République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université 8 Mai 1945 Guelma

Faculté des Sciences de la nature et de la vie et Sciences de la Terre et de l'Univers Département d'écologie et génie de l'environnement

THÈSE

EN VUE DE L'OBTENTION DU DIPLOME DE DOCTORAT EN SCIENCE

Filière : Sciences biologiques

Présentée par

M^{me} LAKHDARI Somia

Intitulée

APPORT DU TRAÇAGE CHIMIQUE ET ISOTOPIQUE A L'IDENTIFICATION DES AQUIFERES DES AURES

Univ. de Guelma

Univ. de Guelma

Univ. de Tébessa

Univ. de Tébessa

Univ. de Guelma

Univ. de Khenchela

Soutenue le : 13/07/2022

Mme SOUIKI LyndaPrMr GHRIEB LassaadPrMr BAALI FethiPrMr FEHDI ChemseddinePrMr GUEROUI YassineMCMr HOUHA BelgacemPr

Pr Pr Pr Pr MCA Pr Devant le Jury composé de :

Présidente Rapporteur Examinateur Examinateur Examinateur Invité

Année Universitaire : 2021-2022

Revercievent

Je remercie **Dieu** tout puissant pour la volonté, la santé et la patience qu'il m'a donné durant tous ces années d'étude.

Je remercie **Pr. SOUIKI Lynda** qui a en la bienveillance d'accepter de juger ce travail et de présider le jury de soutenances.

Je tiens aussi à exprimer mes plus grands respects et mes vifs remerciements aux

membres du jury :

Pr. BAALI Fethi, Pr. FEHDI Chemseddine Dr. GUEROUI Yassine Pr. HOUHA Belgacem

Qui ont bien voulu examiner ce travail.

J'aimerais ensuite adresser ma plus sincère gratitude à mon directeur de Thèse, monsieur **GHRIEB Lassaad**, Professeur à l'université de Guelma. Un homme de science et de qualité passionné qui a à cœur la formation et la réussite de ses disciplines. Merci infiniment pour vos conseils, votre soutient et votre confiance qui m'ont beaucoup aidé.

Je ne peux jamais oublier mon ancien directeur de thèse le défunt Pr KACHI

Slimane qui n'a jamais épargné le moindre effort pour m'aider, que dieu le plus puissant l'accueil dans son vaste Paradis.

Un grand merci à Monsieur, **Vincent VALLES**, Professeur des universités université d'Avignon et des pays de Vaucluse, de m'avoir accueilli dans son laboratoire pour des séjours scientifiques très enrichissant.

Mes remerciements les plus chaleureux et les plus profonds s'adressent à ma

famille pour leur soutien, leur encouragement et leur patience.

Dédicace

A celui qui ma encouragé très grand cœur pour sa confiance en moi, ses encouragements, son dévouement, sa patience, son aide;...

A MON PERE

A celle qui a attendu avec patience les fruits de sa bonne éducation. Ra source de mon bonheur;...

A MA MERE

Merci pour tout mes parents

A mon mari Fazid et mes petites Fakine et Badja ;

A mes chers frères Abdelkader et Souzi;

A mes sœurs : Ouarda, Kadjet, Salima, Rachida, Kabiba, Ramia

A TOUTE MA FAMILLE

A tous mes amis et mes collegues

TABLE DES MATIERES

TABLE DES MATIERES

Remerciements	
Dédicace	
Table des matières	
Résume	
Abstract	
ملخــــــــــــــــــــــــــــــــــــ	
Liste des figures	
Liste des tableaux	
Liste des abréviations	
Introduction générale	
Chapitre I : PRESENTATION DE LA REGION D´ETUDE	
Introduction	03
1. Situation géographique des Aurès	04
2. Le cadre Géologique des Aurès	05
2.1. La topographie	05
2.1.1. Djebel El Azreg	08
2.1.2. Djebel Ichmoul/ Chélia	09
2.1.3. Djebel Bezaz	10
2.1.4. Djebel Aidel	11
2.2. Stratigraphie	12
2.2. Stratigraphie 2.2.1. Le socle Mésozoïque	12 12

2.2.1.2. Le Crétacé	12
2.2.1.2.1. Crétacé inférieur	12
A. Barrémien- Aptien	13
B. Albien	13
2.2.1.2.2. Crétacé supérieur	14
A. Cénomanien	14
B. Turonien	14
C. Sénonien	14
2.2.2. Les formations Cénozoïques	14
2.2.2.1. Le Néogène	14
2.2.2.2. Le Quaternaire	15
3. Hydrologie	17
3.1. Présentation et nature des nappes aquifères	17
3.1.1. Nappe phréatique	17
3.1.2. Nappes profondes	17
3.1.3. Les eaux des calcaires et des grès miocènes de la bordure Sud	18
3.2. Substratum : structure profonde	18
A. Terrains Néogène	18
B. Le Plio-Méo-Quaternaire	18
3.2.1. Les principaux aquifères	19
3.2.2. Les aquifères alluviaux	19
3.2.3. L'aquifère miocène	19
3.2.4. Les eaux des calcaires et des grès miocènes de la bordure sud	20
4. La pédologie	20
4.1. Les sols calcaires et calciques	20

4.2. Les sols insaturés humifères	20
4.3. Les sols alluviaux basiques	21
5. Le réseau hydrographique	21
5.2.1. Oued El-Kantara et Oued Abdi	21
5.2.2.Oued El Abiod	21
5.2.3. Oued El Arab	21
6. Le couvert végétal	23
6.1. Les formations forestières	23
6.2. Les formations para-forestières	24
6.3. Parcours	24
6.4. Les cultures	25
7. Socio-économie de la région	27
Conclusion	27
Chapitre II : SYNTHESE HYDRO-CLIMATOLOGIQUE	
Introduction	29
1. Les stations météorologiques	29
2. Étude des paramètres climatiques	29
2.1. Les températures	30
2.2. Les précipitations	32
2.2.1. Répartition mensuelle et saisonnière des précipitations	32
2.2.2. Répartition annuelle des précipitations	33
2.3. La neige	26
	36
2.4. Relation température-précipitation	36 36
2.4. Relation température-précipitation 2.4.1. Diagramme Ombrothèrmique de Gaussen et Bagnouls	36 36 36

3.1. Paramètres du bilan hydrologique	38
3.1.1. Évapotranspiration réelle	38
a. Formule de L.TURC	38
b. Formule de THORNTHWAITE	38
3.1.2. Évapotranspiration potentielle	39
3.1.3. Le ruissellement superficiel	42
3.1.4. L'infiltration	42
3.2. Interprétation des résultats	42
Conclusion	44
Chapitre III : TRAÇAGE CHIMIQUE ET ISOTOPIQUE	
Introduction	45
1 Prélèvement	45
2. Transport et conservation des échantillons	46
<i>3. Etude des paramètres physico-chimiques</i>	48
3.1. Etude des paramètres physiques	48
3.1.1. Potentiel hydrogène (pH)	48
3.1.2. Conductivité électrique	48
3.2. Etude des paramètres chimiques	50
3.2.1. Le Calcium (Ca^{2+})	50
3.2.2. Le Magnésium (Mg^{2+})	51
<i>3.2.3. Le Sodium (Na⁺)</i>	52
<i>3.2.4. Le Potassium (K⁺)</i>	53
3.2.5. Les Bicarbonates (HCO ₃ ⁻)	54
3.2.6. Les Sulfates (SO_4^{2+})	55
3.2.7. Les Chlorures (Cl ⁻)	56

<i>3.2.8. Les Nitrates (NO₃⁻)</i>	57
4. Les faciès chimiques	58
4. 1. Diagramme de Piper	58
4.2. Diagramme de Schoeller-Berkaloff	60
6. Origine du chimisme des eaux souterraines	63
6.1. Diagramme de phase (équilibre) de Gibbs	63
6.2. Les éléments SO_4^{2+} - Ca^{2+}	64
6.3. Le rapport $Ca^{2+} - HCO_3^{-} + SO_4^{2+}$	65
6.4. Les éléments Cl ⁻ et Na ⁺	66
7. Analyses statistiques	66
7.1. Statistique descriptive	66
7.2 Matrice de corrélation	67
7.3. Analyse factorielle en composante principale	68
8. L'analyse factorielle discriminante (AFD)	71
9. Indice de saturation des eaux	74
II. Analyses des isotopes	78
II.1.Détermination de 180	80
II.2.Détermination de 2H	80
II.3. Effet de l'altitude	80
II.4. Effet saisonnier	80
II.5. Effet paléoclimatique	80
II.6. les analyses des isotopes stable	81
II.6.1. Echantillonnage	81
II.6.2. Les résultats des analyses isotopiques (180 et 2H)	81
III. Les éléments traces	83

III.1. L'Ammonium (NH4+)	83
<i>III.2. Le Fluor (F-)</i>	84
<i>III.3. Le Brome (Br⁻)</i>	85
III.3.1. Le rapport Cl ⁻ /Br ⁻	86
III.4. La Silice(SiO ₂)	88
III.5. Le Strontium Sr ⁺⁺	90
IV. Indice de qualité des eaux	91
Conclusion	94
Conclusion générale	95
Références bibliographiques	98
Annexes	

RESUME

Résumé

Cette étude a pour objectif d'identifier les aquifères des Aurès l'analyse hydrologiques réalisé sur les deux stations Batna et El hamma affirme que le bilan est assez élevé par rapport a El hamma. Les résultats montrent que ces échantillons d'eau sont de bonne qualité par rapport aux normes de l'OMS, Les résultats le diagramme de Gibbs montrent la présence d'une contamination de l'eau due à la mauvaise utilisation des fertilisants ou de chlore (NaCl). La minéralité des eaux souterraines est influencée par la l'interaction eau-roche par la dissolution de gypse et minéraux carbonatés et sulfatés. L'ACP montre que le principal facteur est l'augmentation de la minéralité d'amont en aval du bassin sous l'influence du climat, l'analyse factorielle discriminante montre que la composition chimique des eaux est différente selon les ouvrages. Il est possible de prédire avec 87% de chance de succès d'où vient l'eau à partir de sa composition chimique. Les valeurs de l'indice de saturation de la calcite et de la dolomite variaient de -0.57a 0.17 et -1,71 a 0.25 avec des valeurs movennes de -0,14 et -0,6, respectivement. Les résultats des analyses des isotopes stables affirment que les eaux sont relativement jeunes avec de l'évaporation dans quelques échantillons d'eau souterraine. L'analyse des éléments traces le Strontium, le Brome, la Silice et le Fluor affirment sont présentent avec des concentrations relativement élevées. L'indice de la qualité des eaux indique que l'eau de notre région de bonne à excellente qualité.

Mots clés : Aurès, Aquifère, ACP,AFD, isotopes stable, la minéralisation, eaux souterraines

Abstract

The objective of this study is to identify the aquifers of the Aures. The hydrological analysis carried out on the two stations Batna and El hamma states that the balance is quite high compared to El hamma. The results show that these water samples are fresh, and of good quality compared to the standards of the WHO. The results of the Gibbs diagram show the presence of water contamination due to the misuse of fertilizers or chlorine (NaCl). The minerality of the groundwater is influenced by the water-rock interaction through the dissolution of gypsum and carbonate and sulfate minerals. The PCA shows that the main factor is the increase in minerality from upstream to downstream of the basin under the influence of climate, the discriminant factor analysis shows that the chemical composition of the water is different according to the works. It is possible to predict with 87% chance of success where the water comes from from its chemical composition. Calcite and dolomite saturation index values ranged from -0.57a 0.17 and -1.71 a 0.25 with mean values of -0.14 and -0.6, respectively. Results of stable isotope analyses assert that the waters are relatively young with evaporation in some groundwater samples. Trace element analysis for Strontium, Bromine, Silica and Fluorine indicate that they are present in relatively high concentrations. The water quality index indicates that the water in our region is of good to excellent quality.

Keywords: Aures, Aquifer, ACP, AFD, stable isotopes, mineralization, groundwater

ملخص

تهدف هذه الدراسة إلى التعرف على طبقات الخزانات المائية في منطقة الأوراس، ويؤكد التحليل الهيدرو-مناخي الذي تم إجراؤه على محطتي باتنة والحامة أن المخزون المائي عالي في باتنة مقارنة بالحامة. أظهرت النتائج أن عينات هذه المياه ذات جودة جيدة مقارنة بمعايير المياه الصالحة للشرب لمنظمة الصحة العالمية، وتظهر نتائج مخطط جيبس وجود تلوث للمياه نتيجة الاستخدام غير السليم للأسمدة أو الكلور (NaCl). تأثر نسب معادن المياه الجوفية بالتفاعل بين الماء والصخور من خلال إذابة معادن الجبس والكربونات والكبرر (Nacl). تأثر نسب معادن المياه الجوفية بالتفاعل بين الماء والصخور من خلال إذابة معادن الجبس والكربونات والكبريتات. يُظهر تحليل المكون الرئيسي (ACP) أن العامل الرئيسي هو زيادة المعادن من أعلى إلى أسفل الحوض تحت تأثير المناخ، ويظهر تحليل العامل التمييزي أن التركيب الكيميائي للمياه يختلف باختلاف المصادر. من الممكن التنبؤ بنسبة 87٪ بفرصة نجاح مصدر الماء من تركيبته الكيميائية. تراوحت قيم مؤشر تشبع الكالسيت والدولوميت من -0.57 إلى 0.17 و -1.71 إلى 0.25 متوسط قيم -1.40 و -0.6 على التوالي. تؤكد نتائج تطبع الكالسيت والدولوميت من -0.57 إلى 10.7 و حاد1.1 إلى 0.25 متوسط قيم -1.40 و -0.6 على التوالي. تؤكد نتائج تطبع الكالسيت والدولوميت من -0.50 إلى 10.7 و و عاد.1 إلى 0.25 متوسط قيم ماله و الجوفية. يؤكد تحليل بعض تطبع الكالسيت والدولوميت من -0.50 إلى 10.7 و و عاد.1 إلى 52.0 متوسط قيم ماله و الجوفية. يؤكد تتائج المعاصر النظائر المشعة المستقرة أن المياه حديثة نسبيًا مع وجود تبخر في بعض عينات المياه الجوفية. يؤكد تحليل بعض العناصر النادرة السترونسيوم والبروم والسيليكا والفلور أنها موجودة بتركيزات عالية نسبيًا. يشير مؤشر جودة المياه إلى أن جودة المياه في منطقة الإوراس تتراوح بين جيدة وممتازة.

الكلمات المفتاحية : الأوراس ، الخزان الجوفي ، تحليل المكون الرئيسي ، تحليل العامل التمييزي ، النظائر المشعة ، التمعدن ، المياه الجوفية

LISTE DES FIGURES

Figure n• 1 : Carte de situation administrative de la région des Aurès					
Figure n• 2 :	Le relief des Aurès	06			
Figure n• 3 :	Carte orographique de l'Aurès (Benmessaoud, 2010)	06			
Figure n• 4 :	Schéma structural De l'Aurès (d'après R. Guiraud, 1973)	07			
Figure n• 5 :	Coupe du Djebel El Azrag	08			
Figure n• 6 :	Coupe du djebel Chélia	09			
Figure n•7:	Coupe d'accident du djebel Chélia	10			
Figure n•8:	Coupe du djebel Aidel	11			
Figure n•9:	Carte géologique des Aurès	16			
Figure n• 10 :	Schéma structural simplifie des Aurès	17			
Figure n• 11 :	Réseau hydrographique dans l'Aurès oriental	23			
Figure n• 12 :	Température moyenne station de Batna	31			
Figure nº 13:	Température moyenne station de Khenchela (2000-2019)	32			
Figure n• 14 :	Précipitation moyenne station de Batna (2000-2019)	34			
Figure nº 15 :	Précipitation moyenne (station d'El Hamma 2000-2019)	34			
Figure n• 16 :	Précipitation moyenne mensuelle des deux stations (2000-2019)	35			
Figure nº 17 :	Diagramme de la Précipitation moyenne mensuelle des deux stations (2000-2019)	35			
Figure n• 18:	Diagramme ombrothermique de Gaussen et Bagnouls pour les 02 stations	37			
Figure nº 19.a :	Représentation graphique du bilan hydrique de la station de Elhamma	41			
Figure n• 19.b :	Représentation graphique du bilan hydrique de la station de Batna	41			

LISTE DES FIGURES

Figure n• 20 :	Carte d'inventaire des points de prélèvement					
Figure n• 21 :	Source de Yabous (Lma Labiad)	47				
Figure n• 22 :	Source de Chelia (Ras Lma)	47				
Figure nº 23 :	Source de Yabous (Lma Lakehal)	47				
Figure n• 24 :	Représentation graphique de pH des eaux des Aurès	48				
Figure n [•] 25 :	Distribution spatiale de la Conductivité électrique à 25°C	51				
Figure nº 26:	Distribution spatiale de l'ion Ca^{2+} en mg/l dans la zone d'étude	51				
Figure nº 27 :	Distribution spatiale de l'ion Mg^{2+} en mg/l dans la zone d'étude	52				
Figure n [•] 28 :	Distribution spatiale de l'ion Na ⁺ en mg/l dans la zone d'étude	53				
Figure n• 29 :	Distribution spatiale de l'ion K^+ en mg/l dans la zone d'étude	54				
Figure n• 30 :	Distribution spatiale de l'ion HCO_3^- en mg/l dans la zone d'étude	55				
Figure n• 31 :	Distribution spatiale de l'ion SO_4^+ en mg/l dans la zone d'étude	56				
Figure nº 32 :	Distribution spatiale de l'ion Cl ⁻ en mg/l dans la zone d'étude	57				
Figure n• 33 :	Distribution spatiale de l'ion NO3- en mg/l dans la zone d'étude	58				
Figure n• 34 :	Diagramme de Piper pour les eaux des Aurès	59-60				
Figure nº 35 :	(a) (b) et (c) Diagramme de SCHOELLER-BARKALOFF des eaux souterraines	61-				
	des Aurès	63				
Figure n• 36 :	Gibbs (1970) montrant le facteur dominant de la roche contrôlant la chimie des					
	eaux souterraines des Aurès	64				
Figure nº 37:	Relation entre SO42-et le Ca+2 des eaux du massif des Aurès	65				
Figure n• 38 :	Relation entre HCO3+SO42-et le Ca2+ des eaux du massif des Aurès	65				

LISTE DES FIGURES

Figure n• 39 :	Relation entre HCO3+SO42-et le Ca2+ des eaux du massif des Aurès						
Figure n• 40:	Représentation graphique des valeurs propres des facteurs	69					
Figure n• 41 :	rojection des variables sur les plans a) F1 et F2 b) F1 et F3						
Figure n• 42 :	Projection des variables sur les plans a)F1 et F4 b) F2 et F3						
Figure n [•] 43:	Barycentres de classification sur les plans a)F1 et F4 b) F2 et F	73					
Figure n• 44:	Indices de saturation des principaux minéraux pour les eaux des Aurès	77					
Figure n [•] 45:	Le diagramme du changement de la composition isotopique de la vapeur d'eau						
	atmosphérique	78					
Figure n [•] 46:	Projection des eaux des Aurès sur le diagramme $\delta 180$ vs $\delta 2H$	82					
Figure n [•] 47:	Concentration en ammonium des points d'échantillonnages des Aurès	83					
Figure n [•] 48:	Concentration en Fluor (F-) des points d'échantillonnages des Aurès	84					
Figure n [•] 49:	Distribution spatiale de la concentration de F- en mg/1	85					
Figure n [•] 50:	Concentration en ammonium des points d'échantillonnages des Aurès	86					
Figure n [•] 51:	Représentation graphique de cl par rapport rcl/rBr des eaux des Aurès	87					
Figure n° 52:	Histogramme des concentrations de la silice (SiO2) des eaux des Aurès	89					
Figure n [•] 53:	La relation entre la silice (SiO2) et les bicarbonates (HCO3) des eaux des Aurès	89					
Figure n• 54:	Représentation graphique des concentrations de strontium des eaux des Aurès	91					

LISTE DES FABLEAUX

Tableau nº 01 :	un° 01 : Les classes des formations en catégories				
Tableau nº 02 :	Répartition des superficies forestières par commune	26			
Tableau nº 03 :	Tableau nº 03 : Caractéristiques des stations pluviométriques du massif des				
	Aurès				
Tableau n° 04 :	Températures moyennes mensuelles et annuelles à la station				
	de Khenchela, Batna pour la période (2000-2019)	30			
Tableau nº 05 :	précipitations moyennes mensuelles et saisonnières – période	33			
	(2000-2019)				
Tableau nº 06 :	Bilan hydrique de la station de Batna selon THORNTHWAITE				
	pour les deux stations	40			
Tableau nº 07 :	Bilan hydrique de la station de Elhamma selon THORNTHWAITE	40			
Tableau n• 08 :	La conductivité et le degré de la minéralisation	49			
Tableau nº 09 :	Facies chimiques des eaux selon le diagramme de Schoeller	61			
	Berkaloff				
Tableau nº 10 :	Statistique descriptive des analyses physico-chimiques des eaux	67			
	des Aurès				
Tableau nº 11 :	Matrice de corrélation entre les éléments physico-chimiques	68			
	étudiés				
Tableau nº 12 :	Valeurs propres et contribution à la variance totale	69			
Tableau n°13 :	Coefficients standardisés des fonctions discriminantes canoniques	70			

LISTE DES TABLEAUX

Tableau n°14 :	Coefficients standardisés des fonctions discriminantes canoniques				
Tableau n°15 :	Matrice de confusion pour l'échantillon d'estimation				
Tableau n°16 :	Indices de saturation des eaux de la zone d'étude	76			
Tableau n°17 :	<i>Classification de la qualité des eaux souterraines basée sur l'indice IQE</i>	92			
Tableau n•18 :	Indice de qualité des eaux étudiées par rapport à la classification des eaux selon l'OMS	93			

LISTE DES ABREVIATIONS

- **ACP :** Analyse en Composantes Principales
- **AFD :** analyse factorielle Discriminante
- **CE :** Conductivité électrique (µS.cm-1)
- **DA :** déficit agricole (mm)
- **ETP :** Evapotranspiration potentielle (mm)
- **ETR :** Evapotranspiration Réelle (mm)
- **P**: Précipitations (mm)
- **pH**: Potentiel d'Hydrogène
- Q2 : Quotient pluviométrique
- **RFU :** Réserve Facilement Utilisable (mm)
- **T** : Température (°C)
- Is : indice de saturation
- Max: maximum
- Min: minimum
- Moy: moyenne
- **OMS :** l'organisation mondiale de la santé

Introduction générale

Bien que l'eau occupe près de 70% de la terre, seulement 2,5 % de cette eau est douce, et dont les deux tiers sont bloqués sous forme de glaciers situés dans les régions polaires (Simonovic 2009).

Les eaux souterraines sont considérées comme une "ressource cachée", quantitativement plus importante que les eaux de surface et pour laquelle la prévention de la pollution et la réhabilitation sont plus difficiles que pour les eaux de surface, en raison de leur inaccessibilité (**Kumar et al, 2009**).

Le manque d'eau est un problème critique dans de nombreuses régions du monde, en particulier dans les zones arides et semi-arides (**El gallal et al., 2016 ; Xiao et al., 2017**). Dans les zones arides, les eaux souterraines sont le principal fournisseur d'eau parce qu'elles sont considérées comme plus sûres contre les polluants que les eaux de surface, car elles sont généralement considérées comme moins polluées que les eaux de surface et donc privilégiées pour la consommation (**Guergazi et al, 2005**).

Une connaissance approfondie de l'hydrogéologie physique et chimique est nécessaire pour comprendre les systèmes d'eaux souterraines et pour l'utilisation efficace et durable des ressources en eaux souterraines (**Cartwright**, **2006**).

La composition chimique des eaux souterraines est déterminée par plusieurs facteurs tels que : la lithologie, l'altération, la dissolution des minéraux, la précipitation des minéraux, le temps passé dans l'aquifère et/ou l'échange d'ions (**Cartwright et Morgenstern, 2012 ; Verma et al., 2016).** De plus, la présence de roches avec de minéraux très solubles (évaporites et carbonates) peut causer des variations dans les concentrations d'ions tels que : Ca²⁺, Na⁺ et Mg²⁺ (**Garrels et Mackenzie, 1971 ; Hren et al., 2007 ; Mukherjee et al., 2009).**

À l'ère moderne, les signatures isotopiques stables (en particulier δD et $\delta 180$) des précipitations et des eaux souterraines sont utilisées pour comprendre les sources d'eau et les processus hydrologiques clés tels que l'évapotranspiration, le recyclage, l'évaporation et le mélange des eaux dans le bassin fluvial (**Dansgaard, 1964; Karim et al, 2002; Halder et al., 2015; Ala-Aho et al., 2018; Zhong et al., 2020**).

INTRODUCTION GENERALE

L'étude régionale de la qualité des eaux superficielles et souterraines, chaudes ou froides dans les Aurès nord-Est Algérien a fait l'objet de ce travail. Pour cela nous avons essayé de comprendre les processus responsables sur le chimisme de ces eaux.

Pour réaliser cette étude nous avons adopté la méthodologie suivante :

Le premier chapitre présente le cadre géologique de la région d'étude, qui consistera à bien comprendre notre milieu d'étude et définir à travers la lithologie des formations constituant la région, la stratigraphie, la tectonique et les propriétés géomorphologiques et socio-économiques du bassin versant.

Le deuxième chapitre est consacré à l'étude hydroclimatologique qui permettra d'évaluer les apports en eau et le stockage dans les couches souterraines pour le calcul des indices climatiques et les paramètres du bilan hydrique.

Le troisième chapitre concerne la qualité des eaux et la nature des aquifères par développement et identification des propriétés physico-chimiques des eaux, ainsi que les isotopes stables (deutérium et oxygène 18) pour la détermination de l'origine des eaux souterraines des Aurès.

Chapitre J

PRESENTATION DE LA REGION D'ETUDE

Introduction

Le grand massif des Aurès est une région très diversifié d'un point de vue géologique et géomorphologique.

Le nom de massif de l'Aurès au vaste pâté montagneux qui s'étend à l'Est de la dépression dans laquelle coule l'Oued Kantara, dépressions que suivent aussi la route nationale et le chemin de fer de Batna à Biskra.

La signification du mot Aurès ou Aoures comme le prononcent les autochtones n'a pu encore être déterminé ; c'est probablement un nom d'origine berbère, qu'on retrouve donné à d'autre montagnes, notamment au djebel Aoures près de Khenchela. Certains auteurs ont voulu faire dériver ce nom du mot hébreu "Arzou " (le cèdre d'Atlas), et les immenses forêts de cèdres qui ont recouvert autrefois et recouvrent encore une partie du massif prêteraient quelques vrai semblances à cette étymologie (**Delartigue, 1904 ; Ballais, 1981**).

1. Situation géographique des Aurès

L'Aurès est compris dans le triangulaire Batna, Biskra et Khenchela (**Fig.1**). Sa longueur de l'Est à l'Ouest est d'environ 100 Km, sa largeur du nord au Sud aussi est 100km.

L'Aurès est compris dans le quadrilatère Batna, Biskra, Khanga-Sidi-Nadji, Khenchela. Sa longueur de l'Est à l'Ouest est d'environ 100 Km ; sa largeur du nord au sud est aussi de 100 Km. Il est précédé au nord d'une série d'avant-monts qui pour la hauteur rivalisent avec les sommets principaux de l'Algérie et qui sont habités tout comme lui par des populations de race Chaouia (**Delartigue, 1904 ; Côte, 1974**).

L'Aurès occupe une surface d'environ 9886 Km². Il s'étend entre les parallèles 34° 45' et 35° 30' Nord et les longitudes 5° 45' et 7'' à l'Est du méridien international. (**Meharzi**, **2010**). Vers 35° de latitude nord et 6 et 7° de longitude est, les Aurès se placent à la charnière des deux grands ensembles qui constituent l'Atlas saharien algéro-tunisien. (**Ballais, 1989**).

Au Nord et au Sud de l'Aurès, se trouvent donc deux dépressions remplies de bassins salins. Celle du Nord reçoit les eaux venant du versant septentrional de l'Aurès ; elle est connue sous le nom de plaine des Sbakh; son altitude moyenne est de 900 m. La dépression du Sud fait partie de la région des Chotts; toutes les eaux de l'Aurès méridional et central s'écoulent dans le Chott Melrirh dont l'altitude est à moins de 30 m au-dessous du niveau de la mer. (**Delartigue, 1904**)

La zone d'étude est partagée entre les trois wilayas de Batna, Biskra et Khenchela (Fig.01), elle s'étend sur Quarante-deux (42) communes, vingt-quatre (24) Communes dans la wilaya de Batna, onze (11) Communes dans la wilaya de Khenchela et sept (7) Communes dans la wilaya de Biskra, Le massif des Aurès proprement dit, est situé entre :

-La ligne Batna Khenchela, au Nord.

-La ligne Khenchela Sidi-Naji, à l'Est.

-La ligne Batna Biskra, à l'Ouest.

Les chaînes de montagne formant le massif des Aurès sont orientées Sud Ouest –Nord Est (Blayac, 1899 ; Busson, 1900 ; Guiraud, 1973 ; Bellion, 1976 ; Mitard, 1941).

D'après CÔTE 1974, deux lignes constituent presque une sorte de longue muraille, l'une contre la mer et l'autre contre le désert et entre ces deux murs se développent de riches et vastes plaines ou plateaux, tels : la vallée du Chélif, la plaine de Sétif, la Mitidja, la vallée du Hodna,

- La ligne du Nord est appelée Atlas Tellien, est une chaîne de montagnes qui longe plus ou moins le littoral.
- La ligne du Sud, appelée Atlas Saharien, longe la limite nord du Sahara à qui elle semble servir de barrière.

Fig.1 : Carte de situation administrative de la région des Aurès. (Lakhdari, 2021)

2. Le cadre Géologique des Aurès

2.1. La topographie

Topographiquement, il n'est pas très difficile de limiter ce massif : sa bordure Nord est une ligne pratiquement directe entre les villes de Batna et Khenchela soit sur une centaine de kilomètres. (**Meharzi, 2010**).

Vu dans l'ensemble, le massif de l'Aurès présente une structure simple : le dôme anticlinal côtoie la cuvette synclinale et c'est ainsi tout le long du massif où les formes sont orientées S.W.-N.E.

Laffite, 1939 ; Cornet, 1951 ; Bellion, 1976 ; Alimen et al., 1979 ; Ballais et Vogt, 1980 ; dans ces travaux géologiques effectués sur la région des Aurès et les régions voisines

permettent de proposer une synthèse géologique et structurale de la région d'étude (Fig. 2 et fig.3).

Les couches sédimentaires plissées et brisées sont la formation globale du massif des Aurès

Fig. 2 : Le relief des Aurès (Ballais, 1981)

Fig. 3 : Carte orographique de l'Aurès (Benmessaoud, 2010)

Les monts dérivés constituent l'élément majeur du relief des Aurès. Avec des nuances (mont dérivé simple, mont dérivé à combe complexe, mont dérivé à combes annulaires multiples, mont dérivé dans un anticlinal déversé), liées à la lithologie et surtout à la tectonique et à l'évolution géomorphologique tertiaire, ils réalisent des types classiques de relief conforme à la structure. (**Ballais, 1981**)

Fig. 4 : Schéma structural De l'Aurès (d'après R. Guiraud, 1973)

• Des chaînons et barres très élevées : les anticlinaux

Tableau 1	: Légende	géologique	commune à toutes les c	oupes. (Guiraud, 1	1973).
-----------	-----------	------------	------------------------	----------	------------	--------

P	Pliocène	C3-1	Albien
m3	Pontien sup.	CI-II	Aptien
m2	Pontien inf.	CIII	Barremien
m1	Miocène inf. marin	CIV	Hauterivien CIV
0	Oligocène	CV	Valanginien
eI-II	Lutetien	J7	Portlandien et
			Berriasien
Eiii	Londinien	J6b	Kimeridgien supérieur
eV-	Paléocène	Јба	Kimerigiaen inférieur
IV			
C9	Danien	14	Toarcien
C8b	Maëstrichtien	lI	Lias inférieur
C8a	Campanien	t	Trias
C7	Coniacien et	J	Jurassique
	Santonien		
C6	Turonien	1	Lias
C5-4	Cénomanien	C3-1	Albien

2.1.1. Djebel El Azreg

C'est le plus long chaînon du massif puisqu'il s'étend de la plaine d'El Outaya au sud-ouest à celle de Médina au nord-est soit sur environ 60 Km. Ce chaînon qui débute à partir du Djebel Fouchi (1162m) au sud-ouest s'élève lentement à mesure qu'il s'étend au nord-est. Nous y trouvons une série de Djebels étroits et assez courts dont le Djebel Azreg proprement dit (1937m) formé d'une énorme masse de dolomie, découpée par l'érosion, en roches ruiniformes. Il est constitué essentiellement de Portlandien (dolomies) et de Kimeridjien supérieur (marnes et calcaires marneux). Le Djebel Taguechirt (1901m) et le Djebel Bou Tiarmine (2178m) sont constitués eux de l'Albien (marnes, calcaires, grès, flysch) et l'Aptien (calcaires, dolomies, marnes, grès).(**Fig.5**)

Fig. 5 : Coupe du Djebel El Azrag (d'après J. L. Ballais 1981)

Il est utile aussi de signaler dans le sillon de cette chaîne, des barres beaucoup plus basses mais aussi vigoureuses puisqu'elles sont formées de calcaires massifs notamment le Djebel Takhount (1254m) daté du Miocène inférieur. Dans la même continuité en allant vers le nord, nous rencontrons le Djebel Zellatou qui culmine à 1994m et qui date du Maëstrichtien et du Campanien (calcaires et marnes noires) et enfin par le Djebel Arhane (1978m) constitué lui de calcaires massifs et des marnes blanches. Celui-ci date du Londonien et du Paléocène.

2.1.2. Djebel Ichmoul/ Chélia

Plus au Nord, se trouve l'anticlinal Ichmoul – Chélia1 (**fig.6**) qui est coupé en deux par deux cassures qui encadrent la plaine de Médina. Ces deux Djebel qui culminent respectivement à 2066m et 2326m sont occupés progressivement du sud-ouest vers le nord-est par l'Albien, l'Aptien puis le Barrémien c'est-à-dire essentiellement de grès

mélangés avec les marnes rouges et vertes ainsi que de calcaires, calcaires gréseux et dolomies.

Fig.6 : Coupe du djebel Chélia. (Ballais, 1981)

En ce qui concerne le graben de Médina, nous y trouvons des marnes du Cénomanien au milieu des quelles pointe le Trias (sel gemme)

2.1.3. Djebel Bezaz

Vers l'est se trouve le petit massif qui va de Bezaz à Ras Serdoun et qui s'étire toujours dans la même direction (S.W.-N.E.) sur une distance de 40Km environ et porte plusieurs sommets qui culminent à plus de 2000m. C'est un mont dérivé, très régulier développé essentiellement dans l'Aptien présentant deux faciès : « au sud-ouest (Djebel Feraoun 2093m) des calcaires récifaux, parfois dolomitisés et entourés de calcaires oolithiques surmontent des alternances de marnes et de calcaires, au nord (Ras Serdoun 1700m), le faciès est gréso-calcaires » (Ballais, 1981)(**fig.7**)

Fig.7 : Coupe d'accident du djebel Chélia.(Ballais, 1981)

2.1.4. Djebel Aidel

Le djebel Aïdel-Ras Serdoun constitue le type le plus simple et le plus net de mont dérivé Long d'environ 35 km, ce chaînon très régulier correspond à un anticlinal lui aussi très régulier, développé, pour l'essentiel, dans l'Aptien qui présente ici deux faciès différents. Au Sud-Ouest (dj. Faraoun), des calcaires récifaux, parfois dolomitisés et entourés de calcaires oolithiques surmontent des alternances de marnes et de calcaires (J-P. Masse, J-P. Thieuloy, 1979) ; au Nord (Ras Serdoun), le faciès est gréseux et gréso-calcaire.

En-dessous, le Barrémien n'affleure qu'en deux points, au centre de l'anticlinal, et forme l'essentiel du dj. Aïdel *s.s.* ; il s'agit d'environ 400 m de quartzites. Enfin, l'Albien entoure régulièrement l'Aptien : 60 mètres de calcaires massifs sur 200 m d'alternances de marnes noires et de grès au Sud-Ouest, vers Aïn Guiguel ; des grès sur le versant Sud-Est (Chenntgouma) ; au centre, sur le versant Nord-Ouest, vers Aïn Mimoun, 250 à 300 m de marnes à bancs peu nombreux de quartzites à grain très fin.(**fig.8**)

Fig.8 : Coupe du djebel Aidel .(Ballais, 1981)

2.2. Stratigraphie

2.2.1. Le socle Mésozoïque

2.2.1.1. Trias

Les affleurements triasiques sont assez nombreux et très localisé à proximité de Khenchela (fig.9), où il isole le Miocène du Crétacé, suivant une bande de 4 à 5 km de long et de 300 à 400 m de large et sur Djebels El Krouma et Knif en contact anormal avec l'albien, le Cénomanien et le Sénonien. (Laffitte, 1939 ; Vila, 1977)

La série triasique comportait probablement à l'origine, de la base vers le sommet : une formation évaporitique épaisse, en particulier sous la forme d'amalgames intensément replissés, représentent les indices les plus sûrs de la présence du Trias. Le gypse est le plus fréquent, en amas saccharoïdes blanc grisâtre, durs, ou sous forme de grands cristaux.

L'abondance du sel caractérise cet affleurement, visible dans les diapirs de Khenchela et Krouma, mais cela tient, non pas à un caractère original particulier au Trias de cette région, mais au fait que ce pointement étant récent (post-miocène), le sel n'a pas eu le temps d'être dissous, tandis que dans les autres pointements, qui sont anti-miocènes, il a disparu depuis longtemps (Laffitte, 1939)

Les argiles et marnes bariolées, de couleur verdâtre, rougeâtre à violacée, constituent les roches les plus abondantes à l'affleurement. Des passées calcaro-dolomitiques, de couleur gris bleuté à noirâtre, généralement bien stratifiés et présentant parfois quelques passée marneuses, sont fréquemment emballés dans les complexes triasiques.

2.2.1.2. Le Crétacé

2.2.1.2.1. Crétacé inférieur

Selon Laffitte (1939) Dans la région des Aurès, le Crétacé inférieur couvre une grande partie des Anticlinaux du Djbel Chélia, et les pluparts des reliefs les plus élevés : Azreg-Ichmoul, Aidel. On peut décrit avec soin la plupart des faciès et c'est à partir de ses descriptions, modifiés ou complétés en quelques points, que R. Guiraud (1973) a établi la figure 7 qui résume de façon schématique les principales variations observables. On notera dans l'Aurès le développement important des dépôts gréseux aux dépens des dépôts carbonatés. Dans le Crétacé inférieur on peut trouver quatre ensembles lithologiques

A. Barrémien- Aptien

la Barrémien est représenté Dans le sud-ouest du massif de l'Aurès par un faciès continental net : grès à dragées, marnes rouges, montant jusque dans l'Aptien. Lorsque l'on se déplace vers le Nord-Ouest, les couches passent à des quartzites sans fossiles à la base (Barrémien) et à des marnes fossilifères (Aptien inférieur) au sommet. Dans le Nord, ces quartzites sans fossiles présentent, surtout à la base de l'étage, des intercalations de calcaires marins (Djebel Aidel aux environ de Khenchela et Bou Arif), l'épaisseur de l'étage varie de 400 m environ (Sud) à 250 m (Nord). Cette région a alors été le siège d'une sédimentation puissante (plus de 2000 m de dépôts parfois), principalement gréso-argileux (Laffitte 1939). Les intercalations carbonatées sont peu épaisses ; elles se cantonnent dans l'Aptien moyen à supérieur et l'Albien supérieur (Laffitte, 1939 in Houha, 2007).

Les couches précédentes sont surmontées par des marnes puis par des masses calcaires avec rares intercalations marneuses (Laffitte, 1939). Une barre de calcaire dolomitique roux, reconnus à ce niveau dans le massif de Khenchela (Guiraud, 1973). Viennent ensuite des calcaires, pouvant alterner avec des marnes et surtout des grès.

Enfin R. Laffitte a remarqué la présence assez constante, au-dessus des calcaires d'un niveau peu épais (quelques dizaines mètres au maximum) de marnes ou calcaire marneux.

B. Albien

L'Albien débuterait dans l'Aurès, selon la description de R. Laffitte, par des alternances de grès et de marnes atteignant le plus souvent 150 à 200 m d'épaisseur. Puis les calcaires, assez rares jusque-là, tendent à se substituer aux grès, sur une cinquantaine de mètres environ. Audessus de ces assises viennent des alternances de calcaires de et marnes (40 m environ)

L'Albien affleure dans les anticlinaux de l'Aurès, au cœur de Djebel Aidel dans l'anticlinal de Khenchela où l'on distingue un ensemble à dominante marneuse surmonté par des grès fins. Le passage aux marnes cénomanienne étant assez progressif.

2.2.1.2.2. Crétacé supérieur

A. Cénomanien

Le Cénomanien comporte une série de marnes grises dans lesquelles s'intercalent des calcaires fins argileux, une partie médiane formée de marnes grises, vertes ou ocres, contenant parfois du gypse diffus ainsi que des passées argileuses ; une série terminale constituée de marnes et de calcaires formant une corniche (proportion de ces derniers augmente vers le sommet). Le Cénomanien est présent dans tous les anticlinaux de l'Aurès. Il est essentiellement calcaro-marneux. La partie inférieure est surtout marneuse. La partie supérieure est constituée de bancs calcaires massifs mais peu épais. L'épaisseur de cette formation est très variable. Elle peut atteindre 500 à 600 mètres au cœur de l'Aurès.

B. Turonien

Le Turonien comporte, en effet, au-dessus des marnocalcaires de base, un ensemble de marnes beige et calcaires. Dans le Djebel Amrane, le Turonien est schisteux à la base, calcaire dans la partie moyenne, et Marno-calcaires au sommet. L'épaisseur du Turonien peut atteindre 800 mètres dans les faciès Marno-calcaires du cœur de l'Aurès, mais varie de 1000 à 300 mètres dans les calcaires.

C. Sénonien

Le sénonien est présent au Sud de la plaine de R'mila, sur le flanc nord de l'Anticlinal du Djebel Chélia avec un faciès principalement marneux. Son épaisseur peut être très importante et atteindre 1000 à 2000 m.

2.2.2. Les formations Cénozoïques

2.2.2.1. Le Néogène

Le Néogène est assez bien conservé au Nord de l'Aurès dans un bassin qui s'étend approximativement de Batna à Khenchela. sont représentés surtout par des conglomérats du Miocène qui remplacent vers le Sud par des formations marines normales

Reposant en discordance sur le Crétacé on observe généralement à la base de la série des conglomérats et calcaires à Algues, dont la puissance dépasse rarement une vingtaine de mètres. Au-dessus viennent des alternances de marnes gréseuses gris-brun et de grès calcareux. Il convient de préciser que ces formations Miocènes marines, classées fréquemment sous le terme de « grès», ne comportent en réalité que quelques bancs de grès noyés dans une importante épaisseur de marnes gréseuses ce qui fait que ces marnes gréseuses, paraissant très friables à l'affleurement, constituent en réalité une roche assez dure et probablement peu perméable.

La série comporte ensuite des marnes argileuses rouges gypseuses continentales qui sont discordante sur le Crétacé (300 à 400 m) admettant encore à leur base quelques récurrences grises ou vertes. Les affleurements ne sont connus qu'au Sud du bassin, jusqu'au Djebel Amrane. Il est probable qu'en profondeur, l'extension de ces dépôts soit limitée au prolongement de cet anticlinal sous la plaine. Ceci serait corroboré par les forages de Kais , Bir Boussaha, Sonda qui ont atteint le substratum Crétacé sans traverser le Miocène marin.

2.2.2.2. Le Quaternaire

Le Quaternaire ne comporte que des formations continentales généralement épaisses par endroits. souvent en présence de croûtes calcaires. Dans les Aurès, Les formations récentes sont aussi largement répondues à la périphérie de l'Aurès qu'ils sont dans le centre du massif. rares Les formations quaternaires sont particulièrement bien développées dans les régions comprises entre les reliefs crétacés des monts des Aurès. Les dépôts quaternaires recouvrent le majeur parti des plaines.

Les piémonts sont ici généralement modelés en glacis à couverture détritique peu épaisse, dont le plus visible est situé au sud de Baghai et Kais, à matériel grossier. Ces glacis

14

sont constitués au voisinage immédiat des reliefs par des alternances de couches de cailloutis et blocailles et de colluvions avec un enrichissement en calcaires dans les horizons superficiels. Lorsqu'on s'éloigne du piémont l'épaisseur des couvertures de glacis diminue rapidement. Les formations anciennes sont constituées par des alternances de conglomérats et de sables surmontés par des sédiments fins argilo sableux, rouge au sommet desquels apparaît une croûte calcaire blanche.

Le versant nord de l'Aurès présente une structure simple : l'anticlinal de Chélia, 2328m (Ras Kaltoum) occupé progressivement du sud-ouest au nord-est par des formations géologiques de l'Albo-Aptien du crétacé inférieur des calcaires, calcaires gréseux et dolomites. Djebel Bezaz est développé essentiellement dans l'Aptien présentant deux faciès, au sud-ouest (Djebel Feraoun 2093m) des calcaires récifaux, parfois dolomitisés, surmontent des alternances de marnes et de calcaires, au nord (Ras Serdoun, 1700m), le faciès est gréso-calcaires. Le synclinal de l'Aurès est caractérisé par des affleurements des marnes de Cénomanien (**J.L. Ballais, 1981**). Sur la bordure de l'Anticlinal de Khenchela (Djebel Aidel), il existe l'Albien qui surplombe les sources thermales, il présente au sommet un faciès gréseux et à la base des calcaires marneux et calcaires dolomitiques, il devient franchement marneux en profondeur. (**Fig. 9 et 10**).

Fig.10 : Schéma structural simplifie des Aurès (MIE,1977)

3. Hydrogéologie

3.1. Présentation et nature des nappes aquifères

3.1.1. Nappe phréatique

La nappe aquifère est contenue dans le remplissage quaternaire dans des intercalations argilosableuse et dans des sable et graviers. C'est un aquifère multicouches séparés par des argiles et des marnes. (**Bensaci, 2007**). Les zones d'alimentation se situent, principalement au Sud, à partir du versant Nord du Massif de l'Aurès et à l'Ouest, à partir du Djebel Amrane. La nappe est dans l'ensemble de la plaine peu profonde et se situe vers 5 m dans toute la Partie centrale et Ouest de la plaine.

On remarquera une anomalie importante dans la région de Kais, où la nappe atteint une profondeur de 30 m pour se trouver très rapidement à 5 m de profondeur à quelques kilomètres au Nord.

3.1.2. Nappes profondes

D'après les données de l'ANRH Les nappes profondes sont captées par quelques forages qui ont permis de tester les formations Quaternaires et récentes. Aucune autre formation antérieure (grès miocène ou calcaires crétacés) n'a été testée dans les limites de la plaine de Remila. Les forages captent tous des niveaux grossiers ou des conglomérats dans le remplissage Quaternaire.(Houha, 2008)

3.1.3. Les eaux des calcaires et des grès miocènes de la bordure Sud

Le versant nord du massif des Aurès, constitué par les affleurements calcaires crétacé et les grès miocènes ont un pendage dirigé vers la plaine, constituent un front d'alimentation en eau de la plaine de R'mila, avec un débit de 1.11 m3/s. L'écoulement alimente les nappes des alluvions de la plaine.

3.2. Substratum : structure profonde

Les grandes lignes structurales du substratum ante-quaternaires sont marquées par un passage d'Ouest en Est des calcaires turoniens et cénomaniens aux marnes cénomaniennes. Ce sont ces marnes qui constituent le substratum sous la Garat et Tarf. Le substratum calcaire se trouve limité à la zone Ouest, au voisinage de Djebel Amrane, et à la partie Sud, dans les zones de Boulfreis à Kais. Au pied du Djebel Fedjoudj, le plongement Sud des calcaires aptiens a pu être suivi jusqu'à des profondeurs de l'ordre de 500-600m

a)Terrains Néogène

Les formations miocènes s'allongent le long de la bordure sud du bassin avec une allure synclinale délimitée sous le recouvrement quaternaire. Il s'agit de grès marin noyés dans une importante épaisseur de marnes gréseuses verdâtre ou gris-bleu et constituent en réalité une roche assez dure et peu perméable. Cette formation n'est pas suffisante pour qu'une nappe continue puisse s'y développer (**Athamena, 2006**).

Ces grès présentent une limite au nord et se terminent en biseau ou réduits en épaisseur par l'érosion.

b) Le Plio-Mio-Quaternaire

Les terrains quaternaires sont le lieu de bonnes circulations d'eau, l'épaisseur saturée de cette formation est suffisante. Il est formé de plusieurs niveaux grossiers, sables, graviers, conglomérats bien développé, dans la partie Ouest et centre de la plaine. Ces niveaux grossiers se présentent sous la forme de vastes lentilles parfois sans liaison entre elles, en prolongement du djebel Amrane et du massif miocène de Boulfreis. Il est moins important et moins profond dans la partie Sud-est de la plaine. Il constitue donc la couverture perméable qui permet l'infiltration des eaux météoriques, cet ensemble joue un rôle hydrogéologique important du fait de sa perméabilité en général excellente. C'est dans cette formation du remplissage plio quaternaire que la nappe de R'mila est contenue.

3.2.1. Les principaux aquifères

Par suite de la grande complexité structurale et de la diversité lithologique de la zone étudiée, on dénombre, en fonction de leur importance, deux types d'aquifères

3.2.2. Les aquifères alluviaux

Deux types d'alluvions peuvent être distingués : les alluvions anciennes et les alluvions récentes qui reposent sur les premières. Les alluvions anciennes sont constituées de galets, graviers et sables bien roulés ou très émoussés. Les alluvions récentes présentent d'importantes variations de faciès mais sont toujours composées de dépôts fins. Ainsi l'aquifère des alluvions anciennes est localement captif ou semi captif sous les limons. Ces aquifères représentent la plus importante ressource régionale en eau souterraine occupent le bassin de R'mila et tout autour du massif des Aurès.

3.2.3. L'aquifère miocène

S'allongent le long de la bordure sud du bassin avec une allure synclinale délimitée sous le recouvrement quaternaire, ne présente qu'un intérêt local et est, de ce fait, peu exploités et constituent en réalité une roche assez dur et peu perméable. Cette formation n'est pas suffisante pour qu'une nappe continue puisse s'y développer du fait de son extension limité au nord et se termine en biseau.

3.2.4. Les eaux des calcaires et des grès miocènes de la bordure sud

Le versant nord du massif des Aurès, constitué par les affleurements calcaires crétacé et les grès miocènes ont un pendage dirigé vers la plaine, constituent un front d'alimentation en eau de la plaine de R'mila, avec un débit de 1.11 m₃/s. L'écoulement alimente les nappes des alluvions de la plaine.

4. La pédologie

Au niveau de la zone centrale montagneuse, on rencontre sur les monts des Aurès des sols insaturés humifères (sols formés sur des roches non calcaires et perméables), des sols calcaires humifères (formés sur les roches mère calcifères). La roche mère affleure en quelques rares endroits isolés. La carte pédologique de l'Algérie, établie par JH Durand, confortées par des études ponctuelles plus récentes, permet de cerner d'une manière assez générale les principaux sols rencontrés au niveau de la zone d'étude. JH Durand, a dénombré six classes de sols, auxquelles il convient d'ajouter la classe des sols minéraux bruts (affleurement de la roche mère) et la classe des sols halomorphes (sols salés)

4.1. Les sols calcaires et calciques

D'après Abdessemed (1981) les sols calcaire brunes sont les plus présents dans la céderais d'Ouled yagoub IIs sont avec les rendzines rencontrés sur les monts Dj Faraoun et au Belezma. et les piémonts de la zone d'étude, à une altitude comprise entre 1000 et 1500 mètres. deux faciès sont distingué: l'un brun calcaire typique et l'autre presque totalement déc alcarisé en surface. Le plateau du Mahmel et la vallée de l'Oued El Arab sont formés de sols calciques ; la roche mère affleure uniquement sur les hauteurs . Ces sols sont rencontrés sur les bas piémonts, et sur les hautes plaines longeant la route qui mène de Khenchela à Taouzient.

4.2. Les sols insaturés humifères

Ces sols sont rencontrés sur les reliefs les plus élevés (plus de 1500 mètres d'altitude) de la zone d'étude. Ils sont occupés par des forêts.

4.3. Les sols alluviaux basiques

Ces sols sont localisés sur des zones de changement de pente, c'est à dire les zones où la pente devient plus douce. On les rencontre principalement dans la vallée de Bouhmama.

5. Le réseau hydrographique

La zone d'étude s'inscrit dans les limites géographiques Le bassin versant des Hautes Plaines constantinoises, Selon **Delartigue (1904) ; Ballais (1981) ; Abdessemed (1984)** Le réseau hydrographique de la zone d'étude est drainée par quelques oueds d'une importance relative et à caractère endoréique, alimentés par un chevelu très dense. Trois vallées creusent la zone d'étude dans le massif de l'Aurès. Ce sont celles de l'Oued El-Kantara; l'Oued Abdi, affluent de l'Oued El Kantara; l'Oued El Abiod; l'Oued El Arab (**Fig. 11**).

5.2.1. Oued El-Kantara et Oued Abdi

L'Oued El-Kantara descend du col du Chlalâ, qu'il ouvre au pied du Djebel Touguert, une des plus hautes montagnes de l'Algérie (2094m) située à quelques Kilomètres à l'ouest de Batna.

5.2.2. Oued El Abiod :

L'oued El Abiod prend sa source dans le Chélia, à Ras Keltoum (2.328 m) d'où il descend sous le nom d'oued Tiddart, puis un peu plus bas d'oued Tadjernit.

5.2.3. Oued El Arab

L'oued El Arab prend sa source à quelques kilomètres de Khenchela au sud-ouest, au djebel Tafrent, par 02 bras ayant 25 à 30 km de longueur et qui enserrent en l'isolant complètement du massif de l'Aurès. Ce réseau d'écoulement dendritique Celui-ci résulte de la confluence de l'Oued Mellagou et de l'Oued El Abiod qui prennent leurs sources respectivement au Djebel Chélia et au Djebel Aïdel. Son tracé à l'Est, est la limite exacte du massif qui le délimite des monts des Nememchas. Il draine pratiquement tout le flanc est du massif. La superficie de son bassin qui touche l'Aurès est d'environ 2500 Km². Cet Oued à écoulement p&ermanent qui a justifié d'ailleurs la construction du barrage de Babar, irrigue une série d'Oasis notamment après la sortie du massif. Nous pouvons citer entre autres Kheirane, Khenguet Sidi Nadji, Zéribet El-Oued. Plus au Sud à 150 Km environs de ses

sources.Comme tous les Oueds qui se dirigent vers le Sud, son débit diminue au fur et à mesure que nous nous dirigeons vers le Sud.

Les principaux cours d'eau en partant de l'Ouest en Est sont :

• **Oued EL-Madher :** Cet oued descend par plusieurs bras et de fort belles sources du versant nord du djebel Ech Ghaali et du djebel Assière.

• **Oued Chemora :** Cette rivière est formée de 02 bras, le Chabet Ez Zoubia à l'ouest et l'oued Reddam à l'Est

• Oued Bou El Freiss : Cette rivière est des plus importantes ; elle est formée par la source Aîn Tetoufzed et ouvre un long couloir au nord du Chélia en donnant passage à une assez bonne voie de communication avec la haute vallée de l'Oued El Abiod (Plaine de Ichemoul). Les cours d' eaux sont rapides. Il prend sa source dans le même massif c'est-àdire dans le Djebel Chélia à 2300m d'altitude. Son débit est plus important car la région reçoit une pluviométrie conséquente de l'ordre de 1000 à 1200mm/an.1 Il descend rapidement dans les vallées encaissées parallèlement à la route qui mène vers Touffana en traversant le Djebel Islef Bou el Arouah, puis continue sa course folle vers la plaine de Boulefreis où il forme un large estuaire et se perd dans le Garâat el Tarf soixante-dix kilomètre plus loin.

• Oued Foum El Gueiss : Cet oued ouvre un long couloir dans l'Aurès ; il sort du Djebel Noughiss ou Nouriss. Sa source est opposée par le sommet à celle de l'oued Tamzat, affluent de l'oued Mellagou. L'oued traverse un massif montagneux très boisé et entre dans la plaine au défilé de Foum El Gueiss au moment où il est traversé par la route de Khenchela.

• Oued El-Kharoub : Cet oued sort du massif boisé du djebel Akar et va se jeter dans la Gueraa El Tarf (chott El Mellah), presque à côté de l'oued Foum El Gueiss il reçoit à gauche l'oued Mouskettou qui sous le nom de Faid Iskouène ouvre le défilé de Foum Tizourit.

Fig.11 : Réseau hydrographique dans l'Aurès oriental (Benmessaoud, 2010)

6. Le couvert végétal

La région des Aurès fait partie des écosystèmes septentrionaux de l'Algérie du Nord. La couverture végétale est fortement liée aux sols et au climat, la végétation de la zone d'étude présente des caractéristiques similaires à celle du milieu physique (**Boudy**, **1955**; **Schoenenberger**, **1971**; **Abedssemed**, **1984**, **Anser**,**2002**).

6.1. Les formations forestières

Les forêts de l'Aurès sont assez considérables. Avant de les énumérer nous dirons quelques mots des diverses essences qui les peuplent. Ce sont : Le génévrier commun (Taga), le genévrier de Phénicia (Arar), le genévrier oxycèdre (Tazenzéna ou Aîoual en langue chaoui), le chène-vert (Kerrouch), le frêne (Touszelt), le pin d'Alep (Snouber), le cèdre (Begnoune), l'If (Tiffouzel).

Le cèdre commence à se montrer à la hauteur de 1.400 m sur les pentes abritées du siroco ; mais on n'en voit à aucune altitude sur les versants exposés au souffle du désert. Le pin est après le cèdre l'ornement naturel de l'Aurès et forme dans certains centres de belles forêts ; mais cèdre et pin ne résistent pas au Chéhili, le terrible vent Sud-ouest. Les chênes verts et les genévriers sont seuls assez robustes pour cela. Les premières semblent occuper la place des cèdres et les deuxièmes celles des pins en face de l'ennemi. Au contraire du côté nord non seulement à l'abri des hautes cîmes mais même derrière les crêtes les plus basses la végétation se développe avec vigueur. Les cèdres se mêlent alors au pins et surtout à des

chênes qui sont les plus beaux qui se puissent voir. Les genévriers chétifs dans le sud rivalisent avec les plus grands arbres. Dans certains endroits les forêts sont inextricables

6.2. Les formations para-forestières

Occupent de grande étendue sous formes d'îlots discontinus à base de chêne vert essentiellement. Les maquis sont dans un état de vieillissement très avancé et sont dégradés. Ils sont destinés à la protection du milieu

6.3. Parcours

Cette unité est largement répandue dans la région Sud. Après les forêts et maquis, elle demeure la plus importante II présente en générale sous forme de végétation très dégradée, où prédominent les espèces non potables dû à la surcharge des effectifs des ovins. Elle englobe toutes les superficies à couvert herbacé, parfois même ligneux bas. Les maquis très clairs, bas et très dégradés, présenta des signes de surpâturage très nets ont été également considérés comme terrain de parcours étant donné leur utilisation actuelle.

Du point de vue phytoécologique, la végétation dominante est celle de la steppe (nappes d'alfa, d'armoise blanche, etc....).Les formations steppiques de cette zone sont des parcours (Moyennes étendues de végétation basse). Ces derniers sons d'une qualité inégale, très souvent dégradés. On distingue :

Les steppes à graminées : Elles sont représentées essentiellement par l'alfa (*Stipa tenacissima* et *Stipa parviflora*), le sparte (*Lygeum spartum*) et le drin (*Aristidia pungens*).

Les steppes chamaphytes : Elles sont envahies par l'armoise blanche (Artémisia herba alba) et remt (*Arthrophytum scoparium*) ou (*Hélianthenum hirtum*). Ces espèces sont les plus représentatives et n'occupent que de faibles superficies généralement en association avec les précédentes.

Les steppes crossulantes (halophytes) : Souvent indicatrices d'holomorphie .L'espèce floristique dominante est l'Atriplex (*Atriplex halimus*).A toutes ces steppes s'ajoute un cortège floristique d'espèces annuelles très important.

6.4. Les cultures

Le milieu agricole de la zone est caractérisé par une agriculture de montagne de subsistance axée essentiellement sur la combinaison d'élevage en association à, la céréaliculture, maraîchage et arboriculture fruitière.

D'autre part, il y a lieu de signaler la pratique du petit élevage qui est en plein extension après la mise en œuvre du programme PNDA, notamment, l'apiculture et l'aviculture.

Malgré cette situation très dégradée, des ressources végétales, la région offres de très belles formations végétales climaciques, les curiosités botaniques et surtout les peuplements endémiques en voie de disparition, telle le Genévrier Thurifére et le Frêne Dimorphe ou frêne des Aurès qu'il ya lieu de sauvegarder.

Nom de la forêt	Commune	Superficie (ha)				
	Tighanimine	10141,78				
	Ichemoul	3930,126				
Forêt domaniale Aurès	Thniet El abed	4473,80				
	Inoughissen	712,50				
	Arris	4829,006				
	Foum Toub	1913,20				
Forêt domaniale Beni Oudjana	Inoughissen	372,100				
Forêt domaniale Beni	T'kout	4699,07				
Bousslimane						
	Foum Toub	197,15				
Forêt domaniale Z'gag						
	Oued taga	9320,8790				
Forêt domaniale Beni Fedhala	Tazoult	3637,23				
Forêt domaniale Ich Ali	Tazoult	150,00				
Forêt domaniale Bouarif	Timgad	1466,9650				
	A alassafer	1449,4856				

 Tableau 2 : Répartition des superficies forestières par commune

7. Socio-économie de la région

La population est plus au moins dense surtout dans des petites villes locales, l'agriculture (arboriculture et sylviculture) et l'élevage. Les entreprises minières sont représentées par de nombreuses carrières, Ce qui augmente les besoins alimentaires et agroalimentaires et aussi les besoins en terrains agricoles, qui ont conduit à défrichement des forêts pour les cultiver. Le taux de croissance démographique particulièrement élevé dans les hautes plaines et les steppes a entraîné à la surexploitation des ressources naturelles ;et La dégradation de l'environnement ; Donc l'augmentation la possibilité de la détérioration de la qualité de vie naturelle

Cette situation a entraîné un déséquilibre entre le rythme de croissance biologique des pâturages et les besoins du pastoralisme. La steppe est exploitée « comme une mine »,

Malgré que La diversité climatique a donné à l'Aurès un penchant naturel multiple conférant des spécificités touristiques non négligeables. (**Benzeroual, 2006**) mais cette branche est n'est pas développé à cause de plusieurs facteurs économiques ou administratifs.

Conclusion

Les Aurès situent au nord-est de l'Algérie, Les formations prédominantes sont le crétacé représentées par l'Aptien, l'Albien et le Barrémien et le trias est répandu sur les basses plaines sahariennes au sud de la zone d'étude. Les calcaires, dolomies dures et marnocalcaire, constituent un grand réservoir des eaux souterraines. La tectonique de la région d'étude représente Quatre groupes d'accidents disjonctifs, avec des nombreuses cassures.se est caractérisé par des reliefs modérées, Le réseau hydrographique est très développé, la pente des oueds sont tres fortes ce qui favorise le ruissellement.

Le couvert végétal est jouent un role prémordiale contre l'erosion, avec la présence intensive des forets (cedrais et pinede des Aurès).

CARACTERISTIQUES CLIMATIQUES DES AURES

Introduction

Le climat des hautes plaines steppiques est marqué par un conflit entre les influences de la méditerranée, caractérisé par des hivers doux et une longue période estivale chaude, tempérée par des brises de mer, et celles du Sahara, avec un vent chaud et secs. le sirocco soufflant au nord du Sahara durant la saison estivale, amène des orages de poussière et sable vers les régions côtières. Dans les deux cas une déprissions nordique vient au contact de l'air chaud venant du sud (Sahara) ; les masses d'air deviennent alors instables et engendrent des orages au printemps et en automne (**Huneu, 2000 et ANAT 1992**).

D'après G. Marcy (1942 in Ballais 1981), les Chaouias divisent les Aurès en trois régions : chaude, froide et « moyenne ».

1. Les stations météorologiques

Pour la région étudiée, nous avons deux stations pluviométriques (tableau 3), dont les données s'étalent sur la période allant de 2000 à 2019. L'une de ces stations se trove au wilaya de Batna et la deuxième station d'el Hamma est situé dans la wilaya de Khenchela . Toutes ces deux stations sont gérées par l'ANRH.

station	latitude	longitude	altitude	Période d'observation
Khenchela	35° 28' N	7° 5' E	983m	1999-2019
Batna	35° 45' N	06° 19' E	821.29m	2000-2019

2. Étude des paramètres climatiques

L'étude des aquifères est liées à l'étude des facteurs climatiques de la région qui jouent un rôle déterminant dans le régime des cours d'eau, surtout les précipitations qui constituent le facteur essentiel intervenant par leur répartition annuelle, et mensuelle, leurs totaux journaliers, et surtout les averses génératrices des crues. Ces différents aspects des précipitations plus ou moins modifiés par l'effet combiné des autres paramètres physiques (altitude et exposition) et climatiques (températures et évapotranspiration surtout), permettent d'expliquer quantitativement les variations des composantes du régime hydrologique des Aurès.

2.1. Les températures

La température de l'air est un paramètre ayant une grande influence sur le bilan hydrologique. Elle conditionne l'évaporation et l'évapotranspiration.

La température est un facteur qui varie dans le temps et dans l'espace. L'effet de cette variation est marqué au niveau de l'amplitude thermique et aussi au niveau des températures minimales et même maximales. (BNEDER ,2011)

Tableau 4 : Températures moyennes mensuelles et annuelles à la station de Khenchela, Batnapour la période (2000-2019)

station	T°	jan	Fév	Mars	Avril	Mai	Juin	Juillet	Aout	Sept	Oct	Nov	Déc
El	T min	2,39	2,36	5,29	7,85	11,66	18,72	18,95	18,63	15,29	11,55	6,28	3,32
(2000-	T max	11,16	11,58	16,27	20,23	25,11	30,74	34,95	33,94	27,73	22,79	16,17	11,62
2019)	T moy	6,54	7,03	10,51	16,21	18,35	22,80	27,07	26,21	21,27	17,41	10,89	7,27
Batna	T min	-0,405	0,02	2,835	5,78	9,34	14,14	17,77	16,825	13,83	9,095	4,47	0,875
(2000-	T max	12,765	13,97	17,845	21,74	26,81	32,645	36,68	35,45	29,845	24,88	17,955	13,3925
2019)	T moy	5,785	6,825	10,48	13,96	18,15	23,59	27,475	26,275	21,745	17,225	9,93	6,755

T max : la température moyenne mensuelle des maximas (°C).

T min : la température moyenne mensuelle des minimas (°C).

T moy: la température moyenne mensuelle (°C).

Le tableau (04) montre les variations moyennes mensuelles de la température pour la station de Khenchela durant la période « 2000-2019» , et la station de Batna durant la période « 2000-2019 »

Selon le tableau 04 :

> Pour la station de El Hamma

La température moyenne de l'été est de 23.36°c et celle de l'hiver est 6.95 °c

 La température atteignent le maximum au mois de juillet avec 34,95°c et Aout avec 33.94°c La température moyenne durant la période d'observation (2000-2019) est de l'ordre de 15.96°c

> Pour la station de Batna

- La température moyenne de l'été est de 25.78 °c et celle de l'hiver est de 6.46°c
- La température atteignent le maximum aux mois de juillet avec 36.68°c et Aout avec 35.45°c
- La température moyenne durant la période d'observation (2000-2019) est de l'ordre de 15.68°c
- D'apres l'annuaire hydrologique de l'Algerie la température moyenne sur les Aures est de l'environ de 14.5°c avec les ecarts compris entre -12°c et +40°c pour les années 1924-1961.

Fig. 12 :Température moyenne (station de Batna 2000-2019)

Fig 13:Température moyenne (station de Khenchela 2000-2019)

2.2. Les précipitations

L'étude pluviométrique présente un intérêt considérable en hydroclimatologie, car elle permet de décrire le régime d'écoulement. (Gouaidia ,2008).

L'origine des pluies en Algérie est plutôt orographique (**Seltzer, 1946**). En effet les paramètres climatiques varient en fonction de l'altitude, de l'orientation des chaines de montagnes et de l'exposition .la hauteur pluviométrique est donc déterminée par la direction des axes montagneux par rapport à la mer et aux vents humides (**Cote, 1974**)

On a les données des 02 stations, Batna et El Hamma, de 2000 à 2019.

2.2.1. Répartition mensuelle et saisonnière des précipitations

Les données pluviométriques sont représentées dans le tableau 05

Mois	Sep	Oct	Nov	Déc	Jan	Fév	Mar	Avr	Mai	Jui	Juill	Aoû	Annuelle	
Batna	30,79	26,63	24,52	30,65	40,4	23,37	32,51	41	41,56	19,75	5,69	21,43	338,3	
		81,94			94,42		115,07							
		24,22		27,91			34,01							
Eİ	54,74	39,18	34,94	54,93	40,81	32,54	45,86	41,12	71,07	26,79	18,01	35,03	495,01	
Hamma		128,86			128,27			158,05			79,84			
		26,03		25,91			31,93					100%		
saison		L'automne	e		Hiver		Printemps							

Tableau 5 : Précipitations moyennes mensuelles et saisonnières – période (2000-2019)

Le tableau n°05, montre que, pour les deux stations de référence, les précipitations sont irrégulières durant les mois de l'année. Elles varient d'une station à l'autre.

Les figures (14 et 15) montres les variations des précipitations moyennes mensuelles et saisonnières respectivement durant la période « 2000-2019 » pourles la station de Batna et d'El Hamma respectivement:

> Le maximum des précipitations moyennes mensuelles observé est :

* 71.07mm à El Hamma durant le mois de Mai

* 41,56mm à Batna durant le mois de Mai

> Le minimum des précipitations moyennes mensuelles observé est :

* 18,01mm à El Hamma durant le mois de Juillet.

* 5,69mm à Batna durant le mois de Juillet.

La répartition saisonnière des pluies montre que saison la plus pluvieuse saison est le printemps par contre l'été est la saison la moins arrosée, pour les deux stations.

2.2.2. Répartition annuelle des précipitations

Les moyennes pluviométriques annuelles varient de :

- 338,3 mm/an pendant la période de 2000-2019 à la station de Batna
- 495.01 mm/an pendant la période de 2000-2019 à la station d'El Hamma.

La moyenne interannuelle entre les deux stations est égale à 416.66mm.

Fig.14 : Précipitation moyenne (station de Batna 2000-2019)

Fig. 15:Précipitation moyenne (station d'El Hamma 2000-2019)

Fig. 16 :Précipitation moyenne mensuelle des deux stations (2000-2019)

Fig.17 : Diagramme de la précipitation moyenne mensuelle des deux stations (2000-2019)

2.3. La neige

La neige est un élément important pour la zone d'étude, elle assure au sol de l'eau d'une façon régulière et profonde tout en limitant le phénomène d'érosion causé par les pluies intenses et il reste tout de même bénéfique pour l'alimentation des sources en eau, qui s'infiltre de façon lente.

D'après L'O.N.M. (1990-2006) La plus grande quantité de neige est tombée durant les mois de janvier et février elle peut durer jusqu'à la fin du mois d'avril sur le sommet avec une moyenne annuelle des jours de chute de neige atteignant 4.6 jours.

2.4. Relation température-précipitation

2.4.1. Diagramme Ombrothèrmique de Gaussen et Bagnouls

Ces deux auteurs définissent un mois sec comme étant le mois ou le total des précipitation exprimer en (mm) est égale ou inférieur au double de température moyenne T du mois exprimé en degrés Celsius (T°C). Ainsi, ces mêmes auteurs ont proposé l'établissement du diagramme ombrothermique, où les mois figurant en abscisse, les précipitations mensuelles P(mm) en ordonnée à droite et les températures moyennes T(en°C)on ordonnée à gauche , avec une échelle double de celle des précipitation.

Les diagrammes ombrothermiques des deux stations (Fig.18) selon les données de précipitations et de températures de la période 2000-2019 Montrent une période sèche qui s'étale sur les mois de Juin jusqu'a le mois de Novembre au niveau de la station d'El Hamma et du mois de juin jusqu'à la mi-novembre pour la station de Batna

Fig. 18: Diagramme ombrothermique de Gaussen et Bagnouls pour les 02 stations

2.6. Bilan hydrique

2.6.1. Paramètres du bilan hydrologique

2.6.1.1. Évapotranspiration réelle

a. Formule de L.TURC

On appelle évapotranspiration réelle (ETR) la quantité d'eau évaporée ou transpirée par le sol, les végétaux et les surfaces d'eau libre d'un bassin versant. On peut l'évaluer par la formule de Turc (1961)

$$ETR = \frac{P}{\sqrt{0.9 + \frac{P^2}{L^2}}}$$
 L = 300 + 25T + 0.05T³

Pour la station de Batna :

- > P : précipitation moyennes annuelles en (mm) ; est égale à **338,30 mm**
- T : température moyenne annuelle en °C, T= 15,68 °C

> L=**884.75**

> ETR=**331.01mm**. Soit **97.84%** des précipitations.

Pour la station de Khenchela :

- > P : précipitation moyennes annuelles en (mm) ; est égale à **495,01 mm**
- T : température moyenne annuelle en °C, T=16,0 °C

> ETR= **452,01 mm.** Soit **91,31 %** des précipitations.

b. Formule de THORNTHWAITE

Si la hauteur de pluie mensuelle supérieure à l'ETP : ETP=ETR

Si la quantité qui reste affectée à la réserve facilement utilisable (RFU), elle s'ajoute de mois en mois jusqu'à ce que la RFU atteigne le maximum de rétention, il en résulte donc un excédant (EX)

> Si la hauteur de pluie mensuelle inferieur à l'ETP, l'ETR dépend de toutes RFU jusqu'à épuisement.

2.6.1.2 Évapotranspiration potentielle

On appelle évapotranspiration potentielle(ETP), la quantité d'eau susceptible d'être évaporée si la quantité d'eau disponible était illimitée. Le calcul de l'ETP est effectué en appliquant la formule de Thornthwaite

L'ETP de Thornthwaite s'exprime par la formule suivante :

$$ETP = 16(\frac{10T}{I})^a C$$

Ou

> ETP : évapotranspiration potentielle en mm ;

- > T : température moyenne annuelle considérée en °C ;
- > C : coefficient de correction en fonction de la latitude et du mois de l'année.
- > a : indice lie à la température calculé par la relation proposées par SERRA 1. 1954

$$a = \frac{1.6 * I}{100} + 0.5$$

I : indice thermique annuel obtenu en sommant les 12 valeurs des indices thermiques mensuels i.

$$I = \sum_{1}^{12} i$$
$$i = (\frac{t}{5})^{1.514}$$

Pour la station de Batna : a=1,6816I=73,85

Pour la station de Khenchela : a= 1,701 **I**= 75,06

	Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aout	Sep	Oct	Nov	Dec	Annuel
P mm	40,4	23,4	32,5	41,0	41,6	19,8	5,7	21,4	30,8	26,6	24,5	30,7	338
T °C	5,8	6,8	10,5	14,0	18,2	23,6	27,5	26,3	21,7	17,2	9,9	6,8	
i	1,2	1,6	3,1	4,7	7,0	10,5	13,2	12,3	9,3	6,5	2,8	1,6	73,9
k (35°)	0,9	0,9	1,0	1,1	1,2	1,2	1,2	1,2	1,0	1,0	0,9	0,9	12,4
ETPc mm	9,3	11,8	29,8	51,1	88,2	136,5	179,5	157,1	100,9	64,3	22,5	11,8	862,8
P-ETP	31,2	11,5	2,8	-9,9	-46,3	-116,7	-173,6	-135,4	-70,5	-37,8	1,9	18,9	-524,4
ETR	9	12	30	50	67	34	7	21	31	27	23	12	322
RFU 50 mm	50	50	50	41	16	1	0	0	0	0	2	21	231
Déficit	0	0	0	1	21	102	172	135	70	38	0	0	540
Excédent	2,1	11,5	2,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	16,4

Tableau 6: Bilan hydrique de la station de Batna selon THORNTHWAITE

La vérification

- $P = \sum ETR + \sum EX = 322 + 16.4 = 338.4$
- $ETP = \sum ETR + \sum DA = 322 + 540 = 862$

Tableau '	7: Bilan	hvdriau	e de la	station	d'El Hamma	selon	THORNT	HWAITE
Lasteau	· · Dilaii	ing an i qua		beauton		001011	III OIU II	

	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aout	Sep	Oct	Nov	Dec	Annuel
P mm	40,81	32,54	45,86	41,12	71,07	26,79	18,01	35,03	54,74	39,18	34,94	54,93	495,01
T °C	6,54	7,03	10,51	16,21	18,35	22,80	27,07	26,21	21,27	17,41	10,89	7,27	
i	1,50	1,67	3,08	5,94	7,16	9,95	12,90	12,28	8,95	6,61	3,25	1,76	75,06
k (35°)	0,87	0,85	1,03	1,09	1,21	1,21	1,23	1,16	1,03	0,97	0,86	0,85	12,36
ETPc mm	11,01	12,16	29,21	64,63	88,56	128,16	174,43	155,72	96,88	64,95	25,91	12,89	864,52
P-ETP	29,79	20,37	16,64	-23,51	-17,50	-101,37	-156,42	-120,69	-42,14	-25,78	9,04	42,03	-369,51
ETR	11,01	12,16	29,21	59,99	80,30	46,01	20,60	35,12	54,75	39,18	25,91	12,89	427,13
RFU 50 mm	50,0	50,0	50,0	31,1	21,9	2,7	0,1	0,0	0,0	0,0	9,0	50,0	264,86
Déficit	0,00	0,00	0,00	4,64	8,26	82,16	153,83	120,59	42,13	25,78	0,00	0,00	437,39
Excédent	29,79	20,37	16,64	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,07	67,88

La vérification

- $P = \sum ETR + \sum EX = 427,13 + 67,88 = 495.01$
- ETP = $\sum ETR + \sum DA = 427,13 + 437,39 = 864,52$

Fig. 19a : Représentation graphique du bilan hydrique pour la station d'El Hamma

Fig. 19b : Représentation graphique du bilan hydrique pour la station de Batna

2.6.1.3. Le ruissellement superficiel

Ce paramètre est très important pour l'étude hydrologique du bassin versant, en utilisons la formule de *tixeront-berkaloff* :

$R=P^{3}/3(ETP)^{2}$

• Pour la station de Batna :

P=338,4mm

ETP= 862,3mm

Donc : R= 17,37 mm, cette valeur représente 5.13% des précipitations

• Pour la station de Khenchela (El Hamma) :

P=495,01mm

ETP= 864,52mm

Donc : R= 54,09 mm , cette valeur représente 10.92% des précipitations

2.6.1.4. L'infiltration

L'infiltration est le passage de l'eau à travers la surface du sol. Ce paramètre est aussi très important puisqu'il conditionne l'aquifère. Il est exprimé par la formule suivante :

 $P = ETR + R + I \qquad Donc: I = P-(ETR+R)$

• Pour la station de Batna

P= 338 mm

ETR= 322 mm

R= 17 mm

Donc l'infiltration : I= 3.1 mm

• Pour la station de Khenchela

P=495,01mm

ETR= 427,13mm

R= 54,09 mm

Donc l'infiltration : I= 13.79mm

La quantité d'eau infiltrée depuis la surface de sol traversant la zone aérée pour rejoindre la zone saturé est dite infiltration efficace. Celle-ci participe à l'alimentation des aquifères existants dans la zone d'étude.

Pour la station de Batna l'estimation de l'infiltration est de 00 mm don cette valeur représente 0.88% des précipitations.

Pour la station de Khenchela (El-Hamma) l'estimation de l'infiltration est de 13.79mm don cette valeur représente **2.78%** des précipitations.

2.6.1.5. Interprétation des résultats

• Pour la station de Batna

- les précipitations deviennent supérieures à l'évapotranspiration potentielle (ETP) du mois de novembre jusqu'au mois de mars. C'est la période d'alimentation des aquifères.
- Evapotranspiration potentielle devient supérieur à la précipitation à partir du mois d'Avril jusqu'au mois d'octobre où l'excédent est nul.
- > ETR= 272,0mm. représente 80.41% des précipitations
- Excèdent =16,3mm, ce qui représente 4.81% des précipitations
- > La période de déficit agricole s'étale du mois d'avril au mois d'octobre

• Pour la station d'El Hamma

- les précipitations deviennent supérieures à l'évapotranspiration potentielle (ETP) du mois de novembre jusqu'au mois de mars. C'est la période d'alimentation des aquifères.
- Evapotranspiration potentielle devient supérieur à la précipitation à partir du mois d'avril jusqu'au mois d'octobre où l'excédent est nul.
- > ETR= 427,13mm, ce qui représente 86.28% des précipitations
- Excèdent =67,88mm, ce qui représente 13.71% des précipitations
- > La période de déficit agricole s'étale du mois d'avril au mois d'octobre

Conclusion

D'après l'étude des facteurs climatiques, le climat des Aurès est de type semi-aride avec un hiver frais.

Le secteur appartient à une zone moyennement pluvieuse, avec une précipitation moyenne annuelle variant de 338,3 mm/an pour la station de Batna et 495.01 mm/an à la station d'El Hamma.

La température moyenne annuelle est de l'ordre de **15.96°c** de la station d'El Hamma et **15.68°c** pour la station de Batna.(pour la periode 2000-2019).

L'évapotranspiration potentielle moyenne est de 862,3mm (station de Batna) et 864,52mm (station de Khenchela), soit **5.13% et 10.92%** des précipitations.

Le déficit agricole estimé est de 437,39 mm pour la station d'El hamma et **540,2mm** pour la station de Batna, étalé sur les mois d'Avril à Octobre pour les deux stations.

Le ruissellement est de l'ordre de 5.13% et 10.92% des précipitations, tandis que l'infiltration elle est de 00% (station de Batna) et 2.78%(station de Khenchela).

RAÇAGE CHIMIQUE ET ISOTOPIQUE

Introduction

L'apport du traçage isotopique et chimique ainsi que la caractérisation des paramètres physico-chimiques, jouent un rôle très important dans l'identification des eaux souterraines des Aurès.

Dans ce chapitre ; plusieurs méthodes et techniques sont utilisées pour comprendre la qualité des eaux et la nature des aquifères dans la région d'étude. On a utilisé les diagrammes de piper, Schoeller-Berkaloff, indice de salinité, indice de la qualité des eaux ainsi que d'autre méthodes analytiques et statistiques.

1. Prélèvement

Pour évaluer la qualité physico-chimique des eaux des Aurès, 41 points d'eau (fig.20) a fait l'objet d'un prélèvement d'échantillons aléatoire simple selon la disponibilité pour des analyses isotopiques et physico-chimiques au Laboratoire d'Hydrogéochimie UFR-ip Sciences, Technologie, Santé. Université d'Avignon et pays de Vaucluse, France.

Le prélèvement d'échantillons est une opération délicate à laquelle le plus grand soin doit être apporté, ce dernier conditionne les résultats analytiques et l'interprétation qui en sera donnée. (**Rodier et all, 2009**).

L'objectif est d'obtenir un échantillon aussi représentatif que possible de l'eau à examiner sans contamination ni modification de ses caractéristiques physico-chimiques. Des précautions doivent être présenté à trois niveaux : le matériel de prélèvement, le mode de prélèvement, le transport et la conservation des échantillons (**Rejsek, 2002**).

Fig. 20 : Carte d'inventaire des points de prélèvement

2. Transport et conservation des échantillons

Après le prélèvement, Il est essentiel que les échantillons soient clairement étiquetés avant les prélèvements et que les étiquètes soient lisibles et indétachables. Dans ces derniers, on doit noter avec précision ; la date, l'heure, les conditions météorologiques, un numéro et toutes circonstances anormales (Lightfoot, 2002), et les envoyer au laboratoire dans une glacière où les analyses sont effectuées le jour même si c'est possible.

Les figures 21,22 et 23 représentent des photos de quelques sources d'eaux dans les Aurès.

Fig.21 : Source de Yabous (Lma Labiad)

Fig.22 : Source de Chelia (Ras Lma)

Fig.23 : Source de Yabous (Lma Lakehal)

3. Etude des paramètres physico-chimiques

3.1. Etude des paramètres physiques

Les mesures des paramètres physiques sont effectué à l'aide d'un multi paramètres de marque Consort c535,

3.1.1. Potentiel hydrogène (pH)

Le pH (potentiel Hydrogène) mesure la concentration en ions H+ de l'eau. Le pH est un facteur d'investigation de l'acidité ou de l'alcalinité d'une eau (**Coulibaly, 2005**)

Le pH des eaux des échantillons varie entre 6.86 et 8.02 donc, tous les points d'eau présentent un pH alcalin, ces valeurs ne dépassent pas les normes fixés par l'OMS (6.5≤pH≤8.5) (fig.24)

Fig. 24 : Représentation graphique de pH des eaux des Aurès

3.1.2. Conductivité électrique

La conductivité électrique désigne la capacité de l'eau à conduire un courant électrique. La mesure de la conductivité permet donc d'apprécier la quantité de sels dissous dans l'eau, les valeurs sont ramenées à 25°C.

La conductivité permet d'estimer le degré de minéralisation des eaux. Le tableau cidessous donne quelques indications sur la relation existant entre la minéralisation et la conductivité (**Rejsek**, 2002). La conductivité électrique de la région d'étude, varie entre 353 μ S/cm et 6550 μ S/cm (fig.25). Ce sont des eaux qui présentent une minéralisation-d'élevée à très élevées.

Fig.25 : Distribution spatiale de la Conductivité électrique à 25°C

Tableau.8: La conductivité et le degré de la minéralisation

Conductivité en µS/cm à	Minéralisation de l'eau
25°C	
<450	Très faible
450 - 750	Faible
750 - 1500	Moyenne
1500 - 2300	Moyennement élevé
2300 - 3000	élevée
>3000	Très élevé
3.2. Etude des paramètres chimiques

Les paramètres chimiques (cation et anions) sont mesurés à l'aide de spectrophotomètre à absorption atomique au niveau de Laboratoire d'Hydrogéochimie UFR-ip Sciences, Technologie, Santé AVIGNON France.

3.2.1. Le Calcium (Ca²⁺)

Le calcium est un des éléments les plus répandus dans la nature. Il existe à l'état de nombreux gisements de calcaire, de craie, de marbre, qui tous sont des variétés naturelles du carbonate de calcium CaCO₃. On trouve également de grandes quantités de gypse (pierre à plâtres) CaSO₄.2H₂O, de phosphorite Ca₃(PO₄)₂ et de différents silicates contenant du calcium. (**Glinka, 1977**).

La présence des ions Ca²⁺dans l'eau est liée principalement à deux origines naturelles ; Soit la dissolution des formations carbonatées : CaCO₃ \rightarrow Ca²⁺ + CO₃²⁻.Ou gypseuses :

 $CaSO_4 + 2(H_2O) \rightarrow Ca^{2+} + SO_4^{2-} + 2(H_2O);$

La carte représentant les teneurs du calcium (fig.26), montre des grandes valeurs au Nord-Est et Sud de la région d'étude au sud du bassin dans les affleurements calcaires. Les points d'eaux, forages, sources, puits ou oueds présentent des teneurs qui varient de 5.67 mg/l à 289 mg/l. Les valeurs qui dépassent les normes de l'OMS (100mg/l) à 17 points d'eau (forages, sources, puits et oueds)

Fig.26 : Distribution spatiale de l'ion Ca²⁺ en mg/l dans la zone d'étude

3.2.2. Le Magnésium (Mg²⁺)

Le magnésium est fort répandu dans l'écorce terrestre. On trouve l'état naturel de grande quantités de carbonate de magnésium qui constitue le minéral magnésite (MgCO3), ainsi que la minérale dolomite (MgCO3.CaCO3). (Glinka ,1977), Il constitue 2.1% de l'écorce terrestre. (Rodier, 2009).

Les valeurs mesurées varient de 3.64 à 74,23mg/l, La distribution spatiale du magnésium, les plus grandes valeurs sont marqués dans 04 points (03 forages et 01source) au sud de la région d'étude prévenant probablement de la dissolution des dolomites.

Fig.27 : Distribution spatiale de l'ion Mg²⁺ en mg/l dans la zone d'étude

3.2.3. Le Sodium (Na⁺)

Le sodium est un élément qui existe dans la totalité des eaux par la solubilité très élevé des sels.il peut avoir une soit une origine marine obtenu par l'évaporation progressive des marais salants, ou bien extrait à partir du sous-sol où il existe sous forme de sel gemme. Le sodium est généralement associe à l'ion chlorure, il est très soluble dans l'eau.

La distribution spatial des teneurs en sodium dans la région d'étude (fig.28), montre des valeurs variant de 3.44 mg/l à la source S15 (Tirgine) à 1055,18 mg/l à la source de Djaarir S17 .les teneurs les plus élevées sont marqué au sud de la région d'étude. 06 (points d'eaux S12,F8, P2, S10 ,S5 et S17) ont des valeurs de concentration en Na⁺ qui dépassent les normes de l'OMS (200mg/l)

Fig.28 : Distribution spatiale de l'ion Na⁺ en mg/l dans la zone d'étude

3.2.4. Le Potassium (K⁺)

Le potassium (K^+) est un élément abondant sur terre, mais peu fréquent dans les eaux. Il provient de l'altération des formations silicatées ou des argiles potassiques. **(Rodier, 2005).**

Les teneurs en potassium montrent des valeurs variant de 0.38 mg/l à 17.33 mg/l Oued El Kenif qui vient de la source thermale El Kenif ; d'après Berkani 2017, la source thermale d'El Kenif présente une valeur de 39.7 mg/l.

Fig.29 : Distribution spatiale de l'ion K⁺ en mg/l dans la zone d'étude

3.2.5. Les Bicarbonates (HCO₃-)

Les bicarbonates se trouvent dans les eaux naturelles, leur présence dans l'eau est dû à la dissolution des formations carbonatés tel que les calcaires et les dolomies. L'apport atmosphérique de cet élément est négligeable.

La carte des teneurs en bicarbonates (fig.5), montre une grande variabilité entre le nord et le sud du bassin, les valeurs varient entre 93 mg/l et 383 mg/l.

Fig.30 : Distribution spatiale de l'ion HCO₃⁻ en mg/l dans la zone d'étude

3.2.6. Les Sulfates (SO₄²⁺)

Ils résultent de la solubilité du gypse (CaSO₄, 2H₂O), La présence du sulfate naturelle liée à la présence du trias et gypse (CaSO₄), l'augmentation des sulfates peut provenir en grande partie de la dissolution des minéraux évaporitiques ou la pyrite (FeS), et de l'oxydation du soufre des roches sédimentaires. Pour leurs origines anthropiques généralement la combustion des énergies fossile et du charbon sont importante de sulfures et, l'utilisation qui entraine une production d'engrais chimiques et de lessive (Barry, 1989).

D'après Chapman (**1996**) Les concentrations de sulfate dans les eaux naturelles se trouvent généralement entre 2 et 80 mg/l , bien que peuvent dépasser 1 000 mg /l à proximité de rejets industriels ou dans les régions arides où des minéraux sulfatés, tels que le gypse.

Les valeurs de ce paramètre dans les eaux étudiées sont très variables dans toute la surface s'étalant entre 15.34mg/l et 717.45mg/l. des teneurs importantes sont marquées de l'Est vers le sud-ouest de la zone d'étude (Figure 31). La plus grande valeur marquée dans les

eaux de la source thermale (Hammam Djaarir). Les fortes teneurs peuvent être liées à la dissolution des formations évaporitiques. Dans 11 points d'eaux les valeurs dépassent les normes de l'OMS (250 mg/l).

Fig.31 : Distribution spatiale de l'ion SO₄⁺ en mg/l dans la zone d'étude

3.2.7. Les Chlorures (Cl⁻)

L'ion chlorure existe toujours dans les eaux naturelle à des concentrations très variable (**Bremond and Perrodon, 1979**), c'est un traceur conservatif dans les environnements naturels. Il ne participe pas aux réactions d'oxydo-réduction et il ne forme pas de précipité insoluble (**Fetter, 1993**).

La carte des teneurs en chlorures (fig.32), montre la variabilité entre le Nord et le Sud de la région. Les valeurs varient entre 7.39 mg/l à la source de L'MA LAKHAL de Yabous et 1818,87 mg/l au source d'eau thermale de Djaarir.

Fig.32 : Distribution spatiale de l'ion Cl⁻ en mg/l dans la zone d'étude

3.2.8. Les Nitrates (NO₃⁻)

Les nitrates (NO₃⁻) sont naturellement présents dans les eaux souterraines en raison du lessivage du sol. Ils font partie du cycle de l'azote. La variation de la concentration des teneurs en nitrates dans l'espace est liée à l'activité agricole qui se développe en surface, à la nature lithologique du toit de l'aquifère, à la profondeur du niveau piézométrique et aux conditions d'oxydoréductions. (**Boudoukha, 2006**).

La carte représente les teneurs en nitrates (fig.33), montre une grande variabilité sur toute la surface, les valeurs varient entre 0.04 et 95.71mg/l.

Les concentrations dans la plupart des points sont dans l'ensemble sont dans les normes (50 mg/l). Cinq forages présentent des teneurs supérieur aux normes de l'OMS ces valeurs peuvent être d'origine agricole (utilisation des engrais).

Fig.33 : Distribution spatiale de l'ion NO₃⁻ en mg/l dans la zone d'étude

4. Les faciès chimiques

4.1. Diagramme de Piper

Le diagramme de Piper est la méthode la plus pratique pour reporter les résultats de plusieurs analyses sur un même graphique, ce qui permet de mettre en évidence le regroupement de certains échantillons et de montrer différents visages hydrochimiques ou origines des eaux souterraines. Il est composé de deux triangles qui représentent les faciès cationique et anionique, ainsi que d'un triangle qui représente le faciès global (**Monition**, **1966 ; Piper, 1953 ; Thilagavathi et al. 2012**).

Le principe consiste à représenter dans chaque triangle équilatéral les quantités en réaction par rapport à la concentration totale des anions et des cations, on obtient ainsi deux points représentatifs indiquant la dominance d'un anion ou d'un cation correspondant à l'intersection des parallèles depuis ces deux points aux côtés du losange qui représente la nature chimique de l'échantillon. (**Piper, 1944**)

L'outil utilisé est le logiciel DIAGRAMMES 6.0 créé par Roland SIMLER (Laboratoire d'Hydrogéochimie UFR-ip Sciences, Technologie, Santé, université d'Avignon France)

Cette représentation graphique (figure 34) a permet de donner trois (03) familles d'eau :

- Chlorurée et sulfatée calcique et magnésienne
- Chlorurée sodique et potassique ou sulfatée sodique
- Bicarbonatée calcique et magnésienne

La plupart des points provient de la famille Chlorurée et sulfatée calcique et magnésienne se trouve au centre de la région d'étude. pour la famille des eaux Chlorurée sodique et potassique ou sulfatée sodique au niveau de l'est des Aurès et la pluparts des points de la famille Bicarbonatée calcique et magnésienne au niveau du sud de la région d'étude.

Fig.34 : Diagramme de Piper pour les eaux des Aurès

4.2. Diagramme de Schoeller-Berkaloff

Le diagramme a été établi par H.Schoeller en 1932 et révisé par Berkaloff en 1952, il est composé de sept échelles logarithmiques verticales correspondant aux principaux ions analysés dans l'eau. .Schoeller (1955) a effectué une étude qui consistait à classer les eaux en fonction de leur origine et de leur milieu de circulation. Ces informations lui ont permis de déterminer les caractères géochimiques des aquifères (lacasse, 2013)

Le diagramme de Schoeller-Berkaloff (figure 35) permet de classer les eaux souterraines de la région d'étude des Aurès dans le tableau (5).

Formules caractéristiques		Facies chimique
SO4 >Cl >HCO ₃ ⁻ >NO ₃	$Ca^{++}>Mg^{++}>Na^{++}+k^{+}$	Sulfatée Calcique
SO4>HCO3->Cl> NO3-		
HCO ₃ '>SO ₄ >Cl> NO ₃ -	$Mg^{++}>Ca^{++}>Na^{++}+k^+$	Bicarbonatée Magnésienne
HCO ₃ '> Cl > SO ₄ > NO ₃	$Ca^{++}>Mg^{++}>Na^{++}+k+$	Bicarbonatée Calcique
	$Ca^{++} > Na^{++} + k^+ > Mg^{++}$	
Cl-> HCO3>SO4-> NO3-	$Ca^{++}>Mg^{++}>Na^{++}+k^{+}$	Chlorurée Calcique
	$Na^{++}+k^+>Ca^{++}>Mg^{++}$	Chlorurée sodique

Tableau 9 : Facies chimiques des eaux selon le diagramme de Schoeller-Berkaloff.

Le point S5 sur le Diagramme de SCHOELLER-BARKALOFF (fig.35) est très différent par rapport aux autres points qui sont identique, ce point d'échantillons appartient à la source de Djarir et cette dernière est une source thermale avec des propriétés physico-chimiques spécifiques.

AURES

Schöeller Berkaloff

B

Fig.35: (a) (b) et (c) Diagramme de SCHOELLER-BARKALOFF des eaux souterraines des Aurès

6. Origine du chimisme des eaux souterraines

6.1. Diagramme de phase (équilibre) de Gibbs

Le diagramme de Gibbs (1970) est un outil efficace pour comprendre le processus hydrochimique dominant et les facteurs dominants contrôlant la chimie des eaux souterraines, qui sont les dominantes de précipitation, les dominantes de roche ou l'interaction roche-eau et les dominantes d'évaporation. (**Narsimha et al, 2021**)

Le schéma de Gibbs (Gibbs, 1970), trace les TDS en fonction du rapport Na/ (Na + Ca) et Cl/ (Cl + HCO3), et fournit les mécanismes. (Ma et al. , 2017). Cette méthode a été largement utilisée pour identifier l'évolution hydrogéochimique, qui implique des processus de précipitation, d'altération des roches, et d'évaporation-cristallisation. (Gibbs, 1970). Comme on peut le voir sur la Figure 36, les échantillons d'eau prélevés dans les Aurès sont divisés en deux. Le groupe le plus grand est situé dans la zone de dominance des roches. Cela

suggère que la chimie des eaux souterraines est influencée par l'altération des roches ou l'interaction roche-eau. Les points du deuxième groupe sont situés dans la zone d'évaporation précipitation et d'autres dans la zone des eaux mers ces derniers sont des échantillons superficiels (les Oueds).

Le déplacement des points d'échantillonnage à partir du domaine de roches vers évaporations-précipitation ce qui signifie une augmentation des ions de sodium et de chlorure et par conséquent un TDS plus élevé en raison de la contamination de l'eau due à la mauvaise utilisation des fertilisants ou de chlore.

Fig.36 : Gibbs (1970) montrant le facteur dominant de la roche contrôlant la chimie des eaux souterraines des Aurès

6.2. Les éléments SO4²⁺- Ca²⁺

Le diagramme de Ca^{2+} en fonction de SO_4^{2-} avec la ligne de dissolution du gypse indique que la dissolution du gypse est un processus majeur contribuant à la minéralisation des eaux souterraines. Dissolution du gypse comme un processus majeur contribuant à la minéralisation des eaux souterraines (fig.37).

Fig.37 : Relation entre SO₄²⁻et le Ca⁺² des eaux du massif des Aurès

6.3. Le rapport Ca²⁺- HCO₃⁻ + SO₄²⁺

La relation entre L'équation Ca^{2+} et $HCO_3^- + SO_4^{2-}$ est principalement utilisé pour déterminer les processus de minéralisation dans les eaux souterraines (**Cerling et al. 1989 ; Fisher et Mullican 1997).** La moitie des échantillons sont situés en dessous de la droite, indiquant un processus d'échange de cations ainsi que la dissolution de minéraux carbonatés et sulfatés, et l'autre moitie sont situés au dessus de la droite montrant l'origine gypsifère du calcium (Fig. 38).

Fig.38 : Relation entre HCO₃+SO4²⁻et le Ca²⁺ des eaux du massif des Aurès

6.4. Les éléments Cl⁻ et Na⁺

Fig.39 : Relation entre HCO₃+SO₄²⁻et le Ca²⁺ des eaux du massif des Aurès

La figure (39) montre une disposition des points sur la droite de la régression indiquant que les deux éléments chimique ont la même origine, cette relation confirme l'existence du faciès chloruré sodique.

7. Analyses statistiques

Les statistiques impliquent la collecte, l'analyse et l'interprétation de données. Souvent, elle implique également l'étude des caractéristiques d'une population par déduction à partir des échantillonnages. L'étude statistique a mis en évidence des liens significatifs entre les paramètres étudiés.

7.1. Statistique descriptive

Le tableau ci-dessous (5) résume les paramètres statistiques des caractéristiques physicochimiques des eaux de la région des Aurès.

La conductivité électrique présente une moyenne de 1469,75 μ s/cm, les Bicarbonates présente une valeur moyenne de 251,25mg/l, la moyenne des concentrations de Fluor est 0.19 mg/l, la moyenne pour les chlorures est 236,96 mg/l, la moyenne de NO₃ est 21,17mg/l, la moyenne de SO₄⁻⁻est 214,49mg/l, la moyenne de Na⁺141,93mg/l, la moyenne de NH₄⁺est 0,06mg/l,

La moyenne de K⁺ est 3,26 mg/l, la moyenne de Mg⁺⁺est 29,80mg/l, la moyenne de Ca⁺⁺est 122,80mg/l, la moyenne de la silice SiO2 est 12,69mg/l

Variable	Minimum	Maximum	Moyenne	Ecart-type
CE	353,00	6550,00	1469,75	1495,52
HCO ₃ -	92,72	383,08	251,25	67,75
F⁻	0,02	0,72	0,19	0,19
Cl	7,39	1818,88	236,96	438,74
NO ₃ -	0,04	95,71	21,17	25,56
SO_4	15,34	717,45	214,49	204,74
Na^+	3,44	1055,19	141,93	254,76
$\mathrm{NH_{4}^{+}}$	0,00	0,59	0,06	0,12
\mathbf{K}^+	0,38	17,33	3,26	4,36
Mg^{++}	3,64	74,23	29,80	17,59
Ca ⁺⁺	47,67	289,00	122,80	63,44
SiO ₂	1,82	42,31	12,69	8,55

Tableau 10 : Statistique descriptive des analyses physico-chimiques des eaux des Aurès

7.2 Matrice de corrélation

L'analyse de cette matrice de corrélations (Tableau 6), montre qu'il s'est établi une bonne corrélation (plus de 70 %) entre :

- La conductivité électrique (CE) et les chlorures (Cl⁻), les sulfates (SO4⁻⁻)le sodium (Na⁺), le potassium (K⁺), le calcium (Ca⁺⁺) et la silice (SiO₂) les coefficients de corrélation sont respectivement (0.98, 0.78, 0.98, 0.78, 0.87, 0.73),
- Les chlorures (Cl⁻) et le sodium (Na+), le potassium (K+), et le calcium (Ca⁺⁺) les coefficients de corrélation sont respectivement (0.98, 0.75, 0.80),
- Les sulfates (SO4⁻⁻) et le sodium (Na⁺), le calcium (Ca⁺⁺) les coefficients de corrélation sont respectivement (0.70, 0.85)
- Le sodium (Na⁺) et le potassium (K⁺), le calcium (Ca⁺⁺) et la silice (SiO₂) les coefficients de corrélation sont respectivement (0.081, 0.78, 0.74),
- Le potassium (K^+) et la silice(SiO₂) le coefficient de corrélation est 0.90.

Variables	CE	НСО3-	F-	Cl-	NO3-	SO4	Na+	NH4+	K+	Mg++	Ca++	SiO2
CE	1	-0,0130	0,3970	0,9827	0,0182	0,7830	0,9833	0,4888	0,7819	0,3849	0,8722	0,7396
HCO3-		1	-0,1830	-0,0605	0,3019	-0,1529	-0,0595	-0,0149	0,0658	0,3048	0,0451	0,2710
F-			1	0,2746	-0,0588	0,7430	0,3509	0,2803	0,5658	0,3106	0,4340	0,4576
Cl-				1	-0,0546	0,6697	0,9892	0,4871	0,7537	0,2847	0,8030	0,6977
NO3-					1	0,1565	-0,1048	-0,1657	-0,1584	0,4034	0,3401	0,0223
SO4						1	0,7037	0,3580	0,6226	0,5453	0,8509	0,5675
Na+							1	0,4832	0,8176	0,2485	0,7796	0,7430
NH4+								1	0,1991	0,5095	0,4040	0,1331
K+									1	0,0315	0,5566	0,9012
Mg++										1	0,5457	0,0471
Ca++											1	0,6360
SiO2												1

Tableau 11: matrice de corrélation entre les éléments physico-chimiques étudiés

7.3. Analyse factorielle en composante principale

Analyse factorielle en composante principale basée sur une matrice de covariance ou de corrélation. (Jolliffe, 1986)

L'Analyse en composantes principales est une méthode statistique essentiellement descriptive dont l'objectif est de présenter sous une forme graphique, le maximum d'information contenue dans un tableau de données. Ce tableau est constitué en lignes par les individus, sur les quels sont mesurés des variables disposés en colonnes

Une analyse en composantes principales a été effectuée en utilisant la matrice de corrélation pour identifier les sources de variabilité dans le profil chimique des eaux souterraines du bassin versant. Le but initial de l'analyse en composantes principales (ACP) était de réduire un grand nombre de variables à un nombre beaucoup plus petit de composantes principales tout en conservant autant que possible la variation des variables originales (Jolliffe 2002 ; Bencer 2016).

L'A.C.P. permet de déterminer les différentes liaisons entre plusieurs variables et de maitre en évidence les associations possibles

L'interprétation de l'analyse se fera selon l'ordre des informations données par le logiciel (XLSTAT), les résultats sont présentés dans les annexes III et IV.

	Valeur	Variabilité	
	propre	(%)	% cumulé
F1	6,3204	52,6698	52,6698
F2	1,8230	15,1917	67,8615
F3	1,3673	11,3945	79,2559
F4	1,0916	9,0966	88,3525
F5	0,8550	7,1250	95,4775
F6	0,2857	2,3808	97,8583
F7	0,1470	1,2252	99,0835
F8	0,0508	0,4234	99,5069
F9	0,0396	0,3296	99,8365
F10	0,0188	0,1568	99,9932
F11	0,0006	0,0052	99,9984
F12	0,0002	0,0016	100,0000

Tableau 12: valeurs propres

Fig.40: Représentation graphique des valeurs propres des facteurs

	F1	F2	F3	F4
Valeur propre	6,3204	1,8230	1,3673	1,0916
Variabilité (%)	52,6698	15,1917	11,3945	9,0966
% cumulé	52,6698	67,8615	79,2559	88,3525

Tableau 13 : valeurs propres et contribution à la variance totale

L'analyse du tableau (12) et de la figure (40), des valeurs propres nous a permis de choisir les axes factoriels 1, 2, 3 et 4 du fait qu'ils représentent 88.35% de la variance totale, le reste des facteurs (F5, F6, F7...) représentent seulement 11.65% de la variance totale.

Le premier facteur (F1) représente la minéralité des eaux qui est toujours liés au temps de séjour des eaux.

Le deuxième facteur (F2) représente la contamination par les eaux de surfaces, essentiellement les nitrates, les bicarbonates et le magnésium (NO₃, HCO₃, Mg^{2+})

Le troisième facteur (F3) est un facteur de contamination par les eaux de surfaces, en plus c'est un axe de redox car l'ammonium en bas opposé aux nitrates.

L'axe factoriel (F4) représente le fluorure et aussi la redox lie avec d'autre facies.

En résumé, l'ACP montre que le principal facteur influençant la composition en ions majeurs des eaux de cette zone d'étude est l'augmentation de la minéralité d'amont en aval du bassin sous l'influence du climat, ce qui est habituel en Afrique du Nord.

Le deuxième processus le plus important est la contamination de la ressource en eau par l'azote, ce qui met en évidence l'impact de l'activité agricole sur la qualité des eaux souterraines dans cette région.

Fig. 41: Projection des variables sur les plans a) F1 et F2 b) F1 et F3

Fig.42 : Projection des variables sur les plans a)F1 et F4 b) F2 et F3

8. L'analyse factorielle discriminante (AFD)

L'analyse factorielle discriminante est une autre technique de réduction de la dimensionnalité.

L'analyse discriminante définit la distance d'un échantillon par rapport au centre d'une classe, et crée un nouvel ensemble d'axes pour placer les membres d'un même groupe aussi

près que possible les uns des autres, et éloigner les groupes les uns des autres autant que possible. Ces nouveaux axes sont des axes discriminants, ou des variables canoniques (CV), qui sont des combinaisons linéaires des variables d'origine.

L'AFD est une forme de reconnaissance de formes supervisée, car elle repose sur les informations fournies par l'utilisateur pour fonctionner. En particulier, l'AFD nécessite la connaissance des appartenances de groupe pour chaque échantillon. L'AFD est souvent appliquée aux mêmes types d'échantillons que l'ACP, où cette dernière technique peut être utilisée pour réduire le nombre de variables dans l'ensemble de données et les PC résultants sont ensuite utilisés dans l'AFD pour définir et prédire les classes. (Mendlein A., 2013)

Lorsque on a plusieurs types d'échantillonnages : source, forage, oueds et puits et pour l'objectif de savoir pour notre résultats d'analyse chimiques on a essayé de séparer 86% des échantillons bien classés

Comme pour l'ACP, l'Analyse Factorielle Discriminante présentée ici a été réalisée sans intégrer la température, mais la prise en compte de ce paramètre ne change pas les résultats qui suivent. La première fonction discriminante est essentiellement marquée par la forte corrélation négative de Cl⁻ et SO₄²⁻ (voir Tab. 9). La deuxième fonction discriminante oppose les paramètres Cl⁻, SO₄²⁻ et NO₃⁻ à Ca²⁺ et Mg²⁺. HCO₃⁻ est fortement corrélé positivement avec le second discriminant qui est probablement d'origine naturels.

	F1	F2	F3
c25°C	-12,4673	12,4916	11,8884
HCO ₃ -	0,4341	-0,1675	2,3318
F-	2,1109	0,1624	0,4829
Cl-	-7,0801	-5,2602	12,7287
NO ₃ -	-0,7236	-0,7543	0,3389
SO ₄	-4,6039	-1,2726	4,1077
Na+	21,6793	-6,3142	-20,3422
$\mathbf{NH_4}^+$	-2,2079	0,1193	1,1771
K ⁺	-1,3121	-0,4524	-2,2599
Mg ⁺⁺	1,5314	-2,0118	-3,1486
Ca ⁺⁺	3,7162	1,6577	-5,2170
SiO2	-1,3427	-0,4783	-0,1665

Tableau 14 : Coefficients standardisés des fonctions discriminantes canoniques

Le facteur F1 qui marque la minéralité oppose principalement les sources aux puits et forages, c'est-à-dire les eaux de montagne situées en amont aux eaux souterraines situées plus en aval. Toutefois, les ellipsoïdes présentent un certain degré de chevauchement (Fig.43) La deuxième fonction F2 oppose les puits aux sources et aux forages. Ce résultat suggère que la présence de nitrate semble être marquée à proximité des puits.

Pour les points de prélèvement des oueds on remarque une variabilité temporelle en fonction des pluies. Les sources et les forages sont différents mais ils ont des points communs. Pour les puits sont parfaitement classé avec un pourcentage de 100%.

Fig. 43: Barycentres de classification sur les plans a)F1 et F4 b) F2 et F3

Il y 9 forages. Sur ces 9, l'AD en classe 8 comme forage (89%) et 1 comme source à partir de sa composition chimique. Donc les sources se différencient bien des autres ouvrages en termes de composition chimique. Le seul type d'ouvrage qui ressemble un peu (10%) sont les sources.

Sur les 2 puits, 2 sont classés comme puits (soient 100% de succès) à partir de la composition chimique donc la composition des puits est très différente de celle des autres ouvrages et il est facile de les reconnaitre.

Les Oueds se confondent un peu avec les sources

Au global sur 36 échantillons, 87% sont bien classés à partir de la composition chimique, ce qui est bien pour une AD. (Tableau 15)

En résumé, la composition chimique des eaux est différente selon les ouvrages. Il est possible de prédire avec 87% de chance de succès d'où vient l'eau à partir de sa composition chimique.

$de \setminus Vers$	Forage	oued	puit	source	Total	% correct
Forage	8	0	0	1	9	88,89%
oued	0	5	0	3	8	62,50%
puit	0	0	2	0	2	100,00%
source	1	0	0	16	17	94,12%
Total	9	5	2	20	36	86,11%

Tableau 15 : Matrice de confusion pour l'échantillon d'estimation

9. Indice de saturation des eaux

D'après la loi d'action de masse, pour une solution aqueuse en équilibre avec un minéral, le produit d'activité ionique du minéral est égal à la constante d'équilibre thermodynamique (**Ghrieb**, 2007).

L'indice de saturation est une mesure importante qui évalue l'équilibre entre l'eau et les minéraux. La variation des caractéristiques peut être utilisée pour différencier les étapes de l'évolution hydrochimique et identifier les principales interactions eau-roche qui contrôlent le processus.

L'indice de saturation (**IS**) est le logarithme du rapport du produit d'activité ionique (**PAI**) L'indice de saturation (**IS**) d'un minéral peut être estimé par l'équation suivante

IS=log (PAI / K)

où, **PAI** est le produit d'activité des ions pour une réaction d'équilibre minérale, et K est le produit de solubilité du minéral.

$$CaCO3 = Ca^{2+} + CO3^{2-}$$

 $PAI = aCa^{2+} .aCO3^{2-}$

aCa²⁺ : activité de l'ion Ca²⁺

aCO₃²⁻ : activité de l'ion CO_3^{2-}

A l'état d'équilibre thermodynamique, le produit de solubilité de la calcite KCaCO3 est :

 $\mathbf{KCaCO_3} = (\mathbf{aCa^{2+} . aCO_3^{2-}}) / \mathbf{aCaCO_3}$

Alors, l'indice de saturation exprimé est:

Isc = log (PAI / KCaCO₃)

Si : IS < 0 le minéral sera continuellement altéré par les eaux souterraines.

Si : **IS**= 0 la tendance à l'équilibre chimique entre l'eau et les minéraux et l'interaction eauroche.

Si : IS > 0 sursaturées, le minéral va précipiter

Les indices de saturation des échantillons d'eau de des Aurès et de minéraux de l'étude ont été calculés à l'aide du logiciel PHREEQC sur Diagramme 6.5 (**Rolant Simler, 2016**) et sont présentés dans le tableau (11).

Les résultats montrent que dans tous les échantillons, l'indice de saturation de la calcite et de Chalcedony est plus grand que celui de la Dolomite, l'Anhydrite et l'Aragonite

Les valeurs de l'indice de saturation de la calcite et de la dolomite d'une partie des échantillons étaient supérieures à 0, et celles des autres échantillons étaient inférieures à 0

Les valeurs de l'indice de saturation de la calcite et de la dolomite variaient de -0.57a 0.17 et - 1,71 a 0,25 avec des valeurs moyennes de -0,14 et -0,6, respectivement.

Points d'eau	Anhydrite	Aragonite	Calcite	Dolomite	Dolomite(d)	Gypsum
Source Ain Hamra	-1,64	-0,12	0,02	-0,14	-0,69	-1,42
Source Chelia	-2,72	-0,64	-0,5	-1,19	-1,74	-2,5
Forage Rmila 2	-1,35	-0,27	-0,13	-0,47	-1,02	-1,13
forage Rmila 1	-1,56	-0,32	-0,17	-0,53	-1,08	-1,34
Forage Kais	-1,17	0	0,14	0	-0,55	-0,95
Forage Bouhmama	-1,47	-0,03	0,12	0,25	-0,3	-1,25
Source Djaarir	-0,88	-0,19	-0,05	-0,55	-1,1	-0,66
Source Ain Mimoun	-2,04	-0,31	-0,16	-0,54	-1,09	-1,82
Source Taghit	-2,16	-0,18	-0,04	-0,16	-0,71	-1,94
Oued Knif	-1,4	-0,74	-0,6	-1,71	-2,26	-1,18
Oued Aimer	-0,9	-0,44	-0,3	-0,81	-1,36	-0,68
Forage route Knif	-1,33	-0,71	-0,57	-1,1	-1,65	-1,11
Source eau froide Knif	-2,43	-0,38	-0,24	-1,47	-2,02	-2,21
Source chaude Knif	-2,42	-0,43	-0,28	-1,47	-2,02	-2,2
O El Knif	-1,07	-0,11	0,04	-0,64	-1,19	-0,85
Source Bassin Mtoussa	-1,03	-0,13	0,01	-0,57	-1,12	-0,81
Puits plaine Mtoussa	-1,04	-0,1	0,04	-0,33	-0,88	-0,82
Puits plaine ONini	-1,06	-0,19	-0,04	-0,6	-1,15	-0,84
Source El Manchar	-1,17	0,03	0,17	0,15	-0,4	-0,95
Sonde Beguaga	-1,32	-0,18	-0,03	-0,45	-1	-1,1
Source Elhamma	-1,66	-0,3	-0,16	-0,74	-1,29	-1,44
Source Hammam Salihin	-1,69	-0,17	-0,02	-0,38	-0,93	-1,47
Source Ain silene	-2,32	-0,2	-0,06	-0,4	-0,95	-2,1
Oued 3Km Avant Djmri	-1,79	-0,29	-0,15	-0,93	-1,48	-1,57
Oued 1Km Avant Djmri	-2,21	-0,4	-0,26	-0,94	-1,49	-1,99
Oued Djmri	-2,56	-0,39	-0,25	-0,94	-1,49	-2,34
O Chandgouma	-2,46	-0,38	-0,24	-0,65	-1,2	-2,24
Forage Tamza	-2,14	-0,35	-0,2	-0,43	-0,98	-1,92
O Rharour	-1,43	-0,41	-0,27	-0,86	-1,41	-1,21

Tableau 16 : Indices de saturation des eaux de la zone d'étude

Source Tirgine	-2,67	-0,36	-0,21	-0,45	-1	-2,45
Source Chelia	-2,72	-0,64	-0,5	-1,19	-1,74	-2,5
Source Djaarir	-1,01	-0,16	-0,02	-0,46	-1,01	-0,79
Source Bassane	-2,27	-0,23	-0,09	-0,19	-0,74	-2,05
Source lma lakehal	-2,55	-0,49	-0,35	-0,71	-1,26	-2,33
Forage publique	-1,15	-0,07	0,08	0,16	-0,39	-0,93
Forage Bouzouamel	-1,26	-0,25	-0,11	-0,18	-0,73	-1,04

Fig.44 : Indices de saturation des principaux minéraux pour les eaux des Aurès

II. Analyses des isotopes

Au cours des 20 dernières années, les isotopes stables sont devenus des outils d'investigation courants en écologie (Elise D. et al, 2001). La composition isotopique de H et O de l'eau (δ^2 H et δ^{18} O) est informative des principales caractéristiques hydrogéologiques. Elles sont également importantes pour déterminer les lignes d'écoulement dominantes, définir la zone de recharge, et estimer les temps de transfert ou de la résidence de l'eau. La résidence de l'eau, ainsi que le mélange entre les aquifères. (Blavoux et Letolle 1995 ; Gourcy et Petelet 2011). Habituellement, il existe de fortes relations linéaires entre les compositions stables en hydrogène et en oxygène (δ^2 H et δ^{18} O)dans l'eau naturelle. d'hydrogène et d'oxygène stables (δ^2 H et δ^{18} O)dans l'eau naturelle, et la ligne la mieux ajustée avec l'équation δ^2 H = 8 δ^{18} O + 10 à l'échelle mondiale est appelée la ligne globale des eaux météoriques GMWL (Craig,1961).

Le diagramme ci-dessous illustre le changement de la composition isotopique de la vapeur d'eau atmosphérique montrant les processus d'évaporation et d'évacuation de la pluie lorsque la masse d'air passe d'un océan à un continent

L'eau s'évapore de l'océan et se déplace vers les continents, se refroidit et se condense pour former des nuages, puis tombe à la surface sous forme de précipitations (pluie ou neige). À son tour, l'eau précipitée (eau des cours d'eau, eaux souterraines et ruissellement) est à

nouveau évaporée et recyclée. Comme le montre la figure 45, pendant la transition entre l'océan et le dans le cadre du cycle hydrologique, d'après les données isotopiques de Hoefs 1997et de Coplen et al 2000 . Lorsque l'eau subit un changement de phase physique, les molécules d'eau contenant les isotopes les plus lourds (H2HO et H2¹⁸O) sont préférentiellement concentrées dans la phase la plus condensée (c'est-à-dire liquide plutôt que vapeur, et solide plutôt que liquide), tandis que les molécules contenant les isotopes les plus légers (H2HO et H 18O) sont concentrées dans la phase la plus dense (c'est-à-dire liquide plutôt que vapeur, et solide plutôt que liquide). (H2 16O) sont concentrés dans la phase restante (Ingraham,1998). Par conséquent, le processus d'entraînement par la pluie entraîne un fractionnement continu des isotopes lourds dans les précipitations (distillation de type Rayleigh), de sorte que la vapeur résiduelle est de plus en plus appauvrie en isotopes lourds (Gat ,1996). Par conséquent, les précipitations suivantes seront appauvries en isotopes lourds par rapport aux précipitations précédentes provenant de la même vapeur d'eau atmosphérique (Mcguire et al, 2007) .De plus, comme la composition isotopique de l'eau varie selon les composantes du cycle de l'eau, la mesure isotopique permet d'identifier la source des masses d'eau et de déterminer leurs interrelations (Gat ,1996). En particulier, comme l'eau des cours d'eau a une relation compliquée entre les précipitations (nouvelle eau) et les eaux souterraines (ancienne eau), la composition isotopique est un outil utile pour déterminer les modèles de mélange et les taux de contribution relatifs via la séparation des hydrogrammes (Lee et al, 2016 ;Lee et al,2014).

Les études isotopiques permettent d'estimer la source principale de contamination des aquifères et de mettre en évidence quelques processus importants affectant les polluants dans le milieu (dilution, dénitrification,...). Les rapports d'isotopes stables de ces échantillons sont couramment utilisés pour évaluer le cycle biogéochimique ou l'intensité de l'altération. (Druhan, 2014)

Global Meteoric Water Line (GMWL) (**Craig 1961**) et la ligne locale des eaux météoriques pour Sfax (LMWL) (**Zouari et al.1985**) ont également été tracées sur le même diagramme.

Pour la caractérisation isotopique des échantillons des eaux souterraines des Aurès, les données isotopiques des eaux échantillonnées ont été tracées dans le diagramme binaire de δ^2 H- δ^{18} O.

Global Meteoric Water Line (GMWL) (**Craig 1961**) et la ligne locale des eaux météoriques pour Sfax (LMWL) (**Zouari et al.1985**) ont également été tracées sur le même diagramme.

II.1.Détermination de ¹⁸O

L'oxygène (¹⁸O) est déterminé par équilibre H_2O - CO_2 en utilisant des procédures standard basées sur les principes d'**Epstein et Mayeda (1953).** La précision est de $\pm 0.2\%$.

II.2.Détermination de ²H

Le dosage du deutérium (²H) est effectué sur l'hydrogène gazeux produit à partir d'eau réduite par le chrome chaud, selon les procédures décrites par **Drimmie et al (2001).** La précision de cette technique est de $\pm 0.8\%$.

L'analyse des isotopes stables est un outil puissant qui a été utilisé pour évaluer la dynamique des eaux souterraines dans des terrains complexes. (**Prada, 2016**)

Les isotopes stables de la molécule d'eau (¹⁸O et ²H) seront portés sur un graphique représentant les droites météorique mondiale et locale permettant de déterminer le mécanisme de recharge et l'origine des eaux en les comparants aux moyennes pondérées des précipitations.

II.3. Effet de l'altitude

Plus l'altitude est élevée plus la composition isotopique est faible ; en effet lorsque les nuages s'élèvent sur un versant la température diminue et la condensation s'accentue. La condensation est provoquée par la chute de la température associée à une altitude croissante a cause de l'effet d'altitude est thermo-dépendant. (Gat, 2010). L'observation est généralement faite à partir de la température au sol, même si en toute rigueur II faudrait considérer la température dans le nuage.

Le gradient observe en ¹⁸O est général compris entre 0.3 à 0.45 % pour 100m sur les versants exposés à l'arrivée des masses d'air. Lorsqu'on se trouve sur le versant opposé ou à l'intérieur d'un massif la relation est parfois beaucoup moins nette.

II.4. Effet saisonnier

Les pluies d'été sont généralement plus riches en isotopes lourds que celles de l'hivers

II.5. Effet paléoclimatique

Les eaux précipitées sous un climat plus froid sont également appauvries en isotopes lourds.

II.6. Les analyses des isotopes stable

II.6.1. Echantillonnage :

La composition en isotopes stables de l'eau est principalement déterminée par la spectrométrie de masse du rapport isotopique (IRMS) (**Kendall et al, 1998**). Récemment, la spectroscopie infrarouge du rapport isotopique (IRIS) a été développée pour analyser les isotopes stables de l'eau en utilisant des techniques basées sur le laser (**Jung et al, 2013**).

Cependant, ces données sont souvent interprétées à l'aide de relations simplifiées qui supposent que la composition chimique et les temps de résidence des liquides sont homogènes. (Druhan, 2014)

II.6.2. Les résultats des analyses isotopiques (¹⁸O et ²H)

Dans cette partie nous avons utilisé les données des analyses effectuées sur 12 points recueillis dans les eaux souterraines (sources et forages) avec une seule source chaude en plus de l'eau des étangs, pendant la saison estivale et hivernale. Les analyses sont réalisées dans le laboratoire d'Hydrogéochimie UFR-ip Sciences, Technologie, Santé. Université d'Avignon et pays de Vaucluse, France.

Les résultats ont montré que les signatures δ^{18} O du courant principal, des affluents et des eaux souterraines varient de -6,73 à -9,37.

Mohd AadilBhat,2021 observe une augmentation vers le nord du δ^{18} O de 1,30‰ par degré de latitude dans les eaux des affluents. Une relation isotope-élévation sera très utile et pourra être appliquée à l'Indus et à d'autres rivières himalayennes pour la reconstruction de la paléo-élévation.

L'altitude de 959.6m a 1741m, l'évaporation est un processus physique au cours duquel l'énergie emmagasinée par les molécules d'eau est transférée de la phase liquide à la phase vapeur (**Mazor 1991**)

Quand un nuage s'élève aux abords d'un relief, la température diminue du fait de l'altitude, ce qui donne des précipitations de plus en plus pauvres en isotopes lourds (Etcheverry ,2002).

Les équations décrivant la relation entre les valeurs δ^{18} O et δ^{2} H sont les suivantes :

GMWL : $\delta^2 H = 8 \delta^{18} O + 10$ (Craig 1961)

LMWL : δ^{2} H =8 δ^{18} O + 13,5 (Zouari et al.1985)

Fig.46 : Projection des eaux des Aurès sur le diagramme δ^{18} O vs δ^{2} H

Les valeurs de δ^{18} O du courant principal varient de -6.73% à -9.37% avec une valeur moyenne de -8.13% et de même, les valeurs de δ^2 H varient de -43.65% à -62.89%avec une valeur moyenne de -52.26%. La relation entre δ^{18} O et δ^2 H pour tous les échantillons d'eau est présentée dans la figure 46. La valeur de δ^{18} O de la moitié échantillons se situe au-dessous de la ligne des eaux météoriques mondiales (GWWL), mais pour la droite Tunisienne (Sfax) on observe que 03 échantillons qui tombent en dessous de cette droite.

La ligne des eaux souterraines des eaux des Aurès est définie par l'équation suivante :

 $\delta^2 H = 5,36 \ \delta^{18}O - 8,63$; avec un coefficient de corrélation de l'ordre de R= 0,85. Il existe une forte corrélation entre les concentrations des isotopes d'oxygène 18 et et de deutérium ²H dans les eaux météoriques, Cette corrélation propose que ces eaux souterraines sont relativement jeunes.

La valeur de la pente 5,36 est inférieure à la pente du GMWL et LMWL qui prouve l'effet de l'évaporation dans quelques échantillons d'eau souterraine. Ce phénomène, dû à l'aridité du climat nord-africain, a conduit à un enrichissement isotopique des eaux de surface avant infiltration ou dans la zone non saturée (**Ayadi et al. 2017**).

L'eau peut être évaporée des eaux de surface lors du ruissellement avant l'infiltration, de la zone non saturée ou de la nappe phréatique.

L'évaporation pendant le ruissellement et l'infiltration dans les paysages arides est généralement associée aux eaux souterraines dans les aquifères alluviaux le long des réseaux de drainage (oueds). Pour les eaux souterraines rechargées par infiltration directe dans le sol ou le sable, l'évaporation de la zone non saturée se produit.

III. Les éléments traces

III.1. L'Ammonium (NH4⁺)

L'ammonium est l'état primaire de la transformation en nitrates NO₃⁻ par des bactéries de nitrification ces bactéries soit autotrophes ou hétérotrophes

D'après la figure ci-dessous, l'ammonium présente des concentrations entre 0 et 0.59 mg/l, 03 points de prélèvement dépassent les normes de l'OMS (< 0,2 mg/l peut aller jusqu'à 0,3mg/l dans une eau anaérobique), à savoir : (source lma lakehal à Yabous , forage publique de bouhmama, forage Bouzouamel)

Fig.47 : Concentration en ammonium des points d'échantillonnages des Aurès.

III.2. Le Fluor (F⁻)

Le fluor est fréquemment trouvé en concentration élevée dans les eaux souterraines, en particulier dans les régions arides et semi-arides dans divers terrains géologiques dans le monde (Adimalla and Li 2019)

On trouve le fluor en grande quantité dans les granites, les granites alcalins et les dépôts hydrothermaux (**Ayoob & Gupta, 2006**)

Les valeurs enregistrées dans la région d'étude sont entre 0.02 et 0.72. Les valeurs trouvées dans les eaux de sources sont inférieurs à la valeur guide de la potabilité (0.8-1.7 mg/l)

La plus grande valeur marqué au niveau de Oued Aimer est de 0.64 mg/l et pour les sources de 0.72 mg/l de la source de M'toussa et 0.48mg/l au forage de Bouzouamel.

Ahmed et al (2003) ont identifié que la nature alcaline des eaux souterraines est très favorable à l'échange anionique OH⁻ et F⁻.

La teneur en F⁻ dans l'eau de source dans les roches métamorphiques.

Fig.48 : Concentration en Fluor (F⁻) des points d'échantillonnages des Aurès.

La distribution spatiale de fluor (F⁻) des teneurs importantes sont marquées de l'Est vers le sud-ouest de la zone d'étude (Figure 49). La plus grande valeur marquée dans les eaux de la source thermale (Hammam Knif) et vers Chélia les fortes teneurs peuvent être liées à l'équilibre des eaux avec la calcite, le gypse ou l'anhydrite, ainsi que la formation des complexes calciques.

Fig.49 : Distribution spatiale de la concentration de F⁻ en mg/l

III.3. Le Brome (Br⁻)

Le bromure (Br⁻) est l'anion de l'élément brome, qui est un membre de la série des éléments halogènes communs comprenant le fluor, le chlore, le brome et l'iode. Chromatographie ionique

Ces éléments halogènes qui comprennent le fluor, le chlore, le brome et l'iode, présentent des similitudes chimiques, mais aussi des différences importantes. Ils sont oxydants, et tous forment des anions en acceptant un électron.

Le poids atomique du brome est de 79,909. Le brome naturel se compose de 50,57 % de ⁷⁹Br et de 49,43 % de ⁸¹Br. Le brome est un liquide dense, mobile et foncé à température ambiante, qui gèle à -7 °C et bout à 58 °C, Le bromure existe généralement sous forme de sels de sodium, de potassium et d'autres cations, qui sont généralement très solubles dans l'eau. (**Cotton et al, 1962**).
Selon les résultats de l'analyse chimique des eaux ; ces valeur varient de 0.01 à 0.91 mg/l la valeur maximum au niveau d'un puit dans la plaine de Mtoussa.

Pour la source de Djaarir la concentration de Brome est de 0.41 mg/l, Berkani 2016, la source thermale de Hammam Djaarir présente une valeur maximum de 14 g/l.

Fig.50 : Concentration en ammonium des points d'échantillonnages des Aurès.

III.3.1. Le rapport Cl⁻/Br⁻

Les chlorures et le brome sont deux ions dont le comportement est proche de celui du traceur idéal. (Alcalá et al, 2004). Le chlorure et le bromure sont des anions monovalents que l'on trouve dans les eaux souterraines, ainsi que dans l'eau potable. (Davis et al, 1998; Heston, 2015). Le chlorure est un ion majeur et le bromure un ion mineur dans l'eau. Le chlorure est 40 à 8000 fois plus important que le bromure dans la nature (Davis et al,1998).

Le rapport Cl⁻/Br⁻ peut être appliqué à de nombreux aspects. Certaines fonctions qui sont en corrélation avec les eaux souterraines sont :

- A. comme traceur pour déterminer l'origine et l'évolution des eaux souterraines et de surface (Freeman ,2007)
- B. comme une aide efficace aux études hydrogéologiques dans les eaux souterraines et de surface qui ont une concentration faible à modérée de salinité (Davis et al, 1998; Cartwright et al, 2006).

- C. comme méthode pour estimer la recharge de l'aquifère à partir des précipitations en utilisant le bilan de masse du chlorure (Alcalá et al,2008 ;Cartwright et al, 2006 ; Alcalá et al,2004).
- D. comme une méthode pour identifier le système d'écoulement des eaux souterraines qui indique l'augmentation de la salinité dans l'interaction entre la roche et le sol. salinité dans l'interaction entre la roche et l'eau (Park et al, 2002)
- E. une méthode pour identifier la source des eaux souterraines comme les eaux usées urbaines, les fosses septiques, la pollution agricole et le lessivage (Davis et al, 1998; Heston, 2015, Alcalá et al, 2004; Katz et al 2018; Nair et al ,2013).

Pour calculer le rapport en utilise l'equation suivante :

$$R = \frac{\text{rCl}}{\text{rBr}} = 2.25 \frac{\text{pCl}}{\text{pBr}}$$

Sachant que :

 \mathbf{r} : la concentration molaire

p : la concentration pondérale (Davis et al, 1998 ; Heston, 2015, Alcalá et al, 2004 ; Katz et al2018 ; Nair et al ,2013).

Fig.51. Représentation graphique de cl par rapport rcl/rBr des eaux des Aurès

III.4.La Silice(SiO₂)

Morey et al. (1962) ont présenté la première équation du géothermomètre à la silice ; La silice dans les eaux souterraines peut se trouver sous deux formes : la silice dissoute et la silice en suspension. (Pradeep et al ,2015).

On peut considérer la silice dissoute dans les eaux naturelles comme un bon indicateur du processus d'altération et de circulation de l'eau. (**Dobrzyński, 2005**). La silice libérée à la suite de l'altération chimique des minéraux de silicate dans les roches et les sédiments acquis par les eaux souterraines en circulation et la source de silice (SiO₂) dans les eaux souterraines provient donc principalement de l'interaction eau-roche (**Drever et al, 1994**). La quantité de la silice qui est libérée dans l'eau est conditionnée par différents facteurs, tels que le déficit de saturation en eau de la zone d'aération, la fluctuation saisonnière des précipitations, de la température et de la réactivité du roche-mère et la stabilité minérale (**Dobrzynski, 2005**).

La silice dissoute dans l'eau est normalement mesurée en tant que SiO2, bien que la forme exacte de la silice dissoute ne soit pas connue (Al-Rehaili, 2003). La concentration moyenne de silice dans l'eau naturelle varie entre 1,0 et 30,0 ml/L (Davis, 1964)

Les concentrations de la silice dans la zone d'étude est entre 1.8 mg/l à 42.3mg/l. La valeur moyenne de la concentration de la silice est de l'ordre de 12.7 mg/l (figure 52). L'altération des minéraux silicatés entraîne une concentration plus élevée de HCO3 dans les eaux souterraines (Siever,1957) et indique également le processus de recharge (Ophori ,1957 ; Subba Rao,2007 ; Thivya,2013).

Fig. 52: Histogramme des concentrations de la silice (SiO₂) des eaux des Aurès

La figure ci-dessous illustrant les bicarbonates en fonction de la silice, montre qu'il n'y a pas de corrélation entre HCO₃ et la silice dans les eaux des points de prélèvements. Cependant dans quelques échantillons, la concentration en HCO₃ augmente avec la concentration en silice. Il peut être noté à partir de la **figure 53** que la concentration de SiO₂ et de HCO₃ pour la majorité des échantillons se situe dans les 8 mg/l et 22 mg/l de silice dans les eaux souterraines.

Fig.53 : La relation entre la silice (SiO₂) et les bicarbonates (HCO₃) des eaux des Aurès

III.5. Le Strontium Sr⁺⁺

Le strontium est un élément trace commun dans les sols, les roches et l'eau (**Musgrove**, **2021**) Avec un rayon ionique similaire et la même charge (²⁺) que le calcium (Ca) un constituant majeur de nombreuses roches et minéraux communs, un élément essentiel à la vie, et un composant majeur des eaux naturelles avec sa propriété isotopique. Le strontium est considéré comme un traceur des processus hydrologiques, géologiques et éco systémiques. Il existe avec plusieurs formes de strontium ; une forme radioactive cette forme est plus utilisable dans les fins médicales, la forme dissoute et la forme particulaire. (**Frost,et all,2004 ;Musgrove, 2021**).

La consommation de Sr par le biais de l'eau potable ou de la nourriture (les principales sources d'exposition) peut avoir des effets néfastes sur la santé humaine. sources d'exposition) peut avoir des effets néfastes sur la santé humaine. En raison de ses similitudes avec le Ca, le Sr agit comme un métal-trace qui recherche les os. Le Canada a mis en place (à partir de 2019) une norme d'eau potable pour le Sr (7 mg/L), spécifiquement pour protéger les nourrissons et les enfants. L'Organisation mondiale de la santé n'a actuellement aucune recommandation pour les concentrations de Sr dans l'eau potable (**Health Canada, 2019**)

Parce que le Sr est relativement soluble et commun, il est très répandu dans les eaux souterraines.

D'après Rodier 2009 ; Pour le dosage de strontium on utilise la méthode par absorption atomique. Les résultats obtenus de nos échantillons révèlent des concentrations en strontium variant entre 0.22 mg/l et 6.26m g/l (fig.54). Ces valeurs sont dans la limite provisoire dans l'eau destinée à la consommation humaine pour le paramètre strontium estimé à 18 mg/L.

Fig.54 : Représentation graphique des concentrations de strontium des eaux des Aurès.

IV. Indice de qualité des eaux

Pour bien comprendre la qualité des eaux souterraines de la région des Aurès, nous avons utilisé l'indice de qualité de l'eau (IQE), spécifié pour dans l'évaluation de la qualité des eaux souterraines. Cet indice fournit des informations sur la qualité de l'eau en une seule valeur.

L'IQE a été initialement inventé par Brown et al. (1970) et ensuite modifié par Backman et al. (1998).

Selon les rapports de l'Organisation mondiale de la santé (OMS) en 2004, l'utilisation de l'IQE permettrait de clarifier l'effet combinatoire de chaque paramètre ainsi que de tous les paramètres qualitatifs sur l'eau potable (**OMS**, 2004). Par conséquent, l'IQE peut être appliqué comme un outil fiable pour l'évaluation et le classement de la qualité des forages et sources d'eau. La valeur de chaque paramètre qualitatif est déterminée sur la base des normes recommandées et mise en corrélation avec les autres paramètres.

Afin de calculer l'IQE, la valeur de paramètres physico-chimiques a été attribuée en fonction de l'importance relative des paramètres dans la qualité globale de l'eau pour l'utilisateur.

Le poids relatif a été calculé à l'aide de l'équation suivante :

Wi =
$$\frac{k}{\text{Si}}$$

k : constante de proportionnalité et peut également être calculée à l'aide de l'équation suivante :

$$k = \frac{1}{\sum_{i=1}^{n} \frac{1}{Si}}$$

n : nombre de paramètres

Si: valeur maximale de la norme standard marocaine des eaux de surface (Norme OMS, 2014) en mg/l de chaque paramètre a l'exception du pH et la conductivité électrique.

Qi est calculée en utilisant l'équation suivante:

$$Qi = \left(\frac{Ci}{Si}\right)100$$

Qi : échelle d'évaluation de la qualité de chaque paramètre.

Ci : la concentration de chaque paramètre en mg/l

Donc on peut calculer l'indice global de la qualité de l'eau en utilisant l'équation

$$IQE = \frac{\sum_{i=1}^{n} (Qi * Wi)}{\sum_{i=1}^{n} Wi}$$

Tableau 17 : Classification de la qualité des eaux souterraines basée sur l'indice IQ

Classe de IQE	Type d'eau	Usage possible
0 - 25	Excellente qualité	Eau potable, irrigation et industrie
>25 - 50	Bonne qualité	Eau potable, Irrigation et industrie
>50 - 75	Mauvaise qualité	Irrigation et industrie
>75 - 100	Très mauvaise qualité	Irrigation
> 100	Eau non potable	Traitement approprié requis avant utilisation

Les résultats de calcul de l'indice global de qualité (IQE) obtenus, mentionnés dans le tableau 13 montrent que la plupart des eaux (92.5%) sont de qualité excellente ; les valeurs de l'IQE allaient de 3.8 à 41.2, avec une moyenne de 13.8, alors que 7% sont des eaux de bonne qualité (**OMS**, 2014).

Points	WA-	Excellent	Good	Poor	Very	
	WQI				Poor	
1	8,4	25	50	75	100	Excellente
2	13,4	25	50	75	100	Excellente
3	20,9	25	50	75	100	Excellente
4	7,9	25	50	75	100	Excellente
5	24,6	25	50	75	100	Excellente
6	5,5	25	50	75	100	Excellente
7	3,8	25	50	75	100	Excellente
8	8,8	25	50	75	100	Excellente
9	24,4	25	50	75	100	Excellente
10	41,2	25	50	75	100	Bonne
11	5,6	25	50	75	100	Excellente
12	5,3	25	50	75	100	Excellente
13	22,6	25	50	75	100	Excellente
14	27,0	25	50	75	100	Bonne
15	28,5	25	50	75	100	Bonne
16	24,9	25	50	75	100	Excellente
17	18,2	25	50	75	100	Excellente
18	20,6	25	50	75	100	Excellente
19	11,1	25	50	75	100	Excellente
20	9,0	25	50	75	100	Excellente
21	4,0	25	50	75	100	Excellente
22	5,9	25	50	75	100	Excellente
23	4,8	25	50	75	100	Excellente
24	4,5	25	50	75	100	Excellente
25	4,2	25	50	75	100	Excellente
26	8,4	25	50	75	100	Excellente
27	9,1	25	50	75	100	Excellente

Tableau 18 : Indice de qualité des eaux étudiées par rapport à la classification des eaux selon l'OMS

Conclusion

Cette étude a porté sur le traçage chimique et Isotopique des eaux souterraines des Aurès.

Les classifications de, Schoeller-Berkaloff et Piper, ont montré l'existence de quatre facies : Bicarbonatée Magnésienne, Bicarbonatée Calcique, Chlorurée Calcique et Chlorurée sodique.

L'analyse des cartes d'iso-teneurs des différents paramètres physico-chimiques a aidé dans l'illustration de la variabilité des concentrations selon la situation géographique et l'altitude.

Les valeurs de l'indice de saturation de la calcite et de la dolomite variaient de -0.57a 0.17 et -1,71 a 0,25 avec des valeurs moyennes de -0,14 et -0,6, respectivement.

pour identifier l'évolution hydrogéochimique en utilisant le diagramme de Gibbs qui montre le déplacement des points d'échantillonnage à partir du domaine de roches vers évaporations-précipitation ce qui signifie une augmentation des ions de sodium et de chlorure et par conséquent un TDS plus élevé en raison de la contamination de l'eau due à la mauvaise utilisation des fertilisants ou de chlore.

L'étude de l'indice de la qualité des eaux montre que la totalité des eaux de la région d'étude est de bonne à excellente qualité selon les normes de la potabilité de l'OMS.

La synthèse des résultats des analyses des isotopes stables montre que les eaux sont relativement jeunes avec de l'évaporation dans quelques échantillons d'eau souterraine.

L'analyse statistique descriptive, l'analyse factorielle en composantes principales et l'analyse factorielle discriminantes nous permettent de déterminer les propriétés géochimiques des eaux des aquifères du massif des Aurès et participer a la connaissance de l'origine des eaux dans cette dernière.

L'ACP montre que le principal facteur influençant la composition en ions majeurs des eaux de cette zone d'étude est l'augmentation de la minéralité d'amont en aval du bassin sous l'influence du climat, ce qui est habituel en Afrique du Nord.

Le deuxième processus le plus important est la contamination de la ressource en eau par l'azote, ce qui met en évidence l'impact de l'activité agricole sur la qualité des eaux souterraines dans cette région.

L'AFD affirment une similitude de la composition chimique entre les différents ouvrages.

L'évaluation de quelques éléments traces nous a permis d'avoir des concentrations élevées dans quelques points d'eaux comme le Strontium, le Brome, la Silice et le Fluor.

Conclusion Générale

Les Aurès se situent au nord-est de l'Algérie avec une superficie d'environ 9886 Km², Les formations prédominantes sont le crétacé représentées par l'Aptien, l'Albien et le Barrémien et le trias est répandu sur les basses plaines sahariennes au sud de la zone d'étude. Les calcaires, dolomies dures et marno-calcaire, constituent un grand réservoir des eaux souterraines. La tectonique de la région d'étude représente quatre groupes d'accidents disjonctifs, avec des nombreuses cassures, caractérisés par des reliefs modérées. Le réseau hydrographique est très développé, la pente des oueds est tres fortes ce qui favorise le ruissellement.

D'après l'étude des facteurs climatiques, le climat des Aurès est de type semi-aride avec un hiver frais.

Le secteur appartient à une zone moyennement pluvieuse, avec une précipitation moyenne annuelle variant de 338,3 mm/an pour la station de Batna à 495.01 mm/an pour la station d'El Hamma.

La température moyenne annuelle est de l'ordre de **15.96**°**c** pour la station d'El Hamma et **15.68**°**c** pour la station de Batna.(periode 2000-2019).

L'évapotranspiration potentielle moyenne est de 862,3mm (station de Batna) et 864,52mm (station de Khenchela), soit **5.13% et 10.92%** des précipitations.

Le déficit agricole estimé est de 437,39 mm pour la station d'El hamma et 540,2mm pour la station de Batna, étalé sur les mois d'Avril à Octobre pour les deux stations.

Le ruissellement est de l'ordre de **17.35%** et **54.09%** des précipitations, tandis que l'infiltration elle est de 00% (station de Batna) et 13.79% (station de Khenchela).

Cette étude a porté sur le traçage chimique et Isotopique des eaux souterraines des Aurès.

Les classifications de, Schoeller-Berkaloff et Piper, ont montré l'existence de quatre facies : Bicarbonatée Magnésienne, Bicarbonatée Calcique, Chlorurée Calcique et Chlorurée sodique.

CONCLUSION GENERALE

L'analyse des cartes d'iso-teneurs des différents paramètres physico-chimiques a aidé dans l'illustration de la variabilité des concentrations selon la situation géographique et l'altitude.

Les valeurs de l'indice de saturation de la calcite et de la dolomite variaient de -0.57a 0.17 et -1,71 a 0,25 avec des valeurs moyennes de -0,14 et -0,6, respectivement.

Pour identifier l'évolution hydrogéochimique en utilisant le diagramme de Gibbs qui montre le déplacement des points d'échantillonnage à partir du domaine de roches vers évaporations-précipitation ce qui signifie une augmentation des ions de sodium et de chlorure et par conséquent un TDS plus élevé en raison de la contamination de l'eau due à la mauvaise utilisation des fertilisants ou de chlore.

La synthèse des résultats des analyses des isotopes stables montre que les eaux sont relativement jeunes avec de l'évaporation dans quelques échantillons d'eau souterraine.

L'analyse statistique descriptive, l'analyse factorielle en composantes principales et l'analyse factorielle discriminantes nous permettent de déterminer les propriétés géochimiques des eaux des aquifères du massif des Aurès et participer a la connaissance de l'origine des eaux dans cette dernière.

l'ACP montre que le principal facteur influençant la composition en ions majeurs des eaux de cette zone d'étude est l'augmentation de la minéralité d'amont en aval du bassin sous l'influence du climat, ce qui est habituel en Afrique du Nord.

Le deuxième processus le plus important est la contamination de la ressource en eau par l'azote, ce qui met en évidence l'impact de l'activité agricole sur la qualité des eaux souterraines dans cette région.

L'évaluation de quelques éléments traces nous a permis d'avoir des concentrations élevées dans quelques points d'eaux comme le Strontium, le Brome, la Silice et le Fluor.

L'étude de l'indice de la qualité des eaux montre que la totalité des eaux de la région d'étude est de bonne à excellente qualité selon les normes de la potabilité de l'OMS.

Références bibliographiques

Références bibliographiques

Abdessemed, K. H. (1984). Les relations climat-végétation dans le Sud Constantinois. Bulletin de la Société Botanique de France. Actualités Botaniques, 131(2-4), 145-155.

Adimalla, N., Dhakate, R., Kasarla, A., & Taloor, A. K. (2020). Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundwater for Sustainable Development, 10, 100334.

Adimalla, N., Li, P., & Qian, H. (2018). Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA). Human and ecological risk assessment: an international journal.

Ahmed, R., Kannan, M., Choudhry, V. P., & Saxena, R. (2003). Does the MTHFR 677T allele alter the clinical phenotype in severe haemophilia A?. Thrombosis research, 109(1), 71-72.

Alcalá, F. J., & Custodio, E. (2004). Use of the Cl/Br ratio as tracer to identifity the origin of salinity in some Spanish coastal aquifers. Proceedings of the 18th SWIM, Cartagena, Spain, 31.

Alcalá, F. J., & Custodio, E. (2008). Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. Journal of Hydrology, 359(1-2), 189-207.

Al-Rehaili, A. M. (2003). Comparative chemical clarification for silica removal from RO groundwater feed. Desalination, 159(1), 21-31.

ANAT, (2008), agence nationale de l'aménagement du territoire. étude climatique

ANSER, A. (2002). LAURES ORIENTAL: UN MILIEU EN DEGRADATION.

Ayadi, R., Trabelsi, R., Zouari, K., Saibi, H., Itoi, R., & Khanfir, H. (2018). Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia. Hydrogeology Journal, 26(4), 983-1007.

Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: a review on the status and stress effects. Critical reviews in environmental science and technology, 36(6), 433-487.

Ballais, J. L. (1981). Recherches géomorphologiques dans les Aurès (Algérie) (Doctoral dissertation, Université de Paris 1–Panthéon-Sorbonne).

Ballais, J. L., & Vogt, T. (1979). Croûtes calcaires quaternaires du piémont Nord des Aurès (Algérie). Recherches Géographiques à Strasbourg, 12, 23-34.

Barry, G.S. (1989). Sodium sulphate. Canadian minerals yearbook - 1988. Mineral Resport, n° 37. Division des ressources minérales, énergie, mines etressources. Ottawa.

Bellion, Y. (1976). Étude géologique et hydrogéologique de la terminaison occidentale des Monts du Bellezma (Algérie) (Doctoral dissertation).

Bencer, S., Boudoukha, A., & Mouni, L. (2016). Multivariate statistical analysis of the groundwater of Ain Djacer area (Eastern of Algeria). *Arabian Journal of Geosciences*, 9(4), 1-10.

Benmessaoud, H. (2009). Etude de la vulnérabilité a la désertification par des méthodes quantitatives numériques dans le massif des Aurès Algérie (Doctoral dissertation, Université de Batna 2).

Benzeroual, B. (2006). Tourisme responsable, environnement & développement étude du cas des Aurès (Doctoral dissertation, Université de Batna 2).

Berkani, C., & Houha, B. (2017). Physico-chemical and therapeutic characteristics of the thermo-mineral waters of Khenchela region (Northeastern Algeria). J Mater Environ Sci, 8(5), 1546-1553.

Blavoux, B., & Letolle, R. (1995). Contribution of isotopic techniques to the knowledge of groundwater. Géochronique, 54, 12-15.

Blayac, J. (1899, March). LE PAYS DES NEMENCHAS: A L'EST DES MONTS AURÈS (ALGÉRIE). In Annales de Géographie (Vol. 8, No. 38, pp. 141-159). Armand Colin.

Boudoukha, A.(2006). Impact of the agriculture and the saliferous formations on the quality of under groudwater : case of the superficial aquifer of Ain Djacer (east Algeria).LARHYA.11p.

Boudy, P. (1955). Économie forestière nord-africaine: Description forestière de l'Algérie et de la Tunisie (Vol. 4). Larose.

Bremond, R. and Perrodon, C. (1979) Paramètres de la qualité des eaux. Ministère de l'environnement et cadre de vie. Prevention des pollutions. 2ème éd, 259 p.

Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index-do we dare. Water and sewage works, 117(10).

Busson, H. (1900, January). Les vallées de l'Aurès. In Annales de Géographie (Vol. 9, No. 43, pp. 43-55). Armand Colin.

Cartwright, I., Weaver, T. R., & Fifield, L. K. (2006). Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chemical Geology, 231(1-2), 38-56.

Cerling, T. E., Pederson, B. L., & Von Damm, K. L. (1989). Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets. Geology, 17(6), 552-554.

Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York.

Coplen, T. B., Herczeg, A. L., & Barnes, C. (2000). Isotope engineering—using stable isotopes of the water molecule to solve practical problems. In Environmental tracers in subsurface hydrology (pp. 79-110). Springer, Boston, MA.

CORNET, A. et DELEAU, P. Carte Géologique au 1/500.000. Publiée par le service de la, 1951.

Cotton, F. A., Wilkinson, G., Murillo, C. A., & Bochmann, M. (1999). Advanced inorganic chemistry. John Wiley and Sons, Inc.

Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.

Dansgaard, W. (1964). Stable isotopes in precipitation. tellus, 16(4), 436-468.

Davis S N, Whittemorw D O and Martin J F 1998 Use of Chloride/Bromide Ratios in Studies of Potable Water Groundwater 36 338–50.

Davis, S. N. (1964). Silica in streams and ground water. American Journal of Science, 262(7), 870-891.

De Lartigue, R. J. F. (1904). Monographie de l'Aurès. Imprimerie à vapeur Marle-Audrino.

Chapman, D. (2021). Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. CRC Press.

Dobrzyński, D. (2005). Silica origin and solubility in groundwater from the weathered zone of sedimentary rocks of the Intra-Sudetic Basin, SW Poland. Acta Geologica Polonica, 55(4), 445-462.

Dobrzyński, D. (2005). Silica origin and solubility in groundwater from the weathered zone of sedimentary rocks of the Intra-Sudetic Basin, SW Poland. *Acta Geologica Polonica*, 55(4), 445-462.

Drever, J. I. (1994). The effect of land plants on weathering rates of silicate minerals. Geochimica et Cosmochimica Acta, 58(10), 2325-2332.

Drever, J. I. (1994). The effect of land plants on weathering rates of silicate minerals. Geochimica et Cosmochimica Acta, 58(10), 2325-2332.

Drever, J. I., & Vance, G. F. (1994). Role of soil organic acids in mineral weathering processes. In Organic acids in geological processes (pp. 138-161). Springer, Berlin, Heidelberg.

Druhan, J. L., & Maher, K. (2014). A model linking stable isotope fractionation to water flux and transit times in heterogeneous porous media. Procedia Earth and Planetary Science, 10, 179-188.

Druhan, J. L., & Maher, K. (2014). A model linking stable isotope fractionation to water flux and transit times in heterogeneous porous media. Procedia Earth and Planetary Science, 10, 179-188.

Elgallal, M.; Fletcher, L.; Evans, B. (2016). Assessment of potential risks associated with chemicals in waste water used for irrigation in arid and semiarid zones: A review. Agric. Water Manag., 177, 419–431.

Epstein, S., & Mayeda, T. (1953). Variation of O18 content of waters from natural sources. *Geochimica et cosmochimica acta*, 4(5), 213-224.

Etcheverry, D. (2002). Valorisation des méthodes isotopiques pour les questions pratiques liées aux eaux souterraines. Isotopes de l'oxygène et de l'hydrogène. Federal Office for Water and Geology. Berne, Switzerland, FOWG reports, Geological Series, 2, 1-70.

Fetter, C.W. (1993) Contaminant Hydrogeology. Prentice-Hall, Inc., Upper Saddle River.

Fisher, R. S., & Mullican III, W. F. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology journal, 5(2), 4-16.

Freeman J T (2007). The use of bromide and chloride mass ratios to differentiate saltdissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin Hydrogeol. J. 15 1377–85.

Frost, C. D., & Toner, R. N. (2004). Strontium isotopic identification of water-rock interaction and ground water mixing. Groundwater, 42(3), 418-432.

Garrels, R.J., Mackenzie, F., (1971). Evolution of Sedimentary Rocks. Norton, New York. Gascoyne.

Gat, J. R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24(1), 225-262.

Gat, J. R. (2010). Isotope hydrology: a study of the water cycle (Vol. 6). World scientific.

Ghrieb, L. (2007). *Impact des formations triasiques sur les eaux d'une plaine en zone semi-aride* (Doctoral dissertation, Annaba).

Glinka, **N.(1977).** chimie générale. Sous la réduction de V.RABINOVITCH. Tome II. éd. Mir Moscou. p 576.

Gourcy L, Petelet G (2011). Use of isotopic tools for the delineation of feeding areas of catchments intended for the supply of drinking water. Report BRGM / RP-59729-EN. 62.

Guiraud, R. (1973). Evolution post-triasique de l'avant-pays de la chaîne alpine en Algérie (Doctoral dissertation, Toulouse).

Health Canada(**2018**). Federal-Provincial-Territorial Committee on Drinking Water Guideline Technical Document for Public Consultation, Strontium in Drinking Water,61p

Heston D (2015). Using Chloride and Bromide Mass Ratios and Binary Mixing Curves to Evaluate Anthropogenic Influences on Groundwater in Lycoming and Wayne counties, Pennsylvania.

Hoefs, J., & Hoefs, J. (1997). Stable isotope geochemistry (Vol. 201). Berlin: springer.

Horton, R.K. (1965), An index-number system for rating water quality. Journal of Water Pollution Control Federation, vol. 37(3), 300-306.

Houha, B. (2007). Etude de fonctionnement hydrogéochimique et isotopique des eaux de Khenchela, thèse doc. En hydrogéologie, Uni. D'Avignon, France, 140p.

Hren, M.T., Chamberlain, C.P., Hilley, G.E., Blisniuk, P.M., Bookhagen, B., (2007). Major ion chemistry of the Yarlung Tsangpo–Brahmaputra river: chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochem. Cosmochim. Acta 71 (12), 2907–2935. https://doi.org/10.1016/j.gca.2007.03.021.

Ingraham, N. L. (1998). Isotopic variations in precipitation. In *Isotope tracers in catchment hydrology* (pp. 87-118). Elsevier.

Jolliffe, I. (1986). Generalizations and adaptations of principal component analysis. In Principal Component Analysis (pp. 223-234). Springer, New York, NY.

Jolliffe, I. T. (2002). Principal component analysis for special types of data (pp. 338-372). Springer New York.

Jung, Y. Y., Koh, D. C., Lee, J., & Ko, K. S. (2013). Applications of isotope ratio infrared spectroscopy (IRIS) to analysis of stable isotopic compositions of liquid water. Economic and Environmental Geology, 46(6), 495-508.

Jutzi, P. (1989). Advanced Inorganic Chemistry. Von FA Cotton und G. Wilkinson. 5. Aufl. John Wiley & Sons, New York 1988. 1455 S., Tab., Abb., geb.£ 21.95. ISBN 0-471849979.

Karim, A., & Veizer, J. (2002). Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalayas: Implications from hydrogen and oxygen isotopes in river water. Journal of Geophysical Research: Atmospheres, 107(D18), ACH-9.

Katz B G, Eberts S M and Kauffman L J (2011) Using Cl / Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems : A review and examples from principal aquifers in the United States J. Hydrol. 397 151–66.

Kendall, C., & Caldwell, E. A. (1998). Fundamentals of isotope geochemistry. In Isotope tracers in catchment hydrology (pp. 51-86). Elsevier.

Kendall, C., & McDonnell, J. J. (Eds.). (2012). Isotope tracers in catchment hydrology. Elsevier.

Kumar, A., Dua, A. (2009), Water Quality Index for assessment of water quality of river Ravi at Madhopur (India), Global Journal of Environmental Sciences, Vol. 8, 49-57.

Laffite, R. (1939). Etude de géologie de l'Aurès. Doctorat ès Sciences Paris. Bull. Serv. Carte Géol. Algérie, 1re série, (15), 484.

Lee, J., Koh, D. C., & Choo, M. K. (2014). Influences of fractionation of stable isotopic composition of rain and snowmelt on isotopic hydrograph separation. Journal of the Korean earth science society, 35(2), 97-103.

Lee, J., Lee, H. J., Ham, J. Y., & Kim, H. (2016). Chemical separation of the discharge generated by artificial rain-on-snow experiments in a snowpack. Journal of the Geological Society of Korea, 52(2), 113-120.

Lightfoot N., (2002). Analyses microbiologiques des aliments et de l'eau. London. pp. 59-126.

Lightfoot N., (2002). Analyses microbiologiques des aliments et de l'eau

Ma, B., Jin, M., Liang, X., & Li, J. (2018). Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: hydrogeochemistry and environmental tracer indicators. Hydrogeology Journal, 26(1), 233-250.

Mazor, E. (1991). Applied chemical and isotopic groundwater hydrology-Open Univ.

McGUIRE, K. E. V. I. N., & McDONNELL, J. E. F. F. (2007). Stable isotope tracers in watershed hydrology. Stable isotopes in ecology and environmental science, 334-374.

Meharzi, M. K. E. (2010). Forêts, géosystèmes et dynamique du milieu: le cas de l'Aurès. Thèse de doctorat d'État en Aménagement du Territoire, Option Géographie Physique, 258.

Ministre de l'industrie et d'Energie. (1977). Direction des mines et de la géologie, service de la carte géologique de l'Algérie, Carte Géologique de Khenchela, Schéma structural simplifie, Société novelle imprimerie moderne, 44000, Nantes, France, 175.

Mitard, A. E. (1941). Aperçu des grands traits géographiques de l'Aurès, Algérie. Revue de géographie alpine, 29(4), 557-578.

Monition L. (1966). Les graphiques a base trilineaire représentatifs de la composition chimique des eaux souterraines. Le diagramme en "losange" [The trilinear graphs are representative of the chemical composition of groundwater. The "diamond" diagram]. Bureau de recherches géologiques et minières, Direction scientifique département géologie Service d'hydrogéologie pp. 22.

Morey GW, Fournier RO, Rowe JJ (1962) The solubility of quartz in water in the temperature interval from 29 to 300C. Geochim Cosmochim Acta 26:1029–1043.

Morey, G. W., Fournier, R. O., & Rowe, J. J. (1962). The solubility of quartz in water in the temperature interval from 25 to 300 C. Geochimica et Cosmochimica Acta, 26(10), 1029-1043.

Mukherjee, A., Bhattacharya, P., Shi, F., Fryar, A. E., Mukherjee, A. B., Xie, Z. M., ... & Bundschuh, J. (2009). Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). *Applied geochemistry*, 24(10), 1835-1851.

Musgrove, M. (2021). The occurrence and distribution of strontium in US groundwater. Applied Geochemistry, 126, 104867.

Nair I S, Renganayaki S P and Elango L (2013) Identification of Seawater Intrusion by Cl / Br Ratio and Mitigation through Managed Aquifer Recharge in Aquifers North of Chennai , India Jgwr 2 155–62.

Ngouala Mabonzo, M. (2020). Caractérisation hydrochimique des eaux souterraines de la zone de contact du bassin sédimentaire côtier et du socle du Précambrien inférieur au sudouest de la République du Congo. Cinq Continents 10 (21): 60-85.

Ophori, D. U., & Toth, J. (1989). Patterns of ground-water chemistry, Ross Creek Basin, Alberta, Canada. Groundwater, 27(1), 20-26.

Park J, M. Bethke C, Torgersen T and Johnson T (2002). Transport modeling applied to the interpretation of groundwater 36Cl age Water Resour. Res. 38.

Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928.

Piper, A. M. (1953). A graphic procedure for the geo-chemical interpretation of water analysis. USGS groundwater (No. 12). note.

Prada, S., Cruz, J. V., & Figueira, C. (2016). Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal. Journal of Hydrology, 536, 409-425.

Pradeep, K., Nepolian, M., Anandhan, P., Kaviyarasan, R., Prasanna, M. V., & Chidambaram, S. (2016, March). A study on variation in dissolved silica concentration in groundwater of hard rock aquifers in Southeast coast of India. In IOP Conference Series: Materials Science and Engineering (Vol. 121, No. 1, p. 012008). IOP Publishing.

Pradeep, V. S., Ayana, D. G., Graczyk-Zajac, M., Soraru, G. D., & Riedel, R. (2015). High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochimica Acta, 157, 41-45.

Rejsek, F. (2002) Analyse des eaux: Aspects réglementaires et techniques. Scéren (CRDP AQUITAINE). Coll. Biologie technique. Sciences et techniques de l'environnement. 360p.

Rodier, J. (2005). L'analyse de l'eau: Eaux naturelles, Eaux résiduaires. Eau de mer. edition. Dunod, Paris, 1383p.

Rodier, J. (2009). L'Analyse de l'Eau: Eaux Naturelles, Eaux Résiduaires, Eau de Mer (9e édn, pp. 100-110). Paris: Dunod.

Siever, R. (1957). The silica budget in the sedimentary cycle. American Mineralogist: Journal of Earth and Planetary Materials, 42(11-12), 821-841.

Subba Rao, N. (2007). Groundwater quality as a factor for identification of recharge zones. Environmental Geosciences, 14(2), 79-90.

Thilagavathi, R., Chidambaram, S., Prasanna, M. V., & Thivya, C. (2012). A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Applied water science, 2(4), 253-269.

Thivya, C., Chidambaram, S., Thilagavathi, R., Prasanna, M. V., Anandhan, P., & Jainab, I. (2013). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environment, development and sustainability, 15(5), 1365-1387.

Verma, S., Mukherjee, A., Mahanta, C., Choudhury, R., & Mitra, K. (2016). Influence of geology on groundwater–sediment interactions in arsenic enriched tectonomorphic aquifers of the Himalayan Brahmaputra river basin. Journal of Hydrology, 540, 176-195.

Xiao, Y., Shao, J., Cui, Y., Zhang, G., & Zhang, Q. (2017). Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China. Journal of Earth System Science, 126(2), 1-16.

Zhang, B., Zhao, D., Zhou, P., Qu, S., Liao, F., & Wang, G. (2020). Hydrochemical characteristics of groundwater and dominant water–rock interactions in the Delingha Area, Qaidam Basin, Northwest China. Water, 12(3), 836.

Zouari, K., Aranyossy, J. F., Mamou, A., & Fontes, J. C. (1985). Etude isotopique et géochimique des mouvements et de l'évolution des solutions de la zone aérée des sols sous climat semi-aride (Sud tunisien). *Stable and radioactive isotopes in the study of the unsaturated soil zone. IAEA, Vienna*, 121-144.

A/M	1	2	3	4	5	6	7	8	9	10	11	12
2010	74	92	98	97	125	197	261	268	180	141	96	64
2011	41	45	61	90	96	135	251	231	157	65	55	32
2012	41	32	65	87	171	229	309	296	178	131	64	44
2013	50	51	118	136	142	186	229	202	112	112	583	32
2014	47	68	52	113	138	194	256	231	192	141	93	30
2015	34	43	72	96	187	207	256	182	138	100	64	44
2016	65	94	109	96	176	210	268	220	143	166	80	41
2017	46	66	116	107	178	218	309	254	184	95	71	47
2018	72	49	126	101	110	182	315	137	134	78	76	46
2019	45	58	64	72	113	250	256	222	128	114	70	62

• Evapotranspiration pour la station de Batna

• Humidité Relative Moyenne en % pour la station de Batna

A/M	1	2	3	4	5	6	7	8	9	10	11	12
2000	77	60	51	43,6	50,3	45,6	32,3	34,8	48	58 <i>,</i> 9	56,6	65,5
2001	68	61	41,2	49,8	52,2	35,5	30,2	33	57,7	53,1	73,4	73,9
2002	70,8	58	53	47,3	38,9	31,7	38	46,5	49,5	50,2	65,5	75
2003	74,5	69	63	64,2	55 <i>,</i> 8	40,8	32,5	36,1	58,3	60,1	69,5	76,6
2004	75,8	58	60,3	64	65,3	60	43,6	43,6	54,9	52,2	80,6	80,3
2005	75,1	72	63	61,7	42	40,8	33,6	39,9	50	60,8	58	74,8
2006	73,1	66	52,1	51,4	59,3	34,5	34,1	41,1	53,2	45 <i>,</i> 4	64,5	79,1
2007	69,6	68	67,2	65,6	51,9	36,7	31,5	37,4	59	60,9	63,5	69,8
2008	68,8	59	56,6	48	52,2	47,5	39,6	42,3	51,3	70,2	65,4	71,9
2009	75,4	64	61,8	64,6	57,7	38,3	31	41,3	63,9	63,1	56 <i>,</i> 8	60,3
2010	68	61	61	65	58	53	42	46	56	57	65	67
2011	71	74	68	65	65	61	44	52	66	71	74	76
2012	44	74	68	65	57	42	41	35	52	57	72	73
2013	73	69	59	57	57	47	45	49	65	62	70	77
2014	73	65	73	55	55	48	36	40	45	53	58	80
2015	75	71	65	54	48	45	35	45	53	63	72	74
2016	69	65	62	61	53	47	42	45	8	55	70	78
2017	76	67	57	59	50	47	37	41	50	65	67	78
2018	68	73	63	65	68	51	36	62	61	72	70	78
2019	77	70	66	64	58	33	33	41	54	59	67	68

A/M	1	2	3	4	5	6	7	8	9	10	11	12
2000	112	8,12	37,34	12,95	74,67	26,66	0	12,7	57,91	5 <i>,</i> 84	8,38	18,54
2001	128	12,19	5 <i>,</i> 08	23,1	54,1	2,02	3,05	2,28	63,74	12,2	24,38	7,36
2002	9,91	11,17	15,48	25,65	7,11	4,57	21,85	72,39	5,09	23,62	60,95	35,31
2003	115	30,49	18,29	106,2	32,26	20,06	2,54	10,16	44,7	79,5	13,45	137,92
2004	32,3	11,69	55,38	44,7	97,78	60,21	7,87	7,87	48,53	16,51	102,12	101,36
2005	18	40,91	22,35	33,01	2,54	15,5	4,07	29,21	11,94	17,79	4,06	34,28
2006	52,3	40,89	5 <i>,</i> 33	58,67	58,17	43,95	5,08	3,05	16,26	2,28	30,99	41,9
2007	10,2	26,41	38,11	31,23	8,13	1,53	0	10,16	72,88	13,2	17,53	34,04
2008	6,1	1,02	35,3	9,4	107,19	21,59	19,05	17,76	39,9	26,43	22,1	16,25
2009	66,6	13,45	33,27	75,18	51,56	0,25	6,36	14,22	45,22	22,61	3,05	5,33
2010	36,2	15,7	28,4	56,1	37,7	27,1	0,3	2,7	20,4	14,3	28	13,7
2011	12	63,3	31,6	87,2	80,2	28,6	7,4	9,2	33,3	92,5	6,2	10,5
2012	5,4	50,9	34,8	36,2	11,7	4,5	4,2	15,5	13,3	7,3	18,2	5,2
2013	30,3	23,4	26,2	39	6,7	15,6	18,6	81,5	40,2	23,7	24,2	34
2014	31,6	14,7	68,2	4	39,8	47,8	0,3	4,9	13,7	14,7	6,4	29,8
2015	58,7	43	43,6	6,8	22,8	29,3	4,8	59 <i>,</i> 4	13,5	41,7	15,7	Nt
2016	16	18,3	20,2	66,5	26,5	1,3	0,3	0,1	11,3	6,1	33,8	9,6
2017	35	7,4	Nt	20,5	4,1	24,4	0,2	4,8	4,7	22,1	26	20,5
2018	0,7	17,1	38,8	47,6	56,2	0,4	3,9	57,3	27,5	64,6	0,2	4,7
2019	32,2	17,2	60	36	51,9	Tr	4	13,4	31,8	25,6	44,6	22,1

• Précipitations Mensuelles en mm pour la station de Batna

A/M	1	2	3	4	5	6	7	8	9	10	11	12
1998	67.1	67.9	64	59.8	70.9	45.7	37	48.2	52.38	65.6	66.4	71.9
1999	75.5	71.8	64.1	57.4	44.9	38.5	38.2	35.8	52.4	53	68.3	74.4
2000	69.5	60.1	59.7	52	55.7	52.8	36.8	36.6	54.2	66.4	57.9	67.8
2001	73.2	67.9	50.1	64	64	47	35.5	41	65.16	54.7	70.3	71.7
2002	70.6	68.1	55.7	51.9	44	38	49.15	52.5	25.46	51	66.6	70.6
2003	71.66	72.03	68.1	66.7	56.5	46.3	34.4	36.6	62.7	59.8	71.1	72.8
2004	86	83	83	89	85	81	64	63	79	69	93	92
2005	92	88,8	82,2	82,3	73,5	75,6	64,5		81,5	83	83,3	90,1
2006	94,1	89,6	83,9	84	83,6	59,2		70,2	78,1	75,6	85,5	93,1
2007	87	87	89	88	82	66	60	64	82	82	83	86
2008	90	88	85	76	76,6	72,8	65	71	76,7	92	86,4	
2009	96	87	85	91	85	78	69	83	93	89	78	81
2010	87,1	81,5	83,7	91,2	84,4	72,9	70,2	76	83,8	83,4	86,7	80,3
2011	86	92	91	91	92	85	69,9	73	87	91	89	84
2012	97,2	96,4	84,6	82,9	83,1	67,8	65,3	95	82,2	85,3	80,8	87,2
2013	84	85	81	61	84	69	69	72	79	72	82	
2014	85,5	83,6	86,1	79,4	81,6	71,5	59,4	65,5	72,4	70,9	77,9	95,1
2015	72.9	73.8	69.2	57.9	48.6	45.4	32.4	42.7	52.9	52.1	58.4	78.2
2016	64.9	62.4	56.4	56.7	51.7	44.40	36.49	16.49	60.97	54.78	66.24	81.42
2017	75.28	63.27	53.7	59.06	48.63	44.35	34.06	35.86	46.89	14.77	63.27	73.58
2018	59,7	71,3	58,6	61	68,6	51	30	61,4	60,3	71	68	69

Humidité de la station de El hamma

Précipitation moyenne pour la station d'El hamma

A/M	1	2	3	4	5	6	7	8	9	10	11	12
1999	57,6	13,9	22,5	20,5	64,1	29,6	17,2	85,8	26	42,4	89,3	56,1
2000	10	4.1	14.6	10.3	81	60.4	1.2	9.7	47.2	34.7	17.7	20.1
2001	17.8	15.4	4.3	32.4	97.4	1.4	6.5	16.5	81	26.6	38.7	19.4
2002	9.9	14.9	12.1	26.8	22.2	13.1	27.4	128.6	28	20	84.5	29.5
2003	110	66	26.2	88.8	17.6	41.7	11	5.9	37.9	81.8	19	44.3
2004	29	3,9	41,8	53,6	141,7	66,2	5,2	14,5	24,6	15	112,5	110,6
2005	5	43	35,9	36,4	14,9	46,1	10,8	19,9	42,2	43,2	24,8	46,4
2006	88,7	43,1	10,5	46,7	148,7	11	41,4	47	22,2	36,6	11,8	76,2
2007	8,1	17,4	103	76,7	30,4	38,1	12	20,7	122,4	16,8	13,4	49,1
2008	23,1	7,7	24,8	14,5	102,7	5,6	26,8	57,8	93,7	96,2	15,2	48,5
2009	53,4	6,7	20,7	29,7	72,7	17,9	3,6	23	145,3	17,8	74,9	149,6
2010	87,4	25,3	17	42,7	70,6	36,7	73,2	31,6	30,1	15	15,5	84

2011	26,9	86,2	98,8	46,3	128,5	57,6	26,8	15,4	18,1	64,9	13,2	42,3
2012	26,7	66,1	31,5	42,4	46,4	16,2	3,4	24,4	73,2	25,9	27,1	5
2013	37,4	22,3	50	37,2	38,1	0,4	39,8	57,4	134,8	37,4	31,7	28,6
2014	47,4	38	79,1	0,1	32,3	49,3	0	24	30	15,6	36,6	68,5
2015	39.8	83.7	87.4	1.7	18.2	36.1	30.5	35.7	53.1	15.6	36.6	68.5
2016	22.9	13.5	23	54.2	60.8	2	3	24	14	34	35	32
2017	28	12	7	54	28	29	8	8	4	52	24	22
2018	1	39	40	49	80	23	6	72	41	94	6	5
2019	54	30	128	67	57	0	46.7	70.1	29.8	22.4	44	36.6

Evaporation en mm station d'El Hamma

A/M	1	2	3	4	5	6	7	8	9	10	11	12
1997	87	87.6	91	125	249	192	312	238	126	116	94	79
1998	79	65	104	171	130	260	308	230	218	95	87	80
1999	63	68	118	183	267	277	299	331	205	184	89	72
2000	61.5	95.9	130	222	179	169.2	279.5	947.6	159.6	107.8	98.6	68.8
2001	64.6	76.9	169.2	120.8	164.1	207	274	224.6	110.7	153.2	58.4	47.3
2002	47.6	71.2	124	145.6	159.6	235.2	225.7	187.3	135.7	138	115.8	
2003	59	43.5	61.4	101.9	157.3	183.9	289	260.4	143	162.5	75.9	60.7
2004	633	106,4	112,9	90,6	105,9	138,3	250,3	248,2	129,8	174	43	56,1
2005	37,4	48,3	121,8	124,6	202,3	211,9	269,3	186,7	143,1	101,7	103,6	42,8
2006	40	56,7	123,7	147,4	131,5	286,4	235,5	190,3	152,2	162,6	68,2	32,1
2007	58,8	69,6	61,7	77,3	129,9	260,5	214,4	266	135,5	117,1	80,6	52,2
2008	56,8	51	92,8	167,2	172	187,1	293,8	225,6	163,8	74,7	81,5	43,1
2009	51,2	68,5	84	76,3	177,7	183,6	262,2	247	116,4	97,2	95,9	105,9
2010	79,6	110,6	119	127	125,9	200,4	247,3	243,8	171	139,1	82,7	93,9
2011	54,6	41	66,8	79,5	88,7	100,4	237,8	253,5	162,4	90,2	60,8	51
2012	49,7	40,2	95,9	117	121,8	295,8	353,5	277	198	141,8	81,8	62,9
2013	73,5	77,8	110,8	121,8	138,8	198,9	206,3	207,3	123,7	73,5	59,4	29,5
2014	64,9	86,5	67,8	130,7	165,1	202,7	288	246,2	205,5	158,9	129,2	55,4
2015	65,9	55,5	98,5	113,7	201	185,6	248,3	216,1	176,8	158,9	129,2	55,4
2016	73	83,8	108,5	124,6	153,8	291	219	184	125	127	63	30
2017	44	85	117	101	157	188	247	217	161	74	76	64
2018	109,8	44,6	110,7	99,4	87,3	169,9	243,4	81,1	71,4	88	73,2	49,4

Calcul des logs

c25°C	HCO3-	F-	CI-	NO3-	SO4	Na+	NH4+	K+	Mg++	Ca++	SiO2	Br-	H+
2,97680834	2,36511343	-1,02410886	1,60739411	1,50110858	2,38535331	1,50317216	-2,13076828	-0,08751224	1,52538433	2,08635983	1,0374962	-0,83564714	-7,31
2,92531209	2,38738983	-0,81417464	1,59437238	1,36340889	2,22362572	1,57462151	-1,31158018	0,03562983	1,46325227	1,98677173	1,06703028	-0,76980662	-7,23
3,13767054	2,50796376	-0,93479387	2,01227867	1,8356018	2,48044806	1,68116251	-1,64781748	0,17889066	1,63114433	2,25767857	1,11128242	-0,26897562	-7,13
3,09864373	2,58328948	-1,75945075	1,8616427	1,98097547	2,27995243	1,57411117	-3,69897	0,14699576	1,79501613	2,13033377	1,08180363	-0,85047299	-7,09
3,8162413	2,30120368	-0,91721463	3,25207257	-1,43415218	2,85579461	3,00152681	-1,25570702	1,04202787	1,65217669	2,46089784	1,42699043	-0,40186635	-7,06
2,75739603	2,42081358	-1,1580152	1,04895	0,86686011	1,75388321	0,95182304	-1,76700389	-0,08186477	1,34503636	1,90308999	0,9304149	-1,37986395	-7,3
2,82801506	2,52411039	-1,58335949	1,32017195	0,73908953	1,63145087	1,07166481	-2,40893539	0,13668887	1,50932083	1,93951925	0,98994781	-1,46470588	-7,24
2,80413943	1,96717342	-0,31857784	1,05679264	0,72849988	2,36140426	1,28613748	-2,82390874	0,25078583	1,12527952	1,97312785	0,85898547	-1,48945499	-7,42
3,24079877	2,16554108	-0,19273564	2,00530498	1,09762514	2,84659199	2,12829779	-1,9788107	0,61579229	1,69190684	2,24303805	0,9304149	-0,38732208	-7,78
3,18752072	2,14326468	-0,34611244	2,28502363	1,23888877	2,62691494	2,20877689	-0,98171569	0,70485374	1,62853299	1,92941893	0,25934495	-0,09788828	-7,95
3,54032947	2,48081151	-0,24313578	2,8618527	0,90079302	2,68205694	2,70323969	-2,12493874	1,23867575	1,21768394	2,27415785	1,62649372	-0,48905305	-7,15
3,55266822	2,46293679	-0,14224548	2,86755867	1,14720932	2,73742977	2,71131438	-1,82390874	1,19694126	1,34302633	2,2764618	1,54664893	-0,40483459	-7,32
3,30319606	2,34163234	-0,76270766	2,54362358	1,70268122	2,5657181	2,07923734	-3,30103	-0,1168498	1,59874128	2,36172784	1,12200628	-0,04291974	-7,1
3,11892575	2,34643122	-0,50182734	1,95070775	1,66849494	2,59429198	1,8736263	-1,00568285	-0,11362209	1,39384535	2,24303805	1,18016371	-0,47873112	-7,18
3,33845649	2,52411039	-0,6685727	2,5675965	1,96486656	2,49686118	2,19392813	-1,9625735	-0,31398971	1,76618076	2,31175386	1,12464638	-0,36886075	-6,86
3,41664051	2,3786159	-0,88239731	2,82531897	1,88683802	2,39658115	2,51507841	-2,30103	0,84780702	1,51408399	2,24797327	1,22313278	-0,26962153	-7,02
3,30016054	2,50796376	-0,61960784	2,59541418	1,05249002	2,24784713	2,47351573	-2,30103	0,91868024	1,17053453	1,93951925	1,34885757	-0,79182747	-7,13
3,21563756	2,50796376	-0,89109687	2,50351812	0,90493183	2,09037693	2,26152551	-2,26760624	0,83165225	1,37578977	2,05307844	1,37328831	-0,81758535	-6,91
2,80617997	2,3318725	-0,89245087	1,41059673	1,50239024	1,89639007	1,07710252	-2,02227639	0,35028679	1,0425637	2,01703334	1,00753298	-1,40782324	-7,37
2,6919651	2,34643122	-1,33629907	1,12838489	1,04861657	1,57707684	0,88367847	-1,86646109	-0,30129065	1,0915122	1,8573325	0,88259425	-1,40011693	-7,46
2,81090428	2,44429468	-1,44129143	1,4205701	1,25905366	1,71802894	1,22631114	-1,78251606	0,00298634	1,47766957	1,84509804	0,99352227	-0,84436037	-7,51
2,90145832	2,2595461	-0,95078198	1,49641386	1,38245652	2,32664222	1,4808517	-1,98716278	0,09544833	1,36349728	2,02530587	0,96406729	-0,82361931	-7,53
2,54777471	2,25367717	-1,20901152	0,88507838	0,78933388	1,18596123	0,67358301	-1,37986395	-0,15434394	1,13328656	1,67825426	0,83321239	-1,94692156	
3,81090428	2,31680875	-0,59159042	3,2598029	-0,30574589	2,72074194	3,02332997	-0,23262148	1,05800063	1,67695502	2,45163034	1,40066714	-0,37675071	
2,80821097	2,52569252	-1,11182051	1,2383924	0,66233277	1,56605901	1,01974338	-1,25181197	0,21208102	1,52270369	1,88549352	0,91944874	-1,31247104	
2,64147411	2,38082606	-1,5559552	0,8683799	0,5479961	1,35685348	0,60142981	-1,46852108	-0,00230788	1,36276513	1,72727116	0,77125754	-1,51286162	
3,18041263	2,55470716	-0,32966136	1,91278781	1,43505243	2,6233932	1,95594786	-0,43332686	0,2488067	1,83989392	2,18001485	1,0975934	-0,75945075	
3,29797924	2,35820144	-0,31569335	2,56717534	0,52876249	2,51540129	2,17150852	-0,5364056	0,32134984	1,87058005	2,18335641	0,98255611	-0,75276345	
2,91115761	2,52411039	-0,93292914	1,31316039	0,8713861	2,10306034	1,25121467	-1,28819277	0,19434781	1,51041631	2,03984899	0,91531257	-0,99740202	
2,54777471	2,25367717	-1,20901152	0,88507838	0,78933388	1,18596123	0,67358301	-1,37986395	-0,15434394	1,13328656	1,67825426	0,83321239	-1,94692156	
2,69548168	2,45557569	-1,36552273	0,88164709	0,7341515	1,19144263	0,53702531	-1,20830935	0,20243382	1,41821343	1,79946393	0,73188685	-2,19382003	
2,63848926	2,30646792	-1,12726117	1,0839179	1,1568519	1,28060568	0,83842718	-1,94309515	-0,42342832	0,56071942	1,90308999	0,89393417		-7,72
2,62634037	2,29587485	-1,25258819	1,11760899	1,12741258	1,32849377	0,86856216	-2,32790214	-0,12644691	0,61240236	1,86332286	0,90716244		-8,02
2,76417613	2,48776037	-1,24108811	1,18708579	0,52556306	1,42644945	0,89714855	-2,01322827	-0,27629811	1,29763578	1,93951925	0,94657656		-7,1
2,62531245	2,35587277	-1,75448733	0,96486679	0,65842163	1,22284648	0,59968661	-1,88941029	-0,1234935	1,04933821	1,84509804	0,81295832		-7,48
2,68124124	2,40857913	-1,75696195	1,06483035	0,29092456	1,37388256	0,68888235	-3,39794001	0,15688216	1,29198344	1,81291336	0,89168975		-7,81

Annexe 3 : Analyse factorielle discriminante

Matrice SS	CP inter-classes :											
	c25°C	HCO3-	F-	Cl-	NO3-	SO4	Na+	NH4+	K+	Mg++	Ca++	SiO2
c25°C	1892764,9567	170034,9095	-348,6236	684858,0757	-1817,4736	-145939,3459	332045,4977	135,0642	-48,1844	10713,7500	46736,2072	5179,1635
HCO3-	170034,9095	25726,8882	-35,2276	59453,3340	2208,8585	-18209,1994	28814,5211	25,3215	8,5733	5189,6077	-508,0470	-49,1063
F-	-348,6236	-35,2276	0,0880	-155,2246	11,2952	77,4070	-86,4015	-0,0176	-0,7474	2,8222	9,6494	-1,1847
CI-	684858,0757	59453,3340	-155,2246	288099,3474	-16955,5415	-116749,2960	154575,3280	29,9996	983,8861	-5479,7209	-4196,9584	2541,2229
NO3-	-1817,4736	2208,8585	11,2952	-16955,5415	6820,9721	24757,8792	-14132,3786	9,3150	-395,3817	4329,5666	7632,7159	-346,0591
SO4	-145939,3459	-18209,1994	77,4070	-116749,2960	24757,8792	119513,4405	-80849,2579	9,6280	-1637,3258	10984,3440	34582,8089	-1069,0598
Na+	332045,4977	28814,5211	-86,4015	154575,3280	-14132,3786	-80849,2579	87724,7203	8,4615	851,7994	-5841,5909	-10258,3290	1443,6835
NH4+	135,0642	25,3215	-0,0176	29,9996	9,3150	9,6280	8,4615	0,0329	-0,3963	9,5707	6,3798	-0,5099
K+	-48,1844	8,5733	-0,7474	983,8861	-395,3817	-1637,3258	851,7994	-0,3963	25,2824	-209,4577	-561,6900	13,4621
Mg++	10713,7500	5189,6077	2,8222	-5479,7209	4329,5666	10984,3440	-5841,5909	9,5707	-209,4577	3589,6942	3068,1861	-299,4622
Ca++	46736,2072	-508,0470	9,6494	-4196,9584	7632,7159	34582,8089	-10258,3290	6,3798	-561,6900	3068,1861	15451,4302	47,1171
SiO2	5179,1635	-49,1063	-1,1847	2541,2229	-346,0591	-1069,0598	1443,6835	-0,5099	13,4621	-299,4622	47,1171	47,4990

Matrice S	SCP intra-classe to	tale :										
	c25°C	HCO3-	F-	CI-	NO3-	SO4	Na+	NH4+	K+	Mg++	Ca++	SiO2
c25°C	76388021,7933	-216200,3195	4400,0592	21882808,7642	26147,1166	8537374,6454	12779795,1501	2893,1665	178460,1522	343620,9882	2849579,1836	325871,9383
HCO3-	-216200,3195	134945,7264	-49,3847	-122394,9121	16088,9105	-56008,8564	-64774,7415	-29,5163	671,5790	7524,0929	7294,0317	5545,4331
F-	4400,0592	-49,3847	1,2424	977,2767	-21,5449	960,5913	696,4321	0,2440	17,5776	34,4602	178,2242	27,8892
Cl-	21882808,7642	-122394,9121	977,2767	6449295,2872	-4491,4541	2222350,5641	3715188,1287	855,3989	49470,7963	82386,9797	786523,3070	89082,5923
NO3-	26147,1166	16088,9105	-21,5449	-4491,4541	16038,6577	3894,9978	-9755,8354	-26,8551	-222,2604	2016,8020	11666,1399	516,2928
SO4	8537374,6454	-56008,8564	960,5913	2222350,5641	3894,9978	1347605,0578	1365567,0749	293,9908	21084,6618	57746,9707	352270,5171	35845,0915
Na+	12779795,1501	-64774,7415	696,4321	3715188,1287	-9755,8354	1365567,0749	2183885,9037	501,4512	30927,6771	44809,7443	451283,6591	55216,5934
NH4+	2893,1665	-29,5163	0,2440	855,3989	-26,8551	293,9908	501,4512	0,4574	3,9913	27,5552	99,8099	5,2253
K+	178460,1522	671,5790	17,5776	49470,7963	-222,2604	21084,6618	30927,6771	3,9913	639,8302	294,0923	5949,2273	1162,4251
Mg++	343620,9882	7524,0929	34,4602	82386,9797	2016,8020	57746,9707	44809,7443	27,5552	294,0923	7239,0029	18244,1898	547,5392
Ca++	2849579,1836	7294,0317	178,2242	786523,3070	11666,1399	352270,5171	451283,6591	99,8099	5949,2273	18244,1898	125421,1931	12029,6779
SiO2	325871,9383	5545,4331	27,8892	89082,5923	516,2928	35845,0915	55216,5934	5,2253	1162,4251	547,5392	12029,6779	2512,2457

Matrice SS	CP totale :											
	c25°C	HCO3-	F-	CI-	NO3-	SO4	Na+	NH4+	K+	Mg++	Ca++	SiO2
c25°C	78280786,7500	-46165,4100	4051,4356	22567666,8399	24329,6430	8391435,2995	13111840,6478	3028,2308	178411,9679	354334,7382	2896315,3909	331051,1019
HCO3-	-46165,4100	160672,6146	-84,6124	-62941,5781	18297,7691	-74218,0558	-35960,2205	-4,1948	680,1523	12713,7006	6785,9847	5496,3268
F-	4051,4356	-84,6124	1,3305	822,0521	-10,2497	1037,9982	610,0306	0,2264	16,8303	37,2825	187,8737	26,7044
CI-	22567666,8399	-62941,5781	822,0521	6737394,6346	-21446,9956	2105601,2681	3869763,4567	885,3985	50454,6824	76907,2588	782326,3486	91623,8152
NO3-	24329,6430	18297,7691	-10,2497	-21446,9956	22859,6297	28652,8770	-23888,2140	-17,5401	-617,6421	6346,3686	19298,8558	170,2337
SO4	8391435,2995	-74218,0558	1037,9982	2105601,2681	28652,8770	1467118,4983	1284717,8169	303,6188	19447,3360	68731,3147	386853,3260	34776,0317
Na+	13111840,6478	-35960,2205	610,0306	3869763,4567	-23888,2140	1284717,8169	2271610,6240	509,9127	31779,4765	38968,1534	441025,3301	56660,2769
NH4+	3028,2308	-4,1948	0,2264	885,3985	-17,5401	303,6188	509,9127	0,4903	3,5949	37,1259	106,1897	4,7154
K+	178411,9679	680,1523	16,8303	50454,6824	-617,6421	19447,3360	31779,4765	3,5949	665,1126	84,6346	5387,5373	1175,8872
Mg++	354334,7382	12713,7006	37,2825	76907,2588	6346,3686	68731,3147	38968,1534	37,1259	84,6346	10828,6972	21312,3759	248,0770
Ca++	2896315,3909	6785,9847	187,8737	782326,3486	19298,8558	386853,3260	441025,3301	106,1897	5387,5373	21312,3759	140872,6234	12076,7949
SiO2	331051,1019	5496,3268	26,7044	91623,8152	170,2337	34776,0317	56660,2769	4,7154	1175,8872	248,0770	12076,7949	2559,7447

Matrice de	covariance inter-o	lasses :										
	c25°C	HCO3-	F-	CI-	NO3-	SO4	Na+	NH4+	K+	Mg++	Ca++	SiO2
c25°C	70102,4058	6297,5892	-12,9120	25365,1139	-67,3138	-5405,1610	12297,9814	5,0024	-1,7846	396,8056	1730,9706	191,8209
HCO3-	6297,5892	952,8477	-1,3047	2201,9753	81,8096	-674,4148	1067,2045	0,9378	0,3175	192,2077	-18,8166	-1,8188
F-	-12,9120	-1,3047	0,0033	-5,7491	0,4183	2,8669	-3,2001	-0,0007	-0,0277	0,1045	0,3574	-0,0439
CI-	25365,1139	2201,9753	-5,7491	10670,3462	-627,9830	-4324,0480	5725,0121	1,1111	36,4402	-202,9526	-155,4429	94,1194
NO3-	-67,3138	81,8096	0,4183	-627,9830	252,6286	916,9585	-523,4214	0,3450	-14,6438	160,3543	282,6932	-12,8170
SO4	-5405,1610	-674,4148	2,8669	-4324,0480	916,9585	4426,4237	-2994,4170	0,3566	-60,6417	406,8276	1280,8448	-39,5948
Na+	12297,9814	1067,2045	-3,2001	5725,0121	-523,4214	-2994,4170	3249,0637	0,3134	31,5481	-216,3552	-379,9381	53,4698
NH4+	5,0024	0,9378	-0,0007	1,1111	0,3450	0,3566	0,3134	0,0012	-0,0147	0,3545	0,2363	-0,0189
K+	-1,7846	0,3175	-0,0277	36,4402	-14,6438	-60,6417	31,5481	-0,0147	0,9364	-7,7577	-20,8033	0,4986
Mg++	396,8056	192,2077	0,1045	-202,9526	160,3543	406,8276	-216,3552	0,3545	-7,7577	132,9516	113,6365	-11,0912
Ca++	1730,9706	-18,8166	0,3574	-155,4429	282,6932	1280,8448	-379,9381	0,2363	-20,8033	113,6365	572,2752	1,7451
SiO2	191,8209	-1,8188	-0,0439	94,1194	-12,8170	-39,5948	53,4698	-0,0189	0,4986	-11,0912	1,7451	1,7592

Matrice de	covariance totale	:										
	c25°C	HCO3-	F-	Cl-	NO3-	SO4	Na+	NH4+	K+	Mg++	Ca++	SiO2
c25°C	2236593,9071	-1319,0117	115,7553	644790,4811	695,1327	239755,2943	374624,0185	86,5209	5097,4848	10123,8497	82751,8683	9458,6029
HCO3-	-1319,0117	4590,6461	-2,4175	-1798,3308	522,7934	-2120,5159	-1027,4349	-0,1199	19,4329	363,2486	193,8853	157,0379
F-	115,7553	-2,4175	0,0380	23,4872	-0,2928	29,6571	17,4294	0,0065	0,4809	1,0652	5,3678	0,7630
Cl-	644790,4811	-1798,3308	23,4872	192496,9896	-612,7713	60160,0362	110564,6702	25,2971	1441,5624	2197,3503	22352,1814	2617,8233
NO3-	695,1327	522,7934	-0,2928	-612,7713	653,1323	818,6536	-682,5204	-0,5011	-17,6469	181,3248	551,3959	4,8638
SO4	239755,2943	-2120,5159	29,6571	60160,0362	818,6536	41917,6714	36706,2233	8,6748	555,6382	1963,7518	11052,9522	993,6009
Na+	374624,0185	-1027,4349	17,4294	110564,6702	-682,5204	36706,2233	64903,1607	14,5689	907,9850	1113,3758	12600,7237	1618,8651
NH4+	86,5209	-0,1199	0,0065	25,2971	-0,5011	8,6748	14,5689	0,0140	0,1027	1,0607	3,0340	0,1347
K+	5097,4848	19,4329	0,4809	1441,5624	-17,6469	555,6382	907,9850	0,1027	19,0032	2,4181	153,9296	33,5968
Mg++	10123,8497	363,2486	1,0652	2197,3503	181,3248	1963,7518	1113,3758	1,0607	2,4181	309,3913	608,9250	7,0879
Ca++	82751,8683	193,8853	5,3678	22352,1814	551,3959	11052,9522	12600,7237	3,0340	153,9296	608,9250	4024,9321	345,0513
SiO2	9458,6029	157,0379	0,7630	2617,8233	4,8638	993,6009	1618,8651	0,1347	33,5968	7,0879	345,0513	73,1356

Validation cr	oisée : Classific	ation a priori e	t a posteriori,	probabilités d'a	ppartenance,	, coordonnées	et carrés des di	stances :
Observation	Apriori	A postoriori	Forago	ouod	ouit	courco		
Eorogo Pimil	A priori	A posteriori	0 1646	0.7094	0.0002	0.0269		
forage R'mile	Forage	courco	0,1040	0,7364	0,0002	0,0308		
Forage Kais	Forage	source	0,1452	0,3420	0,0000	0,0141		
Forage Roub	Forage	Forego	0,0119	0,0373	0,9464	0,0024		
Forage Bour	rorage	ruit	0,9999	0,0000	1,0000	0,0001		
Source Djaar	source	puit	0,0000	0,0000	1,0000	0,0000		
Source Annie	source	source	0,0030	0,1180	0,0000	0,8784		
Source Tagni	source	source	0,0007	0,0425	0,0000	0,5570		
Oued Aimor	oued	Source	0,0000	0,5670	0,0000	0,0124		
Corago route	oueu Forago	Forage	0,9829	0,0170	0,0000	0,0000		
o ri Kaif	Forage	oueu	0,0018	0,9904	0,0000	0,0078		
O.EI-KIII	oued	source	0,0959	0,3033	0,0000	0,0009		
Source Bassi	source	oued	0,0001	0,8406	0,0000	0,1593		
Puit plaine N	puit	oued	0,0476	0,9251	0,0171	0,0102		
Puit plaine C	puit	Forage	0,5885	0,3691	0,0005	0,0419		
Source EI-IMa	source	Forage	0,9856	0,0000	0,0144	0,0000		
Sonde Begua	Forage	source	0,0000	0,0000	0,0000	1,0000		
Source EI-na	source	source	0,0001	0,0006	0,0000	0,9993		
Source hamn	source	source	0,3188	0,1868	0,0000	0,4944		
Oued 3Km A	oued	oued	0,0141	0,6941	0,0010	0,2907		
Oued 1Km A	oued	source	0,0080	0,0666	0,0000	0,9254		
Forage Tamz	Forage	source	0,0272	0,0551	0,0000	0,9177		
O.Rharour	oued	Forage	0,5655	0,4145	0,0005	0,0194		
Source Tirgin	source	source	0,0260	0,0413	0,0000	0,9328		
Source Cheli	source	oued	0,2406	0,4297	0,0000	0,3297		
Source Djaar	source	oued	0,0041	0,9958	0,0000	0,0000		
Source Bassa	source	source	0,0031	0,0085	0,0000	0,9884		
Source Ima la	source	source	0,0862	0,1087	0,0000	0,8051		
Forage publi	Forage	puit	0,0658	0,0000	0,9342	0,0000		
Forage bouz	Forage	Forage	0,6904	0,0216	0,0002	0,2877		
Source ain h	source	source	0,0010	0,0702	0,0000	0,9288		
Source chélia	source	oued	0,2406	0,4297	0,0000	0,3297		
Source eau f	source	source	0,0003	0,4861	0,0000	0,5136		
Source chau	source	oued	0,0028	0,5223	0,0000	0,4748		
Source Ain si	source	source	0,0000	0,0135	0,0000	0,9865		
Oued Djmri	oued	source	0,0018	0,1006	0,0000	0,8976		
O.Chandgou	oued	source	0,0088	0,0425	0,0000	0,9487		

Annexe 4 : Analyse en composante principale

Vecteurs pr	ropres :											
	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
c25°C	0,3861	-0,0351	0,0246	-0,1549	-0,1635	-0,1054	-0,0733	-0,0781	-0,1252	-0,1790	-0,0476	0,8519
HCO3-	0,0066	0,3743	0,5602	-0,2549	0,5157	-0,1384	0,1465	-0,3859	-0,1252	-0,0720	0,0657	-0,0209
F-	0,2320	-0,0396	-0,2585	0,5848	0,4498	0,1671	-0,0359	-0,0671	-0,5079	-0,2038	-0,0123	-0,0134
CI-	0,3652	-0,1054	0,0331	-0,2676	-0,2354	-0,0655	-0,1575	0,0438	-0,3262	-0,1410	0,6831	-0,3217
NO3-	0,0194	0,5795	0,2387	0,2635	-0,4055	0,5241	-0,2863	-0,0935	0,0244	-0,0823	0,0145	-0,0029
SO4	0,3453	0,1070	-0,1952	0,3357	-0,0389	-0,2674	0,1886	-0,4075	0,6055	-0,1386	0,2290	-0,0744
Na+	0,3729	-0,1483	0,0399	-0,2131	-0,1505	-0,0463	-0,1839	-0,2137	-0,0410	-0,3083	-0,6608	-0,3928
NH4+	0,2016	0,1107	-0,4531	-0,4840	0,3057	0,5959	0,0935	-0,0664	0,1968	0,0681	0,0467	0,0185
K+	0,3294	-0,2672	0,2573	0,1248	0,1931	0,0727	-0,4774	-0,0858	0,1588	0,6595	0,0067	0,0143
Mg++	0,1760	0,5724	-0,2572	-0,0751	0,1879	-0,4272	-0,3335	0,4723	0,0462	0,0616	-0,0950	-0,0502
Ca++	0,3540	0,2131	-0,0018	0,0477	-0,2597	-0,0283	0,6191	0,0519	-0,2866	0,5077	-0,1614	-0,0827
SiO2	0,3156	-0,1414	0,4281	0,1102	0,1660	0,2134	0,2540	0,6169	0,2953	-0,2814	0,0021	-0,0201

Coordonné	es des variables	:								
	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
c25°C	0,9707	-0,0474	0,0288	-0,1619	-0,1511	-0,0564	-0,0281	-0,0176	-0,0249	-0,0246
HCO3-	0,0166	0,5054	0,6551	-0,2663	0,4769	-0,0740	0,0562	-0,0870	-0,0249	-0,0099
F-	0,5832	-0,0534	-0,3023	0,6110	0,4159	0,0893	-0,0138	-0,0151	-0,1010	-0,0280
CI-	0,9180	-0,1423	0,0387	-0,2796	-0,2176	-0,0350	-0,0604	0,0099	-0,0649	-0,0193
NO3-	0,0488	0,7824	0,2792	0,2753	-0,3749	0,2801	-0,1098	-0,0211	0,0048	-0,0113
SO4	0,8682	0,1445	-0,2283	0,3508	-0,0359	-0,1429	0,0723	-0,0919	0,1204	-0,0190
Na+	0,9374	-0,2003	0,0467	-0,2226	-0,1391	-0,0247	-0,0705	-0,0482	-0,0082	-0,0423
NH4+	0,5067	0,1495	-0,5298	-0,5056	0,2826	0,3185	0,0359	-0,0150	0,0391	0,0093
K+	0,8282	-0,3607	0,3009	0,1303	0,1785	0,0389	-0,1831	-0,0193	0,0316	0,0905
Mg++	0,4426	0,7729	-0,3008	-0,0785	0,1738	-0,2283	-0,1279	0,1064	0,0092	0,0084
Ca++	0,8901	0,2877	-0,0022	0,0499	-0,2402	-0,0151	0,2374	0,0117	-0,0570	0,0696
SiO2	0,7933	-0,1909	0,5006	0,1151	0,1535	0,1141	0,0974	0,1391	0,0587	-0,0386

Corrélation	s entre les varial	bles et les fa	cteurs :							
	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
c25°C	0,9707	-0,0474	0,0288	-0,1619	-0,1511	-0,0564	-0,0281	-0,0176	-0,0249	-0,0246
HCO3-	0,0166	0,5054	0,6551	-0,2663	0,4769	-0,0740	0,0562	-0,0870	-0,0249	-0,0099
F-	0,5832	-0,0534	-0,3023	0,6110	0,4159	0,0893	-0,0138	-0,0151	-0,1010	-0,0280
CI-	0,9180	-0,1423	0,0387	-0,2796	-0,2176	-0,0350	-0,0604	0,0099	-0,0649	-0,0193
NO3-	0,0488	0,7824	0,2792	0,2753	-0,3749	0,2801	-0,1098	-0,0211	0,0048	-0,0113
SO4	0,8682	0,1445	-0,2283	0,3508	-0,0359	-0,1429	0,0723	-0,0919	0,1204	-0,0190
Na+	0,9374	-0,2003	0,0467	-0,2226	-0,1391	-0,0247	-0,0705	-0,0482	-0,0082	-0,0423
NH4+	0,5067	0,1495	-0,5298	-0,5056	0,2826	0,3185	0,0359	-0,0150	0,0391	0,0093
K+	0,8282	-0,3607	0,3009	0,1303	0,1785	0,0389	-0,1831	-0,0193	0,0316	0,0905
Mg++	0,4426	0,7729	-0,3008	-0,0785	0,1738	-0,2283	-0,1279	0,1064	0,0092	0,0084
Ca++	0,8901	0,2877	-0,0022	0,0499	-0,2402	-0,0151	0,2374	0,0117	-0,0570	0,0696
SiO2	0,7933	-0,1909	0,5006	0,1151	0,1535	0,1141	0,0974	0,1391	0,0587	-0,0386

F5 et F1 - F2 et F3

Contribution	ns des variables	5 (%) :								
	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
c25°C	14,9079	0,1235	0,0605	2,4004	2,6720	1,1118	0,5379	0,6106	1,5685	3,2046
HCO3-	0,0044	14,0092	31,3826	6,4979	26,5956	1,9142	2,1466	14,8894	1,5670	0,5178
F-	5,3811	0,1566	6,6817	34,2008	20,2298	2,7932	0,1291	0,4501	25,7920	4,1525
CI-	13,3348	1,1115	0,1095	7,1635	5,5406	0,4290	2,4806	0,1916	10,6416	1,9875
NO3-	0,0376	33,5823	5,6995	6,9432	16,4419	27,4646	8,1974	0,8741	0,0593	0,6781
SO4	11,9248	1,1451	3,8121	11,2709	0,1510	7,1481	3,5585	16,6078	36,6618	1,9221
Na+	13,9031	2,2007	0,1592	4,5395	2,2646	0,2144	3,3828	4,5658	0,1680	9,5039
NH4+	4,0629	1,2265	20,5295	23,4216	9,3437	35,5110	0,8742	0,4415	3,8731	0,4638
K+	10,8523	7,1384	6,6207	1,5563	3,7275	0,5283	22,7930	0,7369	2,5227	43,4989
Mg++	3,0987	32,7669	6,6159	0,5644	3,5316	18,2511	11,1223	22,3023	0,2133	0,3792
Ca++	12,5347	4,5400	0,0003	0,2277	6,7460	0,0799	38,3266	0,2694	8,2135	25,7721
SiO2	9,9576	1,9993	18,3285	1,2136	2,7559	4,5543	6,4509	38,0604	8,7192	7,9196
Cosinus carr	és des variable	s :								
	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
c25°C	0,9422	0,0023	0,0008	0,0262	0,0228	0,0032	0,0008	0,0003	0,0006	0,0006
HCO3-	0,0003	0,2554	0,4291	0,0709	0,2274	0,0055	0,0032	0,0076	0,0006	0,0001
F-	0,3401	0,0029	0,0914	0,3733	0,1730	0,0080	0,0002	0,0002	0,0102	0,0008
CI-	0,8428	0,0203	0,0015	0,0782	0,0474	0,0012	0,0036	0,0001	0,0042	0,0004
NO3-	0,0024	0,6122	0,0779	0,0758	0,1406	0,0785	0,0121	0,0004	0,0000	0,0001
SO4	0,7537	0,0209	0,0521	0,1230	0,0013	0,0204	0,0052	0,0084	0,0145	0,0004
Na+	0,8787	0,0401	0,0022	0,0496	0,0194	0,0006	0,0050	0,0023	0,0001	0,0018
NH4+	0,2568	0,0224	0,2807	0,2557	0,0799	0,1015	0,0013	0,0002	0,0015	0,0001
K+	0,6859	0,1301	0,0905	0,0170	0,0319	0,0015	0,0335	0,0004	0,0010	0,0082
Mg++	0,1959	0,5973	0,0905	0,0062	0,0302	0,0521	0,0164	0,0113	0,0001	0,0001
Ca++	0,7922	0,0828	0,0000	0,0025	0,0577	0,0002	0,0563	0,0001	0,0032	0,0048
SiO2	0,6294	0,0364	0,2506	0,0132	0,0236	0,0130	0,0095	0,0193	0,0034	0,0015

Les valeurs en gras correspondent pour chaque variable au facteur pour lequel le cosinus carré est le plus grand

Coordonnées d	les observati	ons :								
Observation	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
Forage R'mil	-0,8312	0,5488	-0,1060	0,3072	-0,5458	-0,2026	0,1588	0,1976	0,3693	-0,0084
forage R'mila	-0,9813	0,1435	-0,1310	0,0773	0,0390	0,1075	0,0684	0,1765	0,1745	-0,1767
Forage Kais	0,1041	2,3362	0,8739	0,4038	-0,5268	0,1582	0,3369	-0,1918	0,1472	0,1780
Forage Bouh	-0,3911	3,7716	1,6261	-0,0325	-0,3444	0,0759	-0,7640	0,0756	0,2111	-0,0630
Source Djaar	6,8857	-1,1536	0,2687	-1,1450	-2,1385	-1,7819	0,0784	-0,0406	0,0781	-0,2059
Source Ain N	-1,7776	-0,3678	0,1432	-0,4309	0,1691	-0,2253	0,1201	0,0006	-0,0524	-0,0198
Source Taghi	-1,6009	0,2731	0,7896	-0,8467	0,7241	-0,7197	0,1216	0,0065	-0,0937	0,0734
Oued	-0,9840	-1,6662	-1,8430	1,8455	-0,3799	0,3218	-0,0073	0,1572	-0,4314	-0,1414
Oued Aimer	1,6317	0,2006	-2,3184	2,6776	0,1722	-1,0409	0,1662	-0,2512	0,1573	0,0841
Forage route	0,3987	-0,2559	-2,3463	1,1636	0,0586	-0,1964	-1,1661	-0,4197	0,1399	0,0996
O.El-Knif	4,7241	-1,9694	2,3941	1,5568	1,4169	0,3487	0,0883	0,3235	0,2214	0,1734
Source Bassi	4,7552	-1,4937	1,5222	2,0124	1,4040	0,2284	-0,1178	-0,1664	-0,2504	-0,0378
Puit plaine N	0,9055	1,3375	-0,1537	0,7308	-1,4774	-0,2022	0,8127	0,2529	-0,1687	0,2451
Puit plaine C	0,4265	0,7351	-0,4850	1,0687	-0,4620	0,8435	0,8987	-0,1675	0,2296	-0,1928
Source El-Ma	1,0699	3,4308	0,8809	0,5567	-0,8855	0,1173	-0,0759	-0,0148	-0,4764	-0,2699
Sonde Begua	1,6568	0,9336	1,1410	0,3735	-1,6880	0,7170	-0,8267	0,0102	-0,1657	0,2264
Source El-ha	0,8002	-1,1434	1,7279	-0,0413	0,8621	0,1024	-0,3498	-0,2621	-0,0177	-0,3026
Source hamr	0,4162	-0,6729	1,7098	-0,3707	0,7603	-0,1561	0,0785	0,3960	0,1129	0,0405
Oued 3Km A	-1,4405	-0,4940	0,2302	0,3676	-0,6291	0,6877	0,0722	-0,0630	-0,0855	0,1714
Oued 1Km A	-2,0695	-0,8337	-0,0257	-0,2976	-0,3695	0,1493	0,0924	-0,0516	0,0007	-0,0616
Forage Tamz	-1,6854	0,1497	0,3848	-0,5234	0,1699	-0,2197	-0,2146	0,1887	0,1051	-0,1266
O.Rharour	-1,1452	-0,3131	-0,5109	0,4548	-0,7939	0,0550	0,0612	0,1474	0,3444	0,0533
Source Cheli	-2,2344	-1,2110	-0,5906	-0,3015	-0,3759	0,2943	-0,2461	0,1965	0,1246	-0,0965
Source Djaar	7,6847	-0,6983	-1,8034	-3,3530	-0,3468	1,1855	0,0595	-0,1393	-0,0044	0,0938
Source Bassa	-1,5550	0,3047	0,4516	-0,9481	1,0473	-0,4723	-0,0284	-0,1236	-0,1491	0,0714
Source Ima la	-2,1342	-0,5989	-0,2031	-0,6690	0,1015	-0,2248	-0,2645	0,0416	0,0782	0,0186
Forage publi	1,4877	2,6484	-1,5290	-0,5088	2,5103	0,4848	0,3349	-0,1941	0,2451	-0,1338
Forage bouz	1,6079	1,3268	-2,6430	-0,3706	1,4998	-0,2843	-0,2120	0,7481	-0,3307	0,0386
Source ain h	-1,1324	0,4756	0,3550	-0,6258	0,8793	-0,5277	0,3418	-0,3375	-0,1620	0,1816
Source chélia	-2,2344	-1,2110	-0,5906	-0,3015	-0,3759	0,2943	-0,2461	0,1965	0,1246	-0,0965
Source Tirgir	-1,9461	-0,1763	0,0354	-0,9039	0,5344	-0,2023	-0,2236	-0,1913	-0,0562	0,1609
Source eau f	-2,1325	-1,1419	-0,0405	-0,0749	-0,6283	0,5122	0,2592	-0,1313	-0,1461	-0,0529
Source chauc	-2,1631	-1,2282	-0,0135	-0,0847	-0,6566	0,4542	0,1474	-0,0764	-0,0374	-0,0361
Source Ain si	-1,8452	-0,2735	0,5801	-0,6883	0,4671	-0,3528	0,3852	-0,1952	-0,2509	-0,0340
Oued Djmri	-2,2189	-1,0012	-0,0136	-0,4953	-0,2924	0,0119	0,1113	-0,1164	-0,0184	0,0696
O.Chandgou	-2,0519	-0,7120	0,2328	-0,5829	0,1006	-0,3406	-0,0505	0,0187	0,0331	0,0765