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Abstract

The objective of this thesis is to study the existence and uniqueness of the solution of a nonlinear

integro-differential equation of Volterra of second kind when the derivative of the solution

appears under the sign of integration in a non-linear way, which has been defined without

a singular kernel. Then, using Matlab and C ++ we get the approximate solution and error

estimates. During this study, we deemed it necessary to study a problem of Fractional Boundary

value in the presence of this derivative, it leads to the study of a linear integral Volterra-

Fredholm equation of the second type and this by defining a new fractional integral as inverse

of the conformable fractional derivative of Caputo.

Key words:

Nonlinear integro-differential equation of Volterra, Fractional derivative without singular kernel,

Convergence, Analytical solution, Existence and uniqueness of solution, Fractional Boundary

value problem, Green’s function, fractional integral.
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Résumé

L’objectif de cette thèse est d’étudier l’existence et l’unicité de la solution d’une équation

intégro-différentielle non linéaire de Volterra de second type lorsque la dérivée de la solution

apparâıt sous le signe de l’intégration de manière non linéaire, qui a été définie sans noyau

singulier. Ensuite, en utilisant Matlab et C ++, nous obtenons la solution approximative et les

estimations d’erreur. Au cours de cette étude, nous avons jugé nécessaire d’étudier un problème

fractionnaire aux limites en présence de cette dérivée, ce dernier conduit à l’étude d’une équation

Volterra-Fredholm intégrale linéaire du second type et ce en définissant une nouvelle intégrale

fractionnaire comme inverse de la dérivée fractionnaire conformable de Caputo.

Mots clés:

Équation intégro-différentielle non linéaire de Volterra, Dérivée fractionnaire sans noyau sin-

gulier, Convergence, Solution analytique, Existence et unicité de la solution, Problèmes aux

limites fractionnaire, fonction de Green, intégrale fractionnaire.
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Arabic Abstract 3

Acknowledgement 4

List of Figures 7

List of Tables 8

Introduction 9

1 Fractional Calculus 11

1.1 History, Definitions and Applications . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Grünwald–Letnikov derivative . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.2 Riemann-Liouville fractional derivative . . . . . . . . . . . . . . . . . . . 15

1.1.3 Caputo derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.4 A new fractional derivative of Caputo . . . . . . . . . . . . . . . . . . . . 16

1.2 Differentiation under the Integral Sign . . . . . . . . . . . . . . . . . . . . . . . 21

2 Volterra integro-differential equations 25

2.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Analysis study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 System study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5



2.6 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Numerical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 A New Definition of Fractional Integral 51

3.1 The First Definition of New Fractional Integral . . . . . . . . . . . . . . . . . . 55

3.2 Theoretical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 The Second Definition of New Fractional Integral . . . . . . . . . . . . . . . . . 64

4 Analytical and Numerical Study for a Fractional BVP 67

4.1 Analytic Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Existence and uniqueness of the solution . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Numerical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Conclusion 83

Bibliography 84

Annex 90

6



List of Figures

1.1 The gamma function along part of the real axis . . . . . . . . . . . . . . . . . . 14

1.2 An example of a normalization function. . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Numerical solution of example 2.1 for (N = 32) with the exact solution, and

error obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Numerical solution of example 2.2 for (N = 32) with the exact solution, and

error obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Numerical solution of example 2.3 for (N = 32) with the exact solution, and

error obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Eexact solution of boundary value problem (3.5) . . . . . . . . . . . . . . . . . . 55

3.2 Eexact solution of boundary value problem (3.12) . . . . . . . . . . . . . . . . . 62

4.1 The Absolute Error of Test Example (4.1) with N = 16. . . . . . . . . . . . . . 77

4.2 The Absolute Error of Test Example (4.2) with N = 128. . . . . . . . . . . . . . 78

4.3 The Absolute Error of Test Example (4.3) with N = 16. . . . . . . . . . . . . . 79

4.4 The approximate solution of test Example (4.4) with N = 32. . . . . . . . . . . 82

7



List of Tables

2.1 The numerical error obtained for the example 2.1 . . . . . . . . . . . . . . . . . 47

2.2 Numerical error obtained for example 2.2 . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Numerical error obtained for example 2.3 . . . . . . . . . . . . . . . . . . . . . . 49

8



Introduction

This thesis is the outcome of my research during my Ph.D. study at Guelma University. The

principal materials in the thesis are based on the following articles from this period :

Paper I: Moumen Bekkouche M., Guebbai H. & Kurulay M. Analytical and numerical

study of a nonlinear Volterra integro-differential equations with conformable fractional

derivation of Caputo. Annals of the University of Craiova - Mathematics and Computer

Science Series(2020). https://doi.org/.

Paper II: Moumen Bekkouche M., Guebbai H. & Kurulay M.On the solvability fractional

of a boundary value problem with new fractional integral. J. Appl. Math. Comput. (2020).

https://doi.org/10.1007/s12190-020-01368-x.

Paper III: Moumen Bekkouche M., Guebbai H. Analytical and Numerical Study for

an Fractional Boundary Value Problem with conformable fractional derivative of Caputo

and its Fractional Integral. J. Appl. Math. Comput. Mech., JAMCM(2020). https:

//doi.org/

Paper IV: Moumen Bekkouche M., Guebbai H. & Kurulay M., S. BenmahmoudA

new fractional integral associated with the Caputo–Fabrizio fractional derivative. Ren-

diconti del Circolo Matematico di Palermo Series 2 (2020). https://doi.org/10.1007/

s12215-020-00557-8.

The organization of this thesis is as follows : The thesis begins in Chapter 1 that contains

a brief history about the appearance of the concept of fractional calculus and a presentaion

of some fractional derivative. In the sequel, we describe some basic concepts and give some

information about direct and inverse problems. Afterward, we collect the results obtained from

three articles above and present them respectively in Chapters 2, 3 and 4.
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The next three chapters are structured on fractional calculus as follows: We start in Chapter

2, by studying an integro-differential equation of Volterra when the derivative of the solution

appears under the sign of integration in a non-linear way. The derivation is conformable frac-

tional of the Caputo type, we prove two theorems of existence and uniqueness for the solutions

of this problem in a Banach space specific to the derivative of Caputo. The analytical study is

followed by a complete numerical study.

In Chapter 3, we introduce a new definition of fractional integral as an inverse of the

conformable fractional derivative of Caputo. By using these definitions, we obtain the basic

properties of those fractional derivative and its fractional integral. Finally, we solve a class of

fractional boundary value problems as a theoretical application, and we use Matlab to solve this

class of fractional boundary value problems. In Chapter 4, we consider a class of a fractional

boundary value problem with conformable fractional derivation of the Caputo type. We obtain

existence and uniqueness results for this problems based on the new definition of fractional

integral. Therefore, the proofs are based upon the reduction of the problem to a equivalent

linear Volterra-Fredholm integral equations of the second kind and this analytical study is

followed also by a complete numerical study.
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Chapter 1
Introduction and Preliminaries of

Fractional Calculus

Summary

1.1 History, Definitions and Applications . . . . . . . . . . . . . . . . . . 11

1.1.1 Grünwald–Letnikov derivative . . . . . . . . . . . . . . . . . . 15

1.1.2 Riemann-Liouville fractional derivative . . . . . . . . . . . . . 15

1.1.3 Caputo derivative . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.4 A new fractional derivative of Caputo . . . . . . . . . . . . . . 16

1.2 Differentiation under the Integral Sign . . . . . . . . . . . . . . . . . 21

For the convenience of the reader, in this chapter we present here the necessary definitions and

fundamental facts of the fractional calculus theory in this chapter. These definitions can and

fundamental facts be found in the recent literature.

1.1 Fractional Calculus: History, Definitions and Appli-

cations

This part is aimed at the reader who wishes to learn about Fractional Calculus and its possible

applications in his/her field(s) of study. The intent is to first expose the reader to the concepts,

applicable definitions, and execution of fractional calculus (including a discussion of notation,

11



CHAPTER 1. FRACTIONAL CALCULUS

operators, and fractional order differential equations), and second to show how these may be

used to solve several modern problems.

The traditional integral and derivative are, to say the least, a staple for the technology

professional, essential as a means of understanding and working with natural and artificial

systems. Fractional Calculus is a field of mathematics study that grows out of the traditional

definitions of the calculus integral and derivative operators in much the same way fractional

exponents is an outgrowth of exponents with integer value. Consider the physical meaning of

the exponent. According to our primary school teachers exponents provide a short notation

for what is essentially a repeated multiplication of a numerical value. This concept in itself

is easy to grasp and straight forward. However, this physical definition can clearly become

confused when considering exponents of non integer value. While almost anyone can verify

that x3 = x · x · x, how might one describe the physical meaning of x3.4, or moreover the

transcendental exponent x1/4. One cannot conceive what it might be like to multiply a number

or quantity by itself 3.4 times, or
1

4
times, and yet these expressions have a definite value for

any value x, verifiable by infinite series expansion, or more practically, by calculator. Now,

in the same way consider the integral and derivative. Although they are indeed concepts of a

higher complexity by nature, it is still fairly easy to physically represent their meaning. Once

mastered, the idea of completing numerous of these operations, integrations or differentiations

follows naturally. Given the satisfaction of a very few restrictions (e.g. function continuity),

completing n integrations can become as methodical as multiplication. But the curious mind

can not be restrained from asking the question what if n were not restricted to an integer

value? Again, at first glance, the physical meaning can become convoluted (pun intended), but

as this report will show, fractional calculus flows quite naturally from our traditional definitions.

And just as fractional exponents such as the square root may find their way into innumerable

equations and applications, it will become apparent that integrations of order 1/2 and beyond

can find practical use in many modern problems.

The concept of fractional calculus is popularly believed to have stemmed from a question

raised in the year 1695 by Marquis de L’Hopital (1661-1704) to Gottfried Wilhelm Leibniz

(1646-1716), which sought the meaning of Leibniz’s (currently popular) notation
dny

dxn
for the

derivative of order n ∈ N0 := {0, 1, 2, 3, · · · } when n = 1/2 (What if n = 1/2? ). In his

reply, dated 30 September 1695, Leibniz wrote to L’Hopital as follows: ”... This is an apparent

paradox from which, one day, useful consequences will be drawn. ...”

Subsequent mention of fractional derivatives was made, in some context or the other, by

(for example) Euler in 1730, Lagrange in 1772, Laplace in 1812, Lacroix in 1819, Fourier in

12



CHAPTER 1. FRACTIONAL CALCULUS

1822, Liouville in 1832, Riemann in 1847, Greer in 1859, Holmgren in 1865, Griinwald in 1867,

Letnikov in 1868, Sonin in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, and Weyl

in 1917. In fact, in his 700-page textbook, entitled ”Traite du Calcul Differentiel et du Calcul

Integral” (Second edition; Courcier, Paris, 1819), S. F. Lacroix devoted two pages (pp. 409-410)

to fractional calculus, showing eventually that

d
1
2

dv
1
2

v =
2
√
v√
π

Leibniz’s response, based on studies over the intervening 300 years, has proven at least half

right. It is clear that within the 20th century especially numerous applications and physical

manifestations of fractional calculus have been found. However, these applications and the

mathematical background surrounding fractional calculus are far from paradoxical. While the

physical meaning is difficult (arguably impossible) to grasp, the definitions themselves are no

more rigorous than those of their integer order counterparts. Understanding of definitions and

use of fractional calculus will be made more clear by quickly discussing some necessary but

relatively simple mathematical definitions that will arise in the study of these concepts. These

are The Gamma Function, The Beta Function, The Laplace Transform, and the Mittag-Leffler

Function.

Definition 1.1 (The Gamma Function). the gamma function (represented by Γ , the capital

letter gamma from the Greek alphabet) is one commonly used extension of the factorial function

to complex numbers. The gamma function is defined for all complex numbers except the non-

positive integers. For any positive integer n,

Γ(n) = (n− 1)!.

Derived by Daniel Bernoulli, for complex numbers with a positive real part the gamma function

is defined via a convergent improper integral:

Γ(z) =

∫ ∞
0

xz−1e−xdx, for all z ∈ R

13



CHAPTER 1. FRACTIONAL CALCULUS

Figure 1.1: The gamma function along part of the real axis

The gamma function then is defined as the analytic continuation of this integral function

to a meromorphic function that is holomorphic in the whole complex plane except the non-

positive integers, where the function has simple poles. The gamma function has no zeroes, so

the reciprocal gamma function 1/Γ is an entire function.

The first mention of a derivative of arbitrary order appears in a text. S. F. Lacroix [1819,

pp. 409 - 410] devoted less than two pages of his 700-page text to this topic. He developed a

mere mathematical exercise generalizing from a case of integer order. Strating with y = xm, m

a positive integer, Lacroix easily develops the n−th derivative

dny

dxn
=

m!

(m− n)!
xm−n, m = n

Using Legendre’s symbol for the generalized factorial (the gamma function), he gets

dny

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n

He then gives the example for y = x and n = 1
2
, and obtains

d1/2y

dx1/2
=

2
√
x√
π

14



CHAPTER 1. FRACTIONAL CALCULUS

It is interesting to note that the result obtained by Lacroix, in the manner typical of the

classical formalists of this period, is the same as that yielded by the present-day Riemann-

Liouville definition of a fractional derivative. Lacroix’s method offered no clue as to a possible

application for a derivative of arbitrary order. Now we have several definitions of the fractional

derivative, we present:

1.1.1 Grünwald–Letnikov derivative

Grünwald–Letnikov derivative is a basic extension of the natural derivative to fractional one,

It was introduced by Anton Karl Grünwald in 1867, and then by Aleksey Vasilievich Letnikov

in 1868. Hence, it is written as

Dαf(t) = lim
h→0

1

hα

∞∑
m=0

(−1)m

 α

m

 f(t−mh)

where n ∈ N, and the binomial coefficient is calculated by the help of the Gamma function.

 α

m

 =
α(α− 1)(α− 2) . . . (α−m+ 1)

m!

1.1.2 Riemann-Liouville fractional derivative

Riemann-Liouville fractional derivative acquiring by Riemann in 1847 is defined as follows.

RL
a Dα

t f(t) =

(
d

dt

)n (
aD
−(n−α)
t

)
f(t)

=
1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(x)

(t− x)α−n+1
dx, (n = [α] + 1, t > a)

where α > 0 this operator is an extension of Cauchy’s integral from the natural number to real

one. Based on the fractionalization algorithm. In addition, according to the above relation, if

0 < α < 1 then the Riemann-Liouville operator reduced to

RL
a Dα

t f(t) =
1

Γ(1− α)

d

dt

∫ t

a

f(x)

(t− x)α
dx

15



CHAPTER 1. FRACTIONAL CALCULUS

1.1.3 Caputo derivative

Since Riemann-Liouville fractional derivatives failed in the description and modeling of some

complex phenomena, Caputo derivative was introduced in 1967. The Caputo derivative of

fractional order α (n− 1 6 α < n) of function f(t) defined as

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

Dnf(τ)

(t− τ)α−n+1
dτ,

if 0 < α < 1 then the Caputo derivative of fractional order α defined as:

C
aD

(α)
t f(t) =

1

Γ(1− α)

∫ t

a

f ′(τ)

(t− τ)α
dτ

1.1.4 A new fractional derivative of Caputo (The inverse of the new

Fractional Derivative without Singular Kernel)

The authors of the article [6] suggest a new definition of fractional derivative, which assumes two

different representations for the temporal and spatial variable. The first representation works on

time variables, where the real powers appearing in the solutions of the usual fractional derivative

will turn into integer powers, with some simplifications in the formulate and computations. In

this framework, it is suitable to use the Laplace transform. The second representation is related

to the spatial variables, thus for this non-local fractional derivative it is more convenient to work

with the Fourier transform. The interest for this new approach is due to the necessity of using a

model describing the behavior of classical viscoelastic materials, thermal media, electromagnetic

systems, etc. In fact, the original definition of fractional derivative appears to be particularly

convenient for those mechanical phenomena, related with plasticity, fatigue, damage and with

electromagnetic hysteresis. When these effects are not present it seems more appropriate to

use the new fractional derivative. We have also proposed a new non-local fractional derivative

able to describe material heterogeneities and structures with different scales, which cannot be

well described by classical local theories. So that, we rely that this spatial fractional derivative

can play a meaningful role in the study of the macroscopic behaviors of some materials, related

with non-local interactions, which are prevalent in determining the properties of the material.

This work also contains some applications and simulations related to the behavior of these new

derivatives, applied to classical functions such as trigonometric functions. These simulations

show some similarities with the corresponding results by usual fractional derivative.
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CHAPTER 1. FRACTIONAL CALCULUS

Let us recall the usual Caputo fractional time derivative (UFDt ) of order a, given by:

C
aD

(α)
t f(t) =

1

Γ(1− α)

∫ t

a

f ′(τ)

(t− τ)α
dτ

with a ∈ [0, 1] and a ∈ [−∞, t), f ∈ H1(a, b), and b > a. By changing the kernel (t− τ)−α with

the function exp

(
− α

1− α
t

)
and

1

Γ(1− α)
with

M(α)

1− α
.

They obtained the following new definition of fractional time derivative NFDt

Definition 1.2. For α ∈ [0, 1], the fractional time derivative D (α)u(x) of order (α) is defined

as follow:

D (α) f(x) =
M(α)

1− α

∫ x

a

f ′(s) exp

[
−α(x− s)

1− α

]
ds (1.1)

where a ∈ ] − ∞, x), b > a, f ∈ H1(a, b), and M(α) is a normalization function such that

M(0) = M(1) = 1, for example M(α) = 1− 0.2 sin(2πα), as shown in fig. 1.2.

Figure 1.2: An example of a normalization function.

The following Matlab function M has used in our programs:

1 f unc t i on y=Ma( z )

2 r=0. 2 ;

3 y=1+r∗ s i n (2∗ pi ∗z ) ;

4 end

The NFDt is zero when f(t) is constant, as in the UFDt, but contrary to the UPDt, the

kernel does not have singularity for t = τ . Formulated also NFDt can also be applied to

functions that do not belong to H1(a, b). Indeed, its can be formulated also for f ∈ L1(−∞, b)
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CHAPTER 1. FRACTIONAL CALCULUS

and for any α ∈ [0, 1] as

D (α)
t f(t) =

αM(α)

(1− α)

∫ t

−∞
(f(t)− f(τ)) exp

[
−α(t− τ)

1− α

]
dτ

Now, it is worth to observe that if we put

σ =
1− α
α
∈ [0,∞], α =

1

1 + σ
∈ [0, 1]

the definition of NFDt assumes the form

D̃ (σ)
t f(t) =

N(σ)

σ

∫ t

a

f ′(τ) exp

[
−(t− τ)

σ

]
dτ

this is definition on which our study is based.

Definition 1.3. If n ≥ 1, and α ∈ [0, 1] the fractional time derivative D (α+n)
t f(t) of order

(n+ α) is defined by

D (α+n)
t f(t) := D

(α)
t

(
D (n)
t f(t)

)
.

Theorem 1.1. For NFDt, if the function f(t) is such that

f (s)(a) = 0, s = 1, 2, .., n

then, we have

D (n)
t

(
D (α)
t f(t)

)
= D (α)

t

(
D (n)
t f(t)

)
Proof. [6]. We begin considering n = 1, then from definition (2.8) of D (α+1)

t f(t), we obtain

D (α)
t

(
D (1)
t f(t)

)
=
M(α)

1− α

∫ t

a

f̈(τ) exp

[
−α(t− τ)

1− α

]
dτ

Hence, after an integration by parts and assuming f ′(a) = 0, we have

D (α)
t

(
D (1)
t f(t)

)
=
M(α)

(1− α)

∫ t

a

(
d

dτ
f ′(τ)

)
exp−α(t− τ)

1− α
dτ =

M(α)

(1− α)

[∫ t

a

d

dτ

(
f ′(τ) exp−α(t− τ)

1− α
dτ

− α

1− α

∫ t

a

f ′(τ) exp−α(t− τ)

1− α
dτ

]
=
M(α)

(1− α)

[
f ′(t)− α

1− α

∫ t

a

f ′(τ) exp−α(t− τ)

1− α
dτ

]

18
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otherwise

D (1)
t

(
D (α)
t f(t)

)
=

d

dt

(
M(α)

1− α

∫ t

a

f ′(τ) exp−α(t− τ)

1− α
dτ

)
=
M(α)

1− α

[
f ′(t)− α

1− α

∫ t

a

f ′(τ) exp−α(t− τ)

1− α
dτ

]
.

It is easy to generalize the proof for any n > 1.

Definition 1.4. Let n ≥ 1, and α ∈ [0, 1] the fractional derivative D (α+n)f of order (n+ α) is

defined by

D (α+n)f(t) := D (α)
t

(
D (n)f(t)

)
=
M(α)

1− α

∫ t

a

f (n+1)(s) exp

[
−α(t− s)

1− α

]
ds

Such that

D (α+n)f(t) =
M(α)

1− α

∫ t

a

f (n+1)(s) exp

[
−α(t− s)

1− α

]
ds (1.2)

The following MATLAB code calculates the new Caputo derivative for any Cn+1-continuous

function.

1 % The goa l o f t h i s program i s c a l c u l a t e

2 % the new Caputo d e r i v a t i v e

3 c l c ; c l o s e ; c l e a r a l l ;

4 syms t s ;

5 a=0; b=7;

6 alpha=1. 5 ;

7 f ( t )=t ˆ1 . 5 ;

8 K( t )=Da( f , alpha , a )

1 f unc t i on y=Da( f , alpha , a )

2 syms t s ; m=f l o o r ( alpha ) ;

3 y=i n t ( d i f f ( f ( s ) ,m+1)∗exp ( ( alpha -m) ∗( s - t ) /(m+1- alpha ) )

4 , s , a , t ) ∗Ma( alpha -m) /(m+1- alpha ) ;

5 end
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Lemma 1.1. Let n > 1, and γ ∈ (n, n + 1). If we assume u ∈ Cn+1[a, b], then the fractional

deferential equation

D (γ) u(x) = 0, ∀x ∈ [a, b]

has u(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0; ai ∈ R, i = 0, 1, · · · , n, as unique solutions.

Proof. 0. Let u(x) = anx
n + an−1x

n−1 + · · · + a1x + a0; ai ∈ R, i = 0, 1, · · · , n, we have

u(n+1)(x) = 0 such that D (γ) u(x) = 0, ∀x ∈ [a, b].

0. Let γ ∈]n, n + 1[, it can be written of the form: γ = n + α where α ∈]0, 1[, and n = [γ],

we suppose D (γ) u(x) = 0, ∀x ∈ [a, b], we have

D (γ) u(x) =
M(α)

1− α

∫ x

a

u(n+1)(s) exp

[
−α(x− s)

1− α

]
ds

and the Leibniz integral rule gives the formula

d

dx

(
D (γ) u(x)

)
=
M(α)

1− α
u(n+1)(t)

− α

1− α
M(α)

1− α

∫ x

a

u(n+1)(s) exp

[
−α(x− s)

1− α

]
ds

=
M(α)

1− α
u(n+1)(t)− α

1− α
D (γ) u(x),

and we have D (γ) u(x) = 0, consequently u(n+1)(t) = 0 therefor,

u(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0; ai ∈ R, i = 0, 1, · · · , n.

The proof is complete.

Lemma 1.2. Let γ ∈ (n, n+ 1), n = [γ] > 0. Assume that f ∈ Cn[a, b], the fractional derivative

of order (γ) belongs to C[a, b].

Proof. 0. Let x ∈ (a, b) and s ∈ (a, x], we use part integration to prove this relation

D (γ) f(x) =
M(α)

1− α

(
f (n)(x)− f (n)(a) · exp

[
−α(x− a)

1− α

])
− α ·M(α)

(1− α)2

∫ x

a

f (n)(s) exp

[
−α(x− s)

1− α

]
ds.

Simply to say that a function D (γ) f is continuous (a, b).
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0. Then, let {xn}n∈N real sequence define in [a, b], which this sequence converges to x ∈ [a, b].

lim
n−→∞

D (γ) f(xn) = lim
n−→∞

M(α)

1− α

(
f (n)(xn)− f (n)(a) · exp

[
−α(xn − a)

1− α

])
− lim

n−→∞

α ·M(α)

(1− α)2

∫ xn

a

f (n)(s) exp

[
−α(xn − s)

1− α

]
ds,

=
M(α)

1− α
f (n)

(
lim
n−→∞

xn

)
− f (n)(a) exp

−α
(

lim
n−→∞

xn − a
)

1− α


− α ·M(α)

(1− α)2

∫ lim
n−→∞

xn

a

f (n)(s) exp

−α
(

lim
n−→∞

xn − s
)

1− α

 ds,

=
M(α)

1− α

(
f (n)(x)− f (n)(a) · exp

[
−α(x− a)

1− α

])
− α ·M(α)

(1− α)2

∫ x

a

f (n)(s) exp

[
−α(x− s)

1− α

]
ds,

= D (γ) f(x).

Therefor, D (γ) f is continuous [a, b].

1.2 Differentiation under the Integral Sign

Suppose a function φ is given by the formula

φ(x) =

∫ d

c

f(x, t)dt, a ≤ x ≤ b

where c and d are constants. If the integration can be performed explicitly, then φ′(x) can be

found by a computation. However, even when the evaluation of the integral is impossible, it

sometimes happens that φ′(x) can be found. The basic formula is given in the next theorem,

known as Leibniz’ Rule.

Theorem 1.2. Suppose that φ is defined by

φ(x) =

∫ d

c

f(x, t)dt, a ≤ x ≤ b
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where c and d are constants. If fand fx are continuous in the rectangle

R = {(x, t) : a ≤ x ≤ b, c ≤ t ≤ d}

then

φ′(x) =

∫ d

c

fx(x, t)dt, a < x < b

That is, the derivative may be found by differentiating under the integral sign.

We consider a function defined by

φ(x) =

∫ u1(x)

u0(x)

f(x, t) dt (1.3)

where u0(x) and u1(x) are continuously differentiable functions for a ≤ x ≤ b Furthermore, the

ranges of u0 and u1 are assumed to lie between c and d. To obtain a formula for the derivative

φ′(x), where φ is given by an integral such as eq. (1.3), it is simpler to consider a new integral

which is more general than eq. (1.3). We define

F (x, y, z) =

∫ z

y

f(x, t) dt, (1.4)

and obtain the following corollary of Leibniz’ Rule.

Theorem 1.3. Suppose that f satisfies the conditions of Theorem (1.2) and that F is defined

by (1.4) with c < y, z < d. Then

∂F

∂x
=

∫ z

y

f1(x, t)dt (1.5)

∂F

∂y
= −f(x, y) (1.6)

∂F

∂z
= f(x, z) (1.7)

Proof. Formula (1.5) is Theorem (1.2). Formulas (1.6) and (1.7) are precisely the Fundamental

Theorem of Calculus, since taking the partial derivative of F with respect to one variable, say

y, implies that x and z are kept fixed.

Theorem 1.4 (General Rule for Differentiation under the Integral Sign). Suppose that f and

∂f/∂x are continuous in the rectangle

R = {(x, t) : a ≤ x ≤ b, c ≤ t ≤ d}
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and suppose that u0(x), u1(x) are continuously differentiable for a ≤ x ≤ b, with the range of

u0 and u1 in (c, d). If φ is given by

φ(x) =

∫ u1(x)

u0(x)

f(x, t) dt

then

φ′(x) = f [x, u1(x)]u′1(x)− f [x, u0(x)] · u′0(x) +

∫ u1(x)

u0(x)

fx(x, t) dt. (1.8)

Proof. We observe that

F (x, u0(x), u1(x)) = φ(x),

in Theorem 1.5. Applying the Chain Rule, we get

φ′(x) = Fx + Fyu
′
0(x) + Fzu

′
1(x)

Inserting the values of Fx, Fy, and Fz from eqs. (1.5) to (1.7), we obtain the desired result

eq. (1.8).

Example 1.1. Find φ′(x), given that

φ(x) =

∫ x2

0

arctan
t

x2
dt

Solution. We have
∂

∂x

(
arctan

t

x2

)
=
−2t/x3

1 + (t2/x4)
= − 2tx

t2 + x4

We use formula (1.8) and find

φ′(x) = (arctan 1) · (2x)−
∫ x2

0

2txdt

t2 + x4

Setting t = x2u in the integral on the right, we obtain

φ′(x) =
πx

2
−
∫ 1

0

2x3u · x2du

x4u2 + x4
=
πx

2
− x

∫ 1

0

2udu

u2 + 1
= x

(π
2
− log 2

)
.

Theorem 1.5 (The Cauchy Formula For Repeated Integration). The Cauchy formula for

repeated integration, named after Augustin Louis Cauchy, allows one to compress n anti-

differentiation of a function into a single integral. Let f be a continuous function on the
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real line. Then the n-th repeated integral of f based at a,

f (−n)(x) =

∫ x

a

∫ σ1

a

· · ·
∫ σn−1

a

f (σn) dσn · · · dσ2dσ1

is given by single integration

f (−n)(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt

Proof. A proof is given by induction. since f is continuous, the base case follows from the

Fundamental theorem of calculus

d

dx
f (−1)(x) =

d

dx

∫ x

a

f(t)dt = f(x)

where

f (−1)(a) =

∫ a

a

f(t)dt = 0

Now, suppose this is true for n, and let us prove it for n + 1. Apply the induction hypothesis

and switching the order of integration,

f−(n+1)(x) =

∫ x

a

∫ σ1

a

· · ·
∫ σn

a

f (σn+1) dσn+1 · · · dσ2dσ1

=
1

(n− 1)!

∫ tσ

ax

∫ σ1

ax

(σ1 − t)n−1 f(t)dtdσ1

=
1

(n− 1)!

∫ x

a

(σ1 − t)n−1 f(t)dσ1dt

=
1

n!

∫ x

a

(x− t)nf(t)dt
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In this chapter, we interest concerns an integro-differential equation of Volterra when the

derivative of the solution appears under the sign of integration in a non-linear way. The

derivation is conformable fractional of Caputo type, which increases the interest of this study.

We built Lipchitz conditions to obtain the existence and uniqueness of the solution in
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a Banach space specific to the derivative of Caputo. The analytical study is followed by a

complete numerical study.

It should be noted that most of the integro-differential equations which have already been

studied in case of the fractional derivative of the unknown u is out integral sign as shown in the

references [6, 21], or in case the derivative of the first degree of the unknown under the integral

like in the articles [45, 17, 46]. The authors of [45] studied the problem from the following type:

u(x) = f(x) +

∫ x

a

K (x, s, u(s), u′(s)) ds, ∀x ∈ [a, b].

where, f ∈ C1 ([a, b]) and u is unknown, to be found in the same space, and in the paper [17],

the authors studied for an integro-differential nonlinear volterra equation with weakly singular

kernel as fellow

u(t) =

∫ t

a

p(t− s)K (t, s, u(s), u′(s)) ds+ f(t), ∀t ∈ [a, b]..

Therefore, the object of this chapter is to study a nonlinear integro-differential equation of

Volterra of the type:

f(x) = g(x) +

∫ x

a

K
(
x, s, f(s),D (α) f(s)

)
ds, ∀x ∈ [a, b]. (2.1)

Where D (α) f is the new of fractional derivative of Caputo (NFD), without singular kernel (see

[6]), and this derivative has many properties as in the reference [27].

The first work, we built Lipchitz conditions to obtain the existence and uniqueness of the

solution in a Banach space specific to the derivative of Caputo, then we search a method to

approximate this solution and estimate error. In the last part, we give three numerical examples

to illustrate the above methods for solve this type integro-differential equations. The exact

solution is known and used to show that the numerical solution obtained with our methods is

correct. We used MATLAB and C++ to solve these examples.

Definition 2.1. We consider the space of continuously differentiable functions

FD (α) (a, b) = {f ∈ C(a, b), ‖ f ‖α<∞} , (2.2)
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FD (α) (a, b) is a Banach space specific to the new Caputo derivative admits the norm

‖ f ‖α = max
x∈(a,b)

|f(x)|+ max
x∈(a,b)

|D (α) f(x)| =‖ f ‖∞ + ‖ D (α) f ‖∞ . (2.3)

Proposition 2.1. For α ∈ (0, 1), if f is continuous on [a, b], then the function h(x) = D (α) f(x)

is continuous on the interval [a, b].

Proof. 0. Let x ∈ (a, b) and s ∈ (a, x], we have that

d

ds

(
f(s) exp

[
−α(x− s)

1− α

])
= f ′(s) exp

[
−α(x− s)

1− α

]
+

α

1− α
f(s) exp

[
−α(x− s)

1− α

]
,

and hence

f ′(s) exp

[
−α(x− s)

1− α

]
=

d

ds

(
f(s) exp

[
−α(x− s)

1− α

])
− α

1− α
f(s) exp

[
−α(x− s)

1− α

]
.

Then

∫ x

a

f ′(s) exp

[
−α(x− s)

1− α

]
ds =

∫ x

a

d

ds

(
f(s) exp

[
−α(x− s)

1− α

])
ds

− α

1− α

∫ x

a

f(s) exp

[
−α(x− s)

1− α

]
ds

= f(x)− f(a) · exp

[
−α(x− a)

1− α

]
− α

1− α

∫ x

a

f(s) exp

[
−α(x− s)

1− α

]
ds,

as a result

D (α) f(x) =
M(α)

1− α

(
f(x)− f(a) · exp

[
−α(x− a)

1− α

])
− α ·M(α)

(1− α)2

∫ x

a

f(s) exp

[
−α(x− s)

1− α

]
ds. (2.4)

Simply to say that a function D (α) f is continuous (a, b).
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0. Then, let {xn}n∈N real sequence define in [a, b], which this sequence converges to x ∈ [a, b].

lim
n−→∞

D (α) f(xn) = lim
n−→∞

M(α)

1− α

(
f(xn)− f(a) · exp

[
−α(xn − a)

1− α

])
− lim

n−→∞

α ·M(α)

(1− α)2

∫ xn

a

f(s) exp

[
−α(xn − s)

1− α

]
ds,

=
M(α)

1− α

f ( lim
n−→∞

xn

)
− f(a) · exp

−α
(

lim
n−→∞

xn − a
)

1− α


− α ·M(α)

(1− α)2

∫ lim
n−→∞

xn

a

f(s) exp

−α
(

lim
n−→∞

xn − s
)

1− α

 ds,

=
M(α)

1− α

(
f(x)− f(a) · exp

[
−α(x− a)

1− α

])
− α ·M(α)

(1− α)2

∫ x

a

f(s) exp

[
−α(x− s)

1− α

]
ds,

= D (α) f(x).

finally D (α) f is continuous on [a, b].

Proposition 2.2. FD (α) (a, b) is a Banach space.

Proof. It is obvious that ‖ · ‖α is a semi-norm, and since ‖ · ‖∞ is strictly positive, and ‖ · ‖α ≥

‖ · ‖∞, we see that ‖ · ‖α is strictly positive too. Now, suppose that (fn)n∈N ⊆ FD (α) (a, b) is a

Cauchy sequence.

Then,

‖fn − fm‖α → 0 as n,m→∞

and hence

‖fn − fm‖∞ → 0,
∥∥D (α) fn −D (α) fm

∥∥
∞ → 0, as n,m→∞

Thus, the sequences (fn)n∈N and
(
D (α) fn

)
n∈N are Cauchy sequences in

(C([a, b],R), ‖ · ‖∞) Since this space is complete, both sequences have limits in this space, we

name these limits f and h, i.e.

‖fn − f‖∞ → 0 and
∥∥D (α) fn − h

∥∥
∞ → 0, as n→∞.

The proof will be complete if we can show that f ∈ FD (α) (a, b)

and lim
n→+∞

‖fn − f‖α = 0.
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From eq. (2.4) we have

f(x) =
1− α
M(α)

D (α) f(x) + f(a) · exp

[
−α(x− a)

1− α

]
+

α

1− α

∫ x

a

f(s) exp

[
−α(x− s)

1− α

]
ds,

we note that for every n ∈ N,

fn(x) =
1− α
M(α)

D (α) fn(x) + fn(a) · exp

[
−α(x− a)

1− α

]
+

α

1− α

∫ x

a

fn(s) exp

[
−α(x− s)

1− α

]
ds,

D (α) fn(x) =
M(α)

1− α

(
fn(x)− fn(a) · exp

[
−α(x− a)

1− α

])
−M(α)

1− α

(
α

1− α

∫ x

a

fn(s) exp

[
−α(x− s)

1− α

]
ds

)
We define

f̃(x) =
1− α
M(α)

h(x) + f(a) · exp

[
−α(x− a)

1− α

]
+

α

1− α

∫ x

a

f(s) exp

[
−α(x− s)

1− α

]
ds,

h̃(x) =
M(α)

1− α

(
f(x)− f(a) · exp

[
−α(x− a)

1− α

])
−M(α)

1− α

(
α

1− α

∫ x

a

f(s) exp

[
−α(x− s)

1− α

]
ds

)
Then

∥∥∥fn − f̃∥∥∥
∞

= sup
x∈[a,b]

∣∣∣fn(x)− f̃(x)
∣∣∣

6
1− α
M(α)

sup
x∈[a,b]

∣∣D (α) fn(x)− h(x)
∣∣

+ sup
x∈[a,b]

∣∣∣∣(fn(a)− f(a)) exp

[
−α(x− a)

1− α

]∣∣∣∣
+ sup

x∈[a,b]

∣∣∣∣ α

1− α

∫ x

a

(fn(s)− f(s)) exp

[
−α(x− s)

1− α

]
ds

∣∣∣∣
6 C1‖D (α) fn − h‖∞ + C2‖fn − f‖∞ + C3‖fn − f‖∞ −→

n→+∞
0,
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and

∥∥∥D (α) fn − h̃
∥∥∥
∞

= sup
x∈[a,b]

∣∣∣D (α) fn(x)− h̃(x)
∣∣∣

6
M(α)

1− α
sup
x∈[a,b]

|fn(x)− f(x)|

+
M(α)

1− α
sup
x∈[a,b]

∣∣∣∣(fn(a)− f(a)) exp

[
−α(x− a)

1− α

]∣∣∣∣
+ sup

x∈[a,b]

∣∣∣∣ αM(α)

(1− α)2

∫ x

a

(fn(s)− f(s)) exp

[
−α(x− s)

1− α

]
ds

∣∣∣∣
6 C ′1‖fn − f‖∞ + C ′2‖fn − f‖∞ + C ′3‖fn − f‖∞ −→

n→+∞
0,

i.e., fn converges to f̃ and D (α) fn converges to h̃ in the uniform norm. Since the limit of a

sequence in normed space is unique, we deduce that f̃ = f and h̃ = h. Then

‖fn − f‖α = ‖fn − f‖∞ +
∥∥D (α) fn −D (α) f

∥∥
∞

= ‖fn − f‖∞ +
∥∥D (α) fn − h

∥∥
∞ −→n→+∞

0.

Finally FD (α) (a, b) is a Banach space.

2.1 Hypotheses

We consider the following nonlinear integro-differential equation of Volterra:

f(x) = g(x) +

∫ x

a

K
(
x, s, f(s),D (α) f(s)

)
ds, ∀x ∈ [a, b]. (2.5)

where f ∈ FD (α) (a, b) and f is unknown, and the function

K : [a, b]2 R2 → R

(x, s, u, v) → K (x, s, u, v) .

is satisfy the following assumptions:

(H1)
a)
∂K

∂x
∈ C ([a, b]2R2)

b)∃m > 0,∀ x, s ∈ [a, b], ∀u, v ∈ R,max

(∣∣∣∣∂K∂x (x, s, u, v)

∣∣∣∣ , |K (x, s, u, v)|
)

6 m.
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eq. (2.5) bearing several information for the solution f . If both sides of the equation are

derived (using Leibniz’s rule for differentiation under the integral sign) we obtain ∀x ∈ [a, b]:

D (α) f(x) = D (α) g(x) +
M(α)

1− α

∫ x

a

∂

∂s

[∫ s

a

K
(
s, f(τ),D (α) f(τ)

)
dτ

]
exp

[
−α(x− s)

1− α

]
ds,

= D (α) g(x) +
M(α)

1− α

∫ x

a

K
(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

]
ds

+

∫ s

a

∂K

∂s
(s, τ, f(τ),D (α) f(τ)) dτ exp

[
−α(x− s)

1− α

]
ds

= D (α) g(x) +
M(α)

1− α

∫ x

a

(
K
(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

])
ds

+
M(α)

1− α

∫ x

a

(∫ s

a

∂K

∂s

(
s, τ, f(τ),D (α) f(τ)

)
dτ

)
exp

[
−α(x− s)

1− α

]
ds,

So that

D (α) f(x) = D (α) g(x) +
M(α)

1− α

∫ x

a

(
K
(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

])
ds

+
M(α)

1− α

∫ x

a

(∫ s

a

∂K

∂s

(
s, τ, f(τ),D (α) f(τ)

)
dτ

)
exp

[
−α(x− s)

1− α

]
ds, (2.6)

finally, we obtain

D (α) f(x) = D (α) g(x) +
M(α)

1− α

∫ x

a

K
(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

]
ds

+
M(α)

1− α

∫ x

a

(x− s)∂K
∂s

(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

]
ds. (2.7)

Definition 2.2. For g ∈ FD (α) (a, b), we define the functional Ψg by:

Ψg : FD (α) (a, b) −→ FD (α) (a, b)

ϕ −→ Ψg(ϕ)
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where

Ψg(ϕ) : [a, b] −→ R

x −→ Ψg(ϕ)(x) = g(x) +

∫ x

a

K
(
x, s, ϕ(s),D (α) ϕ(s)

)
ds.

Proposition 2.3. For g ∈ FD (α) (a, b), the functional Ψg is continuous from FD (α) (a, b) to

itself.

Proof. Let g ∈ FD (α) (a, b). it is obvious that Ψg(ϕ) is continuous on (a, b).

For all x ∈ (a, b),

D (α) Ψg(ϕ)(x) = D (α) g(x) +
M(α)

1− α

∫ x

a

(
K
(
s, s, ϕ(s),D (α) ϕ(s)

)
exp

[
−α(x− s)

1− α

])
ds

+
M(α)

1− α

∫ x

a

(∫ s

a

∂K

∂s

(
s, τ, ϕ(τ),D (α) ϕ(τ)

)
dτ

)
exp

[
−α(x− s)

1− α

]
ds,

D (α) Ψg(ϕ) is a continuous function on (a, b) and bounded by the constant ‖g‖α + λβm(b−

a)(b− a+ 1), where

λ = max
α∈(0,1)

M(α)

1− α
and β = max

a6s6x6b

(
exp

[
−α(x− s)

1− α

])
,

therefore Ψg(ϕ) ∈ FD (α) (a, b).

Let {ϕn}n∈N be a sequence of real-valued functions of the space FD (α) (a, b) which converge

to a function ϕ ∈ FD (α) (a, b),

lim
n→+∞

Ψg(ϕn)(x) = lim
n→+∞

(∫ x

a

K
(
t, s, ϕn(s),D (α) ϕn(s)

)
ds+ g(x)

)
= lim

n→+∞

∫ x

a

K
(
x, s, ϕn(s),D (α) ϕn(s)

)
ds+ g(x)

=

∫ x

a

lim
n→+∞

K
(
x, s, ϕn(s),D (α) ϕn(s)

)
ds+ g(x)

=

∫ x

a

K

(
x, s, lim

n→+∞
ϕn(s), lim

n→+∞
D (α) ϕn(s)

)
ds+ g(x)

=

∫ x

a

K
(
x, s, ϕ(s),D (α) ϕ(s)

)
ds+ g(x)

= Ψg(ϕ)(x).

In this article, the purpose is to get the existence and uniqueness of the solution of eq. (2.1),
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but use the minimum conditions to ensure its.

2.2 Analysis study

Theorem 2.1 (Existence). The equation (2.1) has a solution in FD (α) (a, b).

Proof. We define the following set:

E =


ϕ ∈ FD (α) (a, b),

ϕ(a) = g(a),

|Ψg(ϕ)(x)− f(x)| 6 (b− a)m,∣∣D (α) Ψg(ϕ)(x)−D (α) f
∣∣ 6 λβm(b− a)(b− a+ 1)


.

It is obvious that, E is convex and closed set. For all ϕ ∈ E and all x ∈ [a, b]; Ψg(ϕ)(a) =

g(a), and

|Ψg(ϕ)(x)− g(x)| =

∣∣∣∣∫ x

a

K
(
t, s, ϕ(s),D (α) ϕ(s)

)
ds

∣∣∣∣

6 (b− a)m

∣∣D (α) Ψg(ϕ)(x)−D (α) g
∣∣6 ∣∣∣∣M(α)

1− α

∫ x

a

(
K
(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

])
ds

∣∣∣∣
+

∣∣∣∣∣∣∣∣
M(α)

1− α

∫ x

a

(∫ s

a

∂K

∂s

(
s, τ, f(τ),D (α) f(τ)

)
dτ

)
e

−α(x− s)
1− α


ds

∣∣∣∣∣∣∣∣

6 λβm(b− a)(b− a+ 1).

Then, Ψg(E) ⊂ E. But, Ψg is continuous on FD (α) (a, b) to itself, and for all x, x′ ∈ [a, b]

( x 6 x′ )
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|Ψg(ϕ)(x)−Ψg(ϕ)(x′)| 6
∣∣∣∣∫ x

a

K
(
x, s, ϕ(s),D (α) ϕ(s)

)
ds

−
∫ x′

a

K
(
x′, s, ϕ(s),D (α) ϕ(s)

)
ds+ g(x)− g(x′)

∣∣∣∣∣
6

∣∣∣∣∫ x

a

[
K
(
x, s, ϕ(s),D (α) ϕ(s)

)
−K

(
x′, s, ϕ(s),D (α) ϕ(s)

)]
ds

∣∣∣∣
+

∣∣∣∣∣
∫ x′

x

K
(
x′, s, ϕ(s),D (α) ϕ(s)

)
ds

∣∣∣∣∣+ |g(x)− g(x′)|

6

(
(b− a+ 1)m+ max

s∈[a,b]
|g′(s)|

)
|x− x′|

We use the theorem Schauder for we proved that the functional Ψg has a fixed point in

FD (α) (a, b). Which result that eq. (2.1) has solutions in FD (α) (a, b).

2.3 Uniqueness

Lemma 2.1 (see [45]). If the function h is continuous and positive on (a, b), and satisfies

∃m > 0, h(x) 6 m

∫ x

a

h(s) ds. (2.8)

Then ∀x ∈ [a, b], h(x) = 0.

Proof: (see [45]). Since h(x) is continuous function on [a, b], ∃ µ > 0 realizes the following:

h(x) 6 µ,∀t ∈ [a, b].

Then,

h(x) 6 mµ

∫ x

a

ds = mµ(x− a).

we integer

h(x) 6 m

∫ x

a

h(s) ds

6 m2µ

∫ x

a

(s− a) ds = m2µ
(s− a)2

2
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If we repeat this operation n times, we get:

h(x) 6 mnµ
(x− a)n

n
−−−−→
n−→∞

0.

In order to prove the uniqueness of solution of eq. (2.1), we use the hypothesis:

(H2)

(c) ∃M1,M2,M1,M2 ∈ R+,∀u, v, u, v ∈ R, ∀x, s ∈ [0, U ],

|K(x, s, u, v)−K(x, s, u, v)| 6M1|u− u|+M2|v − v|

∣∣∣∣∂K∂x (x, s, u, v)− ∂K

∂x
(x, s, u, v)

∣∣∣∣ 6M1|u− u|+M2|v − v|

Theorem 2.2 (Uniqueness). The solution of eq. (2.1) is unique.

Proof.

Let f, h ∈ FD (α) (a, b) two different solutions of eq. (2.1). we have:

f(x) = g(x) +

∫ x

a

K
(
x, s, f(s),D (α) f(s)

)
ds,

h(x) = g(x) +

∫ x

a

K
(
x, s, h(s),D (α) h(s)

)
ds,

and

D (α) f(x) = D (α) g(x) +
M(α)

1− α

∫ x

a

(
K
(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

])
ds

+
M(α)

1− α

∫ x

a

(∫ s

a

∂K

∂s

(
s, τ, f(τ),D (α) f(τ)

)
dτ

)
exp

[
−α(x− s)

1− α

]
ds.

D (α) h(x) = D (α) g(x) +
M(α)

1− α

∫ x

a

(
K
(
s, s, h(s),D (α) h(s)

)
exp

[
−α(x− s)

1− α

])
ds

+
M(α)

1− α

∫ x

a

(∫ s

a

∂K

∂s

(
s, τ, h(τ),D (α) h(τ)

)
dτ

)
exp

[
−α(x− s)

1− α

]
ds.
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we define

R(x) = |f(x)− h(x)|+
∣∣D (α) f(x)−D (α) h(x)

∣∣
|f(x)− h(x)| 6

∫ x

a

∣∣K (x, s, f(s),D (α) f(s)
)
−K

(
x, s, h(s),D (α) h(s)

)∣∣ ds

6
∫ x

a

(
M1|f(x)− h(x)|+M2

∣∣D (α) f(x)−D (α) h(x)
∣∣) ds

6
∫ x

a

max(M1,M2)
(
|f(x)− h(x)|+

∣∣D (α) f(x)−D (α) h(x)
∣∣) ds

6
∫ x

a

max(M1,M2)R(s) ds

6 C1 ·
∫ x

a

R(s) ds.

we use the hypothesis (H2)

∣∣D (α) f(x)−D (α) h(x)
∣∣ 6 M(α)

1− α

∣∣∣∣∫ x

a

K
(
s, s, f(s),D (α) f(s)

)
−K

(
s, s, h(s),D (α) h(s)

)∣∣ exp

[
−α(x− s)

1− α

]
ds

+
M(α)

1− α

∫ x

a

∫ s

a

∣∣∣∣∂K∂s (s, τ, f(τ),D (α) f(τ)
)

−∂K
∂s

(
s, τ, f(τ),D (α) f(τ)

)∣∣∣∣ dτ · exp

[
−α(x− s)

1− α

]
ds

6 λ

∫ x

a

max(M1,M2)R(s) ds+ λβ(b− a)

∫ x

a

max(M1,M2)R(s) ds

6 C2 ·
∫ x

a

R(s) ds.

Consequently

R(x) 6 max(C1, C2)

∫ x

a

R(s) ds

Using the lemma 2.1

R(x) 6 m

∫ x

a

R(s) ds
lemma 2.1

======⇒ R(x) = 0, ∀x ∈ [a, b]

we get: f(x) = h(x), ∀x ∈ [a, b].
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2.4 Numerical study

Under the assumptions (H1) and (H2), we have prove that eq. (2.1) has a unique solution

FD (α) (a, b), we introduce algorithm for finding numerical solution of eq. (2.1). Here, the

interval [a, b] is divided in to N -equal sub-intervals, where xj = a + j · l for all j ∈ {0 · · ·N}

and l = (b− a)/N. Also, using the following numerical integration formula:

∫ b

a

f(s) ds = l

N∑
j=1

wjf(xj)

where wj are the weights of the quadrature rule such that ∃ W > 0, max
06j6N

|wj| 6 W, on

eqs. (2.1) and (2.7) we get the system:

f0 = g(a) (2.9)

h0 = D (α) g(a) = 0 (2.10)

hn = D (α) g(xn) +
M(α)

1− α
l

n∑
j=1

wjK (xj, xj, fj, hj) exp

[
−α(xn − xj)

1− α

]

+
M(α)

1− α
l

n∑
j=1

wj(xn − xj)
∂K

∂x
(xj, xj, fj, hj) exp

[
−α(xn − xj)

1− α

]
(2.11)

fn = g(xn) + l
n∑
j=1

wjK (xn, xj, fj, hj) . (2.12)

Where fn approaches f(xn), and hn approaches D (α) f(xn).

2.5 System study

In order to prove the existence and uniqueness of the solution of the system eqs. (2.9) to (2.12),

we use hypotheses (H1) and (H2):

Theorem 2.3. For l is sufficiently small, the system eqs. (2.9) to (2.12) has a unique solution.

Proof. We supposing that the space R2 has the first norm:

∀

U
V

 ∈ R2,

∥∥∥∥∥∥∥∥
U

V

∥∥∥∥∥∥∥∥
1

= |U |+ |V |
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Now, we define:

∀n > 1 Ψn

U
V

 =

ρ1

ρ2

 ,

where

ρ1 = g(xn) + l WnK (xn, xn, U, V ) + l
n−1∑
j=0

wjK (xn, xj, fj, hj) ,

ρ2 = D (α) g(xn) +
M(α)

1− α
l WnK (xn, xn, U, V )

+
M(α)

1− α
l

n−1∑
j=1

wj

(
K (xj, xj, fj, hj) + (xn − xj)

∂K

∂x
(xj, xj, fj, hj)

)
exp

[
−α(xn − xj)

1− α

]
.

We have: ∥∥∥∥∥∥∥∥Ψn

U
V

−Ψn

U ′
V ′


∥∥∥∥∥∥∥∥

1

=

∥∥∥∥∥∥∥∥
β1

β2


∥∥∥∥∥∥∥∥

1

as result

β1 = l Wn (K (xn, xn, U, V )−K (xn, xn, U
′, V ′))

β2 =
M(α)

1− α
l Wn (K (xn, xn, U, V )−K (xn, xn, U

′, V ′)) .

however

|β1| 6 l W (M1|U − U ′|+M2|V − V ′|)

|β2| 6 λl W (M1|U − U ′|+M2|V − V ′|)

38



CHAPTER 2. VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

Then∥∥∥∥∥∥∥∥Ψn

U
V

−Ψn

U ′
V ′


∥∥∥∥∥∥∥∥

1

= |β1|+ |β2|

6 l W (M1|U − U ′|+M2|V − V ′|)

+ λl W (M1|U − U ′|+M2|V − V ′|)

6 max (WM1l,WM2l,WM1λl,WM2λl)

∥∥∥∥∥∥∥∥
U
V

−
U ′
V ′


∥∥∥∥∥∥∥∥

1

Using the theorem of Banach to get a unique solution of the previous system eqs. (2.9) to (2.12)

.

2.6 Error analysis

In this part, we want to show that the numerical method constructed in the previous section,

converges to the exact solution of the eq. (2.1), we define:

en = |fn − f(xn)|+
∣∣hn −D (α) f(xn)

∣∣
We say that the method is convergent if

lim
h−→0

(
max

06n6N
{en}

)
= 0
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For n > 0 and ϕ ∈ FD (α) (a, b), we define the local consistency error by:

δ(h, xn) =

∣∣∣∣∣
∫ x

a

K
(
t, s, ϕ(s),D (α) ϕ(s)

)
ds− l

n∑
j=0

wjK (xn, xj, ϕj, hj)

∣∣∣∣∣
+
M(α)

1− α

∣∣∣∣∫ x

a

K
(
s, s, ϕ(s),D (α) ϕ(s)

)
exp

[
−α(x− s)

1− α

]
ds

−l
n∑
j=0

wjK (xj, xj, fj, hj) exp

[
−α(xn − xj)

1− α

]∣∣∣∣∣

+
M(α)

1− α

∣∣∣∣∫ x

a

(x− s)∂K
∂s

(
s, s, ϕ(s),D (α) ϕ(s)

)
exp

[
−α(x− s)

1− α

]
ds

−l
n∑
j=0

wj(xn − xj)
∂K

∂x
(xj, xj, fj, hj) exp

[
−α(xn − xj)

1− α

]∣∣∣∣∣ .
We say that the approximation method of the system eqs. (2.9) to (2.12) is consistent with

eq. (2.1), if

∀ϕ ∈ FD (α) (a, b), lim
h−→0

(
max

06n6N
{δ(h, xn)}

)
= 0

Theorem 2.4. If the approximation method eqs. (2.9) to (2.12) is consistent with eq. (2.1),

then

lim
h−→0

(
max

06n6N
{en}

)
= 0

Proof. For n > 1, we have

f(xn) = g(xn) +

∫ xn

a

K
(
xn, s, f(s),D (α) f(s)

)
ds

' g(xn) + l
n∑
j=0

wjK
(
xn, xj, f(xj),D

(α) f(xj)
)

and

fn = g(xn) + l
n∑
j=0

wjK (xn, xj, fj, vj) .

So that

|f(xn)− fn| =

∣∣∣∣∣l
n∑
j=0

wj
(
K
(
xn, xj, f(xj),D

(α) f(xj)
)
−K (xn, xj, fj, hj)

)∣∣∣∣∣
6 l W

n∑
j=0

∣∣K (xn, xj, f(xj),D
(α) f(xj)

)
−K (xn, xj, fj, hj)

∣∣
6 l W

n∑
j=0

(
M1 |f(xj)− fj|+M2

∣∣D (α) f(xj)− hj
∣∣) . (2.13)
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And

hn = D (α) g(xn) +
M(α)

1− α
l

n∑
j=1

wjK (xj, xj, fj, hj) exp

[
−α(xn − xj)

1− α

]

+
M(α)

1− α
l

n∑
j=1

wj(xn − xj)
∂K

∂x
(xj, xj, fj, hj) exp

[
−α(xn − xj)

1− α

]
.

D (α) f(x) = D (α) g(x) +
M(α)

1− α

∫ x

a

K
(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

]
ds

+
M(α)

1− α

∫ x

a

(x− s)∂K
∂s

(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

]
ds

D (α) f(xn) = D (α) g(xn) +
M(α)

1− α

∫ xn

a

K
(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

]
ds

+
M(α)

1− α

∫ x

a

(xn − s)
∂K

∂x

(
s, s, f(s),D (α) f(s)

)
exp

[
−α(x− s)

1− α

]
ds

' D (α) g(xn) +
M(α)

1− α
l

n∑
j=0

wjK
(
xj, xj, f(xj),D

(α) f(xj)
)

exp

[
−α(xn − xj)

1− α

]

+
M(α)

1− α
l

n∑
j=0

wj(xn − xj)
∂K

∂x

(
xj, xj, f(xj),D

(α) f(xj)
)

exp

[
−α(xn − xj)

1− α

]
.
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Thus

∣∣D (α) f(xn)− hn
∣∣ ' M(α)

1− α
l

∣∣∣∣∣
n∑
j=0

wjK
(
xj, xj, f(xj),D

(α) f(xj)
)

exp

[
−α(xn − xj)

1− α

]

−
n∑
j=0

wjK (xj, xj, fj, hj) exp

[
−α(xn − xj)

1− α

]

+
n∑
j=1

wj(xn − xj)
∂K

∂x

(
xj, xj, f(xj),D

(α) f(xj)
)

exp

[
−α(xn − xj)

1− α

]

−
n∑
j=1

wj(xn − xj)
∂K

∂x
(xj, xj, fj, hj) exp

[
−α(xn − xj)

1− α

]∣∣∣∣∣
6 λl W

n∑
j=0

(
M1 |f(xj)− fj|+M2

∣∣D (α) f(xj)− hj
∣∣)

+ (b− a)λl W
n∑
j=0

(
M1 |f(xj)− fj|+M2

∣∣D (α) f(xj)− hj
∣∣)

finally

∣∣D (α) f(xn)− hn
∣∣ 6 λl W

n∑
j=0

(M1 + (b− a)M1) |f(xj)− fj| (2.14)

λl W
n∑
j=0

+(M2 + (b− a)M2)
∣∣D (α) f(xj)− hj

∣∣ . (2.15)

From eqs. (2.13) and (2.14) we get:

lim
h−→0

(
max

06n6N
{en}

)
= 0

2.7 Numerical result

Since the approximation method of eqs. (2.9) to (2.12) converges to the solution of eqs. (2.1)

and (2.7), we use the trapezoidal integration method to get that the terms fn and hn will can

not calculated exactly. but we use the iteration method of Banach for be approached its.

Example 2.1. Let’s take the following nonlinear Volterra integro-differential nonlinear equation

as an example:

∀x ∈ [0, π]; f(x) = g(x) +

∫ x

0

K
(
x, s, f(s),D (α) f(s)

)
ds, (2.16)
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where α = 0.5 and the kernel

k(x, s, u, v) =
x+ e−s + sin2(s) +

(
e−s −

√
2 sin(s+ π

4
)
)2

x+ e−s + u2 + v2

If we take: g(x) = sin(x)− x, we get f(x) = sin(x).

The following MATLAB with C++ codes solve the equation (2.16) numerically, and plot

the absolute errors and the approximate solution of this equation with the exact solution.

1 % The goa l o f t h i s program i s c a l c u l a t e the approximate

2 % s o l u t i o n o f the f o l l o w i n g problem

3 % u( t )=f ( t )+\ i n t ( a , t ) k ( t , s , u ,Du) ds t in [ a , b ]

4 c l c ; c l e a r a l l ;

5 %%%%%%%%%%%%% Var iab l e s %%%%%%%%%%%%%%%%%%%

6 alpha=0. 5 ;

7 a=0;

8 b=pi ;

9 %%%%%%%%%%%%%% f u n c t i o n s %%%%%%%%%%%%%%%%%%

10 syms t s x y ;

11 S( t )=t ∗ s i n ( t ) ;

12 DS( t )=Da(S , alpha , a )

13 k ( t , s , x , y )= s i n ( t ) ∗( t+exp ( - s )+(s ∗ s i n ( s ) ) ˆ2

14 +(exp ( - s ) - cos ( s )+ s ∗ cos ( s )

15 + s ∗ s i n ( s ) ) ˆ2) /( t+exp ( - s )+xˆ2+yˆ2)

16 K( t , s , x , y )= d i f f ( k ( t , s , x , y ) , t )

1 #inc lude ”moumen.h”

2 double f ( double ) ,Ma( double ) ,S ( double ) ,DS( double ) ,

3 Df ( double ) ,KK( double , double , double , double ) ;

4 double K( double , double , double , double ) ,

5 k ( double , double , double , double ) ;

6 main ( )

7 {

8 i n t N=64,n , j ;
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9 double alpha , a , b , t , h , beta , u [N+1] ,

10 v [N+1] ,X[N+1] , l [N+1] ,U,DU;

11 alpha=0. 5 ;

12 a=0 . ;

13 b=2 . ;

14 h=(b - a ) /N;

15 beta=h∗Ma( alpha ) /(1 - alpha ) ;

16 f o r (n=0;n≤N; n++)

17 X[ n]=a+h∗n ;

18 u [0 ]= f ( a ) ;

19 v [0 ]= Df ( a ) ;

20 l [0 ]= fabs (S(X[ 0 ] ) -u [ 0 ] )+fabs (DS(X[ 0 ] ) -v [ 0 ] ) ;

21 f o r (n=1;n≤N; n++)

22 {

23 DU=KK(X[ 0 ] ,X[ 0 ] , u [ 0 ] , v [ 0 ] ) ∗exp ( alpha ∗(X[ 0 ] -X[ n ] )

24 /(1 - alpha ) ) /2 . ;

25 U=k (X[ n ] ,X[ 0 ] , u [ 0 ] , v [ 0 ] ) /2 . ;

26 f o r ( j =1; j<n ; j++)

27 {

28 DU=DU+KK(X[ j ] ,X[ j ] , u [ j ] , v [ j ] ) ∗exp ( alpha ∗(X[ j ]

29 -X[ n ] ) /(1 - alpha ) ) ;

30 U=U+k (X[ n ] ,X[ j ] , u [ j ] , v [ j ] ) ;

31 }

32 DU=DU+KK(X[ n ] ,X[ n ] , f (X[ n ] )+h∗U, Df (X[ n ] )

33 +beta ∗DU) /2 . ;

34 U=U+ k (X[ n ] ,X[ n ] , f (X[ n ] )+h∗U, Df (X[ n ] )

35 +beta ∗DU) /2 . ;

36 v [ n]=Df (X[ n ] )+beta ∗DU;

37 u [ n]= f (X[ n ] )+h∗U;

38 l [ n]= fabs (S(X[ n ] ) -u [ n ] )+fabs (DS(X[ n ] ) -v [ n ] ) ;

39 }

40

41 FILE ∗ f1 ,∗ f2 ,∗ f 3 ;
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42 f 1=fopen (” Approximate.txt ” ,”w”) ;

43 f o r (n=0;n≤N; n++)

44 f p r i n t f ( f1 , ”%l f \ t %l f \n” , n∗h , u [ n ] ) ;

45 f c l o s e ( f 1 ) ;

46 p lo t (” p l o t ' Approximate.txt ' pointtype 5 ,

47 x∗x+x l inew idth 2 ;

48 pause mouse \n ”) ;

49 endplot ( ) ;

50 f 2=fopen (” E r r o r . t x t ” ,”w”) ;

51 f o r (n=0;n≤N; n++)

52 f p r i n t f ( f2 , ”%l f \ t %l f \n” , n∗h , l [ n ] ) ;

53 f c l o s e ( f 2 ) ;

54 p lo t1 (” p l o t ' E r r o r . t x t ' pointtype 7 ;

55 pause mouse \n”) ;

56 endplot1 ( ) ;

57 }

58 double S( double t )

59 {

60 return t ∗ t+t ;

61 }

62 double DS( double t )

63 {

64 return 4 . ∗ t+2 . ∗exp ( - t ) -2 . ;

65 }

66 double f ( double t )

67 {

68 return t ∗ t ;

69 }

70 double Df ( double t )

71 {

72 return 4 . ∗ t+4 . ∗exp ( - t ) -4 . ;

73 }

74 double k ( double t , double s , double x , double y )
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75 {

76 return ( t+exp ( -2 . ∗ s ) -4 . ∗ s+4 . ∗ s ∗exp ( - s )+8 . ∗ s ∗ s

77 +8. ∗ s ∗ s ∗ s + 4 . ∗ s ∗ s ∗ s ∗ s + 1 . ) /( t

78 +2. ∗exp ( - s )+4 . ∗x∗x+y∗y/4 . ) ;

79 }

80 double K( double t , double s , double x , double y )

81 {

82 return 1 . /( t+2 . ∗exp ( - s )+4 . ∗x∗x+y∗y/4)

83 - ( t + exp ( -2 . ∗ s ) -4 . ∗ s + 4 . ∗ s ∗exp ( - s )

84 +8. ∗ s ∗ s+8 . ∗ s ∗ s ∗ s+4 . ∗ s ∗ s ∗ s ∗ s+1 . )

85 /( ( t+2 . ∗exp ( - s )+4 . ∗x∗x+y∗y/4 . ) ∗( t

86 +8. ∗exp ( - s )+4 . ∗x∗x+y∗y/4 . ) ) ;

87 }

88 double KK( double t , double s , double x , double y )

89 {

90 return k ( t , s , x , y )+(t - s ) ∗K( t , s , x , y ) ;

91 }

92 double Ma( double t )

93 {

94 double r=0. 2 ;

95 return 1+r∗ s i n (2∗ pi ∗ t ) ;

96 }
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Figure 2.1: Numerical solution of example 2.1 for (N = 32) with the exact solution, and error

obtained.

N max
06i6N

(
|fi − f(xi)|+ |hi −D (α) f(xi)|

)
32 0.01

64 2.5E-3

128 6E-4

256 1.4E-4

512 4E-5

1024 8E-6

2048 2E-6

4096 1E-6

Table 2.1: The numerical error obtained for the example 2.1
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Example 2.2. Let’s take the following nonlinear Volterra integro-differential nonlinear equation

as an example:

∀x ∈ [0, π]; f(x) = g(x) +

∫ x

0

K
(
x, s, f(s),D (α) f(s)

)
ds, (2.17)

where α = 0.5 and the kernel

k(x, s, u, v) =
2x+ e−2s + 4 sinh2(s) + 2(es − 1)2

2x+ e−s + 2u2 + v2

If we take: g(x) = ex − 1− x, we get: f(x) = ex − 1.

Figure 2.2: Numerical solution of example 2.2 for (N = 32) with the exact solution, and error

obtained.

Example 2.3. Let’s take the following nonlinear Volterra integro-differential nonlinear equation
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N max
06i6N

(
|fi − f(xi)|+ |hi −D (α) f(xi)|

)
32 1.8E-2

64 4.5E-3

128 1.2E-3

256 3E-4

512 7E-5

1024 2E-5

2048 4E-6

4096 1E-6

Table 2.2: Numerical error obtained for example 2.2

as an example:

∀x ∈ [0, π]; f(x) = t2 +

∫ x

0

e−2s − 2e−s − 4s+ 4se−s + 8s2 + 8s3 + 4s4 + 1 + x

x+ 2e−s + (2f(s))2 + (D (α) f(s)/2)
2 ds, (2.18)

where α = 0.5, we get: f(x) = t2 + t.

N max
06i6N

(
|fi − f(xi)|+ |hi −D (α) f(xi)|

)
32 4.5E-3

64 1.2E-3

128 1.2E-3

256 2.5E-4

512 2E-5

1024 4E-6

2048 1E-6

Table 2.3: Numerical error obtained for example 2.3
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Figure 2.3: Numerical solution of example 2.3 for (N = 32) with the exact solution, and error

obtained.

In this chapter we prove the existence and uniqueness of nonlinear integro-differential equa-

tion of Volterra with the use of the minimum of hypotheses that ensure this, and then we

solved the problem numerically using numerical methods and programming the problem using

the Matlab which is characterised by slowness, that needs the division of the program into two

parts. A part using the Matlab and the second part using C++ which gave us satisfying results

and in a short time.
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Chapter 3
A New Definition of Fractional Integral

and its Properties with a Theoretical

Application

Summary

3.1 The First Definition of New Fractional Integral . . . . . . . . . . . . 55

3.2 Theoretical Application . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 The Second Definition of New Fractional Integral . . . . . . . . . . . 64

In this chapter, we introduce a new definition of fractional integral as an inverse of the

conformable fractional derivative of Caputo. By using these definitions, we obtain the basic

properties of those fractional derivative and its fractional integral. Finally, we solve a class of

fractional boundary value problems as a theoretical application, and we use Matlab to solve

this class of fractional boundary value problems.

The usual integral and derivative are (to say the least) a staple for the new technology, es-

sential as a means of understanding and working with natural and artificial systems. Recently,

many authors have participated in the development of the fractional calculus (differentiation

and integration of arbitrary order). The applications of fractional calculus often appear in the

fields such as generalized voltage dividers[50], electric conductance of biological systems[14],

51



CHAPTER 3. A NEW DEFINITION OF FRACTIONAL INTEGRAL

capacitor theory[36], engineering[10], electrode-electrolyte interface models[27], feedback am-

plifiers, medical[14, 39], fractional order models of neurons[4], analysis of special functions[24],

and fitting experimental data[5].

In this chapter, we launch a new fractional Integral operator, we investigate some properties

of the new fractional Integral operator. As concerns the properties of the fractional derivative

operator, we are interested in recalling some extended functions

As a theoretical application a class of fractional boundary value problems is solved. To

the best of our knowledge, this is the first work that solve problem with the new concept of

fractional derivative recently introduced by Caputo and Fabrizio in paper [6], which has many

properties mentioned in article [27].

Lemma 3.1. Let α ∈]0, 1[ and f ∈ C1[a, b] a non constant function. The equations

D (α) u(x) = f(x), in [a, b] (3.1)

u′(x) =
1

M(α)
[(1− α)f ′(x) + αf(x)] , in [a, b] (3.2)

have the same solution.

Proof. If u is a solution of eq. (3.1), then

M(α)

1− α

∫ x

a

u′(s) exp

[
−α(x− s)

1− α

]
ds = f(x)

and the Leibniz integral rule gives the formula

M(α)

1− α
u′(x)− α

1− α
M(α)

1− α

∫ x

a

u′(s) exp

[
−α(x− s)

1− α

]
ds = f ′(x)

M(α)

1− α
u′(x) =

α

1− α
M(α)

1− α

∫ x

a

u′(s) exp

[
−α(x− s)

1− α

]
ds+ f ′(x),

consequently
M(α)

1− α
u′(x) =

α

1− α
f(x) + f ′(x).

So that

u′(x) =
1

M(α)
(αf(x) + (1− α)f ′(x))
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Example 3.1. Let α = 0.5, M(α) = 1, and f(x) = x, the solution of the equation

D (α) u(x) = x

is the same solution of the equation

u′(x) =
1

M(α)
(αf(x) + (1− α)f ′(x))

=
1

2
x+

1

2
.

Therefore

u(x) =
1

4
x2 +

1

2
x+ c; c ∈ R.

Lemma 3.2. Let γ ∈]1, 2] and f ∈ C1[a, b] a non constant function, then : The equations

D (γ) u(x) = f(x), in [a, b] (3.3)

u′′(x) =
1

M(γ − 1)
[(2− γ)f ′(x) + (γ − 1)f(x)], in [a, b] (3.4)

have the same solution.

Proof. Let u be a solution of eq. (3.3), then, it satisfies :

M(γ − 1)

2− γ

∫ x

a

u′′(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ = f(x)

and the Leibniz integral rule gives the formula

M(γ − 1)

2− γ
u′′(x)− (γ − 1)

2− γ
M(γ − 1)

2− γ

∫ x

a

u′′(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ = f ′(x)

M(γ − 1)

2− γ
u′′(x) =

(γ − 1)

2− γ
D (γ) u(x) + f ′(x)

So that

u′′(x) =
1

M(γ − 1)
((2− γ)f ′(x) + (γ − 1)f(x))
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Example 3.2. For γ = 1.5 find the Green’s function for the following boundary value problemD (γ) u(x) = x, 0 ≤ x ≤ 1

u(0) = 0, u(1) = 0

(3.5)

Solution: From Lemma 3.2 we have:

D (γ) u(x) = x, 0 ≤ x ≤ 1⇔ u′′(x) =
1

2
(x+ 1), 0 ≤ x ≤ 1

We get a boundary value problem equivalent to boundary value problem (3.5)


u′′(x) =

1

2
(x+ 1), 0 ≤ x ≤ 1

u(0) = 0, u(1) = 0

(3.6)

The homogeneous equation u′′ = 0 has the fundamental solutions u1(x) = x and u2(x) = x− 1

to satisfy the boundary conditions B0[u] = u(0) = 0 and B1[u] = u(1) = 0 respectively.

Then W (u1, u2) (x) = 1 and therefore

G(x, s) =


s(x− 1) if 0 ≤ s ≤ x

x(s− 1) if x ≤ s ≤ 1

Thus solve eq. (3.6) with

u(x) =

∫ x

0

sf(s)ds(x− 1) +

∫ 1

x

(s− 1)f(s)dsx

= (x− 1)

∫ x

0

s · 1

2
(s+ 1)ds+ x

∫ 1

x

(s− 1) · 1

2
(s+ 1)ds

=
1

2
(x− 1)

∫ x

0

(s2 + s)ds+
1

2
x

∫ 1

x

(s2 − 1)ds

=
1

2
(x− 1)

(
1

3
s3 +

1

2
s2

)
+

1

2
x

(
1

3
− 1− 1

3
x3 + x

)
=

1

6
x4 − 1

6
x3 +

1

4
x3 − 1

4
x2 − 1

3
x− 1

6
x4 +

1

2
x2

=
1

12
x3 +

1

4
x2 − 1

3
x.
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Figure 3.1: Eexact solution of boundary value problem (3.5)

3.1 The First Definition of New Fractional Integral

In this section, we present our new definition as a theorem

Theorem 3.1. Let n ≥ 1, α ∈ [0, 1]. The formula :

In+α
a f(t) =

1

M(α) · n!

∫ t

a

(t− s)n[αf(s) + (1− α)f ′(s)] ds

where f ∈ C1[a, b], and M(α), is a normalization function such that

M(0) = M(1) = 1 is a new fractional integral of order (n + α), and it’s as an inverse of the

conformable fractional derivative of Caputo of order (n+ α).

Proof. From Definitions 1.2 and 1.4, we obtain

D (α+n)f(t) = D (α)
t

(
D (n)f(t)

)
=
M(α)

1− α

∫ t

a

f (n+1)(s) exp

[
−α(t− s)

1− α

]
ds,

using the following Leibniz integral rule

d

dt

(∫ b(t)

a(t)

g(t, s)ds

)
= g(t, b(t)) · d

dt
b(t)− g(t, a(t)) · d

dt
a(t) +

∫ b(t)

a(t)

∂

∂t
g(t, s)ds
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and considering a(t) = a, b(t) = t, and g(t, s) = f (n+1)(s) exp

[
−α(t− s)

1− α

]
,

⇒ d

dt
b(t) = 1,

d

dt
a(t) = 0, and

∂

∂t
g(t, s) = − α

1− α
f (n+1)(s) exp

[
−α(t− s)

1− α

]
we obtain

d

dt

(
D (α+n)f(t)

)
=
M(α)

1− α
f (n+1)(t)− α

1− α

(
M(α)

1− α

∫ t

a

f (n+1)(s) exp

[
−α(t− s)

1− α

]
ds

)
︸ ︷︷ ︸

=D(α+n)f(t)

So that
d

dt

(
D (α+n)f(t)

)
=
M(α)

1− α
f (n+1)(t)− α

1− α
D (α+n)f(t).

We then obtain

f (n+1)(t) =
1

M(α)

[
(1− α)

d

dt

(
D (α+n)f(t)

)
+ αD (α+n)f(t)

]
.

Now, using Cauchy formula for evaluating the (n+ 1)th integration of the function f (n+1)(t)

f(t) =

∫ t

0

∫ t1

0

∫ t2

0

· · ·
∫ tn

0

f (n+1) (tn) dtn · · · dt1dt

=
1

n!

∫ t

0

(t− s)nf (n+1)(t)dt

=
1

n!M(α)

∫ t

a

(t− s)n
[
(1− α)

d

dt

(
D (α+n)f(s)

)
+ αD (α+n)f(s)

]
ds,

If we consider that g(x) = D (α+n)f(x)

⇒ f(t) =
1

M(α) · n!

∫ t

a

(t− s)n[αg(s) + (1− α)g′(s)] ds

Finally, we obtained an expression of the inverse of the conformable fractional derivative of

Caputo as shown in the following figure:

f(t) = In+α
a g(t) =

1

M(α) · n!

∫ t

a

(t− s)n[αg(s) + (1− α)g′(s)] ds
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The proof is complete.

Lemma 3.3. Let γ ∈ (1, 2). If we assume u ∈ C1(0, 1), then the fractional deferential equation

D (γ) u(x) = 0

has u(x) = c1x+ c2; c1, c2 ∈ R as unique solutions.

Proof. In order to prove the previous Lemma, it is sufficient to prove the following equivalence:

∀x ∈ [a, b],

∫ x

a

f(s) ds = 0⇔ ∀x ∈ [a, b], f(x) = 0 (3.7)

Suppose F is an anti-derivative of f , with f continuous on [a, b]. We have that

F (x)− F (a) =

∫ x

a

f(s) ds = 0⇔ ∀x ∈ [a, b], F (x) = F (a),

⇔ ∀x ∈ [a, b], F ′(x) = 0,

⇔ ∀x ∈ [a, b], f(x) = 0,

Now, using (3.7) to prove Lemma 3.3, ∀x ∈ [0, 1] we have that

D (γ) u(x) = 0⇔ M(γ − 1)

2− γ

∫ x

a

u′′(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ = 0,

⇔
∫ x

a

u′′(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ = 0,

⇔ ∀x ∈ [a, b], u′′(x) = 0

⇔ ∀x ∈ [a, b], u(x) = c1x+ c2; c1, c2 ∈ R.

Lemma 3.4. Assume that u ∈ C1(0, 1) with a fractional derivative of order γ ∈ (1, 2), that

belongs to C(0, 1). Then, those statements holds

0. if u(a) = 0, then D (γ) Iγau(x) = u(x).

0. IγaD
(γ) u(x) = u(x) + ax+ b, a, b ∈ R.

Proof. 0. Let γ ∈]1, 2[, we have that

Iγau(x) =
1

M(γ − 1)

∫ x

a

(x− s)[(γ − 1)u(s) + (2− γ)u′(s)] ds

57



CHAPTER 3. A NEW DEFINITION OF FRACTIONAL INTEGRAL

D (γ) u(x) =
M(γ − 1)

2− γ

∫ x

a

u′′(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ.

Before outlining the method needed, we wish to recall the useful transformation formula

∫ x

0

∫ x1

0

∫ x2

0

· · ·
∫ xn−1

0

f (xn) dxn · · · dx1 =
1

(n− 1)!

∫ x

0

(x− t)n−1f(t)dt (3.8)

For practical consideration

∫ x

0

∫ x

0

f(t)dtdt =

∫ x

0

(x− t)f(t)dt (3.9)

Using the formula (3.9) we obtain

D (γ) (Iγau(x)) =
γ − 1

2− γ

∫ x

a

d2

dτ 2

[∫ τ

a

(τ − s)u(s) ds

]
exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ

+

∫ x

a

d2

dτ 2

[∫ τ

a

(τ − s)u′(s) ds

]
exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ

=
γ − 1

2− γ

∫ x

a

u(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ

+

∫ x

a

u′(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ

=
γ − 1

2− γ

∫ x

a

u(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ

+ u(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]∣∣∣∣x
a

− γ − 1

2− γ

∫ x

a

u(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ

= u(x)− u(a) exp

[
−(γ − 1)(x− a)

2− γ

]
= u(x).

0. Firstly, we have that

D (γ) u(x) =
M(γ − 1)

2− γ

∫ x

a

u′′(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ.
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We derive both sides of the equation, we get that

d

dx

(
D (γ) u(x)

)
=
M(γ − 1)

2− γ
u′′(x)

− γ − 1

2− γ
M(γ − 1)

2− γ

∫ x

a

u′′(τ) exp

[
−(γ − 1)(x− τ)

2− γ

]
dτ

=
M(γ − 1)

2− γ
u′′(x)− γ − 1

2− γ
D (γ) u(x)

using the last formula

Iγa
(
D (γ) u(x)

)
=

1

M(γ − 1)

∫ x

a

(x− s)
[
(γ − 1)D (γ) u(s) + (2− γ)

d

ds

(
D (γ) u(s)

)]
ds

=
γ − 1

M(γ − 1)

∫ x

a

(x− s)D (γ) u(s) ds+

∫ x

a

(x− s)u′′(s) ds

− γ − 1

M(γ − 1)

∫ x

a

(x− s)D (γ) u(s) ds

=

∫ x

a

(x− s)u′′(s) ds

= (x− a)u′(a) +

∫ x

a

u′(s) ds

= u(x) + (x− a)u′(a) + c

= u(x) + c1x+ c2.

3.2 Theoretical Application

On the other hand, we will study the following fractional boundary value problem:D (γ) u(x) = f(x), 0 ≤ x ≤ 1

u(0) = 0, u(1) = 0

(3.10)

In the following, we present the Green’s function of fractional differential equation boundary

value problem.

Lemma 3.5. Consider a non constant function f ∈ C1(0, 1), u is a solution of problem (3.10)

if, and only if, it satisfies the following integral equation

u(x) =

∫ 1

0

G1(x, s)f(s) ds+

∫ 1

0

G2(x, s)f ′(s) ds (3.11)

59



CHAPTER 3. A NEW DEFINITION OF FRACTIONAL INTEGRAL

where

G1(x, s) =
γ − 1

M(γ − 1)

s(x− 1), 0 ≤ x ≤ s ≤ 1

x(s− 1), 0 ≤ s ≤ x ≤ 1.

and

G2(x, s) =
2− γ

M(γ − 1)

s(x− 1), 0 ≤ x ≤ s ≤ 1

x(s− 1), 0 ≤ s ≤ x ≤ 1.

Proof. We may apply Lemma 3.4 to reduce first equation of problem (3.10) to an equivalent

integral equation

IγaD
(γ) u(x) = Iγa f(x) + ax+ b,

for some a, b ∈ R. Consequently, the general solution of problem (3.10) is

u(x) =
1

M(γ − 1)

∫ x

0

(x− s)[(γ − 1)f(s) + (2− γ)f ′(s)] ds+ ax+ b

By second equation of problem (3.10), we get b = 0 and

a = − 1

M(γ − 1)

∫ 1

0

(1− s)[(γ − 1)f(s) + (2− γ)f ′(s)] ds

Therefore, the unique solution of problem (3.10)

u(x) =
1

M(γ − 1)

∫ x

0

(x− s)[(γ − 1)f(s) + (2− γ)f ′(s)] ds

− 1

M(γ − 1)

∫ 1

0

x(1− s)[(γ − 1)f(s) + (2− γ)f ′(s)] ds

=
1

M(γ − 1)

∫ x

0

[(x− s)− x(1− s)][(γ − 1)f(s) + (2− γ)f ′(s)] ds

− 1

M(γ − 1)

∫ 1

x

x(1− s)[(γ − 1)f(s) + (2− γ)f ′(s)] ds

=
1

M(γ − 1)

∫ x

0

s(x− 1)[(γ − 1)f(s) + (2− γ)f ′(s)] ds

− 1

M(γ − 1)

∫ 1

x

x(1− s)[(γ − 1)f(s) + (2− γ)f ′(s)] ds

=

∫ 1

0

G1(x, s)f(s) ds+

∫ 1

0

G2(x, s)f ′(s) ds.

The proof is complete.

Example 3.3. For γ = 1.75 and M(α) = 1− 0.2 sin(2πα), let find the Green’s function for the
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following boundary value problemD (γ) u(x) = x2 + x, 0 ≤ x ≤ 1

u(0) = 0, u(1) = 0

(3.12)

Solution: From Lemma 3.5 we have:

G1(x, s) =
15

16

s(x− 1), 0 ≤ x ≤ s ≤ 1

x(s− 1), 0 ≤ s ≤ x ≤ 1.

and

G2(x, s) =
5

16

s(x− 1), 0 ≤ x ≤ s ≤ 1

x(s− 1), 0 ≤ s ≤ x ≤ 1.

Thus solve eq. (3.12) with

u(x) =

∫ 1

0

G1(x, s)f(s) ds+

∫ 1

0

G2(x, s)f ′(s) ds

=
15

16
(x− 1)

∫ x

0

s(s2 + s) ds+
15

16
x

∫ 1

x

(s− 1)(s2 + s) ds

+
5

16
(x− 1)

∫ x

0

s(2s+ 1) ds+
5

16
x

∫ 1

x

(s− 1)(2s+ 1) ds

=
5

64
x4 +

25

96
x3 +

5

32
x2 − 95

192
x.
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Figure 3.2: Eexact solution of boundary value problem (3.12)

Example 3.4. For γ = 1.75, let find the Green’s function for the following boundary value

problem D (γ) u(x) = x2 + x, 0 ≤ x ≤ 1

u(0) = 0, u(1) = 0

(3.13)

Solution: From Lemma 3.5 we have:

G1(x, s) =
15

16

s(x− 1), 0 ≤ x ≤ s ≤ 1

x(s− 1), 0 ≤ s ≤ x ≤ 1.

and

G2(x, s) =
5

16

s(x− 1), 0 ≤ x ≤ s ≤ 1

x(s− 1), 0 ≤ s ≤ x ≤ 1.
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Thus solve eq. (3.13) with

u(x) =

∫ 1

0

G1(x, s)f(s) ds+

∫ 1

0

G2(x, s)f ′(s) ds

=
15

16
(x− 1)

∫ x

0

s(s2 + s) ds+
15

16
x

∫ 1

x

(s− 1)(s2 + s) ds

+
5

16
(x− 1)

∫ x

0

s(2s+ 1) ds+
5

16
x

∫ 1

x

(s− 1)(2s+ 1) ds

=
5

64
x4 +

25

96
x3 +

5

32
x2 − 95

192
x.

Finally, we program the problem (3.13) using Matlab to get the solution u(x), as follows:

1 % The goa l o f t h i s program i s c a l c u l a t e

2 % the new Caputo d e r i v a t i v e

3 c l c ; c l o s e ; c l e a r a l l ;

4 syms x s ;

5 a=0; b=1; gamma=1.75 ;

6 f ( x )=xˆ2+1;

7 I ( x )=( i n t ( s ∗(x - 1 ) ∗ ( (gamma- 1 ) ∗ f ( s )

8 +(2 -gamma) ∗ d i f f ( f ( s ) ) ) , s , 0 , x ) ) ;

9 J ( x )=( i n t ( x∗( s - 1 ) ∗ ( (gamma- 1 ) ∗ f ( s )

10 +(2 -gamma) ∗ d i f f ( f ( s ) ) ) , s , x , 1 ) ) ;

11 u( x )= expand ( I ( x )+J ( x ) ) /Ma(gamma- 1 )
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3.3 The Second Definition of New Fractional Integral

In this section, we introduce a new definition of fractional integral as a theorem:

Theorem 3.2. Let n ≥ 1, α ∈ [0, 1], and f ∈ C1[a, b]. The formula :

In+α
a f(t) =

1

M(α) · n!

∫ t

a

(t− s)n−1[α(t− s) + n(1− α)]f(s) ds

where f ∈ C1[a, b], and M(α), is a normalization function such that

M(0) = M(1) = 1 is a new fractional integral of order (n+ α).

Proof. From Definitions 1.2 and 1.4, we obtain

D (α+n)f(x) =
M(α)

1− α

∫ t

a

f (n+1)(s) exp

[
−α(t− s)

1− α

]
ds

and Leibniz integral rule gives the formula

d

dt

(
D (α+n)f(t)

)
=
M(α)

1− α
f (n+1)(t)− α

1− α
M(α)

1− α

∫ t

a

f (n+1)(s) exp

[
−α(t− s)

1− α

]
ds
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So that
d

dt

(
D (α+n)f(t)

)
=
M(α)

1− α
f (n+1)(t)− α

1− α
D (α+n)f(t).

We then obtain

f (n+1)(t) =
1

M(α)

[
(1− α)

d

dt

(
D (α+n)f(t)

)
+ αD (α+n)f(t)

]
.

Now, we use the Cauchy formula for evaluating the (n+1)th integration of the function f (n+1)(t)

f(t) =
1

n!M(α)

∫ t

a

(t− s)n
[
(1− α)

d

ds

(
D (α+n)f(s)

)
+ αD (α+n)f(s)

]
ds.

Finally, we get

In+α
a f(t) =

1

M(α) · n!

∫ t

a

(t− s)n[αf(s) + (1− α)f ′(s)] ds

=
1

M(α) · n!

∫ t

a

(t− s)n−1[α(t− s) + n(1− α)]f(s) ds.

Lemma 3.6. Let γ ∈ (n, n + 1), n = [γ] > 0. Assume that u ∈ Cn[a, b], then those statements

holds:

0. Iγa
(
D (γ) u(t)

)
= u(t) +

n∑
i=0

ait
i, ai ∈ R i = 0, 1, . . . , n.

0. if u(a) = 0, then D (γ) (Iγau(t)) = u(t).

Proof. 0. Let γ ∈]n, n + 1[, it can be written in the form: γ = n + α where α ∈]0, 1[, and

n = [γ], we have

Iγa
(
D (γ) u(t)

)
=

1

M(α) · n!

∫ t

a

(t− s)n−1[α(t− s) + n(1− α)]D (γ) u(s) ds.

=
α

M(α) · n!

∫ t

a

(t− s)nD (γ) u(s) ds+
(1− α)

M(α) · n!

∫ t

a

(t− s)n d
ds

(
D (γ) u(s)

)
ds

=
α

M(α) · n!

∫ t

a

(t− s)nD (γ) u(s) ds

+
(1− α)

M(α) · n!

∫ t

a

(t− s)n
(
M(α)

1− α
u(n+1)(s)− α

1− α
D (γ) u(s)

)
ds

=
1

n!

∫ t

a

(t− s)nu(n+1)(s) ds

= u(t) +
n∑
i=0

ait
i, ai ∈ R i = 0, 1, . . . , n
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0. Let γ ∈]n, n + 1[, it can be written in the form: γ = n + α where α ∈]0, 1[, and n = [γ],

we have

D (γ) (Iγau(t)) =
α

(1− α)

∫ t

a

d(n+1)

ds(n+1)

[
1

n!

∫ s

a

(s− x)nu(x)dx

]
exp

[
−α(t− s)

1− α

]
ds

+

∫ t

a

d(n+1)

ds(n+1)

[
1

n!

∫ s

a

(s− x)nu′(x)dx

]
exp

[
−α(t− s)

1− α

]
ds

=
α

(1− α)

∫ t

a

u(s) exp

[
−α(t− s)

1− α

]
ds+

∫ t

a

u′(s) exp

[
−α(t− s)

1− α

]
ds

=
α

(1− α)

∫ t

a

u(s) exp

[
−α(t− s)

1− α

]
ds

+u(s) exp

[
−α(t− s)

1− α

]∣∣∣∣t
a

− α

(1− α)

∫ t

a

u(s) exp

[
−α(t− s)

1− α

]
ds

= u(t)− u(a) exp

[
−α(t− a)

1− α

]
= u(t).
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We study the existence and uniqueness of the solution of a fractional boundary value problem

with conformable fractional derivation of the Caputo type, which increases the interest of this

study. In order to study this problem we have introduced a new definition of fractional integral

as an inverse of the conformable fractional derivative of Caputo, therefore, the proofs are based

upon the reduction of the problem to a equivalent linear Volterra-Fredholm integral equations
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of the second kind, and we have built the minimum conditions to obtain the existence and

uniqueness of this solution. The analytical study is followed by a complete numerical study.

Recently, papers have been published that deal with the existence and multiplicity of the

solution of nonlinear initial fractional differential equation by the use of techniques of nonlinear

analysis, see [36, 26, 39, 54]. However, most of the papers offer the problem using the stan-

dard Riemann-Liouville differentiation. However, Our aim is to study the existence and the

uniqueness of the solution for a class of fractional boundary value problems. To the best of our

knowledge, this is the first work that solves problem with the conformable fractional derivative

by Caputo and Fabrizio in paper [6], which has many properties mentioned in the article [27].

The interest for in this new approach is due to the necessity of using a model to describe the

behavior of classical viscoelastic materials, electromagnetic systems, thermal media, etc. In

fact, the original definition of Caputo’s fractional derivative appears to be particularly conve-

nient for those mechanical phenomena, related to damage and with electromagnetic hysteresis,

fatigue and plasticity. When these effects are not present it seems more appropriate to use the

new fractional derivative [6].

In this chapter, We study the existence and uniqueness of the solution of the fractional

differential equation boundary value problem, as follows:D (γ) u(x) + q(x)u(x) = f(x), 0 6 x 6 1

u(0) = u(1) = 0

(4.1)

where 1 < γ < 2 is a real number, q is the potential function, and f : [0, 1]→ R is continuous.

and D (γ) is the new fractional derivative, and we introduce a new definition of its fractional

integral with some properties, using this fractional integral upon problem (4.1) to obtain an

equivalent linear Volterra-Fredholm integral equations of second kind. Finally, by the means

of some theorems, the existence and uniqueness of solutions are obtained, and we introduce an

algorithm for finding a numerical solution of this problem class.

4.1 Analytic Study

In the following, we suppose the function M(α) = 1.
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Lemma 4.1. Given q ∈ C[0, 1], and 1 < γ < 2, the solution of

D (γ) u(x) + q(x)u(x) = f(x), 0 6 x 6 1

u(0) = u(1) = 0

(4.2)

satisfies the following linear Volterra-Fredholm integral equations of the second kind

u(x) +

∫ x

0

G(x, s)u(s) ds+

∫ 1

0

K(x, s)u(s) ds = g(x) (4.3)

where g(x) =

∫ x

0

(x− 1)(αs− 1 + α)f(s) ds+

∫ 1

0

x(αs− 1)f(s) ds,

G(x, s) = (x− 1)(αs− 1 + α)q(s) and K(x, s) = x(αs− 1)q(s).

Proof. We may apply Lemma 3.6 to reduce Eq. (4.2) to an equivalent integral equation

Iγ0
(
D (γ) u(x)

)
= Iγ0 (f(x)− q(x)u(x))

⇒ u(x) + cx+ d =

∫ x

0

[α(x− s) + (1− α)] (f(s)− q(s)u(s)) ds

Using boundary conditions u(0) = u(1) = 0, we have d = 0, and

c =

∫ 1

0

(1− αs) (f(s)− q(s)u(s)) ds.

Therefore, the unique solution of problem (4.2) is

u(x) =

∫ x

0

[α(x− s) + (1− α)] (f(s)− q(s)u(s)) ds

+

∫ 1

0

x(αs− 1) (f(s)− q(s)u(s)) ds

=

∫ x

0

[α(x− s) + (1− α)]f(s) ds+

∫ 1

0

x(αs− 1)f(s) ds

−
∫ x

0

[α(x− s) + (1− α)]q(s)u(s) ds−
∫ 1

0

x(αs− 1)q(s)u(s) ds

= g(x)−
∫ x

0

G(x, s)u(s) ds−
∫ 1

0

K(x, s)u(s) ds.

The proof is complete.
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4.2 Existence and uniqueness of the solution

The classical approach to proving the existence and uniqueness of the solution of (4.3) is the

Picard method. This consists of the simple iteration for n = 1, 2, . . .

un(x) = g(x) +

∫ x

0

G(x, s)un−1(s) ds+

∫ 1

0

K(x, s)un−1(s) ds (4.4)

with u0(x) = g(x). For ease of manipulation, it is convenient to introduce

vn(x) = vn(x)− vn−1(x), n = 1, 2, . . . (4.5)

with v0(x) = g(x). On subtracting from (4.4), the same equation with n replaced by n− 1, an

we see that

vn(x) =

∫ x

0

k(x, s)vn−1(s)ds, n = 1, 2, . . .

Also, from (4.5)

un(x) =
n∑
i=0

vi(x) (4.6)

The following theorem uses this iteration to prove the existence and uniqueness of the solution

under quite restrictive conditions, namely that G(x, s), K(x, s) and g(x) are continuous.

Theorem 4.1. If g(x) is continuous in 0 6 x 6 1, and the function K(x, s), G(x, s) are

continuous in 0 6 s 6 x 6 1, and max
06s6x61

|K(x, s)| < 1, then the integral equation (4.3)

possesses a unique continuous solution for 0 6 x 6 1.

Proof. Choose M1, M2 and M3 such that

|g(x)| 6M1, 0 6 x 6 1

|G(x, s)| 6M2, 0 6 s 6 x 6 1

|K(x, s)| 6M3, 0 6 s 6 x 6 1 where M3 < 1.

We first prove by induction that

|vn(x)| 6 M1(M2x)n

n!
+M1M

n
3 , 0 6 x 6 1, n = 0, 1, . . . (4.7)
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this bound makes it obvious that the sequence un(x) in (4.6) converges, and we can write

u(x) =
∞∑
i=0

vi(x) (4.8)

We now show that this u(x) satisfies equation (4.3). The series (4.8) is uniformly convergent

since the terms vi(x) are dominated by M1(M2x)i/i!+M1M
i
3. Consequently, we can interchange

the order of integration and summation in the following expression to obtain

∫ x

0

G(x, s)
∞∑
i=0

vi(s) ds+

∫ 1

0

K(x, s)
∞∑
i=0

vi(s) ds =
∞∑
i=0

∫ x

0

G(x, s)vi(s) ds

+
∞∑
i=0

∫ 1

0

K(x, s)vi(s) ds

=
∞∑
i=0

vi+1(s)

=
∞∑
i=0

vi(s)− g(x).

Each of the vi(x) is clearly continuous. Therefore u(x) is continuous, since it is the limit of

a uniformly convergent sequence of continuous functions.

To show that u(x) is the only continuous solution, suppose there exists another continuous

solution ũ(x) of (4.3) Then

u(x)− ũ(x) =

∫ x

0

G(x, s)(u(s)− ũ(s)) ds+

∫ 1

0

K(x, s)(u(s)− ũ(s)) ds (4.9)

since f(x) and f̃(x) are both continuous, there exists a constant C such that

|u(x)− ũ(x)| 6 C, 0 6 x 6 1

Substituting this into (4.9)

|u(x)− ũ(x)| 6 C(M2x+M3), 0 6 x 6 1

and repeating the step shows that

|u(x)− ũ(x)| 6 C

(
(M2x)n

n!
+Mn

3

)
, 0 6 x 6 1, for any n.
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For a large enough n, the right-hand side is arbitrarily small, therefore, we must have

u(x)− ũ(x), 0 6 x 6 1

Theorem 4.2. If f(x), q(x) are continuous in [0, 1], and max
06x61

|q(x)| < 1, then the fractional

boundary value problem (4.1) possesses a unique continuous solution for 0 6 x 6 1.

Proof. If f(x), q(x) are continuous in [0, 1], then it is clear that the following functions

g(x) =

∫ x

0

(x− 1)(αs− 1 + α)f(s) ds+

∫ 1

0

x(αs− 1)f(s) ds,

G(x, s) = (x− 1)(αs− 1 + α)q(s),

K(x, s) = x(αs− 1)q(s),

are continuous, and |K(x, s)| = |x(αs − 1)q(s)| 6 |q(s)| < 1, ∀x, s ∈ [0, 1], which means that

integral equation (4.3) possesses a unique continuous solution for 0 6 x 6 1. Therefore, there is

a unique continuous solution of the fractional boundary value problem (4.1) for 0 6 x 6 1.

4.3 Numerical study

In this section, we introduce an algorithm for finding a numerical solution of linear Volterra-

Fredholm integral equations of the second kind, the methods based upon trapezoidal rule. For

all N ∈ N, Here the interval [0, 1] in to N equal sub-intervals, where h = (b − a)/N , and

xi = a+ i · h for all i ∈ {0 · · ·N} .

The formula of the numerical integration is:

∫ b

a

f(s) ds ≈ h

2

[
f(a) + 2

N∑
j=1

f(xj) + f(b)

]

we apply this formula in eq. (4.3), and we obtain:

g(xi) = u(xi) +
h

2

[
G(xi, x0)u(x0) + 2

i−1∑
j=1

G(xi, xj)u(xj) +G(xi, xi)u(xi)

]

+
h

2

[
K(xi, x0)u(x0) + 2

N−1∑
j=1

K(xi, xj)u(xj) +K(xi, xN)u(xN)

]
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⇒ ∀i = 0, . . . , N, gi = ui +
h

2

[
Gi0u0 + 2

i−1∑
j=1

Gijuj +Giiui

]

+
h

2

[
Ki0u0 + 2

N−1∑
j=1

Kijuj +KiNuN

]

This leads to

h

2
(Gi0 +Ki0)u0 + h

i−1∑
j=1

(Gij +Kij)uj +
h

2

(
2

h
+Gii + 2Kii

)
ui

+h
N−1∑
j=i+1

Kijuj +
h

2
KiNuN = gi

Finally, we get a system of N + 1 equations, which is:

AU = B (4.10)

when B = (g0, g1, . . . , gN), U = (u0, u1, . . . , uN), and A = (aij)i,j=0,...,N ;

aij =



h ·K00/2 + 1 if i = j = 0,

h ·K0j if j = 1, . . . , N − 1,

h ·K0j/2 if j = N,

h · (Gi0 +Ki0)/2 if i = 1, . . . , N,

h · (Gii + 2Kii)/2 + 1 if i = j = 1, . . . , N − 1,

h · (Gii +Kii)/2 + 1 if i = j = N,

h ·KiN/2 if i = 1, . . . , N − 1,

h · (Gij +Kij) if i = 2, . . . , N, j = 1, . . . , i− 1,

h ·Kij if i = 1, . . . , N − 1, j = i+ 1, . . . , N − 1,
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A = h ·



K00
2 + 1

h K01 K02 · · · K0N−1
K0N

2

K10+G10
2

K11+G11
2 + 1

h K12 · · · K1N−1
K1N

2

K20+G20
2

K21+G21
2

K22+G22
2 + 1

h · · ·
... K1N

2

...
...

. . .
. . .

...

...
... · · · . . . KN−1N−1+GN−1N−1

2 + 1
h

KN−1N

2

KN0+GN0
2

KN1+GN1
2 · · · · · · KNN−1+GNN−1

2
KNN+GNN

2 + 1
h


We have chosen to write our system in its general matrix form without taking into account

the fact that u0 = uN = 0. However, we can see that

g0 = K0j = 0, ∀j ∈ {0 . . . N} ⇒ u0 = 0.

In same way, we get uN = 0.

4.4 Numerical result

In this section, we give three numerical examples to illustrate the above methods for solve the

linear Volterra-Fredholm integral equations of the second kind. The exact solution is known

and used to show that the numerical solution obtained with our methods is correct. We used

MATLAB to solve these examples.

Example 4.1. Consider the following Fractional Boundary value problem:

D (γ) u(x) + q(x)u(x) = f(x), 0 6 x 6 1

u(0) = u(1) = 0

(4.11)

where γ = 1.5, q(x) = 1, and

f(x) =
39xex − 8e−x − 9ex − 2xe−x − 17x+ 17

20
,

with the exact solution u(x) = (ex − 1)(x− 1).

The following MATLAB code solves the equation (4.11) numerically, and plot the absolute

errors and the approximate solution of this equation with the exact solution.
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1 % ce programe qui c a l c u l l a s o l u t i o n approchee de l a ...

probleme

2 % ...

u ( t )=f ( t )+\ i n t ( a , t ) k1 ( t , s , u ( s ) ) ds+\ i n t ( a , b ) k2 ( t , s , u ( s ) ) ds ...

t in [ a , b ]

3 c l c ; c l e a r ;

4 %%%%%%%%%%%%% v a r i a b l e s %%%%%%%%%%%%%%%%%%%

5 gamma=1. 5 ;

6 alpha=gamma- f l o o r (gamma) ;

7 a=0;

8 b=1;

9 N=16;

10 h=(b - a ) /N;

11 t i c

12 %%%%%%%%%%%%%% f u n c t i o n s %%%%%%%%%%%%%%%%%%

13 syms t s ;

14 u( t )=(t - 1 ) ∗( exp ( t ) -1) ;

15 q ( t )=1+0∗t ;

16 f ( t )=s inh ( t ) + ( exp ( t ) - 1) ∗( t - 1) + t ∗exp ( t ) ;

17 V( t , s )=(alpha ∗( t - s ) +1- alpha ) ∗q ( s ) ;

18 F( t , s )=t ∗( alpha ∗ s - 1 ) ∗q ( s ) ;

19 g ( t )=i n t (V( t , s ) ∗ f ( s ) , s , 0 , t )+ i n t (F( t , s ) ∗ f ( s ) , s , 0 , 1 ) ;

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 f o r n=1:N+1

22 X(n)=a+h∗(n - 1 ) ;

23 B(n)=g (X(n) ) ;

24 end

25 f o r i =1:N+1

26 f o r j =1:N+1

27 v1 ( i , j )=V(X( i ) ,X( j ) ) ;

28 v2 ( i , j )=F(X( i ) ,X( j ) ) ;

29 end

30 end

75



CHAPTER 4. ANALYTICAL AND NUMERICAL STUDY FOR A FRACTIONAL BVP

31

32 A=zero s (N+1,N+1) ;

33 f o r i =1:N+1

34 f o r j =1:N+1

35 v1 ( i , j )=V(X( i ) ,X( j ) ) ;

36 v2 ( i , j )=F(X( i ) ,X( j ) ) ;

37 end

38 end

39 A(1 ,1 )=1+h∗v2 (1 , 1 ) /2 ;

40 f o r j =2:N

41 A(1 , j )=h∗v2 (1 , j ) ;

42 end

43 A(1 ,N+1)=h∗v2 (1 ,N+1) /2 ;

44 f o r i =2:N

45 A( i , 1 )=h∗( v1 ( i , 1 )+v2 ( i , 1 ) ) /2 ;

46 A( i , i )=1+h∗( v1 ( i , i )+2∗v2 ( i , i ) ) /2 ;

47 A( i ,N+1)=h∗v2 ( i ,N+1) /2 ;

48 end

49 A(N+1 ,1)=h∗( v1 (N+1 ,1)+v2 (N+1 ,1) ) /2 ;

50 A(N+1,N+1)=1+h∗( v1 ( i , i )+v2 ( i , i ) ) /2 ;

51 f o r i =3:N+1

52 f o r j =2: i -1

53 A( i , j )=h∗( v1 ( i , j )+v2 ( i , j ) ) ;

54 end

55 end

56 f o r i =2:N

57 f o r j=i +1:N

58 A( i , j )=h∗v2 ( i , j ) ;

59 end

60 end

61 U=vpa ( inv (A) ) ∗B ' ;

62 f o r i =1:N+1

63 r ( i )=vpa ( abs (U( i ) -u (X( i ) ) ) ) ;
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64 end

65 toc

66 p lo t (X,U) ;

67 gr id on ;

68 p lo t (X, r ) ;

69 gr id on ;

Figure 4.1: The Absolute Error of Test Example (4.1) with N = 16.

Example 4.2. Consider the following Fractional Boundary value problem:

D (γ) u(x) + q(x)u(x) = f(x), 0 6 x 6 1

u(0) = u(1) = 0

(4.12)

where γ = 1.35, q(x) = 1, and

f(x) =
3(169π2 + 49) sin(πx) + 780π3(cos(πx)− e−7x/13)− 420π2 sin(πx)

169π2 + 49

with the exact solution u(x) = 3 sin(πx).
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Figure 4.2: The Absolute Error of Test Example (4.2) with N = 128.

Example 4.3. Consider the following Fractional Boundary value problem:

D (γ) u(x) + q(x)u(x) = f(x), 0 6 x 6 1

u(0) = u(1) = 0

(4.13)

where γ = 1.75, q(x) =
19 + 2e−x

20
, and

f(x) =
x(x+ cos(πx))(2e−x + 19)

20
− (π2 − 9)

4π2(cos(πx) + e−3x

(π2 + 9)2

+
8

3
(1− e−3x) +

(3x+ 8π2) cos(πx) + (x− 30)π sin(pix) + πe−3x

(π2 + 9)2

with the exact solution u(x) = x(cos(πx) + x).
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Figure 4.3: The Absolute Error of Test Example (4.3) with N = 16.

Example 4.4. Consider the following Fractional Boundary value problem:

D (γ) u(x) + q(x)u(x) = f(x), 0 6 x 6 1

u(0) = u(1) = 0

(4.14)

where γ = 1.9, q(x) = t− 1, and f(x) = 10x. In this case, we don’t know the exact solution.

The following MATLAB code solves the equation (4.14) numerically, and plot the approxi-

mate solution of this equation.

1 % ce programe qui c a l c u l l a s o l u t i o n approchee de l a ...

probleme

2 % ...

u ( t )=f ( t )+\ i n t ( a , t ) k1 ( t , s , u ( s ) ) ds+\ i n t ( a , b ) k2 ( t , s , u ( s ) ) ds ...

t in [ a , b ]

3 c l c ; c l e a r ;

4 %%%%%%%%%%%%% v a r i a b l e s %%%%%%%%%%%%%%%%%%%

5 gamma=1. 9 ;

6 alpha=gamma- f l o o r (gamma) ;

7 a=0;
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8 b=1;

9 N=16;

10 h=(b - a ) /N;

11 %%%%%%%%%%%%%% f u n c t i o n s %%%%%%%%%%%%%%%%%%

12 syms t s ;

13 q ( t )=t - 1 ;

14 f ( t )=10∗ t ;

15 V( t , s )=(alpha ∗( t - s ) +1- alpha ) ∗q ( s ) ;

16 F( t , s )=t ∗( alpha ∗ s - 1 ) ∗q ( s ) ;

17 g ( t )=i n t (V( t , s ) ∗ f ( s ) , s , 0 , t )+ i n t (F( t , s ) ∗ f ( s ) , s , 0 , 1 ) ;

18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19 f o r n=1:N+1

20 X(n)=a+h∗(n - 1 ) ;

21 B(n)=g (X(n) ) ;

22 end

23 f o r i =1:N+1

24 f o r j =1:N+1

25 v1 ( i , j )=V(X( i ) ,X( j ) ) ;

26 v2 ( i , j )=F(X( i ) ,X( j ) ) ;

27 end

28 end

29

30 A=zero s (N+1,N+1) ;

31 f o r i =1:N+1

32 f o r j =1:N+1

33 v1 ( i , j )=V(X( i ) ,X( j ) ) ;

34 v2 ( i , j )=F(X( i ) ,X( j ) ) ;

35 end

36 end

37 A(1 ,1 )=1+h∗v2 (1 , 1 ) /2 ;

38 f o r j =2:N

39 A(1 , j )=h∗v2 (1 , j ) ;

40 end
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41 A(1 ,N+1)=h∗v2 (1 ,N+1) /2 ;

42 f o r i =2:N

43 A( i , 1 )=h∗( v1 ( i , 1 )+v2 ( i , 1 ) ) /2 ;

44 A( i , i )=1+h∗( v1 ( i , i )+2∗v2 ( i , i ) ) /2 ;

45 A( i ,N+1)=h∗v2 ( i ,N+1) /2 ;

46 end

47 A(N+1 ,1)=h∗( v1 (N+1 ,1)+v2 (N+1 ,1) ) /2 ;

48 A(N+1,N+1)=1+h∗( v1 ( i , i )+v2 ( i , i ) ) /2 ;

49 f o r i =3:N+1

50 f o r j =2: i -1

51 A( i , j )=h∗( v1 ( i , j )+v2 ( i , j ) ) ;

52 end

53 end

54 f o r i =2:N

55 f o r j=i +1:N

56 A( i , j )=h∗v2 ( i , j ) ;

57 end

58 end

59 U=vpa ( inv (A) ) ∗B ' ;

60 p lo t (X,U) ;

61 gr id on ;
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Figure 4.4: The approximate solution of test Example (4.4) with N = 32.
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Conclusion

In this thesis, we first dealt with some Volterra integro-differential problems in fractional

calculus by using the new derivative of Caputo, and we proved the existence and uniqueness of

each solution of this problems. Convergences of the obtained solutions are also justified in order

to establish that the formal solutions are analitic solutions. Afterwards, we have examined with

a conformable fractional derivative of Caputo and its Fractional Integral. Considered problem

reduced to the equivalent linear Volterra-Fredholm integral equations of the second kind.

As perspectives, we will try to study the generalized Fractional Boundary Value Problem

with with a conformable fractional derivative of Caputo and its Fractional Integral. This

generalized version represents a challenge from the analytical point of view, i.e. the existence

and uniqueness of the solution. However, the numerical side remains the same.
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Annex

MATLAB Operators and Special Characters

Some common commands are listed in this section a full specification of each can be obtained

using the help system.

+ Addition.

- Subtraction.

* Multiplication.

/ Division.

abs Absolute value.

sqrt Square root function.

clc Clear command window.

clear Clear variables and functions from memory.

∧ Exponentiation.

pi the mathematical constant π.

′ Transpose.

% To comment out one line in a multiline command.

clc clean command window. After this function, all previous command written on

window will clean.

close all closes all figures, and window.

clear all this build in function clear all variable created in work space of matlab.
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syms Create symbolic variables and functions.

diff(f) differentiates f with respect to x, and there are several forms

diff(f(x)) = f ′(x)

diff(f(x),n) = f (n)(x)

diff(f(x,y),n,y) =
d(n)f(x, y)

dyn

diff(f,x1,...,xN) =
d

dxn
· · · d

dx1

f(x1, x2, · · · , xn).

int Integrate, and there are several forms

int(f,s,a,t) =

∫ t

a

f(s) ds, int(f,omega) =

∫
Ω

f(s) ds.

Da(f,alpha,a) the new fractional derivative of Caputo D (α) f(t)

floor the nearest integer in the direction of negative.

Ma M the function used in section 1.1.4.

A(i,j) Aij Element of the matrix A.

V(i) Vi Element of the vector V .

== Equal to.

∼= Not equal to.

> Greater than.

>= Greater than or equal to.

< Less than.

<= Less than or equal to.

& Logical AND.

— Logical OR .

v Logical NOT.
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Compare Matlab to C/C++

Pros Matlab:

• is a higher level of programming language.

• is easier to start.

• provides convenient tools and built-in functions.

• provides user-friendly graphical interface.

• is good for post data analysis and visualization.

• Matlab is better for numerical treatments.

• Matlab is more popular in engineering.

• Symbolic Math Toolbox™ provides functions for solving, plotting, and manipulating sym-

bolic math equations. You can create, run, and share symbolic math code using the

MATLAB® Live Editor. The toolbox provides functions in common mathematical areas

such as calculus, linear algebra, algebraic and ordinary differential equations, equation

simplification, and equation manipulation.

Cons Matlab:

• in many cases, the computational speed of Matlab is slower than that of C/C++.
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