REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université 8 Mai 1945 – Guelma

Faculté des Sciences et de la Technologie

Département de Génie Electrotechnique et Automatique

Réf : .../2022

MEMOIRE

Présenté pour l'obtention du diplôme de MASTER Académique

Domaine : Sciences et Technologie Filière : Electromécanique Spécialité/Option : Electromécanique

Par: BENAKARA Abderrahmen

Thème

Détection et isolation de défauts pour une installation photovoltaïque

Soutenu publiquement, le 15/06/2022, devant le jury composé de :

M BOUCERREDJ Leila

M. DJEBALA Abderrezak M. FRIHI Djamel M FRIOUI Nadia M. AZZOUZI Ahamidet MCA Professeur MCA MCB Expert Univ. Guelma Encadreur Univ. Guelma Président Univ. Guelma Examinateur Univ. Guelma Examinateur Membre de l'Académie Invité de Cambridge

Année Universitaire : 2021/2022

Remercíements

Le plus grand mercí revient à Dieu qui lui seul nous guide dans le bon sens durant notre vie et qui ma aider à réaliser ce modeste travail.

Je voudrais tout d'abord exprimer mes sincères remerciements à Madame**BOUCERREDJ Leila** et à Monsieur **Azzouzi Ahmidet**, qui m'ont suivi tout au long de cette période, leurs conseils, leur patience, leur disponibilité et l'intérêt qu'ils ont portés à ce travail

Je remercie Monsieur M. **DJEBALA Abderrezak**, de l'Université 08 mai 1945-Guelma-de m'avoir fait l'honneur de présider le jury de soutenance.

Je remercie M. **FRIHI Djamel**et M **FRIOUI Nadia**, de l'Université 08 mai 1945 - Guelma - pour avoir accepté de juger ce travail.

Nous tenons tout particulièrement à remercier les enseignants du département de **Génie Électrotechnique et Automatique** de l'Université **8 Mai 1945 Guelma** pour leur disponibilité et encouragement, ainsi que tous les enseignants qui ont contribué à notre formation.

J'exprime mes vifs remerciements à Monsieur Azzouzi Ahmidet, Membre de l'Académie de Cambridge, de m'avoir fait l'honneur d'accepter d'assister ma soutenance.

Dédicace

Avant tous, je remercie **DIEU** le tout puissant de m'avoir donné le courage et la patience pour réaliser ce Travail malgré toutes les difficultés rencontrées.

Je dédie ce travail:

 à mes chers parents, pour tous leurs sacrífices, leur amour, leur tendresse, leur soutien et leurs prières tout au long de mes études.

- à mes chers mon frère et ma sœur pour leurs encouragements permanents, et leur soutien moral.
- à toute la famille et les amis.

ملخص

مثل أي عملية صناعية، يمكن أن يتعرض النظام الكهروضوئي، أثناء تشغيله، لأعطال مختلفة تؤدي إلى انخفاض أداء النظام وحتى عدم توفره. إن السماح بالتشخيص الدقيق والكشف عن الأعطال وتحديد موقعها في التركيب الكهروضوئي يقلل من تكاليف الصيانة وقبل كل شيء يزيد الإنتاجية. في هذا العمل، نحن مهتمون على وجه التحديد باكتشاف وتحديد الأعطال على جانب التيار المستمر من نظام الكهروضوئية، أي جانب المولد الكهروضوئي. الهدف من هذه المذكرة هو اقتراح نهج لاكتشاف وتحديد العيري إلى انخفاض الإنتاج، من خلال اتخاذ أقل عدد ممكن من التدابير لاحترام القيود الاقتصادية. لهذا، وهم التي تؤدي إلى انخفاض الإنتاج، من خلال اتخاذ أقل عدد ممكن من التدابير لاحترام القيود الاقتصادية. لهذا، وقع الاختيار على تحليل خاصية

٧-اللمولد الكهروضوئي لأنماط التشغيل المختلفة التي تم النظر فيها

في هذا العمل قمنا بتحليل التصميمومحاكاة الاشتغال الكهربائي للنظام الكهروضوئيلهتابعة الاستطاعة الأعظمية المفرغة عن طريق المولد الكهروضوئي

أدى هذا التحليل إلى استخدام برنامجواتش باور لإجراء تشخيص التثبيتتم التحقق من صحة هذا الإجراء من خلال التجارب في الموقع والمحاكاة في الوقت الفعلي والمحاكاة في غير الوقت الفعليالذي دل على المراقبة في السير الديناميكي للنظام الكهر وضوئي

الكلمات المفتاحية: المولدات الكهر وضوئية، النمذجة، التشخيص، برنامجو اتش باور ، المحاكاة في الوقت الحقيقي

Résumé

Comme tout processus industriel, un système photovoltaïque peut être soumis, au cours de son fonctionnement, à différents défauts et anomalies conduisant à une baisse de la performance du système et voire à son indisponibilité. Permettre de diagnostiquer finement et de faire de la détection et de localisation de défauts dans une installation PV réduit les coûts de maintenance et surtout augmente la productivité. Dans ce travail, nous nous intéressons spécifiquement à la détection et la localisation de défauts côté DC du système PV, c'est-à-dire du côté générateur PV. Dans ce travail, nous analysons la conception et la simulons du système photovoltaïque pour suivre la puissance maximale de générateur photovoltaïque.

L'objectif de ce mémoire est de proposer, en prenant le moins de mesures possibles pour respecter les contraintes économiques, une approche pour détecter et localiser des défauts conduisant à une baisse de production. Pour cela, le choix s'est porté sur l'analyse de la caractéristique I-V du générateur PV pour les différents modes de fonctionnement considérés. Cette analyse a conduit à utiliser le logiciel Watch power pour effectuer le diagnostic de l'installation. Cette démarche a été validée par des expérimentations sur site, des simulations temps-réel et hors temps-réel.

Mots-clefs :Générateur photovoltaïque, modélisation, diagnostic, logiciel Watch power, simulation temps réel.

Abstract

As with every industrial process, a photovoltaic system may be subject, during his operation, to various faults and abnormalities leading to a drop in its efficiency up to its unavailability. A precise diagnosis and fault detection and isolation make it possible to reduce the maintenance costs and above all increase the yield. In this work, a focus has been made on the fault detection and isolation in the DC part of the PV system, it means of the PV array. In this work, we analyze the design and simulate the photovoltaic system to follow the maximum power of the photovoltaic generator. In this work, we analyze the design and simulation of the photovoltaic system to follow the maximum power of the photovoltaic generator.

The goal of this work is to propose, by conducting the less possible measurements to meet the economic constraints, an approach to detect and isolate the faults causing a drop in the array yield. To achieve this goal, the analysis of the I-V characteristic has been chosen. This analysis leads to the use of the watchpower software, to conduct the diagnosis of the PV plant. This procedure has been validated by on-site experiments, real-time simulations, and non-real-time simulations.

Keywords: Photovoltaic generator, modeling, diagnosis, Watchpower software, real-time simulation

Sommaire

Introduction générale	
CHAPITRE 1 – Généralités sur l'énergie solaire	01
I.1. Introduction	02
I.2. L'énergie solaire	02
I.3. La ressource solaire	02
I.4. Rayonnement solaire	08
I.5. Types de rayonnement	08
I.5.1. Le rayonnement direct	08
I.5.2. Le rayonnement diffus	08
I.5.3. Le rayonnement solaire réfléchi	08
I.5.4. Le rayonnement global	09
I.6. L'utilisation de l'énergie solaire	09
I.7. Les différentes technologies solaires	11
I.7.1. Solaire à concentration thermodynamique	11
I.7.2. Solaire thermique	11
I.7.3. Solaire photovoltaïque	12
I.8. Potentiel solaire en Algérie	13
I.9. Avantages et inconvénients de L'énergie solaire	14
I.9.1. Les avantages de l'énergie solaire	14
I.9.2. Inconvénients	15
I.10. Conclusion	15
CHAPITRE II – Le Système photovoltaïque	16
II.1. Introduction	17
II.2. Le système photovoltaïque :	17
II.3. La conversion photovoltaïque	17
II.3.1. L'effet photovoltaïque	17
II.3.2. Principe de la conversion	18
II.4. Les différents éléments composant un système Photovoltaïque	19
II.4.1. Le générateur photovoltaïque	19
II.4.1.1.Composantes d'un générateur de modules photovoltaïques	19
II.4.2.Déférents types des panneaux solaires	20
II.4.2.1. Monocristallines	20
II.4.2.2. Polys cristallins	20
II.4.2.3.Amorphes	20
II.5.Effet des variations climatiques sur module PV	20
II.5.1.Variation du rayonnement	21
II.5.2.Association des cellules	21 23
II.5.2.1.Association en série	23
II.5.2.2.Association en parallèle	24
II.5.2.3. Association hybride (série/parallèle)	25
II.6.Les batteries	27

II.6.1. Types de batteries	27
II.6.1.1.Les batteries de Nickel- Cadmium	28
II.6.1.2. Les batteries rechargeables au plomb-acide	28
II.6.1.3.Les batteries Lithium (Li)	28 29
II.6.2.Fonctionnement de la batterie	29
II.6.3.Connexions des batteries	29
II.7.Le régulateur de charge	29 30
II.7.1.Les types de régulateur de charge	29
II.7.1.1.Le régulateur « PWM » (Pulse Width Modulation)	29
II.7.1.2.Le régulateur « MPPT » « Maximum Power Point Trac King	30
II.8.1 Onduleur II.8.1 Principe de fonctionnement	31 31
II 8 1 1 Onduleur Mononbasé	31
II.8.1.2.Onduleur triphasé	32
II.9.Les types d'un système photovoltaïque	32
II.9.1.Système PV autonome	33
II.9.2.Systèmes couplés au réseau	33
II.9.3.Systèmes hybrides	34
II.10.Les avantages et les inconvénients de l'énergie photovoltaïque	34 35
II.10.1.Les avantages de l'énergie photovoltaïque	35
II.10.2.Les inconvenients de l'energie photovoltaique	36
II.11.Conclusion	36
CHAPITRE III – DEFAUTS LIES AUX SYSTEMES PHOTOVOLTAIQUE	36
CHAPITRE III – DEFAUTS LIES AUX SYSTEMES PHOTOVOLTAIQUE	36 36
III.1. Introduction	36 36 36
III.1. Introduction III.2. Détection et localisation de défauts pour un système PV	36 36 36 36 36
III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque	36 36 36 36 36 36
III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque	36 36 36 36 36 36 37 37
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV 	36 36 36 36 36 37 37 37
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne 	36 36 36 36 36 36 37 37 37 40
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation 	36 36 36 36 36 37 37 37 40 40
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet 	36 36 36 36 36 37 37 40 40 41 41
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet 	36 36 36 36 36 37 37 37 40 40 41 41 41 42
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet III.3.5. Fissuration des cellules 	36 36 36 36 36 37 37 40 40 41 41 41 42 42
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet III.3.5. Fissuration des cellules III.3.6. Interconnexion endommagée 	36 36 36 36 36 37 37 37 40 40 41 41 42 42 42 42 42
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet III.3.5. Fissuration des cellules III.3.6. Interconnexion endommagée III.3.7. Ombrage et des salissures 	36 36 36 36 36 37 37 37 40 40 41 41 42 42 42 42 42 42
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet III.3.5. Fissuration des cellules III.3.6. Interconnexion endommagée III.3.7. Ombrage et des salissures III.3.8. Exemple d'application 	36 36 36 36 36 37 37 37 40 40 41 41 42 42 42 42 42 42 42 42 43 43
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet III.3.5. Fissuration des cellules III.3.6. Interconnexion endommagée III.3.7. Ombrage et des salissures III.3.8. Exemple d'application III.3.8.1. Première expérience : 	36 36 36 36 36 37 37 37 40 40 41 41 42 42 42 42 42 42 42 42 42 42 42 42 42
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet III.3.5. Fissuration des cellules III.3.6. Interconnexion endommagée III.3.7. Ombrage et des salissures III.3.8. Exemple d'application III.3.8.1. Première expérience : III.3.8.2. Deuxième expérience 	$\begin{array}{c} 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 37\\ 37\\ 40\\ 40\\ 41\\ 41\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 43\\ 43\\ 44\\ 44\\ 46\end{array}$
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet III.3.5. Fissuration des cellules III.3.6. Interconnexion endommagée III.3.8. Exemple d'application III.3.8.1. Première expérience : III.3.8.2. Deuxième expérience 	$\begin{array}{c} 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 37\\ 37\\ 40\\ 40\\ 41\\ 41\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42$
 III.1. Introduction III.2. Détection et localisation de défauts pour un système PV III.3. Défauts dans le système photovoltaïque III.3.1. Types de défauts du module PV III.3.2. Défaut de ligne à ligne III.3.3. Défaut d'encapsulation III.3.4. Perte d'adhérence de back-sheet III.3.5. Fissuration des cellules III.3.6. Interconnexion endommagée III.3.8. Exemple d'application III.3.8.1. Première expérience : III.3.8.2. Deuxième expérience III.3.8.2.1. Défaut d'ombrage partiel de 8 cellules en bas cote gauche 	$\begin{array}{c} 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 37\\ 37\\ 40\\ 40\\ 41\\ 41\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42$

III.3.8.2.3. Défaut d'ombrage partiel de 4 cellules en haut panneau	50
III.3.9. Défaut de mis Matching	52
III.3.10. Example d'application	52
III.3.10.1.les essais	52
III.3.10.2. Interprétation	54
III.3.11. Défauts au niveau de convertisseur DC/DC	54
III.3.12. Pannes au niveau de la boîte de jonction	54
III.3.13. Défaut de terre	56
III.3.14. Défaut d'arc	56
III.3.15. Interconnexion endommagée	56
III.3.16. Défaut de ligne à ligne	58
III.4. Système de diagnostic	60
III.4.1. Etape de diagnostic	60
III.4.2. Objectifs	61
III.5. Architecture de diagnostic	62
III.6. Méthodes de détection et de diagnostic des défauts d'un système PV	63
III.7. CONCLUSION	66
CHAPITRE IV-Surveillance et diagnostic des défauts d'une installation pho logiciel Watch POWER	tovoltaïque
IV.1.INTRODUCTION	
IV.2. Simulation l'effet des défauts sur installation PV par Matlab Simulink	68
IV.3. Défaut d'ombrage partiel	70
IV.4. L'effet de température sur l'installation PV	71
IV.5 Défaut de terre	72
IV.6. Défaut de ligne à ligne	72
IV.7. Le Logical Watch Power 73	
IV.7.1 Caractéristiques du Logiciel73	
IV.7.2. Mode de mise sous tension et de veille	74
IV.7.3. Mode batterie	75
IV.7.4. Mode défaut	76
IV.7.5. Watch power en application Wi-Fi	76
IV.8. Surveillance et diagnostic d'une installation PV par le logiciel Watch power	77
IV.8.1.La première expérience	77
IV.8.1.1. Les résultats de simulation donnée par logiciel	80
IV.8.1.1.1. Interprétation	84

IV.8.2. Deuxième expérience	
IV.8.2.1. Défaut d'ombrage	85
IV.8.2.1.1. Les courbes données par logiciel	86
IV.8.2.1.2. Interprétation	87
IV.8.3. Journée normale sans défauts	87
IV.8.3.1.Les courbes données par logiciel	87
IV.8.3.2. Interprétation	88
IV.9.Conclusion	89
Conclusion générale	90
Bibliographie	

Liste des figures et Tableaux

FIGURE.I. 1:SPECTRE DU RAYONNEMENT SOLAIRE	03
FIGURE.I. 2:TRAJECTOIRE DU SOLEIL SELON LES SAISONS POUR UNE LATIT	04
FIGURE.I. 3: COURBES D'ENSOLEILLEMENT TYPIQUE PAR MOIS POUR DIFFERENTES	
LATITUDES	04
FIGURE.I. 4:UN PLAN INCLINE CAPTE PLUS DE RAYONNEMENT OU'UN PLAN HORIZONTAL	
FIGURE. L 5: EFFET DE L'INCLINAISON SUR LE RAYONNEMENT, DE MOIS EN MOIS, A 45° DE	
LATITUDE	07
FIGURE L 6: COURBES D'ENSOLEILLEMENT TYPIOUE PAR HEURE LATITUDE 45°	09
FIGURE L 7: TYPES DE RAYONNEMENT SOLAIRE RECUS AU SOL	11
FIGURE A SPRESENTATION DU SOLAIRE A CONCENTRATION THERMODYNAMIOUE	
PRODUCTEUR D'ELECTRICITE	12
FIGURE.I. 9: PRINCIPE DE FONCTIONNEMENT D'UN CESI (CHAUFFE-EAU SOLAIRE INDIVIDUEL)	13
FIGURE.I. 10:L'ENERGIE SOLAIRE PHOTOVOLTAÏOUE	14
FIGURE. L 11: IRRADIATION GLOBALE JOURNALIERE RECUE SUR UN PLAN HORIZONTAL SU	R
LE TERRITOIRE ALGERIEN AU MOIS DE JUILLET	14
FICURE IL 2. GENERATEUR DV	10
FIGURE.II. 2. OENERATEUR I V FIGURE II. 3. COMPOSANTES D'UN GENERATEUR DE MODUI ES DHOTOVOI TAÏQUES	20
FIGURE. II. J. DECEMENTS TYPES DES DANNEAUX SOLAIDES	20
FIGURE, II, 4; DEFERENTS I TEES DES FAINLEAUX SOLAIRES. FIGURE IL 5, CADACTEDISTIQUE I (V) DOUD DEFEDENTS ECLAIDEMEN [20]	21
FIGURE. II. S. CARACTERISTIQUE I (V) FOUR DEFERENTS ECLAIREMEN. [20] FIGURE II. G. CARACTERISTIQUE I (V) DOUD DEFERENTS TEMPED ATURES [20]	22
FIGURE, II. 0; CARACTERISTIQUE F (V) FOUR DEFERENTS TEMFERATURES. [20]	22
FIGURE, II, 7: MONTRE LE GROUPEMENT EN SERIES DES CELLULES IDENTIQUES FIGURE IL 9-CADACTEDISTIQUE CROUDEMENT EN SERIES DES CELLUES IDENTIQUES [21]	23
FIGURE. II. 6: CARACTERISTIQUE OROUPEMENT EN DADATTELE DES CELLULES IDENTIQUES. [21]	24
FIGURE, II. 9: MONTRE LE GROUPEMENT EN PARALLELE DES CELLULES IDEN HQUE.	24
FIGURE, II. IU:CARACTERISTIQUE D'UN GROUPEMENT EN PARALLELE DES CELLULES	25
IDENTIQUES[21]	25
FIGURE, II. II: MONTRE LE GROUPEMENT HYBRIDE DES CELLULES IDENTIQUES	28
FIGURE. II. 12:CARACTERISTIQUE D'UN GROUPEMENT HYBRIDE DES CELLULES IDENTIQU	ES26
FIGURE. II. 13:DIODE PANNEAU SOLAIRE[26]	27
FIGURE. II. 14:BATTERIE GEL AGM	27
FIGURE. II. 15:BRANCHEMENT DES BATTERIES	29
FIGURE. II. 16:REGULATEUR SOLAIRE PWM	30
FIGURE.II. 17:REGULATEUR SOLAIRE MPPT	31
FIGURE. II. 18:PRINCIPE DE FONCTIONNEMENT L'ONDULEUR D'UN SYSTEME	
PHOTOVOLTAIQUE	32
FIGURE. II. 19:SCHEMA DE PRINCIPE D'UN ONDULEUR MONOPHASE	32
FIGURE. II. 20:SCHEMA DE PRINCIPE D'UN ONDULEUR TRIPHASE	33
FIGURE. II. 21:INSTALLATION PHOTOVOLTAIQUE AUTONOME.	37
FIGURE. II. 22: INSTALLATION PHOTOVOLTAÏQUE COUPLEE AU RESEAU	34
FIGURE. II. 23:SYSTEME HYBRIDE	35
FIGURE,III, 1:EXEMPLES DE DEFAUTS RENCONTRES DANS DES GENERATEURS PV.	42
FIGURE, III, 2: PANNES ET PANNES DU MODULE SOLAIRE PHOTOVOLTAIQUE	43
FIGURE, III, 3: FISSURATION ET DOMMAGES CELLULAIRES	44
FIGURE, III, 4:LES APPAREILS UTILISES	45
FIGURE, III, 5:INSTALLATION SYSTEME PV SANS DEFAUT	46
FIGURE, III, 6:DEFAUT D'OMBRAGE PARTIEL 8 CELLULES EN BAS COTE GAUCHE	47
FIGURE, III, 7: COURBE F(G) = P(WC) DE DEFAUT D'OMBRAGE PARTIEL DE 8 CELLULES EN E	3AS
COTE GAUCHE	47
FIGURE, III, 8:DEFAUT D'OMBRAGE PARTIEL DE 8 CELLULES EN HAUT COTE DROIT	48
FIGURE, III, 9: COURBE F(G) = P(WC) DE DEFAUT D'OMBRAGE PARTIEL DE 8 CELLULES HAU	JT
COTE DROIT	49

FIGURE, III, 10:DEFAUT D'OMBRAGE PARTIEL DE 4 CELLULES EN HAUT DE PANNEAU	50
FIGURE, III, 11: COURBE F(G) = P(WC) DE DEFAUT D'OMBRAGE PARTIEL DE 4 CELLULES EN	
HAUT DE PANNEAU	50

FIGURE.III.12. 1:DEFAUT DE MIS MATCHING	51
FIGURE.III.13:CARACTERISTIQUE PANNEAU 80 WC FIGURE.III.12. 3:CARACTERISTIQUE	52
FANNEAU100 WC FICURE III 14-EXEMPLES DE DEFAUTS RENCONTRES DANS LE SVSTEME DE CABLAGE	53 53
FIGURE.III.15:EXEMPLES DE DEFAUTS DE DIODES DE BYPASS	53
FIGURE.III.16:SCHEMA GLOBAL DE DETECTION ET DE DIAGNOSTIC DES DEFAUTS	55
FIGURE.III.17:DIFFERENTES METHODES DE DIAGNOSTIC.[41]	58
FIGURE.III.18: TECHNIQUES DE DETECTION DE DEFAUTS POUR LES SYSTEM	ES PV
AUTONOM	ies 58

FIGURE. IV. 1:LE MODULE PHOTOVOLTAÏQUE		66
FIGURE.IV. 2:CARACTERISTIQUE DE MODULE KYOCERA SOLAR KO	C200GT	66
FIGURE.IV. 3:CARACTERISTIQUE I(V) P(V) DE MODULE KYOCERA S	SOLAR KC200GT	67
FIGURE. IV. 4:SCHEMA BLOCK DE SYSTEME PV		67
FIGURE. IV. 5:CARACTERISTIQUE I(V) P(V) SANS DEFAUT		68
FIGURE. IV. 6:CARACTERISTIQUE I(V) P(V) L'EFFET D'OMBRAGE SU	UR 2 MODULES	68
FIGURE. IV. 7:CARACTERISTIQUE I(V) P(V) L'EFFET D'OMBRAGE SU	UR 3 MODULES	68
FIGURE. IV. 8:CARACTERISTIQUE I(V) P(V) L'EFFET D'OMBRAGE S	SUR 4 MODULES	69
FIGURE. IV. 9:CARACTERISTIQUE I(V) P(V) L'EFFET DE TEMPERAT	TURE DE 50 DEGRES SUR L	LES
MODULES		69
FIGURE. IV. 10:CARACTERISTIQUE I(V) P(V) L'EFFET DE TEMPERAT	TURE DE 60 DEGRES SUR L	ES
MODULES		69
FIGURE. IV. 11:CARACTERISTIQUE I(V) P(V) L'EFFET DEFAUT DE TH	ERRE	70
FIGURE. IV. 12:CARACTERISTIQUE I(V) P(V)L'EFFET DEFAUT LIGNE	E A LIGNE	70
FIGURE. IV. 13:LA FENETRE PRINCIPALE DE LOGICIEL WATCH POW	VER	71
FIGURE. IV. 14:CONFIGURATION LES PARAMETRES D'ONDULEUR		72
FIGURE. IV. 15:MODE DE MISE SOUS TENSION FIGU	RE. IV. 16 :MODE VEILLE	73
FIGURE. IV. 17:MODE BATTERIE		73
FIGURE. IV. 18: MODE DEFAUT		74
FIGURE. IV. 19: WATCH POWER EN APPLICATION WI-FI		74
FIGURE. IV. 20:LES INFORMATIONS NOMINALES		75
FIGURE. IV. 21:GENERATEUR PV 4 PANNEAU DE 24 V		76
FIGURE. IV. 22: REGULATEUR MPPT		76
FIGURE. IV. 23:BRANCHEMENT DEUX BATTERIES DE 12V		77
FIGURE. IV. 24:LE SYSTEME PV EN JOUR		77
FIGURE. IV. 25:LE SYSTEME PV EN NUIT		78
FIGURE. IV. 26: TENSION D'ENTREE PV		78
FIGURE. IV. 27:COURANT D'ENTRE PV		79
FIGURE.IV. 28:PUISSANCE D'ENTRE PV		79
FIGURE. IV. 29 : CAPACITE DE BATTERIE		80
FIGURE. IV. 30:TENSION DE LA BATTERIE		80
FIGURE. IV. 31:LA PUISSANCE ACTIVE EN SORTIE		81
FIGURE. IV. 32:COURANT DE CHARGE		81
FIGURE. IV. 33: TENSION DE SORTIE		82
FIGURE. IV. 34: FREQUENCE DE SORTIE.		82
FIGURE. IV. 35: PHOTO DE LA CREATION DE DEFAUT DE L'OMBRAC	ĴΕ	83
FIGURE. IV. 36 : TENSION D'ENTREE PV		84
FIGURE. IV. 37 : COURANT D'ENTREE DU SYSTEME PV		84

85
85
86
86

TABLEAU. I. 1:POTENTIEL SOLAIRE

TABLEAU. III. 1:DEFAUTS LIES AU GENERATEUR PV[3]	39
TABLEAU. III. 2:DEFAUTS DANS LE SYSTEME D'ACQUISITION[3]	43
TABLEAU. III. 3: INSTALLATION PV SANS DEFAUT	46
TABLEAU. III. 4: DEFAUT D'OMBRAGE PARTIEL DE 8 CELLULES EN BAS COTE GAUCHE	48
TABLEAU. III. 5 :DEFAUT D'OMBRAGE PARTIEL DE 8 CELLULES EN HAUT COTE DROIT	49
TABLEAU.III. 6 :DEFAUT D'OMBRAGE PARTIEL DE 4 CELLULES EN HAUT DE PANNEAU	51
TABLEAU.III. 7: AVANT BRANCHEMENT LES DEUX MODULES	53
TABLEAU. III. 8:APPRET BRANCHEMENT LES DEUX MODULES SERIE ET PARALLELE	53
TABLEAU. III. 9:DEFAUTS DANS LA BOITE DE JONCTION [3]	55
TABLEAU. III. 10:DEFAUT DANS LE SYSTEME DE CABLAGE [3]	57
TABLEAU. III. 11:DEFAUTS DANS LE SYSTEME DE PROTECTION [3]	59
TABLEAU. III. 12: DEFAUTS DANS L'ONDULEUR [3]	60

Introduction générale

Le 21^{ème} siècle est considéré par beaucoup comme le siècle du développement durable, et l'énergie en est l'un des défis majeurs, dans une société basée sur l'information et la communication. Pouvez-vous imaginez un seul jour sans électricité ? Tout le monde est d'accord, nous consommons de plus en plus d'énergie, et nous aimerions la produire proprement.

Pour répondre à cette demande croissante, nous nous tournons donc, depuis quelques années, vers les énergies propres et renouvelables, pour produire toujours plus, mais sans détruire notre environnement, et l'énergie solaire est au premier plan dans cette transition énergétique !

L'énergie solaire photovoltaïque est l'électricité produite par transformation d'une partie du rayonnement solaire grâce à une cellule photovoltaïque, l'ensemble des cellules sont reliées entre elles sur un panneau photovoltaïque. L'effet photovoltaïque a été découvert par Alexandre Edmont Becquerel en 1839.

Selon les estimations l'énergie rayonnée par le soleil représenterait chaque année 40 000 fois des besoins énergétiques que l'humanité consomme sous forme d'énergies fossiles. Malgré cela, l'énergie solaire reste un domaine assez peu exploité. Néanmoins la prise de conscience collective en fait une énergie non polluante et non bruyante d'avenir (même si elle est connue et utilisée depuis des millénaires) (1).

Les défauts que l'on peut retrouver sur une installation photovoltaïque, surviennent autant lors de sa conception, de son installation, que lors de son exploitation (2). Ces défauts réduisent les performances de système photovoltaïque autonome, ce qui affecte la production photovoltaïque

Permettre de diagnostiquer finement et de faire de la détection et de localisation de défauts dans une installation PV réduit les coûts de maintenance et surtout augmente la productivité en augmentant le taux de disponibilité des installations en veillant à ce que leur

Introduction générale

rendement soit optimal. L'ajout de fonctions avancées de surveillance, de diagnostic et de supervision (Watch power). L'objectif de ce PFE est de détecter et de localiser les défauts dans des installations PV. L'idée est de fournir un « service » aux utilisateurs pour superviser et diagnostiquer leurs installations (3).

L'évaluation précise et cohérente de performances des systèmes photovoltaïques est cruciale pour un développement durable de l'industrie car elle est considérée, comme un critère essentiel qui leur permet de définir la qualité de leurs produits.

Dans le domaine de la recherche et du développement, l'évaluation du rendement est un critère fondamental pour la qualité des produits. En plus, il est un indicateur essentiel pour identifier les défis à venir. En outre, une procédure effective d'évaluation de fonctionnement et de l'entretien du programme permet à la production des systèmes photovoltaïques d'atteindre son niveau attendu d'efficacité, ce qui rendra par conséquent le système plus fiables.

Pour décrire cela, ce mémoire est présenté en quatre chapitres :

Dans le premier chapitre, est l'objet d'une généralité sur les générateurs photovoltaïques. Dans le deuxième chapitre, On présente le principe de la conversion photovoltaïque, la cellule PV et ses paramètres. Ensuiteon aétudié les effets de variations des paramètres : éclairement et température, sur la courbe I-V et sur la puissance extraite du GPV on étudiera les différentes techniques de la recherche du point de puissance maximale MPPT supporté par des simulations de ces techniques pour différents profils d'éclairement. Le troisième chapitre, est consacré à l'étudie desdéfauts lies aux systèmes photovoltaïques par simulations et des testssur les installations d'application PV. Le quatrième chapitre, est consacré à la surveillance et le diagnostic d'une installation photovoltaïque par le logiciel Watch Power.

A la fin, on termine ce mémoire par une conclusion générale.

Chapitre 1

Généralitésur l'énergie solaire

I.1.introduction

L'énergie solaire est une source d'énergie renouvelable précieuse. En effet cette source d'énergie intarissable pourrait constituer à l'avenir une alternative confirmé aux autres sources d'énergie traditionnelles pour répondre aux besoins énergétiques croissants des individus et de l'industrie mondial. En effet, Les applications de petite et moyenne consommation dans les zones éloignées et rurales bénéficient largement de ce type d'énergie. (4)

I.2.L'énergie solaire

L'énergie solaire est une forme d'énergie renouvelable permettant de produire de l'électricité par transformation, d'une partie du rayonnement solaire grâce à une cellule PV (photovoltaïque). L'ensemble des cellules sont reliées entre elles sur un panneau photovoltaïque.

I.3.La ressource solaire

LeSoleilémetunrayonnementélectromagnétiquecomprisdansunebande delongueurd'ondevariantde0,22à10microns(µm).Lafigure1représentelavariationdelarépartiti onspectraleénergétique.L'énergieassociéeà cerayonnementsolairesedécomposeapproximativementainsi:

- 9 % dans la bande des ultraviolets (<0,4µm)
- 47% dans la bande visible (0,4 à 0,8µm)
- 44% dans la bande des infrarouges (>0,8µm)

L'atmosphèreterrestrereçoitcerayonnementàunepuissancemoyenne de1,37kilowatt aumètrecarré(kW/m²),àplusoumoins3%,selonquela

Terres'éloigneouserapprocheduSoleildanssarotationautourdecelui-ci. L'atmosphère en absorbe toutefois une partie, de sorte que la quantité d'énergie atteignant la surface terrestre dépasse rarement 1,2 kW/m² (1200 W/m²) (5). La rotation et l'inclinaison de la Terre font également que l'énergiedisponibleenunpointdonnévarieselonlalatitude,l'heureetla saison.Enfin,lesnuages,lebrouillard,lesparticulesatmosphériqueset

Divers autres phénomènes météorologiques causent des variations horaires et quotidiennes qui tantôt augmentent, tantôt diminuent le rayonnement solaire et le rendentdiffus (5).

L'utilisation du rayonnement solaire comme source d'énergie pose donc un problème bien particulier. En effet, le rayonnement solaire n'est pas toujours disponible ; en outre, on ne peut l'emmagasiner ni le transporter. Le concepteur d'un système qui emploie le rayonnement solaire comme source d'énergie doit donc déterminer la quantité d'énergie solaire disponible à l'endroit visé et le moment où cette énergie est disponible. Il faut d'abord comprendre l'effet de la rotation (moment de la journée) et de l'inclinaison (saison de l'année) de la Terre sur le rayonnement solaire. L'absorption atmosphérique est plus faible lorsque le Soleil se trouve à son point le plus haut dans le ciel, c'est-à-dire plein sud dans l'hémisphère nord et plein nord dans l'hémisphère sud1. En effet, la distance que doit parcourir le rayonnement dans l'atmosphère est plus courte lorsque le Soleil est directement au-dessus de l'endroit visé. C'est le midi solaire, moment où le rayonnement solaire direct est le plus intense. Comme soleil est plus haut et que les journées sont plus longues en été, la quantité totale d'énergie reçue sur un plan horizontal y est plus grande qu'en hiver.

La figure1.2 illustre ce phénomène, en reproduisant la trajectoire du Soleil dans le ciel au cours des quatre saisons de l'année.

Figure.1. 2 : Trajectoire du soleil selon les saisons pour une latitude nord

Lalatitudeaaussiuneffetimportant :lesjournéesestivalesallongentà mesurequ'ons'éloignedel'équateur,etleSoleilestplusbasaumidisolaire. Lesjournéesd'hiversontégalementpluscourtes,etleSoleilencoreplusbas qu'àl'équateur.Autrementdit,l'intensitémaximale(àmidi)etlaquantité totalederayonnementsolaire(G)surunplanhorizontaldiminuentàmesure qu'augmente la latitude (figure1.3).

Figure.1. 3 : courbes d'ensoleillement typique par mois pour différentes latitudes

Inversement, le rayonnement atteint son intensité maximale lors que le plan est perpendiculaire aux rayons du Soleil, donc l'intensité du rayonnement solaire sur un planque l conque augment equandon l'inclinevers le Soleil (figure 1.4).

plan herizental

Figure.1. 4 :Un plan incliné capte plus de rayonnement qu'un plan horizontal

Onmaximiseparconséquentlaquantitéd'énergiesolairedirectecaptée quand on change constamment l'inclinaison du plan pour le maintenir à angledroitaveclesrayonsduSoleil.Sileplanestfixe,laquantitéd'énergie reçueseramoindre,carlesrayonsduSoleillefrapperontdebiaislamajorité dutemps.

Lafigure 1.5montrel'effetdel'angled'inclinaisonsurlerayonnement directfrappantunplan, demoisenmois, à 45° de la titude. Lors que l'inclinaison est égale à environ 35° par rapport à l'horizontale, le plan capte à peuprès la mêmequantité d'énergies o la iret oute l'année. Le rayonnement annuel capté est au maximum lors que le plan est incliné à una gle égal à la titude.

Figure.1. 5 : Effet de l'inclinaison sur le rayonnement, de mois en mois, à 45° de latitude

Lesphénomènesatmosphériques,telleslesconditionsmétéorologiques (nébulosité, poussières, humidité, etc.) et la couverture du sol, ont uneinfluence encore plus marquée sur le rayonnement solaire effectivement reçu à la surface de laTerre.

•Lavapeurd'eauetlesparticulesensuspensiondansl'airdiminuent le rayonnement solaire direct atteignant la surface terrestre, en le réfléchissant ou en l'absorbant. Cette diminution s'ajoute à celle qui est attribuable à l'atmosphère même.

• Le couvert nuageux, la brume et l'atmosphère même dispersent égalementlalumière,desortequ'unepartiedurayonnementsemble venir de tous les coins du ciel et non pas directement du Soleil. Cettelumièrediffuseestcequ'onappellelerayonnementdiffus.

•Lacouverturesaisonnièredusol,commelaglaceetlaneige,réfléchit lerayonnementsolaireetaugmenteparconséquentlerayonnement qui frappe un plan, particulièrement si celui-ci est trèsincliné.

La statistique de la géométrie. Néanmoins, il est possible de représenter l'allure des courbes

à correspondant une variation de l'ensoleillementenfonctiondessaisonsetenfonctiondesheurespourdifférentes saisons. Ces l'énergie courbes permettront d'évaluer approximativement solairedisponible.L'ombreprojetéeparlesaccidentsduterrain(collinesoumontagnes), parlesimmeublesetparlesarbrespeutégalementdiminuerlerayonnement solaire frappant un plan quelconque, particulièrement un plan incliné, surtoutenhiverlorsqueleSoleilestbasdansleciel. Pourlesinstallations photovoltaïques, ce phénomène est particulièrement important parce que lescellulesphotovoltaïquesetlesmodulessontbranchésensérie.L'obstructiond'une cellulepeut diminution uneforte del'énergie produite causer et peutamenerunphénomènedepointchaud(hotspot),lacelluleombragée agissant comme récepteur et dissipant une certaine quantité d'énergie produitepar les autres cellules. Ces considérations serontdiscutées un peu plusloin.

En résumé, on peut dire que l'intensité du rayonnement solaire est extrêmement variable suivant:

- La localisationgéographiquedusite(spécialementparrapportàsa latitude),
- La saison,
- L'heure,
- Lesconditionsmétéorologiques(nébulosité, poussière, humidité...),
- L'altitudedulieu.

Il est possible de représenter l'allure des courbes correspondant aux variations de l'ensoleillement selon différents paramètres (figure 1.6) (5)

Figure.1. 6 : Courbes d'ensoleillement typique par heure latitude 45°

I.4.Rayonnement solaire

L'ensoleillementcorrespondàl'intensitédurayonnementsolairereçu sur un plan à un moment donné. (5) Il s'exprime habituellement en watts par mètrecarré(W/m²).Commeonl'expliqueàlasectionLaressourcesolaire, l'ensoleillement varie de zéro, au lever du Soleil, à sa valeur maximale, typiquement

L'ensoleillementpeut également exprimerquantitéd'énergiesolaire captée sur un plan pendant un intervalle déterminé. Il s'exprimehabituellement en kilowattheure par mètre carré (kWh/m²), en « heure de soleil maximum », en mégajoule par mètre carré (MJ/m²) ou en calorie parcentimètrecarré(cal/cm²)pourl'intervalledéterminé–unejournéeouune heure, parexemple :

1 kWh/m² · j = 1 heure de soleil maximum (1000 W/m²) /jour= 3,6 MJ/m² · j= 86 cal/cm²j

Lesvaleursquotidiennesd'ensoleillementsonthabituellementprésentées sousformedemoyennesmensuellespourdifférenteslatitudesetinclinaisons àdesendroitsprécis(afinderendrecomptedel'effetdeconditionsmétéorologiquesdifférentes).Lepl ussouvent,onexprimel'ensoleillementen «heuresdesoleilmaximum»,c'est-àdireparlenombreéquivalentd'heures par jour où l'éclairement est en moyenne de 1000 W/m². Ainsi, un ensoleillement de six heures de soleil maximum indique que le rayonnement reçuaucoursd'unejournéeestlemêmequesileSoleilavaitbrillépendant sixheuresà1000W/m².Lesheuresdesoleilmaximumsontunindiceutile pour le dimensionnement des systèmes photovoltaïques, car cessystèmes sont habituellement évalués en wattcrête

(Wc), c'est-à-dire sous un éclairement de 1000W/m² (5).

I.5. Types de rayonnement :

I.5.1. Le rayonnement direct :est le rayonnementreçu directement du Soleil. Il peut être mesuré par unpyrhéliomètre.

I.5.2. Le rayonnement diffus :

Estlerayonnement provenantdetoutela voûtecéleste.Cerayonnementestdûàl'absorptionetàladiffusion d'une partie du rayonnement solaire par l'atmosphère et à sa réflexion par les nuages. Il peut être mesuré par un pyranomètre avec écran masquant lesoleil.

I.5.3. Le rayonnement solaire réfléchi

:oul'albédodusolestlerayonnementquiestréfléchiparlesoloupardesobjetssetrouvantàsa surface. Cet albédo peut être important lorsque le sol est particulièrement réfléchissant (eau,neige).

I.5.4. Le rayonnement global :est la somme de tous les rayonnements reçus, ycomprislerayonnementréfléchiparlesoletlesobjetsqui se trouvent à sa surface. Il est mesuré par un pyranomètre ou un solarimètre sans écran.

À noter que certains capteurs solaires concentrent le rayonnement solaireafind'augmenterlerendementducapteurparrapportàunesurface donnée. Ces capteurs à concentration ne peuvent utiliser que le rayonnement direct provenant du Soleil. Dans les endroits avec uneforte

Proportiond'ensoleillementdiffus,cescapteursnepeuventpasfonctionner efficacementcarl'ensoleillementdiffusnepeutêtreconcentréenunpoint (5).

Figure.1. 7 : Types de rayonnement solaire reçus au sol

I.6.L'utilisation de l'énergie solaire

L'énergie solaire est utilisée essentiellement pour deux usages : la production de chaleur et la production d'électricité. Une installation solaire thermique permet de fournir de l'eau chaude pour l'usage domestique ou pour le chauffage.

Chapitre 1

Une installation solaire photovoltaïque produit de l'électricité pouvant être utilisée sur place ou réinjectée dans le réseau de distribution électrique (6). Les applications duphotovoltaïque se répartissent en deux grandes catégories 2 selon qu'elles sont ou non raccordées à un réseau électrique. Les applications non raccordées à un réseau électrique couvrent quatre domaines distincts :

- Les satellites artificiels
- Les appareils portables (calculatrices, montres)
- Les applications professionnelles (relais de télécommunications, balises maritimes ou aéroportuaires, signalisation routière, bornes de secours autoroutières, horodateurs de stationnement, etc.)
- L'électrification rurale des sites isolés

Les applications raccordées au réseau public de distribution d'électricitécomprennent :

- Les systèmes attachés à un bâtiment consommateur d'électricité, qu'il soit à usage résidentiel (maison individuelle, habitat collectif social ou privé) ou professionnel (bureaux, commerces, équipements publics, industrie, agriculture). Les modules peuvent être surimposés à la toiture (toit en pente ou toiture-terrasse) ou bien intégrés au bâti. Ils permettent alors généralement une double fonction (clos et couvert, bardage, verrière, garde-corps). Leur surface active est de quelques dizaines à quelques milliers de mètres carrés, soit des puissances de quelques kilowatts crête quelques mégawatts crête 3
- Les systèmes posés sur ou intégrés à des structures non consommatrices d'électricité mais pour lesquelles les panneaux remplissent une fonction bien identifiée en complément de la production d'électricité (ombrière de parking, couverture de passage public ou de quai de gare, mur anti-bruit...). La surface active de tels systèmes est en général de quelques centaines à quelques milliers de mètres carrés, soit des puissances de quelques dizaines à quelques centaines de kilowatts-crête
- Les installations photovoltaïques au sol constituées de nombreux modules portés par des structures, dont la production alimente directement le réseau électrique. Leur surface active est de quelques milliers à plusieurs dizaines de milliers de mètres carrés, ce qui correspond à des puissances de quelques

centaines de kilowatts-crête à plusieurs dizaines de mégawatts-crête (6)

I.7.Les différentes technologies solaires

l existe trois façons d'utiliser directement l'énergie solaire : lathermodynamique, la thermique et le photovoltaïque.

I.7.1. Solaire à concentration thermodynamique

Le solaire à concentration thermodynamique est une technologie qui utilise des miroirs qui concentrent l'énergie solaire vers un tube contenant un fluide caloporteur qui chauffe jusqu'à une température pouvant atteindre 500°C. La chaleur obtenue est transférée à un circuit d'eau, la vapeur alors produite actionne une turbine couplée à un alternateur qui produit de l'électricité. L'un des grands avantages de cette technologie provient du fait que la chaleur peut être stockée, permettant ainsi aux centrales solaires de produire de l'électricité pendant la nuit. Les miroirs qui collectent l'énergie solaire (placés à 3 ou 4 mètres du sol) forment une zone d'ombre sur le sol, cependant il arrive suffisamment de lumière pour éventuellement cultiver des fruits ou des légumes. Une partie de l'eau douce formée sur place par condensation en sortie de turbine, peut être utilisée pour l'arrosage (7)

Figure.1.8: présentation du solaire à concentration thermodynamique producteur d'électricité

I.7.2. Solaire thermique :

Le principe de l'énergie thermique consiste à transformer le rayonnement solaire en énergie thermique grâce à un fluide qui circule dans des panneaux exposés au soleil. Cette forme de conversion d'énergie peut être directe si on veut uniquement chauffer de l'eau sanitaire. 17 Par contre, si on veut générer de l'électricité, il faudra utiliser des générateurs qui convertissent l'énergie thermique générée en électricité (par exemple, moteurs à air chaud).

L'énergie thermique utilise la chaleur du rayonnement solaire pour le chauffage de bâtiments ou de l'eau sanitaire. Pour cette dernière il est intéressant de savoir que dans certains pays le chauffage d'eau sanitaire représente environ 20% des dépenses énergétiques d'un foyer et que l'énergie solaire thermique peut subvenir à environ 80% de cette dépense énergétique(8).

Figure.1. 9 : Principe de fonctionnement d'un CESI (Chauffe-Eau Solaire Individuel)

I.7.3. Solaire photovoltaïque :

L'énergie solaire photovoltaïque est l'une des sources d'énergie les plus utilisées et les plus renouvelables. Elle est transmise à la terre sous forme de photons et de rayonnement électromagnétique depuis l'espace. Elle consiste à transformer directement le rayonnement solaire en électricité. On utilise des convertisseurs photovoltaïques, également appelés cellules photovoltaïques, qui sont le composant fondamental de la conversion photovoltaïque (7) (8).

Figure.1. 10 : L'énergie solaire photovoltaïque

I.8. Potentiel solaire en Algérie

L'Algérie dispose d'un des gisements solaires les plus importants du monde. La durée d'insolation sur la quasi-totalité du territoire national dépasse les 2000 heures annuellement et atteint les 3900 heures (hauts plateaux et Sahara). L'énergie reçue quotidiennement sur une surface horizontale de 1 m² est de l'ordre de 5 kWh sur la majeure partie du territoire national, soit près de 1700 kWh/m²/an au Nord et 2263 kWh/m²/an au sud du pays. Le tableau 1.1 résume le potentiel solaire en Algérie (9).

Régions	Région côtière	Hauts Plateaux	Sahara
Superficie (%)	4	10	86
Durée moyenne d'ensoleillement	2650	3000	3500
(heures/an)			
Energie moyenne reçue (Kwh/m2/an)	1700	1900	2650

Tableau.I.1 : Potentiel solaire

Une évaluation par satellite, effectuée par l'agence spatiale allemande, a montrée que l'Algérie possède le potentiel solaire le plus important de tout le bassin méditerranéen. Il est de 169,440 Téra-Watt-heure/an (TWh/an) pour le solaire thermique et de 713,9 TWh/an pour le photovoltaïque (9)

Figure.1. 11 : Irradiation globale journalière reçue sur un plan horizontal sur le territoire Algérien au mois de juillet

I.9. Avantages et inconvénients de L'énergie solaire

Les systèmes photovoltaïques présentent un large éventail d'avantages et d'inconvénients, notamment :

I.9.1Les avantages de l'énergie solaire

- Elle est non polluante, inodore.
- Possibilité de concevoir des systèmes exploitant l'énergie solaire autonomes, sans surveillance, qui fonctionnent de manière fiable pour une longue durée.
- Les systèmes fonctionnant à l'énergie solaire n'ont pas besoin d'être reliés à une autre source d'énergie ou à une réserve de carburant mais en même temps peuvent être utilisés en conjonction avec d'autres sources d'énergie pour améliorer l'efficacité des appareils. (10) (11)
- Une grande durabilité due à l'absence de pièces mobiles dans l'installation de systèmes photovoltaïques, ce qui rend l'utilisation de cette énergie idéale pour

les endroits éloignés, comme le montre son utilisation sur les vaisseaux spatiaux.

- Les panneaux photovoltaïques peuvent être assemblés dans un système modulaire pour répondre à une variété de besoins énergétiques ; les systèmes peuvent être dimensionnés pour des applications allant du milliwatt au mégawatt.
- La technologie photovoltaïque est écologique car elle est non polluante, silencieuse et ne pollue pas l'atmosphère.
- Elles ont une longue durée de vie.

I.9.2. Inconvénients

- La fabrication des modules photovoltaïques est une activité de haute technologie, ce qui en augmente le coût.
- Le rendement réel d'un module photovoltaïque demeure encore insuffisant vu les besoins.
- Ils sont influencés par les conditions météorologiques.
- La puissance annoncée par le fabricant ne correspond pas à la puissance réelle.
- Le rendement diminue avec le temps.

I.10.Conclusion :

Nous avons pu au cours de ce chapitre présenté globalement les énergies renouvelables, nous nous sommes particulièrement intéressés à l'énergie solaire, nous avons donné quelques notions sur le rayonnement solaire, le gisement solaire en Algérie etc..., nous avons aussi parlé brièvement de l'effet photovoltaïque, pour finir nous avons cité quelques avantages et inconvénients concernant l'énergie solaire.

Chapitre 2

Lesystèmephotovoltaïque

II.1.Introduction :

L'énergie électrique provenant d'une conversion photovoltaïque à partir de l'énergie solaire est devenue une alternative incontournable aux autres sources énergétiques en voie d'épuisement tel que le pétrole. Cette nouvelle source énergétique a montré par sa grande souplesse et son aptitude au fonctionnement en milieu hostile d'être la solution intéressante aux moyens de production conventionnels. De même, son exploitation est loin d'être préjudiciable à l'environnement que les combustibles fossiles et aussi d'avoir une portabilité et flexibilité inégalée par rapport aux autres ressources hydraulique, géothermique. La conversion de cette nouvelle forme énergétique en électricité fut possible grâce à la découverte de nouveaux systèmes faits à base de cellules photovoltaïques. Ces dernières sont faites de matériaux constituant le siège du phénomène de conversion photovoltaïque dont l'essentiel sera discuté à travers ce chapitre.

II.2. Lesystèmephotovoltaïque :

Un système photovoltaïque se compose d'un champ de modules et d'un ensemble de composants qui adapte l'électricité produite par les modules aux spécifications des récepteurs. Cet ensemble, appelé aussi « balance of system » ou BOS, comprend tous les équipements entre le champ de modules et la charge finale, à la structure rigide (fixe ou mobile) pour poser ces modules, câblage, la batterie en cas de stockage, son régulateur de charge, et l'onduleur lorsque les appareils fonctionnent en courant alternatif. Le courant continu disponible aux bornes du module peut être utilisé de différentes manières en raccordant ces bornes à un circuit électrique qui l'achemine vers un ensemble de composants qui forment un "système photovoltaïque" conçu et dimensionné en fonction de l'application et de l'usage qui est fait de l'électricité produite (12), (13).

II.3. Laconversion photovoltaïque : II.3.1. L'effet photovoltaïque :

L'énergie photovoltaïque (PV) est la transformation directe de la lumière en électricité. À l'encontre de l'énergie solaire passive, qui utilise les éléments structuraux d'un bâtiment pour mieux le chauffer (ou le refroidir), et de l'énergie solaire active, qui utilise un caloporteur (liquide ou gazeux) pour transporter et stocker la chaleur du Soleil (on pense au

chauffe-eau), l'énergie photovoltaïque n'est pas une forme d'énergie thermique. Elle utilise une photopile pour transformer directement l'énergie solaire en électricité. L'effet photovoltaïque, c'est-à-dire la production d'électricité directement de la lumière, fut observé la première fois, en 1839, par le physicien français Edmond Becquerel. Toutefois, ce n'est qu'au cours des années 1950 que les chercheurs de la compagnie Bell Téléphone, aux États-Unis, parvinrent à fabriquer la première photopile, l'élément primaire d'un système photovoltaïque (5).

II.3.2.Principe de la conversion :

L'effet photovoltaïque utilisé dans les cellules solaires permet de converti directement l'énergie lumineuse des rayons solaires en électricité par le biais de la production et du transport dans un matériau semi-conducteur de charges électriques positives et négatives sous l'effet de la lumière. Ce matériau comporte deux parties, l'une présentant un excès d'électrons et l'autre un déficit en électrons, dites respectivement dopée de type N et dopée de type P. Lorsque la première est mise en contact avec la seconde, les électrons en excès dans le matériau N diffusent dans le matériau P (14) (15).

La zone initialement dopée n devient chargée positivement, et la zone initialement dopée p chargée négativement. Il se crée donc entre elles un champ électrique qui tend à repousser les électrons dans la zone n et les trous vers la zone p. Une jonction (dite p-n) a été formée (14) (16).

En ajoutant des contacts métalliques sur les zones n et p, une diode est obtenue. Lorsque la jonction est éclairée, les photons d'énergie égale ou supérieure à la largeur de la bande interdite communiquent leur énergie aux atomes, chacun fait passer un électron de la bande de valence dans la bande de conduction et laisse aussi un trou capable de se mouvoir, engendrant ainsi une 16 paire électron - trou. Si une charge est placée aux bornes de la cellule, les électrons de la zone N rejoignent les trous de la zone P via la connexion extérieure, donnant naissance à une différence de potentiel.

Figure. II. 1 : Le principe de fonctionnement d'une cellule photovoltaïque

II.4. Lesdifférents éléments composant un système Photovoltaïque :

II.4.1. Le générateur photovoltaïque :

Le générateur photovoltaïque est l'unité de production d'énergie électrique sous forme de Courant continu. Le composant élémentaire de cette unité qui convertit l'énergie solaire en L'énergie électrique est la cellule photovoltaïque (17).

Figure. II. 2 : générateur PV

Chapitre 2

II.4.1.1. Composantes d'un générateur de modules photovoltaïques

L'association de plusieurs cellules PV en série/parallèle donne lieu à un GPV. Si les cellules se connectent en série, les tensions de chaque cellule s'additionnent, Augmentant la tension totale du générateur. D'une autre part, si les cellules se connectent en parallèle, c'est l'ampérage qui augmentera.(18)

Figure. II. 3 : Composantes d'un générateur de modules photovoltaïques

II.4.2. Déférents types des panneaux solaires :

Il existe plusieurs types des panneaux photovoltaïques. Chaque type de panneau est caractérisé par son rendement et son coût. Parmi ces types de panneau on peut citer :

II.4.2.1. Monocristallines :

Es cellules Ce type de panneau est construite à partie d'un silicium cristallisé à un seul cristal qui donne une couleur uniforme avec meilleur rendement et coût de fabrication élevé.

II.4.2.2. Polys cristallins :

Les cellules poly cristallines sont fabriqué à partir d'un bloc de silicium cristallisé sous forme de cristaux multiples, on peut donc différencier les cristaux. Leur rendement est bon et Coût de fabrication moins élevé par rapport ou le Monocristalline.

II.4.2.3. Amorphes :

Ce type de panneau peut fonctionner avec un faible éclairage Elles ne nécessitent que de très faibles épaisseurs de silicium et ont un coût peu élevé avec meilleur rendement par rapport aux panneaux solaires monocristallines et polys cristallins. Le tableau suivant représenté les rendements des déférant panneaux

Туре	Rendement	Durée de vie
Monocristallines	de 14 à 20%(jusqu'à 24% dans laboratoire)	30 ans
Poly cristallines	de 11 à 15%(jusqu'à 19.8% dans laboratoire)	30 ans
Amorphes	5% à 9%.	20 ans

 Tableau. II. 1 : Déférents types des panneaux solaires.(13)

Figure. II. 4 : Déférents types des panneaux solaires.

II.5. Effet des variations climatiques sur module PV II.5.1. Variation du rayonnement

La variation du rayonnement (l'ensoleillement) solaire provoque une variation du courant proportionnelle à cette dernière et une variation de la tension relativement faible. En e
de court-circuit est une fonction linéaire de l'éclairement alors que la tension de circuit ouvert est une fonction logarithmique. (20)

FigureII. 5 : caractéristiqueI (v) pour déférents éclairement. (21)

L'augmentation du rayonnement entraine aussi une augmentation de puissance

Figure II. 6 : Caractéristique P (V)pour déférents températures.(21)

II.5.2. Association des cellules

La cellule photovoltaïque produit une faible tension à ces bornes, inférieure au volt, ce qui n'est pas suffisant pour la plupart des applications. Le regroupe de c'est cellule donne plus de tension et de puissance.

II.5.1. Association en série :

Ce groupement en série des cellules permet de d'additionner la tension de toutes les cellules et le courant reste constant (le même que celui d'une seule cellule).

 $VCO = Ns \times Vco ET Icc = Ic$

✓ **Exemple** : Association des trois cellules en série donne

 $\mathbf{V'co} = \mathbf{3} \times \mathbf{Vco} \quad \mathrm{et}\mathbf{I'cc} = \mathbf{Icc}$

Figure. II. 7 : montre le groupement en séries des cellules identiques

L'associationdes cellulesen sériedonnelacaractéristique suivante :

Figure. II. 8 : Caractéristiquegroupement en sériedescellules identiques :(22)

II.5.2. Association en parallèle

Ce groupement en parallèle permet de d'additionner les courant des cellules et la tension reste constant

I'cc =*Np* × *Icc*et *V'co* = *Vco*

Exemple :

Association des trois cellules en parallèle donne

 $I'cc = 3 \times Icc \text{ ET } V'co = Vco$

Figure. II. 9 : montre le groupement en parallèle des cellules identique.

L'association des cellules en parallèle donne la caractéristique quesuivant :

Figure. II. 10 : Caractéristique d'un groupement en parallèle des cellules identiques(22)

II.5.3. Association hybride (série/parallèle) :

Selonl'associationensérieet/ouparallèledecescellules,lesvaleursducourantdecourtcircuittotaletdela tension à videtotale sont données parlesrelations (23) :

$$I'_{cc} = N_p \times I_{cc}$$
et

$$V'_{co} = N_s \times V_{co}$$

✓ Exemple:

Association destrois cellulesen série/parallèledonne

Figure II.11: montre le groupement hybride des cellules identiques

L'associationdes cellules enhybridedonne lacaractéristiquesuivante :

Figure II.12 : Caractéristiqued'ungroupement hybride descellules identiques.

La caractéristique **I**(**V**) globale de l'association des cellules en série/parelle(voir figure II (1-12)) peut varier en fonction de l'éclairement, la température, du les effets du vieillissement des cellules et d'ombrage ou l'éclairage hétérogène. De plus, lorsqu'une occulté ou dégradé peut provoquer une forte diminution du cou photovoltaïque.

De plus lorsque le courant débité est supérieur au courant produit par une cellule qu'est un faible éclairage, la tension de cellule devient négative (comme un élément récepteur). Celle-ci se retrouve àdissiper une quantité trop importante de puissance électrique quipourraitaboutir à sa destruction siledéfaut persistetroplongtemps.C'est lephénomènedit«pointchaud»(22)(24)(25).

Pour évite ce phénomène dans une installation, on protéger les cellules de panneaux photovoltaïque par deux types de diode :

Diode anti retour (blocking diodes) permet d'évite l'inversement de sens de courant, c'est une fonction assurée par le régulateur.

Diode de dérivation (bypassdiodes), qui permettent au courant de circuler dans le sens normal.

Ces diodes de dérivation sont placées entre le (+) et le (-) du panneau et ont pour but de permettre l'écoulement du courant dans une installation de panneaux en série, bloquant tout courant.Elles ne sont pas indispensables si les panneaux ne sont pas montés en série.(26)

Figure II. 13 : Diode panneau solaire (27).

II.6. Les batteries

Figure. II. 14 : batterie gel AGM

La batterie a pour fonction le stockage d'une partie de l'énergie produite par les panneaux (c'est-à-dire, la portion d'énergie qui n'est pas immédiatement consommée) afin qu'elle soit disponible dans des périodes où le rayonnement solaire est faible ou inexistant. Le stockage se fait sous la forme d'énergie électrique à travers l'usage de batteries, normalement de plomb acide (28).

Une batterie est composée par l'association en série de plusieurs « éléments » ou « cellules », chacun d'eux comprenant deux électrodes de plomb dans une dissolution électrolytique. Entre les deux électrodes, une différence de potentiel de près de deux volts est établie, et la valeur instantanée dépend de l'état de charge de la batterie. Les batteries les plus utilisées pour les applications photovoltaïques sont de 12 ou 24 jusqu'à 48 volts de tension nominale (29).

La batterie a aussi ces deux importantes fonctions :

- Fournir une puissance instantanée supérieure à celle fournie par l'ensemble des panneaux et nécessaire pour la mise en place de quelques éléments
- Déterminer la marge des tensions de travail de l'installation.

II.6.1. Types de batteries :

Les batteries sont de plusieurs types, à savoir :

- Nickel-cadmium
- Plomb-acide
- Au lithium ;

II.6.1.1. Les batteries de Nickel- Cadmium : (29)

Sont les plus recommandées à cause de leur haute fiabilité et résistance, mais leur prix élevé fait pencher la balance en faveur des batteries de plomb-acide. En plus, l'Union Européenne a interdit l'usage des batteries de Nickel-Cadmium á cause de la toxicité du Cadmium Le type de batterie le plus courant que l'on trouve dans les systèmes solaires autonomes comprend

II.6.1.2. Les batteries rechargeables au plomb-acide : Ce sont les plus rentables et peuvent gérer des courants de charge petits et grands avec une grande efficacité. (30)

II.6.1.3. Les batteries Lithium (Li). (29) (31) ;

Se développent rapidement, à partir d'une technologie émergente, et présentent de nombreux avantages par rapport aux autres types, elles sont généralement plus petites et plus légère pour la même capacité, plus rapide à charger du fait de leur meilleur rendement de charge et plus performantes en cycles charge /décharge, mais les Batterie (Li) sont d'un cout élevé et sont sensibles aux températures et tensions extrêmes

II.6.2. Fonctionnement de la batterie :

La batterie répète de façon cyclique un processus d'accumulation d'énergie (charge) et fourniture d'énergie (décharge) en fonction de la présence ou de l'absence du soleil. Dans ce fonctionnement normal de la batterie on peut trouver deux pôles :

- Surcharge : La batterie atteint sa pleine capacité de charge. Si elle continue à recevoir de l'énergie, l'eau de la dissolution commence à se décomposer, en produisant de l'oxygène et de l'hydrogène (processus de gazéification).
- Sur décharge : Il existe aussi une limite pour le processus de décharge, après lequel la batterie se détériore notamment. (32)

II.6.3. Connexions des batteries :

Figure. II. 15 : Branchement des batteries.

II.7. Le régulateur de charge : (33)(34)

Le régulateur de charge principalement sert avant tout à contrôler l'état de la batterie. Il existe plusieurs valeurs limites correspondant chacune à un type de protection différent : surcharge, décharge profonde, température de fonctionnement, court-circuit, etc. Les nouvelles générations de régulateurs, quant à eux, sont de plus en plus perfectionnés et proposent des fonctionnalités plus nombreuses et de plus en plus évoluées (33) (34).

II.7.1. Les types de régulateur de charge : II.7.1.1Le régulateur « PWM » (Pulse Width Modulation)

Certains régulateurs réalisent une commande PWM, le rapport cyclique variant selon l'énergie à fournir à la batterie afin de réaliser une charge à tension constante. Celui-ci est un peu plus subtil que le « tout ou rien » : Les régulateurs solaires traditionnels intégrant la technologie PWM relient les panneaux solaires au banc de batteries. Dans cette utilisation directe, la tension de sortie des panneaux est réduite à la tension nominale des batteries.

Figure. II. 16 : Régulateur solaire PWM

II.7.1.2. Le régulateur « MPPT » « Maximum Power Point Trac King »

Ce convertisseur de tension qui permet de tirer toute l'énergie du module photovoltaïque malgré les variations de production de ces générateurs. L'idée est d'introduire un étage intermédiaire entre le module PV et la batterie qui sera constitué par le convertisseur DC-DC. Le fonctionnement est le suivant : Les régulateurs MPPT traquent la tension VMP des modules. Ils balaient une plage de tension en entrée pour déterminer constamment à quel point se trouve la puissance maximale délivrée par les modules. Le régulateur MPPT prélève la puissance à cette tension VMP et la renvoie vers les batteries sous une tension plus basse, ce qui a pour effet d'augmenter le courant de charge. La puissance est égale au produit de la tension et du courant, ainsi, si la tension est réduite, le courant augmente nécessairement pour maintenir le ratio entrée/sortie égal. Pour un rendement de 100% : Puissance d'Entrée = Puissance de sortie.

Figure. II. 17 : Régulateur solaire MPPT.

II.8. L'onduleur

Un onduleur est un convertisseur statique assurant la conversion d'énergie électrique de la forme continue (DC) à la forme alternative (AC). En fait, cette conversion d'énergie est satisfaite au moyen d'un dispositif de commande (semi-conducteurs). Il permet d'obtenir aux bornes du récepteur une tension alternative réglable en fréquence et en valeur efficace, en utilisant ainsi une séquence adéquate de commande. (35)

II.8.1. Principe de fonctionnement

- Un onduleur est un dispositif électronique assurant la conversion statique d'une tension courant/continu en tension courant/alternatif. Il est dit autonome s'il assure de luimême sa fréquence et sa forme d'onde

. - Les fonctions de l'onduleur sont de convertir et d'acheminer l'électricité produite avec un maximum d'efficacité et en toute sécurité vers le réseau électrique dans le cas du raccordé réseau ou à l'utilisateur dans le cas des sites isolés.

- Deux types d'onduleurs sont donc utilisés pour assurer une telle conversion. Onduleur Monophasé. Onduleur Triphasé. (35)

Figure. II. 18 : principe de fonctionnement l'onduleur d'un système photovoltaïque

II.8.1.1. Onduleur Monophasé :

Ce type d'onduleur délivrant en sa sortie une tension alternative monophasée, est généralement destinée aux alimentations de secours. (36)

Figure. II. 19 : Schéma de principe d'un onduleur monophasé.

II.8.1.2. Onduleur triphasé

Ce type d'onduleur est généralement recommandé pour des applications de grande puissance. La structure de tel convertisseur se fait par l'association, en parallèle, de trois onduleurs monophasés en demi pont (ou en pont) donnant trois tensions de sortie déphasées de 120° degrés, l'une par rapport à l'autre. (36)

Figure. II.20 : Schéma de Principe d'un Onduleur Triphasé.

II.9. Les types d'un système photovoltaïque

Les systèmes PV peuvent être réaliser selon les exigences en trois types : autonome, raccordée au réseau et hybride.

II.9.1. Système PV autonome

Autonomes ou « standalone », ces installations isolées ne sont pas connectées au réseau, mais elles doivent assurer la couverture de la demande de la charge en tout temps. Le système photovoltaïque autonome permet de fournir du courant électrique à des endroits où il n'y a pas de réseau. Donc l'énergie produite est utilisée immédiatement (pompage, l'éclairage, etc....) ou stockée dans des batteries pour une utilisation différée Le système PV autonome est composé principalement de : (37) (38) :

Un Générateur photovoltaïque

- Un Convertisseur DC/DC (Hacheur)
- Un système de régulation (commande MPPT)
- Une charge

- Une ou plusieurs batteries.
- L'onduleur

Figure. II. 21 : Installation photovoltaïque autonome.

II.9.2. Systèmes couplés au réseau

Le système photovoltaïque est couplé directement au réseau électrique à l'aide d'un convertisseur Courant Continu/Courant Alternatif (CC -CA). Étant donné que l'énergie est normalement emmagasinée dans le réseau même. La figure (1.12) montre les deux types d'installations existantes pour l'injection de la production solaire. (39)

Figure. II.22 : Installation photovoltaïque couplée au réseau

II.9.3. Systèmes hybrides

Les systèmes d'énergie solaire hybride sont des systèmes d'énergie hybride qui combinent l'énergie solaire d'un système photovoltaïque avec une autre source d'énergie génératrice Les systèmes hybrides solaires comprennent les systèmes éoliens-solaires. La combinaison de l'éolien et du solaire a l'avantage que les deux sources se complètent, car les pics de fonctionnement de chaque système se produisent à des moments différents de la journée et de l'année. La production d'électricité d'un tel système hybride est plus constante et fluctue moins que celle de chacun des deux sous-systèmes composants. (37)

Figure. II.23 : Système hybride.

II.10. Les avantages et les inconvénients de l'énergie photovoltaïque II.10.1. Les avantages de l'énergie photovoltaïque :

L'énergie photovoltaïque offre de multiples avantages : (11)

- La production de cette électricité renouvelable est propre. Elle n'est pas toxique.
- Les systèmes photovoltaïques sont fiables.
- L'énergie photovoltaïque est particulièrement attractive pour les sites urbains, dus à

leur petite taille, et leur opération silencieuse.

• La lumière du soleil étant disponible partout, l'énergie photovoltaïque est exploitable aussi bien en montagne dans un village isolé que dans le centre d'une grande ville.

• L'électricité photovoltaïque est produite au plus près de son lieu de consommation, de manière décentralisée, directement chez l'utilisateur. 37

• Les matériaux employés (verre, aluminium) résistent aux pires conditions climatiques notamment à la grêle).

• La durée de vie des panneaux photovoltaïques est très longue. Certains producteurs garantissent les panneaux solaires pour une durée de 25 ans.

II.10.2. Les inconvénients de l'énergie photovoltaïque :

• Production d'énergie qui dépend de l'ensoleillement, toujours variable.

- Le coût très élevé.
- Faible rendement de conversion.
- S'il faut stocker l'énergie avec des batteries, le coût de l'installation augmente.

• Pollution à la fabrication. Malgré ces inconvénients, le marché photovoltaïque ne cesse pas de trouver des applications et de s'agrandir. En plus, la technologie photovoltaïque est dans un processus de maturation dans laquelle les inconvénients pourraient s'attendrir, surtout en ce qui concerne les coûts de fabrication. (11)

II.11.Conclusion

Dans ce chapitre, nous avons données les statistiques concernant l'utilisation de l'énergie photovoltaïque dans le monde et dans l'Algérie. Ensuite, nous avons présenté les notions importantes sur l'énergie solaire et les différents types des rayonnements (direct, diffus et globale). Nous avons défini aussi quelques notions de base qui nous aide à étudier le système photovoltaïque tel que le principe de fonctionnement d'une cellule PV et le principe du photo-courant, puis la modélisation d'une cellule. Enfin nous avons terminé en montrant les différentes technologies des cellules PV qui existes et leur domaine d'applications et ainsi leurs avantages et inconvénients. Dans le chapitre suivant nous allons faire la simulation d'un générateur photovoltaïque afin de comprendre leur fonctionnement à l'état de fonctionnement normale et à l'état de défaillance avec son comportement sous des conditions atmosphérique variable.

Chapitre 03

Défauts lies aux systèmes photovoltaïques

III.1. Introduction

Les défauts qui subissent les installations photovoltaïques est la pertinentes major qui a fait le casse-tête des chercheurs, car la présence de ces défauts abaisse exponentiellement les kilowatts produit par les centrales. Plusieurs solutions ont été proposé dans littérature mais reste timide devant la complexité des problèmes (40) Les défauts que l'on peut retrouver sur une installation photovoltaïque, surviennent autant lors de sa conception, de son installation, que lors de son exploitation (41) Ces défauts réduisent les performances de système photovoltaïque autonome, ce qui affecte la production photovoltaïque (3) Dans ce chapitre. Une présentation des principaux défauts associés à un système photovoltaïque. Ensuite, une brève introduction au diagnostic et à ses objectifs sera discutée.

III.2. Défauts courants des systèmes photovoltaïques

Les défauts dans le système PV peuvent être définies comme temporaires ou permanentes. Les défauts temporaires sont souvent causés par des effets d'ombrage et l'encrassement des modules. Les défauts permanents des modules sont : le délaminage, les bulles, le jaunissement des cellules, les rayures et les cellules brûlées. (42) (43)

Les défauts permanents sont éliminés en remplaçant ou en réparant les modules endommagés. Les défauts graves des panneaux photovoltaïques sont souvent causés par un court-circuit, ligne à ligne, mise à la terre et défaut d'arc (43).

D'autres facteurs peuvent entraîner des pertes de production, notamment le défaut de suivi du point de puissance maximale (MPP), les pertes joule dans le câblage et les équipements défectueux.[42] Les défauts d'un système photovoltaïque peuvent être classées comme des défauts de modules, de chaînes ou de réseaux selon le composant du système photovoltaïque concerné.

III.3. Détection et localisation de défauts pour un système PV

Comme tout processus industriel, un système photovoltaïque peut être soumis, au cours de son fonctionnement, à différents défauts et anomalies conduisant à une baisse de la performance du système et voire à son indisponibilité. Permettre de diagnostiquer finement et de faire de la détection et de localisation de défauts dans une installation PV réduit les coûts de maintenance et surtout augmente la productivité. Dans ce travail de thème, nous nous intéressons spécifiquement à la détection et la localisation de défauts côté DC du système PV, c'est-à-dire du côté générateur PV. L'objectif de cette thèse est de proposer, en prenant le moins de mesures possibles pour respecter les contraintes économiques, un algorithme pour détecter

et localiser des défauts conduisant à une baisse de production. Pour cela, le choix s'est porté sur l'analyse de la caractéristique I-V du générateur PV pour les différents modes de fonctionnement considérés. Cette analyse a conduit à utiliser la méthode d'inférence pour effectuer le diagnostic de l'installation. Cette démarche a été validée par des expérimentations sur site, des simulations temps-réel et hors temps-réel. (44)

III.3. Défauts dans le système photovoltaïque

III.3.1.Types de défauts du module PV

Le générateur PV est le principal composant de l'installation PV. Toute rupture liée au module PV affectera les performances du système PV. Les types de défauts rencontrés à ce niveau du générateur sont présentés dans le **Tableau 1**. (3)

Ces défauts sont classés selon leurs effets et leurs conséquences. Dans ce qui suit, on cite ra quelques défauts qui se produisent au niveau de générateur PV

Défaut	Conséquences
Salissure (pollution, sable, neige)	Perte de puissance
Inversion des liaisons de sortie	Module mal câblé, diminution des perfor- mances
Air marin	Corrosion
Dégradation des modules par vanda-	Diminution des performances, Non fonction-
lisme	nement de l'installation
Vol des modules	Non fonctionnement de l'installation
Mauvaise orientation et/ou inclinai-	Ombrage, diminution des performances

son des modules		
Couple galvanique dû au mélange de		
matériau de la jonction mo-	Corrosion	
dule/support		
Module mal ou pas ventilé	Echauffement	
	Déplacement du module, diminution des	
Module mal fixé	performances	
Modules non câblée	Diminution des performances	
	Perte d'étanchéité, détérioration des cellules,	
Fissure	diminution du shunt, diminution des perfor-	
	mances	
Rouille par infiltration d'eau	Perte d'étanchéité, détérioration des cellules	
Mauvaise isolation entre modules et	Court-circuit, destruction du module, incen-	
onduleur	die	
Détérioration des joints d'étanchéité	Perte d'étanchéité, détérioration des cellules	
Déformation du cadre des modules	Infiltration d'eau	
Corrosion du cadre des modules	Perte d'étanchéité, détérioration des cellules	
Délaminage	Diminution des performances, échauffement	
Foudre	Détérioration des modules	
Tempête	Module arraché, cassé	
	Hot spot, augmentation du courant de fuite.	
Pénétration de l'humidité	corrosion, perte d'adhérence et d'isolation,	
	diminution de la résistance de CC à la terre	
Faiblesse au vent des structures	Module arraché, cassé	
Foudre sur l'installation	Destruction des modules	
Modules de performances différentes	Diminution des performances du champ	
sortie par le bas des boites de con-	Mauvais câblage	
Bouchons de presse-étoupe man-		
quant sur la boîte de connexion	Pénétration d'eau, corrosion des liaisons	
Boîte de connexion montée à l'en-		
bonce de connentron montee d'i en	Entrée d'eau dans le boîtier par le presse-	
vers	Entrée d'eau dans le boîtier par le presse- étoupe	
vers Ombrage partiel (feuilles d'arbre,	Entrée d'eau dans le boîtier par le presse- étoupe	
vers Ombrage partiel (feuilles d'arbre, déiections)	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus-	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série due au cycle thermique	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances Diminution des performances	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série due au cycle thermique Détérioration de la couche anti-reflet	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances Diminution des performances	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série due au cycle thermique Détérioration de la couche anti-reflet	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances Diminution des performances Diminution des performances Diminution des performances, surtension,	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série due au cycle thermique Détérioration de la couche anti-reflet Dégradation à cause de la lumière	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances Diminution des performances Diminution des performances Diminution des performances, surtension, destruction de diodes	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série due au cycle thermique Détérioration de la couche anti-reflet Dégradation à cause de la lumière	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances Diminution des performances Diminution des performances, surtension, destruction de diodes Diminution des performances, échauffement,	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série due au cycle thermique Détérioration de la couche anti-reflet Dégradation à cause de la lumière Dégradation à cause de la chaleur	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances Diminution des performances Diminution des performances, surtension, destruction de diodes Diminution des performances, échauffement, détérioration des joints	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série due au cycle thermique Détérioration de la couche anti-reflet Dégradation à cause de la lumière Dégradation à cause de la chaleur	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances Diminution des performances Diminution des performances, surtension, destruction de diodes Diminution des performances, échauffement, détérioration des joints Stagnation d'eau, dépôt de terre, prolifération	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série due au cycle thermique Détérioration de la couche anti-reflet Dégradation à cause de la lumière Dégradation à cause de la chaleur Inclinaison des modules trop faible	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances Diminution des performances Diminution des performances, surtension, destruction de diodes Diminution des performances, échauffement, détérioration des joints Stagnation d'eau, dépôt de terre, prolifération de champignons, problème d'étanchéité	
vers Ombrage partiel (feuilles d'arbre, déjections) Dégradation de l'encapsulant à cause des ultraviolets, EVA jaunissant Augmentation de la résistance série due au cycle thermique Détérioration de la couche anti-reflet Dégradation à cause de la lumière Dégradation à cause de la chaleur Inclinaison des modules trop faible	Entrée d'eau dans le boîtier par le presse- étoupe Hot spot, détérioration de cellules Absorbe les photons qui n'arrivent plus jus- qu'à la cellule, diminution des performances Diminution des performances Diminution des performances, surtension, destruction de diodes Diminution des performances, échauffement, détérioration des joints Stagnation d'eau, dépôt de terre, prolifération de champignons, problème d'étanchéité Détérioration des joints, diminution des per-	

	série, de la chaleur
Support mécanique des modules	Efforts mécaniques importants sur les mo-
inadéquat ou mal posé	dules
Mauvaise résistance mécanique des supports des modules	Déformation du support
Diffusion du phosphore (dopant) vers la surface	Perte d'adhérence de l'encapsulant
Important courant de fuite	Echauffement
Echauffement des modules par la	Décollement du Tedlar, diminution des per-
boîte de connexion	formances
Nid d'insectes sur les modules	Diminution des performances
Panneaux inaccessibles	Nettoyage impossible
Module produisant moins que prévu	Diminution des performances
Apparition de bulles à la surface des modules	Diminution des performances

Tableau.	III. 1	1:	Défauts	liés	au	générateur	PV	(3))
----------	--------	----	---------	------	----	------------	----	-----	---

a) Salissure

(c) Échauffement de la cellule (face avant)

(e) Échauffement des soudures (face avant)

b) Ombrage

(d) Échauffement de la cellule (face arrière)

(f) Échauffement des soudures (face arrière)

Chapitre 3

(g) Dégradation de EVA

(h) défaut mécanique de la face arrière

Figure. III. 1 : Exemples de défauts rencontrés dans des générateurs PV.

III.3.2. Défaut de ligne à ligne

Un défaut ligne à ligne désigne un défaut de court-circuit entre les conducteurs du PV système. Les défauts de ligne à ligne peuvent être causés par un défaut d'isolation des câbles et dommages mécaniques (43).

III.3.3. Défaut d'encapsulation :

Ce défaut est causé notamment par délamination et les taches qui apparaissent fréquemment dans des conditions humides et chaudes. Ce défaut se trouve entre l'encapsulation et les cellules actives. Le défaut d'encapsulation peut se produire à cause de l'accumulation de sel, des contaminations, l'infiltration d'humidité ou d'autres facteurs externes.

Parmi les techniques recommandées pour la détection de la délamination, on peut citer, la thermographie, le scanner à ultrasons et la tomographie à rayons X. L'irrégularité peut être quantifiée par un réflectomètre. Quant à la décoloration, c'est un autre défaut d'encapsulation qui engendre la corrosion la diminution de la résistance en série, ce problème est considéré comme le type de dégradation plus fréquent des panneaux PV (41) (45) (46).

Défaut	Conséquences
Coupure de courant	Perte de données
Sonde de température non câblée	Mesure impossible
Sonde d'ensoleillement non câblée	Mesure impossible
Défaut de paramétrage	Enregistrement de fausses données
Mauvais câblage des shunts de me- sure	Mesure impossible ou erronée
Afficheur de données mal placé (trop haut)	Données non visibles
Carte électronique mal positionnée	Touches inactives, défaut de commande
Non configuré pour l'acquisition des données	Pas de donnée enregistrée
Armoire fermée par le service de	Lecture des données par l'exploitant impos-
maintenance ou présence d'un code	sible
Bornier de mesures et de sonde de température trop proches	Câblage difficile, risque de court circuit
Acquisition de données vierge	Aucune information enregistrée
Mesure de données non nulles alors que système PV à l'arrêt	Fiabilité des données

 Tableau. III. 2 : Défauts dans le système d'acquisition (3)

III.3.4. Perte d'adhérence de back-sheet :

Une back-sheet d'un panneau est une protection des composants électroniques de facteurs externes et une sécurité de hautes tensions continues. Cette anomalie être causée par la délamination. Si elle se produit, les composants électriques actifs seront exposés. Cela se traduirait par un défaut d'isolement qui présente des problèmes de sécurité. La forme et la composition des matériaux en de back-sheet peuvent être la cause de ce défaut (41) (43) (47) (48).

Figure. III. 2 : Pannes et pannes du module solaire photovoltaïque

III.3.5. Fissuration des cellules

La fissure peut survenir à n'importe quel moment. Elle peut être causée au cours de processus de fabrication ou au cours de l'emballage et le transport par une mauvaise manipulation et vibration. Processus d'installation est autre cause de ce défaut (49) (45) (46).

Figure. III. 3 : Fissuration et dommages cellulaires

III.3.6. Interconnexion endommagée

Une mauvaise soudure entre ruban d'interconnexion de la branche avec celui de la cellule est la principale raison de ce débranchement. Les contraintes dues au transport, les points chauds, le cycle thermique ou les contraintes mécaniques répétées affaiblissent le ruban d'interconnexion jusqu'à la rupture. La courte distance entre les cellules développe ce type de défaillance. Il peut en résulter des cellules court-circuitées (50) (48).

III.3.7. Ombrage et des salissures

Deux types d'ombrage existent (50) (51). Le premier, c'est l'ombrage dur, qui se produit si les panneaux PV sont ombragés par un matériau solide, par exemple des bâtiments ou de la poussière. Le deuxième type est doux ombrage léger qui peut être causé par les nuages.

Le premier type entraîne une baisse de tension et le deuxième affecte le courant et mais non pas la tension. Les deux influent négativement sur les performances du module PV.

Défauts liés aux systèmes photovoltaïques autonomes et techniques de... 253 Les performances et la perte de puissance sont liées aux surfaces très sales ou ombragés (41) (51).

En effet, les cellules ombrées se comportent comme une résistance au courant généré. (45) (47) Elles chauffent et le phénomène de hot spot se produit.

III.3.8. Exemple d'application

III.3.8.1. Première expérience :

Dans cette expérience, nous allons étudiés le défaut d'ombrage sur le panneau photovoltaïque avec une charge $R=9.6\Omega$ et suivi le flux de puissance par rapport à l'ensoleillement.

Figure. III. 4 : installation système PV sans défaut.

G(W/m ²)	I(A)	U(V)	P(W)
950	2.7	16.2	43.74
970	2.8	16.3	45.46
988	2.9	16.4	47.56
994	3	16.4	49.2
1010	3.1	16.4	50.84
991	3	16.3	48.9
985	2.9	16.1	46.69
981	2.8	16.0	44.8
979	2.7	15.9	42.93

Tableau. III. 3 : installation PV sans défaut

Figure III. 5 : courbe f(g) = P(Wc) sans défaut.

III.3.8.2. Deuxième expérience :

Dans cette expérience nous allons faire comparaison d'installation PV sans défaut avec différent défaut d'ombrage partiel sur le panneau photovoltaïque et suivi le flux de puissance par rapport à l'ensoleillement.

III.3.8.2.1. Défaut d'ombrage partiel de 8 cellules en bas-côté gauche :

Figure. III. 6 : Défaut d'ombrage partiel 8 cellules en bas-côté gauche.

G(W/m ²)	I(A)	U(V)	P(W)
870	0.7	15.1	10.57
883	0.8	16.6	13.28
1014	0.9	17.2	15.48
999	0.7	17.6	12.32
1008	0.8	16.3	13.04

Tableau. III. 4 : Défaut d'ombrage partiel de 8 cellules en bas-côté gauche.

Figure. III. 7 : Simulation de défaut d'ombrage partiel de 8 cellules en bas-côté gauche.

III3.8.2.2. Défaut d'ombrage partiel de 8 cellules en haut cote droit :

Figure. III. 8 : Défaut d'ombrage partiel de 8 cellules en haut-côté droit.

G (W/m ²)	I(A)	U(V)	P(W)
880	0.7	16	11.2
995	0.8	15.9	12.72
1009	0.8	17.2	13.76
997	0.8	15.9	12.72
993	0.8	16	12.8
990	0.7	15.6	10.92

Tableau. III. 5 : Défaut d'ombrage partiel de 8 cellules en haut-côté droit.

Figure III. 9 : Simulation de défaut d'ombrage partiel de 8 cellules haut-côté droit.

III.3.8.2.3. Défaut d'ombrage partiel de 4 cellules en haut panneau :

Figure. III. 10 : Défaut d'ombrage partiel de 4 cellules en haut de panneau.

G(W/m ²)	I(A)	U(V)	P(W)
870	0.7	15.9	11.13
977	0.8	16.3	13.04
1004	0.8	18.2	14.48
999	0.8	17.4	13.92
992	0.8	16.7	13.36
987	0.7	15.5	10.85

Tableau. III. 6 : Défaut d'ombrage partiel de 4 cellules en haut de panneau.

Figure III. 11 : Simulation de défaut d'ombrage partiel de 4 cellules en haut de panneau.

III.3.9. Défaut de mis Matching

Ce défaut se produit lors du changement des paramètres électriques du module par rapport aux valeurs initiales (52) (50). Il peut être temporaire, tel que l'ombrage des cellules qui conduit à un hot spot. Il peut être également permanent, en raison de la présence d'un circuit ouvert ou de cellule défectueuse réduisant le courant qui mène à une dissipation de puissance (43) (50).

III.3.10. Example d'application :

Le but de cette expérience est d'observer l'effet de l'erreur mis Matching sur le système photovoltaïque et de voire aussi son influence sur la production des panneaux photovoltaïque et sur le système en général (voir figure III.14). On a réalisé deux liaisons de panneaux PV différents en capacité de production. La liaison série et la liaison parallèle, et ceci pour savoir dans quel lien l'erreur mis Matching est apparaît, et de voire aussi son influence sur le système.

Figure. III. 12 : défaut de mis Matching

III.3.10.1. Les essais :

Afin de vérifier le concept mis Matching, on a réalisé un système de 2 panneaux (panneau 100Wc ,80Wc) branchement (série, parallèle) et on a pris les valeurs de tension et de courant, l'ensoleillement chaque 15 min.

Figure. III. 13 : Caractéristique panneau 80 Wc

Figure. III. 14 : Caractéristique panneau100 Wc

G	80 Wc		100	Wc
(W/m ²)	V	Ι	V	Ι
788	21.2	4.15	41.7	0.88
875	19.3	4.79	38.6	1.04
720	19.2	1	38.2	1.02
150	17.8	0.89	35.3	0.28
976	19.7	5.52	39.1	1.23
245	18.6	1.58	36.9	0.43
285	19.4	1.66	38.6	0.42

Avant branchement

Tableau III. 7 : Résultat relevée avant branchement des deux modules.

Apprêt branchement

G	Série		Para	ıllèle
(W/m ²)	V	Ι	\mathbf{V}	Ι
797	60.5	0.96	21	4.95
875	58.1	1.14	19.3	5.77
820	57.8	0.98	19.1	4.88
750	54	0.29	19.1	3.8
976	59	1.27	19.7	6.74
745	56	0.45	19.3	2.04
785	55.6	0.45	19.9	1.95

Tableau. III. 8 : Résultat relevée après branchement des deux modules série et parallèle.

III.3.10.2. Interprétation

Lors de branchement série le panneau endommagé est le seul qui fonctionne et donne le courant maximal de 1.27A et une tension maximale de 60.5V (la somme des tensions de 80Wc et 100Wc).

Par contre lors d'un branchement parallèle le courant et la tension max sont fournies par le panneau de 80Wc (6.74A, 21V).

III.3.11. Défauts au niveau de convertisseur DC/DC

Le convertisseur DC/DC est considéré comme un élément crucial dans le système PV. Des études ont démontré qu'il est l'un des composants les plus vulnérables (51). Parmi les pannes qu'on peut trouver au niveau de le hacheur DC/DC, il y a :

- Problèmes de conception et de fabrication : le rendement de l'hacheur dépend des conditions de fonctionnement qui sont basées sur la gestion thermique et des mécanismes de dissipation de la chaleur due à la commutation des interrupteurs et des condensateurs.

- Problèmes de contrôle : Ils sont liés à l'interaction de l'onduleur avec la nature de la charge à alimenter.

- Les défaillances des composants électriques : elles se produisent lorsque des composants du convertisseur sont exposés à des contraintes thermique et électrique lors de fonctionnement. Le cycle de vie du convertisseur PV dépend essentiellement de l'interrupteur de commutation.

Kaplar et al., ont étudié les interrupteurs 'IGBT' et ont montré qu'il est considéré comme la cause première des pannes de convertisseurs DC/DC (3). C'est pourquoi, l'IGBT est considéré comme la partie principale de l'hacheur.

III.3.12. Pannes au niveau de la boîte de jonction :

Une boîte de jonction est une protection pour le câblage qui lie le module PV aux bornes extérieures des autres dispositifs de système PV. Ce défaut est causé par une mauvaise fixation de la boîte à la back-Sheet, la pénétration de l'humidité, la corrosion des raccordements, le mauvais câblage menant à l'arc interne, le mauvais montage ou à cause de dégradation thermique (3) (50) (51).

Défaut	Conséquences
Absence de parafoudre ou protection foudre inadaptée	Destruction en cas de foudre
Presse-étoupe mal serré	Corrosion des contacts, rupture du circuit électrique
Liaison de mise à la terre non fixée ou sectionnée	Pas de mise à la terre
Boîte de jonction sans presse-étoupe	Pas d'étanchéité, corrosion des contacts, rupture du circuit électrique
Presse-étoupe en caoutchouc	Corrosion des contacts, rupture du circuit électrique
Infiltration d'eau par les vis de fixa-	Corrosion des contacts, rupture du circuit
tion	électrique
Boîte de jonction non repérée	Problème pour contrôle et maintenance
Déconnexion des soudures	Arc électrique, incendie, diminution des per- formances
Boîtier infesté d'insectes	Rupture du circuit électrique
Fourreaux non prévus pour usage extérieur	Destruction de la protection
Liaison sans protection	Destruction de la liaison
Pénétration de l'eau ou de l'humidité	Corrosion des connexions, des diodes, des bornes, incendie

Tableau. III. 9 : Défauts dans la boîte de jonction (3).

Figure. III. 15 : Exemples de défauts rencontrés dans des boîtes de jonction

III.3.13. Défaut de terre

Il se produit accidentellement par un court-circuit électrique (43) (50) (51). La majorité des systèmes PV sont équipés de dispositif de détection de défaut de terre et d'interruption de courant de défaut (53).

III.3.14. Défaut d'arc

Il se produit en raison de la discontinuité et de rupture d'isolation en courants conducteurs ou adjacents.

Les défauts d'arc produisent le bruit de haute fréquence dans le signal du courant continu de la branche PV (43) (50) (53). Ce type de rupture est très dangereux pour les plantes et peut produire des incendies.

III.3.15. Interconnexion endommagée

Une mauvaise soudure entre ruban d'interconnexion de la branche avec celui de la cellule est la principale raison de ce débranchement.

Les contraintes dues au transport, les points chauds, le cycle thermique ou les contraintes mécaniques répétées affaiblissent le ruban d'interconnexion jusqu'à la rupture. La courte distance entre les cellules développe ce type de défaillance. Il peut en résulter des cellules court-circuitées (50) (48).

Défaut	Conséquences
Mauvais dimensionnement des câbles	Chute de tension> 3%, échauffement
Connexion desserrée ou cassée	Arc électrique, incendie, destruction de la boîte de jonction, destruction de diodes
Principe de câblage en goutte d'eau non respecté	Mauvais câblage
Câbles inter module de section trop	Corrosion des contacts, rupture du circuit
faible par rapport au presse-étoupe	électrique
Mauvais dimensionnement des câbles	Chute de tension> 3%, échauffement
Connexion desserrée ou cassée	Arc électrique, incendie, destruction de la
	boîte de jonction, destruction de diodes
Principe de câblage en goutte d'eau non respecté	Mauvais câblage
Câbles inter module de section trop	Corrosion des contacts, rupture du circuit
faible par rapport au presse-étoupe	électrique
Bornes rouillées	Faux contacts, circuit ouvert, arc électrique
Câbles non fixés	Boucle de câblage, circuit ouvert
Mauvais câblage	Court-circuit, claquage des diodes anti-retour,
	destruction des connecteurs (circuit ouvert),
	aléas de fonctionnement sur disjoncteur
Toron	Boucle électromagnétique
Câbles d'arrivée des sous-champs	Mauvais câblage, faux contacts, circuit ou-
entamés lors du dénudage	vert, arc électrique
Absence de graisse de silicone	Humidité
Câble mal dénudé	Mauvais câblage, faux contacts, circuit ou- vert, arc électrique
Câble rongé par des rats	Faux contacts, circuit ouvert, arc électrique
Modification du câblage par l'usager	Mauvais câblage, faux contacts, circuit ou-
non compétent	vert, arc électrique
Bornes rouillées	Faux contacts, circuit ouvert, arc électrique
Câbles non fixés	Boucle de câblage, circuit ouvert
Boîte de connexion décollée	Connexion des cellules en série endommagée
Boîte de connexion décollée	Connexion des cellules en série endommagée

Tableau. III. 10 : Défaut dans le système de câblage (3).

Figure III. 16 : Exemples de défauts rencontrés dans le système de câblage.

• Défaut de ligne à ligne

Un défaut ligne à ligne désigne un défaut de court-circuit entre les conducteurs du PV système. Les défauts de ligne à ligne peuvent être causés par un défaut d'isolation des câbles et dommages mécaniques (54).

Figure III. 17 : Exemples de défauts de diodes de bypass.
Défaut	Conséquences		
Protections inappropriées ou mal	Court-circuit, hot spot, incendie, arrêt de		
dimensionnées	l'installation		
Interrupteur, dicionateur inappropriá	Arc électrique, incendie, destruction à		
interrupteur, disjoneteur mapproprie	l'ouverture		
Disjoncteur différentiel non con-	Non déclenchement, tension entre neutre et		
forme à la norme	terre		
Armoire électrique posée à même le	Dusfonctionnement en cas de pluie		
sol à l'extérieur	Dystoneuonnement en cas de plute		
Parafoudre non connecté à la terre	Pas de protection		
Impossibilité de déconnecter les	Problème de cécurité		
modules par branche	Probleme de securite		
Pas de possibilités de sectionnement	Problème de cécurité		
extérieur au coffret	Probleme de securite		
Mauvaise dissipation de la chaleur	Echauffement		
des diodes	Echauttement		
Sous dimensionnement des diodes de	Hot spot, destruction des diodes, échauffe-		
bypass	ment de la boîte de jonction		
Absence de protection contre les	Hot spot, destruction des diodes, échauffe-		
courants inverses	ment de la boîte de jonction		
Dioda mal connectás	Non fonctionnement des diodes, absence de		
Dide mar connectee	protection contre les courants inverses		
Inversion de la polarité des diodes au	Non fonctionnement des diodes, court-circuit,		
montage	hot spot		
Phánomànas da rásonansa	Non fonctionnement des fusibles et des pro-		
r nenomenes de resonance	tections de surtension		
Dégradation à cause de la lumière	Non fonctionnement des diodes de bypass		
Echauffement des diodes placées	Température de destruction atteinte		
dans un endroit mal ventilé			
Vieillissement des disjoncteurs	Non fonctionnement des disjoncteurs		

Tableau. III. 11 Défauts dans le système de protection (3).

Défaut	Conséquences			
Dégradation à cause la chaleur	Détérioration de l'onduleur, des connexions			
Faux contact	Arrêt de l'onduleur			
Surtension	Déconnexion de l'onduleur			
Fusible fondu	Arrêt de l'onduleur			
Foudre sur le réseau	Surtension, destruction de l'onduleur			
Tension du générateur inférieure à la limite basse de l'onduleur	Déconnexion de l'onduleur			
Onduleur sous dimensionné	Destruction de l'onduleur			
Bobine des filtres, thyristors, capaci- tés en défaut	Arrêt de l'onduleur			
Problème d'interface avec le réseau	Découplage de l'onduleur			
Défaut d'isolement	Détérioration de l'onduleur			
Surchauffe des onduleurs	Diminution des performances			
Onduleur installé dans un lieu non étanche	Panne de l'onduleur			
Onduleur mal fixé	Chute de l'onduleur			
Onduleur surdimensionné	Perte de puissance, diminution des perfor- mances			
Visserie et bouton de commande oxydés	Réglage impossible			
Mauvais choix de la tension nomi- nale d'entrée	Diminution des performances			
Pile de sauvegarde HS	Perte des données			
Témoins de défaut d'intensité allumé en permanence	Mauvaise information sur l'intensité			
Onduleur non mis à la terre	Disjoncteur différentiel non actif			
Perte de la mémoire (mauvaise ma- nipulation du technicien)	Perte des données			
Afficheur de cristaux liquide en- dommagé ou illisible	Pas d'information sur le fonctionnement			

Tableau. III. 12 Défauts dans l'onduleur (3).

III.4. Système de diagnostic III.4.1. Etape de diagnostic :

Tout système est susceptible de présenter des symptômes révélateurs de défauts. Le défi est de pouvoir détecter et localiser ces défauts d'une manière automatique (55). Le principe général de surveillance d'un système autonome peut être décrit par la figure III.20, les étapes sont détaillées comme suit (55) (56) :

Prise de mesures : la mesure que l'on fait sur le système est la seule information pour connaitre l'évolution du système. Elle se fait à l'aide d'un capteur approprié et nécessite souvent d'une étape de filtrage.

- **Détection de défauts :** souvent, il s'agit d'un test statistique traitant un signal susceptible de contenir des informations sur l'état du système à surveiller.
- Localisation de défauts : c'est souvent une tâche liée aux caractéristiques du système. Il s'agit d'un test qui traite l'information sur l'origine de la provenance du défaut.

Identification de défauts : Il s'agit de caractériser le défaut, d'estimer son importance et son comportement dans le temps (56).

Décision : c'est une décision sur le type d'action à prendre pour rétablir de système.

Correction : c'est l'action d'arrêter le système et de procéder à une maintenance corrective(55).

Adaptation : c'est l'action de reconfiguration et d'adaptation de la consigne à injecter dans le système.

III.4.2. Objectifs

- Réduction des arrêts imprévus

- Réduction des pertes de production

- Eviter les graves dommages

- Planification optimale des opérations de maintenance et limitation des coûts de réparation.

Figure III. 18 : Organigramme de diagnostic des défauts.

III.5. Architecture de diagnostic

Les principaux objectifs de la surveillance du système PV sont la détection de la défaillance, l'évaluation de la performance et l'assurance du bon fonctionnement du système. Ceci nécessite des données électriques et environnementales à des panneaux photovoltaïque (57) (58). Pour atteindre ces objectifs, des composants dédiés, tels que les capteurs, l'acquisition de données systèmes, les systèmes de communication de données et le logiciel dédié et les algorithmes pour l'analyse de données sont utilisés (57).

La taille et le fonctionnement du système et des coûts d'entretien sont des paramètres déterminent le système de surveillance adéquat. En revanche, la taille de l'installation photovoltaïque est importante pour la conception du système de surveillance. L'adoption des capteurs câblés dans les petites installations PV est économique et moins complexe. Cependant, les réseaux sans fil sont plus commodes pour les moyennes et grandes installations photovoltaïques.

Selon la figure 3.21, l'architecture du système diagnostic peut être divisée en trois niveaux, Dans le premier niveau il y a les capteurs, qui sont les principaux composants pour parvenir à une base de données précise et fiable.

Le deuxième niveau est l'acquisition de données, qui inclut des mesures et de l'application prétraitement de signal mesuré (pré-processing). A ce niveau, matériel spécifique et un réseau la communication sont exigés.

Figure. III. 19: Schéma global de détection et de diagnostic des défauts

Le troisième et dernier niveau est le plus flexible. Il consiste à la mise en œuvre de techniques d'analyse qui conduit à évaluer et estimer les performances de ce système photovoltaïque.

III.6. Méthodes de détection et de diagnostic des défauts d'un système PV

Les condition climatiques (les effets d'ombrage, l'encrassement des modules), conditions d'exploitation (vieillissement des modules PV) et des défauts de fabrication sont la cause principale au anomalies apparue dans les différents étages du système photovoltaïque, du module puis le câblage et la protection et enfin les convertisseurs de puissance (43). Semblable à tous les systèmes industriels, les systèmes de surveillance jouent un rôle essential dans les installations photovoltaïques, car ils remplissent la tâche de contrôle et la détection des défauts (43).

Figure. III. 20 : Différentes méthodes de diagnostic (43)

Figure. III. 21 : Techniques de détection de défauts pour les systèmes PV autonomes

III.7. CONCLUSION

Dans ce travail on a étudié les performances des générateurs photovoltaïques autonomes avec des contraintes qui peuvent se produire aux différents étages de système photovoltaïque.

La seconde partie de de ce chapitre est dédiée à la description de l'architecture des systèmes diagnostiqués en mettant l'accent sur les systèmes d'acquisition de données, des capteurs et les différentes méthodes de détection de défaut.

L'étude de différentes méthodes de diagnostic a été effectuée dans le but de sélectionner la technique qui peut être la plus appropriée pour étudier la caractéristique. Cette méthode permettra d'établir une base de données des différents comportements du champ photovoltaïque, ce qui définira sa performance dans la détection de défauts. On a décrit leurs principes d'application sur l'analyse de la caractéristique statistique afin d'évaluer les performances des systèmes photovoltaïques sous différentes conditions. Chapitre 4 Surveillance et diagnostic d'une installation photovoltaïque par logiciel Watch Power

Chapitre 04

Surveillance et diagnostic d'une installation photovoltaïque par le logiciel Watch Power

IV.1 Introduction

Une approche pratique de surveillance et de détection des défauts pour les systèmes PV destinés à une mise en œuvre en ligne est développée dans ce chapitre. Le modèle de surveillance et de détection de défaut ici est construit à l'aide de logiciel Matlab/Simulink 2021 et le logiciel Watch Power.

Figure. IV. 1 : Le module photovoltaïque Kyocera Solar utilisé pour la simulation.

Figure IV. 2 : Caractéristique I(V) P(V) de module Kyocera Solar Kc200GT.

D'après la figure IV.3, on remarque quand la température croît à un éclairement constant $(E=1000W/m^2)$, la tension du module diminue (I(V)) et la conversion photovoltaïque est donc moins importante et plus la température augmente plus la puissance maximale diminue (P(V)).

Le schéma bloc de système PV utilisé est représenté sur la figure IV.3.

Figure. IV. 3 : schéma block de système PV

Les résultats de simulation sont discutés dans les paragraphes suivantes.

Figure. IV. 4 : Caractéristique I(V) P(V) Sans défaut

IV.3 Défaut d'ombrage partiel :

Figure. IV. 5 : Caractéristique I(V) P(V) l'effet d'ombrage sur 2 modules

IV.4 L'effet de température sur l'installation PV

Figure. IV.9 : Caractéristique I(V) P(V) l'effet de température de 50 degrés sur les modules

Figure IV.10 : Caractéristique I(V) P(V) l'effet de température de 60 degrés sur les modules

IV.7. Le logiciel Watch Power

Watch Power est un logiciel de surveillance connecté à l'onduleur qui peut surveiller plusieurs appareils via un port en série en même temps. Les principales fonctions du logiciel de surveillance Watch Power incluent le journal des données pour les périphériques, les messages d'alarme, les messages de défaut et le paramétrage des périphériques. Pour se faire, une feuille de route est établie selon la procédure suivante

- La surveillance de l'installation dans une journée ensoleillée complet par Watch power
- Une comparaison entre deux expériences :
- Une journée normale sans défauts dans l'installation photovoltaïque
- Avec un défaut d'ombrage

VielchPower	ofrightlingus Allicher Langus Adle		Carl prove strategy and a days	=			13
Se Christenne PG			Hard Contraction of the leader				
	Piles.	-	Tenson AG		Courant de décharge Initiane		
					Taitatore ein mortan		8
	2 6		Tunsian darmin Pr		Fréquence de surfie		10-
	and investee.		Pulssance dividee PV				100
					Poissance arbre en sorte:		56
	and the second second		Capacité de la ballarie		Pourcentage de thierge:		53
			A		<u>.</u>		100
	Information cur le produit		informations nominates				
			Tanision monoriale 40		Finiquence warrande	ettaurte.	
	Topolegne		Courient nominal ACC		Covrant naminal		
	version CPU prenagere		Tempion norrenale de la badarie.		Parssance hormsale apparente		81
			Tension nominale en cortier		Puissance nominale active	en sorbe	L.
· · · · · · · · · · · · · · · · · · ·	41.						- ¹²

IV.7.1 Caractéristiques du logiciel :

Figure. IV. 1 : La fenêtre principale de logiciel Watch power

Ses caractéristiques sont :

 Acquisition automatique et en temps réel des données des périphériques et sauvegarde du journal des données sécurisée

Affichage graphique des données de l'appareil pour une lecture rapide et facile

- Notifications d'avertissement ou alarmes de défaut par messagerie mobile, message de plateau et e-mail
- Diagnostic facile des statistiques de l'événement
- Suivi le système photovoltaïque à distance (par bleu tout et wifi) en application Watch power en téléphone Android
- Surveiller plusieurs onduleurs en même temps ci-dessous une configuration des paramètres de l'onduleur

Pour la configuration des paramètres de l'onduleur on suit les étapes suivantes.

Chapitre 4 Surveillance et diagnostic d'une installation photovoltaïque par logiciel Watch Power

guration des paramètres	
Sonnenie: • Activer 🔿 Désactiver Andrésier	Alarma activés en cas d'internaption de la source prioritaire. 🌒 Activer 🕓 Désactiver 🗐
Ritrofdarage 🔍 Adver 🔿 Disactiver	Surcharge Bipass: 🔘 Activer 🔿 Délactiver 🔤
Redémanage suite à une surcharge 🕜 Adver 👁 Désacher 🔤	Ecran LCO retourne à l'écran par céltaut au bout d'1 min. 🔹 Activer 🔿 Désachier 🦄
Redémanage suite à une sorthaute: 🔘 Activer 🔍 Désactiver Redéaver	
Source prioritaire de charge. Lility	Antonia Retour à la tension du réseau électrique 23.0 🗖 V Articular
Source prioritaire d'alimentation, UNINY 🗖	Application Courset de charge maximum: 30 🖬 A Application
Plage d'entrée AC: Appliance 🗖	Applicate Courant de charge AC maximum. 20 🗰 A Applicate
Type de badierie: User 🗖	Reflocale Reforcă la tension de décharge: 27.0 🕅 V Applicate
Fréquence de sortie. 50 🔲 Hz.	adam .
Temaion de charge Buik 🛛 28.9 💭 V 🔤 de charge	Tension d'anvi des Sutteries 21 21 Application
Tension de charge flottante. 28.2 V September	
ny equalization setting	
Battery equalization: C Activer	Resi-lime actuale battery equalization 🔘 Actuale 🌒 Annufer 🤷
Equalization time 60 🖉 Min New Cont	Equalcultor voltage 28.2 🙀 V Portuge
Equalization period: 30 Jour Royalam	Equalization Ameout 120 Kin Import

Figure. IV. 2 : Configuration des paramètres de l'onduleur.

IV.7.2 Mode de mise sous tension et de veille :

L'onduleur n'allume pas la charge jusqu'à ce que l'interrupteur "ON" soit pressé. 'utilité qualifiée ou la source PV peut charger la batterie en mode veille.

Figure. IV. 3 : Mode de mise sous tension

Figure. IV. 4 : Mode veille

IV.7.3 Mode batterie :

L'onduleur alimentera la charge de la batterie ou du panneau PV. Seule une source PV peut charger la batterie.

Figure. IV. 5 : Mode batterie. IV. 7.4 Mode défaut :

Certains défauts se sont produits dans l'onduleur et aucune sortie de puissance n'est générée par l'onduleur. Le réseau qualifié ou la source PV peut toujours charger la batterie.

Figure. IV. 6 : Mode défaut

IV.7.5 Watch power avec application Wi-Fi

On peut surveiller les installation PV à distance utilisant le Wi-Fi.

Figurative. 7 : Watch power en application Wi-Fi

IV.8. Surveillance et diagnostic d'une installation PV par le logiciel Watch power

Nous avons fait nos expériences sur une installation photovoltaïque contenant quatre panneaux de 200 W (cas d'application), les caractéristiques de chaque panneau (nommé HD-200M 18V) est résumé dans le tableau ci-dessous.

Caractéristique électrique	HD-200M 18V
Puissance max produise par panneau (Pm)	200W
Tension de circuit ouvert (sans charge) (Voc)	23.2V
Courant de court-circuit (sans charge) (Isc)	11.69A
Tension max produise par panneau (Vmp)	18.2V
Intensité max produise par panneau (Imp)	10.98A
Tension maximale du système (V)	1000VDC

 Tableau. IV. 1 : Caractéristique électrique du panneau HD-200M 18V.

Le logiciel peut donner les informations nominales dans l'onduleur :

Chapitre 4 Surveillance et diagnostic d'une installation photovoltaïque par logiciel Watch Power

Figure. IV. 8 : Les informations nominales

IV.8.1 La première expérience

Dans cette expérience, Watch Power suivi la puissance dans une journée ensoleillée le 24 mai 2022, le temps se suivi de 00h à 23H30 (un jour complet).

Figure. IV. 9 : générateur PV 4 Panneau de 24 V

Chapitre 4 Surveillance et diagnostic d'une installation photovoltaïque par logiciel Watch Power

Figure. IV. 23 : Branchement deux batteries de 12V.

Figure. IV. 24 : Le système PV en jour.

Chapitre 4 Surveillance et diagnostic d'une installation photovoltaïque par logiciel Watch Power

Figure. IV. 25 : Le système PV en nuit.

Les résultats de simulation est donnée dans la section suivante.

IV.8.1.1. Les résultats de simulation données par logiciel :

Figure. IV. 26 : Tension d'entrée de l'installation PV.

Chapitre 4 Surveillance et diagnostic d'une installation photovoltaïque par logiciel Watch Power

Figure. IV. 27 : Courant d'entrée de l'installation PV

Figure. IV. 29 : Capacité de la batterie.

Chapitre 4 Surveillance et diagnostic d'une installation photovoltaïque par logiciel Watch Power

Figure. IV. 30 : La puissance active en sortie

Figure. IV. 31 : Fréquence de sortie.

IV.8.1.1.1. Interprétation :

La tension de sortie au panneau photovoltaïque est la force provenant des cellules photovoltaïques du panneau solaire permettant de faire circuler le courant dans le circuit électrique, dans les courbes de tension et courant la tension commence à augmenter pour le courant débute à circuler. La tension reste élevée est atteint à sa valeur maximale et la puissance d'entrer atteint 600W.

Pour la batterie la capacité est 100% sauf les périodes d'utilisation des récepteurs, d'après la simulation par le logiciel Watch power on peut suivre la puissance active, le courant de charge et de décharge de l'accumulateur.

IV.8.2 Deuxième expérience

Dans cette expérience, nous allons faire une comparaison de défauts d'ombrage avec une journée normal et nous remarquons la variation des différents paramètres de la cellule PV.

IV.8.2.1Défaut d'ombrage :

Figure. IV. 32 : photo de la création de défaut de l'ombrage.

IV.8.2.2. Les courbes données par le logiciel :

Figure. IV. 33 : tension d'entrée de l'installation PV.

Figure. IV.34 : courant d'entrée du système PV

IV.8.2.3. Interprétation :

On constate l'instabilité dans la production de l'énergie électrique et cela est due à la présence de l'ombrage ce qui diminue le rendement des panneaux solaires, comme indiqué dans la figure (IV.33-34).

IV.8.3. Journée normale sans défauts : IV.8.3.1. Les courbes données par logiciel :

Figure. IV. 35 : tension d'entrée de l'installation PV.

Figure IV.36 : courant d'entrée de l'installation PV.

IV.8.3.2. Interprétation :

On constate une amélioration évidente dans les valeurs énergétique (émanant des panneaux solaires) en raison de l'augmentation dans les rayons solaires et l'absence du dysfonctionnement qui entravent le fonctionnement des panneaux solaires et les obstacles de flux de puissance.

IV.9 Conclusion :

Dans ce travail nous avons simulé sous Matlab/Simulink la caractéristique (courantetension) et (puissance-tension) d'un module PV. La simulation traite l'effet des variations de l'éclairement et la température sur la tension, le courant et la puissance aux sorties du panneau photovoltaïque. Le principe de la commandes MPPT est d'effectuer une recherche du point de puissance maximal (MPP), Ce point est le point de fonctionnement optimal pour lequel le module PV opère à sa puissance maximale.

La commandes MPPT contient généralement un algorithme qui donne le point de puissance maximale, où nous avons opté par le régulateur MPPT, qui assurant la poursuite de la puissance maximale fournie par le générateur photovoltaïque.

Nous avons aussi parler sur le logiciel Watch power et ses caractéristiques et son principe de fonctionnement pour le suivi et la surveillance, le diagnostic de défaut d'un système photovoltaïque en temps réel, ce logiciel nous permettons de détecter les défauts et la surveillance du système pour prévenir les défauts. Nous avons également mené plusieurs expériences pour détecter la climatologie des panneaux solaires.

Conclusion générale

Dans le cadre de ce mémoire, on s'est principalement intéressé à une étude de surveillance et diagnostic des défauts dans le système photovoltaïque. Dans un premier lieu nous avons mis en avant la structure complète d'un système PV autonome, ensuite nous avons établir une base de compétence sur le comportement défaillant d'un système photovoltaïque. La formalité proposée consiste sur le principe d'une régularité de la température et l'irradiance solaire sur les cellules photovoltaïques. Nous avons simulé sous Matlab/Simulink la caractéristique (courante-tension) et (puissance-tension) d'un module PV. La simulation traite la détection de défaut de l'installations PV. Ainsi l'effet des variations de l'éclairement et la température sur la tension, le courant et la puissance aux sorties du panneau photovoltaïque.

Pour le diagnostic de défaut dans le système photovoltaïque ont a utilisé aussi le logiciel Watch Power, l'avantage de ce logiciel est de pouvoir faire une analyse de la puissance et de l'énergie produite, ainsi d'identifier le dysfonctionnement du système.

Ces travaux ouvrent de nombreuses perspectives. Nous pouvons citer de finaliser les tests pour évaluer la robustesse en temps réel du système de diagnostic pour différentes conditions de fonctionnement .

Bibliographie

1. Cour formation énergie solaire. s.l. : école STS , 2021.

2. A. Triki-lahiani, A.B. Abdelghani and I. Slama-belkhodja, Fault Detection and Monitoring Systems for Photovoltaic Installations. *Renewable Sustainable Energy*. pp 0-1, 2017.

3. L. Bun. Détection et localisation de défauts dans un système photovoltaïque. Grenoble : Université de Grenoble, 2012.

4. Djriou, . Simulation d'un système photovoltaïque alimentant une machine . *thèse magistère*. Sétif : université Ferhat Abbas, 2011.

5. Jimmy Royer, Thomas Djiako, Eric Schiller. Le pompage photovoltaïque: manuel de cours à l'intention des ingénieurs et des techniciens. canada : Université d'Ottawa, 1998.

6. ADEME. Vocabulaire des systèmes de conversion photovoltaïque de l'énergie solaire. s.l. : édition n°1 sur CD-Rom, 2008/2009.

7. Navarro, José Miguel. Cellules Photovoltaïques Organiques Transparentes Dans Le Visible. Toulouse : Université Toulouse III, 2008.

8. Piccard, L. de Schoulepnikoff et Gymnase Auguste. Quelle source d'énergie pour les vingt prochaines années ? s.l. : Travail de maturité Alexandra Catana 3M7, 2009.

9. M.Salmi. Contribution à La Quantification De L'irradiation Solaire Globale En Algérie Et Applications Aux Générateurs Photovoltaïques. Sétif : Université Ferhat Abbas de Sétif, 2012.

10. Belakehal, . Conception & Commande des Machines à Aimants Permanents Dédiées aux Energies Renouvelables. Constantine : thèse doctorat université de Constantine.

11. Khezzar, . Comparaison entre les différents modèles électriques et détermination des paramètres de la caractéristique I-V d'un module photovoltaïque. s.l. : revue des Energie Renouvelables Vol.13 N° 3, pp 379-388, 2010.

12. SLAMA, . Modélisation d'un système multi générateurs photovoltaïques interconnectés au réseau électrique. Sétif : mémoire de magister Université de Sétif, Janvier 2012.

13. Masson, . Les piles solaires, le composant et ces applications. 1985.

14. El-Metwally, . Journal of Atmosphérique and Solar. s.l. : Terrestrial Physics 67, 1331, 2005.

15. Borni, . modélisation et commande des machines électrique. s.l. : Thèse de magister université de Constantine, 2009.

16. B.Tarek, B. Chaouki. Optimisation floue neuronale et génétique d'un système photovoltaïque connecté au réseau. Biskra : Mémoire ingénieurs. Université de Biskra, 2007.

17. EPIA. Solar generation, European Photovoltaic Industry Association. 2011.

18. Chebana, . Contrôle d'un système photovoltaïque connecte au réseau. Biskra : Mémoire de master électrotechnique Université de Biskra, 2014.

19. Kaber, D.BETAOUAF et O.H.Mohamed. commande robuste d'un système photovoltaïque a usage domestique. Juin 2013 .

20. I.Touaïbia, E.Kechar E.Azzag et. Influence des rayonnements solaires sur le rendement des panneaux photovoltaïques. Tlemcen : Thèse de doctorat Université Abou bekr Belkaid – Tlemcen, 2015.

21. Abdelmoumene, . Dimensionnement d'une installation photovoltaïque autonome pour l'alimentation d'une ferme. Mostaganem : Mémoire de Magister, Université Abdelhamid Ibn Badis Mostaganem, 2011 .

22. Mehdi, Zidane Achref eddine et Sahtout. LES SYSTEMS PHOTOVOLTAIQUES CONNECTES AU RESAU. ANNABA : MEMOIRE de MASTER ACADEMIQUE UNIVERSITE BADJI MOKHTAR ANNABA, 2017 .

23. Stéphane, . Nouvelles architectures distribuées de gestion et de conversion de l'énergie pour les applications photovoltaïques. Toulouse : Thèse de doctorat Université de Toulouse, 2009.

24. Navarro, José Miguel. Cellules Photovoltaïques Organiques Transparentes Dans Le Visible . Toulouse : Thèse de doctorat. Université Toulouse III - Paul Sabatier, 2008.

25. Piccard, L. de Schoulepnikoff et Gymnase Auguste. Quelle source d'énergie pour les vingt prochaines années? s.l. : Travail de maturité Alexandra Catana 3M7, 2009.

26.http://www.plaisance-

pratique.com/spip.php?page=popup_forum&id_article=1861&id_forum=20738 , . [Online] 04 04 2020.

27. LAHORE, . Optimisation de commandes MPPT. Toulouse : Mémoire de Master Université de Toulouse Paul Sabatier, 2012.

28. Systèmes sites isolés et systèmes de secours Victron Energy www.victronenergy.fr.

29. Informations sur l'accumulateur au plomb et batterie solaire Oldham www.enersys.com.

30. « Planning and Installing Photovoltaic Systems ».

31. Moine, . Electricité solaire photovoltaïque Principes. 1983.

32. Libro de ingeniería sin fronteras.

33. Kalaitzakis, E. Koutroulis and K. Novel Battery Charging Regulation system for Photovoltaic applications . s.l. : IEE Proc. Electr. Power Appl., Vol. 151 N°2, pp.191 - 197, March 2004.

34. Villoz, anne Labouret-Michel. anne Labouret-Michel Villoz. s.l. : anne Labouret-Michel Villoz professionnel.Dunod 3ème édition, 2003.

35. Adouane, . Etude et conception d'une stratégie de commande d'un onduleur connecté au réseau électrique. Algérie : Mémoire de magistère Ecole Nationale Polytechnique Alger Algérie, 2008.

36. tension, Onduleur de. mise en œuvre et Structures-principes-applications Techniques D'ingénieur. s.l. : Traité de génie électrique D.3176-3177.

37. Khenfer, . Détection et isolation de défauts combinant des méthodes à base de données appliquées aux systèmes électro-énergétiques. Setif : Thèse de doctorat, Université Farhat Abbas - Setif, 2018.

38. Bouzeria, . Modélisation et commande d'une chaine de conversion photovoltaïque. Batna : Thèse de Doctorat Université de Batna 2 -Batna, 2016.

39. Kabeche, , et al. Optimisation d'un système hybride (éolien –photovoltaïque) totalement autonome. s.l. : Revue de Energies Renouvelables vol. 9, N°3, 2006, pp : 199-209.

40. Rezgui, . Système intégré pour la supervision et le diagnostic des défauts dans les systèmes de production d'énergies: les installations photovoltaïque. Batna : Thèse de Doctorat Université de Batna 2 -Batna, 2015.

41. A. Triki-lahiani, A.B. Abdelghani and I. Slama-belkhodja. Fault Detection and Monitoring Systems for Photovoltaic Installations: A Review', Renewable Sustainable Energy Review. s.l. : pp. 0-1, 2017. doi:10.1016/j.rser.2017.09.101.

42. D.W.Peter. Fault Detection and Performance Visualisation for a Grid-Connected Photovoltaic Power Plant Using Sensor Data. Master of Engineering Thesis. s.l. : Stellenbosch University, 2019.

43. A. Mellit, G.M. Tina and S.A. Kalogirou. Fault detection and diagnosis methods for photovoltaic systems: a review Renewable Sustainable Energy Review. s.l.: Vol. 91, pp. 1 -17, 2018. doi:10.1016/j.rser.2018.03.062.

44. https://tel.archives-ouvertes.fr/search/index/?q=%2A&structId_i=35871. [Online]

45. M. Cândida, C. de Oliveira, A. Sonia, A. Diniz, M. Viana and V. de Freitas. The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: a review. s.l. : Renewable Sustainable Energy Review, pp. 1 - 19, 2017. doi:10.1016/j.rser.2017.06.039.

46. A. Kobi, CMF Ke, PA Ndiaye and V. Sambou. Degradations of silicon photovoltaic modules: A literature review . s.l. : Solar Energy, Vol. 96, pp. 140 - 151, 2013. doi:10.1016/j.solener.2013.07.005.

47. Chandel, V. Sharma and S.S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: a review. s.l. : Renewable Sustainable Energy Review, Vol. 27, pp. 753 - 767, 2013. doi:10.1016/j.rser.2013.07.046.

48. G. Illya, V. Handara, L. Yujing, R. Shivakumar and A. Suriadi. Backsheet Degradation under Salt Damp Heat Environments - Enabling Novel and Innovative Solar Photovoltaic Systems Design for Tropical Regions and Sea Close Areas. s.l. : Procedia Engineering, Vol. 139, pp. 7 - 14, 2016 doi:10.1016/j.proeng.2015.09.233.

49. wang, C. Huang and L. Simulation study on the degradation process of photovoltaic modules. s.l.: Energy Conversion and Management, Vol. 165, pp. 236 -243, 2018. doi:10.1016/j.enconman.2018.03.056.

50. Chandel, V. Sharma and S.S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: a review. s.l. : Renewable Sustainable Energy Review, Vol. 27, pp. 753 - 767, 2013. doi:10.1016/j.rser.2013.07.046.

51. IEA - PVPS, Review of Failures of Photovoltaic Modules. 2014.

52. Vitelli, M. Balato and M. A new control strategy for the optimization of Distributed MPPT in PV applications. s.l. : International Journal of Power Energy System, Vol. 62, pp. 763 - 773, 2014. doi:10.1016/j.ijepes.2014.05.032.

53. Flicker, . Analysis of Fuses for 'Blind Spot' Ground Fault Detection in Photovoltaic Power Systems. s.l. : J. Flicker Solar America Board for Codes and Standards, 2013.

54. Yang, Y. Liu X. Zhu and J. Fault diagnosis of PV array based on optimised BP neural network by improved adaptive genetic algorithm. s.l. : pp. 19-20, 2017 doi:10.1049/joe.2017.0567.

55. Hachour, . Approche décentralisée pour la détection et la localisation de défauts dans une ferme photovoltaïque. s.l. : Projet de Stage, 2011.

56. Marco, C. Ventura and G. Development of models for on-line diagnostic and energy assessment analysis of PV power plants : the study case of 1 MW Sicilian PV plant. s.l. : Energy Procédia, Vol. 83, pp. 248 - 257, 2015.doi:10.1016/j.egypro.2015.12.179.

57. Singh, S.R. Madeti and S.N. A comprehensive study on different types of faults and detection techniques for solar photovoltaic system. s.l.: Solar Energy, Vol. 158, pp. 161 - 185, 2017. doi:10.1016/j.solener.2017.08.069.

58. E. Garoudja, A. Chouder, K. Kara and S. Silvestre. An enhanced machine learning based approach for failures detection and diagnosis of PV systems. s.l. : Energy Conversion and Management, Vol. 151, pp. 496 - 513, 2017 doi:10.1016/j.enconman.2017.09.019.

60. https://tel.archives-ouvertes.fr/search/index/?q=%2A&structId_i=35871. [Online]

61. D. W. Peter. Fault Detection and Performance Visualisation for a Grid-Connected Photovoltaic Power Plant Using Sensor Data. Master of Engineering Thesis. s.l. : Stellenbosch University, 2019.

62. Ishida, et al. Experimental studies of fault location in PV module strings. s.l. : Solar Energy Materials & Solar Cells, Vol. 93, pp. 1079 - 1082, 2009 doi:10.1016/j.solmat.2008.11.060.