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Abstract

In this Master’s thesis, we are interested by the theory of strongly continuous semigroups
of bounded linear operators on Banach spaces and its applications to prove the existence
of local and global to solutions of semilinear parabolic partial differential equations.

In the first chapter, we give a general introduction on the thesis.

In the second chapter, we treat the notion of strongly continuous semigroups and their
properties.

In the third chapter, we treat some abstract semilinear parabolic equations which the
operators generate a strongly continuous semigroups on Banach spaces.

In the last chapter, we study some concrete examples of semilinear parabolic equations
on bounded and unbounded domains.
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وتطبيقاتها بناخ فضاءات في المحدودة الخطية المؤثرات ذات الزمر أنصاف ية بنظر مهتمون نحن هذه الماسـتر مذكـرة في
الخطي. نصف التكافئي النوع من جزئية مشتقات ذات تفاضلية معادلات لحلول وكلي محلي وجود لإثبات

المذكرة. حول عامة مقدمة نعطي ، الأول الفصل في
خواصها. أهم دراسة مع المستمرة الزمر أنصاف مفهوم إلى نتطرق ، الثاني الفصل في

تكون التي جزئية مشتقات ذات خطية نصف تكافئية تفاضلية لمعادلات مجردة أشكال بعض ندرس ، الثالث الفصل في
بناخ. فضاءات على مستمرة زمر لأنصاف مولدة فيها المؤثرات

محدودة نطاقات على معرفة خطية نصف تكافئية تفاضلية لمعادلات الملموسة الأمثلة بعض ندرس ، الأخيـر الفصل في
محدودة. وغير
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Résumé

Nous intéressons dans ce mémoire de Master par la théorie des semi-groupes fortement
continu d’opérateurs linéaires bornés sur les espaces de Banach et ses applications pour
prouver l’existence locale et globale de solutions d’équations aux dérivées partielles de type
paraboliques semi-linéaires.

Dans le premier chapitre, nous donnons une intriduction générale sur le mémoire.

Dans le deuxième chapitre, nous traitons la notion de semi-groupes fortement continus et
ses propriétés.

Dans le troisième chapitre, nous traitons quelques formes abstraites d’équations paraboliques
semi-linéaires dont les opérateurs génèrent des semi-groupes fortement continus sur des
espace de Banach.

Dans le dernier chapitre, nous étudions quelques exemples concrets d’équations paraboliques
semi-linéaires sur des domaines bornés et non bornés.
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Notations

L(X, Y ) the space of linear, continuous mapping from X to Y

D(A) the Banach space with ‖u‖D(A) = ‖u‖+ ‖Au‖

D(Ω) the space of C∞c in Ω

D′(Ω) the space of distributions on Ω

Cc(Ω) the space of continuous functions with compact support in Ω

C∞c (Ω) D(Ω)

Lp(Ω) the space of measurable functions on Ω such that |u|p is integrable
1 < p <∞

L∞(Ω) the space of measurable functions from Ω to R such that there exists
a constant C ≥ 0 satisfies : |u(x)| < C

for almost every x∈ Ω

‖u‖Lp
(∫
|u|p dx

) 1
p

Dα ∂|α|

∂a1X1.........∂anXn

Wm,p(Ω)
{
f ∈ Lp , Dαf ∈ Lp(Ω) for all a ∈ NN such that |a| ≤ m

}
Wm,p

0 (Ω) the closure of D(Ω) with respect the norm ‖.‖Wm ,p

Hm(Ω) Wm,1(Ω)

‖u‖Wm,p

∑
|a|≤m

‖Dαu‖Lp for u ∈ Wm,p(Ω)

Cb,u(I,X) the space of uniformly continuous and bounded functions from I to X
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INTRODUCTION

0.1 Semigroup of linear bounded operators

A strongly continuous semigroup of bounded linear operators on a Banach space X
or C0-semigroup, also known as a strongly continuous one-parameter semigroup, is a
generalization of the exponential function. Just as exponential functions provide solutions
of scalar linear constant coeffi cient ordinary differential equations, strongly continuous
semigroups provide solutions of linear constant coeffi cient ordinary differential equations
in Banach spaces. Such differential equations in Banach spaces arise from e.g. delay
differential equations and partial differential equations.
Formally, a strongly continuous semigroup is a representation of the semigroup (R+,+)

on some Banach space X that is continuous in the strong operator topology. Thus, strictly
speaking, a strongly continuous semigroup is not a semigroup, but rather a continuous
representation of a very particular semigroup.

0.2 Semigroup methods in partial differential equa-
tions

Semigroup theory can be used to study some problems in the field of partial differential
equations. Roughly speaking, the semigroup approach is to regard a time-dependent
partial differential equation as an ordinary differential equation on a function space but
we are going to treat the case of a partial differential equations is a semilinear problem

0.3 The heat equation

The heat equation is a partial differential equation that describes how the distribution
of some quantity (such as heat) evolves over time in a solid medium, as it spontaneously
flows from places where it is higher towards places where it is lower. It is a special case
of the diffusion equation.
This equation was first developed and solved by Joseph Fourier in 1822 to describe

heat flow. However, it is of fundamental importance in diverse scientific fields
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CHAPTER 0. INTRODUCTION

0.3.1 Homogeneous heat equation

The homogeneous heat equation is given by :{
∂tu(x, t) = ∂2

xu(x, t) t > 0
u(x, 0) = u0(x) t = 0

}
(P)

We are not interested in this form since we are studying the semigroup theory so lets
transform P to P’ and it will be our new case{

∂tu(x, t) = Au(x, t) t > 0
u(x, 0) = u0(x) t = 0

}
(P’)

such that A is the generator of a C0-semigroup {T (t)}t≥0 in an appropriete Banach space
X.

0.3.2 Semilinear heat equation

We consider the initial value problem for a semilinear heat equation{
∂tu(x, t) = a∆u(x, t) + f(u) t > 0
u(x, 0) = u0(x) t = 0

}
(P”)

where ∆ is the Laplace operator on Rd (d ∈ N∗) , a is a positive real constant and f is
a given function.
If we denote by Au(x, t) = a∆u(x, t) we obtain the abstract Cauchy problem :{

du(t)
dt

= Au(t) + f(u) t > 0
u(0) = u0(x)

}

xiv



Chapter 1

m-dissipative operators

1.1 Unbounded operators in Banach space

Throughout this chapter, X is a Banach space, endowed with the norm k:k :

De�nition 1.1.1 (Casenave and Haraux p18): A linear unbounded operator in X
is a pair (D;A); where D is a linear subspace of X and A is a linear mapping D ! X.
We say that A is bounded if there exists c > 0 such that

kAuk � c

for all u 2 fx 2 D; kxk � 1g. Otherwise, A is not bounded.
Remark 1.1.2. Note that a linear unbounded operator can be either bounded or not
bounded. This somewhat strange terminology is in general use and should not lead to
misunderstanding in our applications.

Remark 1.1.3: If A is bounded, A is the restriction to D of an operator eA 2 L(Y;X);
where Y is a closed linear subspace of X; such that D � Y . If A is not bounded, there
exists no operator eA 2 L(Y;X) with Y closed in X and D � Y; such that eAjD = A:
De�nition 1.1.4(Casenave and Haraux p18): Let (D;A) be a linear operator in X:
The graph G(A) of A and the range R(A) of A are de�ned by

G(A) = f(u; f) 2 X �X;u 2 D and f = Aug
R(A) = A(D)

G(A) is a linear subspace of X �X, and R(A) is a linear subspace of X
Remark 1.1.5: In this chapter, a linear unbounded operator is just called an operator
where there is no risk of confusion. As usual, we denote the pair (D;A) by A with
D(A) = D; meaning the domain of A is D. Note, however, that when one de�nes an
operator, it is absolutely necessary to de�ne its domain.Remark 1.1.5: WhenD(A) = X;
it follows from Theorem 1.1.2 that A 2 L(X) if and only if G(A) is closed in X: More
generally, for not bounded operators, it is very useful to know whether or not the graph
is closed pass 2 .
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CHAPTER 1. M-DISSIPATIVE OPERATORS

1.2 De�nition and main properties of m-dissipative
operators

De�nition 1.2.1(Casenave and Haraux p19): An operator A in X is dissipative if

ku� �Auk � kuk; for all u 2 D(A) and all � > 0

De�nition 1.2.2(Casenave and Haraux p19): An operator A in X is m -dissipative
if
(i) A is dissipative;
(ii) for all � > 0 and all f 2 X; there exists u 2 D(A) such that u� �Au = f:

Remark 1.2.3: If A is m -dissipative in X; it is clear, from De�nitions 1.2 .1 and
1:2:2; that for all f 2 X and all � > 0; there exists a unique solution u of the equation
u� �Au = f . In addition, one has kuk � kfk:

De�nition 1.2.4(Casenave and Haraux p19): Let A be an m -dissipative operator
in X and � > 0: For all f 2 X; we denote by J�j or by (I � �A)�1f the solution u of
the equation

u� �Au = f

Remark 1.2.5: By Remark 1.2.3, one has J� 2 L(X) and kJ�kL(X) � 1:

Proposition 1.2.6(Casenave and Haraux p19): Let A be a dissipative operator in
X. The following properties are equivalent.
(i) A is m -dissipative in X
(ii) there exists �0 > 0 such that for all f 2 X; there exists a solution u 2 D(A) of

u� �0Au = f

Proof. It is clear that (i) ) (ii): Let us show that (ii) ) (i); Let � > 0 : Note that the
equation u� �Au = f is equivalent to

u� �0Au =
�0
�
f +

�
1� �0

�

�
u

since A is dissipative and R (I � �0A) = X; the operator J�0 = (I � �0A)
�1 can be de�ned

as in De�nition 1.2.4.
This operator is a contraction on X:
Next, note that the preceding equation is also equivalent to

u = J�0

�
�0
�
f +

�
1� �0

�

�
u

�
2



1.2. DEFINITION AND MAIN PROPERTIES OF M-DISSIPATIVE
OPERATORS

If 2� > �0; this last equation is u = F (u); where F is Lipschitz continuous x! X; with a
Lipschitz constant k = j(�� �0) =�j < 1: Applying Theorem 1.1.1, there exists a solution
u of u� �Au = f; for all � 2 (�0=2;1) :
Iterating this argument n times, there exists a solution for all � 2 (2�n�0;1) n � 1: since
n is arbitrary there exists a solution for all � > 0:

Proposition 1.2.7(Casenave and Haraux p20): If A is m -dissipative, then G(A) is
closed in X:

Proof. since J1 2 L(X); G (J1) is closed. It follows that G(I � A) is closed, and so G(A)
is closed.

Corollary 1:2:8 : Let A be an m -dissipative operator. For every u 2 D(A) let kukD(A) =
kuk+ kAuk: Then

�
D(A); k � kD(A)

�
is a Banach space, and

A 2 L(D(A); X)

Remark 1.2.9: In what follows, and in particular in Chapters 2 and 3, D(A) means the
Banach space

�
D(A); k � kD(A)

�
:

Proposition 1.2.10(Casenave and Haraux p20): IfA ism -dissipative, then lim�#0 kJ�u� uk =
0 for all

u 2 D(A)

Proof: We have kJ� � Ik � 2; and by density we need only consider the case u 2 D(A):
We have

J�u� u = J�(u� (I � �A)u)
and so kJ�u� uk � ku� (I � �A)uk = �kAuk ! 0; as � # 0:

De�nition 1.2.11(Casenave and Haraux p20): Let A be an m -dissipative operator.
For � > 0; we denote by A� the operator de�ned by

A� = AJ� =
J� � I
�

We have A� 2 L(X) and kA�kL(X) � 2=�:

Proposition 1.2.12(Casenave and Haraux p20): If A ism -dissipative and ifD(A) =
X; then A�u �! Au as � # 0 for all u 2 D(A):
Proof. Let u 2 D(A): By Proposition 1.2.10, one has

J�Au� Au �! 0 as � # 0

On the other hand, it follows easily from De�nition 1.2 .11 that

3



CHAPTER 1. M-DISSIPATIVE OPERATORS

A�u = J�Au

Thus,

kA�u� Auk = kJ�Au� Auk ! 0 as � # 0
hence the result.

1.3 m-dissipative operator in X with dense domain

Proposition 1.3.1: Let A be an m -dissipative operator in X with dense domain. There
exists a Banach space �X, and an m -dissipative operator �A in �X, such that
(i) X ,! �X; with dense embedding;
(ii) for all u 2 X; the norm of u in �X is equal to kJ1uk
(iii) D( �A) = X; with equivalent norms;
(iv) �Au = Au; for all u 2 D(A)
In addition, �X and �A satisfying (i)-(iv) are unique, up to isomorphism.

Proof : For u 2 X; we de�ne kuk = kJ1uk: It is clear that k � k is a norm on X: Let �X be
the completion of X for the norm k:k : �X is unique, up to an isomorphism, and X ,! �X,
with dense embedding. On the other hand, observe that

J1Au = J1u� u; 8u 2 D(A)

Thus,
kAuk � kuk+ kuk � 2kuk; 8u 2 D(A)

Hence, A can be extended to an operator ~A 2 L(X; Y ): We de�ne the linear operator �A
on �X by

kAuk � kuk+ kuk � 2kuk; 8u 2 D(A)
It is clear that �A satis�es (iii) and (iv). Now, let us show that �A is dissipative. Take
� > 0: Let u 2 D(A) and let v = J1u: One has

v � �Av = J1(u� �Au)

since A is dissipative, it follows that By continuity of eA m-dissipative operators and so �A
is dissipative. Finally, let f 2 �X,
and (fn)n�0 � X, with fn �! f in �X as n!1: Set un = J1fn: since (fn)n�0 is a Cauchy
sequence in �X; (un)n�0 is also a Cauchy sequence in X; and so there exists u 2 X; such
that un �! u in X as n!1. We have

fn = un � Aun = un � ~Aun

since eA 2 L(X; Y ); it follows that f = u� ~Au = u� �Au: Hence �A is m dissipative. The
uniqueness of �A follows from the uniqueness of eA.

4



1.4. UNBOUNDED OPERATORS IN HILBERT SPACES

Corollary 1:3:2 : If x 2 X is such that �Ax 2 X; then x 2 D(A) and Ax = �Ax

Proof: Let f = x � �Ax 2 X: since A is m -dissipative, there exists y 2 D(A) such that
y � Ay = f:
By Proposition 1.3.1 (iii), we have (x� y)� �A(x� y) = 0 and since �A is dissipative, we
obtain x = y

1.4 Unbounded operators in Hilbert spaces

Throughout this section, we assume that X is a Hilbert space, and we denote by h�; �i its
scalar product. If A is a linear operator in X with dense domain, then

G (A?) = f(v; ') 2 X �X; h'; ui = hv; fi for all (u; f) 2 G(A)g
de�nes a linear operator A� (the adjoint of A ). The domain of A� is

D (A�) = fv 2 X;9C <1; jhAu; vij � Ckuk;8u 2 D(A)g
and A� satis�es

hA�v; ui = hv; Aui;8u 2 D(A)
Indeed, the linear mapping u 7! hv; Aui; de�ned on D(A) for all v 2 D (A�) ; can be
extended to a unique linear mapping ' 2 X 0 � X; denoted by ' = A�v: It is clear
that G (A�) is systematically closed. Finally, it follows easily that if B 2 L(X); then
(A+B)� = A� +B�:

Proposition 1.4.1(Casenave and Haraux p22): (R(A))? = fv 2 D (A�) ;A�v = 0g :

Proof: One has v 2 (R(A))? , hv; Aui = 0;8u 2 D(A) , (0; v) 2 G (A�) This last
property is equivalent to v 2 D (A�) and A�v = 0; hence the result.

Proposition 1.4.2(Casenave and Haraux p22): A is dissipative in X if and only if :

hAu; ui � 0 for all u 2 D(A)

Proof : If A is dissipative, one has

�2�hAu; ui+ �2kAuk2 = ku� �Auk2 � kuk2 � 0; 8� > 0;8u 2 D(A)
Dividing by � and letting � # 0; we obtain

hAu; ui � 0; for all u 2 D(A)
Conversely, if the last property is satis�ed, then for all � > 0 and u 2 D(A) we have

ku� �Auk2 = kuk2 � 2�hAu; ui+ �2kAuk2 � kuk2

and then A is dissipative.

Corollary 1:4:3 : If A is m -dissipative in X; then D(A) is dense in X

5



CHAPTER 1. M-DISSIPATIVE OPERATORS

Proof: Let z 2 (D(A))?; and let u = J1z 2 D(A): We have

0 = hz; ui = hu� Au; ui

Hence,
kuk2 = hAu; ui � 0

It follows that u = z = 0; and so D(A) is dense in X:

Corollary 1.4.4: If A is m -dissipative in X; then

J�u �! u as � # 0, for all u 2 X

and
A�u! Au as � # 0; for all u 2 D(A)

Proof : We apply Corollary 1.2.3 and Propositions 1.2 .10 and 1.2.12 .

Theorem 1.4.5(Casenave and Haraux p23): Let A be a linear dissipative operator
in X with dense domain. Then A is m -dissipative if and only if A� is dissipative and
G(A) is closed.

Proof: If A is m -dissipative, then G(A) is closed, by Proposition 1.2 .7 . Let us show
that A� is dissipative.
Let v 2 D (A�) : We have since hA�v; J�vi �! hA�v; vi as � # 0; it follows that A� is
dissipative. Conversely, since A is dissipative and G(A) is closed, it is clear that R(I�A)
is closed in X. On the other hand, by Proposition 1.4 .1 , one has

(R(I � A))? = fv 2 D (A�) ; v � A�v = 0g = f0g

since A� is dissipative. Therefore R(I �A) = X; and A is m -dissipative, by Proposition
1.2 .6.

De�nition 1.4.6:(Casenave and Haraux p24) Let A be a linear operator in X with
dense domain. We say that A is self-adjoint (respectively skew-adjoint) if A� = A (re-
spectively

A� = �A)

Remark 1.4.7: The equality A� = �A has to be taken in the sense of operators. It
means that D(A) = D (A�)and A�u = �Au; for all u 2 D(A):

Corollary 1:4:8 : If A is a self-adjoint operator in X; and if A � 0 (i.e. hAu; ui �
0; for all u 2 D(A));then A is m -dissipative.

Proof: By Proposition 1.4.2: A is dissipative. since A� = A;A� is dissipative. Finally,
G (A�) is closed, so that G(A) is closed. We �nish th e proof by applying Theorem 1.4 .5.

Corollary 1.4.9: If A is a skew-adjoint operator in X; then A and �A arem -dissipative.

6



1.5. THE LAPLACTIAN IN AN OPEN SUBSET OF RN : L2 THEORY

Proof . Let u 2 D(A): One has hAu; ui = hu;A�ui = �hu;Aui: Hence hAu; ui = 0:
It follows from Proposition 1.4.2, that A and �A are dissipative. We conclude as in
Corollary 1.4 .8.

Corollary 1:4:10: Let A be a linear operator in X with dense domain, such that G(A) �
G (A�) and A � 0: Then A is m -dissipative if and only if A is self-adjoint.

Proof: Applying Corollary 1:4:8; we need only show that if A is m -dissipative then A is
self-adjoint. Let (u; f) 2 G (A�) ; and let g = u� A�u = u� f: since A is m -dissipative,
there exists v 2 D(A) such that g = v�Av; and sinceG(A) � G (A�) ; we have v 2 D (A�)
and g = v�A�v: Therefore (v�u)�A�(v�u) = 0 and since A� is dissipative (Theorem
1.4 .5 ), we obtain u = v: Thus, (u; f) 2 G(A) and so A = A�:

Corollary 1:4:11 : Let A be a linear operator in X with dense domain. Then A and �A
are m -dissipative if and only if A is skew-adjoint.

Proof : Applying Corollary 1:4:9; it su¢ ces to show that if A and �A are m dissipative,
then A is skew-adjoint. Applying Proposition 1.4.2 to A and �A we obtain

hAu; ui = 0; for all u 2 D(A)

For all u; v 2 D(A); we obtain

hAu; vi+ hAv; ui = hA(u+ v); u+ vi � hAu; ui � hAv; vi = 0

Therefore G(�A) � G (A�) : It remains to show that G (A�) � G(�A): Consider (u; f) 2
G (A�) and let g = u � A�u = u � f: since �A is m -dissipative, there exists v 2 D(A)
such that g = v +Av; and since G(�A) � G (A�) ; we have v 2 D (A�) and f = v �A�v:
Hence (v � u)�A�(v � u) = 0 and since �A� is dissipative (Theorem 1.4.5 ), we obtain
u = v: Therefore, (u; f) 2 G (A�) ; and so

A = �A�

1.5 The Laplactian in an open subset of RN : L2 the-
ory

Let 
 be any open subset of RN ; and let Y = L2(
): We can consider either realvalued
functions or complex-valued functions, but in both cases, Y is considered as a real Hilbert
space
We de�ne the linear operator B in Y by�

D(B) = fu 2 H1
0 (
);�u 2 L2(
)g

Bu = �u; 8u 2 D(B)

Proposition 1.5.1(Casenave and Haraux p26): B is m -dissipative with dense
domain. More precisely, B is self-adjoint and B � 0.

7



CHAPTER 1. M-DISSIPATIVE OPERATORS

We need the following lemma.

Lemma 1.5.2. We have :Z



v�udx = �
Z



ru � rvdx ; for all u 2 D(B) and all v 2 H1
0 (
): (1.1)

Proof: (1.1) is satis�ed by v 2 D(
): The lemma follows by density, since both terms of
(1.1) are continuous in v on H1

0 (
).

Proof of Proposition 1.5.1 : First, D(
) � D(B); and so D(B) is dense in Y . Let u 2
D(B). Applying (1.1) with v = u; we obtain (Bu; u) � 0; so that B is dissipative
(Proposition 1.4 .2 ). The bilinear continuous mapping

b(u; u) =

Z
(uv +ru � rv)dx (1.2)

is coercive In H0 ( 
 ). It followe from :for all � 2 L2(�), there exists u 2 H1
0 (
) such

that Z
(uv +ru � rv)dx =

Z
fvdx; 8v 2 H0(
) (1.3)

We obtain
u��u = �1

In the sense of distributions.
Since, In addition u 2 H1

0 (
) ; we obtaln u 2 D(B) and u�Bu = f:
Therefore B in m -dianipative. Finally, for all u; v 2 D(B); we have, by (1.1)

(Bu; v) w hu;Bvi

Therefore G(B) � G (B�) ; and by Corollary 1:4:10; it follows that B is o¤er adjoint.

Remark 1.5.3: If 
 has a bounded boundary of class C2; then D(B) = H2(
)\H1
0 (
);

with equivalent norms

1.5.1 The Laplacian In an open subset of RN : C0 theory

Let 
 be a bounded open subset of RN ; and let Z= L1(
). We de�ne the linear
operator C in Z by �

D(C) = fu 2 H1
0 (
) \ Z;�u 2 Zg

Cu = �u; V u 2 D(C)
Proposition 1.5.4(Casenave and Haraux p27) : C is m�dissipative in Z.

Proof. First, let us show that C is dissipative. Let � > 0; f 2 Z. and let M = kfkL1 .

8



1.5. THE LAPLACTIAN IN AN OPEN SUBSET OF RN : L2 THEORY

Let u 2 H1
0 (
) be a solution of

u� ��u = f1, in D0(
)

In particular, this equation is satis�ed in L2(
); and we have

(u�M)� ��(u�M) = f �M1; in L2(
)

On the other hand, v = (u �M)0 2 H1
d(
); with rv = 1(j!j>M)ru . Applying Lemma

1.5.2 , we obtain Z
v2dx+ '

Z
(juj>Mg

jruj2dx =
Z
(f �M)vdx � 0

Therefore
R
v2dx � 0; and so v = 0 . We conclude that u �M a.e. on R.

Smilarly, we show that u � �M a.e. on 
.
Hence u 2 L1(
), and kukL1 � kfkL1. It follows that C is dissipative.
Now let f 2 L1(
) � L2(
). By proposition 1:5:1; there exists u 2 H0(
); with
�u 2 L2(
); a solutlon of u��u = f1 in L2(
):
We already know that u 2 L1(
); so that u 2 D(C); and u � Cu = f , therefore C is
m-dissipative.

Lemma 1.5.5: If 
 has a Lipschitz continuous boundary, then D(C) � C0(
) =�
u 2 C(�
);uj�\ = 0

	
:

Remark 1.5.6: It follows from Lemme 1.5.5 that in general the domain of C is not dense
in Z.
The fact that the domain is dense will turn out to be very important (see Chapter 2).
This is the reason why we are led to consider another example. We now set X = C0(
);
and we de�ne the operator A as follows:�

D(A) = fu 2 X \H1
0 (
);�u 2 Xg

Au = �u; 8u 2 D(A)

Proposition 1:5:7(Casenave and Haraux p28) : Assume that 
 has a Lipschitz con-
tinuous boundary. Then A is m -dissipative, with dense domain.

Proof. D(
) is dense in X; and D(
) � D(A); and so D(A) is dense in X: On the
other hand, X is equipped with the norm of L1(
); and so X ,! Z and G(A) � G(C):
Since C is dissipntive, A is also dissipative.
Now let f 2 X ,! L1(
): since C is m -dissipative, there exists u 2 D(C); such that
u��u = f:
By Lemma 1.5.5, we have u 2 X; and so 4u 2 X: Therefore, u 2 D(A) and u�Au = f .
Hence A is m -dissipative.

Remark 1.5.8: In the three examples of $1:5:1 and $1:5:2, note that the same formula
(the Laplacian) corresponds to several operators that enjoy di¤erent properties (since they
are de�ned in di¤erent domains).
In particular, the expression the operator 4 has a meaning only if we specify the space
in which this operator applies and its domain.

9
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Chapter 2

The semigroup generated by an
m-dissipative operator

2.1 Strongly Continuous Semigroups

Let us �x some notations. From now on, we take X to be a complex Banach space with
norm k:k: We denote by L(X) the Banach algebra of all bounded linear operators on X
endowed with the operator norm, which again is denoted by k:k:
The identity operator on X is denoted by Id 2 L(X); and R+ denotes the interval
[0;+1):

De�nition 2.1.1(A.Batkai and S.Piazzera p3): A family (T (t))t � 0 of bounded
linear operators on a Banach space X is called a strongly continuous semigroup (or C0
-semigroup) if the following properties hold:
(i) T (0) = Id
(ii) T (t+ s) = T (t)T (s) for all t; s � 0.
(iii) The orbit maps t 7! T (t)x are continuous from R+ into X for every x 2 X:
Sometimes C0 -semigroups are also called linear semidynamical systems.

We will see that the orbit maps of semigroups occur as solutions of di¤erential equations
in Banach spaces.

The key de�nition for this fact is the following.

De�nition 2.1.2(A.Batkai and S.Piazzera p4): Let (T (t))t�0 be a strongly contin-
uous semigroup on a Banach space X and let D(A) be the subspace of X de�ned
as

D(A) :=

�
x 2 X : lim

h!0

1

h
(T (h)x� x) exists

�
(2.1)

For every x 2 D(A); we de�ne

Ax := lim
h!0

1

h
(T (h)x� x) (2.2)

The operator A : D(A) � X ! X is called the generator of the semigroup (T (t))t�0:

11
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In the following, we will denote the operator A with domain D(A) by the pair (A;D(A)).

Lemma 2.1.3: For the generator (A;D(A)) of a strongly continuous semigroup (T (t))t�0:
The following properties hold :
(i) A : D(A) � X ! X is a linear operator.
(ii) If x 2 D(A); then T (t)x 2 D(A) and

d

dt
T (t)x = T (t)Ax = AT (t)x for all t � 0 (2.3)

As a consequence the orbit map is continuously di¤erentiable on D(A).
(iii) For every t � 0 and x 2 X, one has

tZ
0

T (s)xds 2 D(A) (2.4)

(iv) For every t � 0 we have the identities

T (t)x� x = A

tZ
0

T (s)xds; if x 2 X

=

tZ
0

T (s)Axds if x 2 D(A) (2.5)

With the help of this lemma, one can show the following theorem.

Theorem 2.1.4(A.Batkai and S.Piazzera p5): Let (T (t))t�0 be a strongly continuous
semigroup on a Banach space X with generator (A;D(A)). Then (A;D(A)) is a closed
operator and the domain D(A) is dense in X. Moreover, if (S(t))t�0 is another strongly
continuous semigroup with the same generator (A;D(A)); then

S(t) = T (t) for all t � 0

As a consequence of the above theorem, there is a one-to-one correspondence between
strongly continuous semigroups and their generators. Therefore, we will say that an
operator (A;D(A)) generates a strongly continuous semigroup (T (t))t�0 on a Banach
space X if (A;D(A)) is the generator of the semigroup (T (t))t�0:
Since (A;D(A)) is a closed operator, D(A) is a Banach space with the graph norm k:kA.
We will denote this Banach space by X1; i.e., X1 := (D(A); k:kA).

Example 2.1.5: (Uniformly Continuous Semigroups.) Let X be a Banach space and
A 2 L(X) a linear bounded operator. De�ne

T (t) := etA :=
1X
n=0

(tA)n

n!
for t � 0 (2.6)

Then (T (t))t>0 is a strongly continuous semigroup with generator (A;X).

12



2.1. STRONGLY CONTINUOUS SEMIGROUPS

Actually, the semigroup is uniformly continuous, i.e., the map t 7! T (t) is continuous from
R+ to L(X). Moreover, one can prove that a semigroup is uniformly continuous if and
only if its generator is a bounded linear operator.

Example 2.1.6: (Multiplication Semigroups.) Let 
 be a locally compact metric space,
q : 
! C a continuous function with real part bounded above, that is, sup !2
<q(!) <
1: On the Banach space X := C0(
) of continuous functions that vanish at in�nity,
de�ne the multiplication operators

T (t)f := etqf; f 2 X and t � 0 (2.7)

Then the family (T (t))t � 0 is a strongly continuous semigroup on X, called the multi-
plication semigroup, and its generator is given by the multiplication operator

Af = q:f

with domain D(A) = ff 2 X : qf 2 Xg:

Example 2.1.7: (Shift Semigroups.) Let X be one of the following Banach spaces:
Cub(R) of all bounded, uniformly continuous functions on R endowed with the supremum
norm k:k1 .
C0(R) of all coutinuous functions on R vanishing at in�nity endowed with the supremum
norm k:k1 .
Lp(R); 1 � p < 1; of all p -integrable functions on R endowed with the corresponding p
-norm k:kp.
For f 2 X and t � 0; we call

(Tl(t)f) (s) := f(s+ t); s 2 R

the left shift or translation (of f by t ), while

(Tr(t)f) (s) := f(s� t); s 2 R

is the right shift or translation (of f by t ). The families (Ti(t))t�0 and (Tr(t))t�0 are
strongly continuous semigroups on X with generators

Alf = f
0 and Arf = �f 0;

respectively, and domains D (Al) = D (Ar) = ff 2 X : f is di¤erentiable andf 0 2 Xg if
X = Cub(R) or C0(R); and

D (Al) = D (Ar) =W
1:p(R)

if X = Lp(R).

In the following we will show some more properties of strongly continuous semigroups.
One of the important features is the following proposition.

Proposition 2.1.8(A.Batkai and S.Piazzera p7): For every strongly continuous semi-
group (T (t))t�0, there exist constants ! 2 R and M � 1 such that

kT (t)k �Me!t, for all t � 0 (2.8)

13
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By means of Proposition 2.1.8 we can de�ne a very important constant.

De�nition 2.1.9(A.Batkai and S.Piazzera p7): Let (A;D(A)) be the generator of a
strongly continuous semigroup (T (t))t�0: We call :

!0(A) := inf f! 2 R : 9M > 0 such that kT (t)k �Me!t; 8t � 0
	

(2.9)

the semigroup�s growth bound.

Example 2.1.10: For the uniformly continuous semigroup of Example 2.1.5, we have
!0(A) � kAk:
For the multiplication semigroups of Example 2.1.6, we have :
!0(A) = sup!2
<q(!) if X = C0(
);
!0(A) = ess � sup!2
<(!) if X = Lp(
; �) 1 � p <1:
For the shift semigroup of Example 2.1.7, we have !0(A) = 0:

We have seen in Theorem 2.1.4 that the generator (A;D(A)) of a strongly continuous
semigroup is always a closed operator, therefore by the closed graph theorem, if (A;D(A))
is bijective, its inverse becomes a bounded operator on X: This motivates the following
de�nition.

De�nition 2.1.11(A.Batkai and S.Piazzera p7):. Let (A;D(A)) be a closed operator
on a Banach space X: We call the sets

�(A) := f� 2 C : �� A is bijective g

the resolvent set of A, and
�(A) := Cn�(A)

the spectrum of A, respectively.
For � 2 �(A); we call R(�;A) := (�� A)�1 the resolvent of A at �.

The following result states that the resolvent of the generator is given by the Laplace
transform of the semigroup (at least in a right half plane).

Theorem 2.1.1(A.Batkai and S.Piazzera p8): Let (A;D(A)) be the generator of a
strongly continuous semigroup (T (t)) on a Banach space X: Then the following properties
hold :
(i) For every � 2 C with <� > !0(A); we have � 2 �(A) and

R(�;A)x =

1Z
0

e��xT (s)xds, for all x 2 X (2.10)

(ii) If � 2 C such that R(�)x :=
R1
0
e��sT (s)xds exists for all x 2 X

then � 2 �(A) and R(�;A) = R(�) . (2.11)

Now we can state the basic theorem in semigroup theory, which characterizes generators

of strongly continuous semigroups by means of their resolvents only

14



2.2. ABSTRACT CAUCHY PROBLEMS

2.2 Abstract Cauchy Problems

The aim of this section is to show how to solve abstract (i.e., Banach spacevalued) initial
value problems using operator semigroups.

De�nition 2.2.1(A.Batkai and S.Piazzera p9): Let X be a Banach space, A :
D(A) � X ! X a linear operator and x 2 X
(i) The initial value problem �

u0(t) = Au(t) for t > 0
u(0) = x

(2.12)

is called the abstract Cauchy problem associated to (A;D(A)) with initial value x.
(ii) A function u : R+ ! X is called a (classical) solution of (2:12) if u is continuously
di¤erentiable, u(t) 2 D(A) for all t � 0; and (2:12) holds.

The following proposition follows from Lemma 2.1.3.

Proposition 2.2.2(A.Batkai and S.Piazzera p10): Let (A;D(A)) be the generator
of a strongly continues semigroup (T (t))e 0. Then, for every x 2 D(A); the function

u : t 7! u(t) := T (t)x (2.13)

is the unique classical solution of (ACP ) with initial value x.

Actually, there is no hope to have a classical solution of (2.12) if the initial value x is
not in D(A). This suggests that more general concepts of "solutions" might be useful.

De�nition 2.2.3(A.Batkai and S.Piazzera p10): A continuous function u : R+ ! X
is called a mild solution of (2.12) i f

R t
0
u(s)ds 2 D(A) for all t � 0 and

u(t) = x+ A

tZ
0

u(s)ds for all t � 0 (2.14)

We can now generalize Proposition 2.2.2 to mild solutions.

Proposition 2.2.4(A.Batkai and S.Piazzera p10): Let (A;D(A)) be the generator
of a strongly continumes semigroup (T (t))t�0: Then, for every x 2 X; the function

u : t 7! u(t) := T (t)x

is the unique mild solution of (2.12) with initial value x. So far,
if (A;D(A)) generates a semigroup, we have existence and uniqueness of solutions of
(2.12). In addition, we can characterize generators of semigroups by means ofthe associ-
ated abstract Cauchy problem.

De�nition 2.2.5(A.Batkai and S.Piazzera p10) : The abstract Cauchy problem�
u0(t) = Au(t) for t > 0
u(0) = x

15
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associated to an operator A : D(A) � X ! X is called well-posed if the domain D(A) is
dense in X; for every x 2 D(A) there exists a unique classical solution ux of (2,12), and
for every sequence (xn)n2N in D(A) satisfying limn!1 xn = 0 one has limn!1 uxn(t) = 0
uniformly for all t in compact intervals [0; T ].

We are now ready to state the main result of this section.

Theorem 2.2.6(A.Batkai and S.Piazzera p11) : For a closed operator A : D(A) �
X ! X, the associated abstract Cauchy problem (2.12) is well-posed if and only if
(A;D(A)) generates a strongly continuous semigroup on X. Therefore, to solve an ab-
stract Cauchy problem means to show that the operator (A;D(A)) generates a strongly
continuous semigroup

2.2.1 Contraction semigroups and their generators

De�nition 2.3.1(Casenave and Haraux p39): A one-parameter family (T (t))t�0 �
L(X) is a contraction semigroup on X provided that
(i) kT (t)k � 1 for all t � 0
(ii) T (0) = I
(iii) T (t+ s) = T (t)T (s) for all s;t � 0
(iv) for all x 2 X; the function t 7! T (t)x belongs to C([0;1); X)

De�nition 2.3.2(Casenave and Haraux p39): The generator of (T (t))t�0 is the
linear operator L de�ned by

D(L) =

�
x 2 X; T (t)x� x

h
has a limit in X as h # 0

�
and

Lx = lim
h;0

T (t)x� x
h

, for all x 2 D(L)

The following proposition justi�es the introduction of m-dissipative operators In Chapter
1

Proposition 2.3.3(Casenave and Haraux p39): Let (T (t))t�0 be a contraction semi-
group in X and let L be its generator. Then L is m -dissipative and D(L) is dense in
X.

Proof: We proceed in three steps.

Step 1: L is dissipative. For all x 2 D(L); � > 0; and h > 0; we have



x� �T (h)x� xh





 � 



�1 + �h
�
x





� �hkT (h)xk � kxk
hence the result, letting h ? 0.
Step 2. L is m -dissipative. We de�ne the operator J by

Jx =

1Z
0

e�tT (t)xdt

16
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for all x 2 X: It is clear that J 2 L(X); with kJk � 1: For x 2 X and h > 0 we have

T (h)� I
h

Jx =
1

h

1Z
0

e�t(T (t+ h)x� T (t)x)dt

=
1

h

1Z
h

e�(t�h)T (t)xdt� 1

h

1Z
0

e�tT (t)xdt

=
eh � 1
h

1Z
0

e�tT (t)xdt� e
h

h

hZ
0

e�tT (t)xdt

Letting h &0 , we obtain

lim
h&0

T (h)� I
h

Jx = Jx� x

and so Jx 2 D(L); with LJx = Jx� x; i.e. Jx� LJx = x:
Step 3. For all x 2 X and t > 0; we set

xt =
1

t

tZ
0

T (s)xds

It is clear that xt �! x as t # 0:
To show that D(L) is dense, it su¢ ces to prove that xt 2 D(L); for all t > 0: Now we
have, for all h > 0

t
T (h)� I

h
xt =

1

h

t+hZ
h

T (s)xds� 1

h

tZ
0

T (s)xds

=
1

h

t+hZ
t

T (s)xds� 1

h

hZ
0

T (s)xds

As h& 0; the cerm on the right-lund side converges to T (t)x�x; and so xt 2 D(L) with
tLxl = T (t)x� x:

2.3 The Hille-Yosida-Phillips Theorem

Theorem 2.4.1(Casenave and Haraux p33): For all x 2 X; the sequence u�(t) =
T�(t)x converges uniformly on bounded intervals of [0; T ] to a function u 2 C([0;1); X);
as � # 0.
We set T (t)x = u(t); for all x 2 X and t � 0: Then

T (t) 2 L(X) and kT (t)k � 1; 8t � 0;
T (0) = Ii
T (t+ s) = T (t)T (s); 8s; t � 0

17



CHAPTER 2. THE SEMIGROUP GENERATED BY AN M-DISSIPATIVE
OPERATOR

In addition, for all x 2 D(A); u(t) = T (t)x is the unique solution of the problem8<:
u 2 C([0;1); D(A)) \ C1([0;1); X) :
u0(t) = Au(t); # t � 0
u(0) = x

Finally,
T (t)Ax = AT (t)x

for all x 2 D(A) and t � 0

Theorem 2.4.2(Casenave and Haraux p37) : Assume that A is a skew-adjoint
operator. Then (T (t))t�0 can be extended to a one-parameter group T (t) : R ! L(X)
such that

T (t)x 2 C(R;X); 8x 2 X
kT (t)xk = kxk1 8x 2 X; t 2 R
T (0) = I
T (s+ t) = T (s)T (t); 8s; t 2 R

In addition, for all x 2 D(A); u(t) = T (t)x satis�es u 2 C(R; D(A)) \ C1(R;X) and

u0(t) = Au(t)

for all t 2 R.

Remark 3.4.2: The conclusions of Theorem 2.4.2 may be satis�cd without assuming
that A is skew-adjoint. Indeed, it su¢ ces that A and �A are m -dissipative.

Theorem 2.4.3(Hille-Yosida-Phillips Theorem): A linear operator A is the gen-
erator of a contraction semigroup in X if and only if A is m -dissipative With dense
domain.

Proof: If A is the generator of a contraction semigroup inX, Proposition 2.3 .3 shows that
A is m -dissipative with dense domain. Conversely, assume that A is m -dissipative with
dense domain, and let (T (t))t�0 be the semigroup corresponding to A given by Theorem
2.4.1. Then, (T (t))t�0 is clearly a contraction semigroup. Denote its generator by L and
let us show that L = A.
For all x 2 D(A) and h > 0; we have (Theorem 2.4 .1)

T (h)x = x+

tZ
0

T (s)Axds1

and so x 2 D(L) with Lu = Au, Consequently, G(A) � G(L).
Finally, let y 2 D(L) : Since A is m -dissipative, there exists x 2 D(A) such that
x � Ax = y � Ly; and since G(A) � G(L); we have (x � y) � L(x � y) = 0 L being
dissipative, we have x = y; and so G(L) � G(A); It follows that A = L1 which completes
the proof.

The following result show the uniqueness of the semigroup generated by an m-disalpatlve
operator with dense domain.
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Proposition 2.4.2 : Let A be an m -dissipative operator with dense domain. Assume
that A is the generator of a contraction semigroup (S(t))t�0. Then (S(t))i � 0 is the
semigroup correspouding to A given by Theorem 2.4.1.

Proof. Let (T (t))t�0 be the semigroup corresponding to A given by Theorem 2.4.1. Let
x 2 D(A); and u(t) = S(t)x: For all t � 0 and h > 0; we have

u(t+ h)� u(t)
h

=
S(h)� I

h
u(t) = S(t)

S(h)x� x
h

! S(t)Ax as h # 0

We deduce that S(t)x 2 D(A); for �all t � 0; and that

AS(t)x = S(t)Ax =
d+u

dt
(t)

for all t � 0: Thus u 2 C([0;1); D(A)) \ C1([0;1); X) and u0(t) = Au(t); for t � 0:
Therefore, by Theorem 2.1.1, we have S(t)x = T (t)x; hence the result, by density.

The following de�nition is related to Theorem 2.4.2.

De�nition 2.4.3 : A one-parameter family (T (t)) of linear operators is said to be an
isometry group in X provided that
(i) kT (t)xk = kxk for all x 2 X and all t 2 Ri
(ii) T (0) = I
(iii) T (t+ s) = T (t)T (s) for all s; t 2 R
(iv) for all x 2 X the function t 7! T (t)x belongs to C(R; X):

Further to Theorem 2.4.2 and Remark 2.4.3 we have the following result.

Proposition 2.4.4 : Let A be an m -dissipative operator with dense domain. A is the
restriction to R+ of an isometry group if and only if �A is m -dicsipstive.

Proof. It is clear by Theorem 2.4.2 and Remark 2.4.3 that the condition �A is m-
dissipative is su¢ cient. Assume that (T (t))t�0 � 0 is the restriction to R+ of an isom-
etry group (T (t))t2R; and set U(t) = T (�t); for t � 0: Then (U(t))t�0 is a contraction
semigroup. Let B be its generator. For all h > 0 and x 2 X; we have

U(h)� I
h

x =
T (�h)� I

h
x = �U(h)T (h)� I

h
x

We deduce immediately that B = �A; hence the result.
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Chapter 3

Existence and Uniqueness of
Solutions to a Semilinear Evolution
equations

The aim of this chapter is to give some results about the existence and uniqueness of mild,
strong, and classical solutions of a nonlocal Cauchy problem for a semilinear evolution
equation.
The method of semigroups and the Banach theorem aboul the �xed point are used to
prove the existence and uniqueness of solutions of the problem considered.

The semilinear evolution equation considered here is of the form :

du(t)

dt
= Au(t) + f(t; u(t)); t 2 ]0; T ] (3.1)

u (0) = u0 (3.2)

where T 2 R�+; is a constant.
We assume that :

(H1) A is the generator of a C0 semigroup S = fS(t)gt>0 ; on a Banach space (X; k�k) :
(H2) f : [0; T ] � X �! X is a continuous map in t and uniformly lipschitzian over
[0; T ]�X; namely, there exists a constant L 2 R�+ such that :

kf(t; u)� f(t; v)k � L ku� vk , for all u; v 2 X:

(H3) u0 2 X:
Then, we have the following result :

Therorem 3.1. Under the assumptions (H1)-(H2)-(H3), The problem (3.1)-(3.2) has a
unique mild solution u 2 C ([0; T ] ;X) :

Proof. A mild solution u is a continuous map u : [0; T ] �! X satis�es the integral
equation :

u(t) = S(t)u0 +

Z t

0

S(t� s)f(s; u(s))ds (3.3)
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CHAPTER 3. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A
SEMILINEAR EVOLUTION EQUATIONS

Consider the map F : C ([0; T ] ;X) �! C ([0; T ] ;X) de�ned by :

F (u)(t) = S(t)u0 +

Z t

0

S(t� s)f(s; u(s))ds (3.4)

where C ([0; T ] ;X) is the Banach space of continuous maps u : [0; T ] �! X endowed
with the norm :

kuk1 = sup
t2[0;T ]

ku(t)k (3.5)

In the sequel we denote by F (u) = Fu and Fu(t) = (F (u)) (t).

We have for any two elements u; v 2 C ([0; T ] ;X) :

kFu(t)� Fv(t)k �
Z t

0

kS(t� s)k kf(s; u(s))� f(s; v(s))k ds

� sup
t2[0;T ]

kS(t)k
Z t

0

L ku(s)� v(s)k ds

� MLt sup
t2[0;T ]

ku(s)� v(s)k

Hence
kF (u)(t)� F (v)(t)k �ML ku� vk1 t, for all t 2 [0; T ] (3.6)

where :
M = sup

t2[0;T ]
kS(t)k (3.7)

and
ku� vk1 = sup

t2[0;T ]
ku(s)� v(s)k (3.8)

Let F 2 = F � F (F round F) and F n = F � F � � � � � F (n times), then by (H2), (3.7)
and (3.8) we have :

F 2u(t)� F 2v(t)

 = kF (Fu)(t)� F (Fv)(t)k

=





Z t

0

S(T � s) [f(s; Fu(s))� f(s; Fv(s))] ds






� ML

Z t

0

kFu(s)� Fv(s)k ds (3.9)

From (3.6) and (3.9) we get :



F 2u(t)� F 2v(t)

 � ML

Z t

0

ML ku� vk1 sds

� (ML)2

2
ku� vk1 t2

� (MLt)2

2
ku� vk1 (3.10)
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By induction on n it follows that

kF nu(t)� F nv(t)k � (MLt)n

n!
ku� vk1 ; for all t 2 [0; T ] : (3.11)

and hence

kF nu� F nvk1 �
(MLT )n

n!
ku� vk1 : (3.12)

As lim
n!1

(MLT )n

n!
= 0; then for n large enough we will have (MLT )n

n!
= K < 1:

By the well known �xed point principle, the map F n has a unique �xed point u 2
([0; T ] ;X), that�s to say :

F nu = u (3.13)

Let G = F n: As G � F = F �G = F n+1, then from 3.13 we get :

G(Fu) = F (Gu) = Fu (3.14)

Hence Fu is a �xed point of G; however G has a unique point u, then :

Fu = u (3.15)

that�s to say u is a �xed point of F:

Let�s prove that u is the unique �xed point of F : Assume that v 2 C ([0; T ] ;X) is an
other �xed point of F; hence :

F (v) = v (3.16)

We have from 3.16 and 3.15 :

G(v) = F nv = F n�1(Fv) = F n�1v

= F n�2(Fv) = F n�2v = � � �
= Fv = v (3.17)

that�s to say v is a �xed point of G; but G has a unique �xed point u; then v = u:

Now, if we have solely the following slightly less weak condition on the function f :

(H2)� f : [0;1[ � X �! X is continuous and and uniformly lipschitzian in u on a
bounded interval [0; T ], T 2 R�+; that�s, there exists a consant L = L(T ) 2 R+ such
that :

kf(t; u)� f(t; v)k � L(T ) ku� vk , for all t 2 [0; T ] and all u; v 2 X

Then we the following result of local existence.

Theorem 3.2. (Goldstein p 87) Under the assumptions (H1)-(H2)�-(H3), The problem
(3.1)-(3.2) has a unique mild local solution u 2 C ([0; T 0] ;X), where 0 < T 0 � T:
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Proof. De�ne F : C ([0; T ] ;X) �! C ([0; T ] ;X) by :

F (u)(t) = S(t)u0 +

Z t

0

S(t� s)f(s; u(s))ds; t 2 [0; T ] (3.4)

and
Q = fv 2 C ([0; T ] ;X) : v(0) = u0g (3.18)

It�s easy to verify that M is a complete metric space.
As A is the generator of a C0 semigroup S then there exist two real constants M � 1
and ! � 0 such that :

kS(t)k �Me!t; for all t � 0: (3.19)

Consequently :

kFu(t)� Fv(t)k �
Z t

0

kS(t� s)k kf(s; u(s))� f(s; v(s))k ds

Me!t
Z t

0

L(T ) ku(s)� v(s)k ds

� Me!ttL(T ) ku� vk1 ; for all t 2 [0; � ] (3.20)

where kuk1 = sup
s2[0;T ]

ku(s)k : Hence :

kFu� Fvk1 �Me!�TL(�) ku� vk1 (3.21)

As lim
T!0+

Me!�TL(T ) = 0 and F (Q) � Q for T su¢ ciently small, then for T = T 0

su¢ ciently small, F is a contaction mapping from Q into Q; and by the �xed point
principle, the mapping F has a unique �xed point which is the unique mild solution.

If in the condition (H2)�is sati�ed for every T 2 R�+ :
(H2)� f : [0;1[ � X �! X is continuous and and uniformly lipschitzian in u on
bounded intervals, that�s, for every T 2 R+ there exists a consant L = L(T ) 2 R+
such that :

kf(t; u)� f(t; v)k � L(T ) ku� vk , for all t 2 [0; T ] and all u; v 2 X

Then we the following result of gocal existence.

Theorem 3.3. (Global existence) Under the assumptions (H1)-(H2)�-(H3), The
problem (3.1)-(3.2) has a unique mild global solution u 2 C ([0;1[ ;X) :

Proof. The local existence is provided by the theorem 3.2.
For an arbitrary T 2 R+ we have from theorem 3.1 : The problem (3.1)-(3.2) has a
unique mild solution u 2 C ([0; T ] ;X). As T is arbitrary, then the solution exists and
it is de�ned over [0;1[ :
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Chapter 4

Applications

In this section we treat some concrete equations.

4.1 Semilinear equations on unbounded domains

Consider the following semilinear equation on unbounded domains

Au � ut � auxx � bux = pu+ 'u � f(u); x 2 R; t > 0 (4.1)

u(x; 0) = u0(x), x 2 R (4.2)

Here u is the unknown function in this equation.
(H1) The coe¢ cient of di¤usion a is in R�+:
(H2) The coe¢ cient b and p are in R�; they are called the coe¢ cients of evolution.
(H3) ' : R�R+ �! R ((x; t) 7�! '(x; t)) is a given mapping such that, for every �xed
t 2 R+, 't : R �! R (x 7�! 't(x) = '(x; t)) is a uniformly continuous mapping on R;
and t 7�! k'(t)k = sup

x2R
j'(x; t)j is bounded on every bounded interval of time [0; T ] :

(H4) u0 : R �! R is a given bounded and uniformly continuous mapping on R:

We seek for solutions in the space X = BUC(R) of bounded and uniformly continuous
functions on R equipped with the norm :

kuk = sup
x2R

ju(x)j (4.3)

Theorem 4.1. Under the assumptions (H1)-(H2)-(H3)-(H4), the problem (4.1)-(4.2)
has a unique global mild solution.

Proof. We can prove by using Fourier transformation that the operator Au = auxx+bux
de�ned on the domain

D(A) = fu 2 X : u0; u00 2 Xg (4.4)
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generates a C0-semigroup of contractions S = fS(t)gt�0 on the Banach space X given
explicitly by the expression :

[S(t)u] (x) =
1p
4�at

Z +1

�1

"
exp

 
�jx+ bt� �j

2

4at

!#
u(�)d� (4.5)

S(0) = I (4.6)

where I is the identity operator.

Note that :
'; u 2 X =) 'u 2 X (4.7)

According to theorem 3.3, it su¢ ces to chek the validity of the assumption (H2)�.

kf(t; u)� f(t; v)k � kpu+ 'u� (pv + 'v)k
� jpj ku� vk+ k'(t)k ku� vk
� L(T ) ku� vk (4.8)

where L(T ) = jpj+ sup
t2[0;T ]

k'(t)k :

Hence, the problem (4.1)-(4.2) has a unique local solution u 2 C ([0;1[ ;X) :

4.2 Semilinear equations on bounded domains

Let 
 � Rn be a bounded domain with Lipschitz continuous boundary and T 2 R�+
given positive real number. Consider the following semilnear parabolic equation :

ut(x; t) = �u(x; t) + f(t; u(x; t)); x 2 
; t 2 ]0; T ] (4.9)

u(x; t) = 0; x 2 @
; t 2 ]0; T ] (4.10)

u(x; 0) = u0(x) (4.11)

We look for solutions u de�ned on [0; T ] which values are in L2 (
) :
We assume :
(H4) f : L2 (
) �! L2 (
) is a Lipschitz continuous function on bounded subsets of
L2 (
), namely, for all M � L2 (
) bounded subset, there exists a constant � = �(M) 2
R�+ such that :

kf(t; u)� f(t; v)k2 � � ku� vk2 , for all u; v 2M

(H5) u0 2 :L2 (
) :

De�ne the linear operator :
A : L2 (
) �! L2 (
) (4.12)

by :
D(A) =

�
u 2 H1

0 (
) : Au 2 L2 (
)
	

(4.13)
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Au = �u (4.14)

where the derivation in �u = @2

@x21
+ � � �+ @2

@x2n
is taken in the distributions sens.

Theorem 4.2. The operator A is the generator of a contraction C0-semigroup on the
space L2 (
) :

Proof. Applying the Hill-Yosida theorem.
(i) We notice that C10 (
) � D(A) and as C10 (
) = L2 (
) ; then D(A) = L2 (
) :

(ii) Proving that ]0;1[ � �(A) and kR�(A)k =


(�I � A)�1

 � 1

�
; for all � > 0 :

Let g 2 L2 (
) ; we seek to a function u 2 D(A) such that : �u�Au = g. In this caase
we write u = R�(A)g:
The varational formulation of the problem :

�u� Au = g; u 2 D(A) (4.15)

is :
b(u; v) = l(v); for all v 2 H1

0 (
) (4.16)

where :

b(u; v) = � hu; viH1
0 (
)

+

Z



ru:rvdx; l(v) =
Z



gvdx (4.17)

We can easly verify that :
- l(:) is a continuous linear form over H1

0 (
) :
- b(:; :) is a bilinear continuous form over H1

0 (
) :
Also, b(:; :) is coercive (H1

0 (
)-elliptic) form over H1
0 (
) due to the follwing estimate :

b(v; v) � min f1; �g kvk2H1
0 (
)

, for all � > 0 (4.18)

Then, by Lax-Milgram theorem, the equation (4.16) has a unique solution u:

Take v = u (u is the solution) in (4.16) and since
Z



ru:rvdx =
nX
j=1

Z



�
@2u
@x2j

�2
dx � 0

we obtain :
� kuk22 � kgk2 : kuk2

therefore :
kuk2 �

1

�
kgk2 (4.19)

that�s to say R� exists and kR�k � 1
�
:

It is clear that A is closed.
Hence, A generates a contraction C0-semigroup S on L2 (
) :

Gronwall�s Inequality. (C. Corduneanu p.14)
Let the inequality

x(t) � h(t) +
Z t

t0

k(s)x(s)ds; for all t 2 [t0; T [ (4.20)
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where t0 2 R and T 2 ]t0;1] : If x; k 2 C ([t0; T [ ;R) and k(:) is a nonnegative
function on [t0; T [ : Then we have :

x(t) � h(t) +
Z t

t0

h(s)k(s) exp

�Z t

s

k(�)d�

�
ds; for all t 2 [t0; T [ (4.21)

If, in addition, h(:) is nondecreasing, then

x(t) � h(t) exp
�Z t

t0

k(s)ds

�
; for all t 2 [t0; T [ (4.22)

The mild solution u of the equation is written as follows :

u(t) = S(t)u0 +

Z t

0

S(t� s)f(u(s))ds (4.23)

Result 1. The problem (4.9)-(4.10)-(4.11) under the assumptions (H4)-(H5) admits a
uniqe mild solution on u on [0; T ] :

Proof. Let R 2 R�+ and :

B (u0; R) =
�
u 2 L2 (
) : ku� u0k2 � R

	
(4.24)

bB (u0; R) = �u 2 C �[0; T ] ; L2 (
)� : ku� u0k1 � R	 (4.25)

We de�ne the operator L : C ([0; T ] ; L2 (
)) �! C ([0; T ] ; L2 (
)) as follows :

Lu(t) = S(t)u0 +

Z t

0

S(t� s)f(u(s))ds (4.26)

Soit u; v 2 bB (u0; R), then we have :
kLu(t)� Lv(t)k2 �

Z t

0

kf(u(s))� f(v(s))k2 ds

� �

Z t

0

k(u(s)� v(s)k2 ds

Hence
kLu� Lvk1 � �T ku� vk1 (4.27)

Also :

kLu(t)� u0k2 � kS(t)u0 � u0k2 +
Z t

0

kf(u(s))k2 ds

� kS(t)u0 � u0k2 +
Z t

0

kf(u(s))� f(u0)k2 ds+
Z t

0

kf(u0)k2 ds

� kS(t)u0 � u0k2 + �
Z t

0

ku(s)� u0k2 ds+ t kf(u0)k2
� kS(t)u0 � u0k2 + T kf(u0)k2 + �t ku� u0k1
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Hence

kLu� u0k1 � kS(:)u0 � u0k1 + T kf(u0)k2 + �T ku� u0k1 (4.28)

From (4.27) and (4.28) we get that there exists T � 2 R�+ small enough such that
�T = � < 1 and kS(:)u0 � u0k1 + T kf(u0)k2 + �T ku� u0k1 � R:
Consequetly :

LB(u0; R) � B(u0; R) (4.29)

and :
L is a contractante function from B(u0; R) into itself (3.30)

Then, by the �xed point principle, there exists a unique point u 2 C ([0; T �] ; L2 (
))
such that Lu = u; i.e :

u(t) = S(t)u0 +

Z t

0

S(t� s)f(u(s))ds, for all t 2 [0; T �]

Result 2. (Casenave) We can prove that there exists a function T : L2 (
) �! ]0;1]
such that :
For all u0 2 L2 (
) ; there exists a unique solution u 2 C ([0; T (u0)[ ; L2 (
)) to (4.9)-
(4.10)-(4.11) under the hypothesis (H4)-(H5), and we have the following alternatives :
(i) T (u0) =1:
(ii) If T (u0) <1; then lim

t!T (u0)
ku(t)k2 =1:

Result 3. If moreover we have :
(H6) kf(t; u)k2 � k(t) kuk2, for all u 2 L2 (
) and all t � 0, where k(:) is a nonnegative
continuous function.
Then, the solution u is global.

Proof. We have from (H6) :

ku(t)k2 � ku0k2 +
Z t

0

k(s) ku(s)k2 ds (3.31)

Then, by Gronwall�s inequality we obtain :

ku(t)k2 � ku0k2 exp
�Z t

0

k(s)

�
� '(t) (3.32)

As the function ' is continuous, we conclude from the result 2, that the maximal time
of existence is 1:
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