الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي والبحث العلمي

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Mémoire de Master

Présenté à l'Université 8 Mai 1945 de Guelma Faculté des Sciences et de la Technologie Département de : Génie Civil & Hydraulique Spécialité : Génie Civil Option : GEOTECHNIQUE

Présenté par : SOLTANI El Alia

Thème : Facteurs influençant la capacité portante des fondations renforcées par géosynthétiques (approche expérimentale et modélisation numérique).

Sous la direction de : Dr. LAFIFI Brahim

Juillet 2021

Remerciement

En tout premier lieu, je remercie le bon dieu, tout puissant, de m'avoir donné la force, le courage, la volonté et la patience de mener à terme le présent travail, ainsi que l'audace pour dépasser toutes les difficultés.

Je tiens à exprimer mes profondes gratitudes à mon encadreur « Mr. LAFIFI Brahim »

pour tous leurs aides et les nombreux conseils éclairés qu'ils me ont cessé de nous prodiguer, pour leurs disponibilité et leurs encouragements afin de réaliser ce travail.

Mes vifs remerciements les plus sincères adressent aux Membres de jury pour avoir bien voulu juger ce travail.

J'exprime mes sincères remerciements aux membres du laboratoire L.N.H.C.

Je tiens à remercier aussi toutes les personnes qui ont apporté leur aide de prés ou de loin.

Remerciement

Papa et maman, il est le temps de vous remercier

Merci

De m'avoir donné la vie,

De m'avoir appris à surmonter mes peurs et d'être là quand cela est nécessaire,

De m'obliger à faire quelque chose pour mon bien,

De prendre toujours soin de moi,

Pour vos énormes câlins, vos appels et vos messages opportuns, pour toutes les conversations du matin, du soir et de nuit.

De m'aider pour tout, depuis que je suis née, jusqu'aujourd'hui

Merci papa de m'avoir appris que l'amour est la plus grande force qu'excite au monde

Merci maman pour m'avoir montré comment résoudre les problèmes et se tenir prêt à toutes éventualités

De m'avoir appris les limites à ne pas dépasser

De croire en moi, de me valoriser, de m'avoir faite découvrir qui j'étais et de me rendre heureuse

Merci d'être les meilleures personnes au monde, d'être les meilleurs parents qu'une fille puisse avoir

Merci pour tout !

Dédicace

Je dédie ce modeste travail à mes très chers parents pour leur aide et leur soutien tout au long de mes études, et qu'ont fait de moi ce que je suis aujourd'hui et j'espère qu'un jour je serai capable de leur donner au moins le minimum car quoiqu'on fasse on arrivera jamais à leurs rendre tous.

> A mes très chères sœurs Hadil, Hadjer, Malak et Maissoune

A toutes mes amies de prés et de loin A tous ceux qu'ils m'ont appris une lettre

Résumé

Les sols à faible portance, posent de réels problèmes pour la construction des ouvrages de génie civil (tassements différentiels importants). Actuellement il existe de nombreuses solutions pour améliorer la qualité de ces sols dont les techniques de renforcement par géosynthétiques. L'objectif de ce travail traite l'amélioration de la capacité portante des fondations superficielles, en utilisant une inclusion de renforcement de type géosynthétiques. Pour atteindre cet objectif, un modèle réduit au laboratoire sera confectionné, le sol testé est un sable de dune de densité relative variable. Pour mieux comprendre le comportement de ce type de sol renforcé, une série d'expériences sera réalisée, en variant les paramètres influençant la capacité portante, tels que: la profondeur de la première couche de renforcement, la longueur des couches de renforcement, et leur nombre. Ensuite, la validation de cette étude expérimentale sera achevée par la modélisation numérique des modèles expérimentaux, en utilisant le logiciel par éléments finis Plaxis et la comparaison des résultats expérimentaux et ceux obtenus par modélisation. Il ressort de cette étude, que le paramètre profondeur de la première couche de renforcement est le plus influençant sur la capacité portante des cas étudiés.

Mots Clés: renforcement, capacité portante, modèle réduit, semelles, géosynthétiques, modélisation, Plaxis.

Abstract

Soils with low bearing capacity pose real problems for the construction of civil engineering structures (significant differential settlements). Currently, there are many solutions to improving the quality of these soils, including geosynthetic reinforcement techniques. The objective of this work deals with improving the bearing capacity of shallow foundations, using the inclusion of geosynthetic type reinforcement. To achieve this objective, a reduced model in the laboratory will be made; the soil tested is dune sand of variable relative density. To better understand the behavior of this type of reinforced soil, a series of experiments will be carried out, varying the parameters influencing the bearing capacity, such as: the depth of the first reinforcement layer, the length of the reinforcement layers, and their number. Then, the validation of this experimental study will be completed by the numerical modeling of the experimental results and those obtained by modeling. It emerges from this study that the depth parameter of the first reinforcement layer is the most influencing on the bearing capacity of the cases studied.

Keywords: reinforcement, load-bearing capacity, reduced model, footings, geosynthetics, modeling, Plaxis.

ملخص

تشكل التربة ذات القدرة المنخفضة على التحمل مشكلة حقيقية لبناء هياكل الهندسة المدنية (تكدسات ترابية معتبرة). يوجد حاليًا العديد من الحلول لتحسين جودة هذه التربة بما في ذلك تقنيات تقوية التربة الجيوسنتيتيك. يتعامل الهدف من هذا العمل مع تحسين قدرة التحمل للأساسات السطحية ، باستخدام الجيوسنتيتيك. لتحقيق هذا الهدف ، سيتم عمل نموذج مصغر في المختبر ، التربة التي تم اختبار ها هي الكثبان الرملية ذات الكثافة النسبية المتغيرة. لفهم سلوك هذا النوع من التربة المقواة بشكل أفضل ، سيتم إجراء سلسلة من التجارب ، مع تغيير المعلمات التي تؤثر على قدرة التحمل ، مثل: عمق طبقة التعزيز الأولى ، وطول طبقات التعزيز ، وعددها . ثم يتم التحقق من صحة هذه الدراسة التجريبية من خلال النمذجة العددية للنماذج التجريبية ، باستخدام البرنامج بواسطة العناصر المحدودة بلاكسيس ومقارنة النتائج التجريبية وتلك التي تم الحصول عليها عن طريق النمذجة. يتضح من هذه الدراسة أن معامل العمق التسليح المتواز على قدرة التحمل ، مثل: عمق طبقة النماذج التجريبية ، باستخدام البرنامج بواسطة العناصر المحدودة بلاكسيس ومقارنة النتائج التجريبية وتلك التي تم الحصول عليها عن طريق النمذجة. يتضح من هذه الدراسة أن معامل المولى هو الأكثر تأثيراً على قدرة التحمل الحالات المدوسة.

الكلمات المفتاحية: التعزيز، القدرة على التحمل، النموذج المخفض، القواعد، الجيوسنتيتيك، النمذجة، البلاكسيس.

Table des matières

Résumé	Ι
Abstract	II
ملخص	III
Table des matières	IV
Liste des symboles	VIII
Liste des figures	Х
Liste des tableaux	XIV
Introduction générale	1

CHAPITRE I : Capacité portante des fondations superficielles

I.1.Introduction	4
I.2.Les fondations superficielles	4
I.2.1.Définition	4
I.1.2. Principaux types de fondations superficielles	5
I.2.2. Fonctionnement des fondations superficielles	6
I.2.2.1. Comportement d'une semelle chargée	6
I.2.2.2. Mécanismes de rupture d'une fondation superficielle	7
I.2.2.1.Types de rupture dans le sol à une charge ultime	8
I.3. Calculs de la capacité portante des fondations superficielles	10
I.3.1. Définition de la capacité portante	10
I.3.2. Détermination de la contrainte limite(ou de rupture)	11
I.3.2.1. Détermination de q_l à partir des essais de laboratoire (méthode " φ -c")	11
I.3.2.2. Méthodes pressiométrique et pénétrométrique	13
I.3.2.2.1. Calcul de la capacité portante à partir de l'essai au pressiomètre Ménard	13
I.3.2.2.2. Calcul de la capacité portante à partir de l'essai de pénétration statique	17
I.4. Conclusion	19

CHAPITRE II : Renforcement des sols de fondation par géosynthétiques

II.1. Introduction	21
II.2. Généralités sur les géosynthetiques	21
II.3. Différentes familles des géosynthetiques	24
II.3.1. Géotextiles	24
II.3.2. Les tricotes	24
II.3.3. Les tissés	24
II.3.4. Les non tissés	25
II.3.5. Géogrilles	25
II.3.6. Géocomposites	26
II.3.7. Géosynthétiques étanches	27
II.3.8. Produits apparentés	27
II.4. Différentes fonctions des géosynthetiques	28
II.4.1. Séparation	28
II.4.2. Filtration	28
II.4.3. Protection	28
II.4.4. Renforcement	29
II.4.5. Drainage	29
II.4.6. Anti-érosion	29
II.4.7. Étanchéité	30
II.5. Caractérisation des géosynthetiques de renforcement	30
II.5.1. Résistance en traction d'un géosynthétique	30
II.5.2. Caractéristiques de cisaillement à l'interface sol/géosynthétique	30
II.5.3. Caractérisation du fluage d'un géosynthétique	31
II.6. Conclusion	31

CHAPITRE III : Caractérisation du sol d'étude et performances expérimentals

III.1. Introduction	33
III.2. Paramètres a identifié	33

III.3. Classification géotechnique des sols	33
III.3.1. Classification élémentaire	34
III.3.1.1. Classification basée sur la granulométrie	34
III.3.1.2. Classification triangulaire	34
III.3.2. Classification (USCS/LCPC)	35
III.3.3. Classification GTR	36
III.3.4. Classification AASHTO	38
III.4. Essais d'identification au laboratoire	39
III.4.1 La teneur en eau (NF P94-050)	39
III.4.2. Analyse granulométrique (NF P94-056)	40
III.4.3. La masse volumique des particules solides « Méthode du pycnomètre à eau » (NF P94-054)	42
III.4.4. La masse volumique minimale et maximale (NF P94-059)	43
III.4.4.1. Détermination de la masse volumique minimale	43
III.4.4.2. Détermination de la masse volumique maximale	44
III.4.5. L'Equivalent de sable (NF P18-597)	45
III.4.6. L'Essai œdométrique (NF P94-090-1)	48
III.5. Conclusion	53

CHAPITRE IV : Présentation et interprétation des résultats

IV.1. Introduction	55
IV.2. Méthodologie expérimentale	55
IV.3. Présentation du modèle physique	55
IV.3.1. Réalisation du modèle expérimental	55
IV.3.1.1. propriétés du sol de fondation	56
IV.3.1.2. Modèle de semelles	57
IV.3.1.3Renforcement par géosynthétiques	57
IV.4. Plan d'expérience	58
IV.5. Résultats et interprétation	61
IV.5.1 Influence du nombre de couches de renforcement	63
IV.5.2 Influence de la longueur de renforcement	66
IV.5.3. L'influence de la profondeur du renforcement	69

IV.6. Conclusion

CHAPITRE V : Modélisation numérique et validation des résultats expérimentaux

V.1. Introduction	74
V.2. Lois de comportement utilisé dans PLAXIS	74
V.3. Modèle de Mohr-coulomb	74
V.3.1. Module de Young	75
V.3.2. Coefficient de poisson	75
V.3.3. Angle de frottement	76
V.3.4. La cohésion	76
V.3.5. L'angle de dilatance	76
V.3.6. Paramètres avancés	77
V.4. Procédure de la simulation numérique	77
V.4.1. Présentation du cas étudié	77
V.4.2. Entrée des caractéristiques générales	79
V.4.3. Calculs	81
V.4.4 Résultats	83
V.5. Influence des paramètres de renforcement	85
V.5.1. Influence du nombre de couches de renforcement (N)	85
V.5.2. Influence de la profondeur des couches de renforcement (U)	87
V.6. Conclusion	88

72

Liste des symboles

- **B** Largeur de la fondation
- L Longueur de la fondation
- **D** Encastrement des fondations
- A Surface de la fondation
- **S** Le tassement de la fondation
- q_l la charge limite de la semelle
- q_a La contrainte admissible
- q_0 La contrainte totale verticale au niveau de la base de la fondation
- *q_c* la résistance de pointe du pénétromètre statique
- *q_{ce}* La résistance de pointe équivalente
- *p*_{*l*} la pression limite du pressiomètre Ménard
- *p*^{*}_{*le*} La pression limite nette équivalente
- *f*_s Coefficient de sécurité
- γ_1 Le poids volumique du sol sous la base de la fondation
- γ_2 Le poids volumique du sol latéralement à la fondation
- *Nc* Facteur de capacité portante, terme de cohésion
- *Nq* Facteur de capacité portante, terme de profondeur
- Ny Facteur de capacité portante, terme de surface
- S_{γ} Coefficients de forme de la semelle, terme de cohésion
- S_q Coefficients de forme de la semelle, terme de profondeur
- S_c Coefficients de forme de la semelle, terme de surface
- *c* La cohésion du sol
- φ L'angle de frottement interne du sol
- Ψ L'angle de dilatance
- *k*_{*p*} Facteur de portance pressiométrique
- *k_c* Facteur de portance pénétrométrique
- De Hauteur d'encastrement équivalente
- W La teneur en eau
- C_c Coefficient de courbature

- Cu Coefficient d'uniformité
- ρ_s La masse volumique des particules solides
- ρ_w La masse volumique d'eau
- $\rho_{d min}$ la masse volumique minimale
- $\rho_{d max}$ la masse volumique maximale
 - **ES** l'equivalat de sable
 - Dr La densité relative
 - ρ_d La masse volumique sèche
 - ρ_h la masse volumique humide
 - *Eeod* Le module oedomètrique
 - **B** Largeur des nappes
 - N Nombre des nappes de renforcement
 - U La distance entre la base de la fondation et la première nappe
 - **S** L'espacement entre les nappes de reforcement
 - **6** Contrainte normale

Liste des figures

CHAPITRE I : Capacité portante des fondations superficielles

Figure I.1: Fondation superficielle.	4
Figure I.1 : Semelle filante.	5
Figure I.2: Semelle isolée.	6
Figure I.3: Fondation de type radier.	6
Figure I.4: Chargement d'une semelle superficielle.	7
Figure I.5: Schéma de rupture du sol sous une fondation superficielle.	8
Figure I.6: Mécanisme général de rupture.	8
Figure 7: Mécanisme de cisaillement localisé.	9
Figure I.8: Rupture par poinçonnement.	10
Figure I.9: Schématisation de l'évolution des déplacements verticaux Sous une fondation.	11
Figure I.11 : Définition de la pression limite nette p_{le}^* équivalente dans le cas d'une couche porteuse homogène.	16
Figure I.12 : Définition de l'encastrement équivalent d'une fondation superficielle.	16
Figure I.13 : Définition de la résistance de pointe(ou de cône) équivalente pour les fondations superficielles et profondes.	18

CHAPITRE II : Renforcement des sols de fondation par géosynthétique

Figure II.1 : Géotextile tricoté.	24
Figure II.2 : Géotextile tissés.	25
Figure II.3 : Géotextile non tissé.	25
Figure II.3 : Géogrilles uniaxiale et biaxiale.	26
Figure II.4 : Géocomposites.	27
Figure II.5 : Exemple de géomembranes.	27
Figure II.6 : renforcement des sols fondation par géosynthétique.	29

CHAPITRE III : Caractérisation du sol d'étude et performance expérimental

Figure III.1: Classification triangulaire des sols.	35
Figure III.2 : Classification des sols fins selon le système USCS/LCPC.	36
Figure III.3: Classification routière selon le GTR.	37
Figure III.4: Tableau de classification AASHTO.	39
Figure III.5: Analyse granulométrique par tamisage.	40
Figure III.6: Courbe granulométrique du sable.	41
Figure III.7: Essai pycnomètre à l'eau.	42
Figure III.8: Détermination de la masse volumique minimale.	44
Figure III.9: Détermination de la masse volumique maximale.	45
Figure III.10: Essai équivalant de sable.	47
Figure III.11: Cellule ouverte et cellule fermée, bague œdométrique standard.	48
Figure III.12: Courbe de compressibilité pour le sable lâche.	51
Figure III.13: Courbe de compressibilité pour le sable moyen.	52
Figure III.14: Courbe de compressibilité pour le sable dense.	52

CHAPITRE IV : Présentation et interprétation des résultats

Figure IV.1: photos du modèle expérimental.	56
Figure IV.2: photos des modèles de semelles utilisés dans les essais.	57
Figure IV.3: photos des géosynthétiques utilisés dans les essais.	58
Figure IV.4: Technique de remplissage du box du modèle par le sable sur des couches de 10cm d'épaisseur.	60
Figure IV.5: Dispositif expérimental utilisé dans les deux cas de semelles.	60
Figure IV.6: Capacité portante du sol non renforcé.	61
Figure IV.7: Influence du nombre de couches sur la capacité portante en fonction du rapport (S/B), a- semelle carrée avec géogrille, b- semelle circulaire avec géotextile (a- U=0.25B; L=9B, b-U=0.25D; L=9D).	64
Figure IV.8: Influence du nombre de couches sur la capacité portante en fonction du rapport (S/B), a- semelle carrée avec géogrille, b- semelle circulaire	68

avec géotextile (a- U=0.5B; L=7B,b- U=0.5D; L=7D).

Figure IV.9: Influence du nombre de couches sur la capacité portante en 66 fonction du rapport (S/B), semelle carrée avec U=0.75B; L=5B.

Figure IV.10: Influence de la longueur des couches de renforcement sur la capacité portante en fonction du rapport (S/B), a- semelle carrée avec géogrille, b- semelle circulaire avec géotextile (a- U=0.25B;N=2, b-U=0.25D; N=2).

Figure IV.11: Influence de la longueur des couches de renforcement sur la capacité portante en fonction du rapport (S/B), a- semelle carrée avec géogrille, b- semelle circulaire avec géotextile (a- U=0.75B; N=1 b-U=0.75B; N=3).

Figure IV.12: Influence de la profondeur des couches de renforcement sur la 70 capacité portante en fonction du rapport (S/B), a- semelle carrée, b- semelle circulaire (a- N=3;L=5B b- N=3; L=5D).

Figure IV.13: Influence de la profondeur des couches de renforcement sur la 71 capacité portante en fonction du rapport (S/B), (a- N=2; L=7D b- N=3; L=9D).

CHAPITRE V : Modélisation numérique et validation des résultats expérimentaux

Figure V.1 : Fenêtre des paramètres de Mohr-Coulomb.	71
Figure V.2 : Définition du module à 50% de la rupture.	72
Figure V.3 : Fenêtre des paramètres avancés du modèle Mohr-Coulomb.	73
Figure V.4 : Géométrie du problème pour le sol non renforcé.	74
Figure V.5 : Géométrie du problème pour le sol renforcé.	74
Figure V.6 : Maillage avant le calcul.	76
Figure V.7 : Valeurs des contraintes initiales.	77
Figure V.8 : Menu général de calcul.	78
Figure V.9 : Valeurs de déplacement imposé.	78
Figure V.10 : Fenêtre d'évolution de calcul.	79
Figure V.11 : Validation du modèle numérique par les résultats expérimentaux.	80
Figure V.12 : Résultats numériques et expérimentaux de la semelle renforcée par géogrille. (a- L=5D; N=1, b-U= L=7D; N=2).	81
Figure V.13 : Influence du nombre de couches de renforcement sur la capacité portante. (a- U=0.25D;L=5D, b-U=0.25D; L=9D).	82
Figure V.14 : Influence du nombre de couches de renforcement sur la capacité portante. (a- U=0.5D; L=7D, b- U=0.75D; L=9D).	83

Figure V.15 : Influence de la profondeur des couches de renforcement sur la 84 capacité portante. (a- N=1; L=5D, b- N=1; L=9D).

Liste des tableaux

CHAPITRE I : Capacité portante des fondations superficielles

Tableau I.1 : coefficients de la capacité portante.	12
Tableau I.2 : facteur de la capacité portante suivant DTU. 13.12.	13
Tableau I.3: Définition des catégories conventionnelles des sols.	14
Tableau I.4: Facteur de portance pressiométrique (fascicule 62-V, 1993).	15
Tableau I.5 : Facteur de portance pénétrométrique (fascicule 62-V, 1993).	17
Tableau I.6: Résultats à partir des essais in-situ.	19

CHAPITRE II : Renforcement des sols de fondation par géosynthetique

Tableau II.1: Rôles et appl	ications des géosynthétiques.	23
-----------------------------	-------------------------------	----

CHAPITRE III : Caractérisation du sol d'étude Et performance expérimental

Tableau III.1: Dénomination des fractions granulaires des particules de sols.	34
Tableau III.2: Dénomination des sols fins calcaires.	36
Tableau III.3: Classification routière selon le GTR.	37
Tableau III.4: Définition des classes de sols selon le système AASHTO.	38
Tableau III.5: Calcule de la teneur en eau.	40
Tableau III.6: Calcule du pourcentage passant cumulé.	41
Tableau III.7: Calcule de la masse volumique minimale.	44
Tableau III.8: Calcul de la masse volumique maximale.	45
Tableau III.9: Calcul de l'equivalat de sable.	47
Tableau III.10: Calcule de la masse de l'échantillon.	49
Tableau III.11: Calcul de e ₀ pour sable lâche.	50
Tableau III.12: Calcul de e_0 pour sable moyen	50

Tableau III.13: Calcul de e ₀ pour sable dense.	51
Tableau III.14: Calcule du module oedomètrique.	53

CHAPITRE IV : Présentation et interprétation des résultats

Tableau IV.1 : Paramètres géotechniques du sol.	56
Tableau IV.2 : Caractéristiques physiques et mécaniques des géosynthétiques.	57
Tableau IV.3 : Niveaux de variation des paramètres de l'étude.	58
Tableau IV.4 : Plan d'expérience L15 (3 facteurs, 3 niveaux).	59
Tableau IV.5 : Résultats de capacité portante pour la semelle carrée.	62
Tableau IV.6 : Résultats de capacité portante pour la semelle circulaire.	62

CHAPITRE V : Modélisation numérique et validation des résultats expérimentaux

Tableau V.1 : Propriétés du sol (sable lâche).

75

Introduction générale

Avec le développement et l'accroissement urbains et industriels, des terrains avec de bonnes conditions de construction sont moindres, ce qui impose le recours à la construction sur des terrains possédant des caractéristiques géotechniques médiocres. L'implantation des infrastructures de génie civil dans les zones dont le sol est de portance très médiocre est problématique, compte tenu des tassements différentiels importants qui peuvent survenir pendant, et après la construction des ouvrages. Pour résoudre les problèmes associés aux sols de faible capacité portante, une des solutions proposées consiste à renforcer les sols de fondation par des géosynthétiques. C'est une technique qui crée des fondations sûres et économiques pour les ouvrages d'ingénierie.

Dans les cinquante dernières années, un progrès significatif dans la recherche et l'application des sols renforcés par des géosynthétiques a été obtenu. Le concept du sol renforcé par géosynthétiques est basé sur l'existence d'une résistance à la traction des nappes de géosynthétiques et l'interaction sol- géosynthétiques due au frottement et à la cohésion du sol. Les matériaux de renforcement s'étendent du métal rigide à des matériaux géosynthétiques flexibles et peuvent être classifiés en tant que renforcements extensibles ou renforcements inextensibles.

Le renforcement des sols de fondation située sur une couche de sable par géosynthétiques a pour objectif de :

- Augmenter la capacité portante effective sous des semelles superficielles.
- Réduire le tassement différentiel.
- augmenter le coefficient de sécurité de l'ouvrage.

Ce travail de fin d'études, vise à présenter une étude expérimentale sur un modèle réduit et numérique au moyen d'analyses en éléments finis en utilisant le code éléments finis Plaxis, réalisés sur une couche de sable avec et sans nappes de géosynthétiques chargés avec deux types de semelles carrée et circulaire.

Pour cela, l'objectif principal de ce travail est de déterminer les facteurs qui sont susceptibles d'avoir le plus d'influence sur la capacité portante des sols defondation renforcés par des géosynthétiques.

Les facteurs qui sontsusceptibles d'être considérés dans cette étude sont :

- La distance entre la base de la fondation et la première nappe de renforcement (u) ;
- Lenombre de nappes de renforcement (N).
- La longueur des nappes : (b).

Ce travail est divisé en cinq chapitres, dont ce qui suit est un aperçu sur le contenu de chaque chapitre.

- Le premier chapitre est consacré à la recherche bibliographique. La définition des fondations superficielles, leur fonctionnement ainsi que les différents mécanismes de rupture de ces fondations et aussi les différentes méthodes de calcul de la capacité portante.
- Le deuxième chapitre présente les géosynthétiques et leurs applications au renforcement des sols.
- Dans le troisième chapitre, est présentée une étude de caractérisation du sol d'étude, conformémentaux différents systèmes de classification des sols (GTR et USCS...). Il présente également les principaux essais d'identification réalisés sur le sol d'étude.
- Le chapitre quatre présente en détail le modèle expérimental utilisé dans cette étude, ainsi la présentation et l'interprétationdesdifférents résultats expérimentaux, afin de quantifier l'influence des paramètres de renforcement sur la capacité portante des semelles superficielles renforcées par des nappes de géosynthétiques.
- Le cinquième chapitre est consacré à la description générale de l'outil de calcul (Plaxis) ainsi que le modèle de comportement utilisé dans la présente étude (modèle de Mohr Coulomb). Les résultats obtenus sont également présentés et analysés dans ce chapitre.L'interprétation des résultats fait également appel aux résultats d'essais réalisés enlaboratoire sur modèles réduits disponibles avec lesquels les résultats numériques obtenus dans le cadre de ce mémoire sont comparés.

Enfin les conclusions principales tirées de cette étude, ainsi les perspectives pour les futurs travaux ont été présentées à la fin de ce mémoire comme conclusion général.

CHAPITRE I

Capacité portante des fondations superficielles

I.1.Introduction

La détermination de la force portante des fondations est l'un des problèmes les plus importants de la mécanique des sols. On appelle pression admissible la pression ou contrainte maximale qui puisse être appliquée par une structure sur un sol, sans qu'il y ait de tassements excessifs et de risque de rupture du sol.

Deux types d'éléments sont à analyser pour une fondation superficielle

- La capacité portante de la fondation. C'est-à-dire vérifier les terrains (et éventuellement le matériau de fondation qui peuvent effectivement supporter la charge transmise).
- Le tassement sous les charges de fonctionnement.

La capacité portante est généralement déterminée à partir des propriétés mécaniques des terrains mesurées soit au laboratoire, soit in-situ.

Parfois la détermination de la capacité portante est effectuée à partir d'essai de chargement, mais ceci est très rare pour les fondations superficielles.

Le présent chapitre est consacré aux méthodes de calcul de la capacité portante. Après une présentation des généralités sur les fondations superficielles.

I.2.Les fondations superficielles

I.2.1.Définition

Les fondations superficielles sont des fondations faiblement encastrées qui reportent les charges au niveau des couches superficielles de terrains.

Une fondation est dite superficielle si D < 1,5 B

Figure I.1: Fondation superficielle.

- Si D > 5B, la fondation est dite profonde ;
- Si 1,5B<D<5B, la fondation est semi profonde ;

I.1.2. Principaux types de fondations superficielles (Frank, 1999)

On distingue trois types de fondations superficielles : les fondations filantes, les fondations isolées et les radiers ou dallages.

• Les semelles filantes

Lorsque la descente de charges n'est plus concentrée (sous un mur classique), on met logiquement en œuvre une fondation de type filante, c'est à dire continue sous l'objet fondé.

Les fondations filantes, généralement de largeur B modeste (au plus quelques mètres) et de grande longueur L (L/B > 10 pour fixer les idées).

Figure I.2: Semelle filante.

• Les semelles isolées

On entend par isolée, une fondation présentant une géométrie proche du carré (ou du rond). Ce type de fondation est mis en œuvre dans le cadre d'un bâtiment présentant des descentes des charges concentrées (poteaux, longrines sous murs).

Les fondations isolées, dont les dimensions en plan B et L sont toutes deux au plus de quelques mètres ; cette catégorie inclut les semelles carrées (B/L = 1) et les semelles circulaires (de diamètre B).

Figure I.3: Semelle isolée.

• Les radiers ou dallages

Les radiers ou dallages ont des dimensions B et L importantes ; cette catégorie inclut les radiers généraux.

Figure I.4: Fondation de type radier.

I.2.2. Fonctionnement des fondations superficielles

I.2.2.1. Comportement d'une semelle chargée

Les tassements qui vont se produire sous une semelle superficielle sont en fonction de l'intensité de la charge appliquée et qui ont l'allure de la Figure (I.5).

Figure I.5: Chargement d'une semelle superficielle.

ql: est la charge limite de la semelle : c'est la charge maximale que peut supporter celle-ci et qui entraîne la rupture.

Comme cette valeur n'est pas très bien définie, on considère souvent que Q_l est la charge correspondant à un certain enfoncement.

A : l'aire de la semelle,

La contrainte de rupture de la semelle est : $q_l = \frac{Q_l}{A}$ (I.1).

La contrainte admissible q_a , c'est la valeur de cette contrainte qui permettra au bureau d'étude de dimensionner les fondations.

On constate sur la figure (I.5) que q_a devra dépendre de deux conditions :

• Un critère de rupture : $q_a = \frac{q_l}{f_s}$ (I.2).

Avec f_s : coefficient de sécurité généralement pris égale à 3

La contrainte admissible devra, en effet, être telle que tout risque de rupture est évité.

• Un critère de déformabilité : la condition précédente étant supposée remplie et la semelle chargée de telle sorte que la contrainte admissible transmise au sol q_a , cette semelle tassera de la valeur S (figure I.5).

I.2.2.2. Mécanismes de rupture d'une fondation superficielle

Avant l'application de la charge sur une semelle, le sol de fondation est en état d'équilibre élastique.

Lorsque la charge augmente au-delà d'une certaine valeur critique, le sol est en état d'équilibre plastique. Au moment de la rupture on peut distinguer sous une semelle trois zones principales (figure I.6).

Figure I.6: Schéma de rupture du sol sous une fondation superficielle.

- Zone I : située directement sous la semelle, limitée par les points A, B ; C, forme un coin; Le sol est fortement comprimé, elle se déplace avec la fondation et fait corps avec elle.
- Zone II : le sol est refoulé vers la surface, les déplacements et cisaillements sont très importants et il se produit une rupture généralisée dans cette zone.

> Zone III : le sol est pas ou peu perturbé par la rupture (sol dans le domaine élastique).

NB : le sol dans les Zone **I** et Zone **II** en rupture.

Comme une charge est appliquée sur une certaine surface d'un sol, elle provoque un tassement.

I.2.2.1.Types de rupture dans le sol à une charge ultime

Les résultats d'essais sur des semelles rigides montrent qu'il existe trois mécanismes potentiels de rupture mobilisant un volume limité de sol (Vesić, 1963) :

• Un mécanisme général

Caractérisé par la formation d'un coin sous la base de la fondation, qui refoule le sol latéralement selon des lignes de glissement débouchant à la surface

L'enfoncement de la fondation provoque généralement un soulèvement du sol d'autant plus net que la structure est moins déformable. C'est le cas pour les sols résistants (figure I.7).

Figure I.7: Mécanisme général de rupture.

• Un mécanisme de cisaillement localisé

Qui ne s'étend qu'au voisinage immédiat de la fondation. Il y a également soulèvement du sol, mais après un enfoncement très important.

C'est le cas pour les sols très compressibles, comme des sables lâches (figure I.8).

Figure 8: Mécanisme de cisaillement localisé.

• Une rupture par poinçonnement

La fondation pénètre verticalement dans le massif sans perturber le sol qui n'est pas directement sous la fondation.

Pour les sols cohérents, l'application du chargement est accompagnée d'une augmentation de la pression interstitielle. Mais comme la vitesse de chargement est souvent supérieure à la vitesse nécessaire pour la dissipation de ces surpressions, il est raisonnable de supposer que l'enfoncement s'effectue à volume constant (en conditions non drainées).

Pour les sols pulvérulents, l'application du chargement entraîne une variation de volume due à la réorganisation des grains (désenchevêtrèrent ou compaction des grains selon les niveaux de contraintes atteints). La charge de rupture (ou capacité portante) peut être estimé par des calculs relativement simples en supposant que les paramètres de résistance des sols au voisinage de la fondation sont connus (figure I.9).

Figure I.9: Rupture par poinçonnement.

I.3. Calculs de la capacité portante des fondations superficielles

La capacité portante est généralement déterminée à partir des propriétés mécaniques des terrains mesurées soit au laboratoire, soit in-situ. Parfois la détermination de la capacité portante est effectuée à partir d'essai de chargement, mais ceci est très rare pour les fondations superficielles.

I.3.1. Définition de la capacité portante

Si on applique une charge Q croissante à une fondation, au début du chargement le comportement est sensiblement linéaire (les déplacements verticaux croissent proportionnellement à la charge appliquée).

A partir d'une certaine charge Q_d , les déplacements ne sont plus proportionnels à la charge. Enfin, pour une charge Q_l les déplacements deviennent incontrôlables, le sol n'est plus capable de supporter une charge supérieure, (figure I.10). Cette charge est la charge limite ou ultime, ou encore la capacité portante de la fondation.

Figure I.10: Schématisation de l'évolution des déplacements verticaux Sous une fondation.

I.3.2. Détermination de la contrainte limite(ou de rupture)

La capacité portante est déterminée à partir des caractéristiques du sol sur lequel elle repose. q_l est déterminée par deux types de méthodes de calcul de la capacité portante sont développées dans ce qui suit :

Les méthodes à partir des résultats des essais de laboratoire, c'est-à-dire à partir de la cohésion et de l'angle de frottement (méthodes classiques, dites méthodes « $c - \phi$ »);

Les méthodes à partir des résultats des essais in situ à partir de la pression limite p_l , du pressiomètre Ménard ou à partir de la résistance de pointe q_c du pénétromètre statique CPT (tests de pénétration au cône).

Il existe bien d'autres méthodes de calcul à partir des résultats d'essais in situ. Citons la méthode à partir des résultats d'essais de pénétration au carottier (Standard Pénétration Test : SPT).

I.3.2.1. Détermination de q_l à partir des essais de laboratoire (méthode " φ -c")

En 1943 Terzaghi améliora la solution de (Prandtl 1920) pour inclure la rugosité de la fondation et le poids de la zone de rupture. Terzaghi était le premier à développer une théorie pour l'évaluation de la capacité portante ultime des fondations superficielles. La charge limite est déterminée en superposant trois états de résistance: la résistance du sol pulvérulent sous le niveau de la semelle, l'action des terres situées au-dessus du niveau de la fondation et l'action de la cohésion (Méthode de superposition de Terzaghi).

L'essai à la boite de cisaillement ou l'essai triaxial permettent de déterminer l'angle de frottement interne ϕ et la cohésion c d'un sol. La contrainte limite ultime, pour une semelle de largeur B soumise à une charge centrée verticale est déterminée par la formule de superposition de TERZAGHI.

$$q_l = \frac{1}{2} S_\gamma \gamma_1 B N_\gamma + S_q \gamma_2 D N_q + S_c c N_c \qquad (I.3).$$

Avec:

 q_l : Contrainte de rupture (capacité portante par unité de surface) ;

 S_{γ} , S_q , S_c : Coefficients de forme de la semelle ;

 N_{γ} , N_q , N_c : Facteurs de portance (fonction de φ) ;

 γ_1 : Poids volumique du sol sous la base de la fondation ;

 γ_2 : Poids volumique du sol latéralement à la fondation ;

c : Cohésion du sol sous la base de fondation.

En présence d'une charge q verticale latérale à la fondation, la formule devient :

$$q_{l} = \frac{1}{2} S_{\gamma} \gamma_{1} B N_{\gamma} + S_{q} (\gamma_{2} D + q) N_{q} + S_{c} c N_{c}$$
(I.4).

La formule comporte trois termes :

Le premier terme $S_{\gamma}\gamma_1$ et N_{γ} appelé terme de surface (ou de pesanteur), proportionnel à la largeur B. C'est la charge limite pour un massif pesant et frottant uniquement,

Le deuxième terme cN_c appelé terme de cohésion, proportionnel à la cohésion c. C'est la charge limite pour un sol frottant et cohérent, mais non pesant.

Le troisième terme $(\gamma_2 D + q)N_q$ est le terme de surcharge de profondeur, proportionnel à la profondeur D. C'est la charge limite pour un sol uniquement frottant et chargé latéralement $(\gamma_1 \text{ est le poids volumique du sol latéralement à la fondation et au dessus du niveau de base).$

D = 0: pour une fondation dont la base est en contacte directe avec la surface du sol.

Pour une semelle filante $S_{\gamma} = S_q = S_c = 1$ et la formule devient : Sans surcharge : $q_l = \frac{1}{2}\gamma_1 BN_{\gamma} + \gamma_2 DN_q + cN_c$ (I.5). Avec surcharge q : $q_l = \frac{1}{2}\gamma_1 BN_{\gamma} + (\gamma_2 D + q)N_q + cN_c$ (I.6).

• Pour une semelle isolée

 $S_c = 1 + 0.2 \frac{B}{L}; \quad S_q = 1; \quad S_{\gamma} = 1 - 0.2 \frac{B}{L}$ (I.7).

Selon le DTU 13.12, ces coefficients prennent les valeurs suivantes :

Tableau I.1 : coefficients de la capacité portante.

Forme	Sγ	S _q	S _c
carrée	0.8	1	1.2
circulaire	0.6	1	1.3

Les valeurs des facteurs de portance N_{γ} , $N_q \text{et} N_c$ selon DTU. 13.12 sont encadrés ci-dessous :

φ (°)	N _c	Nγ	N _q
0	5.14	0	1.00
5	6.50	0.10	1.60
10	8.40	0.50	2.50
15	11.00	1.40	4.00
20	14.80	3.50	6.40
25	20.70	8.10	10.70
30	30.00	18.10	18.40
35	46.00	41.10	33.30
40	75.30	100.00	34.20
45	134.00	254.00	135.00

Tableau I.2 : facteur de la capacité portante suivant DTU. 13.12.

I.3.2.2. Méthodes pressiométrique et pénétrométrique

Certains essais "in situ" sont utilisés pour le calcul des fondations superficielles et profondes. Ces calculs résultent de certaines analogies que l'on peut établir entre le comportement d'un sol lors d'un essai "in situ" et le comportement du même sol vis à vis des sollicitations d'une fondation. En effet, des recherches récentes montrent qu'il existe une analogie étroite entre le comportement du sol lors de l'essai d'expansion d'une cavité cylindrique (essai pressiométrique) et le comportement du sol autour de la pointe du pieu. De même, le pressiomètre est largement utilisé pour le calcul des pressions de rupture des fondations superficielles ainsi que pour la détermination des tassements. Il existe aussi une analogie mécanique entre le pénétromètre statique et le pieu. Il s'agit du même type de sollicitation, mais les conditions de l'essai et les conditions de travail peuvent être différentes.

La méthode pour conduire et interpréter les essais pressiométriques et pénétrométriques est donnée par les normes de l'AFNOR, référencées respectivement NF P 94-110, pour l'essai pressiométrique Ménard, et NF P 94-113 pour l'essai de pénétration statique.

I.3.2.2.1. Calcul de la capacité portante à partir de l'essai au pressiomètre Ménard

a) Classification des sols

Pour le calcul de la portance à partir du pressiomètre Ménard et du pénétromètre statique, on distingue les catégories de sols suivantes :

Classe de sol		Pressiomètre	Pénétromètre
		P _l (MPa)	q_c (MPa)
Argile, limons	A- Argile et limons mous	<0.7	<3.0
	B- Argile et limons fermes	1.2à2.0	3.0à6.0
	C- Argiles très fermes à dures	>2.5	>6.0
Sables, Graves	A- Lâches	<0.5	<5
	B- Moyennement compacts	1.0à2.0	8.0à15.0
	C- Compacts	>2.5	>20.0
Craies	A- Molles	<7	<5
	B- Altérées	1.0à2.5	>5
	C- compactes	>3	
Marnes	A- Tender	1.5à4.0	
	B- compacts	>4.5	
Roches	A- Altérées	2.5à4.0	
	B- Fragmentées	>4.5	

Tableau I.3: Définition des catégories conventionnelles des sols.

Pour le dimensionnement des fondations à partir du pressiomètre Ménard ou du pénétromètre statique, le fascicule 62, titre V (1993), définit les catégories conventionnelles de sols données par le tableau I.3, en fonction de la pression limite P_l mesurée par le pressiomètre Ménard ou de la résistance de pointe q_c mesurée par le pénétromètre statique.

b) Charge verticale centrée

Selon le fascicule 62, titre V (1993), la contrainte de rupture (capacité portante unitaire) sous charge verticale centrée est donnée par la formule :

$$q_l = q_0 + k_p p_{le}^*$$
 (I.8).

Avec :

 q_l : Contrainte de rupture,

 q_0 : Contrainte totale verticale au niveau de la base de la fondation (après travaux),

 k_p : Facteur de portance pressiométrique,

 p_{le}^* : Pression limite nette équivalente.

Pour les fondations superficielles et pour les fondations semi profondes dont les méthodes d'exécution sont similaires à celles des fondations superficielles, les valeurs du facteur de portance kp sont données par le tableau I.4 :

Type de sol	Expression de <i>k</i> _p	$k_{p max}$	k _{p max}	
		(semelle carrée)	(semelle filante)	
Argiles et limons A, craies A	$0.8 \left[1 + 0.25 (0.6 + 0.4 \frac{B}{L}) \frac{De}{B} \right]$	1.30	1.10	
Argiles et limons B	$0.8 \left[1 + 0.35(0.6 + 0.4 \frac{B}{L}) \frac{De}{B} \right]$	1.50	1.22	
Argiles C	$0.8 \left[1 + 0.50(0.6 + 0.4 \frac{B}{L}) \frac{De}{B} \right]$	1.80	1.40	
Sables A	$\left[1 + 0.35(0.6 + 0.4\frac{B}{L})\frac{De}{B}\right]$	1.88	1.53	
Sables et Graves B	$\left[1 + 0.50(0.6 + 0.4\frac{B}{L})\frac{De}{B}\right]$	2.25	1.75	
Sables et Graves C	$\left[1 + 0.80(0.6 + 0.4\frac{B}{L})\frac{De}{B}\right]$	3.00	2.20	
Craies B et C	$1.3 \left[1 + 0.27(0.6 + 0.4 \frac{B}{L}) \frac{De}{B} \right]$	2.18	1.83	
Marnes, Marno_calcaires, Roches altérées	$\left[1 + 0.27(0.6 + 0.4\frac{B}{L})\frac{De}{B}\right]$	1.68	1.41	

Tableau I.4: Facteur de portance pressiométrique (fascicule 62-V, 1993).

c) Pression limite nette équivalente au pressiomètre Ménard

Dans le cas d'une couche porteuse homogène, d'épaisseur au moins égale à 1,5 B au dessous de la base de la fondation (c'est-à dire que le sol est de nature unique et les pressions limites sont dans un rapport de 1 à 2, au plus, dans la couche), on établit un profil linéaire de la pression limite nette et l'on prend pour pression limite nette équivalente la valeur à la profondeur D + 2/3 B, comme indiqué sur la figure ci dessous :

Figure I.11 : Définition de la pression limite nette p_{le}^* équivalente dans le cas d'une couche porteuse homogène.

d) Hauteur d'encastrement équivalente De

Elle est définie à partir des résultats des essais de sols en place. Si l'on considère la courbe représentant, la pression limite en fonction de la profondeur z (figures ci-dessous) : La hauteur d'encastrement équivalente De dans le cas d'un pressiomètre est définie par :

$$D_{e} = \frac{1}{p_{le}^{*}} \int_{0}^{D} p_{le}^{*}(Z) dz \qquad (I.9)$$

 p_{le}^* : Étant la pression limite nette équivalente définie ci-après.

Figure I.12 : Définition de l'encastrement équivalent d'une fondation superficielle.

La pression limite nette: $p_l^* = p_l - p_0$ (I.10).

 p_l : Pression limite mesurée,

 p_0 : Contrainte totale horizontale au même niveau dans le sol avant essai.

I.3.2.2.2. Calcul de la capacité portante à partir de l'essai de pénétration statique

Le fascicule 62, titre V (1993) propose pour le calcul de la contrainte de rupture (capacité portante par unité de surface) sous charge verticale centrée à partir des résultats de l'essai de pénétration statique CPT, une formule analogue à celle indiquée pour le pressiomètre Ménard :

$$q_l = q_0 + k_c q_{ce}$$
 (I.11).

Avec

 q_l : Contrainte de rupture,

 q_0 : Contrainte totale verticale au niveau de la base de la fondation (après travaux),

 k_c : Facteur de portance pénétrométrique,

q_{ce}: Résistance de pointe équivalente

Pour les fondations superficielles et pour les fondations semi profondes dont les méthodes d'exécution sont similaires à celles des fondations superficielles, les valeurs du facteur de portance k_c sont données par le tableau I.5:

Type de sol	Expression de <i>k_c</i>	<i>k_{c max}</i> (semelle carrée)	<i>k_{c max}</i> (semelle filante)
Argiles et limons A, craies A	$0.32 \Big[1 + 0.35(0.6 + 0.4BL) DeB \Big]$	0.60	0.49
Sables A	0.14[1 + 0.35(0.6 + <i>0.4BL)DeB</i>	0.26	0.21
Sables et Graves B	0.11[1 + 0.50(0.6 + <i>0.4BL)DeB</i>	0.25	0.19
Sables et Graves C	$0.08 \Big[1 + 0.80 (0.6 + 0.4BL) DeB \Big]$	0.24	0.18
Craies B	$0.17 \Big[1 + 0.27 (0.6 + 0.4BL) DeB \Big]$	0.29	0.24

Fableau I.5 : Facteur d	e portance	pénétrométrique	(fascicule 62-V,	1993).
-------------------------	------------	-----------------	------------------	--------
a). Résistance de pointe équivalente q_{ce} au pénétromètre statique (CPT)

C'est une résistance de pointe moyenne autour de la base de la fondation définie, à partir d'une couche $q_c(Z)$ lissée, par (figure.1.15) :

$$q_{c} = \frac{1}{3a+b} \int_{D-b}^{D+3a} q_{cc}(Z) dz \qquad (I.12).$$

Avec : q_{cc} résistance de pointe q_c écrêtée à 1.3 q_{cm}

$$q_{cm} = \frac{1}{3a+b} \int_{D-b}^{D+3a} q_c(Z) dz \qquad (I.13).$$

Avec :

 $a = \frac{B}{2} \operatorname{si} B > 1m,$

 $a=0.2m\,\mathrm{si}\,B<1m,$

 $B = \min(a, h)$, où h est la hauteur de la fondation dans la couche porteuse.

Figure I.13 : Définition de la résistance de pointe(ou de cône) équivalente pour les fondations superficielles et profondes.

Il convient de noter que la portance admissible des fondations superficielles est presque toujours commandée par des critères de tassement êtres rarement par des critères de rupture par cisaillement. Cependant, en ce qui concerne la sécurité contre la rupture de cisaillement, la charge structurale permise sur une fondation est calculée par la méthode contrainte admissible. Lors d'une étude préliminaire ou du contrôle d'un calcul, il est utile de connaître les ordres de grandeur de la capacité portante admissible pour des roches ou des sols types. Il y a une gamme des méthodes empiriques basées sur des résultats d'essai in situ.

catégorie	Types des roches et de sols	Capacité portante
		admissible (KN/m^2)
Sols pulvérulents	Gravier dense ou sable et	>600
1	gravier dense	
//	Gravier dense moyen, sable	200 à 600
	et gravier denses moyens	
//	Gravier lâche, ou sable et	<200
	gravier lâches	
//	Sable compact	>300
//	Sable dense moyen	100 à 300
//	Sable lâche	<100 dépendent dessus degré
		de relâchement
Sols cohérents	Argiles plus 'bold' très raides	300 à 600
	et argiles dures	
//	Argiles raides	150 à 300
//	Argiles et vases molles	<75
//	Argile ferme	75 à 150

Tableau I.6: Résultats à partir des essais in-situ.

I.4. Conclusion

Un projet de fondation superficielle correct doit répondre aux préoccupations suivantes :

La fondation doit exercer sur le sol des contraintes compatibles avec la résistance à la rupture de celui-ci, c'est le problème de la capacité portante.

Le tassement de la fondation doit être limité pour éviter le basculement ou la ruine de l'ensemble et pour empêcher l'apparition de fissures localisées qui rendraient l'ouvrage inutilisable.

Dans plusieurs cas, les fondations superficielles sont construites sur des dépôts cohésifs ou sur remblais ayant une plasticité faible, ce qui donne une capacité portante faible et/ ou des tassements excessifs. Pour résoudre les problèmes associés aux sols de faible capacité portante, une des solutions proposées consiste à renforcer les sols de fondation par des géosynthétique qui feront l'objet du prochain chapitre.

CHAPITRE II

Renforcement des sols de fondation par géosynthétique

II.1. Introduction

Dans un premier temps, l'ingénieur géotechnicien, cherchera à fondu son ouvrage superficiellement, pour des raisons de cout évidentes (si des conditions particulières liées au projet, au site ou aux sols ne le lui interdisent pas, évidemment). Il devra, alors se préoccuper en tout premier lieu de la capacité portante de se fondation, c'est-à-dire vérifier que les couches de sol superficielles peuvent effectivement supporter la charge transmise. Si le résultat des calculs est concluant, notamment s'il n'aboutit pas à une aire de la fondation prohibitive, il doit alors s'assurer que son tassement sous les charges de fonctionnement prévues (courantes ou exceptionnelles) est dans des limites admissibles, pour cela les ingénieurs ou les géotechniciens ont pris le temps dans la recherche pour crée des techniques d'amélioration et de renforcement qu'elles soient des solutions pour ses mauvais sols dans l'objectif de diminue les tassements total ou partielle, augmenter la capacité portante. Ces techniques interviennent par l'amélioration des caractéristiques mécaniques du sol et parfois un renforcement seulement avec un ajout d'inclusion et aussi son mode de fonctionnement est diffère selon la nature du sol. Parmi ces techniques d'amélioration et de renforcement on a les géosynthétiques.

Ce chapitre nous représente des généralités concernant les géosynthétiques et leurs familles, aussi nous citerons les déférentes fonctions des géosynthétiques...

II.2. Généralités sur les géosynthétiques

Holtz 2001 rapporte qu'en 1970, il y avait seulement cinq ou six types de géosynthétiques disponibles, alors qu'aujourd'hui plus de 600 produits géosynthétiques différents sont vendus dans le monde entier.

La norme française NF EN ISO 10318 définit un géosynthétique comme un produit dont au moins l'un des constituants est à base de polymère synthétique (polyéthylène, polyamide, polyester ou polypropylène) ou naturel qui se présente sous la forme de nappes, bandes ou structures tridimensionnelles. Ce produit est utilisé en contact avec le sol ou avec d'autres matériaux dans des structures de Génie Civil et de Géotechnique. Une grande variété de géosynthétiques existe sur le marché, pour des applications divers (tableau II.1).

Les géosynthétiques de renforcement des sols sont employés dans les ouvrages géotechniques depuis plus de quarante ans. Leur domaine d'application est très vaste puisqu'ils peuvent être installés :

- sur des talus d'ouvrages hydrauliques ou d'installations de stockage de déchets ;
- à la base de remblai construit sur :
- sol compressible,
- sur zone à risque de cavité,
- sol amélioré par inclusions rigides ;

- dans des ouvrages en terre pour construire des talus renforcés ou des ouvrages de soutènements...

L'intérêt de ces produits est qu'ils apportent au sol une résistance en traction que le sol seul ne possède pas (ou très peu pour les sols cohérents) permettant ainsi d'augmenter la stabilité d'un ouvrage. Leur emploi permet en général un gain économique en comparaison à d'autres solutions de construction et permet d'exploiter de nouvelles zones, actuellement délaissées, car présentant des risques pour la sécurité des usagers.

De nombreux types de géosynthétiques de renforcement existent sur le marché ; bien qu'ils soient de constitutions différentes, ils doivent tous présenter des caractéristiques nominales déterminées par des essais normalisés en laboratoire. Ces caractéristiques peuvent être ensuite dégradées lors de la mise en œuvre des produits et pendant la durée de service de l'ouvrage renforcé, et le dimensionnement des géosynthétiques doit intégrer ces dégradations possibles.

Ces matériaux sont fortement résistants à la dégradation biologique et chimique ; les fibres peuvent êtres des filaments continus ou des géotextiles courts et des produits tels que filets et des grilles peuvent être combinés avec des géomembranes d'autres synthétiques pour tirer de meilleurs filaments.

Rôle du	Rôle du	Ouvrage / application
géosynthétique	géosynthétique	
Séparation	Eviter le mélange de deux sols ou matériaux de nature différente	Routes, autoroutes, voies ferrées, pistes forestières
Filtration	Maintien des particules de sol tout en autorisant la circulation de fluides	Routes, voies ferrées, barrages, tranchées drainantes, protection de berges / rivages
Drainage	Collecte et transport des eaux ou d'autres fluides	Drainage sous dallage, structure BA, remblai ou Installation de Stockage de Déchets (ISD)
Etanchéité	Prévenir ou limiter la migration des fluides par une géomembrane	Bassins, ouvrages souterrains, Installations de Stockage de Déchets (ISD)
Renforcement	Améliorer les propriétés mécaniques d'un sol (ou d'autres matériaux) en utilisant les propriétés de résistance/déformation d'un géosynthétique	Remblais (ferroviaires, routiers) sur sols compressibles, cavités ou inclusions rigides ; murs de soutènement ;
Protection	Limitation de l'endommagement localisé d'un élément ou matériau	Protection des géomembranes
Lutte contre l'érosion de surface	Eviter les mouvements du sol et autres particules de surface	Talus de déblai, pentes naturelles, berges
Anti-fissuration	Retarder les remontées de fissure en surface dans les structures de chaussées	Aéroports, chaussées,

Tableau II.1: Rôles et applications des géosynthétiques.

II.3. Différentes familles des géosynthetiques

Les géosynthétiques peuvent être généralement classés en catégories selon leur mode de fabrication. Ils sont essentiellement fabriqués pour une utilisation dans les domaines du génie civil et de la protection de l'environnement ainsi que dans les ouvrages hydrauliques et de transport. On distingue communément quelques types principaux de géosynthétiques, chacun ayant sa propre fonction

II.3.1. Géotextiles

Les géotextiles sont des produits textiles en polymères (naturels ou synthétiques), plans, perméables, pouvant être non-tissés, tricotes ou tisses, utilises en contact avec un sol et/ou d'autres matériaux pour les applications géotechniques et de génie civil.

Les principaux polymères utilises pour la fabrication de géotextiles sont :

- le polyéthylène (PE) ;
- le polyamide (PA) ;
- le polyester (PET) ;
- le polypropylène (PP).

Ces polymères ont des propriétés différentes et le choix d'un géotextile peut être motive dans certains cas par le type du polymère. Parmi les géotextiles, on distingue :

II.3.2. Les tricotes

Est un géotextile produit par assemblage de deux nappes de fils parallèles au moyen d'un fil de liaison, de façon à obtenir la répartition géométrique désirée.

Figure II.1 : Géotextile tricoté.

II.3.3. Les tissés

Est constitué de séries de fils perpendiculaires combinés de façon systématique (exemple : des tissus utilisés pour des chemises, des voiles de bateaux, les bâches).

Figure II.2 : Géotextile tissés.

II.3.4. Les non tissés

Est un géotextile se présentant sous forme d'une feuille manufacturée, constituée d'un voile ou d'une nappe de fibres, orientées selon une direction ou distribuées aléatoirement

Figure II.3 : Géotextile non tissé.

II.3.5. Géogrilles

Les géogrilles sont des géosynthétiques dont la fonction est le renforcement des sols. Une géogrille est une structure plane à base de polymère, constituée par un réseau ouvert et régulier d'éléments résistants à la traction et pouvant être assemblés par extrusion, par collage ou par entrelacement, dont les ouvertures ont des dimensions supérieures à celles des constituants et permettant le confinement du sol.

La grandeur des mailles varie généralement de 1 et 10 cm pour permettre la pénétration des gros éléments du sol , et la création d'un effet d'imbrication de ces constituants dans la géogrille. Pour obtenir l'effet de renforcement il est nécessaire que les gros éléments s'imbriquent de la moitié de leur volume dans la maille.

Les géogrilles sont le plus souvent utilisées pour le renforcement de sols peu cohérents avec un squelette de granulométrie élevés. On distingue des géogrilles mono-axiales et bi-axiales.

a). Mono-axiale la résistance à la traction est plus importante dans un sens longitudinal ou transversal que dans l'autre.

b). **Bi-axiale** la résistance à la traction est sensiblement équivalente dans le sens longitudinal et transversal.

Figure II.3. Géogrilles uniaxiale et biaxiale.

II.3.6. Géocomposites

Un géocomposite est un assemblage manufacturé de matériaux dont au moins l'un des composants est un produit géosynthétique, par exemple une géogrille complexée avec un géotextile non-tissé. Il peut être utilisé, soit en géotechnique (fonctions de séparation et renforcement), soit pour les couches de roulement (fonction de renforcement, particulièrement en réfection).

Un géocomposite de renforcement apporte en une pose, les avantages du géotextile non-tissé et ceux d'un géosynthétique de renforcement, géotextile tissé, tricoté ou géogrille. Les différents composants peuvent être assemblés liés par couture ou soudure thermique.

Figure II.4 : Géocomposites.

II.3.7. Géosynthétiques étanches

Sont des feuilles étanches, souples, minces, et continues, fabriquées à partir de produits synthétiques ou bitumineux, utilisées dans le domaine de la géotechnique et du génie civil. La principale application des géomembranes est la constitution d'une barrière étanche, soit entre le sol et un fluide, soit entre le sol et un gaz.

Figure II.5 : Exemple de géomembranes.

II.3.8. Produits apparentés

- Les géofils;
- Les géosynthétiques bentonitiques (GSB);
- Les géotuyaux;
- Les géosynthétiques alvéolaires;
- Les blocs ou plaques de géomousses;
- Les géonets;
- Les géocells;

- Les prefabricated vertical drains (pvd);
- les géosynthetic clay liner (couches d'argiles synthétiques).

II.4. Différentes fonctions des géosynthetiques

Les principales fonctions assurées par les géosynthétiques sont :

- la séparation ;
- la protection ;
- la filtration ;
- le drainage ;
- le renforcement ;
- l'étanchéité ;
- l'anti-érosion.

Chaque géosynthétique assure en général une fonction précise. Cependant, certains géosynthétiques peuvent assurer plusieurs fonctions simultanément.

II.4.1. Séparation

Les géotextiles ont été développes à l'origine pour séparer deux couches de sols de caractéristiques différentes : couche de forme avec un matériau d'apport ou deux matériaux d'apport. La fonction de séparation est assurée par tout type de géotextile quelle(s) que soi(en)t leur(s) autre(s) fonction(s). Le dimensionnement d'un géotextile de séparation passe par la caractérisation :

- de sa résistance à la traction ;
- de son allongement à l'effort maximum ;
- de son ouverture de filtration.

II.4.2. Filtration

Le rôle du filtre géosynthétique consiste à retenir les éléments du sol tout en laissant passer l'eau. Cette fonction est souvent associée à celle de séparation dans le cas, par exemple, de construction d'ouvrages sur sols mous humides. Mais, on la retrouve principalement dans les systèmes de drainages ou le géosynthétique doit permettre le passage de l'eau de la zone a drainer vers le drain, en gravier, sous forme de tube drainant, voire de géosynthétique, tout en évitant la contamination du drain par des particules fines du sol environnant, ainsi que l'érosion régressive du terrain a l'amont du drain.

II.4.3. Protection

Cette fonction est utilisée essentiellement lors de l'utilisation d'une géomembrane. Des essais permettent d'évaluer la protection de la géomembrane par l'interposition d'un géosynthétique de protection et l'endommagement subi pendant la mise en œuvre de la couche granulaire.

II.4.4. Renforcement

Les géosynthétiques sont utilisés en une ou plusieurs nappes superposées, permettent, grâce a leur résistance mécanique élevée dans une ou plusieurs directions, de reprendre les efforts de traction du sol et de limiter les déformations. Ils permettent ainsi le renforcement des sols a faible portance, jouent le rôle d'armatures dans des ouvrages en terre, préviennent les effondrements ou stabilisent les terrains susceptibles de glissement.

Figure II.6 : renforcement des sols fondation par géosynthétique.

II.4.5. Drainage

Dans les ouvrages de génie civil, le rôle du drainage est de :

- rabattre les nappes ;
- contrôler les écoulements intermittents ;
- diminuer et maitriser les pressions d'eau ;
- accélérer les phénomènes de consolidation ;
- évacuer les eaux de ruissellement.

L'efficacité et la pérennité des systèmes de drainage sont assurées par l'association d'un drain et d'un filtre. Le rôle du drain est de recueillir et d'évacuer les débits collectes. La fonction drainage est donc toujours associée à celle de filtration.

II.4.6. Anti-érosion

L'érosion pluviale des sols pentus est un problème récurrent lors de la construction d'ouvrages géotechniques faisant apparaître des pentes. Une méthode simple pour diminuer cette érosion est de végétaliser la pente. Le problème de l'érosion se pose donc avant que l'enherbement soit effectif. Pour limiter l'érosion avant que l'enherbement soit effectif, on peut disposer sur les sols pentus des dispositifs géosynthétiques.

II.4.7. Étanchéité

La fonction étanchéité est assurée par une géomembrane ou un géosynthétique bentonitique. L'étanchéité est définie comme la prévention ou la limitation de la migration de fluides.

II.5. Caractérisation des géosynthétiques de renforcement

Sur le plan mécanique, les géosynthétiques de renforcement sont caractérisés par différents essais normalisés, dont les principaux sont présentés ici : résistance en traction, frottement à l'interface, et fluage. De nombreux autres essais de caractérisation existent, comprenant la détermination des caractéristiques et spécificités suivantes à partir d'essais de laboratoire normalisés : épaisseur, masse surfacique, poinçonnement, perforation dynamique, perméabilité, ouverture de filtration, capacité de débit dans le plan...

II.5.1. Résistance en traction d'un géosynthétique

La résistance en traction d'un géosynthétique est définie par la norme NF EN ISO 10319. Un minimum de 5 éprouvettes en sens production et 5 éprouvettes en sens travers sont préparées conformément à l'ISO 9862. Ces éprouvettes ont une largeur nominale de 200 mm \pm 1 mm, une longueur suffisante pour garantir une distance de 100 mm entre les mors de la machine d'essai de traction, et comportent des repères pour les mesures d'allongement. Une fois l'éprouvette montée sur les mors, ceux-ci sont écartés à une vitesse constante de manière à obtenir une vitesse de déformation de 20 \pm 5 %/min. Un dispositif spécifique (extensomètre, caméra, etc) permet alors de mesurer l'allongement de l'éprouvette pour chaque effort de traction imposé, jusqu'à rupture du matériau. L'enregistrement de l'effort de traction imposé se fait avec une précision de 0,01 KN. La résistance en traction maximale Tmax (la résistance caractéristique a court terme (Rt;k)) et la déformation maximale Emax sont alors obtenues.

II.5.2. Caractéristiques de cisaillement à l'interface sol/géosynthétique

L'angle de frottement à l'interface entre le sol et le géosynthétique peut être déterminé en laboratoire à partir d'un essai de cisaillement direct à la boîte de cisaillement 0,3 x 0,3 m adapté aux géosynthétiques (norme NF EN ISO 12957-1, septembre 2005), ou d'un essai au plan incliné (norme NF EN ISO 12957-2, septembre 2005). Pour l'essai à la boîte de cisaillement, l'éprouvette de géosynthétique doit être fixée sur un support horizontal rigide placé dans la partie inférieure de la boîte. La partie supérieure de la boîte est emplie de sol, soumis à une force normale. Le dispositif de chargement consiste alors en un effort horizontal provoquant un déplacement d'une demi boîte à vitesse constante de $1 \pm 0,2$ mm/min. La force de cisaillement et le déplacement horizontal relatif sont mesurés avec des précisions de ± 2 % et $\pm 0,02$ mm respectivement.

L'essai au plan incliné se fait à l'aide d'un appareillage constitué d'une plaque lisse rigide initialement horizontale et dotée d'une charnière sur l'une de ses extrémités. Un mécanisme permet de relever progressivement le plan, à une vitesse de $3 \pm 0.5^{\circ}$ par minute. L'échantillon

de géosynthétique (prélevé d'après l'ISO 9862) est fixé sur le plan. Une boîte contenant du sol est disposée sur le renforcement testé. Après application d'une éventuelle surcharge, le plan de base supportant le géosynthétique est inclinée à vitesse constante. L'angle auquel la boîte supérieure remplie de sol glisse sur le plan incliné détermine alors un angle de frottement « dynamique » du complexe sol / géosynthétique. Différentes variantes à cet essai existent, comprenant des améliorations techniques, ou des modifications de la procédure d'essai.

II.5.3. Caractérisation du fluage d'un géosynthétique

Le fluage d'un géosynthétique induit une perte de résistance et de rigidité au cours du temps. La norme NF EN ISO 13431 définit les essais de fluage en traction, et le guide ISO TR 20432 donne des indications sur leur exploitation.

L'essai de fluage porte sur un géosynthétique dont la résistance en traction caractéristique Tmax est connu. Les éprouvettes sont soumises à une force statique prédéfinie To (inférieure à Tmax) répartie uniformément sur la largeur de l'échantillon, dans des conditions de température et d'humidité maintenues constantes. L'allongement de l'éprouvette est enregistré en continu ou mesuré à des temps spécifiques (communément 1h à 10 000 h). Soulignons qu'il existe différentes méthodes de test : une méthode « conventionnelle » à température constante, et une méthode en « décalage temps – température » où les essais sont effectués pour trois valeurs de la température.

II.6. CONCLUSION

Les géosynthétiques de renforcement consistent en un produit industriel complexe, dont la conception, la caractérisation et le dimensionnement tiennent compte de différentes normes et recommandations en vigueur. Le fonctionnement de ces renforcements et les mécanismes impliqués ont été étudiés par différents auteurs pour des problématiques d'effondrement localisés.

Contrairement aux sols, les géosynthétiques disposent d'une résistance à la traction et peuvent de ce fait jouer le rôle d'armature dans un massif de sol. Les propriétés de contact et notamment de frottement des géosynthétiques avec des sols permettent à ces matériaux d'assurer à la fois une bonne transmission et une bonne répartition des contraintes dans le milieu environnant.

CHAPITRE III

Caractérisation du sol d'étude et performances expérimentaux

III.1. Introduction

On entend par sable la fraction des granulats dont les grains ont des dimensions comprises entre 0,08 mm et 5 mm. Il s'agit d'une définition globale, dont les bornes varient d'une classification à une autre. Ce sont aussi les matériaux dont le diamètre maximal est inférieur à 6,3mm et dont le passant à 80 microns n'excède pas 30%.

Selon leurs provenances, les sables peuvent être classés comme suit :

Sable de rivière : il est obtenu par dragage des lits des cours d'eau. Il doit être dur et propre pour qu'on puisse l'utiliser dans les bétons.

Sable de mer : il provient des côtes de la mer. Pour l'utiliser dans les bétons, il faut qu'il ne soit pas trop fin et qu'il soit lavé de son sel.

Sable de carrière (artificiel) : il est obtenu par concassage des roches (calcaires durs, grés...) dans les carrières de granulats. Il est souvent plein de filler (fines).

Sable de dune : Il se trouve dans les régions présahariennes du sud du pays. Il est similaire à un sable de mer.

III.2. Paramètres a identifié

Les paramètres nécessaires pour décrire les propriétés physiques et mécaniques d'un sol sont :

- Paramètres d'identification et d'état : dimensions des particules, masse volumique, argilosité, porosité, indices des vides, ...
- Paramètres hydrogéologiques : perméabilité, profondeur de la nappe, ...
- Paramètres de déformabilité : indice de compression, gonflement, modules oedométrique et préssiomètrique, ...
- Paramètres de résistance : cohésion, angle de frottement, pression limite, résistance de pointe, ...

III.3. Classification géotechnique des sols

Les systèmes de classification des sols sont nés du besoin des ingénieurs civils de disposer de renseignements suffisamment fiables sur le comportement des sols pour pouvoir prendre des décisions rapides et efficaces, surtout dans les domaines de construction routière et des infrastructures des pistes d'atterrissage ou des barrages. Les systèmes de classification des sols ont pour but de ranger les sols en familles présentant les mêmes caractéristiques géotechniques ou des caractéristiques très voisines. Ils permettent de grouper de très nombreux échantillons recueillis au cours d'une campagne de sondages et d'établir des coupes géotechniques du terrain.

III.3.1. Classification élémentaire

III.3.1.1. Classification basée sur la granulométrie

Les courbes granulométriques couvrent de large variation des dimensions des particules des sols. Les sols peuvent être classés selon les différentes parties de l'échelle des dimensions des particules appelés « classes granulaires ». Ces intervalles ont des noms différents selon les classifications et les pays. Le tableau ci-dessous compare trois de ces classifications. La classification de la Société Internationale de Mécanique des sols et des Travaux de Fondations (SIMSTF, 1977), utilisée par les normes Britanniques et Allemandes et dans certaines normes Américaines, est progressivement adoptée par de nombreux pays.

SIMST	F (1977)	France (traditionnelle)			
Dimensions	Nom	Dimensions	Nom		
> 200 mm	Blocs	> 200 mm	Blocs		
60 à 200 mm	Galets, cailloux	20 à 200 mm	Galets, cailloux		
20 à 60 mm	20 à 60 mm Gravier grossier				
6 à 20 mm	Gravier moyen	2 à 20 mm	Gravier		
2 à 6 mm	Gravier fin				
0,6 à 2 mm	Sable grossier	0,2 à 2 mm	Sable grossier		
0,2 à 0,6 mm	Sable moyen	20 à 200 µm	Sable fin		
0,06 à 0,2 mm	Sable fin				
20 à 60 µm	Limon grossier				
6 à 20 µm	Limon moyen	2 à 20 µm	Limon		
2 à 6 µm	Limon fin				
$< 2 \mu m$	Argile	< 2 µm	Argile		

Tableau III.1: Dénomination des fractions granulaires des particules de sols.

III.3.1.2. Classification triangulaire

Les systèmes de classification triangulaire prennent la forme de triangles dont les côtés portent des échelles représentant les proportions de sable, de silt et d'argile mesurées sur un échantillon de sol. Ces triangles sont divisés en zones portant une appellation conventionnelle selon les proportions relatives des types de sols. Seules les échelles des proportions d'argile, de sable et de silts (limon) figurent sur le triangle. Utilisons le diagramme de la Figure III.1 pour classer un sol comportant 41% d'argile, 42% de sable et 17% de silt, c'est-à-dire un sable argileux avec un peu de silt. C'est le point sur le diagramme qui correspond à ces proportions, mais il est situé dans la zone des argiles ; on attribue donc à ce sol l'appellation d'argile, malgré sa fraction argileuse ne soit pas la plus grande. La classification triangulaire reconnait ainsi l'importance de la matrice argileuse dans le comportement des sols.

Figure III.1: Classification triangulaire des sols.

III.3.2. Classification (USCS/LCPC)

C'est la classification est la plus utilisée en mécanique des sols. Elle a été développée aux Etats-Unis dans les années 1950 sous le nom United Soil Classification System (USCS) puis francisée au début des années 1960 sous le nom de Laboratoire Central des Ponts et Chaussées (LCPC).

La classification USCS/LCPC est basée sur les dimensions des particules (granulométrie) et leur comportement à l'eau (plasticité). Elle prend en compte également la teneur de la fraction organique dans le cas des sols fins en mesurant la teneur en matières organiques par la méthode de la perte au feu.

D'après cette classification, on peut distinguer :

- Les sols grenus : plus de 50 % des éléments > 0,08 mm
- Les sols fins : plus de 50 % des éléments < 0,08 mm

Pour les sols fins, la méthode de classification est basée sur les limites d'Atterberg

Figure III.2 : Classification des sols fins selon le système USCS/LCPC.

Cette classification ne traite pas deux problèmes importants, qui sont celui des carbonates et celui des particules de nature argileuse, qui peuvent avoir une influence décisive dans certaines circonstances (géotechnique routière notamment).

Pour les sols fins carbonatés, on utilise en complément de la classification à base granulométrique, un vocabulaire exprimant la proportion des carbonates de calcium (Ca CO3) dans le sol (ou la roche), défini dans le tableau suivant.

Pourcentage de Ca CO3	Dénomination
0 à 10	Argile
10 à 30	Argile marneuse
30 à 70	Marne
70 à 90	Calcaire marneux
90 à 100	Calcaire

Tableau III.2: Dénomination des sols fins calcaires.

Pour les particules argileuses, qui ne sont pas décrites quantitativement par les courbes granulométriques (poudre de roche par exemple), on peut utiliser la notion de sensibilité à l'eau selon l'essai bleu de méthylène pour préciser l'argilosité minéralogique du sol.

III.3.3. Classification GTR

Une classification particulière des sols est utilisée en France pour les travaux de terrassements routiers. Cette classification, dite classification du Guide de Terrassements Routiers (GTR), définit des classes de sols corrélées avec l'aptitude au compactage des matériaux en fonction des conditions de chantiers et leur comportement mécanique ultérieur. Elle tient compte des mêmes caractéristiques de base que la classification LCPC/USCS, mais elle est beaucoup plus

précise pour les particules argileuses, qui ont une grande influence sur la conduite des terrassements, et tient compte de l'altérabilité des matériaux au cours du temps. Les principes généraux de cette classification sont présentés sur la figure et le tableau ci-dessous.

Figure III.3: Classification routière selon le GTR.

Tableau III.3:	Classification routiere selon le GTR.	

		Roches	Craies	R_1
		carbonatées	Calcaires	R ₂
	Roches	Roches argileuses	Marnes, argiles,	R ₃
Matáriaux	sedimentaires	6	pélites	5
rocheux		Roches siliceuses	Grés, poudingues,	D
			brèches	\mathbf{K}_4
		Roches salines	Sel gemme, gypse	R_5
	Roches magmatiques et métamorphiques	Granites, basaltes, métamorphic	andésites, gneiss, schistes ques et ardoisiers,	R ₆
Matériaux particuliers	Sols org	ganiques et sous-proc	F	

III.3.4. Classification AASHTO

La classification AASHTO (Américain Association of States Highway and Transportation Official) est une version plus élaborée de la classification de Terzaghi (1929). Elle trouve son application essentiellement en géotechnique routière.

Le tableau suivant indique les fractions de sol reconnues par l'AASHTO. Bien que les blocs doivent être exclus des échantillons à classifier, il faut néanmoins noter leur pourcentage relatif. Les particules fines sont siliceuses si la valeur de I_p est inférieure à 10, et argileuses si elle est supérieure à 10.

Fraction de sol	Echelle de grandeur
Bloc	Plus de 75 mm
Gravier	De 75 mm à 2.0 mm (tamis n°10)
Sable grossier	De 2.0 mm (tamis n°40) à 0.425 mm (tamis n°40)
Sable fin	De 0.425 mm (tamis n°40) à 0.075 mm (tamis n°200)
Silt et/ou argile	Moins de 0.075 mm (tamis n°200)

Tableau III.4: Définition des classes de sols selon le système AASHTO.

Dans le système de classification AASHTO, on trouve huit groupes de sol (A-1à A-8) et quelque sous-groupe. Les seuls essais qu'il est nécessaire d'effecteur sont l'analyse granulométrique et les essais de limites de consistance. Le tableau ci-dessous fourni la classification de l'AASHTO utilisée de nos jours.

Les sols grenus sont classés dans catégories A-1 à A-3 de la catégorie A-1 sont bien étalés alors que ceux de la catégorie A-3 sont des sables propres et à granulométrie uniforme. Quant à ceux de la catégorie A-2, ils contiennent un pourcentage significatif de particules fines (jusqu'à 35 % de particules passant le tamis n° 200). Dans les catégories A-4 à A-7, On trouve des limons et des argiles ; leur classification repos sur les limite d'Atterberg. Les zones contenant les valeurs de W_l et d' I_p propose à chacun des groupes A-4 à A-7 et des sous-groupes de A-2. On classe généralement les sols fortement organiques (les tourbes, par exemple) dans le groupe A-8. Comme dans système USCS, les sols A-8 sont classés d'après un examen visuel.

General Classification		Granular materials (35% or less passing No. 200 Sieve (0.075 mm)							Silt-clay Materials More than 35% passing No. 200 Sieve (0.075 mm)			
-	A	-1	1.18 7.19		A-	-2				A6	A-7	
Classification	A—1—a	A—1—b	A—3	A-2-4	A-2-5	A26	A27	A—4	A-5		A-7-5 A-7-6	
(a) Sieve Analysis: Percent Passing									A. S.			
(i) 2.00 mm (No. 10)	50 max											
(ii) 0.425 mm (No. 40)	30 max	50 max	51 min								1	
(iii) 0.075 mm (No. 200)	15 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min	
(b) Characteristics of fraction passing 0.425 mm (No. 40)								•				
(i) Liquid limit				40 max	41 min	40 max	41 min	40 max	41 min	40 max	. 41 min	
(ii) Plasticity index	6 n	nax	N.P.	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min*	
(c) Usual types of significant Constituent materials.	Stone Fragments Gravel and sand Fine Sand		Silty or Clayey Gravel Sand		ind	Silty	Soils	Claye	ey Soils			
(d) General rating as subgrade.		Excellent to Good					Fair 1	to Poor				

* If plasticity index is equal to or less than (liquid Limit—30), the soil is A—7—5 (*i.e.* PL > 30%) If plasticity index is greater than (Liquid Limit—30), the soil is A—7—6 (*i.e.* PL < 30%)

III.4. Essais d'identification au laboratoire

III.4.1 La teneur en eau (NF P94-050)

• But de l'essai

Détermination de la quantité d'eau contenue dans le sol.

• Appareillage de l'essai

-Etuve sèche

-Des récipients

-Balance

• Mode opératoire

NB: l'essai se faire sur trois prises pour en fin prendre la moyenne.

Rendre un récipient propre, sec e taré, placer un échantillon de sol humide d'un poids minimum de 300g, on les place à l'étuve après 24h on prend le poids

• Expression des résultats

Soit : M la masse humide de l'échantillon et m la masse sec de l'échantillon

$$w = \frac{M-m}{m} * 100$$
 (III.1).

Tableau III.5: Calcule de la teneur en eau.

\mathbf{N}^{o}	M (g)	m (g)	w (%)
01	587.6	586.5	0.187
02	847.6	846.1	0.177
03	626.9	625.7	0.191

W=0.185%

III.4.2. Analyse granulométrique (NF P94-056)

• But de l'essai

L'analyse granulométrique permet de déterminer la distribution relative des diamètres des grains d'un sol.

• Appareillage de l'essai

-balance

-différents poids tamis en mm (4-2-1-0.5-0.25-0.125-0.063)

-vibreur de tamis

• Mode opératoire

L'essai consiste à séparer par brassage sous l'eau, les grains agglomérés puis une fois séchée, à classer au moyen d'une série de tamis et à peser le refus cumulé sur chaque tamis, la masse cumulée.

Figure III.5: Analyse granulométrique par tamisage.

• Expression des résultats :

La masse de l'échantillon = 1000g

D (mm)	M refus	PR	PRC	PPC
4	0	0	0	100
2	20	1,99005	1,99005	98,00995
1	70	6,965174	8,955224	91,04478
0,5	235	23,38308	32,33831	67,66169
0,25	500	49,75124	82,08955	17,91045
0,125	130	12,93532	95,02488	4,975124
0,063	45	4,477612	99,50249	0,497512

 Tableau III.6: Calcule du pourcentage passant cumulé.

Figure III.6: Courbe granulométrique du sable.

D'après la courbe on a : $D_{10}=0.2$; $D_{30}=0.3$; $D_{60}=0.44$

$$C_u = \frac{D_{60}}{D_{10}} = 2.2$$
 (III.2).

$$C_{c} = \frac{D_{30}^{2}}{D_{10} * D_{60}} = 1.022$$
 (III.3).

Passant a 0,08= 2%

On trouve que Cu<6 et 1<Cc<3, Alors selon la classification L.C.P.C nous avons un sable mal gradué.

III.4.3. La masse volumique des particules solides « Méthode du pycnomètre à eau » (NF P94-054)

• But de l'essai

Le but de cette essai pour détermine la masse volumique des grains solides d'un échantillon, parfois de nature différente

La masse volumique d'un sol est utilisée pour connaitre l'indice des vides, le degré de saturation et la porosité.

• Appareillage de l'essai

-un pycnomètre

-appareil de pesée hydrostatique

-plaque chauffante

-eau distillé

• Mode opératoire

Figure III.7: Essai pycnomètre à l'eau.

-peser le pycnomètre vide avec son tube capillaire soit m1

-peser l'échantillon dans le pycnomètre soit m2

- peser le pycnomètre contenant l'échantillon et l'eau soit m3

-peser le pycnomètre plein d'eau soit m4

Afin qu'aucune bulle d'air ne reste accrochée aux particules on porte le pycnomètre + l'échantillon + l'eau à ébullition pendant au moins 1h

• Expression des résultats

$$\rho_{\rm s} = \frac{\rho w (m2-m1)}{m4+m2-m1-m3}$$
 (III.4).

 $\rho_w = 1 \text{g/cm}^3$

m1=167.2g; m2=775.8g; m3=1558.5g; m4=1241.9g

$$\rho s = 2.63 \text{g/cm}^3$$
.

III.4.4. La masse volumique minimale et maximale (NF P94-059)

III.4.4.1. Détermination de la masse volumique minimale

• Principe de l'essai

L'essai consiste à mettre en œuvre dans un moule normalisé, selon une procédure déterminée, un échantillon de sol à étudier, successivement dans un état lâche puis dans un état dense.

Détermination des masses volumiques minimale et maximale des sols non cohérents

• Appareillage

-Moule normalisés

-Table vibrante

-Entonnoir

- -Dispositif de mesure de hauteur
- -Dispositif de surcharge de matériau
- -Chronomètre
- -Balance
- -Règle à arasée

• Mode opératoire

-Détermination de la masse volumique minimale

Le sol sec est versé lentement au moyen d'un entonnoir dans le moule cylindrique. Le bas de l'entonnoir doit être maintenu à quelques millimètres au dessus de la surface de l'échantillon (hauteur de chute zéro). Le déversement est poursuivi jusqu'à ce que le sol déborde. Sa

surface est alors soigneusement réglée et l'on pèse le récipient pour en déduire la masse du sol introduit dans le moule.

Figure III.8: Détermination de la masse volumique minimale.

• Expression des résultats

La masse volumique $\rho_d = \frac{M}{V} (g/cm^3)$ (III.5).

Tableau III.7: Calcule de la masse volumique minimale.

N°	M moule+sol (g)	M moule vide (g)	M sol (g)	ρ_d (g/cm ³)
01	8135	3620	4515	1.595
02	8200	3620	4580	1.618
03	8170	3620	4550	1.607

$\rho_{d min} = 1.606 \text{ g/cm}^3$

III.4.4.2. Détermination de la masse volumique maximale

On densifie par vibration le matériau sec versé dans le moule à l'aide d'une table vibrante pendant 5 à 6 minutes. Puis en mesure la nouvelle hauteur de l'échantillon pour déterminer le nouveau volume de l'échantillon.

Figure III.9: Détermination de la masse volumique maximale.

• Expression des résultats

La masse du moule vide = 3620g

La hauteur du moule H=15.5 cm

Le diamètre du moule D=15.23 cm

 $A_c = 182.083 \text{ cm}^2$

 $V_c = 2830 \text{ cm}^3$

N°	M moule+sol (g)		H moule (cm)	H plaque (cm)	H plaque après vib (cm)	Volume final (cm ³)	$\rho_{d \max}$ (g/cm ³)
01	8125	D	31.71	43.35	20.46	2405.498	1.872
		G	32.11	42.81	21.06	2426.255	1.856
02	8140	D	31.71	43.475	20.65	2406.68	1.878
		G	32.11	42.18	20.39	2425.527	1.863

Tableau III.8: Calcul de la masse volumique maximale.

 $\rho_{d max} = 1.867 \text{ g/cm}^3$

III.4.5. L'Equivalent de sable (NF P18-597)

• But de l'essai

L'essai d'équivalent de sable utilisé de manière courante pour évaluer la propreté des sables entrant dans la composition des bétons et aussi pour les sols.

• Appareillage de l'essai

-Entonnoir pour introduire le sable

-une série d'éprouvettes cylindriques transparentes et graduées

-un floculant

-un piston taré

-un chronomètre

-règle métallique pour la mesure des hauteurs des sables

• Mode opératoire

Remplir les éprouvettes avec la solution lavant, jusqu'au premier trait

-verser la quantité de sable voulue en éliminant les bulles d'air

-boucher les éprouvettes et les agiter par des mouvements rectilignes horizontaux de 20 cm d'amplitude, 90 allers retours en 30 secondes

-laver et remplir les éprouvettes, avec le tube plongeur

-rincer le bouchon au dessus de l'éprouvette

-faire descendre le tube laveur en le faisant tourner entre les doigts pour laver les parois intérieures de l'éprouvette

- laver le sable en faisant descendre et remonter les particules fines dans la solution supérieure

-sortir le tube, fermer le robinet lorsque le niveau du liquide atteint le trait supérieur puis laisser reposer 20 min en évitant toute vibration

- mesurer à vue les hauteurs h_1 et h_2

- descendre le piston taré dans le liquide à travers le floculant, le manchon prenant appui sur le bord supérieur de l'éprouvette, et l'immobiliser au contact du sable, mesurer alors h_2 '

Figure III.10: Essai équivalant de sable.

• Expression des résultats

	1 ^{ere} prise	2 ^{ème} prise	3 ^{ème} prise	
$ES=100*(h_2/h_1)$	75%	83%	78%	
H ₂ ' (cm)	34.9	34.8	34.9	
Hauteur de sable	8.1	8.2	8.1	
H ₂ (cm)				
(43-h ₂ ')				
Hauteur totale	10.8	9.9	10.4	
$H_1(cm)$				
Heure de départ	11 :19	11 :21	11 :23	
Heure de	11 :29	11 :31	11 :33	
départ+10min				
Heure de lecture	11 :50	11 :54	11 :56	
(20min après				
lavage)				

Tableau III.9: Calcul de l'equivalat de sable.

ES = 79%

Observation : sable propre à faible pourcentage de fine argileuse convenant parfaitement pour les bétons de haute qualité.

III.4.6. L'Essai œdométrique (NF P94-090-1)

Figure III.11: Cellule ouverte et cellule fermée, bague œdométrique standard.

• But de l'essai

La manipulation a pour but de déterminer les caractéristiques de compressibilité d'u sol qui permettent d'estimer le tassement d'un massif de sol, par exemple sous une fondation superficielle

• Appareillage de l'essai

Les œdomètres utiliser sont des œdomètres a chargement par l'avant, ils sont composés principalement de :

- un moule œdomètrique métallique rigide de section cylindrique
- un dispositif de chargement
- des jeux de masse varient de 1 Kg à 10Kg
- un comparateur
- un chronomètre
- papier filtre pour protéger les pierres poreuses

• Mode opératoire

Mettre l'éprouvette se sol entre deux papiers filtres et placer l'ensemble trousse + l'échantillon dans le logement prévu a cet effet, au niveau de la partie supérieure de la cellule doit être assemblée a la partie inférieure

L'essai proprement dit consiste a soumettre l'échantillon à la série de charges et mesurer le tassement de l'échantillon au cours du temps sous chacune de ces charges et chacune d'elles sera maintenue 24h

• Expression des résultats

Pour un sable lâche Dr =35%

Pour un sable moyen Dr = 55%

Pour un sable moyen Dr =75%

La masse volumique sèche :

$$\rho_{d} = \frac{\rho_{d \max} * \rho_{d \min}}{\rho_{d \max} - Dr(\rho_{d \max} - \rho_{d \min})}$$
(III.6).
$$\rho_{d} = \frac{\rho_{h}}{1+w}$$
(III.7).

Nous avons aussi :

D'après l'équation de ρ_d on détermine l'équation de la masse volumique humide :

$$\rho_{\rm h} = \rho_{\rm d} (1 + w) \qquad ({\rm III.8}).$$

Nous avons aussi :

$$\rho_h = \frac{m}{v} \qquad (\text{III.9}).$$

Diamètre de l'anneau : D=6cm

Hauteur de l'anneau : H=2cm

Le volume de l'anneau : $V = \frac{\pi * D^2}{4} * H$; v = 76.93 cm³

Tableau III.10: Calcul de la masse de l'échantillon.

	35%	55%	75%
$ ho_d$ (g/cm ³)	1.685	1.723	1.797
$\rho_h(g/cm^3)$	1.689	1.719	1.794
m(g)	95.29	97.15	101.56

A l'aide du logiciel « DATASOL » nous avons tracé les courbes de compressibilités

Pression (bars)	Lectures comparateur après 24h	Indice des vides e_0	
0.25	558	0.501	
0.5	576	0.498	
1	605	0.494	
2	645	0.488	
4	688	0.482	
6	719	0.478	
8	746	0.474	
4	732	0.476	
1	705	0.480	
0.25	681	0.483	

Tableau III.11: Calcul de e₀ pour sable lâche.

Tableau III.12: Calcul de e₀ pour sable moyen

Pression (bars)	Lectures comparateur après 24h	Indice des vides e ₀	
0.25	566	0.528	
0.5	602	0.522	
1	644	0.516	
2	699	0.508	
4	763	0.498	
6	808	0.491	
8	843	0.486	
4	828	0.488	
1	791	0.494	
0.25	763	0.498	

Pression (bars)	Lectures comparateur après 24h	Indice des vides e ₀	
0.25	587	0.528	
0.5	618	0.524	
1	669	0.516	
2	733	0.506	
4	804	0.495	
6	851	0.488	
8	887	0.482	
4	8872	0.485	
1	846	0.489	
0.25	821	0.492	

Tableau III.13: Calcul de e₀ pour sable dense.

Figure III.12: Courbe de compressibilité pour le sable lâche.

Figure III.13: Courbe de compressibilité pour le sable moyen.

Figure III.14: Courbe de compressibilité pour le sable dense.

Calcule du module oedomètrique E_{eod} :

$$E_{eod} = \frac{(1+e_0)\Delta \sigma'_v}{\Delta e}$$
(III.10).
$$e_0 = w_{sat} * \frac{\rho_s}{\rho_w}$$
(III.11).

Type de sable(%)	C _c (%)	C _g (%)	<i>W</i> _{sat} (%)	$\rho_s(g/cm^3)$	e ₀	e _{eod} (MPa)
35	4.80	0.50	19.46	1.643	31.21%	21.8
55	4.00	0.66	20.0	1.683	33.66%	39.9
75	3.20	0.50	19.10	1.769	33.61%	44.33

Tableau III.14: Calcul du module oedomètrique.

Ordre de grandeur du module oedométrique en fonction du type de sol :

 E_{oed} (MPa)

- argile molle 0,1 à 1
- argile moyenne 0,5 à 4
- argile raide 1 à 10
- limon uniforme 3 à 35
- sable 15 à 50
- gravier 30 à 120

III.5. Conclusion

Les sables en général présentent une faible capacité portante en plus des problèmes qu'ils engendrent tels que le tassement ce qui ne convient pas pour certains ouvrages de génie civil qui exigent une haute portance et une stabilité à long terme.

Le renforcement des sols avec les géosynthétiques est une solution parmi plusieurs solutions existent pour remédier le problème de tassement.
CHAPITRE IV

Présentation et interprétation des résultats

IV.1. Introduction

La technique de renforcement des sols, en dessous des semelles superficielles, avec un renforcement géosynthétique est l'une des techniques qui évolue actuellement dans le domaine de la géotechnique. De nombreux auteurs ont conduit différentes études afin de mieux saisir le comportement des sols de fondation renforcée par géosynthétiques. Toutes ces études ont indiqué que l'utilisation de géosynthétique augmente la capacité portante et diminue le tassement des fondations (Djeridi 2018).

Les résultats des essais expérimentaux trouvés dans la littérature ont indiqué que des améliorations ont été obtenues quand les nappes des géosynthétiques sont placées au-dessous des fondations sur une profondeur déterminée. Au-dessous de cette profondeur une amélioration insignifiante sera produite (Djeridi 2018).

Ce chapitre présente une étude expérimentale sur un modèle réduit, confectionné au laboratoire à fin d'étudier l'influence de certains paramètres de renforcement sur la capacité portante des fondations superficielles renforcées par des nappes de géosynthétiques. Les paramètres à étudier sont: la distance entre la base de la fondation et la première nappe (u), le nombre de nappes de renforcement (N), et la longueur des nappes de renforcement (L).

IV.2. Méthodologie expérimentale

L'objectif de notre étude est de réaliser la modélisation physique de la capacité portante des fondations superficielles renforcées par des géosynthétiques. Le modèle physique d'une fondation superficielle reposant dans un massif de sable et soumis à des chargements verticaux sera étudié. La charge verticale est appliquée à l'aide d'un vérin hydraulique manuel de capacité maximale de 10 tonnes. Cette modélisation physique permet de réaliser une étude paramétrique et d'ajuster les modèles numériques pour caler une démarche ou un outil numérique par la suite. Elle permet également d'examiner l'influence de certains paramètres sur la capacité portante des fondations renforcées.

IV.3. Présentation du modèle physique

IV.3.1. Réalisation du modèle expérimental

Les essais ont été réalisés dans un box en bois multicouches de 130 cm de longueur par 60 cm de largeur, avec une hauteur de 65 cm. La face avant du box est constituée avec une plaque de verre trempé de 1 cm d'épaisseur pour permettre l'observation des surfaces de rupture dans le sable. Le verre trempé a été choisi pour assurer la solidité du modèle. Ces dimensions sont choisîtes afin que toutes les lignes de rupture puissent s'y développer sans interférences des bords ou du fond du modèle.

Le box est supporté directement par deux portiques en acier comme illustré à la Figure. IV.1. Ces portiques étaient solidement fixés dans deux poutres horizontales en acier, le tout est monté sur une table métallique fixée directement dans le sol du laboratoire. Le système de chargement est monté sur une poutre en acier fixée sur les deux portiques, il se compose d'un vérin hydraulique manuel de capacité maximale de 10 tonnes, équipé d'un manomètre de lecture de force.

Figure IV.1: photos du modèle expérimental.

IV.3.1.1. propriétés du sol de fondation

Le sable utilisé est un sable naturel roulé (SN) moyen de couleur jaunâtre et de classe (0/4).Il est issu d'une sablière située à Oum Ali, dans la wilaya de Tébessa (Algérie). Ses caractéristiques physiques et mécaniques sont regroupées dans le tableau IV.1 qui suit.

	0 1	
Paramètres	Sable	Unité
La densité relative Dr	35_40	%
La teneur en eau w	0.185	%
La masse volumique des grains solides <i>ρs</i>	2.63	g/cm ³
La masse volumique minimale ρ_{dmin}	1.606	g/cm ³
La masse volumique maximale ρ_{dmax}	1.867	g/cm ³
L'équivalent de sable ES	79	%

Tableau IV.1 : Paramètres géotechniques du sol.

CHAPITR IV : Présentation et interprétation des résultats

La masse volumique sèche ρ_d	1.685	g/cm ³
La masse volumique humide ρ_h	1.689	g/cm ³
l'angle de frottement φ	35	0
La cohésion c	1	kPa
Coefficient de poisson ϑ	0.3	-
Le module de E	15000	kPa
L'angle de dilatation Ψ	5	0

IV.3.1.2. Modèle de semelles

Les essais de chargement ont été effectués sur deux modèles différents de semelles rigides en acier doux. Une semelle carrée de 10 cm de côté et une semelle circulaire de 10 cm de diamètre. Les deux modèles ont une épaisseur de 15 mm d'épaisseur, cette épaisseur a été choisie afin d'éviter le refoulement du sol lors de l'enfoncement (voir figure IV.2).

Figure IV.2: photos des modèles de semelles utilisés dans les essais.

IV.3.1.3. .Renforcement par géosynthétiques

Deux types différents de géosynthétiques ont été utilisés pour le renforcement du sol de fondation, géogrille de type AFITEX RTE 35-35-40 et géotextile de masse surfacique de 300 g/m² type AS30, ont été utilisés comme renfort. Les propriétés physiques et mécaniques de ces deux matériaux sont présentées dans le tableau IV.2.

Caractéristiques	AS30	AFITEX RTE 35-35-40
- Masse surfacique totale (g/m ²)	300.0	135.0
- Epaisseur sous 2 kPa (mm)	1.60	-
- Mailles (mm)	-	40x40
- Résistance à la traction (kN/m)	25.0	35.0
- Déformation à l'effort de traction maximale (%)	75	10
- Résistance au poinçonnement CBR (kN)	3.40	-

Tableau IV.2 :	Caractéristiques	physiques et	mécaniques de	es géosynthétiques.
	1	1 / 1	1	

-a-géogrille type AFITEX RTE 35-35-40 -b-géotextile type AS30

Figure IV.3: photos des géosynthétiques utilisés dans les essais.

IV.4. Plan d'expérience

Grâce au dispositif expérimental mis en place, une étude paramétrique du sol renforcé par des inclusions souples type géosynthétique sera réalisée pour quantifier l'influence de certains paramètres de renforcement sur la capacité portante. Les paramètres choisis dans cette étude sont: la distance entre la base de la fondation et la première nappe (u), le nombre de nappes de renforcement (N), et la longueur des nappes de renforcement (L). Les niveaux de variation de chaque paramètre sont pris en fonction de la largeur (B) ou en fonction du diamètre (D) de la semelle, selon le cas et sont présentés dans le tableau ci-dessous:

Tableau IV.3 : Niveaux de variation des paramètres de l'ét	tude.
--	-------

Paramètres	Niveau 1	Niveau 2	Niveau 3
distance entre la base de la fondation et la première nappe (u)	0.25*(B ou D)	0.5*(B ou D)	0.75*(Bou D)
nombre de nappes de renforcement (N)	01	02	03
longueur des nappes de renforcement (<i>L</i>)	5*(B ou D)	7*(B ou D)	9*(B ou D)

A partir des données du tableau ci-dessus, un plan d'expériences sera adopté, c'est-à-dire une liste ordonnée d'essais permettant de varier les différents paramètres d'étude. Dans notre cas, un plan d'expérience de type composite centré L15 sera adopté :

Run	LONGUEUR (L)*(B ou D)	NOMBRE (N)	PROFONDEUR (U)*(B ou D)	Capacité (KPa)
1	5	2	0,5	
2	7	3	0,5	
3	9	3	0,75	
4	9	1	0,25	
5	7	2	0,25	
6	7	1	0,5	
7	5	3	0,25	
8	5	1	0,25	
9	7	2	0,75	
10	7	2	0,5	
11	5	3	0,75	
12	5	1	0,75	
13	9	1	0,75	
14	9	2	0,5	
15	9	3	0,25	

Tableau IV.4 : Plan d'expérience L15 (3 facteurs, 3 niveaux).

Dans ce tableau, chaque ligne corresponde à une expérience à réaliser sur le modèle réduit, donc il faut réaliser 15 essais pour chaque semelle et pour chaque type de renforcement, conformément aux données du tableau ci-dessus.

Pour obtenir des lits de sable raisonnablement homogènes, le sable est versé dans le box du modèle par des couches de 10 cm d'épaisseur. La quantité de sable nécessaire pour chaque couche, pour produire une densité relative spécifique bien définie est d'abord été pesée et placée dans le box, puis tassé jusqu'à atteindre la hauteur de couche requise. Les essais expérimentaux ont été menés sur des échantillons préparés avec des masses volumiques de 16,66 kN/m³ pour le cas de semelle carrée et 17,14 kN/m³ pour le cas de semelle circulaire qui représentent des conditions lâches et moyennement denses respectivement. Les densités relatives des échantillons adoptées sont 35 et 45 %, respectivement.

Figure IV.4: Technique de remplissage du box du modèle par le sable sur des couches de 10cm d'épaisseur.

La mesure du tassement des semelles est assurée par des capteurs de déplacement digitaux, de longueur de course de 50 mm, placés directement sur la surface supérieure des semelles. Un tassement global de 35 mm est choisit pour l'évaluation de la capacité portante des fondations.

Figure IV.5: Dispositif expérimental utilisé dans les deux cas de semelles.

IV.5. Résultats et interprétation

Un total de 60 essais ont été effectués, 30 essais sur un modèle de semelle carrée reposant sur du sable renforcé par géogrille et géotextile et un même nombre sur une semelle circulaire. A partir des résultats obtenus, l'influence des paramètres de renforcement à savoir, la distance entre la base de la fondation et la première nappe (u), le nombre de nappes de renforcement (N), et la longueur des nappes de renforcement (L), seront discutés.

L'amélioration de la capacité portante dessemelles est représentée à l'aide de la valeur de la capacité portante mesurée à un tassement maximal égale à 35 mm. Le tassement des semelles S est exprimé sous forme non dimensionnelle en termes de largeur de semelle B comme le rapport en pourcentage (S/B). Ce tassement est la moyenne des lectures des deux capteurs de déplacement.

La capacité portante mesurée pour le de la semelle carrée reposant sur un sable lâche sans renforcement est de 80.0 kPa et elle valle 107,73 kPa pour le cas de la semelle circulaire reposant sur un sable moyennement dense non renforcé (voir figure IV 6).

Figure IV.6: Capacité portante du sol non renforcé.

Les résultats en termes de capacité portante pour les différentes configurations de renforcement sont présentés dans les tableaux IV. 5 et IV.6.

D	LONGUEUR	NOMBRE	PROFONDEUR	Capacité (kPa)	
Kun	(L)*(B ou D)	(N)	(U)*(B ou D)	Géogrille	Géotextile
1	5	2	0,5	250	380
2	7	3	0,5	270	280
3	9	3	0,75	155	180
4	9	1	0,25	230	275
5	7	2	0,25	215	350
6	7	1	0,5	250	285
7	5	3	0,25	395	525
8	5	1	0,25	175	240
9	7	2	0,75	175	205
10	7	2	0,5	260	370
11	5	3	0,75	170	165
12	5	1	0,75	170	165
13	9	1	0,75	220	210
14	9	2	0,5	225	320
15	9	3	0,25	360	450

Tableau IV.5 : Résultats de la capacité portante pour la semelle carrée

Tableau IV.6 : Résultats de la capacité portante pour la semelle circulaire.

Dun	LONGUEUR	NOMBRE	PROFONDEUR	Capacité (kPa)	
Kull	(L)*(B ou D)	(N)	(U)*(B ou D)	Géogrille	Géotextile
1	5	2	0,5	291.508	329.531
2	7	3	0,5	310.52	304.183
3	9	3	0,75	171.102	183.777
4	9	1	0,25	335.868	411.914
5	7	2	0,25	297.845	513.308
6	7	1	0,5	291.508	329.531
7	5	3	0,25	462.611	728.771
8	5	1	0,25	323.194	367.554
9	7	2	0,75	215.463	247.148

10	7	2	0,5	316.857	456.274
11	5	3	0,75	183.777	158.428
12	5	1	0,75	196.451	164.766
13	9	1	0,75	215.463	202.788
14	9	2	0,5	285.171	348.542
15	9	3	0,25	405.577	570.342

IV.5.1 Influence du nombre de couches de renforcement

Les variations typiques de la capacité portante q en fonction du rapport de tassement (S/B) pour différents nombres de couches de renforcement sont présentées dans les Figures. IV.7, IV.8 et IV.9. Le comportement des semelles posées sur du sable non renforcé est inclus également dans ces figures à titre de comparaison. La figure IV.7 montre clairement que le renforcement du sol à partir de la profondeur 0.25B (ou 0.25D), améliore beaucoup à la fois la raideur initiale représentée par la pente initiale des courbes charge-tassement et la capacité portante au même niveau du tassement. L'inclusion de trois (03) couches de renforcement a entraîné l'augmentation de la charge ultime à 525.0 kPa par rapport à une valeur de 80,0 kPa pour le cas du sable non renforcé (cas de la semelle carrée). Cette augmentation de la charge ultime de la semelle peut être attribuée au mécanisme de renforcement, qui limite l'étalement et la déformation des particules de sable.

Sur la figure IV.8 est présentée la variation de la capacité portante des semelles renforcées à partir de la profondeur 0.5B (ou 0.5D). On constate à partir de cette profondeur une légère variation de la capacité portante entre les 03, elle est de 250.0 kPa pour une seule couche de renforcement, 260.0 kPa pour le cas de deux couches et 270.0 kPa pour 03 couches (cas de la semelle carrée). Ce ci s'explique qu'on augmentant la profondeur de renforcement, l'influence des couches en profondeur devient moins important, cette remarque est constatée pour les deux cas de semelles.

Figure IV.7: Influence du nombre de couches sur la capacité portante en fonction du rapport (S/B), a- semelle carrée avec géogrille, b- semelle circulaire avec géotextile (a- U=0.25B; L=9B, b-U=0.25D; L=9D).

Figure IV.8: Influence du nombre de couches sur la capacité portante en fonction du rapport (S/B), a- semelle carrée avec géogrille, b- semelle circulaire avec géotextile (a- U=0.5B; L=7B,

b- U=0.5D; L=7D).

Figure IV.9: Influence du nombre de couches sur la capacité portante en fonction du rapport (S/B), semelle carrée avec U=0.75B; L=5B.

La figure IV.9 présente la variation de la capacité portante de la semelle carrée renforcée par 01 couche et 03 couches, à partir de la profondeur 0.75B. On constate à partir de cette profondeur que l'influence du nombre de couches ou du type de renforcement est presque négligeable, une diminution de la charge limite d'environ 100.0 kPa est également constatée en comparaison avec le cas précédent (0.5B). Ces remarques confirment l'influence remarquable de la profondeur de renforcement.

IV.5.2 Influence de la longueur de renforcement

Dans les Figures. IV.10 et IV.11 est présentée l'influence de la longueur de renforcement sur la capacité portante q en fonction du rapport de tassement (S/B) pour différents nombres de couches de renforcement sous des profondeurs différentes, en comparaison avec le cas des semelles posées sur du sable non renforcé. La figure IV.10 montre clairement que le renforcement du sol avec les longueurs 7B et 9B (ou 7D et 9D) selon le cas, améliore beaucoup à la fois la raideur initiale représentée par la pente initiale des courbes charge-tassement et la capacité portante au même niveau du tassement. L'inclusion d'une longueur de renforcement de 9B sous une profondeur de 0.25B, a entraîné l'augmentation de la charge ultime à 290.0 kPa pour le renforcement par géogrille et 520.0 kPa pour le renforcement par géotextile, par rapport à une valeur de 80,0 kPa pour le cas du sable non renforcé (cas de la semelle carrée). La remarquable différence de la capacité portante entre le renforcement par géotextile et ce par géogrille est expliquée par la surface de frottement offerte par le renforcement en géotextile par rapport à ce par géogrille.

Sur la figure IV.11 est présentée la variation de la capacité portante des semelles renforcées à partir de la profondeur 0.75B pour le cas de la semelle carrée avec 01 et 03 couches de renforcement. On constate à partir de cette profondeur que la différence de variation de la capacité portante entre les différentes longueurs de renforcement est diminue, ainsi que la différence entre les deux types de renforcement est devenue très minime. Ce ci s'explique

qu'on augmentant la profondeur de renforcement, l'influence de la longueur de renforcement devient moins important.

Figure IV.11: Influence de la longueur des couches de renforcement sur la capacité portante en fonction du rapport (S/B), a- semelle carrée avec géogrille, b- semelle circulaire avec géotextile (a-U=0.75B; N=1 b-U=0.75B; N=3).

IV.5.3 Influence de la profondeur de renforcement

L'influence de la profondeur de la première couche de renforcement sur la capacité portante en fonction du rapport de tassement (S/B) est présentée dans les figures. IV.12, et IV.13. Le comportement des semelles posées sur du sable non renforcé est inclus également dans ces figures à titre de comparaison. La figure IV.12 montre clairement que le renforcement du sol à partir de la profondeur 0.25B (ou 0.25D), améliore d'une façon considérable la capacité portante, en comparaison avec le cas de semelles non renforcées ou le cas de renforcement à une profondeur de 0.75B (ou 0.75D). Cette augmentation est constatée quelque soit le nombre de couches de renforcement ou sa longueur. La distinction entre les types de renforcement est clairement visible pour le cas des deux semelles renforcées à 0.25B (ou 0.25D).

CHAPITR IV : Présentation et interprétation des résultats

Figure IV.12: Influence de la profondeur des couches de renforcement sur la capacité portante en fonction du rapport (S/B), a- semelle carrée, b- semelle circulaire (a- N=3;L=5B b- N=3; L=5D).

La figure IV.13 présente la variation de la capacité portante de la semelle circulaire renforcée par 02 couches et 03 couches, à partir de la profondeur 0.25D, 0.5D et 0.75D. On constate qu'à partir de la profondeur 0.75D, l'influence de la profondeur de renforcement est presque négligeable, en changeant la longueur de renforcement. Ces remarques confirment l'influence remarquable de la profondeur de renforcement.

CHAPITR IV : Présentation et interprétation des résultats

Figure IV.13: Influence de la profondeur des couches de renforcement sur la capacité portante en fonction du rapport (S/B), (a- N=2; L=7D b- N=3; L=9D).

IV.6. Conclusion

Dans ce chapitre, une étude expérimentale sur un modèle réduit est réalisée, avec l'utilisation de deux types de semelles, carrée et circulaire, en utilisant deux types de renforcement par géosynthétiques (géogrille le géotextile). Les paramètres de renforcement, à savoir la distance entre la base de la fondation et la première nappe (u), le nombre de nappes de renforcement (N), et la longueur des nappes de renforcement (L), ont été varié selon un plan d'expérience L15.

Après cette étude expérimentale, on peut conclure ce qui suit :

- lorsqu'on augmentant la profondeur de renforcement, l'influence des couches et la longueur de renforcement devient moins importante ;
- L'inclusion d'une longueur de renforcement de 9B sous une profondeur de 0.25B, a entraîné une augmentation important de la charge ultime ;
- Le renforcement du sol à partir de la profondeur 0.25B (ou 0.25D), améliore d'une façon considérable la capacité portante ;
- ✤ A partir de la profondeur 0.75D, l'influence de la profondeur de renforcement est presque négligeable ;
- Le renforcement par géotextile améliore la capacité portant mieux que le renforcement par géogrille.

CHAPITRE V

Modélisation numérique et validation des résultats expérimentaux

V.1. Introduction

Depuis 1985, un certain nombre de travaux de recherche traitant l'amélioration de la capacité portante de fondations reposant sur du sable renforcé par une multitude de nappes de géogrilles ont été publiés par exemple, (Omar et al, 1993; Yetimoglu et al, 1994; Adams et Collin, 1997; Shin, et al, 2002) pour les fondations sur terrain de surface horizontale.

Ce chapitre est consacré à la validation de la procédure de simulation numérique de la capacité portante ultime d'une fondation superficielle reposant sur un sable renforcé et non renforcé. Après la validation de notre modèle avec les mesures expérimentales, nous avons étudié les plus importants résultats de l'influence des différents paramètres géométriques sur la capacité portante d'une semelle circulaire construite sur un sable renforcé par multi-nappes de géosynthétiques disposées horizontalement dans le sol.

V.2. Lois de comportement utilisées dans PLAXIS

Les modèles de comportement de sols sont très nombreux : depuis le modèle élastiqueplastique de Mohr-Coulomb jusqu'aux lois de comportement les plus sophistiquées, permettant de décrire presque tous les aspects du comportement élasto-plastique des sols, aussi bien sous des sollicitations monotone que cyclique. Ces modèles ont été développés dans le but d'être intégrés dans des calculs par éléments finis. Dans ce schéma, la modélisation par éléments finis permet de résoudre le problème aux limites en tenant compte, par une loi de comportement réaliste, du comportement réel du sol. Deux difficultés majeures ont empêché la réalisation complète de ce schéma : d'une part les lois de comportement qui décrivent bien le comportement des sols sont complexes, la seconde difficulté est l'intégration de ces lois de comportement dans des codes de calcul par éléments finis, bi ou tridimensionnels. Peu de codes sont opérationnels actuellement, avec des lois sophistiquées. Les modèles de comportement disponible dans PLAXIS son :

- Modèle élastique linéaire ;
- Modèle de Mohr-Coulomb ;
- Modèle de sol avec écrouissage (Harding Soil Model) ;
- Modèle '' SSM '', pour les sols mous
- Modèle '' SSCM '', pour les sols mous avec effet du temps.

V.3. Modèle de Mohr-coulomb

Le modèle de Mohr-Coulomb demande la détermination de cinq paramètres Les deux premiers sont E et n paramètres d'élasticité. Les deux autres sont C et φ , respectivement, la cohésion et l'angle de frottement. Ce sont des paramètres classiques

de la géotechnique, certes souvent fournis par des essais de laboratoire, mais nécessaires à des calculs de déformation ou de stabilité.

1. Module de Young

Le choix d'un module de déformation est un des problèmes les plus difficiles en géotechnique. Le module de déformation varie en fonction de la déformation et en fonction de la contrainte moyenne. Dans le modèle de Mohr-Coulomb, le module est constant. Il apparaît peu réaliste de considérer un module tangent à l'origine (ce qui correspondrait au G_{max} , mesuré dans des essais dynamiques ou en très faibles déformations).

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Mohr-Coulomb - sol	and the second s
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	General Parameters Interfaces	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stiffness	Strength
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{ref} : 4,000E+04 kN/m ²	c _{ref} : 78,000 kN/m ²
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	v (nu) : 0,300	φ (phi): 9,900 °
Alternatives Velocities G_{ref} : 1,538E+04 kN/m ² E_{oed} : 5,385E+04 kN/m ² V_p : 178,300 \clubsuit m/s M/p : 178,300 \clubsuit m/s		ψ (psi) : 0,000 °
$\begin{tabular}{ c c c c c c } \hline Alternatives & & Velocities & & & \\ \hline G_{ref}: & 1,538E+04 & kN/m^2 & & V_s: & 95,300 & m/s & & \\ \hline E_{oed}: & 5,385E+04 & kN/m^2 & & V_p: & 178,300 & m/s & & \\ \hline & & & & & & & \\ \hline & & & & & & &$		
G _{ref} : 1,538E+04 kN/m ² E _{oed} : 5,385E+04 kN/m ² V _s : 95,300 ♀ m/s V _p : 178,300 ♀ m/s <u>A</u> dvanced	Alternatives	Velocities
E _{oed} : 5,385E+04 kN/m ² V _p : 178,300 ★ m/s <u>A</u> dvanced	G _{ref} : 1,538E+04 kN/m ²	V _s : 95,300 全 m/s
<u>A</u> dvanced	E _{oed} : 5,385E+04 kN/m ²	V _p : 178,300 🚖 m/s
<u>A</u> dvanced		
<u>A</u> dvanced		
<u>A</u> dvanced		
		<u>A</u> dvanced
Next Ok Cancel Help	Nevt	Ok Cancel Help

Figure V.1 : Fenêtre des paramètres de Mohr-Coulomb.

Ce module nécessite des essais spéciaux. Il est conseillé de prendre un module "moyen"», par exemple celui correspondant à un niveau de 50% du déviateur de rupture (voir Figure V.2). L'utilisateur doit rester conscient de l'importance du choix du module qu'il prendra en compte. Il n'y a là rien d'étonnant et la même question se retrouve par exemple dans tout calcul classique de fondation, par exemple : Dans les boîtes de dialogues, on peut aussi rentrer le gradient donnant la variation du module avec la profondeur.

2. Coefficient de poisson

On conseille une valeur de 0,2 à 0,4 pour le coefficient de Poisson. Celle-ci est réaliste pour l'application du poids propre (procédure K_0 ou chargement gravitaire).Pour certains problèmes, notamment en décharge, on peut utiliser des valeurs plus faibles. Pour des sols incompressibles, le coefficient de Poisson s'approche de 0,5 sans que cette valeur soit utilisable.

Figure V.2 : Définition du module à 50% de la rupture.

3. Angle de frottement

PLAXIS ne prend pas en compte une variation d'angle de frottement avec la contrainte moyenne. L'angle de frottement à introduire est soit l'angle de frottement "de pic" soit l'angle de frottement de palier. On attire l'attention sur le fait que des angles de frottement supérieurs à 35° peuvent considérablement allonger les temps de calcul. Il peut être avisé de commencer des calculs avec des valeurs raisonnables d'angle de frottement, quitte à les augmenter dans la suite. Cette valeur de 35° est compatible avec les angles de frottement ϕ_{CV} (à volume constant, au palier).

4. La cohésion

Il peut être utile d'attribuer, même à des matériaux purement frottant, une très faible cohésion (0,2 à 1 kPa) pour des questions numériques. Pour les analyses en non drainé avec $\varphi_u = 0$, Plaxis offre l'option de faire varier la cohésion non drainée avec la profondeur : ceci correspond à la croissance linéaire de la cohésion en fonction de la profondeur observée dans des profils au scissomètre ou en résistance de pointe de pénétromètre. Une valeur nulle donne une cohésion constante. Les unités doivent être homogènes avec ce qui a été choisi dans le problème (typiquement en kPa/m). Cette option permet aussi de faire varier le module de déformation E avec la profondeur.

5. L'angle de dilatance

Le dernier paramètre est l'angle de "dilatance" noté ψ c'est le paramètre le moins courant. Il peut cependant être facilement évalué par la règle (grossière) suivante :

$$\psi = \varphi - 30 \text{ pour } \varphi > 30^{\circ} \qquad (V.1).$$
$$ou \ \psi = 0$$

Le cas $\psi < 0$ correspond à des sables très lâches (état souvent dit métastable, ou liquéfaction statique). La valeur $\psi = 0$ correspond à un matériau élastique parfaitement plastique, où il n'y a donc pas de dilatance lorsque le matériau atteint la plasticité. C'est souvent le cas pour les argiles ou pour les sables de densité faibles ou moyenne sous contraintes assez fortes.

6. Paramètres avancés

Pour tenir compte des variations avec la profondeur, on utilise les paramètres avancés (Figure V.3).

Advanced parameters Mohr-Coulomb	and the second se
Stiffness	Strength
E _{increment} : 0,000 kN/m ² /m	c _{increment} : 0,000 kN/m ² /m
y _{ref} : 0,000 m	y _{ref} : 0,000 m
	✓ Tension cut off
	Tensile strength : 0,000 kN/m ²
Undrained behaviour	Consolidation
Standard settings	C _{v ref} : N/A m ² day
C Manual settings	when j v
Skemptan-B 0,978	k _v · E _{ced}
V _u 0,495	C _{v,ref} =
K _{w,ref} / n 1,500E+06 kN/m ²	7 _w
<u>O</u> K <u>C</u> ancel	Default Help

Figure V.3 : Fenêtre des paramètres avancés du modèle Mohr-Coulomb.

V.4. Procédure de la simulation numérique

V.4.1. Présentation du cas étudié

On souhaite étudier le comportement d'une fondation circulaire reposant sur la surface d'une couche de sable, et d'analyser l'effet des inclusions de géogrille sur la portance de la semelle construite sur sable. La fondation est rigide (alors on impose un tassement uniforme en surface). La définition géométrique retenue pour cette étude est représentée sur les figures V.4 et V.5 pour le sol non renforcé et renforcé respectivement. Le problème est modélisé par un modèle géométrique plan (2D) de 1.20 m de largeur et 0.60 m de hauteur.

Figure V.5 : Géométrie du problème pour le sol renforcé.

V.4.2. Entrée des caractéristiques générales

La procédure d'entrée des caractéristiques générales se fait en suivant les étapes suivantes :

a). Géométrie

La génération du modèle d'éléments finis commence par la création du modèle géométrique, qui est la représentation du problème réel à étudier. Un modèle géométrique consiste en des points, des lignes et des couches.

b). Conditions aux limites

On choisit les conditions aux limites par défaut, libres en vertical sur l'axe et sur le pourtour, bloquées au fond.

c). Conditions en déplacement

On a choisit d'imposer un déplacement vertical égal à 0,035 m, conformément au tassement calculé expérimentalement.

d). Caractéristiques des matériaux

Les propriétés du sol et de renforcement sont résumées dans le tableau V.1

Paramètres	Nom	Sable	Unité
Modèle type	Model	Mohr-coulomb	-
Type de comportement	Туре	Drainé	-
Poids volumique sec	γ_d	16.85	kN/m ³
Poids volumique humide	γ_{sat}	16.89	kN/m ³
Module de Young	E	15000	kN/m²
Coefficient de poisson	θ	0.3	-
Cohésion	C _{ref}	1	kN/m²
Angle de frottement	φ	35	0
Angle de dilatation	ψ	5	0
Rigidité axiale de la géogrille	EA	2000	kN/m

Tableau V.1 : Propriétés du sol et de renforcement.

e). Génération du Maillage

L'icône 'maillage' permet d'effectuer automatiquement le maillage du problème. On règle la finesse du maillage dans le menu Mesh sur *Medium*, puis, on le raffine localement (en

utilisant l'option *Refine line*) au niveau des géogrilles. Le maillage est présenté sur la figure V.6.

Figure V.6 : Maillage avant le calcul.

f). Conditions initiales

Une fois le modèle géométrique créé et le maillage d'éléments finis généré, l'état de contraintes initiales et la configuration initiale doivent être spécifiés. Les conditions initiales sont constituées de deux modes différents, l'un pour générer les pressions interstitielles initiales (mode des conditions hydrauliques) et l'autre pour spécifier la configuration géométrique initiale et générer le champ des contraintes effectives initiales.

Les contraintes initiales sont alors calculées.

Figure V.7 : Valeurs des contraintes initiales.

V.4.3. Calculs

Après la définition d'un modèle aux éléments finis, les calculs proprement dits peuvent être effectués.

a). Général

On choisit un calcul plastique.

	e 🔒	₽ ++++	← Calculate		
Seneral Parameter	s Multipliers P	review			
Phase	e I Zentenene I v			alculation type	
Number / ID.:	6 <pha< th=""><th>ase 6></th><th> </th><th>Plastic</th><th></th></pha<>	ase 6>		Plastic	
Chave from oh as	a la Tablahaa	-		Plastic	
Start from phas	e: ju - Initiai phas	e	<u> </u>	Consolidation Phile reduction	
- Log info				Dynamic analysis	
				Paramete	ers
					ers
dentification	Phase po	Start from		Paramet	ers
dentification	Phase no.	Start from	Calculation		Time Water
dentification Initial phase <phase 1=""></phase>	Phase no.	Start from	Calculation N/A Plastic	Loading input N/A	Time Water 0,00 0 0,00 1

Figure V.8 : Menu général de calcul.

b). Paramètres

On choisit la construction par étape (staged construction) qui va permettre de revenir sur les écrans de dessin en cliquant sur le bouton « Définie » : on va alors activer :

-Le déplacement prescrit et donner sa valeur de 0,035 m vers le bas en double cliquant sur le déplacement imposé.

-Les nappes de géogrilles selon le nombre désiré.

Puis on valide la définition de la phase par « Update ».

	•			• 2 · · · · ·
	∕ ⊛	6		
7	€	8		
	<u>A</u>	10		
escribed displaceme	ent (static)			23
Free Directions	Geometry point 4		Geometry point 3	
X-direction	X-Value : 0,000	🜩 m	X-Value : 0,000	◆ m
Y-direction	Y-Value : -0,035	🜩 m	Y-Value : -0,035	🚖 m
				Perpendicular
			OK Cancel	Help
· · · · · · · · · · · · · · · · · · ·				
· · · · •	→ <u></u>			• • • •

Figure V.9 : Valeur du déplacement imposé.

c). Points de contrôle

Il est nécessaire de définir les points où l'on souhaite enregistrer au cours du calcul les contraintes, les déformations ou les déplacements. Ces points sont importants à définir car on ne pourra tracer des courbes que pour ces points. Il est à noter que l'on peut choisir soit des points de déplacement soit des points de contraintes. Pour notre cas ces points ont été définis au sommet de la fondation.

d). Calculs

On peut alors lancer le calcul. Pendant celui-ci, une fenêtre d'information apparaît donnant l'évolution du calcul figure IIV.10.

Plaxis 8.1 Plastic Ca	alculation - (CAP_5b_025_3 - Axi	i-Symme	etry	
Total multipliers at	t the end of p	revious loading step-		Calculation progres	s
∑ -Mdisp:	1,000	PMax	0.000	Force-Y	
Σ-MloadA:	1,000	Σ-Marea:	1,000	111 🔪	
∑ -MloadB:	1,000	Force-X:	0,000		
Σ-Mweight:	1,000	Force-Y:	-0,119	111 N	
Σ-Maccel:	0,000	Stiffness:	0,050	* •	
Σ-Msf:	1,000	Time:	0,000		
∑ -Mstage:	0,226	Dyn. time:	0,000	U Node A	•
Iteration process	of current ste	≥p			
Current step:	53	Max. steps:	250	Element	316
Iteration:	12	Max. iterations:	60	Decomposition:	100 %
Global error:	0,011	Tolerance:	0,010	Calc. time:	22 s
Plastic points in cu	rrent step				
Plastic stress poi	nts:	539 Inaccurate		7 Tolerated:	56
Plastic interface	points:	8 Inaccurate		0 Tolerated:	3
Tension points:		122 Cap/Hard p	ooints:	0 Apex points:	0
				<u>C</u> a	ancel

Figure V.10 : Fenêtre d'évolution de calcul.

V.4.4 Résultats

a. Validation du modèle numérique

Pour la vérification de la qualité des résultats numériques obtenus dans le présent travail avec le logiciel Plaxis, une validation de notre simulation numérique est nécessaire pour confirmer les résultats obtenus, et pour cela, une comparaison avec nos résultats expérimentaux est illustrée sur la figure V.11.

Figure V.11 : Validation du modèle numérique par les résultats expérimentaux.

Figure V.12 : Résultats numériques et expérimentaux de la semelle renforcée par géogrille. (a- L=5D; N=1, b-U= L=7D; N=2).

Sur la figure V.12 sont présentés les résultats expérimentaux et ceux calculés par la modélisation numérique pour le cas de la semelle circulaire renforcée par géogrille. On constate une certaine différence entre les résultats expérimentaux et numérique, cette différence peut être expliquée par le faite qu'un modèle numérique en deux dimensions ne reflète pas avec fidélité un phénomène réel en 3 dimensions.

V.5. Influence des paramètres de renforcement

V.5.1. Influence du nombre de couches de renforcement (N)

Les variations de la capacité portante q en fonction du rapport de tassement (S/D) pour différents nombres de couches de renforcement sont présentées dans les figures V.13 et V14. Le comportement de la semelle circulaire posée sur du sable non renforcé est inclus également dans cette figure à titre de comparaison. A partir de la figure V.9, il est clair que le renforcement du sol à partir de la profondeur 0.25D, améliore beaucoup la capacité portante au même niveau du tassement. L'inclusion de trois (03) couches de renforcement a entraîné l'augmentation de la charge ultime à 242.57 kPa, pour des longueurs de renforcement égales 5 fois le diamètre et à 242.43 kPa pour des longueurs de renforcement égales 9 fois le diamètre. La valeur de référence pour le cas du sable non renforcé est de 112.71 kPa.

Figure V.13 : Influence du nombre de couches de renforcement sur la capacité portante.

(a- U=0.25D;L=5D, b-U=0.25D; L=9D).

Sur la figure V.14 est présentée la variation de la capacité portante de la semelle renforcée à partir des profondeurs 0.5D et 0.75D. On constate à partir de certaine profondeur une légère variation de la capacité portante entre les 03 couches de renforcement. Ce ci s'explique qu'on augmentant la profondeur de renforcement, la position des couches de renforcement s'éloigne de la zone de rupture sous la semelle et l'influence des couches en profondeur devient moins important.

Figure V.14 : Influence du nombre de couches de renforcement sur la capacité portante. (a- U=0.5D; L=7D, b- U=0.75D; L=9D).

V.5.2. Influence de la profondeur des couches de renforcement (U)

L'influence de la profondeur de la première couche de renforcement sur la capacité portante en fonction du rapport de tassement (S/B) est présentée dans les figures. V.15. Le comportement des semelles posées sur du sable non renforcé est inclus également dans cette figure à titre de comparaison. La figure V.15 (a), montre clairement que le renforcement du sol à partir de la profondeur 0.25D et pour la longueur 5D, améliore d'une façon considérable la capacité portante, en comparaison avec le cas de semelles non renforcées ou le cas de renforcement à une profondeur 0.75D. Cette constatation confirme les résultats expérimentaux présentés au chapitre précédent.

Sur la figure V.15 (b), on constate qu'à partir de certaine longueur, l'influence de la profondeur de renforcement est presque négligeable. Ces remarques nous guident de penser à

déterminer les valeurs critiques de ces paramètres pour assurer à la fois les facteurs de sécurité et d'économie.

Figure V.15 : Influence de la profondeur des couches de renforcement sur la capacité portante.

(a- N=1; L=5D, b- N=1; L=9D).

V.6. Conclusion

Le code par éléments finis Plaxis a été utilisé afin d'évaluer la capacité portante d'une fondation circulaire posée sur une couche de sable renforcé par multi-nappes de géosynthétiques disposé horizontalement (renforcement plane), et en comparant les résultats obtenus, présentés sous la forme de graphiques, avec les résultats expérimentaux, nous pouvons noter les points suivants :

• Nous avons vu que les géosynthétiques permettent d'augmenter d'une manière significative la capacité portante et réduit le tassement des fondations.

• La capacité portante d'une semelle sur un sol renforcée augmente avec l'augmentation du nombre de nappes de géosynthétiques.

D'après cette étude on a conclu que beaucoup de recherches restent à effectuer concernant ces paramètres, ce qui offre un horizon ouvert pour d'autres recherches surtout sur le plan expérimental.
Conclusion générale et perspectives

L'objet de notre travail a porté sur une étude expérimentale sur un modèle réduit et numérique par éléments finis, en utilisant le code des éléments finis PLAXIS version 8.2, de la capacité portante d'une fondation reposant sur un sable renforcé par géosynthétique.

L'étude s'est intéressée particulièrement à résoudre expérimentalement le problème de la capacité portante pour un sol frottant sans cohésion, une série des essais a été effectuée en faisant varier les paramètres de renforcement sur un modèle réduit.

Les résultats expérimentaux obtenus ont été comparés avec les modèles numériques, à l'issue de cette étude on peut présenter les conclusions suivantes :

- L'introduction des nappes de géosynthétiques augmente considérablement la capacité portante des sols et réduit le tassement des fondations;
- L'effet de renforcement devient négligeable au-dessous de la profondeur de renforcement, celle-ci a été évaluée à environ 0.75B;
- les résultats obtenus montrent que la simulation numérique en utilisant le code éléments finis (Plaxis) donne des résultats concordant de manière satisfaisante avec les résultats d'essais réalisés en laboratoire sur modèles réduits.

Perspectives

En raison du temps limité, cette étude n'a pas pu toucher tous les facteurs. La recherche recommandée pourrait viser les points suivants:

- Généraliser cette étude pour le cas de sable dense et très dense;
- Tenir compte de d'autres paramètres tels que l'espacement entre les nappes de renforcement ou d'autres types de renforcement ;
- Utiliser des inclusions verticaux tels que les colonnes ballastées et les pieux ;
- Modélisation du problème en 03 dimensions pour mieux représenter le phénomène expérimental.

Références bibliographiques

[1] Adams, M.T., and Collin, J.G., 1997. "Large model spread footing load tests on geosynthetic reinforced soil foundations." *Journal of Geoteehnieal and Geoenvironmental Engineering*, ASCE, Vol. 123, No.1, pp. 6672.

[2] Américain Association of States Highway and Transportation Official (AASHT). Terzaghi (1929).

[3] Djeridi S. (2018). 'Analyse numérique de la portance des fondations superficielles sur sol renforcé. Thèse de doctorat, Université Mohamed Khider, Biskara, 2018.

[4] Fascicule n° 62, titre V, 1993. Ministère de l'Équipement, du Logement et des Transports. Textes Officiels, n° 93-3 182 p. Règles techniques de conception et de calcul des fondations des ouvrages de génie civil. Cahier des Clauses Techniques Générales applicables aux marchés publics de travaux.

[5] Frank R (1999). "Calcul des fondations superficielles et profondes". Techniques de l'Ingénieur, Presses de l'ENPC, 141 p.

[6] Holtz RD (2001). "Geosynthetics for soil reinforcement". 9th Spencer J. Buchanan Lecture, University of Washington Department of Civil & Environmental Engineering, November.

[7] ISO TR 20432, Mars 2007. Guidelines to the determination of long-term strength of geosynthetics for soil reinforcement.

[8] NF EN ISO 9862, Août 2005. Géosynthétiques. Echantillonnage et préparation des éprouvettes.

[9] NF EN ISO 10318, Mai 2006. Géosynthétiques. Termes et définitions.

[10] NF EN ISO 10319, Août 2008. Géosynthétiques - Essai de traction des bandes larges.

[11] NF EN ISO 12957-1, Septembre 2005. Géosynthétiques. Détermination des caractéristiques de frottement – Partie 1 : Essai de cisaillement direct.

[12] NF EN ISO 12957-2, Septembre 2005. Géosynthétiques. Détermination des caractéristiques de frottement – Partie 1 : Essai sur plan incliné.

[13] NF EN ISO 13431, Janvier 2001. Géotextiles et produits apparentés - Détermination du comportement au fluage en traction et de la rupture au fluage en traction.

[14] Omar, M.T., Das, B.M., Yen, S.C., Puri, V.K., and Cook, E.E., 1993a. "Ultimate bearing capacity of rectangular foundations on geogrid-reinforced sand." *Geotechnical Testing Journal*, ASTM, Vol. 16, No. 2, pp. 246-252.

[15] **Prandtl L** (1920). "Über die härte plastischer körper". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1920, 74-85.

[16] Shin, E.C., Das, B.M., Lee, E.S., and Atalar, C., 2002. "Bearing capacity of strip foundation on geogrid-reinforced sand." *Geoteehnieal and Geologieal Engineering*, 20, pp. 169-180

[17] Vesic AS (1963). "Bearing capacity of deep foundations in sand". Highw Res Rec 39:112–153.

[18] Yetimoglu, T., Wu, J.T.H., and Saglamer, A., 1994. "Bearing capacity of rectangular footings on geogrid-reinforced sand." *Journal of Geoteehniea l Engineering, ASCE*, Vol. 12O, No.12, pp. 2083-2099.