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Introduction and preliminaries

0.1 Introduction

Let Ω be an open and bounded subset of Rd. For a given real valued function u : Ω→ R

we denote the gradient and Hessian of u as Du : Ω→ Rd, D2u : Ω→ Rd×Rd respectively

and the Laplacian as ∆u : Ω→ R. The p−Bilaplacian

∆2
pu := ∆(|∆u|p−2∆u) = 0 (1)

is a nonlinear fourth order elliptic partial di�erential equation (PDE) which is a nonlinear

generalisation of the linear Bilaplacian ∆2u := ∆(∆u) = 0. This type of problems typically

arise from areas of elasticity, in particular, the nonlinear case for example can be used as

a modelisation for travelling waves in suspension bridges [10, 11]. The formal limit of the

p−Bilaplacian 1 as p→∞ is the ∞−Bilaplacian

∆2
∞u := (∆u)3|D(∆u)|2 = 0, (2)

obtained in [1]. Solutions to this problem called ∞−Biharmonic functions. The method

proposed in this work is based on C0−mixed �nite elements. Galerkin approach used to

build a scheme convergent to the weak solution of the p−Bilaplacian, in part three of [4]

it has been proven that the resulting approximations from the approach converge to the

∞−Biharmonic function as p→∞ and h→ 0 where h is the mesh parameter.

This work (after preliminaries) has divided into two chapters. In the �rst, we pose
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the problem and write it in its weak form, using techniques inspired from the proofs of

Theorems 2 and 3 in [12, Section 8.2] we prove the existence and uniqueness of a weak

solution. After that we prove some addtional results. In the second chapter we perform

the discretisation for �xed p and prove a certain stability bound. Finally, we conclude

our work with a certain error estimation.

0.2 Preliminaries

We give some proven results that will be used in our work, beginning by introducing the

Sobolev spaces

Lp(Ω) =

φ measurable :

∫
Ω

|φ|pdx <∞

 for p ∈ [1,∞) and

L∞(Ω) =

{
φ measurable : ess sup

Ω
|φ| <∞

}
,

W l,p(Ω) = {φ ∈ Lp(Ω) : Dαφ ∈ Lp(Ω), for |α| ≤ l} and H l(Ω) := W l,2(Ω),

which are equipped with the following norms and semi-norms:

||v||p
Lp(Ω)

: =

∫
Ω

|v|pdx for p ∈ [1,∞) and ||v||
L∞(Ω)

:= ess sup
Ω
|v|

||v||p
Wl,p(Ω)

: =
∑
pαp≤l

||Dαv||p
Lp(Ω)

|v|p
Wl,p(Ω)

: =
∑
pαp=l

||Dαv||p
Lp(Ω)

where α = {α1, ..., αd} is a multi-index (αi ∈ N, i = 1, d), |α| =d
i=1 αi and derivatives Dα

are understood in the weak sense.

W l,p
0 (Ω) := D(Ω)

W l,p(Ω)
=
{
φ ∈ W l,p(Ω) : ∃(un)n∈N ⊂ D(Ω), ||un − u||W l,p(Ω) → 0

}
=
{
φ ∈ W l,p(Ω) : φ|∂Ω = Dφ|∂Ω = 0

}
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where D(Ω) := C∞c (Ω) i.e. the space of in�nitely di�erentiable functions with compact

support in Ω.

C1(Ω) =
{
φ|Ω : φ ∈ C1(Rd) (Ω is bounded in Rd)

}
For a given function u : Ω→ R, the gradient of u is Du =

(
∂u
∂x1
, ..., ∂u

∂xd

)
and the Laplacian

is ∆u =
d∑
i=1

∂u
∂xi
.

In this work we are interested with the case where l = 2 and de�ne

W 2,p
g (Ω) := g +W 2,p

0 (Ω) = {φ ∈ W 2,p(Ω) : φ|∂Ω = g and Dφ|∂Ω = Dg},

for a prescribed function g ∈ W 2,∞(Ω). We have W 2,p
0 (Ω) ⊂ C1(Ω) and ||v||W 2,p

0 (Ω) ∼

||∆v||Lp(Ω) for v ∈ W 2,p
0 (Ω). We de�ne a larger space of W 2,∞

g (Ω) needed to �nd a

solution of the ∞−Bilaplacian as

Ŵ 2,∞
g (Ω) = {u ∈ ∩

p∈(1,∞)
W 2,p
g (Ω) : ∆u ∈ L∞(Ω)}.

For the p−Bilaplacian, the action functional is given as

L[u; p] =

∫
Ω

|∆u|pdx.

We then then look to �nd the minimizer over the space W 2,p
g (Ω) by L,that is, to �nd

u ∈ W 2,p
g (Ω) such that

L[u; p] = min
v∈W 2,p

g (Ω)
L[u; p].

Proposition 0.2.1 (Weak lower semicontinuity of L [4, Cor 2.3]). The action functional

L is weakly lower semi-continous over W 2,p
g (Ω). That is, given a sequence of functions

{uj}j∈N which has a weak limit u ∈ W 2,p
g (Ω), we have

L[u; p] ≤ lim
j→∞

inf L[uj; p].
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Remark 0.2.2 For a given function v ∈ Lp(Ω) and p, q > 1 such that 1
p

+ 1
q

= 1, we have

|| | v |p−1 ||Lq(Ω) = ||v||p−1
Lp(Ω)

Proposition 0.2.3 (Poincaré inequality). Let Ω be a bounded domain of Rd. For any

p ∈ [1,∞], there exists a positive constant C = C(Ω, p) such that

||u||Lp(Ω) ≤ C(Ω, p)||Du||Lp(Ω),

for all u ∈ W 1,p
0 (Ω).

Proposition 0.2.4 (Calderon-Zygmund estimate [3, Cor 9.10]). Let Ω be a bounded

domain of Rd. Then for any p ∈ (1,∞), there exists a positive constant C = C(d, p) > 0

such that

||D2u||Lp(Ω) ≤ C(d, p)||∆u||Lp(Ω),

for all u ∈ W 2,p
0 (Ω).

Theorem 0.2.5 (Hölder's inequality). Let (Ω,
∑
, µ) be a measure space and let p, q ∈

[1,∞] such that 1
p

+ 1
q

= 1. Then for any two measurable functions f, g : Ω → k where k

is the real or the complex �eld

||fg||L1(Ω) ≤ ||f ||Lp(Ω)||g||Lq(Ω).

Theorem 0.2.6 (ε-Young's inequality). For a, b, ε positive real numbers we have

ab ≤ 1

p
(εa)p +

1

q
(
b

ε
)q.

Corollary 0.2.7 [13, Cor 6.12]. In a re�exive Banach space X, every bounded sequence

has a weakly convergent subsequence.

De�nition 0.2.8 Let P : X → X be a linear operator on a vector space X. P is called

5



a projection operator if P 2 = P . When X is a Hilbert space with an inner product 〈., .〉 ,

a projection P is called an orthogonal projection if it satis�es 〈Px, y〉 = 〈x, Py〉 for all

x, y ∈ X.

De�nition 0.2.9 Let X be a real normed linear space. We say a sequence {xn}∞n=1 ⊂ X

converges weakly to an element x ∈ X, written xn
weakly→ x, if

f(xn)→ f(x)

for every bounded linear functional f ∈ X∗.

We need the followings in proving the existence and uniqueness of a weak solution to

the problem 1.1.

Let (V, ||.||) be a normed vector space, a continuous bilinear form a(., .) : V × V → R,

an element f ∈ V ∗ and a non empty subset U of V. with this data we associate an abstarct

minimization problem:  Find u ∈ U such that

J(u) = infv∈U J(v)
(3)

where the functional J : V → R is de�ned by

J : V → R

v → J(v) = 1
2
a(v, v)− f(v).

Theorem 0.2.10 [15, The 1.1.2]. An element u is the solution to the abstract minimiza-

tion problem 3 if and only if it satis�es the relations

 u ∈ U such that

a(u, v − u) ≥ f(v − u) ∀v ∈ U
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in the general case, or

 u ∈ U such that

a(u, v) ≥ f(v) and a(u, u) = f(u) ∀v ∈ U

if U is a closed convex cone with vertex 0, or

 u ∈ U such that

a(u, v) = f(v), ∀v ∈ U

if U is a closed subspace.

De�nition 0.2.11 [14, Def 10.5]. Let f : X → R∪{+∞}. Then f is uniformaly convex

with modulus1 φ : R+ → R+ ∪ {+∞} if φ is increasing, φ vanishes only at zero, and

∀x, y ∈ dom(f), α ∈]0, 1[

f(αx+ (1− α)y) + α(1− α)φ(||x− y||) ≤ αf(x) + (1− α)f(y).

If there exists β > 0 such that φ = β
2
|.|2, then f is strongly convex with constant β.

Proposition 0.2.12 [4, Prop 2.2] (coercivity of the action functional L). Suppose that

u ∈ W 2,p
0 (Ω) and f ∈ Lq(Ω), where 1

p
+ 1

q
= 1. We have that the action functional L[.; p]

is coercive over W 2,p
0 (Ω), that is,

L[u; p] ≥ C|v|p2,p − γ,

for some C≥ 0 and γ ≥ 0. Equivalently, we have that there exists a constant C>0 such

that

L[v; p] ≥ C|v|p2,p, ∀v ∈ W 2,p
0 (Ω).

1A modulus function is a function which gives the absolute value of a number or variable.
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Chapter 1

Approximation via the p-Bilaplacian

1.1 Posing the problem and Weak formulation

The Dirichlet problem for the p−Bilaplacian is, given g ∈ W 2,∞(Ω), to �nd u such that


∆2
pu := ∆(|∆u|p−2∆u) = 0, in Ω,

u = g, on ∂Ω,

Du = Dg on ∂Ω

(1.1)

Note that, for p = 2, the PDE reduces to the Bilaplacian ∆2u = 0. Multiplying the

equation by an element v lying in an appropriate space W 2,p
0 (Ω), and using integration

by parts formula of multivariable calculus and Green's �rst identity we get

∫
Ω

(|∆u|p−2∆u)∆vdx = 0

where A(u, v) :=
∫

Ω
(|∆u|p−2∆u)∆vdx is the associated semilinear form of the weak for-

mulation. Therefore, the problem 1.1 can be written in a weak form as: Find u ∈ W 2,p
g (Ω)

that satis�es

A(u, v) = 0, ∀v ∈ W 2,p
0 (Ω).

De�nition 1.1.1 (Weak solution). The problem 1.1 has a weak solution if there exists
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u ∈ W 2,p
g (Ω) such that

A(u, v) =

∫
Ω

(|∆u|p−2∆u)∆vdx = 0, ∀v ∈ W 2,p
0 (Ω).

u is called a weak solution of 1.1.

1.2 Existence and uniqueness of the solution

Our �rst result is the next theorem which assure the existence and uniqueness of a weak

solution for the problem 1.1. The proof techniques used to prove the theorem are a direct

extension of the proofs of Theorems 2 and 3 in [12, Section 8.2].

Theorem 1.2.1 (Existence and uniqueness of a weak solution) Let p > 11. The

problem 1.1 has a unique weak solution. That is, there exists a unique element u ∈ W 2,p
g (Ω)

such that ∫
Ω

(
|∆u|p−2∆u

)
∆vdx = 0, ∀v ∈ W 2,p

0 (Ω).

Proof. In view of Theorem 0.2.10, the problem 1.1 has a unique weak solution is

equivalent to there exists a unique minimizer to the action functional L over W 2,p
g (Ω),

that is, there exists a unique element u ∈ W 2,p
g (Ω) such that

L[u, p] = min
v∈W 2,p

g (Ω)
L[v, p].

Existence of a minimizer: Let b = infv∈W 2,p
g (Ω) L[v, p]. We will prove that there exists an

element u ∈ W 2,p
g (Ω) which satis�es L[u, p] ≤ b. Since this in turn implies L[u, p] = b. So

as u ∈ W 2,p
g (Ω) we have L[u, p] = b = infv∈W 2,p

g (Ω) L[v, p] = minv∈W 2,p
g (Ω) L[v, p].

Suppose b is �nite and let {vk}∞k=1 ⊂ W 2,p
g (Ω) be such that

L[vk, p]→ b, (1.2)

1Since for p > 1 the space W l,p(Ω) is a re�exive Banach space and this fact will be needed in the
proof.
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{vk}∞k=1 is called a minimizing sequence. It is clear that g ∈ W 2,p
g (Ω) since g ∈ W 2,∞(Ω).

So for a certain N ∈ N we have

||∆vk||pLp(Ω) = L[vk, p] ≤ L[g, p] = ||∆g||pLp(Ω), ∀n ≥ N (1.3)

and so

||∆vk||Lp(Ω) ≤ ||∆g||Lp(Ω), ∀n ≥ N (1.4)

therefore

sup
k
||∆vk||Lp(Ω) ≤ C. (1.5)

The coercivity of L gives

L[vk, p] ≥ C|vk|2,p, (1.6)

Since b is �nite, 1.2 and 1.6 imply

sup
k
||Dvk||Lp(Ω) <∞. (1.7)

Now let f be a �xed function in W 2,p
g (Ω). We have vk − f ∈ W 2,p

0 (Ω) since they are

identical on the boundary of Ω. Using Poincaré's inequality and 1.7 we see

||vk||Lp(Ω) = ||vk − f + f ||Lp(Ω) ≤ ||vk − f ||Lp(Ω) + ||f ||Lp(Ω)

≤ C||Dvk −Df ||Lp(Ω) + ||f ||Lp(Ω)

≤ C||Dvk||Lp(Ω) + ||Df ||Lp(Ω) + ||f ||Lp(Ω)

≤ C.

(1.8)

hence

sup
k
||vk||Lp(Ω) <∞. (1.9)

This estimate , 1.5 and 1.7 imply that {vk}∞k=1 is bounded in W 2,p(Ω). Consequently,

in view of Corollory 0.2.7 there exists a subsequence {vkj}∞j=1 ⊂ {vk}∞k=1 and a function
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u ∈ W 2,p(Ω) such that

vkj
weakly→ u in W 2,p(Ω).

Now we prove u ∈ W 2,p
g (Ω). We have W 2,p

0 (Ω) is a weakly closed subspace of W 2,p(Ω)

(see [12, Appendix D.4.]). For a �xed f ∈ W 2,p
g (Ω) as above, vk − f ∈ W 2,p

0 (Ω). Hence

v − f ∈ W 2,p
0 (Ω). Therefore u ∈ W 2,p

g (Ω) since f = g, Df = Dg on ∂Ω. Thus vkj
weakly→ u

in W 2,p
g (Ω).

Note that L[vkj , p]→ b, L is weakly lower semicontinuous (Proposition 0.2.1). Then,

L[u, p] ≤ lim
j→∞

inf vkj = b,

and so as we said above L[u, p] = b = infv∈W 2,p
g (Ω) L[v, p] = minv∈W 2,p

g (Ω) L[v, p]. Hence

there exists a minimizer to the action functional L over W 2,p
g (Ω).

Uniqueness of the minimizer: Suppose u1, u2 are two minimizers of L so we have,

u1, u2 ∈ W 2,p
g (Ω) and L[u1, p] = L[u2, p] = minv∈W 2,p

g (Ω) L[v, p]. Let k := u1+u2

2
(clearly

k ∈ W 2,p
g (Ω) since u1 = u2 , Du1 = Du2 on ∂Ω) and L̃ to denote the Lagrangian of L i.e.

L̃ : Rd × Ω → R

(c, x) → L̃(c, x) = |div(c)|p

clearly we have L[u, p] =
∫

Ω
L̃(Du(x), x)dx. From the uniform convexity of L̃ with respect

to the �rst variable we have the following (see [1, proof page 471])

L̃(b, x) +DcL̃(b, x).(a− b) +
θ

2
|a− b|2 ≤ L̃(a, x) (θ > 0, x ∈ Ω, a, b ∈ Rd). (1.10)

By putting b = Du1+Du2

2
, a = Du1 and integrate over Ω, we obtain

∫
Ω

L̃(
Du1 +Du2

2
, x)+DcL̃(

Du1 +Du2

2
, x).(

Du1 −Du2

2
)+
θ

2
|Du1 −Du2

2
|2dx ≤

∫
Ω

L̃(Du1, x)dx,
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so

L[k, p]+

∫
Ω

DcL̃(
Du1 +Du2

2
, x).(

Du1 −Du2

2
)dx+

θ

8

∫
Ω

|Du1−Du2|2dx ≤ L[u1, p] (1.11)

Similarly, set b = Du1+Du2

2
, a = Du2, we obtain

∫
Ω

L̃(
Du1 +Du2

2
, x)+DcL̃(

Du1 +Du2

2
, x).(

Du2 −Du1

2
)+
θ

2
|Du2 −Du1

2
|2dx ≤

∫
Ω

L̃(Du2, x)dx,

so

L[k, p]−
∫

Ω

DcL̃(
Du1 +Du2

2
, x).(

Du1 −Du2

2
)dx+

θ

8

∫
Ω

|Du1−Du2|2dx ≤ L[u2, p]. (1.12)

Now adding 1.11 to 1.12 and devide by 2, we get

L[k, p] +
θ

8

∫
Ω

|Du1 −Du2|2dx ≤
L[u1, p] + L[u2, p]

2
= L[u1, p]. (1.13)

Now in view of this, as L[u1, p] = L[u2, p] = minv∈W 2,p
g (Ω) L[v, p] ≤ L[k, p] we have L[k, p] =

L[u1, p]. From 1.13 we deduceDu1 = Du2 on Ω. Hence it follows u1 = u2 since u1 = u2 = g

on ∂Ω. Therefore L has a unique minimizer over W 2,p
g (Ω).

We have shown the existence and uniqueness of a minimizer to the action functional

L over W 2,p
g (Ω). Hence the problem 1 has a unique weak solution.

1.3 Convergence of a p−solutions to the ∞− Bihar-

monic function

Theorem 1.3.1 (The limit as p → ∞) Let (up)
∞
1 be a sequence of weak solutions up ∈

W 2,p
g (Ω) to the p−Bilaplacian. Then, there exists a subsequence (upj)pj of (up)

∞
1 con-

verging uniformly toghther with their derivatives to the ∞−Biharmonic function2 u∞ ∈
2We mean by ∞−Biharmonic function a solution of the equation ∆2

∞u = 0, in fact this solution is
unique see [1, 2].
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Ŵ 2,∞
g (Ω). That is,

upj → u∞ in C1(Ω) as j →∞.

Proof. Let up ∈ W 2,p
g (Ω) denote the weak solution of 1.1. up minimizes the energy

functional L[., p]. That is, ∀p ∈ [1,∞) we have

L[up, p] =

∫
Ω

|∆up|pdx

≤ L[u, p] =

∫
Ω

|∆u|pdx.

∀u ∈ W 2,p
g (e). As g ∈ W 2,∞(Ω), (the given data appearing in 1.1 ) so it is in W 2,p

g (Ω)

∀p ∈ [1,∞). In particular we have

L[up, p] =

∫
Ω

|∆up|pdx

≤ L[g, p] =

∫
Ω

|∆g|pdx, ∀p ∈ [1,∞),

so

||∆up||pLp(Ω) ≤ ||∆g||
p
Lp(Ω), ∀p ∈ [1,∞),

therefore

||∆up||Lp(Ω) ≤ ||∆g||Lp(Ω), ∀p ∈ [1,∞), (1.14)

Now �x k > d and take p ≥ k. Then, by taking r = p
k
and q = r

r−1
such that 1

r
+ 1

q
= 1

and using Holder's inequlity, we have

||∆up||kLk(Ω) =

∫
Ω

|∆up|kdx

≤ (

∫
Ω

1qdx)1/q(

∫
Ω

|∆up|pdx)1/r

≤ |Ω|
r−1
r ||∆up||kLp(Ω) = |Ω|1−

k
p ||∆up||kLp(Ω)

and so

||∆up||Lk(Ω) ≤ |Ω|
1
k
− 1

p ||∆up||Lp(Ω). (1.15)
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By using the triangle inequality, a double application of the Poincar inquality taking in

consider that up − g ∈ W 2,k
0 (Ω) (since up, g ∈ W 2,p

g (Ω) ⊂ W 2,k
g (Ω)) and the Calderon-

Zygmund estimate, we obtain

||up||Lk(Ω) ≤ ||up − g||Lk(Ω) + ||g||Lk(Ω)

≤ C||D2(up − g)||Lk(Ω) + ||g||Lk(Ω)

≤ C||∆up −∆g||Lk(Ω) + ||g||Lk(Ω)

≤ C(||∆up||Lk(Ω) + ||∆g||Lk(Ω) + ||g||Lk(Ω))

≤ C(||∆up||Lk(Ω) +
d∑
i=1

|| ∂2g
∂x2

i
||Lk(Ω) + ||g||Lk(Ω))

≤ C(||∆up||Lk(Ω) + ||g||W 2,k(Ω))

using 1.15, we have

||up||Lk(Ω) ≤ C(|Ω|
1
k
− 1

p ||∆up||Lp(Ω) + ||g||W 2,k(Ω)) (1.16)

With the same way we show that

||Dup||Lk(Ω) ≤ C(|Ω|
1
k
− 1

p ||∆up||Lp(Ω) + ||g||W 2,k(Ω))

In view of 1.14 we infer that

||up||W 2,k(Ω) ≤ C||g||W 2,k(Ω).

Hence

sup
p>k
||up||W 2,k(Ω) ≤ C.

This means that the sequence (up)
∞
1 is bounded in W 2,k(Ω), so in view of Corrolory 0.2.7

we can extract a sub-sequence (upj)pj from (up)
∞
1 and a function u∞ ∈ W 2,k(Ω) such that

upj
weakly→ u∞ in W 2,k(Ω) as j →∞
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and

||u∞||W 2,k(Ω) ≤ lim
j→∞

inf ||upj ||W 2,k(Ω)

≤ lim
j→∞

inf C||g||W 2,k(Ω)

by the weak lower semi-continuity of the ||.||Lk(Ω) . Since this true for any �xed k ≥ d,

it is clear that u∞ ∈ ∩k∈(d,∞)W
2,k(Ω). Further, by the weak lower semi-continuity of the

||.||Lk(Ω) and 1.15 we have ∆u∞ ∈ L∞(Ω) and hence u∞ ∈ Ŵ 2,∞
g (Ω), therefore concluding

the proof.

1.4 Mixed formulation of the p−Bilaplacian

The mixed formulation we propose is based on the fact that if φ(t) = |t|p−2t, the inverse

is de�ned as φ−1(t) = sign(t)|t|1/(p−1) = |t|q−2t. By putting an auxiliary variable w =

−|∆u|p−2∆u, we have

∆2
pu = ∆(|∆u|p−2∆u)

= −∆(−|∆u|p−2∆u)

= −∆w,

and

w = −|∆u|p−2∆u = −φ(∆u)

φ−1(w) = φ−1(−φ(∆u)) = −φ−1(φ(∆u)

|w|q−2w = −∆u.
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This enable us to reformulate the problem in the following mixed system:

 −∆u = |w|q−2w,

−∆w = 0.
(1.17)

The mixed formulation can be written in a weak form as: Find a pair (u,w) ∈ W 2,p
g (Ω)×

Lq(Ω) such that

 a(w,ψ) + b(u, ψ) = 0,

b(φ,w) = 0,
∀(ψ, φ) ∈ Lq(Ω)×W 2,p

0 (Ω), (1.18)

where the semilinear form a(., .) and the bilinear form b(., .) are given by

 a(w,ψ) =
∫

Ω
|w|q−2wψdx

b(u, ψ) =
∫

Ω
∆uψdx

. (1.19)

1.4.1 Existence and uniqueness of the solution

We have just seen that the problem 1 has been reformulated to the mixed form 1.17.

Althought we already know that the problem has a unique solution as a consequence

of Theorem 1.2.1, we will show that the solution of the mixed formulation satis�es the

following estimation ||∆u||Lp(Ω) + ||w||q−1
Lq(Ω) ≤ C||∆g||Lp(Ω). Since the result will be useful

hencefoth. We begin by showing the following result.

Proposition 1.4.1 (Inf-sup stability of b(., .) over W 2,p
0 (Ω)). For any u0 ∈ W 2,p

0 (Ω), the

bilinear form b(., .) satis�es the following inf-sup property:

||∆u0||Lp(Ω) ≤ C sup
0 6=v∈Lq(Ω)

b(u0, v)

||v||Lq(Ω)

.

Proof. Let u0 ∈ W 2,p
0 (Ω). Then, we have |∆u0|p−2∆u0 ∈ Lq(Ω). Therefore, by taking
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v =|∆u0|p−2∆u0 we have

b(u0, v) = ||∆u0||pLp(Ω)

and that

||v||Lq(Ω) = || p ∆u0 pp−1 ||Lq(Ω)

= ||∆u0||p−1
Lp(Ω),

in view of the property given in Remark 0.2.2. Hence we have

b(u0, v) = ||∆u0||pLp(Ω)

= ||∆u0||Lp(Ω)||v||Lq(Ω)

and

||∆u0||Lp(Ω) =
b(u0, v)

||v||Lq(Ω)

so

||∆u0||Lp(Ω) ≤ sup
0 6=v∈Lq(Ω)

b(u0, v)

||v||Lq(Ω)

which implies the desired result.

Theorem 1.4.2 (The mixed formulation is well posed). For every g ∈ W 2,∞(Ω), there

exists a unique pair (u,w) solving 1.18 that satis�es

||∆u||Lp(Ω) + ||w||q−1
Lq(Ω) ≤ C||∆g||Lp(Ω).

Proof. The existence and uniqueness of the solution is a direct consequence of The-

orem 1.2.1 since w is just an auxiliary variable depending on u. Now let u0 := u − g ∈
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W 2,p
0 (Ω), using Remark 0.2.2 we obtain

||∆u0||Lp(Ω) ≤ ||∆u||Lp(Ω) + ||∆g||Lp(Ω)

≤ || p w pq−2 w||Lp(Ω) + ||∆g||Lp(Ω)

≤ || p w pq−1 ||Lp(Ω) + ||∆g||Lp(Ω)

≤ ||w||q−1
Lq(Ω) + ||∆g||Lp(Ω).

(1.20)

Now by taking ψ = w and φ = u0 in 1.18. Then,

a(w,w) + b(u,w) = 0

b(u0, w) = 0

and in particular

a(w,w) + b(g, w) = 0.

This in turn implies ∫
Ω

|w|qdx = −
∫

Ω

∆gwdx.

Hence

||w||qLq(Ω) = −
∫

Ω

∆gwdx

≤
∫

Ω

|∆gw|dx

≤ ||∆g||Lp(Ω)||w||Lq(Ω)

by Holder's inquality, so

||w||q−1
Lq(Ω) ≤ ||∆g||Lp(Ω), (1.21)
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Using the fact that ||∆u||Lp(Ω) ≤ ||∆u0||Lp(Ω) + ||∆g||Lp(Ω) and 1.20, 1.21, we have

||∆u||Lp(Ω) + ||w||q−1
Lq(Ω) ≤ ||∆u0||Lp(Ω) + ||∆g||Lp(Ω) + ||∆g||Lp(Ω)

≤ ||w||q−1
Lq(Ω) + ||∆g||Lp(Ω) + 2||∆g||Lp(Ω)

≤ 4||∆g||Lp(Ω)

which implies the desired result.
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Chapter 2

Discretisation of the p-Bilaplacian

2.1 Introduction

In this chapter we exibit a �nite element discretisation to the mixed formulation of the

p-Bilaplacian using Galerkin approach. Let z be a conforming triangulation of Ω, that

is, z is a �nite collection satisfying the followings

(1) The elements of z are open simplexes i.e. segment for d = 1, triangle for d = 2,

tetrahedron for d = 3 ...etc.

(2) Given A,B ∈ z we have that A ∩B is a full lower-dimentional simplex i.e.

it is either ∅, a vertex, an edge, a face, or the whole of A and B (this happen

when A = B).

(3) ∪A∈zA = Ω.

Let ξ be the collection of common interfaces of the triangulation z and say c ∈ ξ if

c ⊂ int(Ω) and c ∈ ∂ξ if c ⊂ ∂Ω. The shape regularity constant of z is de�ned as follows

µ(S) := inf
A∈z

ρA
hA
,

where ρA is the radius of the largest ball included in A and hA is the diameter of A. An
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indexed family of triangulations {zn}n is called shape regular if

µ := inf
n
µ(zn) > 0.

Now let P k(z) to be the space of piecewise polynomials of degree k ≥ 2 over the trian-

gulation z, that is,

P k(z) = {φ : φ|A ∈ P k(A) ∀A ∈ z},

and we de�ne the �nite element space

V := P k(z) ∩ C0(Ω),

to be the space of continuous piecwise polynomial functions of degree k. For an arbitrary

scalar function v and vector function v we de�ne jump operators over an edge c = A1∩A2

as [v] = v|A1nA1 + v|A2nA2 , [v] = v|A1 .nA1 + v|A2 .nA2 . When c ∈ ∂ξ we understand

[v] = v|A.n∂Ω and [v] = v|A.n∂Ω.

Moreover, we de�ne the meshsize function h of z as follows

h : Ω→ R

x→ h(x) := maxA�x hA.

If there exists a constant C ≥ 0 such that maxx∈Ω h ≤ C minx∈Ω h the mesh is called a

quasi-uniform mesh. In what follows we assume that all triangulations are shape-regular

and quasi-uniform.

De�nition 2.1.1 (Ritz projection operators). We de�ne the Ritz projection operators R

and Neumann Ritz projection R through requiring

∫
Ω

D(Rv).Dφdx =

∫
Ω

Dv.Dφdx ∀φ ∈ V ∩H1
0 (Ω),

∫
Ω

D(Rw) ·Dψdx =

∫
Ω

Dw ·Dψdx ∀ψ ∈ V
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∫
Ω

Rwdx =

∫
Ω

wdx.

where Rv coincides with an appropriate interpolant of v on the boundary. These operators

satis�ng the following approximation propertie for a quasi-uniform meshe (see [5]): given

v ∈ W k+1,q(Ω), and k ≥ 2 we have

||v−Rv||Lq(Ω) +||h(Dv−D(Rv))||Lq(Ω) +(
∑
K∈S

||h2(∆v−∆(Rv))||qLq(K))
1/q ≤ Chk+1|v|k+1,q.

||v−Rv||Lq(Ω) +||h(Dv−D(Rv))||Lq(Ω) +(
∑
K∈S

||h2(∆v−∆(Rv))||qLq(K))
1/q ≤ Chk+1|v|k+1,q.

De�nition 2.1.2 (Mesh-dependent norms). We introduce the mesh-dependent Lp−and

W 2,p−norms to be

||wh||pLp
h(Ω)

: = ||wh||pLp(Ω) + ||h1/pwh||pLp(ξ)

||wh||pW 2,p
h (Ω)

: = ||∆hwh||pLp(Ω) + ||h1/p−1[Dwh]||pLp(ξ),

where ∆h denotes an elementwise Laplace operator.

2.2 Galerkin discretisation

The Galerkin discretisation of 1 is, to �nd (uh, wh) ∈ Vg × V such that

a(wh, ψ) + bh(uh, ψ) = 0 (2.1)

bh(φ,wh) = 0, ∀(ψ, φ) ∈ V × V0,

where Vg := {φ ∈ V : φ|∂Ω = Rg}, the bilinear form a(., .) is that of 1.19 and bh(., .) is a

consistent discretisation of b(., .) de�ned as follows

bh(uh, ψ) = −
∑
K∈S

∫
K

∆uhψdx+

∫
ξ

[Duh]ψds.

22



Notice that the method is equivalent to �nding (uh, wh) ∈ Vg × V such that

∫
Ω
p wh pq−2 whψ +Duh ·Dψdx =

∫
∂Ω
Dg · nψds∫

Ω
Dwh ·Dφdx = 0, ∀(ψ, φ) ∈ V × V0.

Hence the Ritz projection operator from De�nition 2.1.1 is the bh−orthogonal projection

onto Vg, that is, R : H1
g (Ω)→ Vg such that, for v ∈ H1

g (Ω)

bh(Rv − v, φ) = 0 ∀φ ∈ V0.

Remark 2.2.1 We de�ned the mesh-dependent norms as above to ensure the boundedness

property

|bh(uh, vh)| ≤ ||uh||W 2,p
h (Ω)||vh||Lq

h(Ω).

and to have ||.||Lp
h(Ω) ∼ ||.||Lp(Ω), ||.||W 2,p

h (Ω) ∼ ||.||W 2,p(Ω)
1.

2.3 Existence and uniqueness of the solution

Now we will prove an important estimation for uh and vh that will be used in proving a

certain error estimation in the next section. We need the following Lemma to prove the

result

Lemma 2.3.1 2 The bilinear form bh satis�es the following inf-sup property:

||Φ||W 2,p
h (Ω) ≤ C sup

06=vh∈V0

bh(Φ, vh)

||vh||Lq
h(Ω)

, ∀Φ ∈ V0.

Proof. See [4, page 10].

Theorem 2.3.2 (existence and uniqueness of solution to 2.1). There exists a unique pair

1See [4, Remark 3.4].
2Here the mesh is assumed to be quasi-uniform as we said in the beginning of this chapter. Otherwise,

we do not now if the result still true.
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(uh, wh) ∈ Vg × V solving 2.1. They satisfy the stability bound

||uh||W 2,p
h (Ω) + ||wh||q−1

Lq(Ω) ≤ C||∆g||Lp(Ω),

the right hand side is �nite since g ∈ W 2,∞(Ω).

Proof. existence and uniqueness the solution is that of Theorem 1.4.2. Now we begin

by noting that for ψ = wh and V0 � φ = uh,0 := uh −Rg in 2.1 we have

a(wh, wh) + bh(uh, wh) = 0,

bh(uh −Rg,wh) = 0.

by substraction, we see

a(wh, wh) + bh(Rg,wh) = 0.

Now, by de�nition, we have

||wh||qLq(Ω) = |bh(Rg,wh)|

≤ ||Rg||W 2,p
h (Ω)||wh||Lq

h(Ω),

≤ C||∆g||Lp(Ω)||wh||Lq(Ω).

using Remark 2.2.1 and Lemma 2.2.1 and so

||wh||q−1
Lq(Ω) ≤ C||∆g||Lp(Ω). (2.2)
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We also have

||uh,0||W 2,p
h (Ω) ≤ C sup

06=vh∈V0

bh(uh,0,vh)

||vh||Lq
h

(Ω)

≤ C

(
sup

06=vh∈V0

bh(uh,vh)
||vh||Lq

h
(Ω)

+ sup
06=vh∈V0

bh(Rg,−vh)
||vh||Lq

h
(Ω)

)
≤ C

(
sup

06=vh∈V0

bh(uh,vh)
||vh||Lq

h
(Ω)

+ sup
06=vh∈V0

bh(Rg,vh)
||vh||Lq

h
(Ω)

)
≤ C

(
sup

06=vh∈V0

−a(uh,vh)
||vh||Lq

h
(Ω)

+ sup
06=vh∈V0

bh(g,vh)
||vh||Lq

h
(Ω)

)
≤ C(|| p wh pq−1 ||Lp(Ω) + ||∆g||Lp(Ω))

≤ C(||wh||q−1
Lq(Ω) + ||∆g||Lp(Ω))

≤ C||∆g||Lp(Ω)

(2.3)

by the discrete inf-sup condition in Lemma 2.3.1 and the same argument as in the proof

of Theorem 1.4.2 and 2.2.

Since

||uh||W 2,p
h (Ω) ≤ ||uh,0||W 2,p

h (Ω) + ||Rg||W 2,p
h (Ω)

≤ C(||uh,0||W 2,p
h (Ω) + ||∆g||Lp(Ω))

≤ C||∆g||Lp(Ω)

(2.4)

by 2.3. Now 2.2, 2.4 imply the claimed result.

2.4 Error estimation (Main result)

Finally, we arrived to our main result which is proving some error estimation. First, we

state some technical properties that will be used in the theorem that follows.

Lemma 2.4.1 Let w ∈ Lp(Ω) and wh, vh ∈ V, for any p ≥ 2, there exist constants

(1) C1 > 0 such that

C1

||w − wh||2Lq(Ω)

||w||2−qLq(Ω) + ||wh||2−qLq(Ω)

≤ a(w,w − wh)− a(wh, w − wh). (2.5)
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(2) C2 > 0 such that

C2

∫
Ω

∣∣p w pq−2 w− p wh pq−2 wh
∣∣ |w − wh|dx ≤ a(w,w − wh)− a(wh, w − wh). (2.6)

(3) C3 > 0 such that

a(w,w−vh)−a(wh, w−vh) ≤ C3

(∫
Ω

∣∣|w|q−2w − |wh|q−2wh
∣∣ |w − wh|dx)1/p

||w−vh||Lq(Ω).

(2.7)

Theorem 2.4.2 (Error estimation). Let (u,w) ∈ W k+1,p
g (Ω) ×W k+1,q(Ω) be the unique

solution of 1.18 and (uh, wh) ∈ Vg × V be the �nite element approximation satisfying 2.1.

Then, we have the following estimate

||w−wh||Lq(Ω)+||u−uh||p−1

W 2,p
h (Ω)

≤ C(h
q
2

(k+1)|w|q/2
Wk+1,q(Ω)

+hk+1|w|Wk+1,q(Ω)+h
k−1|u|Wk+1,p(Ω)).

(2.8)

Proof. In view of 1.18 and 2.1 we have the following Galerkin orthogonality results

bh(φ,w − wh) = 0 ∀φ ∈ V0, (2.9)

a(w,ψ)− a(wh, ψ) + bh(u− uh, ψ) = 0 ∀φ ∈ V,

Now from the previous lemma we see

C1||w − wh||2Lq(Ω)

2(||w||2−qLq(Ω) + ||wh||2−qLq(Ω))
+
C2

2

∫
Ω

∣∣p w pq−2 w− p wh pq−2 wh
∣∣ p w − wh p dx ≤ a(w,w − wh)

− a(wh, w − wh).

(2.10)

Now for k ∈ V some approximation of w (k will be speci�ed later) and using the second
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equality of 2.9, we have

a(w,w − wh)− a(wh, w − wh) = a(w,w − k)− a(wh, w − k) + a(w, k − wh)− a(wh, k − wh)

= a(w,w − k)− a(wh, w − k)︸ ︷︷ ︸
=:I

+ bh(u− uh, wh − k)︸ ︷︷ ︸
=:II

.

(2.11)

We proceed to bound these terms (I, II) separately, starting with I.

Using the previous lemma and ε−Young's inequality, we have

a(w,w − k)− a(wh, w − k) ≤ C3

(∫
Ω
|p w pq−2 w− p wh pq−2 wh| p w − wh p dx

)1/p ||w − k||Lq(Ω),

≤ εp

p

∫
Ω
|p w pq−2 w− p wh pq−2 wh| p w − wh p dx+

Cq
3

qεq
||w − k||qLq(Ω).

By choosing ε =
(
C2p

2

)1/p
, we obtain

I = a(w,w−k)−a(wh, w−k) ≤ C2

2

∫
Ω

∣∣p w pq−2 w− p wh pq−2 wh
∣∣ p w−wh p dx+C(q)||w−k||qLq(Ω).

(2.12)

ε picked in a way where the �rst term of the right hand side of 2.12 will be simpli�ed with

the second term of the left hand side of 2.10.

To estimate II we choose k such that

bh(φ, k) = 0 ∀φ ∈ V0, (2.13)

3. Now the de�nition of wh from 2.1 and 2.13 imply

bh(φ,wh − k) = 0 ∀φ ∈ V0,

3The Neumann Ritz projection operator Rw given in De�nition 3.1 satisfying this requirement.
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and so

bh(u− uh, wh − k) = bh(u− uh, wh − k)− bh(R(u− uh), wh − k)

= bh(u− uh −R(u− uh), wh − k)

= bh(u−Ru,wh − k) + bh(Ruh − uh, wh − k)

= bh(u−Ru,wh − k).

Using this, and the boundedness of bh from Remark 2.2.1, we obtain

II = bh(u− uh, wh − k) = bh(u−Ru,wh − k)

≤ ||u−Ru||W 2,p
h (Ω)||wh − k||Lq

h(Ω)

≤ C||u−Ru||W 2,p
h (Ω)||wh − k||Lq(Ω)

≤ C

4ε
||u−Ru||2

W 2,p
h (Ω)

+ ε||wh − k||2Lq(Ω) (2.14)

by Remark 2.2.1 ||.||Lp
h(Ω) ∼ ||.||Lp(Ω) and applying Young's inequality after multiplication

by C√
2ε

√
2ε
C

= 1. Now applying triangular and Young's inequalies to the second term of the

right hand side of 2.14, we see

ε||wh − k||2Lq(Ω) ≤ ε(||w − wh||Lq(Ω) + ||w − k||Lq(Ω))
2

≤ ε(||w − wh||2Lq(Ω) + ||w − k||2Lq(Ω) + 2||w − wh||Lq(Ω)||w − k||Lq(Ω))

≤ ε(||w − wh||2Lq(Ω) + ||w − k||2Lq(Ω) + ||w − wh||2Lq(Ω) + ||w − k||2Lq(Ω))

≤ 2ε(||w − wh||2Lq(Ω) + ||w − k||2Lq(Ω)).

(2.15)

2.14 and 2.15 imply

II = bh(u−uh, wh−k) ≤ C

4ε
||u−Ru||2

W 2,p
h (Ω)

+ 2ε(||w−wh||2Lq(Ω) + ||w−k||2Lq(Ω)). (2.16)

Substituting 2.12 and 2.16 into 2.10 bearing in mind 2.11 and taking ε small enough we
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obtain

||w − wh||2Lq(Ω) ≤ C(||w − k||qLq(Ω) + ||u−Ru||2
W 2,p

h (Ω)
+ ||w − k||2Lq(Ω)), (2.17)

this allows to us to use the approximability of R and R and concluding the proof for the

auxiliary variable.

Now we show a bound concerning the primal variable i.e. we bound the second term

appearing in the left hand side of 2.8. Beginning with the following: In view of the

de�nition of R and Galerkin orthogonality we note that

0 = a(w, φ)− a(wh, φ) + bh(u− uh, φ)

= a(w, φ)− a(wh, φ) + bh(Ru− uh, φ)

∀φ ∈ V0. Using this, inf-sup property from Lemma 2.3.1 and the equivalence of the Lq-

norm and its discrete counterpart. we obtain

||Ru− uh||W 2,p
h (Ω) ≤ sup

06=φ∈V0

bh(Ru−uh,φ)
||φ||

L
q
h

(Ω)

= sup
06=φ∈V0

a(wh,φ)−a(w,φ)
||φ||

L
q
h

(Ω)

≤ C3 sup
06=φ∈V0

(
∫
Ω||w|q−2w−|wh|q−2wh||w−wh|dx)

1/p
||φ||Lq(Ω)

||φ||
L
q
h

(Ω)

≤ C3C
(∫

Ω
||w|q−2w − |wh|q−2wh| |w − wh|dx

)1/p
,

(2.18)

Now Lemma 2.4.1 and ε−Young's inequality giving us

C2

∫
Ω

∣∣p w pq−2 w− p wh pq−2 wh
∣∣ |w − wh|dx ≤ a(w,w − wh)− a(wh, w − wh)

≤ C3

(∫
Ω

∣∣|w|q−2w − |wh|q−2wh
∣∣ |w − wh|dx)1/p

× ||w − wh||Lq(Ω)

≤ εp

p

∫
Ω

∣∣|w|q−2w − |wh|q−2wh
∣∣ |w − wh|dx

+
Cq

3

qεq
||w − wh||qLq(Ω). (2.19)
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let ε = (pC2

2
)1/p, so

∫
Ω

∣∣p w pq−2 w− p wh pq−2 wh
∣∣ |w − wh|dx ≤ C||w − wh||qLq(Ω). (2.20)

By substituting 2.20 into 2.18 we get

||Ru− uh||W 2,p
h (Ω) ≤ C||w − wh||q/pLq(Ω).

The result follows from the fact

||u− uh||W 2,p
h (Ω) = ||u−Ru+Ru− uh||W 2,p

h (Ω)

≤ ||Ru− u||W 2,p
h (Ω) + ||Ru− uh||W 2,p

h (Ω)

and using the approximation properties of the Ritz projection, concluding the proof.
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