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Résumé

Nous étudions la fonction qui représente le nombre de diviseurs posi-

tifs d’un entier n ∈ N, notée d(n). Tout d’abort, nous avons d(1) = 1,

d(2) = d(3) = 2, d(4) = 3, ...ext. Ce travail présente aussi les plus im-

portantes propriétées de cette fonction. De plus, en précisant quelques pro-

priétées exigent l’utilisation des fonctions multiplicatives. En perspective, il

existe plusieurs types des questions ouvertes en relation avec la fonction d(n)

comme les equations diophantiennes faisant intervenir la fonction d’Euler.

Mots clés. Fonctions arithmétiques, Fonction diviseur, équations Dio-

phantiennes.
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Abstract

Recall that the divisor function d(n) counts the number of positive divi-

sors of n. For instance, d (1) = 1, d (2) = d (3) = 2, d (4) = 3, and so on. In

this work, we present the most important properties of the divisor function

d (n). By design, some of the properties require to use several multiplicative

functions. For future research there are several types of open questions related

to the divisor function as well as Diophantine equations and inequalities.

Keywords and phrases Arithmetic functions, divisor function, Dio-

phantine equations.
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Table of notations
Notation Explanation
Z The set of integers
N The set of positive integers
a ∈ A The element a belongs to the set A
n|m n divides m or m is divisible by n
gcd (m,n) or (m,n) The greatest common divisor of m and n
π (n) The number of primes ≤ n
d (n) or τ (n) Number of positive divisors of n
σ (n) Sum of positive divisors of n
σα(n) Generalized sum of divisors functions
ϕ (n) Euler’s totient function
ϕs The generalozed Euler’s function
ψs The related Euler’s function
ω (n) The number of distinct prime factors of n
Ω (n) The total number of distinct prime factors of n
Λ(n) Von Mangoldt function
λ(n) Liouville function
id(n) Identity function: id(n); defined by id(n) = n for all n.
µ (n) Moebius function
bxc The largest positive integer ≤ x
γ (n) The kernel of n given by γ (n) =

∏
p|n
p.

[m,n] The least common multiple of m and n.
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Introduction

Recall that a real or complex valued function defined on the positive inte-

gers (or all integers) is called an arithmetic function or a number-theoretic

function. A multiplicative function is an arithmetic function f(m) such that

f(mn) = f(m)f(n) for all pairs of relatively prime positive integers m and

n. If f(m) is multiplicative, then it is easy to prove by induction on k that if

m1, ...,mk are pairwise relatively prime positive integers, then f(m1...mk) =

f(m1)...f(mk). For details, see [7],[6].

The work on the number of positive divisors was introduced since a long

time. Note that in 1537 (see [1]), Girolamo Cardano claimed that if n =

p1p2...pr, where p1, p2, ..., pr are distinct primes, then the number of positive

divisors of n is equal to 2 + 2 + 22 + 23 + ...+ 2r−1, where we use d (n) as the

standard notation of this function throughout.

The goal of this work is to give important results about divisor functions.

For example, we indicate when d (n) is prime and composite, a power of 2,

... etc. Also, n is a square if and only if d(n) is odd and we compute the

product of the positive divisors of a given integer n. An explicit formula of

d (n) in terms of the prime powers that exactly divide n will be used to

solve Diophantine equations and inequalities. In addition, we find all the

natural numbers which have precisely a fixed number N of positive divisors

5
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from which we can determine the least natural number with this property.

One of the most properties is to deal with iterating sequences involving the

divisor function and give expressions defined by other arithmetic functions

that limit the function d from above and from below. Many other problems

related to the knowledge of consecutive numbers that have the same number

of positive devisors [3], which is a great question given as: How many numbers

n for which d (n) = d (n+ 1) = ...d (n+ a) (a ≥ 1)?

As a conclusion, based on the Fundamental Theorem of Arithmetic, we

give with elementary proofs several types of classical theorems involving the

divisor function and some other multiplicative functions. Some other refer-

ences, eg, see [2],[8] and [5].

6



Chapter 1

Basic arithmetic functions

First, we state the Fundamental Theorem of Arithmetic and then recall def-

initions of basic arithmetic functions and we illustrate an example for each

function.

Theorem 1.1 (Fundamental Theorem of Arithmetic, see [6, page 25])

Every positive integer n greater than 1 can be written uniquely as the product

of primes:

n = qα1
1 qα2

2 ...qαkk =
k∏
i=1

qαii , (1.1)

where q1, q2, ..., qk are distinct primes and α1, α2, ..., αk are natural numbers.

The equation (1.1) is often called the prime power decomposition of n, or the

standard prime factorization of n.

Example 1.1 Let n = 2000 and m = 2022. Then n = 24 · 53 and m =

2 · 3 · 337.

An important class of arithmetic functions are multiplicative functions

defined as follows. For details, one can see [1],[6],[4].

7
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Definition 1.1 Let f : N −→ C be an arithmetic function.

1. f is called multiplicative if f 6= 0 and

f (m · n) = f (m) · f (n) (1.2)

whenever gcd (m,n) = 1.

2. f is called additive if it satisfies

f (m · n) = f (m) + f (n) (1.3)

whenever gcd (m,n) = 1. If the condition (1.2) (resp. (1.3)) holds with-

out the restriction gcd (m,n) = 1, then f is called completely (or to-

tally) multiplicative resp. completely (or totally) additive.

Remark 1.1 We have the following property of all multiplicative functions.

If f is multiplicative then f(1) = 1. In fact, since f is not identically zero,

there exists n ∈ N such that f(n) 6= 0. We have f(n) = f(n)f(1) as f is

multiplicative. Hence f(1) = 1.

We present the famous important arithmetic functions as follows. Some

of which are multiplicative.

1. Divisor function1: d(n), the number of positive divisors of n (includ-

ing the trivial divisors d = 1 and d = n). As usual, the notation “d|n”

as the range for a sum or product means that d ranges over the positive

divisors of n. Thus, the number of divisors function is given by

d(n) =
∑
d|n

1. (1.4)

1Another common notation for the divisor function is τ(n).

8
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For example, the positive divisors of 15 are 1, 3, 5, and 15. So d (15) = 4.

Note that if p is prime, d(p) = 2.

2. Sum of divisors function: σ(n), the sum over all positive divisors of

n; i.e.,

σ(n) =
∑
d|n

d.

Let us have the natural number n ≥ 2 with its canonical representa-

tion n = qα1
1 ...qαkk , where q1, ..., qk are distinct primes and α1, ..., αk are

positive integers. We have

σ (n) =
k∏
i=1

qα+1
i − 1

qi − 1
. (1.5)

3. Generalized sum of divisors functions2: σα(n), defined by σα(n) =∑
d|n
dα. Here α can be any real or complex parameter. This function

generalizes the divisor function (α = 0) and the sum of divisors function

(α = 1).

4. Number of distinct prime factors: The omega function ω(n) is

defined as the number of distinct prime factors of n, where ω(1) = 0,

i.e., ω(n) = k if n ≥ 2 and n = qα1
1 qα2

2 ...qαkk . Or equivalently, ω (n) =∑
p|n

1.

5. Identity function: id(n); defined by id(n) = n for all n.

6. Moebius function: µ(n), defined by µ(1) = 1, µ(n) = 0 if n is not

square-free (i.e., divisible by the square of a prime), and µ(n) = (−1)k

2Sometimes σα(n) is called the divisor power sum function.
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if n is composed of k distinct prime factors (i.e., n = q1q2...qk, where

q1, q2, ..., qk are distinct primes.

7. Von Mangoldt function: Λ(n), defined by Λ(n) = 0 if n is not a

prime power, and Λ(pm) = log p for any prime power pm.

8. Total number of prime divisors: Ω(n), defined in the same way as

ω(n), except that prime divisors are counted with multiplicity. Thus,

Ω(1) = 0 and Ω(n) =
∑k

i=1 αi if n ≥ 2 and n = qα1
1 qα2

2 ...qαkk , i.e.,

Ω(n) =
∑

pm|n 1 For square-free integers n, the functions ω(n) and Ω(n)

are equal and are related to the Moebius function by µ(n) = (−1)ω(n).

For all integers n, λ (n) = (−1)Ω(n).

9. Liouville function: λ(n), defined by λ(1) = 1 and λ(n) = (−1)k

if n is composed of k not necessarily distinct prime factors (i.e., if

n = qα1
1 qα2

2 ...qαkk , then λ(n) =
k∏
i=1

(−1)αi . Thus, λ(n) = (−1)Ω(n) .

10. π (x): The number of primes ≤ x. For example, π (5.3) = 3.

11. Euler’s phi function: ϕ (n) is defined as

ϕ (n) =
∑

1≤k<n
gcd(k,n)=1

1.

Definition 1.2 The Euler phi function ϕ(n) is the arithmetic function that

counts the number of integers in the set 1, 2, ..., n−1 that are relatively prime

to n.

Let us take the first numbers. We have

• ϕ(1) = 1. The only number n such that, gcd(n, 1) = 1 is 1 itself.

10
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• ϕ(2) = 1. The only number n such that, gcd(n, 2) = 1 is 1.

• ϕ(3) = 2. The only number n such that, gcd(n, 3) = 1 are 1, 2.

• ϕ(4) = 2. The only number n such that, gcd(n, 4) = 1 are 1, 3.

Theorem 1.2 (see [1]) The Euler phi function is multiplicative. Moreover,

ϕ (n) = n
∏
p|n

(
1− 1

p

)
. (1.6)

Theorem 1.3 (see [1]) Let n be a positive integer. Then∑
d|n

ϕ (d) = n. (1.7)

Example 1.2 Let n = 28 and d | 28. Let Cd denote the class of those positive

integers ≤ n, where (m,n) = d. Since 28 has six positive factors 1, 2, 4, 7, 14,

and 28, there are six such classes:

• C1 = {1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27} ,

• C2 = {2, 6, 10, 18, 22, 26},

• C4 = {4, 8, 12, 16, 20, 24},

• C7 = {7, 21} ,

• C14 = {14} ,

• C28 = {28}.

11
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In fact, these classes contain 12 = ϕ (28) = ϕ (28/1), 6 = ϕ (14) =

ϕ (28/2), 6 = ϕ (7) = ϕ (28/4), 2 = ϕ (4) = ϕ (28/7), 1 = ϕ (2) = ϕ (28/14),

and 1 = ϕ (1) = ϕ (28/28) elements, respectively. Also, they form a partition-

ing of the set of positive integers ≤ 28. Therefore, the sum of the numbers of

elements in the various classes must equal 28; that is, 12+6+6+2+1+1 = 28.

In other words,

ϕ (28) + ϕ (14) + +ϕ (7) + ϕ (4) + ϕ (2) + ϕ (1) = 28,

that is
∑
d|28

ϕ (d) = 28.

12



Chapter 2

On the behaviour of d (n)

In the following table, we give d (n) for 1 ≤ n ≤ 12.

n 1 2 3 4 5 6 7 8 9 10 11 12
d(n) 1 2 2 3 2 4 2 4 3 4 2 6

Table 1. The number of divisors for 1 ≤ n ≤ 12.

Next, we compute the number of positive divisors of a prime power. We

have.

Proposition 2.1 Let p be prime and α a positive integer. Then d (pα) =

α + 1.

Proof. The divisors of pα are 1, p, p2, ..., pα−1 and pα. Consequently, pα has

exactly α + 1 divisors, so that d (pα) = α + 1.

When n has two distinct prime powers. That is, n = pαqβ, where p, q are

two distinct primes and α, β ≥ 1. The positive divisors of n are given below

1 p p2 · · · pα

q pq p2q · · · pαq
q2 pq2 p2q2 · · · pαq2

...
...

... · · · ...
qβ pqβ p2qβ · · · pαqβ

13
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Thus, there are (α + 1) (β + 1) positive divisors of n.

2.1 Explicit formulas of d (n)

We find the formula for d(n) in terms of the prime factorization of n. That

is, in terms of the prime powers dividing n.

Proposition 2.2 Assume that n = qα1
1 qα2

2 ...qαkk , where q1, q2, ..., qk are dis-

tinct primes and α1, α2, ..., αk ≥ 1. Then

d (n) = (α1 + 1) (α2 + 1) ... (αk + 1) . (2.1)

Proof. Let n = qα1
1 qα2

2 ...qαkk . By (1.4), we obtain

d (n) =
∑

0≤x1<a1

∑
0≤x2<a2

...
∑

0≤xk<ak

1 =
k∏
i=1

(αi + 1) .

The proof is finished.

Remark 2.1 As a conclusion, we have the following properties:

• d (n) = 1 if and only if n = 1,

• d (n) = 2 if and only if n = p (p is a prime),

• n is a square-free ⇒ d (n) is a power of 2,

• d (n) = 2a with a ≥ 2 ; n is a square-free,

• d (n) > 2 if and only if n is composite.

Corollary 2.1 Let n be a fixed positive integer with n ≥ 2. The equation

d (x) = n has infinitely many integer solutions.

14
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Proof.We put x = pn−1, where p is a prime number. Then clearly, d (x) = n.

Proposition 2.3 For any positive integer n we have

d (n) =
n∑
k=1

(⌊n
k

⌋
−
⌊
n− 1

k

⌋)
. (2.2)

Proof. Note that ⌊n
k

⌋
−
⌊
n− 1

k

⌋
=

{
1, if k| n
0, if k - n

Hence
n∑
k=1

(⌊n
k

⌋
−
⌊
n− 1

k

⌋)
=

n∑
k|n

1 = d (n) .

The proof is finished.

As an application, for n = 6 we see that

6∑
k=1

(⌊
6

k

⌋
−
⌊

5

k

⌋)
=

⌊
6

1

⌋
−
⌊

5

1

⌋
+

⌊
6

2

⌋
−
⌊

5

2

⌋
+

⌊
6

3

⌋
−
⌊

5

3

⌋
+

⌊
6

4

⌋
−
⌊

5

4

⌋
+

⌊
6

5

⌋
−
⌊

5

5

⌋
+

⌊
6

6

⌋
−
⌊

5

6

⌋
=

⌊
6

1

⌋
−
⌊

5

1

⌋
+

⌊
6

2

⌋
−
⌊

5

2

⌋
+

⌊
6

3

⌋
−
⌊

5

3

⌋
+

⌊
6

6

⌋
−
⌊

5

6

⌋
= 1 + 1 + 1 + 1 = 4 = d (6) .

Next, there is an explicit formula of d (n) using the integer part of the

logarithm of n in basis 2.

Theorem 2.1 Let n be an even perfect number. Then d (n) = [log2 n] + 2,

where log2 n stands for the logarithm of n in basis 2.

15
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Proof. Since n is an even perfect number, there exists a positive integer k

such that

n = 2k−1
(
2k − 1

)
= 2k−1p,

where p = 2k − 1 is Mersenne prime. Then d (n) = d
(
2k−1

)
.d (p) = 2k. On

the other hand, taking the logarithm in basis 2 on both sides of the first

equation, we obtain successively

log2 n = (k − 1) log2 2 + log2

(
2k − 1

)
= (k − 1) + log2

(
2k
(

1− 1

2k

))
= (k − 1) + k log2 2 + log2

(
1− 1

2k

)
= 2k − 1 + log2

(
1− 1

2k

)
= 2k − 1 + αk,

where it is easy to see that the expression αk satisfies −1 < αk < 0. But since

d (n) = 2k, this last equation can be written as d (n) = log2 n+ 1−αk. Since

0 < −αk < 1, we may therefore write, log2 n+ 1 + 0 < d (n) < log2 n+ 1 + 1,

that is, log2 n+ 1 < d (n) < log2 n+ 2, which means of course that

d (n) = [log2 n+ 2] = [log2 n] + 2,

This completes the proof.

2.2 Basic properties of d (n)

A natural question, when is d (n) odd? The answer is given by the following

theorem:

16
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Theorem 2.2 d (n) is odd if and only if n is a perfect square.

Proof. Assume that n =
k∏
i=1

qαii , then d (n) =
k∏
i=1

(αi + 1), in which case it

is clear that d (n) is odd if and only if αi is even for every i ≥ 1. We put

αi = 2bi, where bi ≥ 1. Thus, n =

(
k∏
i=1

qbii

)2

, which is a perfect square.

Conversely, if n is a perfect square, that is, n = m2, m ∈ N. Assume that

m =
k∏
i=1

qeii , we therefore obtain that n =
k∏
i=1

q2ei
i , and the uniqueness of the

canonical representation of n then implies that αi = 2ei for i = 1, 2, ..., k.

Thus, d (n) is odd.

Theorem 2.3 Let n be a positive integer. Then∏
d|n

d = n
d(n)
2 . (2.3)

Proof. Note that if d runs through the set of divisors of n, then n/d does

also. Therefore, we have∏
d|n

d

2

=
∏
d|n

d ·
∏
d|n

n

d
=
∏
d|n

n = nd(n).

As required. Note also that in the case when d (n) is odd, the formula still

holds because by proposition 2.2, n is then a perfect square. The proof is

finished.

Corollary 2.2 For every n ≥ 3 , we have d (n (n+ 1)) ≥ 6.

Proof. First, we show (n, n+ 1) = 1, that is, n and n + 1 are coprime. Let

d = (n, n+ 1), then d divided the difference (n+ 1) − n = 1 and so d = 1.

Therefore, d (n (n+ 1)) = d (n) · d (n+ 1). There are two cases to consider.

17
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• If n is prime, i.e., n+ 1 is composite, then d (n (n+ 1)) = 2d (n+ 1) ≥

2 · 3 = 6.

• If n is composite, then d (n) ≥ 3 and so d (n) d (n+ 1) ≥ 3d (n+ 1) ≥

3 · 2 = 6.

This completes the proof.

Remark 2.2 Let n be a positive integer, and put n = 2a.m, where m is odd.

That is, gcd (2,m) = 1. Then

d (2n)

d (n)
=
d (2a+1) d (m)

d (2a) d (m)
=
a+ 2

a+ 1
.

We conclude that d (2n) /d (n) is a positive integer if and only if a+1 divides

a+ 2. This statement is only true for a = 0, and hence n is odd.

Proposition 2.4 Let n ≥ 1, and consider the functions f1 (n)and f2 (n)

which stand respectively for the product of the odd divisors of n and for the

product of the even divisors of n. Then

f1 (n) = m
d(m)

2 (2.4)

and

f2 (n) =
(
2a(a+1) ·ma

)d(m)
2 = (2n)

ad(m)
2 , (2.5)

where m and a are defined implicitly by n = 2a ·m with m is odd.

Proof. By Theorem 2.3, we have
∏
d

d|n
= n

d(n)
2 . Definingm and a by n = 2a·m,

with m is odd. The relation f1 (n) = m
d(m)

2 is immediate. To establish the

relation

f2 (n) =
(
2a(a+1) ·ma

)d(m)
2 = (2n)

ad(m)
2 ,

18
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we first observe that f1 (n)·f2 (n) = n
d(n)

2 , so that f2 (n) = n

d(n)
2

f1(n)
. Substituting

in this last equation, we easily obtain for the desired equality.

Theorem 2.4 Let n be a positive integer. Then

n∑
k=1

d (k) =
n∑
k=1

⌊n
k

⌋
,

where bxc denotes the largest positive integer ≤ x.

Example 2.1 Let n = 12. Then

12∑
k=1

d (k) = 1 + 2 + 2 + 3 + 2 + ...+ 6 = 35,

and
12∑
k=1

⌊
12

k

⌋
=

⌊
12

1

⌋
+

⌊
12

2

⌋
+

⌊
12

3

⌋
+

⌊
12

4

⌋
+

⌊
12

5

⌋
+

⌊
12

6

⌋
+

+

⌊
12

7

⌋
+

⌊
12

8

⌋
+

⌊
12

9

⌋
+

⌊
12

10

⌋
+

⌊
12

11

⌋
+

⌊
12

12

⌋
= 12 + 6 + 4 + 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 35.

As required.

Proposition 2.5 Let d1 (n) be the number of odd divisors of n. Then d1 is

a multiplicative function .

Proof. Letm,n be positive integers such that (m,n) =1. Ifm and n are both

odd, then since d is multiplicative, d1 (m · n) = d (m · n) = d (m) · d (n) =

d1 (m) · d1 (n), and so the result is proved in this case.
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Now, assume that one of these two integers is even, say m, then there

exists a positive integer α such thatm = 2α ·r with r is odd (note that(r, n) =

1 ). We then have, d1 (m · n) = d1 (r · n) = d (r · n) = d (r)·d (n) = d1 (2α · r)·

d1 (n) = d1 (m) · d1 (n) .

This completes the proof.

Theorem 2.5 For any positive integer n, we have

d (n) ≤ 2
√
n. (2.6)

Proof. Let d1 < d2 < ... < dk be the divisors of n not exceeding
√
n. The

remaining divisors are
n

d1

,
n

d2

, ...,
n

dk
.

It follows that d (n) ≤ 2k ≤ 2
√
n.

Theorem 2.6 Let n be a positive integer. Then

∑
d|n

d (d)

2

=
∑
d|n

d3 (d) .

Example 2.2 If n = 6 = 2.3, then
(∑

d|6 d (d)
)2

= (1 + 2 + 2 + 4)2 = 92 =∑
d|6 d

3 (d) = 13 + 23 + 23 + 43.

From the proof we use the following lemma, which is prove by induction.

Lemma 2.1 We have(
n∑
i=1

j

)2

=
n∑
i=1

j3 =

(
n (n+ 1)

2

)2

.
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Proof of Theorem 2.6. Let n = qα1
1 qα2

2 ...qαkk be the representation of n as

product of distinct prime powers. Then∑
d|n

d3 (d) =
∑

d1|q
α1
1 ,...,dk|q

αk
k

d3 (d1) d3 (d2) ...d3 (dk)

=
k∏
j=1

∑
dj |q

αj
j

d3 (dj) =
k∏
j=1

(
13 + 23 + ...+ (αj + 1)3)

=

(
k∏
j=1

(1 + 2 + ...+ (αj + 1))

)2

=

∑
d|n

d (d)

2

.

The proof is finished.

Example 2.3 We identify all natural numbers having exactly 14 divisors.

Since n > 1, we have that n = qα1
1 qα2

2 ...qαrr and d (n) = (α1 + 1) (α2 + 1) ... (αr + 1) =

14 = 2 · 7. Then, either r = 2 with α1 = 1 and α2 = 6 or r = 1 with α1 = 13.

It follows that the positive numbers with exactly 14 divisors are of two kinds;

• The numbers p · q6,where p and q are distinct prime numbers.

• The numbers p13, where p is an arbitrary prime number.

Example 2.4 We can easily find the smallest positive integer x such that

d (x) = 9, d (x) = 10 and d (x) = 15. In fact, we have x =, x = and x =,

respectively.

• We find all the natural numbers which have precisely 10 divisors. In-

deed, if d (n) = 10, then by (2.1) we have (a1 + 1) (a2 + 1) ... (ak + 1) =

10. We may, of course, assume that a1 ≤ a2 ≤ ... ≤ ak. Since there are
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two ways of presenting 10 as the product of natural numbers ≥ 2 writ-

ten in the order of their magnitude, namely 10 = 2 · 5 and 10 = 10,

then either k = 2, a1 = 1 and a2 = 4 or k = 1 and a = 9. It follows

that the natural numbers which have precisely 10 divisors are either

the numbers p · q4, where p, q 6= p are arbitrary primes or the numbers

p9, where p is an arbitrary prime.

• Now, we find the least natural number n for which d (n) = 10. In view

of the above problem, consider the numbers 29, 2 ·34 and 3 ·24. Clearly,

n = 3 · 24 is the least natural number n for which d (n) = 10.

• In general, it is easy to prove that for given prime numbers p, q with

q > p the least natural number that has precisely pq divisors is the

number 2q−1 · 3p−1. Also, we can prove that for given prime numbers

q1, q2, ..., qs with q1 < q2 < ... < qs the least natural number that has

precisely q1q2...qs divisors is the number 2qs−1 · 3qs−1−1...pq1−1
s , where pi

is the i-th prime number.

• A. Schinzel proved that for all natural numbers h and m there exists a

natural number n > h such that

d (n)

d (n± i)
> m, for i = 1, 2, ..., h.

Theorem 2.7 The number of pairs of positive integers with least common

multiple equal to the positive integer n is d (n2).

Theorem 2.8
∑

k|n d (k)µ
(
n
k

)
= 1, for any positive integer n.
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For example, for n = 6 we have∑
k|n

d (k)µ
(n
k

)
= d (1)µ (6) + d (2)µ (3) + d (3)µ (2) + d (6)µ (1) = 1.

Proposition 2.6 n is prime if and only if d (n) = 2 and d (n) is prime if

and only if n = pq−1, where p and q are prime numbers.

Proof. Clearly, if n is prime then n has only two positive divisors, namely 1

and p. Thus, d (n) = 2. Conversely, if d (n) = 2 with n = qα1
1 ...qαkk . By (2.1),

(α1 + 1) ... (αk + 1) = 2 from which it follows that k = 1 and α1 + 1 = 2.

Hence, n = q1 is prime.

Now, assume that d (n) = q is prime. Equivalently, n has one prime

factors, say p. Otherwise, d (n) is composite. Thus, n = pd(n)−1 = pq−1.

Theorem 2.9 For all positive integers m and n, we have

d (mn) ≤ d (m) d (n) . (2.7)

Proof. The proof holds immediately from the prime factorization ofm and n.

In fact, let m =
r∏
i=1

pαii , n =
r∏
i=1

pβii (αi, βi ≥ 0)be the canonical factorizations

of m and n. (Here some αi or βi can take the values 0, too). Then

d (mn) =
r∏
i=1

(αi + βi + 1) ≥
r∏
i=1

(βi + 1)

with equality only if αi = 0 for all i. Thus,

d (mn) ≥ d (n)
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for all m, n, with equality only for m = 1. Since

r∏
i=1

(αi + βi + 1) ≤
r∏
i=1

(αi + 1)
r∏
i=1

(βi + 1) ,

we get the relation

d (mn) ≤ d (m) d (n)

with equality only for (n,m) = 1.

Proposition 2.7 If n | m, then

d (mn)

d (m)
≤ d (n2)

d (n)
. (2.8)

Proof. Let m =
∏
pα ·

∏
qβ and n =

∏
pα
′

(α′ ≤ α) be the prime factoriza-

tions of m and n. Then

d (mn)

d (m)
=

∏
(α′ + α + 1)

∏
(β + 1)∏

(α + 1)
∏

(β + 1)
=
∏ α′ + α + 1

α + 1

Now, it is clear that α′+α+1
α+1

≤ 2α′+1
α′+1

⇔ α′ ≤ α. This immediately implies

relation (2.8).

We can remark several properties of these functions for two natural non-

zero numbers m and n.

Theorem 2.10 For all m,n ∈ N∗, we have

d (mn) ≤ d (m)n. (2.9)

For all m,n ∈ N∗, we also have

d (m)

m
≤ d (n)

n
.
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Proof. We will show that d (m) ≤ m, for all m ∈ N∗. From the inequality

(2.6), d (m) ≤ 2
√
m but m ≥ 2

√
m for m ≥ 4, therefore d (m) ≤ m, m ≥ 4.

For m ∈ {1, 2, 3} it is easy to see that the inequality is true. From the

inequality (2.7), d (m) d (n) ≥ d (mn), for all m ∈ N∗, but d (n) ≤ n, so d (m)

for allm ∈ N∗. Since n | m, we havem = nd, and from the inequality (2.9), we

obtain d (nd) ≤ d (n) d, which is equivalent with nd (m) ≤ nd (n) = md (n).

Corollary 2.3 For all m,n ∈ N∗, we have

d (mn)

mn
≤ d (m) + d (n)

m+ n
(2.10)

and

d (mn) ≤ m2d (n) + n2d (m)

m+ n
. (2.11)

Proof. Applying the inequality (2.9), we deduce that

(m+ n) d (mn) = md (mn) + nd (mn) ≤ mnd (m) +mnd (n)

= mn (d (m) + d (n)) ,

which means that

(m+ n) d (mn) = md (mn) + nd (mn) ≤ m2d (n) + n2d (m) .

This proves (2.10). Similarly, we prove the inequality (2.11).

Theorem 2.11 For all m,n ∈ N∗, we have

d ((m,n)) d ([m,n]) = d (m) · d (n) , (12)

where (m,n) is the greatest common divisor of m and n and [m,n] is the

least common multiple of m and n.
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Proof. Let m and n be tow natural non-zero numbers. We will factorize the

numbers m and n in prime factors, that is, m = pα1
1 p

α2
2 ...p

αk
k ·q

β1
1 q

β2
2 ...q

βs
s , n =

pγ11 p
γ2
2 ...p

γk
k · r

δ1
1 r

δ2
2 ...r

δt
t , qj 6= rl, for all j ∈ {1, ..., s} and for all l ∈ {1, ..., t},

therefore

d (m) =
k∏
i=1

(αi + 1)
s∏
j=1

(βj + 1)

and

d (n) =
k∏
i=1

(γi + 1)
t∏
l=1

(δl + 1) .

We obtain

d ((m,n)) =
k∏
i=1

(min {αi, γi}+ 1) ,

and

d ([m,n]) =
k∏
i=1

(max {αi, γi}+ 1)
s∏
j=1

(βj + 1)
t∏
l=1

(δl + 1) ,

which means that d ((m,n)) d ([m,n]) = d (m) · d (n) for all m,n ∈ N∗.

Theorem 2.12 For all m,n ∈ N∗ we have

d2 (mn) ≥ d
(
m2
)
d
(
n2
)
. (13)

Proof. We consider m =
k∏
i=1

pαii
s∏
j=1

qβjj and n =
k∏
i=1

pγii
t∏
l=1

rδll , which means

that mn =
k∏
i=1

pαi+γii ·
s∏
j=1

qβjj ·
t∏
l=1

rδll . Hence d (m) =
k∏
i=1

(αi + 1)
s∏
j=1

(βj + 1)

and d (n) =
k∏
i=1

(γi + 1)
t∏
l=1

(δl + 1). Therefore,

d (mn) =
k∏
i=1

(αi + γi + 1)
s∏
j=1

(βj + 1)
t∏
l=1

(δl + 1) ,
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and so

d (m) d (n) = d (mn)·
k∏
i=1

(αi + 1) (γi + 1)

αi + γi + 1
= d (mn)·

k∏
i=1

(
1 +

αi · γi
αi + γi + 1

)
≥ d (mn) .

Since d (m2) =
k∏
i=1

(2αi + 1)
s∏
j=1

(2βj + 1) and d (n2) =
k∏
i=1

(2γi + 1)
t∏
l=1

(2δl + 1),

we obtain the equality

d
(
m2
)
τ
(
n2
)

=
k∏
i=1

(2αi + 1)
s∏
j=1

(2βj + 1)
k∏
i=1

(2γi + 1)
t∏
l=1

(2δl + 1)

But d2 (mn) =
k∏
i=1

(αi + γi + 1)2
s∏
j=1

(βj + 1)2
t∏
l=1

(δl + 1)2. It is easy to see

the equality

d2 (mn) = d
(
m2
)
d
(
n2
)
·

k∏
i=1

(
1 +

(αi + γi)
2

(2αi + 1) (2γi + 1)

)
·

s∏
j=1

(
1 +

β2
j

(2βj + 1)

)
×

t∏
l=1

(
1 +

δ2
l

(2δl + 1)

)
.

Since 1 + (αi+γi)
2

(2αi+1)(2γi+1)
≥ 1, for all i = 1, k, 1 +

β2
j

(2βj+1)
≥ 1 for all j = 1, s,

1 +
δ2l

(2δl+1)
≥ 1 for all l = 1, t, we obtain d2 (mn) ≥ d (m2) d (n2).

Theorem 2.13 Letm and n be two natural non- zero numbers, then d (mn) ≤

n
√
m+m

√
n.

Proof. We apply the inequality (2.6) for m and n, we have nd (m) ≤ 2n
√
m

and md (n) ≤ 2m
√
n. By adding the inequalities, we obtain

nd (m) +md (n) ≤ 2n
√
m+ 2m

√
n, (2.12)

but using the inequality (2.10), we have d (mn) ≤ d (m)n and d (mn) ≤

d (n)m, for all m and n ∈ N∗, we deduce

2d (mn) ≤ d (m)n+ d (n)m (2.13)
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so, from the inequalities (2.12) and (2.13), we obtain the inequality

d (mn) ≤ n
√
m+m

√
n.

Proposition 2.8 Let ω (n) denotes the number of distinct prime divisors of

n, and let Ω (n) denotes the total number of prime divisors of n. We have

2ω(n) ≤ d (n) ≤ 2Ω(n).

Proof. By definition we have d (n) =
k∏
i=1

(αi + 1) since ω (n) = k. Moreover,

we have Ω (n) =
k∑
i=1

αi. For 1 ≤ i ≤ k , we also have αi ≥ 1, and so αi+1 ≥ 2.

By multiplication, we get
k∏
i=1

(αi + 1) ≥ 2k. Hence,

d (n) ≥ 2ω(n). (2.14)

On the other hand, αi + 1 ≤ 2αi for 1 ≤ i ≤ k and by multiplication once

again, we obtain
k∏
i=1

(αi + 1) ≤
k∏
i=1

2αi ,

and so
k∏
i=1

(αi + 1) ≤ 2

k∑
αi

i=1 . That is,

d (n) ≤ 2Ω(n). (2.15)

Combining (2.14) and (2.15), we get the desired result.

The equation 2d (n2) = 3d (n).

Proposition 2.9 Let n = qα1
1 qα2

2 ...qαkk be the prime factorization of n > 1

(n = 1 is not a solution). First, for every n ≥ 1, we prove that

d (n2)

d (n)
≥
(

3

2

)ω(n)

. (2.16)
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Proof. In fact, by definition we have d (n) =
k∏
i=1

(αi + 1) and d (n2) =

k∏
i=1

(2αi + 1). Since 2 (2αi + 1) ≥ 3 (αi + 1), we deduce that

d (n2)

d (n)
=

k∏
i=1

2αi + 1

αi + 1
≥
(

3

2

)k
=

(
3

2

)ω(n)

.

We can have equality in (2.16) only for αi = 1 (i = 1, ..., k), that is, for

n = q1q2...qk , i.e., n is square-free.

Finally, the stated equation implies by (2.16) that 3
2
≥
(

3
2

)k which gives

k = 1, i.e., the proposed equation has the solutions n = p with p ≥ 2 is

prime.

Theorem 2.14 Let m be a positive integer and define

Am := {n ∈ N; m|d (n)} .

Then Am contains an infinite arithmetical progression.

Proof. Let nt = 2mt + 2m−1, t = 0, 1, ... and we prove that these numbers

form an infinite arithmetical progression. In fact, the exponent of the number

2 in the factorization of the number nt = 2mt+2m−1 is m−1. Hence m|d (n).

The proof is finished.

2.3 Some iteration using the divisor function

The goal of this subsection is to know some properties on the sequence

n, d (n) , d (d (n) + a) , d (d (d (n) + a) + a) , ...

where a is a fixed nonnegative integer.
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Proposition 2.10 Let n be a positive integer. Define the sequence n1, n1, ...,by

n1 = d (n) and nk+1 = d (nk) for k = 1, 2...Then there is a positive integer r

such that 2 = nr = nr+1 = nr+2 = .... Moreover, the place can be arbitrarily

given.

Proof. The proof holds immediately from the fact that every chain of natural

numbers has a minimal element. In fact, we remark that if n is a natural

number greater than 2, then d (n) < n. So the proof is finished since d (2) = 2.

For the proof of the second part, we use the equality d (2n−1) = n.

Notation 2.1 We denote by ds the arithmetic function given by ds (n) =

(d (n))s, where d(n) is the number of positive divisors of n. Moreover, for

every `,m ∈ N we denote by δs,`,m (n) the sequence:

ds (ds (. . . ds (ds (n) + `) + ` . . .) + `)︸ ︷︷ ︸
m-times

=


ds (n) , for m = 1
ds (ds (n) + `) , for m = 2
ds (ds (ds (n) + `) + `) , for m = 3

. . .

Theorem 2.15 Let n ≥ 1. There exists a positive integer m0 such that for

every m ≥ m0, one has

δ1,1,m (n) = 2 or 3. (2.17)

Proof. First, we will show that for every n ≥ 2,

δ1,1,2 (n) ≤ δ1,1,1 (n) = d (n) . (2.18)

Obviously the last inequality holds when n is prime. In the case when n is

composite, we distinguish two cases.
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1. Assume that d (n) + 1 = p, where p ≥ 5 is prime (because if p = 2 or

p = 3, then d (n) = 1 or d (n) = 2, respectively, meaning that n = 1 or n is

prime). Then

δ1,1,2 (n) = 2 < p− 1 = d (n) .

2. Assume that d (n) + 1 is composite. We put d (n) + 1 = ab, with

1 < a ≤ b, and consider three cases:

2.1. a 6= 2 and b 6= 2. We have

a2 (b− d (b)) + b2 (a− d (a)) > a+ b,

because a− d (a) and b− d (b) are both positive. It follows that

a2d (b) + b2d (a) < (a+ b) (ab− 1) (2.19)

= (a+ b) d (n) .

Therefore,

δ1,1,2 (n) = d (ab)

=
ad (ab) + bd (ab)

a+ b

<
a2d (b) + b2d (a)

a+ b
< d (n) , (2.20)

where the right-hand side of (2.20) holds by (2.19) and the left hand side

because d (ab) ≤ d (a) d (b), d (a) < a and d (b) < b.

2.2. a = 2 and (2, b) = 1. Since b ≥ 3, we obtain

d (ab) = d (2b)

= 2d (b)

< 2b.
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Thus,

δ1,1,2 (n) = d (ab)

≤ 2b− 1 = d (n) .

2.3. a = 2 and (2, b) 6= 1 with b ≥ 2. We can put 2b = 2Nb′, where N ≥ 2,

b′ ≥ 1 and
(
2N , b′

)
= 1. It follows that

d (ab) = d
(
2Nb′

)
(2.21)

= (N + 1) d (b′)

< 2Nb′,

because t+ 1 < 2t for every t ≥ 2 and d (b′) ≤ b′. Therefore,

δ1,1,2 (n) = d (ab) (2.22)

≤ 2Nb′ − 1 = d (n) .

This proves (2.18).

We are now ready to prove (2.17). For n = 1, d (1) + 1 = 2. Then for

every m ≥ m0 = 2, we have

δ1,1,m (n) = 2.

It is the same when n is prime, where m0 = 1. Assume that n is composite

with n ≥ 4, that is, d (n) ≥ 3. Note that if d (n) = 3, then δ1,1,m (n) = 3 for

every m ≥ 1. If d (n) ≥ 4, then by applying (2.18) repeatedly we obtain for

every m ≥ 1

2 ≤ δ1,1,m (n) ≤ ... ≤ δ1,1,3 (n) ≤ δ1,1,2 (n) ≤ δ1,1,1 (n) = d (n) , (2.23)
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noting that d (t) ≥ 2 whenever t ≥ 2. For every i ≥ 2 we will prove that one

of the following statements:

· δ1,1,i+1 (n) = 2 (2.24)

· δ1,1,i+1 (n) = 3

· δ1,1,i+1 (n) < δ1,1,i (n)

· δ1,1,i+2 (n) < δ1,1,i+1 (n)

holds. Let i ≥ 2. There are two cases:

I. δ1,1,i (n) + 1 is prime. Then

δ1,1,i+1 (n) = δ1,1,i+2 (n) = ... = 2. (2.25)

II. δ1,1,i (n) + 1 is composite. We also consider three cases as in the proof

of (2.18).

II.1. δ1,1,i (n) + 1 = xy with x 6= 2 and y 6= 2. Using (2.20), we get

d
(
δ1,1,i (n) + 1

)
= δ1,1,i+1 (n) < δ1,1,i (n) . (2.26)

II.2. δ1,1,i (n) + 1 = 2y with (2, y) = 1 and y ≥ 3. In this case, assume

that y = qα1
1 qα2

2 ...qαrr , where q1, q2, ..., qr are distinct prime numbers and

α1, α2, ..., αr are positive integers. Since qj ≥ 3, for j = 1, 2, ..., r,

αj + 1 < q
αj
j , for j = 1, 2, ..., r,

and so

2 (αj + 1) < 2q
αj
j − 1, for j = 1, 2, ..., r.

Therefore,

d (2y) = 2
r∏
j=1

(αj + 1) < 2qα1
1 qα2

2 ...qαrr − 1 = 2y − 1.
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It follows that

d
(
δ1,1,i (n) + 1

)
= δ1,1,i+1 (n) < δ1,1,i (n) . (2.27)

II.3. δ1,1,i (n) + 1 = 2My with M ≥ 2,
(
2M , y

)
= 1 and y ≥ 1. As in (2.21)

and (2.22), we have d (δ1,1,i (n) + 1) = δ1,1,i+1 (n) ≤ 2My − 1. If

δ1,1,i+1 (n) < 2My − 1 = δ1,1,i (n) , (2.28)

we obtain the desired inequality. Otherwise, δ1,1,i+1 (n) = 2My − 1. In this

case, we see that

d
(
δ1,1,i+1 (n) + 1

)
= δ1,1,i+2 (n) = (M + 1) d (y) ,

where by (2.23), (M + 1) d (y) ≤ 2My − 1. If (M + 1) d (y) < 2My − 1, we

have

δ1,1,i+2 (n) = (M + 1) d (y) < 2My − 1 = δ1,1,i+1 (n) , (2.29)

which is the inequality we need. In the remaining case (M + 1) d (y) = 2My−

1. Here we distinguish two cases, y = 1 and y ≥ 2.

Assume that y = 1. That is M + 1 = 2M − 1. Obviously the last equality

holds if and only if M = 2. Hence δ1,1,i+1 (n) = 3 and by (2.28),

δ1,1,i (n) = δ1,1,i+1 (n) = .... = 3. (2.30)

But, when M ≥ 3, we have

δ1,1,i+2 (n) < δ1,1,i+1 (n) , (2.31)

since M + 1 < 2M − 1.
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Assume that y = pα1
1 p

α2
2 ...pαrr ≥ 2, where p1, p2, ..., pr are distinct prime

numbers and α1, α2, ..., αr are positive integers. Since M + 1 < 2M and αj +

1 ≤ q
αj
j , for j = 1, 2, ..., r, it follows for M = 2 that

2My − 1− (M + 1) d (y) = 4pα1
1 p

α2
2 ...p

αr
r − 3

r∏
j=1

(αj + 1)− 1 ≥ 1, (2.32)

which is impossible. For M ≥ 3, we also see that

2My − 1− (M + 1) d (y) ≥
(
2M − (M + 1)

) r∏
j=1

(αj + 1)− 1 ≥ 7, (2.33)

which is impossible as well. Then one has (M + 1) d (y) < 2My − 1 when

y ≥ 2. Hence by (2.29), (2.32) and (2.33),

δ1,1,i+2 (n) < δ1,1,i+1 (n) . (2.34)

Combining (2.25)-(2.34), we obtain (2.24). Since there exists no infinite de-

scending chain on the natural numbers, as every chain of natural numbers

has a minimal element, we obtain δ1,1,m (n) = 2 or 3 for some m ≥ 1. This

completes the proof of Theorem 2.15.

Notation 2.2 Let k be a positive integer and let Wk be the subset given by

Wk = {n ∈ N ; ω (n) ≥ k} ,

where ω (n) denotes the number of distinct prime factors of n. In the following

theorem we show with respect to the equation δ1,1,m (n) = 2 that the order m

can be arbitrarily given for infinitely many n ∈ Wk. This is obtained by using

Dirichlet’s Theorem about primes in an arithmetic progression.
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Theorem 2.16 Let M0 be a positive integer with M0 ≥ 2. There are in-

finitely many n ∈ Wk such that for every m ≥M0,

δ1,1,m (n) = δ1,1,M0 (n) . (2.35)

Proof. We divide the proof into two parts:

(i) We put m0 = M0−1. It suffices to prove that there are infinitely many

primes p such that

p = δ1,1,m0 (n) + 1, (2.36)

where n ∈ Wk. Indeed, by Dirichlet’s Theorem, the arithmetic progression

2k−1t + 1; t ≥ 1 contains infinitely many primes. Let p, q1, q2 be distinct

primes of the form 2k−1t+ 1. Then 2k−1 divides both p− 1 and qa1qb2 − 1 for

every a, b ≥ 1. Let (l1, l2, ..., lk) be an arbitrary k−tuple of distinct primes.

In the case when m0 = 1, we put

n = l1l2...lk−1 × l
p−1
2k−1−1

k ∈ Wk.

It follows that d(n) + 1 = p. Thus, (2.35) is true for every m ≥ 2.

In the case when m0 ≥ 2, we can put

s1 =
q2k−1−1

1 qs22 − 1

2k−1
− 1

s2 =
q2k−1−1

1 qs32 − 1

2k−1
− 1

...

sm0−1 =
q2k−1−1

1 q
sm0
2 − 1

2k−1
− 1

sm0 =
p− 1

2k−1
− 1.
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Let n = l1l2...lk−1 × ls1k ∈ Wk, or, equivalently,

n = l1l2...lk−1×l
q2k−1−1

1 q

q2k−1−1
1 q

...

...

q2
k−1−1

1 q

q2
k−1−1

1 q

p−1
2k−1−1

2 −1

2k−1 −1

2 −1

2k−1 −1

2 − 1

2k−1
−1

2 − 1

2k−1
−1

k ,

(2.37)

For m0 = 3 we obtain:
s1 =

q2k−1−1
1 qs22 − 1

2k−1
− 1

s2 =
q2k−1−1

1 qs32 − 1

2k−1
− 1

s3 =
p− 1

2k−1
− 1.

Let n = l1l2...lk−1 × ls1k ∈ Wk, then

n = l1l2...lk−1 × l
q2k−1−1

1 q

q2k−1−1
1 q

p−1
2k−1−1

2 − 1

2k−1
−1

2 − 1

2k−1
−1

k , (2.38)

where the first exponentiation contains (m0 − 1) fractions involving q1 and

q2. This writing in the form of towering storeys allows to calculate successively

δ1,1,1 (n) , δ1,1,2 (n) , ..., δ1,1,M0 (n). Indeed, for each such integer n, it follows
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from the definition of d that

δ1,1,1 (n)+1 = q2k−1−1
1 q

q2k−1−1
1 q

q2k−1−1
1 q

...

...

q2
k−1−1

1 q

q2
k−1−1

1 q

p−1
2k−1−1

2 −1

2k−1 −1

2 −1

2k−1 −1

2 − 1

2k−1
−1

2 − 1

2k−1
−1

2 ,

where the first exponentiation of q2 contains (m0 − 2) fractions involving q1

and q2. By repeating these steps we can reach to the top of (2.37) as follows

δ1,1,m0−1 (n) + 1 = q2k−1−1
1 q

p−1
2k−1−1

2 ,

and so

δ1,1,m0 (n) + 1 = p. (2.39)

This ends the proof of Part (i).

(ii) Now, from (3.16) we obtain δ1,1,m0+1 (n) = δ1,1,M0 (n) = 2, and there-

fore (2.35) is true for every m ≥ M0. This completes the proof of Theorem

2.16.

Corollary 2.4 For any positive integer m, there are infinitely many n such

that δ1,1,m (n) = 2.

Proof. Let m ≥ 1. If m = 1, then δ1,1,1 (p) = d (p) = 2 for any prime p. If

m ≥ 2, it follows from the proof of (2.36) that there exist infinitely many

n ∈ Wk such that δ1,1,m−1 (n) + 1 is prime. Therefore,

δ1,1,m (n) = d
(
δ1,1,m−1 (n) + 1

)
= 2.
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This completes the proof.

Corollary 2.5 For any positive integer m, there are infinitely many n such

that δ1,1,m (n) = 3.

Proof. Let m ≥ 1, and let p be an odd prime. Assume that m = 1, and

put n = p2. Then δ1,1,m (n) = 3. Assume that m ≥ 2, and define the positive

integer

n = pp
p

...
pp

2−2−2

−2−2,

which contains m exponentiations involving the prime number p. As in the

proof of Theorem 2.16, we obtain

δ1,1,1 (n) = pp
...
pp

2−2−2

−2 − 1,

which contains (m− 1) exponentiations involving the prime number p. By

this way, we successively compute δ1,1,2 (n) , δ1,1,3 (n) , .... At the end, we ob-

tain  δ1,1,m−2 (n) = pp
2−2 − 1,

δ1,1,m−1 (n) = p2 − 1,
δ1,1,m (n) = 3.

This completes the proof.

Remark 2.3 It seems very likely that Proposition 2.15 can be generalized.

Computation suggests that for every n ≥ 1, there exists an order m such that
δ3,1,m (n) = 64 or 512,
δ9,1,m (n) = 68719476736 or 18014398509481984,
δ10,1,m (n) = 1048576 or 61917364224.

(2.40)

See also Example 2.6 below.
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Following the same idea as in the proof of Theorem 2.16, we want to

present a property on the growth of δ1,`,m (n) for an infinity of values of

n ∈ Wk.

Proposition 2.11 Let a,m0, k, ` be positive integers with a odd and 2k di-

vides `. There are infinitely many n ∈ Wk such that d
(
δ1,`,m0 (n) + a+ `

)
= 2.

Proof. Since
(
2k−1, a

)
= 1, by Dirichlet’s Theorem, there are infinitely many

primes of the form 2k−1t + a. Let b be the odd positive integer given by

b =
`

2k−1
+ 1, and let p be a prime number of the form 2k−1t + a, where

p− a
2k−1

> b. We study the following two cases.

In the first case, we assume that m0 = 1. For

n = l1l2...lk−1 × l
p−a
2k−1−b
k ∈ Wk,

where l1, l2, ..., lk are distinct primes, it follows that d(n) = δ1,`,1 (n) = p −

a− `. Thus, d
(
δ1,`,1 (n) + a+ `

)
= 2.

In the second case, we assume that m0 ≥ 2. Similarly, let q1, q2 be two

distinct primes of the form 2k−1t+b, since
(
2k−1, b

)
= 1. Consider the positive

integer of the form

n = l1l2...lk−1 × l
q2k−1−1

1 q

q2k−1−1
1 q

...

...

q2k−1−1
1 q

q2k−1−1
1 q

p−a
2k−1−b
2

2k−1
−b

2

2k−1
−b

2

2k−1
−b

2

2k−1
−b

k ,
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where the first exponentiation contains (m0 − 1) fractions involving q1 and

q2 and l1, l2, ..., lk are also distinct primes. Since ` = 2k−1 (b− 1), it follows

that

δ1,`,1 (n) + ` = q2k−1−1
1 q

q2k−1−1
1 q

...

...

q2k−1−1
1 q

q2k−1−1
1 q

p−a
2k−1−b
2

2k−1
−b

2

2k−1
−b

2

2k−1
−b

2 ,

where the first exponentiation of q2 contains (m0 − 2) fractions involving q1

and q2. Repeating the process, as in the proof of Theorem 2.16 and Corollary

2.5, we obtain  δ1,`,m0−1 (n) + ` = q2k−1−1
1 q

p−a
2k−1−b
2 ,

δ1,`,m0 (n) + ` = p− a,
d
(
δ1,`,m0 (n) + a+ `

)
= 2.

This completes the proof.

Now, we present some examples to illustrate the results stated in Theorem

2.15, Remark 2.3 and Theorem 2.16, respectively.

2.3.1 Examples

Example 2.5 With respect to the result of Theorem 2.15, the following table

shows the first value of m for which δ1,1,m (n) = 2 or 3, for different values
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of n.
n m δ1,1,m (n)
1 2 2
2 1 2
22 1 3

222 3 2

223 3 2

224 3 2

225 3 2

226 3 3

227 3 3

228 3 3

n m δ1,1,m (n)

2210 3 2

2
250

4 2

22100 4 3

2
2150

4 2

22200 3 3

22220 4 3

22250 4 2

22300 4 3

22350 3 2

22380 3 2

In the following example we give two positive integers n and n′ which have

the same distinct prime factors and satisfying the first equation of (2.40),

and this after 4-fold iterations. That is, set (n) = set (n′), δ3,1,m (n) = 64 and

δ3,1,m (n′) = 512 for every m ≥ 4.

Example 2.6 Let (q1, q2, ..., q13) be an arbitrary 13-tuple of distinct primes.

We put{
n = q25

1 × q22
2 × q15

3 × q70
4 × q11

5 × q15
6 × q13

7 × q8 × q9 × q10 × q11 × q15
12 × q10

13,
n′ = q2000

1 × q302
2 × q105

3 × q700
4 × q101

5 × q15
6 × q13

7 × q8 × q9 × q10 × q11 × q1500
12 × q999

13 .

It is clear that n and n′ have the same distinct prime factors, where |set (n)| =

|set (n′)| = 13. By computation, we see that δ3,1,m (n) = 64 and δ3,1,m (n′) =

512 for every m ≥ 4.
δ3,1,1 (n) = 135 964 112 015 285 579 850 731 807 751 719 092 224

δ3,1,2 (n) = 56 623 104
δ3,1,3 (n) = 4096

δ3,1,4 (n) = 64,

and 
δ3,1,1 (n′) = 24239597317319323329353379310137013

δ3,1,2 (n′) = 2097 152
δ3,1,3 (n′) = 1728

δ3,1,4 (n′) = 512.
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As an application of Theorem 2.16, the following example gives the small-

est positive integer x ∈ W3 in the form (2.37) such that δ1,1,4 (x) = 2.

Example 2.7 In view of Theorem 2.15, assume that k = 3 and M0 = 4.

Then the positive integer

x = 5× 3× 2511 528 924 107 551 574 707 030 ∈ W3

is the smallest number that satisfies (2.36) and (2.37). Indeed, we see that

δ1,1,1 (x) + 1 = 2046 115 696 430 206 298 828 125 = 530133.

Therefore, we have 
δ1,1,2 (x) + 1 = 125 = 53,

δ1,1,3 (x) + 1 = 5,
δ1,1,4 (x) = 2.

On the other hand, we can write

x = 5× 3× 2

1323−1−1 × 5

523−1−1 × 13

5− 1

23−1
−1
− 1

23−1
−1
− 1

23−1
−1
.

Thus we have shown that x is the smallest one, since the numbers 5 and 13

are chosen to be the smallest distinct primes satisfying the properties of p, q1

and q2 which are stated in the proof of Theorem 2.16.
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Chapter 3

On relations between d (n) and
some other functions

At first, the relation between the multiplicative functions nd (n) and ϕ (n) is

given by the following theorem, where ϕ (n) is the Euler’s function.

Theorem 3.1 We have

lim
ϕ (n)

nd (n)
= 0, (3.1)

and

lim
ϕ (n)

nd (n)
= 1/2. (3.2)

Proof. At first, we have F (n) = ϕ(n)
nd(n)

= 1
d(n)

∏
p|n

(
1− 1

p

)
. We put n = 2m

with m ∈ N, we also have

0 < F (n) = F (2m) =
1− 1

2

m+ 1
→ 0

as m→∞. This proves (3.1). On the other hand, for each integer n ≥ 1, we

have F (n) ≤ 1/2. In fact, the inequality (3.2) holds for every n ≥ 2 because

ϕ (n) ≤ n and d (n) ≥ 2.
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Theorem 3.2 The number 2 divides σ (n) − d (m) for all positive integers

n, where m is the largest odd divisor of n.

Proof. Assume that n = 2αqα1
1 qα2

2 ...qαrr where the qi, for 1 ≤ i ≤ r are odd.

That is, m = qα1
1 qα2

2 ...qαrr is the largest odd divisor of n. Therefore,

σ (n)−d (m) =
(
2α+1 − 1

)
(1 + q1 + ...+ qα1

1 ) ... (1 + qr + ...+ qαrr )−
r∏
i=1

(αi + 1)

The result follows since 2α+1 − 1 is odd and 1 + q1 + q2
2 + ... + qαii is odd

whenever αi is even and even whenever αi is odd. The proof is finished.

A relation between the divisor function, Euler’s function and the sum of

positive divisors is proved by Liouville in 1857. In fact, he proved that for

any positive integer n, one has∑
d|n

d · ϕ (d) · σ
(n
d

)
=
∑
d|n

d2.

For example, for n = 6 we have∑
d|n

d · ϕ (d) · σ
(n
d

)
= 1 · ϕ (1) · σ (6) + 2 · ϕ (2) · σ (3) + 3 · ϕ (3) · σ (2) + 6 · ϕ (6) · σ (1)

= 50 =
∑
d|n

d2.

3.1 Diophantine equations involving the divi-
sor function

Now, recall that a Diophantine equation is an equation of the form:

f (x1, x2, ..., xk) = b
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that we want to solve in integers or nonnegative integers. This means that the

values of the variables x1, x2, ..., xk will be integers or nonnegative integers.

Usually the function f (x1, x2, ..., xk) is a polynomial with integer coefficients

or a real-valued function whose domain is the set N. Let us start with some

simple Diophantine equations involving the divisor function and Euler’s func-

tion.

1. On the equation d (n) = ϕ (n). Here, we give a comparison between

the value d (n) and Euler’s function at the same point n.

Theorem 3.3 {1, 3, 8, 10, 24, 30} are the only solutions of d (n) = ϕ (n).

Moreover, we have ϕ (n) > d (n) for n > 30.

Proof. Clearly, n = 1 is a solution. Next, let n > 1 with n =
∏
pα (for

simplicity we do not use indices), where p is prime and α ≥ 1. Then

ϕ (pα)

d (pα)
=
pα−1 (p− 1)

α + 1
.

For p ≥ 3 we see that pα−1 · (p− 1) ≥ 3α−1 · 2 ≥ α + 1 for all α (which can

be proved easily by induction on α) with equality only for α = 1 and p = 3.

One gets

ϕ (n) ≥ d (n) for all odd, (3.3)

with equality for n ∈ {1, 3}.

Let now be n even, i.e, n = 2α ·m with m is odd and α ≥ 1. For α ≥ 3

one can write

ϕ (n) = ϕ (2α) · ϕ (m) ≥ 2α−1d (m)

on base of (3.3). But 2α−1 ≥ α + 1, with equality for α = 3, so

ϕ (n) ≥ d (n) for n is even and 8 | n. (3.4)
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In the above inequality we must have m = 1 or m = 5, so in (3.4) we can

have equality only for n = 1 · 8 = 8, n = 3 · 8 = 24. We have to study the

remaining cases α = 1 and α = 2. For α = 1 one obtains the equation

ϕ (m) = 2d (m) , m = odd, (3.5)

while for α = 3 we have

2ϕ (m) = 3d (m) , m = odd. (3.6)

Let m =
∏

p≥3 p
β. Then (3.5) becomes∏

p≥3

pβ−1 (p− 1)

β + 1
= 2

with equality only for β = 1, thus m = 5 or m = 3 · 5 are the single

possibilities. From here, as solutions we get n = 2·5 = 10 and n = 2·3·5 = 30.

In the same manner, (3.6) becomes∏
p≥3

pβ−1 (p− 1)

β + 1
=

3

2
.

But,
2 · 3β−1

β + 1
≥ 1 and

4 · 5β−1

β + 1
>

3

2
. Thus, we cannot have equality. Therefore,

this case doe not provide solutions. By summing, all solutions of the initial

equations are:

n ∈ {1, 3, 8, 10, 24, 30} .

As a consequence, we can write ϕ (n) > d (n) for n > 30.

2. The equation d(n) + ϕ(n) = n+ 1.

Proposition 3.1 The only solutions of d(n) + ϕ(n) = n + 1 are 1, 4 and p

with p is prime.
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Proof. One can remark that n = p with p is prime and n = 1 are solutions.

Let n = pα be a prime power such that d(n) +ϕ(n) = n+ 1. Then α = pα−1,

or equivalently, α = p and α− 1 = 1. Hence, n = 4.

Now, let n > 1 be composite with n 6= 4 and let d 6= 1 be a divisor of n.

Then gcd(d, n) 6= 1. Therefore, clearly ϕ(n) ≤ n− d (n) from the definitions

of d and ϕ (which is the number of couples (i, n) such that gcd(i, n) = 1,

i < n), and so d(n) + ϕ(n) < n+ 1. Therefore, n cannot be a solution.

3. On the equation d (n) + ϕ (n) = n.

Theorem 3.4 The equation ϕ (n) + d (n) = n has the only solutions n = 8

and n = 9.

Proof. Case 1. Let n be an even number. Then it is well-known that ϕ (n) ≤

n/2. Using the relation d (n) < 2
√
n (see, (2.6)), we get

ϕ (n) + d (n) ≤ n

2
+ 2
√
n ≤ n

if 2
√
n ≤ n/2, i.e., n ≥ 16. Now, for n < 16 and even, a simple verification

shows that ϕ (n) + d (n) < n holds true with a strict inequality, except for

n = 8, when there is equality. Therefore, the only even solution except for

n = 4 is n = 8.

Case 2. Let n be odd and not a prime. Suppose that ϕ (n) + d (n) = n

holds for n ≥ 3. Since ϕ (n) is even, d (n) should be an odd number. But, from

Theorem 2.2, it is immediate that n must be a perfect square, i.e., n = m2.

As ϕ (m2) = mϕ (m), the equality becomes

mϕ (m) + d
(
m2
)

= m2. (3.7)
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Equality (3.7) implies that m should be a divisor of d (m2), i.e.,

d
(
m2
)

= k ·m, (3.8)

for certain, k ≥ 1. As d (N) < 2
√
N , we get d (m2) < 2m, implying that

one must have k = 1 in (3.8). Equation d (m2) = m can be also written as

(2α1 + 1) ... (2αs + 1) = qα1
1 ...qαss , where m = qα1

1 ...qαss is the prime factoriza-

tion of m.

Now, as m is odd, let q1be the least odd prime factor of m, with q1 ≥

3.Since the inequality 3α1 ≥ 2α1 + 1 holds true, with equality only forα1

= 1, and as 5α2 ≥ 2α2 + 1, etc., we must have m = 3. This finally gives

n = m2 = 9, as the single odd solution of the equation. This finishes the

proof of Theorem 3.4.

4. The equation Λ (n) (d (n)− 1) =
d (n) lnn

2
.

Theorem 3.5 The only solution of the equation Λ (n) (d (n)− 1) = d(n) lnn
2

are n = 1 and n = p with p is prime.

Proof. Let Λ be the von Mangoldt function, i.e., Λ (n) = ln p for n = pα

(p is prime and α ≥ 1); Λ (n) = 0 in other cases. The following identity is

well known ∑
i|n

Λ (i) = lnn. (3.9)

The identity

2
∑
i|n

Λ
(n
i

)
d (i) = d (n) lnn (3.10)

can be proved via similar arguments. Now, we see that

d (n) lnn

2
= Λ (n) +

∑
in

Λ
(n
i

)
d (i) ≤ Λ (n) + d (n) (lnn− Λ (n))
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and on base of property(3.10), as well as i | n⇒ d (i) ≤ d (n) one gets

Λ (n) (d (n)− 1) ≤ d (n) lnn

2

with equality for n = 1 and n = prime; which provide the most general

solutions of proposed equation.

5. The equations ϕ (d (n)) = d (ϕ (n)) and d (γ (n)) = γ (d (n)).

Proposition 3.2 The equation ϕ (d (n)) = d (ϕ (n)) has infinitely many so-

lutions.

Proof. Consider the numbers n = 2k, where k ≥ 1. For such a number to be

a solution of ϕ (d (n)) = d (ϕ (n)), we must have ϕ (k + 1) = d
(
2k−1

)
= k,

which is solvable only when k + 1 is a prime number. Thus, k = p− 1, with

p is prime. Then for n = 2p−1 with p is prime, we have ϕ (d (n)) = d (ϕ (n)).

Theorem 3.6 d (γ (n)) = γ (d (n)) if and only if n = pα with p is prime and

α a positive integer such that α + 1 is a power of 2, that is, n = p2x−1with

x ≥ 1.

Proof. Let us first show that the condition is sufficient. So, let n = pα, where

p is prime and α = 2k − 1 for a certain positive integer k. We then have

d (γ (pα)) = d (p) = 2,

while

γ (d (pα)) = γ (α + 1) = γ
(
2k
)

= 2.
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To prove that the condition is necessary, we proceed by contradiction. Two

situations may occur:

(i) n = pα with α 6= 2k − 1 for each integer k ≥ 1. In this case, we have

d (γ (pα)) = d (p) = 2, while γ (d (pα)) = γ (α + 1) > 2.

(ii) ω (n) ≥ 2. Here, we have n = qα1
1 qα2

2 ...qαrr for certain prime numbers

q1 < q2 < ... < qr and certain positive integers α1, α2, ..., αr.It follows

that d (γ (n)) = 2r, while γ (d (n)) = γ ((α1 + 1) (α2 + 1) ... (αr + 1)) is

either equal to 2 or else divisible by a prime number > 2, and therefore,

in both cases, γ (d (n)) cannot be equal to 2r with r ≥ 2.

The proof is finished.

3.2 Some Diophantine inequations involving the
divisor function

A Diophantine inequality is an inequality whose solutions are required to

be integers of natural numbers. Let us consider the following Diophantine

inequalities.

Proposition 3.3 Let n ≥ 1 and let σ (n) =
∑

d|n d. Then d (n) ≥ n

ϕ (n)
.

Proof. Let k be the number of distinct prime factors of n. Suppose that

n = qα1
1 qα2

2 ...qαkk , where q1, q2, ..., qk are distinct primes and α1, α2, ..., αk. By

definition, we have

ϕ (n) · d (n) = n

(
1− 1

q1

)(
1− 1

q2

)
...

(
1− 1

qk

)
· (α1 + 1) (α2 + 1) ... (αk + 1)

≥ n

(
1

2

)k
· 2k = n.
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This gives the result.

Proposition 3.4 For any n ≥ 2 we have

d (n) ≤ σ (n)√
n
.

Proof. Let d1, d2, ..., dk be the divisors of n. That is, k = d (n). They can be

rewritten as
n

d1

,
n

d2

, ...,
n

dk
,

and so

σ (n)2 = n (d1 + d2 + ...+ dk)

(
1

d1

+
1

d2

+ ...+
1

dk

)
≥ n · d (n) .

The result follows.

Proposition 3.5 For each integer n ≥ 2, we have

σ (n) ≥ ϕ (n) + d (n) ,

with equality if and only if n is prime.

Proof. First of all, it is clear that ϕ (n) ≤ n − (d (n)− 1) = n + 1 − d (n),

since for each d | n, d > 1, we have (d, n) > 1. It follows that σ (n) > n ≥

ϕ (n) + d (n)− 1, and hence σ (n) ≥ ϕ (n) + d (n).

Proposition 3.6 For any positive integer n, we have d (n) ≤ σ2 (n)

n
, where

σ2 (n) =
∑
d2

d|n
.

For the proof, we need the following lemma. See for example, [1, page 4].
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Lemma 3.1 (Arithmetic–Geometric means inequality) Let a1, a2, ..., ak

be positive real numbers. Then (a1a2...an)
1
n ≤ a1 + a2 + ...+ an

n
, with equal-

ity if and only if a1 = a2 = ... = an.

Proof. From Theorem 2.2 and Proposition 3.6, we deduce that

n =

∏ d2

d|n

 1
d(n)

≤ 1

d (n)

∑
d2

d|n

=
σ2 (n)

d (n)
,

and the result follows.

Proposition 3.7 For each n ∈ N, let σ2 (n) =
∑

d|n d
2. Then

σ2 (n)

d (n)
≤ σ2 (n) ≤ σ2 (n) , (n = 1, 2, ...)

Proof. First of all it is clear that σ2 (n) =
∑

d|n d
2 ≤

(∑
d|n d

)2

= σ2 (n),

which proves the second inequality. On the other hand, using the Cauchy-

Schwarz inequality, we obtain, σ2 (n) =
(∑

d|n d · 1
)2

≤
∑

d|n d
2 ·
∑

d|n 12 =

σ2 (n) · d (n), hence the first inequality.

Theorem 3.7 Let f : N −→ R+ and let F (n) =
∑

d|n f (d). Then

∏
d|n

f (d) ≤
(
F (n)

d (n)

)d(n)

, n = 1, 2, ...

In particular, we have

∏
d|n

ϕ (d) ≤
(

n

d (n)

)d(n)

, n = 1, 2, ...
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Proof. This follows from the fact that the geometric mean does not ex-

ceed the arithmetic mean (see Lemma 3.1). Indeed, since

[∏
d|n
f (d)

] 1
d(n)

≤

1
d(n)

∏
d|n
f (d), the result follows. For the second part, we take f (n) = ϕ (n) so

that F (n) =
∑
d|n
ϕ (d) = n, (see Theorem 1.3).

Remark 3.1 By a second method, we show that

d (n) ≥ n

ϕ (n)
, (n = 1, 2, ...) .

Let n ≥ 1. We have for d | n, ϕ (n) ≥ ϕ (d). Therefore,
∑
d|n
ϕ (n) ≥

∑
d|n
ϕ (d) =

n. Thus, ϕ (n) · d (n) ≥ n.

3.3 Inequalities defined by arithmetic functions
and integer-valued polynomials

We can compare between an arithmetic function formed by the production of

certain multiplicative functions (for example, d, ϕ and σ) and a an integer-

valued polynomial whose leading coefficient is positive. As we see in the

following theorem.

Theorem 3.8 Let s and n be positive integers with n ≥ 2. Then,

ϕs (n)d(n) ψs (n)σ (n) ≥ n3s+1 +n3s−n2s+1−n2s−ns+1−ns +n+ 1. (3.11)

Proof. Firstly, for s = 1, we note that

ϕ (n)d(n) ψ (n)σ (n)−
(
n4 − 2n2 + 1

)
=

{
0, for n = p,

111, for n = 4.
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Next, it suffices to show that if ϕ (n)d(n) ψ (n)σ (n) ≥ n4 − 2n2 + 1 for some

n ≥ 3, then it is also true for p · n with p ≥ 2 is prime. Indeed, for each such

integer n and for any prime p ≥ 2 we distinguish two cases.

1. When p does not divide n. Since ϕ (n) ≥ 2 and d (n) ≥ 2, it follows

that

ϕ (pn)d(pn) ψ (pn)σ (pn) = (p− 1)2d(n) ϕ (n)2d(n) (1 + p)2 ψ (n)σ (n)

= (p− 1)2d(n) ϕ (n)d(n) (1 + p)2
[
ϕ (n)d(n) ψ (n)σ (n)

]
≥ (p− 1)2d(n) ϕ (n)d(n) (1 + p)2 (n4 − 2n2 + 1

)
≥ (p− 1)4 22 (1 + p)2 (n4 − 2n2 + 1

)
= n4

(
4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 4

)
+

n2
(
−8p6 + 16p5 + 8p4 − 32p3 + 8p2 + 16p− 8

)
+

4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 4.

Thus,

ϕ (pn)d(pn) ψ (pn)σ (pn)−
(
(pn)4 − 2 (pn)2 + 1

)
(3.12)

≥ n4
(
4p6 − 8p5 − 5p4 + 16p3 − 4p2 − 8p+ 4

)
+

n2
(
−8p6 + 16p5 + 8p4 − 32p3 + 10p2 + 16p− 8

)
+

4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 3.

Using the graph of the function x 7→ 4x6−8x5−4x4+16x3−4x2−8x+3,

we have

4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 3 > 0. (3.13)

In fact, we see that

4p6−8p5−4p4 +16p3−4p2−8p = 4p4
(
p2 − 2p− 1

)
+4p

(
4p2 − p− 2

)
,
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where p2 − 2p− 1 > 0 holds for every p ≥ 3 and 4p2 − p− 2 > 0 holds

for every p ≥ 2. This proves (3.13) for every p ≥ 2, since its value at

p = 2 is 35. Moreover, from the graph of the function:

x 7→ 8x6 − 16x5 − 8x4 + 32x3 − 10x2 − 16x+ 8

4x6 − 8x5 − 5x4 + 16x3 − 4x2 − 8x+ 4
,

by using the same manner as those of the proof of (3.13) we can prove

that

0 <
8p6 − 16p5 − 8p4 + 32p3 − 10p2 − 16p+ 8

4p6 − 8p5 − 5p4 + 16p3 − 4p2 − 8p+ 4
≤ 3.2.

Since n ≥ 2, then

n2 >
− (−8p6 + 16p5 + 8p4 − 32p3 + 10p2 + 16p− 8)

4p6 − 8p5 − 5p4 + 16p3 − 4p2 − 8p+ 4
> 0. (3.14)

Setting

A = 4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 3,

B = −8p6 + 16p5 + 8p4 − 32p3 + 10p2 + 16p− 8,

C = 4p6 − 8p5 − 5p4 + 16p3 − 4p2 − 8p+ 4.

Since A > 0 and n2 >
−B
C

, it follows from the inequality (3.12) that

ϕ (pn)d(pn) ψ (pn)σ (pn)−
(
(pn)4 − 2 (pn)2 + 1

)
> n4C + n2B +A > 0.

2. When p divides n. Since ψ (pn) = pψ (n), ϕ (pn) = pϕ (n), σ (pn) >
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pσ (n) and d (pn) ≥ d (n) + 1, then

ϕ (pn)d(pn) ψ (np)σ (np) = (pϕ (n))d(pn) ψ (pn)σ (pn)

> pd(pn)+2ϕ (n)d(pn) ψ (n)σ (n)

≥ pd(n)+3ϕ (n)d(n)+1 ψ (n)σ (n)

= pd(n)+3ϕ (n)
[
ϕ (n)d(n) ψ (n)σ (n)

]
≥ pd(n)+3ϕ (n)

(
n4 − 2n2 + 1

)
≥ 2n4p5 − 4n2p5 + 2p5.

Therefore,

ϕ (pn)d(pn) ψ (pn)σ (pn)−
(
(pn)4 − 2 (pn)2 + 1

)
≥ 2n4p5 − n4p4 − 4n2p5 + 2n2p2 + 2p5 − 1

= n4
(
2p5 − p4

)
+ n2

(
−4p5 + 2p2

)
+ 2p5 − 1. (3.15)

Since p ≥ 2, then 2p5 − 1 > 0. Using the graph of the function x 7→
4x5 − 2x2

2x5 − x4
and the proof of (3.13), we can also prove that

0 <
4p5 − 2p2

2p5 − p4
≤ 5

2
.

Since n ≥ 2, then

n2 >
− (−4p5 + 2p2)

2p5 − p4
> 0. (3.16)

It follows from (3.15),(3.16) that

ϕ (pn)d(pn) ψ (pn)σ (pn)−
(
(pn)4 − 2 (pn)2 + 1

)
> 0.

Hence, for s = 1, we have proved that the inequality ϕ (n)d(n) ψ (n)σ (n) ≥

n4 − 2n2 + 1 is true for every n ≥ 2.
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Now, assume for some s ≥ 1 that the desired inequality holds for any

composite positive integer n. We distinguish two cases:

Case 1. Suppose that n is not the square of a prime number. Then

ϕs+1 (n)d(n) ψs+1 (n)σ (n)

=

ns+1
∏
p|n

(
1− 1

ps+1

)d(n)

ns+1
∏
p|n

(
1 +

1

ps+1

)
σ (n)

= nd(n)

ns∏
p|n

(
1− 1

ps+1

)d(n)

ns+1
∏
p|n

(
1 +

1

ps+1

)
σ (n)

≥ nd(n)

ns∏
p|n

(
1− 1

ps

)d(n)

ns
∏
p|n

(
1 +

1

ps

)
σ (n)

= nd(n)
[
ϕs (n)d(n) ψs (n)σ (n)

]
≥ nd(n)

(
n3s+1 + n3s − n2s+1 − n2s − ns+1 − ns + n+ 1

)
Therefore,

ϕs+1 (n)τ(n) ψs+1 (n)σ (n) ≥ n4

(
n3s+1 + n3s − n2s+1 − n2s − ns+1 − ns+

n+ 1

)
(3.17)

= n3s+5 + n3s+4 − n2s+5 − n2s+4 − ns+5 − ns+4 + n5 + n4,
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where (3.17) holds because n is not of the form p2 with p is prime, and

therefore τ (n) ≥ 4. Since n ≥ 6, it follows that

ϕs+1 (n)d(n) ψs+1 (n)σ (n)−
(
n3s+4 + n3s+3 − n2s+3 − n2s+2 − ns+2 − ns+1 + n+ 1

)
≥ n3s+5 − n3s+3 − n2s+4 + n2s+3 − n2s+5 + n2s+2 − ns+5 − ns+4 + ns+2 +

ns+1 + n5 + n4 − n− 1

≥ 63s+5 − 63s+3 − 22s+4 + 62s+3 − 62s+5 + 62s+2 − 6s+5 − 6s+4 + 6s+2 +

6s+1 + 65 + 64 − 6− 1

= 7560× 63s − 8820× 62s − 9030× 6s + 9065

≥ 1270 325.

Note that when n is prime, the inequality (3.11) becomes

ϕs (n)d(n) ψs (n)σ (n) = (ns − 1)2 (ns + 1) (n+ 1)

= n3s+1 + n3s − n2s+1 − n2s − ns+1 − ns + n+ 1.

Case 2. Suppose that n = p2 for some prime number p ≥ 2. We also have

ϕs (n)d(n) ψs (n)σ (n) =
(
p2s − ps

)3 (
p2s + ps

) (
1 + p+ p2

)
= p8s+2 + p8s+1 + p8s − 2p7s+2 − 2p7s+1 − 2p7s +

2p5s+2 + 2p5s+1 + 2p5s − p4s+2 − p4s+1 − p4s.

Therefore,

ϕs (n)d(n) ψs (n)σ (n)−
(
n3s+1 + n3s − n2s+1 − n2s − ns+1 − ns + n+ 1

)
≥ p8s+2 + p8s+1 + p8s − 2p7s+2 − 2p7s+1 − 2p7s − p6s+2 − p6s + 2p5s+2 +

2p5s+1 + 2p5s + p2s+2 − p4s+1 + p2s − p2 − 1

≥ 7× 28s − 14× 27s − 5× 26s + 14× 25s − 2× 24s + 5× 22s − 5

≥ 111,
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since p ≥ 2. Hence, (3.11) is true for n = p2 with p is prime.

Thus, our assertion is proved by induction on s. This completes the proof

of Theorem 3.8.

Remark 3.2 In the case when n = p2 with p is prime, then (3.17) becomes

ϕs+1 (n)d(n) ψs+1 (n)σ (n) ≥ n3s+4+n3s+3−n2s+3−n2s+4−ns+4−ns+3+n4+n3,

since τ (n) = 3. Hence,

ϕs+1 (n)d(n) ψs+1 (n)σ (n)−
(
n3s+4 + n3s+3 − n2s+3 − n2s+2 − ns+2 − ns+1 + n+ 1

)
≥ −n2s+4 + n2s+2 − ns+4 − ns+3 + ns+2 + ns+1 + n4 + n3 − n− 1, (3.18)

where the leading coefficient of (3.18) is negative. Therefore, in this case, the

inequality (3.11) can not be easily deduced for the power s+ 1.
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Chapter 4

Conclusion and open questions

Number Theory is a field where the problems to solve are very easy to formal-

ize and to understand, but very hard to prove. Let us consider the following

Diophantine equation involving the divisor function:

d (n+ a) = d (n+ b) ,

which is derived from [3], where a, b are two distinct nonnegative integers.

We conjecture that the above equation has infinitely many solutions. In par-

ticular, for a = 2022 and b = 2021 we have

d (n+ 2022) = d (n+ 2021) . (4.1)

Using the following program in Maple:

> for n from 1 to 1000 do if tau(n+202) = tau(n+201) then print(n);

end if ; end do:

It seems that (4.1) has infinitely many solutions, where the first terms

are

20, 33, 34, 56, 64, 72, 80, 81, 88, 101, 105, 112, 113, 141, ....
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In the year 1940 the tables of the function d (n) for n ≤ 10000 were

published by Gaisher [2]. As we check in the table, the equalities d (n) =

d (n+ 1) = d (n+ 2) = d (n+ 3) = 8 hold for n = 3655, 4503, 5943, 6853,

7256, 8393, 9367. Also, for n = 40311 we see that

d (n) = d (n+ 1) = d (n+ 2) = d (n+ 3) = d (n+ 4) . (4.2)

The proof of (4.2) follows immediately from the factorization into primes of

the numbers 40311 = 33 ·1493, 40312 = 23 ·5039, 40313 = 7 ·13 ·443, 40314 =

2 · 3 · 6719 and 40315 = 5 · 11 · 733. In fact, these numbers have 8 divisors. A

similar situation occurs for n = 99655. Note also that for n ≤ 10000 we have

d (n) ≤ 64 and the maximum value d (n) = 64 is taken only for the numbers

n = 7560 and 9240.

Erdös and Mirsky [2] formulated a conjecture which states that there are

infinitely many natural numbers n for which d (n) = d (n+ 1). For example,

we have d (2) = d (3), d (14) = d (15), d (33) = d (34) = d (35) = 4, d (242) =

d (243) = d (244) = d (245) = 6, ...etc. In 1981, Spiro [3] proved that d (n) =

d (n+ 5040) has infinitely many solutions. In fact, this conjecture was proved

by [2]. If n = 40311, then

d (n) = d (n+ 1) = d (n+ 2) = d (n+ 3) = d (n+ 4) .

In addition, we do not know whether there exists an infinite sequence of

increasing natural numbers nk (k = 1, 2, ...) such that

lim
k→∞

d (nk + 1)

d (nk)
= 1.

An important general Diophantine equation related to the divisor function

is given by

f (d (n)) = d (g (n)) ,
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where f and g are two multiplicative functions. Does the above equation has

infinitely many solutions?
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