
الشعبية الديمقراطية الجزائرية الجمهورية

People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University 8 May 45 -Guelma-

Faculty of Mathematics, Computer Science and Material Science

Department of Computer Science

Master's dissertation

Field: Computer science

Option: Science and technology of information and communication

Theme :

Fake Faces Detection Based on an Auto-Encoder Network

(Application Developed on Jetson Nano)

Supervisor :

 Dr.Bencheriet Chemesse

Ennahar

Presented By:

 TABA Zahra

June 2022

Thanking

First, I thank ALLAH, our one, and merciful GOD, for giving me the health and

courage to complete this modest work. I implore him to guide me on the right path

and wrap me in His goodness and blessing.

The work presented in this thesis was carried out in the LAIG laboratory (Laboratoire

d'Automatique et Informatique de Guelma), supervised by the Director Kechida

Sihem and engineer Fisli Soufiane whom I would like to thank for welcoming me to

this laboratory.

I want to express my deep gratitude and sincere thanks to my supervisor Mme

Chemesse Ennehar Bencheriet, a teacher in the Computer Science department 8 mai

1945 Guelma University, for her keen interest, her kindness, her inspiring advice, and

her constant encouragement with my work at all stages, to carry out this thesis. It was

a great pleasure for me to have the opportunity to work under her supervision.

I would also like to thank madame Brahmia Souhaira wishing her and her daughter all

the success.

I would also like to thank the jury members who gave me the privilege of agreeing to

review my work and for their time in this regard.

A big thanks to all teachers of the Computer Science department for their patience and

dedication to the students.

I thank anyone who has given me a moment to help, advise, or encourage me.

Finally, I thank all my family and especially my mother for her patience and support

throughout my journey may Allah bless her and lend her health and long life.

Dedication

I dedicate this work to my family. A special feeling of gratitude to my dear loving

parents who gave me everything without expecting anything in return and for

supporting and encouraging me in my life. May ALLAH, our GOD, the Almighty,

One and Merciful, bless you with good health and long life.

To my dear sisters Somia, Yasmine, Mawada, and my dear loving brother Salah.

source of joy and happiness to me, source of hope and motivation.

To all my friends who have always supported and encouraged me during these years

of study, thank you.

 ملخص

قد تضاعف جيل الوجوه الاصطناعية على مدى السنوات القليلة الماضية ، مما أدى إلى إنشاء

 .Deepfake“ ”صور ومقاطع فيديو مزورة واقعية للغاية تعتمد على تقنيات

، نقترح نظامًا يهدف إلى اكتشاف الوجوه المزيفة في الصور استنادًا إلى نوع طروحة الأهذه في

(. يتيح لنا نهج التعلم العميق CAEمعين من الشبكات العصبية يسمى الترميز التلقائي التلافيفي)

غير الخاضع للإشراف هذا الحصول على تمثيل بسيط لبياناتنا التي نستخدمها بعد ذلك لتقدير

 اة وخطأ إعادة البناء للتمييز بين الصور "الخاطئة" و "الحقيقية". ".كثافة النو

المعروف بأدائه في اكتشاف Auto-Encoder Convolutionnel لقد اخترنا استخدام

 أسفرت.Flickr عينة من قاعدة بيانات 50000على AEالحالات الشاذة. قمنا بتدريب

عن نتائج إيجابية StyleGan الاختبارات التي أجريت على مجموعة بيانات الوجوه الزائفة

 ولكن يمكن صقلها عن طريق إطالة التدريب.

، والتي تعتبر NVIDIA Jetson Nano 2GB“ ”التطبيق مضمن في مجموعة مطوري

 128(مع GPUجهاز كمبيوتر صغير قوي للغاية لأنه يحتوي على وحدة معالجة الرسومات)

 مركزًا ، تم تصميمه خصيصًا لتطبيقات الذكاء الاصطناعي والروبوتات.

 convolutionalالترميز التلقائي التلافيفي , الوجوه الحقيقية ,الوجوه المزيفةمفتاحية : كلمات

NVIDIA Jetson Nano 2GB , Autoencoder

i

RÉSUMÉ

Au cours des dernières années, la génération de visage synthétique s’est rapidement
développée en créant des images et des vidéos forgées hyper-réalistes basées sur les
techniques de Deepfake.
Dans ce mémoire de master, nous proposons un système qui vise à détecter les faux
visages (fake faces) en utilisant un type spécifique de réseau neuronal appelé Auto-
Encodeur Convolutionnel (CAE). Cette approche d’apprentissage en profondeur
non supervisé nous permet d’obtenir une représentation simple de nos données sur
laquelle nous utilisons ensuite l’estimation de la densité du noyeau et de l’erreur de
reconstruction pour distinguer les images « fausses » et « réelles ».
Nous avons opté pour l’utilisation de l’auto-encodeur convolutif connu pour ses
performances dans la détection des anomalies. Il a été entrainé sur 50 000 échan-
tillons issues de la base Flickr. Les tests sur la base des faux visages StyleGan
ont abouti a des résultats favorables mais qui peuvent être affinés en prolongeant
l’apprentissage.
L’application a été réalisée sur la carte « kit de développement NVIDIA Jetson Nano
2GB » considérée comme un mini-ordinateur très performant car elle dispose d’un
GPU avec 128 cœurs. Spécialement conçue pour les applications de L’IA et la robo-
tique.

Mots clés: faux visages, vrais visages, Autoencoder, Auto-Encoder Convolution-
nel, Deepfake, kit de devellopement NVIDIA Jetson Nano.

ii

ABSTRACT

Synthetic face generation has overgrown over the past few years, creating hyper-
realistic forged images and videos based on Deepfake techniques.
In this master’s thesis, we propose a system that aims to detect fake faces in im-
ages based on a specific type of neural network called Convolutional Auto-Encoder
(CAE). This unsupervised deep learning approach allows us to obtain a simple rep-
resentation of our data on which we then use the estimate of kernel density and
reconstruction error to distinguish between "false" and "real" images. ".
We have opted for the use of the Convolutional Auto-Encoder known for its perfor-
mance in detecting anomalies. We trained the AE on 50,000 samples from the Flickr
database. The tests performed on the false faces StyleGan dataset yielded favorable
results but can be refined by prolonging the training.
The application is embedded in the NVIDIA Jetson Nano 2GB Developer Kit, consid-
ered a very powerful mini-computer because it has a GPU with 128 cores, specially
designed for AI and robotics applications.

Key words: fake faces, real faces, Autoencoder, Convolutional Autoencoder,
Deepfake, Jetson Nano developer kit.

iii

CONTENTS

List of Figures viii

List of Tables ix

General Introduction x

1 Generalities on Deepfake Technologies 3
1 Introduction . 3
2 Deepfake . 3
3 Importance of face in security systems and communication 4

a) In communication . 4
b) In Security systems . 4

4 History . 5
5 Advantages and disadvantages of deepfake technologies 5
6 Dataset . 6

6.1 Flickr-Faces-HQ,FFHQ . 6
6.2 100K-Faces . 6
6.3 Diverse Fake Face Dataset (DFFD) 7
6.4 CASIA-WebFace . 7
6.5 VGGFace2 . 8
6.6 The Eye-Blinking Dataset . 8
6.7 DeepfakeTIMIT . 9

7 Related work on fake face detection . 9
8 Conclusion . 14

2 Convolutional Neural Networks 15
1 Introduction : . 15
2 Machine Learning . 15
3 Machine Learning Approaches . 15

3.1 Supervised learning . 16
a) Regression . 16
b) Classification . 16

3.2 Unsupervised learning . 16
3.3 Semi-supervised Learning . 16
3.4 Reinforcement learning . 16

4 Basics of Artificial Neural Networks (ANNs) 17

iv

5 Deep Learning . 18
6 Difference between neural networks and deep learning neural networks 18
7 Deep Learning techniques . 19

7.1 Fully Connected Neural Networks 19
7.2 Recurrent Neural Network (RNN) 20
7.3 Long Short-Term Memory (LSTM) 20
7.4 Convolutional Neural Network (CNN) 21

8 Networks used in Deepfakes . 24
8.1 Generative Adversarial Networks (GANs) 24

8.1.1 Training the Discriminator 26
8.1.2 Steps for Training GAN . 26

8.2 Autoencoders . 27
8.2.1 Autoencoders Architecture 27
8.2.2 Training Autoencoders . 29
8.2.3 Types of Autoencoders . 30
a. Undercomplete Autoencoder 30
b. Sparse Autoencoder . 31
c. Contractive autoencoders . 32
d. Denoising Autoencoder . 33
e. Variational Autoencoder . 33
f. Deep Convolutional Autoencoders 34
8.2.4 Application of Autoencoders 35

9 Performance Metrics . 35
9.1 Confusion Matrix . 36
9.2 Accuracy . 36
9.3 True Positive Rate/ Recall/ Sensitivity 36
9.4 True Negative Rate . 36
9.5 False Positive Rate . 36
9.6 False Negative Rate . 36
9.7 F-Measure . 37
9.8 ROC curve . 37

10 Conclusion . 37

3 Conception 38
1 Introduction . 38
2 Objective . 38

2.1 System Architecture . 38
3 Face Detection . 40
4 Image Resizing . 41
5 Convolutional Autoencoder Network 41

5.1 Encoder . 41
5.2 Decoder . 42

6 Model Configuration . 42
6.1 Encoder and Decoder Configuration details 43

7 Image Reconstruction . 44
7.1 Mean Square Error (MSE) . 44

8 Encoder Model . 45
8.1 Kernel density Estimation (KDE) 45

9 Evaluation . 46
10 Conclusion . 46

4 Implementation 47
1 Introduction . 47
2 Environment . 47

2.1 Hardware . 47
1. Jetson Nano . 47
2. Computing Station . 51

2.2 Software . 51
Visual Studio Code . 51
Python . 52
Libraries Used . 52
Tensorflow . 52
Keras . 52
Numpy . 52
Matplotlib . 52
Pillow . 52
OS . 53
PySimpleGUI . 53

3 Dataset . 53
4 Database Splitting . 53
5 Training and Test . 54
6 Conclusion . 58

General Conclusion 60

Bibliography 63

Webography 65

vii

LIST OF FIGURES

1.1 Deepfake example. (a) real face images, (b) fake face images 4
1.2 Faces-HQ, FFHQ dataset examples. 6
1.3 100K-Faces example. 7
1.4 Diverse Fake Face Dataset (DFFD) example. 7
1.5 CASIA-WebFace dataset example. 8
1.6 VGGFaces dataset example. 8
1.7 The Eye-Blinking dataset example. 9
1.8 Deepfake TIMIT dataset example. 9

2.1 The four different Machine Learning algorithms 17
2.2 Artificial neural networks architecture. 17
2.3 between machine learning and deep learning. 18
2.4 Fully Connected Neural Networks architecture. 19
2.5 Recurrent Neural Networks architecture. 20
2.6 Long Short Term Memory architecture. 21
2.7 Convolutional Neural Network architecture. 22
2.8 Filter Matrix. 22
2.9 Activation functions graph. 23
2.10 Max pooling and Average pooling. 23
2.11 Flattening operation. 24
2.12 Convolution neural network process. 24
2.13 Generator network. 25
2.14 Generator Training. 25
2.15 Discriminator Network. 26
2.16 Discriminator Training. 27
2.17 Autoencoders architecture. 28
2.18 Autoencoders example. 28
2.19 Schematic of an Autoencoders. 29
2.20 Principle of autoencoder on image. 30
2.21 Undercomplete Autoencoder- Hidden layer has smaller dimension

than input layer. 31
2.22 Sparse Autoencoders use only reduced number of hidden nodes at a

time. 32
2.23 Contractive Autoencoders. 32
2.24 Denoising Autoencoders Princple. 33
2.25 Denoising Autoencoder example. 33

2.26 Variational Autoencoder Architecture. 34
2.27 Variational Autoencoder example. 34
2.28 The structure of Convolutional AutoEncoder. 35
2.29 ROC Curve. 37

3.1 Model Architecture. 39
3.2 Model Training Architecture. 40
3.3 MTCNN for face detection. 41
3.4 Convolutional Autoencoder Architecture. 42
3.5 Components of our neural network. 42
3.6 Reconstructed image from our model. 45

4.1 Jetson Nano 2GB Developer Kit. 48
4.2 SD Memory Card Formatter. 48
4.3 Balena Etcher. 49
4.4 Flashing microSD. 49
4.5 Insertion of the microSD. 50
4.6 Jetson nano Desktop Screen. 51
4.7 Visual Studio Interface. 51
4.8 Fake Faces examples. 54
4.9 Real Faces examples. 54
4.10 Accuracy Train and Validation graph. 55
4.11 Train Loss and Validation graph. 55
4.12 Original images. 55
4.13 Reconstructed images. 55
4.14 Test Multi Faces Fake (red rectangle) and Real (green rectangle). 56
4.15 Test One Face. 57

ix

LIST OF TABLES

1.1 Details of HHF dataset. 12

2.1 Confusion Matrix. 36

3.1 Encoder Configuration. 44
3.2 Decoder Configuration. 44

4.1 Model Dataset. 53

1

GENARAL INTRODUCTION

Creating incredibly realistic synthetic human face photos has become considerably
more accessible than before due to the significant advancements made in deep-
learning technologies named deepfakes.
Deepfake is a program that belongs to the GAN family, the Generative Adversarial
Networks that relies on an auto-encoder, which consists of an encoder and a decoder
network.
Face photos include rich and intuitive personal identity information, making them
useful for biometric verification and identification. However, on the other hand,
face images are vulnerable to forgery. They have a low level of privacy. They can be
forged using deepfake technology that allows the transfer of facial expressions on
image or video from a targeted person to another.
Several types of research have been carried out in recent years, and many machine
learning applications have been developed to detect deepfakes.
For this main objective, we have therefore developed a system that aims to detect
fake faces in images based on a specific type of neural network called Convolutional
Auto-Encoder (CAE). This unsupervised deep learning approach allows us to ob-
tain a simple representation of our data on which we then use the estimate of kernel
density and reconstruction error to distinguish between "false" and "real" faces.

We have chosen to structure our study around four main chapters.

• Chapter 1 : Generalities on Deepfake technology: This chapter provides a
general overview of deepfake technologies. The last part of this chapter has
been reserved for a state-of-the-art of recent research on detecting fake faces.

• Chapter 2 : Convolutional Neural Networks : This chapter detailed the typi-
cal architecture of convolutional neural networks, which is a fundamental part
of deep networks, and the different types of autoencoder networks.

• Chapter 3 : Conception:In this chapter, we present the basic architecture of our
system as well as the development and operation of the different modules.

• Chapter 4 :Implementation: We reserved this chapter for the overall imple-
mentation of our system and the training and testing of autoencoder on faces
and fake faces. Then we present some experimental results obtained by our
model.

We end our study with a general conclusion and prospectives for future work that
may be developed by other students.

3

CHAPTER 1

GENERALITIES ON DEEPFAKE TECHNOLOGIES

1 Introduction

In the last years, deep learning has become more powerful; fake images and videos,
including facial information generation, have been rapid, particularly with deep
learning-based Deepfake generation methods that have become a significant pub-
lic concern. The deepfake technique can create fake images and videos by swapping
a person’s face with another person, which leads to misinformation and inspiring
misunderstanding; nowadays, deepfakes are adopted by a wider audience, which is
why deepfake detection is becoming a necessity.

2 Deepfake

Deepfakes are a combination of "deep learning" and "fake." They are hyper-realistic
videos digitally manipulated to depict people saying and doing things that never ac-
tually happened, using face swaps that leave little trace of manipulation. Deepfakes
are the product of artificial intelligence (AI) applications. That merges, combines,
replaces, and superimposes images and video clips and also analyzes big datasets
to learn to mimic a person’s facial expressions, mannerisms, voice, and inflections to
create fake videos that appear authentic [Wes19].

4 Chapter 1. Generalities on Deepfake Technologies

FIGURE 1.1: Deepfake example. (a) real face images, (b) fake face
images

3 Importance of face in security systems and communication

The face represents the front part of the head that in humans extends from the fore-
head to the chin and includes the mouth, nose, cheeks, and eyes. This part presents
the importance of face in two domains: security systems and communication.

a) In communication

Communication is often defined as relaying a message to another person or persons
and exchanging information by speaking, writing, or using some other medium.
The importance of face in communication represents the distinction of being able to
see the other party or parties in a conversation. It allows for a better exchange of in-
formation since both speaker and listener can see and interpret body language and
facial expressions.[Sou+18]

b) In Security systems

Recent events, such as terrorist attacks, exposed a severe weakness in most sophis-
ticated security systems. Various government agencies are now more motivated to
improve security data systems based on body or behavioral characteristics, often
called biometrics. A biometric system processes raw data to extract a template that
is easier to process and store but carries most of the information needed. Face recog-
nition seems to be a suitable compromise between reliability and social acceptance
and balances security and privacy.[Aba+07]
Face recognition systems fall into two categories: verification and identification.
Face verification compares a face image against a template face image whose identity
is being claimed. On the contrary, face identification compares a query face image
against all image templates in a face database to determine the identity of the query
face.
But still, exist some factors that can significantly affect system faces recognition per-
formances, such as Illumination, Pose, time delay (the face changes over time), and
occlusions. [Aba+07]

4. History 5

4 History

• In 1997 [BCS97], a project called "Video Rewrite" altered existing video footage
of people to make them seem like they were mouthing the words that appeared
on a new audio track: essentially, putting words in their mouths..

• The early 2000s were reasonably silent as computer vision moved deeper into
the facial recognition world. Developments in this field made drastic improve-
ments to motion tracking that make today’s deepfakes more convincing.

• In 2001 [CET01], it debuted the active appearance models algorithm. Using
a thorough statistical model to match a shape to an image proved a big step
forward. They made face matching and tracking significantly more efficient.

• In 2016 and 2017, two papers [Thi+16][SSKS17] established deepfakes as achiev-
able with consumer-grade hardware, the Face2Face project out of the Technical
University of Munich and the Synthesizing Obama project out of the Univer-
sity of Washington. They improved computing and rendering times while up-
dating graphical fidelity to look photo-realistic.

Therefore, we can say that the first steps towards this technology were made in the
90s by academic institutions and were later adopted by a wider audience that made
it later abused by criminals and by falling into the wrong hands, deepfakes can lead
to chaos and uncertainty.
Deepfake is also considered one of the most dangerous uses of AI (Artificial Intelli-
gence). So most of its real-world applications have either discrediting or fraudulent
intentions. The victims of such actions are often famous people, celebrities, and
politicians [w1].

5 Advantages and disadvantages of deepfake technologies

There are advantages of deepfake technology, given its popularity world wide. [DW21]
These advantages are:

• Making digital voices for actors who lost theirs because of disease.

• Making digital voices for actors who lost theirs because of disease.

• Recreate classic scenes in movies; create new movies starring long-dead actors.

• Allows for automatic and realistic voice dubbing for movies in any language.

Disadvantages of deepfakes:

• Threat to world security when deepfake procedures can make videos of world
leaders with forged speeches for fraudulent purposes.

• Abused to cause political or religious misunderstanding between countries, to
fool the public, and affect results in election campaigns.

6 Chapter 1. Generalities on Deepfake Technologies

• Create confusion in financial markets by creating fake news.

• Create forged satellite broadcasting images of the Earth to hold items that do
not exist to create chaos in the military..

• Share doctored footage of people.

6 Dataset

We present below the most used databases for detecting real and fake faces.

6.1 Flickr-Faces-HQ,FFHQ

The dataset FFHQ contains a collection of 70,000 face images with a high-quality
resolution generated by generative adversarial networks (GAN). The images were
collected from the Flicker platform and contain images with various accessories such
as eyeglasses, sunglasses, hats, etc. According to the dataset author, a pre-processing
step was done to prune and remove noises from images.[Alm21]

FIGURE 1.2: Faces-HQ, FFHQ dataset examples.

6.2 100K-Faces

100K-Faces is a well-known publicly available dataset that includes 100,000 unique
human images generated using StyleGAN. StyleGAN was applied on a large dataset
consisting of over 29,000 images gathered from 69 different models, generating pho-
tos with a flat background. [Alm21]

6. Dataset 7

FIGURE 1.3: 100K-Faces example.

6.3 Diverse Fake Face Dataset (DFFD)

DFFD contains 100,000 and 200,000 fake images generated by adopting respective
state-of-the-art methods (ProGAN and StyleGAN models). The dataset includes ap-
proximately 47.7% male photographs, 52.3% female images, and most of the samples
range in age from 21 to 50 years old. [Alm21]

FIGURE 1.4: Diverse Fake Face Dataset (DFFD) example.

6.4 CASIA-WebFace

A database called CASIA-WebFace includes about10,000 subjects and 500,000 im-
ages. This dataset was first crawled from the IMDB website, containing 10,575 well-
known actors and actresses of IMDB. Then the photos of those celebrities are ex-
tracted using clustering methods. [Alm21]

8 Chapter 1. Generalities on Deepfake Technologies

FIGURE 1.5: CASIA-WebFace dataset example.

6.5 VGGFace2

This database contains over three million face photographs from over nine thou-
sand different subjects, with an average of over 300 images per subject. Images were
gathered from the Google engine, which has a wide range of information, such as
ethnicity, illumination, age, and occupation (e.g., actors, athletes, and politicians).
[Alm21]

FIGURE 1.6: VGGFaces dataset example.

6.6 The Eye-Blinking Dataset

The eye-blinking dataset is specially designed to deal with eye blinking detection.
This dataset consists of 50 interviews and videos for each person, lasting approx-
imately thirty seconds with one eye blinking happening at least once. The author
then tags the left and right eye states for each video clip using their tools. [Alm21]

7. Related work on fake face detection 9

FIGURE 1.7: The Eye-Blinking dataset example.

6.7 DeepfakeTIMIT

DeepfakeTIMIT is a dataset of videos released using the database containing a col-
lection of swapped faces videos generated using the GAN-based approach. The
dataset was produced with a lower quality model with 64 × 64 sizes and a higher
quality model with 128 × 128 input/output size. Each non-real video collection con-
tains 32 subjects. The author created ten fictitious videos for each subject .[Alm21]

FIGURE 1.8: Deepfake TIMIT dataset example.

7 Related work on fake face detection

We presented in this part the summary of 10 articles that represent recent works of
fake face detection.

Article 1: Swapped face detection using deep learning and subjective assess-
ment [Din+20]

In this paper, researchers proposed the creation of the largest face-swapping
detection dataset that uses face-swapping methods based on auto-encoding using
Nirkin’s method [Nir+18] with the Auto-Encoder-GAN method.
The module proposed in this study provides high accuracy prediction coupled with
an analysis of uncertainties.
Researchers in this paper have also built a website that collects pairwise compar-
isons for 400 images from human subjects, which will later be used in comparing

10 Chapter 1. Generalities on Deepfake Technologies

the rank of the module.
The test result of the module proposed in this study, which has been evaluated over
diverse databases and compared the results with the ranking from their website,
found that it gives an excellent correspondence to human ranking, which proves the
module’s effectiveness for detecting swapped faces.
The tests were carried out to show the effectiveness of the proposed method in prac-
tice, with true positive rates greater than 96% with very few false alarms.

Article 2: Learning Spatio-temporal features to detect manipulated facial videos
created by the Deepfake techniques [Ngu+21]

In this article, researchers have proposed a deep 3D convolutional neural net-
work that can simultaneously learn spatial and temporal features, to detect deepfake
videos in a consecutive image sequence using the two datasets FaceForensics++ and
VIidTIMIT.
The method proposed by the authors and manipulates 1.3 million parameters is used
to extract the Spatio-temporal characteristics of the 3D images by making combina-
tions between CNN (for extraction of the features of the frames) and the LSTMs to
capture the inconsistencies between frames.
The input of this model takes the following dimensionality for the 3D image size
(128.128.16.3). After the tests, they obtained better results using an input as 16
straight faces.
Because of the test done on the two datasets mentioned above, they obtained supe-
rior results with a binary detection precision of 99.4 for high-quality datasets and
94.5 for low-quality datasets.

Article 3: Deepfakes Detection Techniques Using Deep Learning: A Survey
[Alm21]

In this paper, the authors focus on providing a comprehensive study for deepfake
detection using various deep-learning approaches such as long short-term memory
(LSTM), recurrent neural network (RNN), Convolutional Neural Network (CNN),
and even the hybrid approaches have been proposed.
To detect deepfakes, images, and videos, the authors divided these approaches into
two major techniques: image detection techniques and video detection techniques.
Which has well been divided into two main categories: biological singles analysis
(such as (GAN) based model that can detect the deepfake video source by analyzing
the "heartbeat" of deep fakes, which active an accuracy of 97.3%.), and spatial and
temporal features analysis. Then they gave a detailed description of the architecture
tool and performance for each method used in this study.
For deepfake image detection, a Hybrid approach was introduced, which uses a
pairwise-learning. The approach first uses GANs to create and generate a fake im-
age.
Then, on the popular fake feature network (CFFN) generated by GANs, a pairwise
learning model captures the discriminated information between the fake and au-
thentic images. Results show that this approach can overcome the shortcomings of
the existing state-of-the-art fake image detectors.
For datasets, they mentioned the various publicly accessible datasets (like DFDC,
DF-TIMIT, FaceForensics++) used in this domain, categorizing them by dataset sort,
source, and method.

7. Related work on fake face detection 11

Article 4: Deepfake Detection Approaches Using Deep Learning: A System-
atic Review [DW21]

This article offers a study of the tools and algorithms used to create and detect
deepfakes and the strategies associated with deepfakes.
Presenting the ideologies of deepfake algorithms and how deep learning has been
used to enable such technologies.
The most used tools, according to this article, are: DFaker, FaceSwap-GAN, Faceswap,
deepfakerLab, DeepFaker-tk. Deepfake detection methods are divided into two
main classes: false image detection approaches; they are based on deep learning
like CNN, SVM, random forest, multilayer perceptron, and GAN, which produce
images that are more difficult to notice.
The false Video Detection Approach is also divided into two groups: approaches use
chronological features and approaches that explore visual artifacts.
Researchers have proposed the pipeline technique that uses CNN and LSTM to de-
tect deepfake video from blinking eyes.
The proposed techniques are verified on the Face Forensics++data set. the UADFV
and DeepfakeTIMIT datasets.
In the test’s result, they found that general facial recognition systems like VGG and
Facenet are unable to successfully detect deepfakes, and the use of SVM to measure
image quality and lip synchronization generates a very high error rate.

Article 5: Fake face detection via adaptive manipulation traces extraction net-
work [Guo+21]

In this article, the authors proposed a pre-processing module named AMTEN
based on the convolution layers and designed to predict manipulation traces.
By integrating AMTEN and CNN, they constructed a robust fake face detector named
AMTENnet which can learn discriminative features from manipulation traces.
They conducted a series of experiments to simulate the practical forensics under
the complex scenario to evaluate the proposed module, using their hybrid fake face
(HFF) dataset (Table 1). The result proved that the proposed AMTEN achieved desir-
able pre-processing as well the detector AMTENnet achieved accuracy up to 98.52%.

12 Chapter 1. Generalities on Deepfake Technologies

TABLE 1.1: Details of HHF dataset.

Article 6: Perception matters: Exploring imperceptible and transferable anti-
forensics for GAN-generated fake face imagery detection [Wan+21]

The researchers in this paper presented a study of the imperceptible and trans-
ferable anti-forensics on GAN-generated fake face imagery detection by proposing
a novel adversarial attack method better suited to fake face imagery anti-forensics.
The proposed method achieves higher adversarial transferability and improves the
visual quality performance with 9.7% and 7.3% higher attack success rates on aver-
age on fake face imagery antiforensics.
For the Datasets, authors have created face image datasets for the fake face imagery
detection using StyleGAN and StyleGAN2 datasets, respectively. With images re-
sized to 128 ×128.
After various tests and experiments, they found that the proposed method raises
additional security concerns to fake face imagery detection by fooling both deep
learning and non-deep learning-based forensic detectors.

Article 7: Deepfakes and beyond: A Survey of face manipulation and fake de-
tection [Tol+20]

The authors in this article have shown several methods of face manipulation and
fake detection. Four techniques have been mentioned:

• Face synthesis: represents a manipulation that creates entire non-existent face
images, usually through powerful GAN. The authors here proposed a fake
detection system based on the analysis of the convolutional traces. They use
classifiers such as k-Nearest Neighbors (k-NN), SVM, and Linear Discriminate
Analysis (LDA). Their proposed approach was tested using fake images gen-
erated through several datasets (AttGAN, GDWCT, StarGAN, StyleGAN, and
StyleGAN2), achieving a final 99.81% Accuracy for the best performance.

• Identity Swap: this manipulation consists of replacing one person’s face in
a video with another person’s face. The authors proposed a temporal-aware

7. Related work on fake face detection 13

pipeline to automatically detect fake videos considering a combination of CNNs
and RNNs. Their proposed approach was evaluated using a proprietary database
and achieved a final accuracy of 97.1%.

• Attribute Manipulation: represents a manipulation consisting of modifying
some attributes of the face, also known as face editing or face retouching. Re-
searchers proposed a detection system based on pixel co-occurrence matrices
and CNN. Using the CelebA database for training, they achieved a final 99.4%
accuracy for the best result.

• Expression Swap: this manipulation consists of modifying the person’s fa-
cial expression, also known as face reenactment. The authors proposed an
approach that is motivated as fake videos should have unnatural optical flow
due to the unusual movement of lips, eyes, etc. Using the FaceForensics++
database, they obtained an Acc = 81.6% for the best performance in manipula-
tion detection.

Article 8: Low-complexity fake face detection based on forensic similarity
[PRZ21]

Researchers in this paper proposed a fake face detection framework based on
the difference in similarity between the face and background area. By creating a
new face forgery detection method, «the forensic similarity method,» to speed up
training and inference speed, the authors proposed a method using a face forgery
detection framework based on VGG19.
In the performance evaluation of the proposed method, they used two public face
tampering video datasets: FaceForensics++ and Celeb-DF. Choosing the FaceForen-
sics++ dataset for training on the C23 (Compression level 23) lightly compressed ver-
sion and testing the proposed method on the four face tampering subsets (FF++/DF,
F2F, FS, NT), While using the Celeb-DF dataset to evaluate the generalization capa-
bility of the method.
The evaluation results found that the proposed model has better or comparable per-
formance with reduced parameters and lower complexity. In particular, it reduces
the parameters by approximately 72% compared to Xception and achieved accuracy
gains of 8-12% under the CELEB-DF dataset.

Article 9: Face image manipulation detection based on a convolutional neural
network [Dan+19]

This study proposed an expert system that could identify whether an image is
original or has been altered using a deep learning approach, including the Manip-
ulated Face (MANFA)model. This is a customized convolutional neural network
model, especially XGB-MANFA (eXtreme Gradient Boosting- MANFA), effectively
detecting manipulated images.
Also, a hybrid framework (HF-MANFA) model is a robust framework for dealing
with manipulated face detection in imbalanced dataset scenarios.
The experimental tests were carried out on two datasets: the "MANFA dataset,
"which evaluates the computational time of different models, and the "SwapMe and
FaceSwap" dataset to compare the proposed model with the state-of-the-art models.

These experiments were divided into different parts. They found that the primary
purpose of the first experiment is to check the proposed model’s performance in
a balanced dataset scenario. In contrast, the second experiment validates different
models’ performance in the imbalanced dataset scenario.
The authors found that the proposed model can detect images edited manually by a
human or automatically by a computer. Therefore, it also plays a significant role in
digital image security, which surpassed the best-known result by approximately 6%,
with an area under the curve (AUC) that surpassed 93.4% in classification results.

Article 10: DeepFakes: a New Threat to Face Recognition? Assessment and
Detection [KM18]

In this paper, the authors presented the first publicly available database contain-
ing 620 deepfake videos split on training and evaluating subsets with high-quality
(128x128) size and low quality (64 x 64 input/output) Using software on GAN ap-
proach.
The deepfake that’s been generated in this paper can effectively imitate the facial
expressions as well as the mouth movement and the blinking of the eyes. So far,
in detecting deepfake they used an audiovisual approach that detects the inconsis-
tency between visual lip movements and speech in audio and then applied several
baseline methods.
By evaluating face VGG and Facenet-based recognition systems, they found they are
vulnerable to deepfake videos, with 85.62% for VGG and a 95% false acceptance rate
for Facenet.
As a result, they found that the technique based on image quality measures with an
SVM classifier is the best performing method for the detection of deepfake with an
8.97% equal error rate.

8 Conclusion

Deep learning has been rapidly developing, creating new technologies, Including
Deepfakes, that have become popular because of the massive availability of images
and videos in social content. The creation of deepfake videos can be harmful and
have malicious purposes for public and private people as it is challenging to be de-
tected by naked eyes. Also, it becomes more accessible for amateur use; that is why
deepfake detection systems are becoming more and more obligatory to reduce the
spreading of misinformation and misunderstanding caused by these fake videos and
images.

15

CHAPTER 2

CONVOLUTIONAL NEURAL NETWORKS

1 Introduction :

The lifestyle of modern society has changed significantly in recent years with the
rapid expansion of artificial intelligence (AI), machine learning (ML), and deep learn-
ing (DL) technologies that impact nearly every technological aspect of society.
Neural Network is a machine learning (ML) technique that is inspired by the so-
phisticated functionality of human brains and resembles the human nervous system
and the structure of the brain. It can be used in a variety of problems. This chap-
ter presents a group of deep learning techniques that are based on Neural Network
technology.

2 Machine Learning

Machine learning is the technology of developing computer algorithms that can em-
ulate human intelligence. It draws on ideas from different disciplines, such as ar-
tificial intelligence, probability, statistics, computer science, information theory, etc.
This technology has been applied in such diverse fields as pattern recognition, com-
puter vision, spacecraft engineering, etc.[ENM15]
A machine learning algorithm is a computational process that uses input data to
achieve the desired task without being programmed to produce a particular out-
come. The most important property of these algorithms is their distinctive ability
to learn the surrounding environment from input data with or without a teacher.
[ENM15]

3 Machine Learning Approaches

Machine learning can be divided according to the data labeling into four types of
algorithms supervised, unsupervised, semi-supervised, and reinforcement learning.
[ENM15]

16 Chapter 2. Convolutional Neural Networks

3.1 Supervised learning

is used to estimate an unknown (input, output) mapping from known (input, out-
put) samples, where the output is labelled. Supervised learning has two parts. One
is called classification, and the other is called regression.

a) Regression

Used to predict continuous values like stock price and home price in a specific city.
Standard algorithms are linear regression, Support Vector Machines, Multivariate
Regression algorithms, etc.[Vas+19]

b) Classification

Used to predict boolean values like True/False or Male/Female. Standard algo-
rithms are Naive Bayes, Decision Trees, Support Vector Machines (SVM), Decision
Tree, Random Forest, etc.[Vas+19]

3.2 Unsupervised learning

Only input samples are given to the learning system (e.g., clustering and estimation
of probability density function).[Vas+19]

3.3 Semi-supervised Learning

learning is a combination of both supervised and unsupervised, where part of the
data is partially labeled. The labeled part is used to infer the unlabeled portion (e.g.,
text/image retrieval systems).[w2]

3.4 Reinforcement learning

In artificial intelligence, reinforcement learning is a type of dynamic programming
that trains algorithms using a system of reward and punishment. A reinforcement
learning algorithm, or agent, learns by interacting with its environment. The agent
receives rewards for performing correctly and penalties for performing incorrectly.
The agent learns without intervention from a human by maximizing its reward and
minimizing its penalty. (e.g. playing games and learning from every move that it
was correct or not).[Vas+19]

4. Basics of Artificial Neural Networks (ANNs) 17

FIGURE 2.1: The four different Machine Learning algorithms

4 Basics of Artificial Neural Networks (ANNs)

The basic concept of Artificial Neural Networks (ANNs) is partially inspired by how
the human brain functions. Figure 1 shows artificial neural network architecture.
Neural networks are multilayer networks that consist of a single input layer, one or
multi hidden layers, and one output layer. The input to neural networks is a set of
input values. The goal of neural networks is to predict and classify those values into
pre-defined categories.[Alm21]

FIGURE 2.2: Artificial neural networks architecture.

18 Chapter 2. Convolutional Neural Networks

5 Deep Learning

Deep learning is a sub-field of machine learning to deal with algorithms that are
mostly based on specific types of artificial neural networks, sometimes with a high
number of layers and nodes. It mirrors the functioning of human brains. Deep
learning algorithms are similar to how the nervous system is structured where each
neuron is connected with the other and passes information. Deep learning models
work in layers, and a typical model at least has three layers. Each layer accepts the
information from the previous and passes it on to the next one.
The Difference between machine learning and deep learning model is in the feature
extraction area. Feature extraction is done by a human in machine learning, whereas
deep learning models figure it out by themselves.
Deep learning models perform well with the amount of data, whereas old machine
learning models stop improving after a saturation point.Thus, deep learning is a
specific type of machine learning, part of AI.[Vas+19]

FIGURE 2.3: between machine learning and deep learning.

6 Difference between neural networks and deep learning neu-
ral networks

Neural networks can use either feed-forward or recurrent networks with one or two
hidden layers. However, when the number of hidden layers increases, i.e., over two,
it is known as the Deep Learning Neural Network.[pyle2015executive]

7. Deep Learning techniques 19

• Neural Network is less complicated and requires more information about fea-
ture selection and feature engineering methods.

• Deep Learning Neural Network does not need any information about features;
instead, they show optimum model tuning and model selection independently

7 Deep Learning techniques

Different techniques of Deep Learning are described below:

7.1 Fully Connected Neural Networks

Fully Connected Neural Networks it is often identified by their multilayer percep-
trons.It consists of fully connected layers that connect every neuron in one layer
to every neuron in the other layer. The significant advantage of fully connected
networks is that they are "structure agnostic," i.e. there are no particular assump-
tions needed to be made about the input.While being structure agnostic makes fully
connected networks very broadly applicable, such networks tend to have weaker
performance than special-purpose networks tuned to the structure of a problem
space.[Sai+15].
Works best in

• Any table dataset which has rows and columns formatted in CSV.

• Classification and regression issues with the input of real values.

• Any model with the highest flexibility, like that of ANNS

FIGURE 2.4: Fully Connected Neural Networks architecture.

20 Chapter 2. Convolutional Neural Networks

7.2 Recurrent Neural Network (RNN)

A recurrent Neural Network (RNN) is another application of artificial neural net-
works capable of learning features from sequence data. Similar to neural networks,
RNN is made up of several invisible layers, each of which has a weight and a bias.
In RNN, the relations between nodes in a direct cycle graph run in sequential order.
One advantage of RRN is that it allows the discovery of temporal dynamic behavior.
Compared with feedforward networks (FFN), RNN uses internal memory to store
the sequence information from previous inputs, which makes it useful in various
areas, including natural language analysis and speech recognition. RNN can handle
a temporal sequence by introducing a recurrent hidden state, which captures depen-
dencies of different time scales.[Alm21]

• One to One: A single input connected to a single output, like Image classifica-
tion.

• One to many: A single input linked to output sequences, like image captioning,
includes several words from a single image.

• Many to One: Series of inputs generating single output, like Sentiment Analy-
sis.

• Many to many: series of inputs yielding series of outputs, like video classifica-
tion.

• It is also widely used in language translation, conversation modeling.

FIGURE 2.5: Recurrent Neural Networks architecture.

7.3 Long Short-Term Memory (LSTM)

LSTM is an artificial recurrent neural network (RNN) that handles long-term depen-
dencies. LSMT contains feedback connections to learn the entire sequence of data.
The typical architecture of LSTM consists of an input gate, forget gate, and output

7. Deep Learning techniques 21

gate. The cell state is a long-term memory that remembers values from previous in-
tervals and stores them in the LSTM cell.[Alm21]

• First, the input gate is responsible for selecting the values that should enter the
cell state.

• The forget gate is reasonable for determining which information is to forget by
applying a sigmoid function, which has a range of [0, 1].

• The output gate determines which information in the current time should be
considered in the next step.

It has been applied to many fields based on time-series data, such as classifying, pro-
cessing, and making predictions.

FIGURE 2.6: Long Short Term Memory architecture.

7.4 Convolutional Neural Network (CNN)

A convolutional neural network is a feed-forward neural network that is used to an-
alyze visual images by processing data with a grid-like topology. It is also known as
a ConvNet. A convolutional neural network is used to detect and classify objects in
an image.[AMAZ17]
A convolution neural network has multiple hidden layers that help extract informa-
tion from an image. The four important layers on CNN are:

• Convolution layer.

• ReLU layer.

• Pooling layer.

• Fully connected layer.

22 Chapter 2. Convolutional Neural Networks

FIGURE 2.7: Convolutional Neural Network architecture.

a. Convolution layer
This is the core layer of the convolutional neural network. Its parameters are com-
posed of a set of filters. These filters are small, but they cover the full depth of the
input volume.
The main task performed at the convolutional layer is to extract high-level features.
The first one (as shown in the Figure 2.7) extracts low-level features like color, edges,
etc. The subsequent convolutional layers take out the high-level features, thus lead-
ing to a complete understanding/ perusal of the image.[Wu17]

FIGURE 2.8: Filter Matrix.

b. ReLU layer
ReLU stands for the rectified linear unit. Once the feature maps are extracted, the
next step is to move them to a ReLU layer. ReLU performs an element-wise opera-
tion and sets all the negative pixels to 0. It introduces non-linearity to the network,
and the generated output is a rectified feature map. Figure 2.9 represent the graph
of ReLU function with other activations functions such as correction by hyperbolic
tangent ’tanh’ and the correction by the ’sigmoid’ function, etc:[AMAZ17]

c. Pooling layer
This layer reduces the spatial size of the image representation. It also helps to re-
duce the computation and processing amount in the neural network.It also extracts
dominant features that are positionally and rotationally invariant.
There most popular pooling are: [Wu17]

7. Deep Learning techniques 23

FIGURE 2.9: Activation functions graph.

• Max pooling operation: This operation picks the maximum value from each
neuron cluster at the last layer.

• Average pooling: returns an average value from the cluster.

FIGURE 2.10: Max pooling and Average pooling.

Since Max pooling also acts as a noise suppressant, it performs better-than-average
pooling.

d. The Fully Connected Layers (FCL) [Wu17]
The Fully Connected layer is simply a feed-forward neural network. The input to
the fully connected layer is the flattened output of the last pooling /convolutional
layer. To flatten means that the 3-dimensional matrix or array is unrolled into a vec-
tor.

For each FC layer, a specific mathematical calculation takes place. After the vector
has passed through all the fully connected layers, an activation function is used in
the last layer. This is used to compute the probability of the input belonging to a
particular task.

24 Chapter 2. Convolutional Neural Networks

FIGURE 2.11: Flattening operation.

Thus, the result is the different probabilities of the input image belonging to differ-
ent classes.
The process is repeated for different types of images and individual images within
those types. This trains the network and teaches it to differentiate between different
objects.

FIGURE 2.12: Convolution neural network process.

8 Networks used in Deepfakes

8.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are an emerging technique for both semisu-
pervised and unsupervised learning. They achieve this through implicitly modeling
high-dimensional distributions of data. They can be characterized by training a pair
of networks in competition with each other. A common analogy, apt for visual data,
is to think of one network as an art forger and the other as an art expert. The forger,
known in the GAN literature as the generator, G, creates forgeries, with the aim of
making realistic images. The expert, known as the discriminator, D, receives both
forgeries and real (authentic) images, and aims to tell them apart. Both are trained
simultaneously, and in competition with each other.[Cre+18]

8. Networks used in Deepfakes 25

a) Generator

A generator in GANs is a neural network that creates fake data to be trained on
the Discriminator. It learns to generate plausible data. The generated examples/in-
stances become negative training examples for the Discriminator. It takes a fixed-
length random vector carrying noise as input and generates a sample.[Vas+19]

FIGURE 2.13: Generator network.

The main aim of the Generator is to make the Discriminator classify its output as
real. The part of the GAN that trains the Generator includes:

• Noisy input vector.

• Generator network which transforms the random input into a data instance.

• Discriminator network, which classifies the generated data.

• Generator loss, which penalizes the Generator for failing to dolt the Discrimi-
nator.

FIGURE 2.14: Generator Training.

The back-propagation method is used to adjust each weight in the right direction by
calculating the weight’s impact on the output. It is also used to obtain gradients, and
these gradients can help change the generator weights.[Vas+19]

26 Chapter 2. Convolutional Neural Networks

b) Discriminator

The Discriminator is a neural network that identifies real data from the fake data
created by the Generator. The Discriminator’s training data comes from different
two sources [Vas+19]:

• Real data: instances, such as real pictures of people. The Discriminator uses
these instances as positive examples during training.

• Fake data: instances created by the Generator. The Discriminator uses these
instances as negative examples during training.

FIGURE 2.15: Discriminator Network.

8.1.1 Training the Discriminator

The Discriminator connects to two loss functions. During discriminator training, the
Discriminator ignores the generator loss and uses the discriminator loss. The gener-
ator loss is used during generator training.[Vas+19]
During discriminator training:

• The Discriminator classifies both real data and fake data from the Generator.

• The discriminator loss penalizes the Discriminator for misclassifying a real in-
stance as fake or a fake instance as real.

• The Discriminator updates its weights through backpropagation from the dis-
criminator loss through the discriminator network.

8.1.2 Steps for Training GAN

• Define the problem.

• Choose the architecture of GAN.

8. Networks used in Deepfakes 27

FIGURE 2.16: Discriminator Training.

• Train discriminator on real data.

• Generate fake inputs for the Generator.

• Train discriminator on fake data.

• Train generator with the output of the Discriminator.

8.2 Autoencoders

Auto-encoders are a specific type of feedforward neural network that is trained to
copy its input to its output. They compress the input into a lower-dimensional code
and then reconstruct the output from this representation. The code is a compact
“summary” or “compression” of the input, also called the latent-space representa-
tion.[w4]
An auto-encoder consists of three main components [w4]:

a. Encoder: A module that compresses the input data into an encoded represen-
tation that is typically smaller than the input data producing the code.

b. Code: A module that contains the compressed data representations and is
therefore the most important part of the network.

c. Decoder: A module that helps the network “decompress” and "reconstruct"
the data back from its encoded form. The output is then compared with the original
input.
The whole architecture is represented in figure 2.17.

Autoencoders are considered an unsupervised learning technique since they don’t
need explicit labels to train on. But to be more precise, they are self-supervised be-
cause they generate their labels from the training data.[w4]

8.2.1 Autoencoders Architecture

Auto-encoder consists of a network of encoders and decoders. During training, both
encoders and decoders are used. Like any deep learning (DL) architecture, AE works
in layers of neurons and is trained using backpropagation.[SSR20]

28 Chapter 2. Convolutional Neural Networks

FIGURE 2.17: Autoencoders architecture.

FIGURE 2.18: Autoencoders example.

• The layers are divided into different encoder and decoder layers.

• The input is connected to the first encoder layer. In each subsequent layer of
the encoder, the number of neurons is reduced till we reach the last encoded
layer, which has the least number of neurons, representing the bottleneck fea-
tures.

• The inputs are transformed until this layer represents the reduced dimension
of the data that is capable of representing the maximal signals in the data.

• After this layer, the decoder layers are set, in which the number of neurons is
increased in each layer until the output layer has the same number of neurons
as the input.

8. Networks used in Deepfakes 29

FIGURE 2.19: Schematic of an Autoencoders.

The figure 2.19 shows an encoder connected to the input layer leading to bottle-
neck layer/ features, followed by a decoder leading to the reconstituted output layer.

8.2.2 Training Autoencoders

We train a mono-layer neural network, and the hidden value h is predicted by the
output z of the input x. This is a task called reconstruction (see figure 2.20). There-
fore, the criterion is to minimize the reconstruction error L(x;z). Therefore, the hid-
den layer must contain information relating to the reconstruction.
For example, if the hidden layer contains fewer units than the input, so to properly
reconstruct, it must learn to summarize the entry, as all of the necessary information
is contained in the hidden layer. As a result, characteristics relevant to the recon-
struction must be extracted.

Four hyper-parameters should be set before training an auto-encoder [w4]:

1) Code size:

The code size or the size of the bottleneck, it is the most important hyper-parameter
used to tune the auto-encoder. The bottleneck size decides how much the data has
to be compressed. This can also act as a regularisation term.

2) Number of layers:

Like all neural networks, an important hyper-parameter to tune auto-encoders
is the depth of the encoder and the decoder. While a higher depth increases model
complexity, a lower depth is faster to process.

3) Number of nodes per layer:

30 Chapter 2. Convolutional Neural Networks

The number of nodes per layer defines the weights we use per layer. Typically,
the nodes number decreases with each subsequent layer in the auto-encoder as the
input to each layer becomes smaller across the layers.

4) Reconstruction Loss:

The loss function we used to train the auto-encoder depends on the type of input
and output we want the auto-encoder to adapt. The most popular loss functions for
the reconstruction of image data are mean squared error (MSE) Loss and L1 Loss. If
the inputs and outputs are within the range [0,1], as in MNIST [Den12] (DATABASE
of handwritten digits), Binary Cross Entropy can also be used as the reconstruction
loss.

FIGURE 2.20: Principle of autoencoder on image.

8.2.3 Types of Autoencoders

Autoencoders encodes the input values x using a function f. Then decodes the en-
coded values f(x) using a function “g” to create output values identical to the input
values.
There are many types of auto-encoder, ranging from simple to denoising auto-encoders
used for various purposes. Here are the popular auto-encoders:

• Undercomplete autoencoders.

• Sparse autoencoders.

• Contractive autoencoders.

• Denoising autoencoders.

• Variational autoencoders (for generative modeling).

• Deep convolutional autoencoder.

a. Undercomplete Autoencoder

Undercomplete autoencoder is one of the simplest types of autoencoders. It is an
autoencoder whose code dimension is less than the input dimension.

8. Networks used in Deepfakes 31

Learning an undercomplete representation forces the autoencoder to capture the
most salient features of the training data.
The way it works is very straightforward, Undercomplete autoencoder takes in an
image and tries to predict the same image as output, thus reconstructing the image
from the compressed bottleneck (code) region.[BKG20]

FIGURE 2.21: Undercomplete Autoencoder- Hidden layer has
smaller dimension than input layer.

Objective is to minimize the loss function by penalizing the g(f(x)) for being different
from the input x.

L = |x +x̂| (2.1)

L = |x - g(f(x))| (2.2)

b. Sparse Autoencoder

Sparse autoencoders are similar to the undercomplete autoencoders in that they use
the same image as input and ground truth. However, the means by which the en-
coding of information is regulated is significantly different. The sparse autoencoder
is regulated by changing the number of nodes at each hidden layer.[BKG20]
A sparse autoencoder is where hidden layers outnumber the input layer for the gen-
eralization approach to reduce overfitting. It limits the loss function and prevents
the autoencoder from overusing all its nodes.[Vas+19]
Sparse autoencoders have a sparsity penalty, (h), a value close to zero but not zero.
Sparsity penalty is applied on the hidden layer in addition to the reconstruction er-
ror. This prevents overfitting.[GBC16]

L = |x - g(f(x))| + Ω(h) (2.3)

Sparse autoencoders take the highest activation values in the hidden layer and zero
out the rest of the hidden nodes. This prevents autoencoders to use all of the hidden
nodes at a time and forcing only a reduced number of hidden nodes to be used.As
we activate and inactivate hidden nodes for each row in the dataset. Each hidden
node extracts a feature from the data.[GBC16]

32 Chapter 2. Convolutional Neural Networks

FIGURE 2.22: Sparse Autoencoders use only reduced number of hid-
den nodes at a time.

c. Contractive autoencoders

Similar to other autoencoders, contractive autoencoders perform task of learning a
representation of the image while passing it through a bottleneck and reconstructing
it in the decoder.
The contractive autoencoder also has a regularization term to prevent the network
from learning the identity function and mapping input into the output.
Contractive autoencoders work on the basis that similar inputs should have sim-
ilar encoding and a similar latent space representation. It means that the latent
space should not vary by a considerable amount for minor variations in the in-
put[SVM+11].

FIGURE 2.23: Contractive Autoencoders.

Robustness of the representation for the data is done by applying a penalty term to
the loss function. The penalty term is Frobenius norm of the Jacobian matrix. Frobe-
nius norm of the Jacobian matrix for the hidden layer is calculated with respect to

8. Networks used in Deepfakes 33

input. Frobenius norm of the Jacobian matrix is the sum of square of all elements.
Contractive autoencoder is another regularization technique like sparse autoencoders
and denoising autoencoders. CAE surpasses results obtained by regularizing au-
toencoder using weight decay or by denoising. CAE is a better choice than denois-
ing autoencoder to learn useful feature extraction.
Penalty term generates mapping which are strongly contracting the data and hence
the name contractive autoencoder.[GBC16]

d. Denoising Autoencoder

The denoising autoencoder (DAE) is an autoencoder that receives a corrupted data
point as input and is trained to predict the original, uncorrupted data point as its
output. Autoencoders that remove noise from an image.[GBC16]

FIGURE 2.24: Denoising Autoencoders Princple.

In denoising autoencoders, they feed a noisy version of the image, where noise has
been added via digital alterations. The noisy image is fed to the encoder-decoder
architecture, and the output is compared with the ground truth image.[GBC16]
The denoising autoencoder removes noise by learning a representation of the input
where the noise can be filtered out.

FIGURE 2.25: Denoising Autoencoder example.

e. Variational Autoencoder

Variational autoencoder can be defined as an autoencoder whose training is regu-
larised to avoid overfitting and ensure that the latent space has good properties that
enable generative process.

34 Chapter 2. Convolutional Neural Networks

The VAE can be viewed as two coupled, but independently parameterized models:
the encoder or recognition model, and the decoder or generative model. These two
models support each other. The recognition model delivers to the generative model
an approximation to its posterior over latent random variables, which it needs to
update its parameters inside an iteration of “expectation maximization” learning.
Reversely, the generative model is a scaffolding of sorts for the recognition model
to learn meaningful representations of the data, including possibly class-labels. The
recognition model is the approximate inverse of the generative model according to
Bayes rule.[KW19]

FIGURE 2.26: Variational Autoencoder Architecture.

FIGURE 2.27: Variational Autoencoder example.

f. Deep Convolutional Autoencoders

Convolutional Autoencoder is a variant of Convolutional Neural Networks that are
used as the tools for unsupervised learning of convolution filters. They are gener-
ally applied in the task of image reconstruction to minimize reconstruction errors by
learning the optimal filters. Once they are trained in this task, they can be applied
to any input in order to extract features. Convolutional Autoencoders are general-
purpose feature extractors differently from general autoencoders that completely
ignore the 2D image structure. In autoencoders, the image must be unrolled into a
single vector and the network must be built following the constraint on the number
of inputs [w5].
The block diagram of a Convolutional Autoencoder is given in figure 2.28.

9. Performance Metrics 35

FIGURE 2.28: The structure of Convolutional AutoEncoder.

8.2.4 Application of Autoencoders

• Dimensionality reduction:
Undercomplete autoencoders are those that are used for dimensionality re-
duction. These can be used as a pre-processing step for dimensionality re-
duction as they can perform fast and accurate dimensionality reductions with-
out losing much information. Furthermore, while dimensionality reduction
procedures like PCA can only perform linear dimensionality reductions, un-
dercomplete autoencoders can perform large-scale non-linear dimensionality
reductions.[BKG20] .

• Image denoising:
Autoencoders like the denoising autoencoder can be used for performing ef-
ficient and highly accurate image denoising. Unlike traditional methods of
denoising, autoencoders do not search for noise, they extract the image from
the noisy data that has been fed to them via learning a representation of it. The
representation is then decompressed to form a noise-free image. Denoising
autoencoders thus can denoise complex images that cannot be denoised via
traditional methods.[BKG20]

• Generation of image and time-series data:
Variational Autoencoders can be used to generate both image and time series
data. The parameterized distribution at the bottleneck of the autoencoder can
be randomly sampled to generate discrete values for latent attributes, which
can then be forwarded to the decoder,leading to generation of image data.
VAEs can also be used to model time series data like music.[BKG20]

• Anomaly Detection:
Anomaly detection is another unsupervised task, where the objective is to
learn a normal profile given only the normal data examples and then identify
the samples not conforming to the normal profile as anomalies. This can be
applied in different applications such as fraud detection, system monitoring,
etc. [BKG20]

9 Performance Metrics

To evaluate a network, it is necessary to calculate a certain number of parameters
such as:
True Positive (TP): The cases predicted YES and the actual output was also YES.
True Negative (TN): The cases predicted NO and the actual output was NO.

36 Chapter 2. Convolutional Neural Networks

False Positive (FP): The cases predicted YES and the actual output was NO.
False Negative (FN): The cases predicted NO and the actual output was YES.

9.1 Confusion Matrix

Confusion matrix is a measure used while solving classification problems. It can be
applied to binary classification as well as for multiclass classification problems.

Predicted classes
class = Positive class = Negative

Actual classes class = positive TP FN
class = Negative FP TN

TABLE 2.1: Confusion Matrix.

9.2 Accuracy

Accuracy can be calculated as follows

Accuracy =
TP

TP+FP
(2.4)

9.3 True Positive Rate/ Recall/ Sensitivity

A Recall is essentially the ratio of true positives to all the positives in ground truth.

Recall =
TP

TP+FN
(2.5)

9.4 True Negative Rate

Probability of a negative prediction in a negative case.

True Negative Rate = 1 − TN
TN+FP

(2.6)

9.5 False Positive Rate

False Positive Rate = 1 − TN
TN+FP

(2.7)

9.6 False Negative Rate

False Negative Rate = 1 − TP
TN+FP

(2.8)

37

9.7 F-Measure

The F-measure is defined as a harmonic mean of precision (P) and recall (R).

F1-Mesure = 2 × precision * recall
precision+recall

(2.9)

9.8 ROC curve

ROC curve (receiver operating characteristic curve) is a graph showing the perfor-
mance of a classification model at all classification thresholds [w6]. This curve plots
two parameters:

FIGURE 2.29: ROC Curve.

10 Conclusion

Autoencoders are a deep learning technique for current visual recognition tasks.
Like all deep learning techniques, they are very dependent on the size and quality
of the training data. With a well-prepared dataset, autoencoders can outperform
humans in visual recognition tasks.

38 Chapter 3. Conception

CHAPTER 3

CONCEPTION

1 Introduction

Artificial intelligence has contributed to the amplification of deepfake fields. Digital
images are becoming increasingly realistic by replacing real faces with fake’s to ar-
rive at a perfect illusion, making it difficult to distinguish with the naked eye.
Our project focus on deepfakes, in which the main objective is to detect fake faces,
using the convolutional autoencoder network.

2 Objective

This work aims to exploit the performance of the convolutional autoencoder net-
work to detect fake faces. The application is embedded in the NVIDIA Jetson Nano
2GB Developer Kit.

2.1 System Architecture

The detailed architecture of our system is shown in figure 3.1:

2. Objective 39

FIGURE 3.1: Model Architecture.

40 Chapter 3. Conception

FIGURE 3.2: Model Training Architecture.

3 Face Detection

We evaluated our model on single-face and multi-face images, making it necessary
to detect faces before testing. For this purpose, we used the MTCNN [Zha+16]
model, a multitask neural network model for face detection.
When MTCNN processes an image, it first performs the image resizing operation to
scale the original image to different scales to generate an image pyramid. Then the
images of different scales are sent to the three sub-networks for training in order to
detect different sizes of human faces and realize multi-scale target detection.[ZLG20]

4. Image Resizing 41

FIGURE 3.3: MTCNN for face detection.

4 Image Resizing

Training images have different sizes; therefore, they must be resized before using
model input. We downsampled all images to a fixed resolution of 128 X 128 because
our system requires constant input dimensionality.

5 Convolutional Autoencoder Network

A conventional autoencoder is generally composed of two layers, corresponding to
encoder E(x) and decoder D(y) respectively. It aims to find a code for each input
sample by minimizing the mean squared errors (MSE) between its input and output
over all samples [Guo+17].
Like all autoencoders, a Convolutional autoencoder is composed of two major parts,
Encoder, and Decoder.

5.1 Encoder

An encoder consists of layers of neurons that process data to build new so-called
encoded representations. In turn, layers of neurons in the Decoder receive these rep-
resentations and process them in an attempt to reconstruct the original data.
The difference between the reconstructed data and the original data makes it possi-
ble to measure the error made by the auto-encoder. The learning consists of modi-
fying the auto-encoder parameters to reduce the reconstruction error measured on
different dataset examples.

42 Chapter 3. Conception

5.2 Decoder

The Decoder is the last layer that only contains the original data reconstruction, but
it is the new representation created by the Encoder.
The simplest architecture of an autoencoder is similar to a multilayer perceptron.
However, depending on the processed data, we can use different topologies of neu-
ral networks, for example, Convolutional Layers to analyze images or Recurrent
Neural Layers to process time series or sequences.

FIGURE 3.4: Convolutional Autoencoder Architecture.

6 Model Configuration

We will train a convolutional neural network. The network consists of 7 convolu-
tional layers. A Max-Pooling layer is placed after each convolutional encoding layer
and an Up-Sampling layer between every two convolutional decoding layers.
For faster learning, ReLu is the activation function. Figure 3.5 shows the structure of
our model.

FIGURE 3.5: Components of our neural network.

6. Model Configuration 43

From Figure 3.5, our CNN Autoencoder model consists of the following compo-
nents:

The input layer: Have dimension of 128*128*3, where 3 represents the number
of color matrix (Red, Green and Blue). The convolution layer: in this layer, the size
of the filter is fixed at 3*3.

• The number of filters where the depth has been set to 64, 32, and 16 succes-
sively for the layers encoding, is the reverse for the decoding layers

• The ReLU activation function: forces the network to return positive values.
Any number less than 0 is converted to 0, this technique is applied for all layers
except the last layer that uses the sigmoid function.

The pooling layer: we used a max-pooling of size 2x2 to reduce the size of the
picture settings.

The Up-Sampling layer: is the reverse pooling layer that allows reverse pooling
or reconstructing of the image. The size used is 2x2.

6.1 Encoder and Decoder Configuration details

44 Chapter 3. Conception

Layer Dimension Kernel size Activation

input 128X128 px - -
Conv2D 128X128X64 3*3 ReLU

Pooling Layer 2*2 window - -
Conv2D 64X64X32 3*3 ReLU

Pooling Layer 2*2 window - -
Conv2D 32X32X16 3*3 ReLU

Pooling Layer 2*2 window - -

TABLE 3.1: Encoder Configuration.

Layer Dimension Kernel size Activation

Conv2D 16X16X16 3*3 ReLU
UpSumpling Layer 2*2 window - -

Conv2D 32X32X32 3*3 ReLU
UpSumpling Layer 2*2 window - -

Conv2D 64X64X64 3*3 ReLU
UpSumpling Layer 2*2 window - -

Conv2D 64X64X64 3*3 Sigmoid

TABLE 3.2: Decoder Configuration.

7 Image Reconstruction

Autoencoders work by learning a representation from a given unlabeled data and
reconstructing the data from that representation as accurately as possible using a
latent space, a representation of compressed data containing all the important infor-
mation needed to represent the original data points.
We train our model by inserting real face images into the Encoder, which is used to
learn essential and representative features of a given image and represent them in
a latent space. The Decoder is then used to reconstruct the image from the latent
space by removing noise and unimportant features from the image. These will pro-
duce a compressed image. Compression can be lossy because some features are lost
in compression, and the resulting image can be blurry.
The loss is calculated by comparing the original image and the reconstructed image,
i.e., calculating the difference between pixels in two images. Note that the output of
the Decoder must be the same size as the original image, and from this process, we
extract the reconstruction error for our training dataset images.

7.1 Mean Square Error (MSE)

Mean squared error (MSE) [GBG22] is one of the most widely used metrics to ex-
pression differences between multi-dimensional entities, including images, it is ex-
pressed sf follow:

8. Encoder Model 45

Below x and y are D dimensional vectors, and xi denotes the value on the ith dimen-
sion of x.

MSE =
D

∑
i=1

(xi − yi)
2 (3.1)

FIGURE 3.6: Reconstructed image from our model.

8 Encoder Model

The encoder network model is extracted and built from the trained autoencoder
model with trained weights, then this model will used to get the compressed output
from the latent space of the input image. The compressed output is then used to
calculate the kernel density estimation (KDE) of each image.

8.1 Kernel density Estimation (KDE)

Kernel density Estimation (KDE) [CNM16] is a non-parametric method of estimating
probability density given a sample. Let x1, x2,, xn be a set of d-dimensional
samples in Rd drawn from an unknown distribution with density function p(x). An
estimate p̂(x) of the density at x can be calculated using

p̂(x) =
1
n

n

∑
i=1

kh

(
x − xi

)
(3.2)

where Kh : Rd̂ → R is a kernel function with a parameter h called the bandwidth.
The Gaussian kernel is common in applications, in KDE each point contributes a
small “bump” to the overall density, with its shape controlled by the kernel and
bandwidth. The bandwidth parameter h controls the trade-off between bias of the
estimator and its variance.

kh = exp(− x2

2h2). (3.3)

9 Evaluation

We use kernel density estimation (KDE) to calculate the likelihood of an image be-
longing to the real image’s class to evaluate our mode and Mean Square Error (MSE)
to calculate the reconstruction error of an image.
KDE (kernel density estimation) for training data provides an estimate of where the
input image vector space lies in the latent space. Then we assume that:

• Fake images have densities and reconstruction error values farther away from
the training images’ densities and reconstruction error.

Finally, we set a threshold on KDE (kernel density estimation) and the reconstruction
error to identify fakes. This threshold will be chosen based on observations using
’real’ and ’fake’ data.

10 Conclusion

The fake face detection system that we have implemented in this project is based
on the training of the Convolutional Auto-Encoder Network, whose performance
mainly depends on the constructed latent space. During the construction phase of
latent space, it is essential to set the thresholds of MSE(Mean Squared Error) and
KDE(Kernel Density Estimation) parameters, which the system will then use to de-
cide whether an arbitrary image belongs to the class ’Fake’ or ’Real’.

47

CHAPTER 4

IMPLEMENTATION

1 Introduction

The architecture of our system is fixed; we proceed in this chapter to the details
concerning the hardware and the software used to implement it. It is essential to
validate our project by evaluating the system implemented after training for about
a month, the tests were carried out on single-face images of datasets and multi-face
images built by us.

2 Environment

2.1 Hardware

1. Jetson Nano

a) Technical Details

Jetson Nano 2GB Developer Kit (figure 4.1) is a new system designed for "learn-
ing, building and teaching AI and robotics." The Linux-based system is built around
a 128-core NVIDIA Maxwell GPU and a 1.43 GHz quad-core ARM A57 CPU. It of-
fers 2 GB of 64-bit LPDDR4 (25.6 GB/s) memory and microSD-based storage.

• 1. Micro SD card slot (bottom side)

• 2. 40-pin expansion header

• 3. USB 2.0 Micro-B

• 4. Gigabit Ethernet port: 10/100/1000Base-T auto-negotiation

• 5. USB 2.0 type A

• 6. USB 3.0 type A

• 7. HDMI output port

• 8. USB-C 5V 3A: for 5V power input

• 9. MIPI camera connector

48 Chapter 4. Implementation

FIGURE 4.1: Jetson Nano 2GB Developer Kit.

b) Start-Up

STEP 1: Write Image to the MicroSD Card
To start with, we need to write the Operating System Image to the microSD Card

by downloading the "Jetson Nano 2GB Developer Kit SD Card Image ", the jetson
nano uses a microSD card as a boot device and for primary storage. It’s essential to
have a fast and large card for our projects; the minimum requirement is a 32GB card.
We need to follow these steps to correctly write the image to the microSD card using
our windows computer.

1. Format the microSD card using SD Memory Card Formatter (figure 4.2) from
the SD Association.

FIGURE 4.2: SD Memory Card Formatter.

2. Environment 49

2. Use Etcher to write the Jetson Nano Developer Kit SD Card Image to your
microSD card.

• Download, install and launch Etcher (figure 4.3).

FIGURE 4.3: Balena Etcher.

• Click "Select image" and choose the zipped image file downloaded earlier.

• Insert the microSD card. If not already inserted the Click "Flash!" (figure 4.4)

FIGURE 4.4: Flashing microSD.

After our microSD card is ready, we proceed to set up the developer kit.
STEP 2: Setup and First Boot
1. SETUP
There are two ways to interact with the developer kit:
1) with display, keyboard and mouse attached.
2) in "headless mode" via a connection from another computer.
We used the first way with display, keyboard and mouse attached.
Next, we insert the microSD card (with the system image already written to it) into
the slot on the underside of the Jetson Nano module, as shown in (figure 4.5). Then
we follow the other procedures, including:

50 Chapter 4. Implementation

• Power on the computer display and connect it.

• Connect our USB keyboard and mouse using the USB 2.0 ports.

• Connect our USB-C power supply (5V3A). The developer kit will power on
and boot automatically.

FIGURE 4.5: Insertion of the microSD.

2. Fisrt Boot

After connecting the developer kit to the power supply, a green LED next to the
Micro-USB connector will light, then we go through some other initial setup, includ-
ing:

• Review and accept NVIDIA Jetson software EULA.

• Select system language, keyboard layout, and time zone.

• Create username, password, and computer name.

• Optionally configure wireless networking

• Select APP partition size. It is recommended to use the max size suggested

• Create a swap file. It is recommended to create a swap file

And after Logging In, a green screen will be shown (figure 4.6) Installation fin-
ished and our jetson nano 2 gb is booted.

2. Environment 51

FIGURE 4.6: Jetson nano Desktop Screen.

2. Computing Station

The training of our model was carried out in a high-performance computing ma-
chine (HPC) from LAIG (Laboratoire d’Automatique et Informatique de Guelma)
[site] on 8 Mai 1945 Guelma University [site] . with an edition of Windows 10 sys-
tem 2021 and RAM equals to 32 Gb, the processor is an Intel(R)Core TM i7 CPU and
an Nvidia GPU.

2.2 Software

Visual Studio Code

Visual Studio Code referred to as VS Code, is a source-code editor made by Microsoft
for Windows, Linux, and macOS. Its features include support for debugging, syntax
highlighting, intelligent code completion, snippets, code refactoring, and embedded
Git. Users can change the theme, keyboard shortcuts, preferences, and install exten-
sions that add additional functionality.
It can also be used with various programming languages, including Java, JavaScript,
Go, Node.js, Python, C++, and Fortran.[w7]

FIGURE 4.7: Visual Studio Interface.

https://laig.univ-guelma.dz/en
https://www.univ-guelma.dz/

52 Chapter 4. Implementation

Python

Python is a high-level, interpreted, object-oriented programming language. It is in
high demand by a large community of developers and programmers. Python is a
simple and easy language to learn. The Python library is available for most plat-
forms and is free to redistribute.[VRD03]

Libraries Used

Tensorflow

TensorFlow is an open source machine learning platform that we used to define
the basic components of our autoencoder architecture. It offers a comprehensive
and flexible ecosystem of tools, libraries, and community resources that allow re-
searchers to advance in the field of machine learning, and developers to easily create
and deploy applications that use this technology.[w8]

Keras

This library is a compact and easy-to-learn high-level Python library for deep learn-
ing that can run on top of TensorFlow, it provides highly powerful and abstract
building blocks that we used to build our deep learning networks and also it allows
developers to focus on the main concepts of deep learning, TensorFlow has to be
the back end for Keras. We can use Keras for deep learning applications without
interacting with the relatively complex TensorFlow.[Man18]

Numpy

NumPy is the fundamental package for scientific computing in Python. It is a Python
library that provides a multidimensional array object, various derived objects (such
as masked arrays and matrices), and an assortment of routines for fast operations on
arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O
(Input/Output), discrete Fourier transforms, basic linear algebra, basic statistical
operations, random simulation. . . etc[Oli06]

Matplotlib

Matplotlib is a Python package for 2D plotting that generates production-quality
graphs. It supports interactive and non-interactive plotting, and can save images in
several output formats (PNG, PS, and others). It can use multiple window toolk-
its (GTK+, wxWidgets, Qt, and so on) and it provides a wide variety of plot types
(lines, bars, pie charts, histograms, and many more). In addition to this, it is highly
customizable, flexible, and easy to use.[Tos09]

Pillow

Pillow is an image processing library, which is a fork and successor of the PIL (Python
Imaging Library) project. It is designed to provide quick access to the data contained
in an image and offers support for various file formats such as PPM, PNG, JPEG, GIF,
TIFF, and BMP. Pillow has relatively powerful image processing capabilities and is
intended to provide a solid foundation for any general image processing applica-
tion.[w9]

3. Dataset 53

OS

The OS module in Python provides functions for interacting with the operating sys-
tem. OS comes under Python’s standard utility modules. This module provides
a portable way of using operating system dependent functionality. The *os* and
os.path modules include many functions to interact with the file system such as
creating and removing a directory (folder), fetching its contents, changing and iden-
tifying the current directory,...etc [w10]

PySimpleGUI

We used the PySimpleGUI module which is a python library that wraps Tkinter,
PySimpleGUIs main attribute is its simplicity, since it requires up to one half less
amount of code in order to produce the same result in comparison to other frame-
works and removes the requirement for object-oriented programming. PySimpleGUI
was actually built with the purpose to offer the developers to get the required output
in as small amount of code as possible and provides a quick and easy way to create
graphical applications that work across multiple platforms.[Pod19]

3 Dataset

We used a base of 140,000 color images that contains 70,000 real images from the
Flickr dataset[KLA19] collected by Nvidia, as well as 70,000 fake faces images gen-
erated by StyleGAN[KLA19]. All the fake and real images we used in our project
were resized to 256px before submitting them to the network.

4 Database Splitting

For the “Convolutional Autoencoder Model”
The dataset is divided into three parts (Table 4.1):

• The training images (training set), will be used to train the network. This rep-
resents 50,000 images of real faces.

• The test images (test set), are used to evaluate the progress of our model. They
present 20,000 Images divided between 10,000 real images and 10,000 fake im-
ages.

• The validation images (validation set), present 10,000 images of real faces.

Train Validation Test

Real Faces 50000 10000 10000
Fake Faces - - 10000

TABLE 4.1: Model Dataset.

54 Chapter 4. Implementation

FIGURE 4.8: Fake Faces examples.

FIGURE 4.9: Real Faces examples.

5 Training and Test

During the learning phase, we experiment several configurations by altering net-
work parameters as the optimizer, the number of iterations, the number of epochs,
and the batch size.
For training our network, we have chosen the following configuration:

• Optimizer: “Adam”.

• Batch size: 32.

• Epochs number: 50.

• The cost function used: MSE.

• All convolutional layers use the “ReLu” function except the output layer uses
the “Sigmoid” function.

• Filter size (3x3), down sampling factor (2x2).

The graphs in Figure 4.10 show that the precision of learning and validation in-
creases with the number of epochs. At the same time, the training and validation
loss decreases. So in each epoch, our model learns to recognize more information in
a faster way.

5. Training and Test 55

FIGURE 4.10: Accuracy Train and Validation graph.

FIGURE 4.11: Train Loss and Validation graph.

FIGURE 4.12: Original images.

FIGURE 4.13: Reconstructed images.

56 Chapter 4. Implementation

FIGURE 4.14: Test Multi Faces Fake (red rectangle) and Real (green
rectangle).

5. Training and Test 57

FIGURE 4.15: Test One Face.

6 Conclusion

The results of our system are promising and the tests carried out on the detection
of fake faces are encouraging in the field of deepfake detection. The performance of
this system can be optimized by using high-quality images and extending the train-
ing phase using another type of Auto-encoders.

59

GENERAL CONCLUSION

Fake face detection systems have become extremely important in the face of the fast
dissemination of faked images made by artificial intelligence. It is now feasible to
manipulate images and generate fake ones that look so real that even humans can-
not tell the difference.
Deepfake is a program belonging to the GAN family, the Generative Adversarial
Network that relies on an auto-encoder consisting of an encoder and a decoder net-
work.
In this work, we focus on the Auto-Encoder, a powerful dimensionality reduction
tool, and propose a fake face detection system based on a Convolutional Auto-
Encoder (CAE). This unsupervised deep learning network allows us to obtain a sim-
ple representation of our data on which we then use the estimate of kernel density
and reconstruction error to distinguish between "false" and "real” faces.
The choice of the model, its development, and its training was a very important
phase that took us more than 3 months before achieving the expected results.
The training of the system was carried out on 50,000 samples of real faces. The tests
performed on the fake faces StyleGan dataset yielded favorable results but can be
refined by prolonging the training.
The application is embedded in the NVIDIA Jetson Nano 2GB Developer Kit, which
will allow our application to be used in robotics applications.
The results of our project have been the subject of participation in an international
conference and a national conference as follows:

• 1. Ch. Bencheriet, Z. Taba, M.T. Taba, “Challenge of deep neural network in
fake face detection”, 1st International Conference on Engineering and Applied
Natural Sciences on 10-13 May in 2022 at Konya/Turkey.

• 2. Ch. Bencheriet, Z. Taba, M.T. Taba, “Fake Face Detection based on Deep
Neural Network”, Joumée Scientifique des Mathématiques et de l’Informatique
(]SMI2022) on May 16,2022, Djilali Bounaâma Khemis Milliana University, Al-
geria.

The efficiency of this detection system could be improved. For this purpose, we pro-
pose the following:

• Use other Autoencoder models.

• Allow the networks to train longer.

• Use a larger training dataset.

61

BIBLIOGRAPHY

[Aba+07] AF Abate et al. Pattern Recognit. 2007.

[Alm21] Abdulqader M Almars. “Deepfakes detection techniques using deep
learning: a survey”. In: Journal of Computer and Communications 9.5 (2021),
pp. 20–35.

[AMAZ17] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Under-
standing of a convolutional neural network”. In: 2017 international con-
ference on engineering and technology (ICET). Ieee. 2017, pp. 1–6.

[BCS97] Christoph Bregler, Michele Covell, and Malcolm Slaney. “Video rewrite:
Driving visual speech with audio”. In: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques. 1997, pp. 353–360.

[BKG20] Dor Bank, Noam Koenigstein, and Raja Giryes. “Autoencoders”. In:
arXiv preprint arXiv:2003.05991 (2020).

[CET01] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. “Ac-
tive appearance models”. In: IEEE Transactions on pattern analysis and
machine intelligence 23.6 (2001), pp. 681–685.

[CNM16] Van Loi Cao, Miguel Nicolau, and James McDermott. “A hybrid au-
toencoder and density estimation model for anomaly detection”. In:
International Conference on Parallel Problem Solving from Nature. Springer.
2016, pp. 717–726.

[Cre+18] Antonia Creswell et al. “Generative adversarial networks: An overview”.
In: IEEE signal processing magazine 35.1 (2018), pp. 53–65.

[Dan+19] L Minh Dang et al. “Face image manipulation detection based on a
convolutional neural network”. In: Expert Systems with Applications 129
(2019), pp. 156–168.

[Den12] Li Deng. “The mnist database of handwritten digit images for machine
learning research [best of the web]”. In: IEEE signal processing magazine
29.6 (2012), pp. 141–142.

[Din+20] Xinyi Ding et al. “Swapped face detection using deep learning and sub-
jective assessment”. In: EURASIP Journal on Information Security 2020.1
(2020), pp. 1–12.

[DW21] Anushree Deshmukh and Sunil B Wankhade. “Deepfake Detection Ap-
proaches Using Deep Learning: A Systematic Review”. In: Intelligent
Computing and Networking (2021), pp. 293–302.

62 Bibliography

[ENM15] Issam El Naqa and Martin J Murphy. “What is machine learning?” In:
machine learning in radiation oncology. Springer, 2015, pp. 3–11.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[GBG22] Amogh Gudi, Fritjof Büttner, and Jan van Gemert. “Proximally Sen-
sitive Error for Anomaly Detection and Feature Learning”. In: arXiv
preprint arXiv:2206.00506 (2022).

[Guo+17] Xifeng Guo et al. “Deep clustering with convolutional autoencoders”.
In: International conference on neural information processing. Springer. 2017,
pp. 373–382.

[Guo+21] Zhiqing Guo et al. “Fake face detection via adaptive manipulation traces
extraction network”. In: Computer Vision and Image Understanding 204
(2021), p. 103170.

[KLA19] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator
architecture for generative adversarial networks”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2019, pp. 4401–
4410.

[KM18] Pavel Korshunov and Sébastien Marcel. “Deepfakes: a new threat to
face recognition? assessment and detection”. In: arXiv preprint arXiv:1812.08685
(2018).

[KW19] Diederik P Kingma and Max Welling. “An introduction to variational
autoencoders”. In: arXiv preprint arXiv:1906.02691 (2019).

[Man18] Navin Kumar Manaswi. “Understanding and working with Keras”. In:
Deep Learning with Applications Using Python. Springer, 2018, pp. 31–43.

[Ngu+21] Xuan Hau Nguyen et al. “Learning spatio-temporal features to detect
manipulated facial videos created by the deepfake techniques”. In: Foren-
sic Science International: Digital Investigation 36 (2021), p. 301108.

[Nir+18] Yuval Nirkin et al. “On face segmentation, face swapping, and face per-
ception”. In: 2018 13th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2018). IEEE. 2018, pp. 98–105.

[Oli06] Travis E Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA,
2006.

[Pod19] Primoz Podrzaj. “A brief demonstration of some Python GUI libraries”.
In: Proceedings of the 8th International Conference on Informatics and Appli-
cations ICIA2019. 2019, pp. 1–6.

[PRZ21] Zhaoguang Pan, Yanli Ren, and Xinpeng Zhang. “Low-complexity fake
face detection based on forensic similarity”. In: Multimedia Systems 27.3
(2021), pp. 353–361.

[Sai+15] Tara N Sainath et al. “Convolutional, long short-term memory, fully
connected deep neural networks”. In: 2015 IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE. 2015, pp. 4580–
4584.

[Sou+18] Luiz Souza et al. “How far did we get in face spoofing detection?” In:
Engineering Applications of Artificial Intelligence 72 (2018), pp. 368–381.

[SSKS17] Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-Shlizerman.
“Synthesizing obama: learning lip sync from audio”. In: ACM Transac-
tions on Graphics (ToG) 36.4 (2017), pp. 1–13.

http://www.deeplearningbook.org

Bibliography 63

[SSR20] Mohit Sewak, Sanjay K Sahay, and Hemant Rathore. “An overview of
deep learning architecture of deep neural networks and autoencoders”.
In: Journal of Computational and Theoretical Nanoscience 17.1 (2020), pp. 182–
188.

[SVM+11] Rifai Salah, P Vincent, X Muller, et al. “Contractive auto-encoders: Ex-
plicit invariance during feature extraction”. In: Proc. of the 28th Interna-
tional Conference on Machine Learning. 2011, pp. 833–840.

[Thi+16] J. Thies et al. “Face2Face: Real-time Face Capture and Reenactment of
RGB Videos”. In: Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE. 2016.

[Tol+20] Ruben Tolosana et al. “Deepfakes and beyond: A survey of face manip-
ulation and fake detection”. In: Information Fusion 64 (2020), pp. 131–
148.

[Tos09] Sandro Tosi. Matplotlib for Python developers. Packt Publishing Ltd, 2009.

[Vas+19] Ivan Vasilev et al. Python Deep Learning: Exploring deep learning tech-
niques and neural network architectures with Pytorch, Keras, and Tensor-
Flow. Packt Publishing Ltd, 2019.

[VRD03] Guido Van Rossum and Fred L Drake. An introduction to Python. Net-
work Theory Ltd. Bristol, 2003.

[Wan+21] Yongwei Wang et al. “Perception matters: Exploring imperceptible and
transferable anti-forensics for GAN-generated fake face imagery detec-
tion”. In: Pattern Recognition Letters 146 (2021), pp. 15–22.

[Wes19] Mika Westerlund. “The emergence of deepfake technology: A review”.
In: Technology Innovation Management Review 9.11 (2019).

[Wu17] Jianxin Wu. “Introduction to convolutional neural networks”. In: Na-
tional Key Lab for Novel Software Technology. Nanjing University. China
5.23 (2017), p. 495.

[Zha+16] Kaipeng Zhang et al. “Joint face detection and alignment using multi-
task cascaded convolutional networks”. In: IEEE signal processing letters
23.10 (2016), pp. 1499–1503.

[ZLG20] Ning Zhang, Junmin Luo, and Wuqi Gao. “Research on face detec-
tion technology based on MTCNN”. In: 2020 International Conference
on Computer Network, Electronic and Automation (ICCNEA). IEEE. 2020,
pp. 154–158.

65

WEBOGRAPHY

[w1] Deepfake: Everything You Need to Know About What It Is How It Works,
https://recfaces.com /articles/what-is-deepfake.

[w2] https://medium.datadriveninvestor.com/deep-learning-fundamental-important-
concepts-59d7ae90901

[w3] https://medium.com/ai%C2%B3-theory-practice-business/understanding-
autoencoders-part-i-116ed2272d35.

[w4] Applied Deep Learning - Part 3: Autoencoders https://towardsdatascience.com/applied-
deep-learning-part-3-autoencoders-1c083af4d798

[w5] How to Implement Convolutional Autoencoder in PyTorch with CUDA
https://analyticsindiamag.com/how-to-implement-convolutional-autoencoder-in-pytorch-
with-cuda/

[w6] Classification: ROC Curve and AUC https://developers.google.com/machine-
learning/crash-course/classification/roc-and-auc?hl=fr

[w7] Visual Studio Code Visual Studio Code - Wikipedia

[w8] https://www.tensorflow.org/?hl=fr

[w9] Python Imaging Library (PIL)
https://he-arc.github.io/livre python/pillow/index.html

[w10] https://docs.python.org/3/library/os.html

Annex

Z. Taba
has participated in 1st International Conference on Engineering and Applied Natural Sciences on 10-13 May in

2022 at Konya/Turkey.

PAPER TITLE Challenge of deep neural network in fake face detection

PRESENTATION TYPE Oral

ICEANS 2022 CONFERENCE CHAIRMAN

Asst. Prof. Dr. Umut ÖZKAYA

	ملخص
	List of Figures
	List of Tables
	Generalities on Deepfake Technologies
	Introduction
	Deepfake
	Importance of face in security systems and communication
	a) In communication
	b) In Security systems

	History
	Advantages and disadvantages of deepfake technologies
	Dataset
	Flickr-Faces-HQ,FFHQ
	100K-Faces
	Diverse Fake Face Dataset (DFFD)
	CASIA-WebFace
	VGGFace2
	The Eye-Blinking Dataset
	DeepfakeTIMIT

	Related work on fake face detection
	Conclusion

	Convolutional Neural Networks
	Introduction :
	Machine Learning
	Machine Learning Approaches
	Supervised learning
	a) Regression
	b) Classification

	Unsupervised learning
	Semi-supervised Learning
	Reinforcement learning

	Basics of Artificial Neural Networks (ANNs)
	Deep Learning
	Difference between neural networks and deep learning neural networks
	Deep Learning techniques
	Fully Connected Neural Networks
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Convolutional Neural Network (CNN)

	Networks used in Deepfakes
	Generative Adversarial Networks (GANs)
	8.1.1 Training the Discriminator
	8.1.2 Steps for Training GAN

	Autoencoders
	8.2.1 Autoencoders Architecture
	8.2.2 Training Autoencoders
	8.2.3 Types of Autoencoders
	a. Undercomplete Autoencoder
	b. Sparse Autoencoder
	c. Contractive autoencoders
	d. Denoising Autoencoder
	e. Variational Autoencoder
	f. Deep Convolutional Autoencoders
	8.2.4 Application of Autoencoders

	Performance Metrics
	Confusion Matrix
	Accuracy
	True Positive Rate/ Recall/ Sensitivity
	True Negative Rate
	False Positive Rate
	False Negative Rate
	F-Measure
	ROC curve

	Conclusion

	 Conception
	Introduction
	Objective
	System Architecture

	Face Detection
	Image Resizing
	Convolutional Autoencoder Network
	Encoder
	Decoder

	Model Configuration
	Encoder and Decoder Configuration details

	Image Reconstruction
	Mean Square Error (MSE)

	Encoder Model
	Kernel density Estimation (KDE)

	Evaluation
	Conclusion

	Implementation
	Introduction
	Environment
	Hardware
	1. Jetson Nano
	2. Computing Station

	Software
	Visual Studio Code
	Python
	Libraries Used
	Tensorflow
	Keras
	Numpy
	Matplotlib
	Pillow
	OS
	PySimpleGUI

	Dataset
	Database Splitting
	Training and Test
	Conclusion

	Bibliography
	Webography
	Annex

