj ◦ uj)

≤ 1

2

m∑
j=1

∫ t

0

{
ϖ′
j(t− τ) + I(t)ϖj(t− τ)

}
∥uj(t)− uj(τ)∥2H dτ

≤ 1

2

m∑
j=1

∫ t

0

{
ϖ′
j(τ) + I(t)ϖj(τ)

}
∥uj(t)− uj(t− τ)∥2H dτ

≤ 1

2

m∑
j=1

∫ t

0

{
−χ
(
ϖj(τ)

)
+ χ′(0)ϖj(τ)

}
∥uj(t)− uj(t− τ)∥2H dτ

≤ 0,

by the convexity of χ and (3.1.14), we have

χ(ξ) ≥ χ(0) + χ′(0)ξ = χ′(0)ξ.

Then

E(t) ≤ E(t0) exp
(
−
∫ t

t0

I(s)ds

)
,

which completes the proof.
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CHAPTER 4. EXISTENCE AND GENERAL DECAY ESTIMATES FOR A
PETROVSKY-PETROVSKY COUPLED SYSTEM WITH NONLINEAR STRONG

DAMPING

In this chapter, we consider a coupled system of Petrovsky-Petrovsky equations with a nonlin-

ear dissipative terms. We prove, under some appropriate assumptions, that this system is stable.

Furthermore, we use the multiplier method and some general weighted integral inequalities to

obtain decay properties of solution.

4.1 Introduction and preliminaries

In the present section, we consider problem

u′′1 + αu2 +∆2
xu1 − µ(∆u′1(x, t)) = 0, in Ω× R+,

u′′2 + αu1 +∆2
xu2 − µ(∆u′2(x, t)) = 0, in Ω× R+,

ui = ∆ui = 0 on Γ× R+,

(u1(0, x), u2(0, x)) = (u10(x), u20(x)) on Ω,

(u′1(0, x), u
′
2(0, x)) = (u11(x), u21(x)) on Ω,

(4.1.1)

The constant α

α ≤ 1

2Cs
(4.1.2)

where Cs > 0 depending only on the geometry of Ω is the constant such that

∥∇z∥2 ≤ Cs∥∇∆z∥2 The problem of stabilization of weakly coupled systems have been stud-

ied by several authors. Under certain conditions imposed on the subset where the damping term

is effective, Kapitonov [21] showed uniform stabilization of the solutions of a pair of hyperbolic

systems coupled in velocities. In [3], the authors developed an approach to prove that, for α ∈ R+

with α small enough,  utt −∆u+ αv + ut = 0 in Ω× R+,

vtt −∆v + αu = 0 in Ω× R+,
(4.1.3)

is not exponentially stable and the asymptotic behavior of solutions is at least of polynomial

type 1
tm

with decay rate m depending on the smoothness of initial data.
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In [2], Beniani et al. considered the Petrowsky-Petrowsky system

utt + ϕ(x)
(
∆2u−

∫ t
−∞ µ(t− s)∆2u(s)ds

)
+ αv = 0 Rn × R+

vtt + ϕ(x)∆2v + αu = 0 Rn × R+

u = v = ∆u = ∆v = 0 Γ× R+

(u0, v0) ∈ D2,2(Rn), (u1, v1) ∈ L2
g(Rn),

(4.1.4)

In this work, the authors proved, under suitable conditions, that the system is polynomial stable.

Author [36] proved the existence of global solution, as well as, a general stability result for the

following system 
utt +∆2u− g(∆u′(s)) = 0 Ω× R+,

u = ∆u = 0 Γ× R+,

u(0) = u0, u′(0) = u1 Ω.

(4.1.5)

Here, we assume that the function µ ∈ C(R,R) is a non-decreasing such that there exist constants

ε, c1, c2, τ > 0 and a convex increasing function H ∈ (R+,R+) of class C
1(R+) ∩ C2(R∗

+), linear

on [0, ε] or H
′
(0) = 0 and H ′′ > 0 on ]0, ε], such that

c1 |s| ≤ |µ(s)| ≤ c2 |s| , if |s| > ε, (4.1.6)

|s|2 + |µ(s)|2 ≤ H−1(sµ(s)), if |s| ≤ ε, (4.1.7)

|µ′(s)| ≤ τ. (4.1.8)

Lemma 17. For any function u ∈ H1
0 (Ω) ∩H2(Ω), we have

∥∇u∥ ≤ c ∥∆u∥H−1(Ω) ≤ c∥∆u∥, (4.1.9)

where H−1 (Ω) = (H1
0 (Ω))

′
.

Now we define the energy associated to the solution of the system (4.1.1) by

E (t) :=
1

2

2∑
i=1

∥∥∥∇u′

i

∥∥∥2
2
+

1

2

2∑
i=1

∥∇∆ui∥22 + 2α

∫
Ω

∇u1.∇u2dx. (4.1.10)

2α
∫
Ω

∇u1.∇u2 dx ≥ −αCs
∫
Ω

2∑
i=1

|∇∆ui|2 + | dx
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we deduce that

E (t) ≥ 1

2

2∑
i=1

∥∥∥∇u′

i

∥∥∥2
2
+
(1
2
− αCs

) 2∑
i=1

∥∇∆ui∥22 . (4.1.11)

Note that E is the natural energy for system (4.1.1), given the structure of the damping term.

The energy E is a non-increasing function of the time variable t and we have for almost every

t ≥ 0,

We first state a useful Lemmas

Lemma 18. (Sobolev-Poincaré inequality) . Let q be a number with 2 ≤ q ≤ +∞ (n = 1, 2) or

2 ≤ q ≤ 2n
n−2

(n ≥ 3) then there is a constant c∗ = c (Ω, q) such that

∥u∥q ≤ c∗ ∥∇u∥2 , u ∈ H1
0 (Ω) . (4.1.12)

Lemma 19. [9] Let E : R+ −→ R+ be a non-increasing function and ψ : R+ −→ R+ be a convex

and increasing function such that ψ(0) = 0, assume that

T∫
s

ψ(E(t)) ≤ E(S), 0 ≤ s < T, (4.1.13)

Then E satisfies the following estimate

E (t) ≤ ψ−1 (H(t) + ψ(E(0))) , ∀t ≥ 0. (4.1.14)

Where ψ(t) =
∫ 1

t
1

ψ(s)
ds for t > 0, H(t) = 0 for 0 ≤ t ≤ E(0)

ψ(E(0)) and

H−1(t) = t+
ψ−1(t+ ψ(E(0))

ψ (ψ−1(t+ ψ(E(0)))
, ∀t ≥ E(0)

ψ(E(0))

Remark 4. Let us denote by H∗ the conjugate function of the differentiable convex function H,

i.e.,

H∗ = sup
s∈R+

(st−H(t))

Then H∗ is the Legendre transform of H, which is given by (see Arnold [? , p. 61-62])

H∗(s) = s(H
′
)−1(s)−H

(
(H

′
)−1(s)

)
, if s ∈

]
0, H

′
(r)
]
,

and H∗ satisfies the generalized Young inequality

ST ≤ H∗(S) +H(T ), if S ∈
]
0, H

′
(r)
]
, T ∈ ]0, r] . (4.1.15)

66



CHAPTER 4. EXISTENCE AND GENERAL DECAY ESTIMATES FOR A
PETROVSKY-PETROVSKY COUPLED SYSTEM WITH NONLINEAR STRONG

DAMPING

Lemma 20. Let (u1, u2) be the solution of (4.1.1). Then

E ′
(t) = −

∫
Ω

2∑
i=1

∆u
′

iµ (∆u
′
i) dx ≤ 0. (4.1.16)

Proof. Multiplying first equation of (4.1.1) by −∆u′1 and second equation by −∆u
′
2 respectively,

summing the obtained results follows the conclusion of inequality (4.1.16) .

4.2 Main results and proof

Introduce three real Hilbert spaces H,V and W by

H = H1
0 (Ω) , ∥υ∥

2
H =

∫
Ω

|∇υ|2 dx,

V =
{
υ ∈ H3 (Ω) : υ = ∆υ = 0 on Γ

}
, ∥υ∥2V =

∫
Ω

|∇∆υ|2 dx,

and

W =
{
υ ∈ H5 (Ω) : υ = ∆υ = ∆2υ = 0 on Γ

}
, ∥υ∥2W =

∫
Ω

∣∣∇∆2υ
∣∣2 dx,

Identifying H with its dual H′ we have

W ⊂ V ⊂ H.

with dense and compact imbedding. Our main results is the following

Theorem 15. Let (u10, u11), (u20, u21) ∈ W × V, assume that (4.1.6)-(4.1.8) hold. Then the

solution of the problem (4.1.1) satisfies

(u′1, u
′
2) ∈ L∞(R+;V ), (u′′1, u

′′
2) ∈ L∞(R+;H)

and

(u1, u2) ∈ L∞(R+;W )
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Theorem 16. Let (u10, u11), (u20, u21) ∈ W × V, assume that (4.1.6)-(4.1.8) hold. Then the

energy of solution of the problem (4.1.1), for some constants ω, ε0, satisfies the following decay

property

E (t) ≤ ψ−1 (H(t) + ψ(E(0))) , ∀t ≥ 0. (4.2.1)

Where ψ(t) =
∫ 1

t
1

ωψ(s)
ds for t > 0, H(t) = 0 for 0 ≤ t ≤ E(0)

ωψ(E(0)) and

H−1(t) = t+
ψ−1(t+ ψ(E(0))

ωψ (ψ−1(t+ ψ(E(0)))
, ∀t ≥ E(0)

ψ(E(0))

φ(s) =

 s if H is linear on [0, ε1]

sH ′(ε0s) if H ′(0) = 0 and H ′′ > 0 on ]0, ε1]

Proof. (Of Theorem 15) We use the Faedo-Galerkin method to prove the existence of global

solution

Step 1. Approximate solutions.

We will use the Faedo-Galerkin method to prove the existence of a global solution. Let T > 0

be fixed and let {wj}, j ∈ N be a basis of H, V and W , i.e. the space generated by Bk =

{w1, w2, . . . , wk} is dense in H, V and W .

We construct approximate solutions uk, k = 1, 2, 3, . . . , in the form

uk1(t) =
k∑
j=1

cjk(t)wj(x), uk2(t) :=
k∑
i=0

hjk(t)wj(x),

where cjk and hjk is determined by the ordinary differential equations.

For any v in Bk, (uk1(t), uk2(t)) satisfies the approximate equation
∫
Ω
(uk

′′
1 (t) + αuk2 +∆2uk1 − µ(∆uk

′
1 ))v dx = 0,∫

Ω
(uk

′′
2 (t) + αuk1 +∆2uk2 − µ(∆uk

′
2 ))v dx = 0,

(4.2.2)

with initial conditions

uk1(0) = u0,k1 =
k∑
j=1

⟨u01, wj⟩wj → u01, in W as k → +∞, (4.2.3)
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uk2(0) = u0,k2 =
k∑
j=1

⟨u02, wj⟩wj → u02, in W as k → +∞, (4.2.4)

and

uk
′

1 (0) = u1,k1 =
k∑
j=1

⟨u11, wj⟩wj → u11, in V as k → +∞. (4.2.5)

uk
′

2 (0) = u1,k2 =
k∑
j=1

⟨u12, wj⟩wj → u12, in V as k → +∞. (4.2.6)

The standard theory of ODE guarantees that the system (4.2.2)-(4.2.6) has an unique solution in

[0, tk), with 0 < tk < T , by Zorn Lemma since the nonlinear terms in (4.2.2) are locally Lipschitz

continuous. Note that uk1(t) and u
k
2(t) are C2 functions.

In the next step, we obtain a priori estimates for the solution of system (4.2.2)-(4.2.6), so that

it can be extended outside [0, tk) to obtain one solution defined for all T > 0, using a standard

compactness argument for the limiting procedure.

Step 2. The first estimate

Setting v = −2∆(uk1)
′ in (4.2.2)1 and v = −2∆(uk2)

′ in (4.2.2)2, adding the resulting equations,

we have

2∑
i=1

d

dt

[
∥∇uk′i ∥2 + ∥∇∆uki ∥2 + 2α

∫
Ω

∇uk1∇uk2 dx
]
+ 2

∫
Ω

∆uk
′

i µ(∆u
k′

i ) dx = 0.

Integrating in [0, t], t < tk and using (4.2.3) and (4.2.6), we obtain

2∑
i=1

∥∇uk′i (t)∥2 + ∥∇∆uki (t)∥2 + 2

∫ t

0

∫
Ω

∆uk
′

i (s)µ(∆u
k′

i (s)) dx ds+ 2α

∫ t

0

∫
Ω

∇uk1∇uk2 dxds

≤
2∑
i=1

(
∥∇u1,ki ∥2 + ∥∇∆u0,ki ∥2

)
++2α

∫
Ω

∇u0,k1 .∇u0,k2 dx (4.2.7)

≤
2∑
i=1

(
∥∇u1,ki ∥2 + ∥∇∆u0,ki ∥2

)
+ α

2∑
i=1

∥∇u0,ki ∥2,

using (4.2.3)-(4.2.6), we obtain

2∑
i=1

∥∇uk′i (t)∥2 + (1− 2αCs)∥∇∆uki (t)∥2 + 2

∫ t

0

∫
Ω

∆uk
′

i (s)µ(∆u
k′

i (s)) dx ds ≤ C1 (4.2.8)
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where C1 is a positive constant depending only on ∥u1i ∥V and ∥u0i ∥W .

This estimate imply that the solution uk exists globally in [0,+∞). Estimate (4.2.7) implies

uki is bounded in L∞(0, T ;V ), (4.2.9)

(uki )
′ is bounded in L∞(0, T ;H), (4.2.10)

∆(uki )
′µ(∆(uki )

′) is bounded in L1(Ω× (0, T )), (4.2.11)

From (4.1.6), (4.1.7) and (4.2.11), it follows that

µ(∆(uki )
′) is bounded in L2(Ω× (0, T )).

As in Komornik [20], we consider the following partition of Ω,

Ω1 = {x ∈ Ω : |∆uk′i | > ε}, Ω2 = {x ∈ Ω : |∆uk′i | ≤ ε}

Using (4.1.6) and (4.2.11), we have∫ T
0

∫
Ω1

|µ(∆uk′i (s))|2 dx ds ≤ c2
∫ T
0

∫
Ω1>ε

∆uk
′
i (s)µ(∆u

k′
i (s)) dx ds

≤ C

exploit Jensen’s inequality and the concavity of H−1, we obtain∫
Ω2

|µ(∆uk′i (t))|2 dx ≤
∫
Ω2
H−1(∆uk

′
i (t)µ(∆u

k′
i (t))) dx ds

≤ H−1
(

1
|Ω2|

∫
Ω2

∆uk
′
i (t)µ(∆u

k′
i (t)) dx

)
using Remark 4, we have∫ T

0

∫
Ω2

|µ(∆uk′i (s))|2 dx dt ≤ H∗(1) + 1
|Ω2|

∫ T
0

∫
Ω2

∆uk
′
i (s)µ(∆u

k′
i (s)) dx dt

≤ C

Step 3. The second estimate

First, we estimate (uki )
′′(0). Differentiating (4.2.2) with respect to x, setting v = ∇(uk1)

′′(t) in

(4.2.2)1 and v = ∇(uk2)
′′(t) in (4.2.2)2, adding the resulting equations, by choosing t = 0, we

obtain

2∑
i=1

∥∇u′′k(0)∥2 +
(
∇u′′k(0),∇∆2u0k −∇

(
µ(∆uk1)

))
+ α∇u0,k1 .∇(uk2)

′′(0) + α∇u0,k2 .∇(uk1)
′′(0) = 0.
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Using Cauchy-Schwartz inequality and (4.1.8), we have

∥∇(uki )
′′(0)∥ ≤ ∥∇∆2u0,ki ∥+ ∥∇∆u1,ki µ′(∆u1,ki )∥ (4.2.12)

≤ ∥∇∆2u0,ki ∥+ τ∥∇∆u1,ki ∥.

By (4.2.3) and (4.2.6), we get

(uki )
′′(0) is bounded in H. (4.2.13)

The Third estimate.

Differentiating (4.2.2) with respect to t get

2∑
i=1

∫
Ω

(
(uki )

′′′(t) + ∆2(uki )
′
)
v dx−

∫
Ω

∆(uki )
′′µ′(∆(uki )

′)v dx+ α(uki )
′v = 0.

Taking v = 2(∆uki )
′′, owing to the Green formula, we obtain

2∑
i=1

d

dt

[
∥∇(uki )

′′∥2 + ∥∇∆(uki )
′∥2 + 2α

∫
Ω

∇(uk1)
′.∇(uk2)

′ dx
]
+ 2

∫
Ω

|∆(uki )
′′|2µ′(∆(uki )

′) dx = 0.

By integration over (0, t), we get∑2
i=1 ∥∇(uki )

′′(t)∥2 + ∥∇∆(uki )
′(t)∥2 + 2α

∫
Ω
∇(uk1)

′.(uk2)
′ dx

+2
∑2

i=1

∫ t
0

∫
Ω
(∆(uki )

′′(s))2µ′(∆(uki )
′(s) dx ds

≤
∑2

i=1 ∥∇(uki )
′′(0)∥2 + ∥∇∆uk,1i ∥2 + α∥∇uk,1i ∥2.

using (4.2.5) and (4.2.13), we have

2∑
i=1

∥∇(uki )
′′(t)∥2 + (1− 2αCs)∥∇∆(uki )

′(t)∥2 + 2

∫ t

0

∫
Ω

∆(uki )
′′(s)µ(∆(uki )

′′(s)) dx ds ≤ C2

(4.2.14)

By (4.2.3) and (4.2.13), we deduce that

(uki )
′ is bounded in L∞(0, T ;V ) (4.2.15)

and

(uki )
′′ is bounded in L∞(0, T ;H) (4.2.16)

By (4.2.15) we deduce that

(uki )
′ is bounded in L2(0, T ;V ).

Applying Rellich compactness Theorem given in [6], we deduce that

(uki )
′ is precompact in L2(0, T ;L2(Ω)), (4.2.17)
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Step 4. The fourth estimate

Differentiating (4.2.2) with respect to x, taking v = ∇∆2(uk1)
′ in the first equation and v =

∇∆2(uk2)
′ in the second equation in(4.2.2), add the resulting equations, we obtain that

∥∇∆2uk1∥2 =
∫
Ω
∇∆2uk1(−∇(uk1)

′′ − α∇uk2 +∇∆(uk1)
′µ′(∆(uk1)

′)) dx (4.2.18)

and

∥∇∆2uk2∥2 =
∫
Ω
∇∆2uk2(−∇(uk1)

′′ − α∇uk2 +∇∆(uk2)
′µ′(∆(uk2)

′)) dx (4.2.19)

Using Cauchy-Schwarz inequality, we have

∥∇∆2uk1∥ ≤ 2
(∫

Ω

{|∇(uk1)
′′|2 + α2|∇uk2|2 + |∇∆(uk1)

′µ′(∆uk1)|2} dx
) 1

2
. (4.2.20)

and

∥∇∆2uk2∥ ≤ 2
(∫

Ω

{|∇(uk2)
′′|2 + α2|∇uk1|2 + |∇∆(uk2)

′µ′(∆uk2)|2} dx
) 1

2
. (4.2.21)

Using (4.1.8), (4.2.15) and (4.2.16), we obtain

2∑
i=1

∥∇∆2uki ∥ ≤ C3,

for some C3 independent of k, then

uki are bounded in L∞(0, T ;W ) (4.2.22)

Step 5. Passage to the limit.

Applying Dunford-Petit Theorem, we conclude from (4.2.9), (4.2.12), (4.2.15) and (4.2.16), re-

placing the sequence uk, with a subsequence if needed, that

uki ⇀ ui, weak-star in L
∞(0, T ;W ) (4.2.23)

(uki )
′ ⇀ u′i, weak-star in L

∞(0, T ;V ) (4.2.24)

(uki )
′′ ⇀ u′′i , weak-star in L

∞(0, T ;H) (4.2.25)

(uki )
′ −→ u′i, almost everywhere in A, (4.2.26)

72



CHAPTER 4. EXISTENCE AND GENERAL DECAY ESTIMATES FOR A
PETROVSKY-PETROVSKY COUPLED SYSTEM WITH NONLINEAR STRONG

DAMPING

µ(∆(uki )
′)⇀ ϕi, weak-star in L

2(A) (4.2.27)

where A = Ω × [0, T ]. It follows at once from (4.2.23) and (4.2.25), that for each fixed v ∈

L2([0, T ]× L2(Ω)) ∫ T
0

∫
Ω

(
(uk1)

′′(x, t) + ∆2uk1(x, t) + αuk2(x, t)
)
v dx dt

−→
∫ T
0

∫
Ω

(
u′′1(x, t) + ∆2u1(x, t) + αu2(x, t)

)
v dx dt.

(4.2.28)

and ∫ T
0

∫
Ω

(
(uk2)

′′(x, t) + ∆2uk2(x, t) + αuk1(x, t)
)
v dx dt

−→
∫ T
0

∫
Ω

(
u′′2(x, t) + ∆2u2(x, t) + αu1(x, t)

)
v dx dt.

(4.2.29)

As (uki )
′ is bounded in L∞(0, T ;V ) and embedding of V in H is compact, we have

(uki )
′ −→ u′i, strong in L2(0, T ;H). (4.2.30)

It remains to show that∫ T

0

∫
Ω

µ(∆(uki )
′) v dx dt −→

∫ T

0

∫
Ω

µ(∆u′i) v dx dt. (4.2.31)

To deal with (4.2.31), we need the next Lemma

Lemma 21. For each T > 0, µ(∆u′i) ∈ L1(A), ∥µ(∆u′i)∥L1(A) ≤ K, where K is a constant

independent of t and µ(∆(uki )
′) → µ(∆u′i) in L

1(A).

Proof. We claim that

µ(∆u′i) ∈ L1(A).

Indeed, since µ is continuous, we deduce from (4.2.26)

µ(∆(uki )
′) −→ µ(∆u′i) almost everywhere in A. (4.2.32)

∆(uki )
′µ(∆(uki )

′) −→ ∆u′iµ(∆u
′
i) almost everywhere in A.

Hence, by (4.2.11) and Fatou’s Lemma, we have∫ T

0

∫
Ω

∆u′i(x, t)µ(∆u
′
i(x, t)) dx dt ≤ K1, for T > 0. (4.2.33)

73



CHAPTER 4. EXISTENCE AND GENERAL DECAY ESTIMATES FOR A
PETROVSKY-PETROVSKY COUPLED SYSTEM WITH NONLINEAR STRONG

DAMPING

Now, we can estimate
∫ T
0

∫
Ω
|∆µ(u′i(x, t))| dx dt. By Cauchy-Schwartz inequality, we have∫ T

0

∫
Ω

|µ(u′i(x, t))| dx dt ≤ c|A|1/2
(∫ T

0

∫
Ω

|µ(u′i(x, t))|2 dx dt
)1/2

.

Using (4.1.6), (4.1.7) and (4.2.33), we obtain∫ T

0

∫
Ω

|µ(u′i(x, t))|2 dx dt ≤
∫ T

0

∫
|∆u′i|>ε

∆u′iµ(∆u
′
i) dx dt+

∫ T

0

∫
|∆u′i|≤ε

H−1(∆u′iµ(∆u
′
i)) dx dt

≤ c

∫ T

0

∫
Ω

∆u′iµ(∆u
′
i) dx dt+ cH−1

(∫
A
∆u′iµ(∆u

′
i) dx dt

)
≤ c

∫ T

0

∫
Ω

∆u′iµ(∆u
′
i) dx dt+ c′H∗(1) + c′′

∫
Ω

∆u′iµ(∆u
′
i) dx dt(4.2.34)

≤ cK1 + c′H∗(1), for T > 0.

Then ∫ T

0

∫
A
|µ(u′i(x, t))| dx d ≤ K, for T > 0.

Let E ⊂ Ω× [0, T ] and set

E1 =
{
(x, t) ∈ E : |µ(∆(uki )

′(x, t))| ≤ 1√
|E|

}
, E2 = E\E1,

where |E| is the measure of E. If M(r) = inf{|s| : s ∈ R and |µ(s)| ≥ r}∫
E

|µ(∆(uki )
′)| dx dt ≤ c

√
|E|+

(
M
( 1√

|E|

))−1
∫
E2

|∆(uki )
′µ(∆(uki )

′)| dx dt.

By applying (4.2.11) we deduce that

sup
k

∫
E

µ(∆(uki )
′) dx dt −→ 0, when |E| −→ 0.

From Vitali’s convergence Theorem, we deduce that

µ(∆(uki )
′) → µ(∆u′i) in L1(A).

This completes the proof.

Then (4.2.27) implies that

µ(∆(uki )
′)⇀ µ(∆u′i), weak-star in L

2([0, T ]× Ω).
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We deduce, for all v ∈ L2([0, T ]× L2(Ω), that∫ T

0

∫
Ω

µ(∆(uki )
′)v dx dt −→

∫ T

0

∫
Ω

µ(∆u′i)v dx dt.

Finally we have shown that, for all v ∈ L2([0, T ]× L2(Ω)):
∫
Ω
(u′′1(t) + αu2 +∆2u1 − µ(∆u′1))v dx = 0,∫

Ω
(u′′2(t) + αu1 +∆2u2 − µ(∆u′2))v dx = 0,

(4.2.35)

Therefore, (u1, u2) is a solution for problem (4.1.1). The proof of Theorem 15 is now completed

Here, we establish the decay estimate for solution in Theorem 16. For this end, we use method

of multipliers and prepare a several Lemmas

Lemma 22. We have

2

T∫
S

φ(E)dt =

φ(E)
E

∫
Ω

2∑
i=1

u
′

i∆uidx

T
S

−
T∫
S

(
φ(E)
E

)′ ∫
Ω

2∑
i=1

u
′

i∆uidxdt (4.2.36)

+

T∫
S

φ(E)
E

∫
Ω

2∑
i=1

(
2
∣∣∣∇u′

i

∣∣∣2 −∆uiµ(∆u
′

i)

)
+ 2α∇u1.∇u2dxdt.

for all 0 ≤ S < T < +∞.

Proof. Multiplying ( 4.1.1)1 by −φ(E)
E ∆u1 and ( 4.1.1)2 by −φ(E)

E ∆u2 respectively, summing the
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obtained results, we have

0 =

T∫
S

φ(E)
E

∫
Ω

2∑
i=1

(
−∆ui

(
u

′′

i +∆2ui − µ(∆u′i)
)
− αu2.∆u1 − αu1.∆u2

)
dxdt

=

T∫
S

φ(E)
E

−∫
Ω

2∑
i=1

(
u

′′

i∆ui + u
′

i∆u
′

i

)
dx

 dt+ T∫
S

φ(E)
E

∫
Ω

2∑
i=1

u
′

i∆u
′

idx

 dt
+

T∫
S

φ(E)
E

∫
Ω

2∑
i=1

(−∆ui)∆
2uidxdt−

T∫
S

φ(E)
E

∫
Ω

2∑
i=1

(−∆ui)µ
(
∆u

′

i

)
dxdt

−α
T∫
S

φ(E)
E

∫
Ω

(∆u1.u2 +∆u2.u1) dxdt

=

φ(E)
E

∫
Ω

−
2∑
i=1

u′i∆uidx

T
S

+

T∫
S

(
φ(E)
E

)′ ∫
Ω

2∑
i=1

u′i∆uidxdt

+
2∑
i=1

T∫
S

φ(E)
E

∫
Ω

− |∇u′i|
2
+ |∇∆ui|2 + (∆ui)µ

(
∆u

′

i

)
dxdt+ 2α

∫
Ω

∇u1.∇u2dxdt.

Using the definition of the energy, hence (4.2.36) follows.

Lemma 23. We have

A

T∫
S

φ(E)dt ≤ cφ(E (S)) +

T∫
S

φ(E)
E

∫
Ω

2
∣∣∣∇u′

i

∣∣∣2 + |∆ui||µ
(
∆u

′

i

)
|dxdt (4.2.37)

for all 0 ≤ S < T < +∞.

Proof. Using the obvious estimates ∥∥∥u′

i

∥∥∥
L2(Ω)

≤ c
∥∥∥∇u′

i

∥∥∥
L2(Ω)

(4.2.38)

and

∥∆ui∥L2(Ω) ≤ c ∥∇∆ui∥L2(Ω) (4.2.39)

Since E is non-increasing, we find that

−
[
φ(E)
E

∫
Ω

∇u′
i∇uidx

]T
S

≤ φ(E(S))
E(S)

∫
Ω

∇u′
i(S)∇ui(S)dx−

φ(E(T ))
E(T )

∫
Ω

∇u′
i(T )∇ui(T )dx

≤ cφ(E(S)).
(4.2.40)
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Furthermore, using (4.2.38) and (4.2.39) again,∣∣∣∣ T∫
S

(
φ(E)
E

)′ ∫
Ω

u
′
i∆uidxdt

∣∣∣∣ = c
T∫
S

∣∣∣∣(φ(E)E

)′∣∣∣∣ E(t)dt
≤ φ(E(S)),

(4.2.41)

Using Poincaré and Young’s inequalities and the energy inequality from Lemma 19, we obtain

2α

T∫
S

φ(E)
E

∫
Ω

∇u1.∇u2dxdt ≤ c

T∫
S

φ(E(S))dt,

Using these two estimates, (4.2.37) follows from (4.2.36) .

Proof. (Of Theorem 16) 1. H is linear on [0, ε1]:

we have c1 |s| ≤ |µ(s)| ≤ c2 |s|, for all s¸ ∈ R, and then, using (4.1.6) and (4.1.7) and noting that

s 7→ φ(s)
s

is non-increasing,

T∫
S

φ(E)
E

∫
Ω

|∇u′i|2dxdt ≤ c
T∫
S

φ(E)
E

∫
Ω

∆u′i.µ(∆u
′
i)dxdt

≤ cφ(E(S)).
(4.2.42)

Using Poincaré amd Young’s inequalities and the energy inequality from Lemma 19, we obtain,

for all ε > 0,

T∫
S

φ(E)
E

∫
Ω

|∆uiµ(∆u′i)|dxdt ≤ ε
T∫
S

φ(E)
E

∫
Ω

∆u2i dxdt+ cε
T∫
S

φ(E)
E

∫
Ω

µ2(∆u′i)dxdt

≤ ε
T∫
S

φ(E)
E

∫
Ω

∆u2i dxdt+ cε
T∫
S

φ(E)
E

∫
Ω

∆u′iµ(∆u
′
i)dxdt

≤ ε
T∫
S

φ(E)dt+ cεφ(E(S)).

(4.2.43)

Inserting these two inequalities into (4.2.37), choosing ε > 0 small enough, we deduce that

T∫
S

φ(E)dt ≤ cφ(E(S))

Choosing φ(s) = s. Then, for some ω > 0

+∞∫
S

E(t)dt ≤ 1

ω
E(S) ∀S > 0
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Using Lemma 19, we deduce from (4.1.14) that

E(t) ≤ CE(0)e−wt,∀t ≥ 0.

2. H ′(0) = 0 and H ′′ > 0 on ]0, ε1] for all t ≥ 0 we denote by

Ω1 = {x ∈ Ω : |∆u′| ≥ ε1} ,Ω2 = {x ∈ Ω : |∆u′| ≤ ε1} .

Using (4.1.6) and the fact that s 7→ φ(s)
s

is non-decreasing, we obtain

c

T∫
S

φ(E)
E

∫
Ω1

|∆u′i|2 + µ2(∆u′i)dxdt ≤ c

T∫
S

φ(E)
E

∫
Ω

∆u′i.µ(∆u
′
i)dxdt ≤ cφ(E(S))

On the other hand, since H is convex and increasing, H−1 is concave and increasing. Therefore,

(4.1.7) and the reversed Jensens inequality for concave function imply that

T∫
S

φ(E)
E

∫
Ω2

|∆u′i|2 + µ2(∆u′i)dxdt ≤
T∫
S

φ(E)
E

∫
Ω2

H−1(∆u′i.µ(∆u
′
i))dxdt

≤
T∫
S

φ(E)
E |Ω|H−1

(
1
|Ω|

∫
Ω

∆u′i.µ(∆u
′
i)dx

)
dt.

(4.2.44)

Using remark 4, due to our choice φ(s) = sH ′(ε0s), we have

H∗(
φ(s)

s
) = ε0H

′(ε0s)−H(ε0s) ≤ ε0φ(s). (4.2.45)

Making use of (4.2.44) and (4.2.45) we have

T∫
S

φ(E)
E

∫
Ω2

|∆u′i|2 + µ2(∆u′i)dxdt ≤ c
T∫
S

H∗(φ(E)E )dt+ c
T∫
S

u′i.µ(∆u
′
i)dxdt

≤ c
T∫
S

φ(E)dt+ cE(S)
(4.2.46)

Then, choosing ε0 > 0 small enough and using (4.2.37), we obtain in both cases

T∫
S

φ(E)dt ≤ c (E(S) + φ(E(S)))

≤ c
(
1 + φ(E(S))

E(S)

)
E(S)

≤ cE(S) ∀S ≥ 0.

(4.2.47)

Using Lemma 19 in the particular case where ψ(s) = ωφ(s), we deduce from (4.1.14) our estimate

(4.2.1).

This complete the proof of Theorem 16.
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4.3 Conclusion

We proved the existence of a weak solution and its decay to zero as time goes to infinity for a

system of coupled evolutionary second order in time PDEs (4.1.1). The problem is defined on

a bounded domain Ω, we used the Poincaré inequality and the Rellich-Kondrachov theorem on

compact embedding. The preblem is supplemented with homogeneous Dirichlet-type boundary

conditions on both functions u1, u2 and their Laplacians, as well as with the initial conditions.

The existence of solutions is proved by means of the Galerkin method while the decay is obtained

by a variant of a method of multipliers, developed in eighties/nineties by mathematicians such

as A. Haraux [15], Martinez [27], V. Komornik [20, 21], Nakao [26]. The argument of the work

follows very closely the argument of the following article [1]. Although the problem considered

in the paper [1] is different than in the present research.
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