
 الجمهورية الجزائرية الديمقراطية الشعبية

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University of May 8th, 1945 - Guelma -

Faculty of Mathematics, Computer Science and Material Sciences

Computer Science Department

Master’s Thesis

Sector: IT

Option: STIC

Theme:

CNN Based Deep Face Recognition

Supervisor:

Mr. Hallaci Samir

Student:

Randa Aouassa

October 2020

Acknowledgment

 بسم الله الرحمان الرحيم و الحمد لله

 I would like to thank my dear teacher and supervisor Mr.Hallaci for

supporting me throughout this tough year who kept motivating me to give

the best I could regarding this covid-19 pandemic.

A kind thanks to the jury members for giving me the honor of judging my

work. I also deeply thank all the computer science department teachers

Finally, I thank my family, friends, colleagues and all the class of 2020

Dedication

الرحمان الرحيم و الحمد للهبسم الله

 I dedicate this work to

My dearest Brother whom without my life is meaningless

My parents, who raised, teached, encouraged and supported me

throughout all my life

All my bigger family members, my friends and colleagues

“Success is no accident it is hard work, perseverance,

Learning, Studying, Sacrificing, And most of all, Love

Of what you are doing or learning to do.”

Abstract

 In this study, we presented the newest approaches used for facial detection and recognition

based on deep learning and specifically convolutional neural networks.

 In our project, we plan to use a deep convolutional neural network (CNN) to extract the

characteristics of the input images, and to recognize faces in a complex environment based on

one of the most accurate architectures (VGG).we focused on transfer learning to make use of

the existing models that have been already trained on massive datasets, such as VGG16 for

facial recognition which is trained on the well known ImageNet dataset. We made use of the

Dlib face detector that also utilize deep learning technology to extract the face’s coordinates.

We created our own dataset which is a collection of images from the web, and we focused on

making the dataset richer by applying data augmentation technology (rotation, shifting...) that

helped to create newer set of images from the existing ones. The performance of our facial

recognition system was evaluated on our own custom dataset as well as random unknown

images from the web and it achieved impressive results.

Key words:

Face Recognition, Face detection, Deep learning, Convolutional neural networks, Models,

Datasets, Tensorflow, Keras

Table of Contents

1. Introduction: ... 5

2. Face Detection and Recognition Overview:.. 6

2.1. Face Detection: ... 6

 Why detect a face ... 6

 How to detect a face ... 6

 The challenges in face detection.. 7
2.2. Face Recognition: .. 7

 Why recognize faces ... 7

 How to recognize faces ... 7

 The challenges in face recognition ... 8
3. The Evolution of Artificial Intelligence: .. 8

3.1. The 1st Period 1950-1970: ... 8
3.2. The 2nd period 1980-2000: ... 9
3.3. The 3rd Period 2010-2020: .. 9

4. Deep Face Recognition ...10

4.1. Artificial Intelligence: ..11
4.2. Machine Learning: ..11

4.2.1. Machine Learning Data: ...12
4.2.2. Machine Learning approaches: ..12

1) Supervised Learning: ... 12
2) Unsupervised Learning: ... 13
3) Reinforcement Learning: .. 13

4.2.3. Algorithms used in machine learning: ..13
4.2.4. Machine Learning Steps: ..14

1) Preparing the data and choose an algorithm .. 14
 Bias-variance tradeoff:..14

 Function complexity and amount of training data ...14

 Dimensionality of the input space ...15
2) Fitting/Training a model ... 16
3) Choosing a validation method .. 16
4) Examining fit and update until satisfied .. 16
5) Using fitted model for predictions .. 17

4.3. Deep Learning: ...17
4.3.1. Deep Learning terminology:...18

1) Artificial Neuron .. 18
2) Layers .. 18
 Input Layer ...18

 Hidden layers ...19

 Output Layer ..19
3) Weights ... 19
4) Activation Functions .. 19

4.3.2. Artificial Neural Networks Types: ...23
1) Convolutional Neural Network ... 24
2) Recurrent Neural Networks .. 24

List of Figures: ...1

List of Tables: ..2

General Introduction ..3

I. Deep Face Recognition Fundamentals ...5

3) LSTM .. 24
4.3.3. Artificial Neural networks Application Fields ..25

5. Deep extraction..25

6. Matching faces with deep features ...26

7. Deep Learning models and architectures for FR ..26

7.1. State of the art models in Deep FR ...27
7.2. State of the art Deep Learning architectures in the field of Computer Vision:27

Deep Learning Datasets for FR ...29

7.3. State of the art of face datasets: ...29
8. Deep Learning Challenges: ...35

9. Conclusion: ..35

1. Introduction ...37

2. Why CNN for Computer Vision ...37

3. CNN Architecture: ..38

3.1. Input Layer: ..38
3.2. Convolution Operation: ..39

 Filters: ..39

 Padding ..40
3.3. ReLU function:..40
3.4. Pooling Operation: ...40

 Pooling types: ..41
3.5. Fully Connected Layer: ...42
3.6. Softmax/Logistic function: ..42
3.7. Output Layer ..43
3.8. Normalization...43

 Normalization Methods: ..43
3.9. Regularization ..44

 Dropout ...44

 Regularization Methods: ..45
3.10. Optimization ..46

 Most known Optimizers: ..46

 Most used Optimization methods: ...47
4. Image Augmentation: ..48

5. Overfitting and Underfitting in CNN ...48

6. Frameworks used to implement CNN ...49

7. Conclusion ...50

1. Introduction ...52

2. Loading and pre-processing the data ..52

2.1. Loading the Dataset: ..52
2.2. Preprocessing the dataset: ...53

3. Defining the model’s architecture ..54

4. Training the model ...55

5. Estimating the model’s performance ..56

6. Conclusion ...56

II. Convolutional Neural Network ...37

III. Conception, Implementation and Results ..52

General Conclusion ..58

References ..59

1

List of Figures:

Figure 1.1: Main Steps of Facial Recognition ... 6

Figure 1.2: Face Detection based on the facial features (eyes, nose...) ... 7

Figure 1.3: Artificial Intelligence’s Subclasses ..10

Figure 1.4: Difference between Classical Programming and ML Programming learning steps11

Figure 1.5: Supervised learning steps ..13

Figure 1.6: Machine Learning Algorithms application field ...14

Figure 1.7: LDA projects the data to signify the class separability, whereas PCA orients data along the

direction of the component with maximum variance ...15

Figure 1.8: The projection from applying different manifold learning methods on a 3D S-Curve16

Figure 1.9: Artificial Neural Network Architecture with its basic elements ..17

Figure 1.10: Neuron’s parts and their functions in Anatomy ..18

Figure 1.11: Plot corresponds to the activation functions stack in one graphic....................................22

Figure 1.12: A mostly complete ANN Chart ..23

Figure 2.1: How does the computer sees an image in RGB type...37

Figure 2.2: Shifted version of the same image ...38

Figure 2.3: Basic CNN architecture ...38

Figure 2.4: Example of Convolution operation ..39

Figure 2.5: Visualization of the Convolution Operation ...39

Figure 2.6: Visualization of the use of filters in Convolution Operation ...39

Figure 2.7: Visualization of different paddings and their resulted output ..40

Figure 2.8: Usage Over Time of Most known activation functions ...40

Figure 2.9: Example of Max Pooling in CNN ..41

Figure 2.10: Example of pooling (downsampling) in CNN ..41

Figure 2.11: Usage Over Time of Most known Pooling methods ...42

Figure 2.12: Standard Neural Net VS After applying Dropout ...45

Figure 2.13: Usage Over time of the most popular Optimization methods ..47

Figure 2.14: Example on Data Augmentation in Computer Vision ...47

Figure 3.1: Conception Graph ...52

Figure 3.2: Example of our Actors Dataset ..53

Figure 3.3: Example Dlib face detector result ..54

Figure 3.4: VGG16 model architecture with details ...54

Figure 3.5: The last layers added to the VGG16 model with their details ...55

Figure 3.6: The accuracy and loss values in the fitting task ..55

Figure 3.7: Some of the result retrieved on new unknown images ..56

2

List of Tables:

Table 1.1: First period of the Evolution of AI, ML and DL 1950-1970 ... 8

Table 1.2: Second period of the Evolution of AI, ML and DL 1980-2000 ... 9

Table 1.3: Third period of the Evolution of AI, ML and DL 2010-2020 .. 9

Table 1.4: Most common algorithms used in supervised, unsupervised and reinforcement learning13

Table 1.5: The activation functions with their plotted graphs, pros and cons.20

Table 1.6: The application fields of the three most used ANN type (CNN, RNN, LSTM)25

Table 1.7: State-of-the-art models for face recognition (accuracy tested on LFW dataset)27

Table 1.8: State-of-the-art DL architectures in the field of computer vision the past 5 years.28

Table 1.9: State-of-the-art datasets in the facial recognition field ...30

Table 2.1: Pooling types with their definitions and advantages ..41

Table 2.2: Most used Normalization Methods ordered by their number of use43

Table 2.3: Regularization Methods ordered by their number of use ..45

Table 2.4: Advantages and Disadvantages of popular Optimization algorithms46

Table 2.5: Most used Optimization Methods and ordered by their use rate ..47

Table 2.6: Methods used to avoid both Underfitting and Overfitting ..49

Table 2.7: Top Eight Frameworks used in Deep Learning and their main hightlights49

3

General Introduction

ace recognition in images or videos is one of the biggest challenges in computer vision

and pattern recognition. The problem and the main difficulty comes from variations in

the appearance of the face caused by factors such as expression, lighting, partial occlusion of

the face. Briefly, a face recognition system extracts the characteristics of an input image and

compares them with the characteristics of labeled faces from a database. The comparison is

based on a characteristic similarity metric and the label of the most similar database entry is

used to label the input image.

This technology has seen wider uses in recent years on mobile platforms and in other

forms of technology, such as robotics. It is typically used as access control in security systems

and can be compared to other biometrics such as fingerprint or eye iris recognition systems.

Although the accuracy of facial recognition system as a biometric technology is lower than iris

recognition or fingerprint recognition, it is still widely adopted due to its contactless and non-

invasive process. Recently, it has also become popular as a commercial identification and

marketing tool. Other applications include advanced human-computer interaction, video

surveillance, automatic indexing of images, and video database, among others.

For the requested work, we plan to use a deep convolutional neural network (CNN) to

extract the characteristics of the input images, and to recognize faces in a complex environment

based on one of the most accurate architectures (VGG).

The Tensorflow architecture across the Keras backend will be used to implement the

deep neural network (CNN) algorithm. Moreover, in order to align the faces on the input images

we will use Dlib and OpenCV. The performance of our facial recognition system will be

evaluated on our own custom dataset.

The objectives of the system will be broken down into three main stages:

1. Detect, transform and crop faces from the input images. This ensures that the faces

are aligned before inserting them into the CNN.

2. Use CNN to extract representations in reduced dimensions, or incorporations of

faces from aligned input images to build vectors. In this space, the distance

corresponds directly to a measure of the similarity of the faces.

3. Compare the input embedding vectors to the labeled embedding vectors in the

database.

F

4

Thesis Organization:

We chose to articulate our study in three main chapters:

 Chapter 01: Deep Face Recognition Fundamentals

 This chapter aims at a detailed analysis of different approaches and techniques used

for detection and face recognition in the field of Deep Learning.

 Part 01: Fundamentals of Face Detection and recognition

 Part 02: History and details on artificial intelligence technology focusing on its

 main subset Deep Learning.

 Part 03: State of the art models and State of the art datasets.

 Chapter 02: Convolutional Neural Network

 In this chapter, we explained everything there is to know about CNN starting from its

basic building block to its implementation.

 Chapter 03 : Conception, Implementation and results

 In this chapter, we detail the different system steps that we have elaborate. In addition,

we present the experimental results obtained.

 Finishing up with a general conclusion, to summarize our contributions, and giving

some perspective on future work.

Chapter 1 Deep Face Recognition Fundamentals

5

I. Deep Face Recognition Fundamentals

1. Introduction:

Face Recognition is definitely one of the most popular computer vision problems, and

is one of the many wonders that AI research has brought forward to the world. It is a subject of

curiosity for many researchers. Thanks to its popularity it has been well studied over the last 50

years, so we can define it as the problem of identifying and verifying people in a photograph

by their face.

It is a task that is trivially performed by humans, even under complex conditions, such

as varying light and when faces are changed by age or obstructed with accessories and facial

hair. Nevertheless, it is remained a challenging computer vision problem for decades.

Deep learning methods are able to leverage very large datasets of faces and learn rich

and compact representations of faces, allowing modern models to first perform as well and later

to outperform the face recognition capabilities of humans.

To understand how a machine can recognize faces, we can start with asking ourselves

— how do we recognize a face? Most images of human faces have two eyes, a nose, lips,

forehead, chin, ears, hair… That rarely changes. Yet, faces are different from each other. What

makes them different? At the same time, face of the same person changes with emotion,

expression, age… In fact just change in orientation creates a different image. How do we

identify a person in spite of all that?

In this Chapter, we will discover the problem of face recognition and how deep learning

methods can achieve superhuman performance, and for that we are going to present:

 The fundamentals of face detection and recognition

 The history and evolution of Artificial Intelligence, Machine Learning and Deep

Learning

 A basic explanation of AI and ML, and a deeper focus on AI’s main subset which is

Deep Learning, starting from its basic building blocks to the last step which is choosing

a dataset and training a model

 The latest and state of the art works applied in the field on Deep Face Recognition, with

most used datasets and models.

Chapter 1 Deep Face Recognition Fundamentals

6

2. Face Detection and Recognition Overview:

Faces are a complex multidimensional visual models and developing a computational

model for face recognition is difficult. However, applying machine learning techniques have

made it possible and with some real-time variations as well. Face recognition is a technology

capable of identifying or verifying a person from a digital image or a video frame from a video

source.

In order for the facial recognizing system to function, it is necessary to implement two main

steps. First, it must detect the face within an image. Then, it must recognize that face from an

existing database.

2.1. Face Detection:

 Why detect a face

Face detection cannot be automatic; therefore, it must be implemented accurately. An

image might contain more than just a face, and in order for the system to function properly and

recognize the faces precisely, it must separate each face candidate individually and label it, then

pass it to the next step, which is the recognition.

 How to detect a face

Computers unlike us sees the world through combinations of numbers, an image is a

collection of pixels, which represents the intensities of the colors in a form of a matrix, hence,

it is only possible to understand an image through mathematical equations.

Scientists strive to build systems that can detect and recognize faces. One such system

already exists: the human brain. In order to find the formation of a face in a mathematical

equation, it needs to be broken into smaller functional problems taking reference on “how the

brain classifies a face?”

Figure 1.1: Main Steps of Facial Recognition

Chapter 1 Deep Face Recognition Fundamentals

7

A face is a summation of features or shapes (Eyes, eyebrows, mouth, nose, etc.)

furthermore, the shapes are a set of connected edges and edges are identifiable using math [1],

many approaches were proposed in order to solve these problems manually [2], but recently

deep learning, which is based on what scientists think is the brain’s structure of combined

neurons, made an astonishing revolution in computer vision and many other fields subsidiary

to artificial intelligence, unlike the standard methods, deep learning provides a new way of

extracting and comparing features without the complete intervention of the human [3].

 The challenges in face detection

 Images of faces vary from one picture to another due to the alteration of different

conditions from capturing equipment to lighting conditions, noises, etc. In face images, in

addition to those challenges, we encounter the variation of expressions, poses, occlusions, etc.

which are taken in consideration when building a face database for recognition [4].

2.2. Face Recognition:

 Why recognize faces

 Contemplating the uniqueness of the human face, made Face recognition (FR) the

eminent biometric technique and has been widely used in many more areas, such as military,

finance, security and daily life in general.

 How to recognize faces

 There are multiple methods in which facial recognition systems (FR) work [2], but in

general, it is established through comparison of facial features from a given images with faces

within a database. Initially, the process of face recognition was fulfilled in two steps. First, the

effectuation of feature extraction and selection [5]. Second, classification [6][7]. However, with

the revolution of deep learning and deep FR, the implementation of these two steps in details

became unnecessary.

Figure 1.2: Face Detection based on the facial features (eyes, nose...)

Chapter 1 Deep Face Recognition Fundamentals

8

 The challenges in face recognition

 The facial recognition system is yet to completely overcome the challenges which have

constantly played with its quality of delivery, on the level of the image, illumination,

background, pose, occlusion, expressions, complexity, etc. however, in the aspect of deep FR,

the lack of saturated databases that affects hugely the learning process and therefore the

recognition, fusion issues and the particular cases such as identicality (twins) and uncontrolled

changes, and privacy-preserving concerns which are rising nowadays and made it difficult to

collect data for study [8].

3. The Evolution of Artificial Intelligence:

3.1. The 1st Period 1950-1970:

 Trivial problem solving, no practicality, GOFAI – Good old-fashioned AI:

Year Event

1942 The 3 Laws of Robotics by Isaac Asimov, Other sets of laws have been proposed by researchers

since then

1950 The Turing Test proposed by Alan Turing

1952 The first self-learning game program

1956 Dartmouth Conference, first use terms of “Artificial Intelligence/ A.I”

1957 General Problem Solver (GPS) by Newell

1958 McCarthy developed LISP programming language

1959 - The MIT AI Lab (McCarthy and Minsky)

- The term “Machine Learning” by Samuel

1961 - First Industrial Robot (Unimate) working at GM

- “SAINT” the first expert system by slagle (MIT)

1964 “STUDENT” the first AI program which understands natural language

1965 “ELIZA” the first AI based Chatbot and expert system

1966 - “Shakey” the first locomotive and intelligent robot (SRI)

- “MAC HACK” chess-playing program by Greenblatt, MIT

1968 “SHRDLU” an early natural language understanding computer program

1970 “WABOT-1” the first anthropomorphic robot (Waseda University)

1972 “Prolog” logic programming language

1973 “Lighthill Report” the poor progress report caused the “First AI winter” which is Reduced

funding for AI research

1974 - “MYCIN” the first rule based AI expert system for medical diagnostics

- The first autonomous vehicle, a mechanical “slider” (Stanford)

 Table 1.1: First period of the Evolution of AI, ML and DL 1950-1970

Chapter 1 Deep Face Recognition Fundamentals

9

3.2. The 2nd period 1980-2000:

 Researchers feeding machines with labeled data, Projects: ICOT – Japan ’82, MCC –

US ’83, Alvey – UK ’84. And algorithms began to appear as parts of larger systems. AI

solutions proved to be useful throughout the technology industry, such as data mining,

industrial robotics...etc.

Year Event

1980 - LISP based machines developed and marketed

- “INTERNIST-1” The first Commercial Expert System

1986 A driverless van by Mercedes-Benz, with cameras and sensors

1988 - “Bayesian Network”, BNs or belief nets, in invented by Pearl

- The chatbots, “Jabberwachy” and “Cleverbot” invented by Carpenter

1989 The first autonomous vehicle created by CMU using neural network

1993 “Polly” the tour guide robot, behavior-based robotics (MIT)

1997 IBM’s Deep Blue beats Gary Kasparov in chess

1998 “Furby” the first pet toy robot for children

1999 - “Kismet” emotional AI (MIT AI Lab)

- “AIBO” introduced the first AI domestic robot by Sony

2000 “ASIMO” humanoid robot released by Honda

2002 “Roomba” autonomous robot vacuum is released by i-Robot

2004 - The first challenge for autonomous vehicles by DARPA

- NASA rovers “Spirit” and “Opportunity” exploring Mars

2005 AI based recommendation engines

2006 “Machine Reading” unsupervised autonomous understanding of text

2007 - “ImageNet” visual database for object recognition software research

- “CUDA” launched by NVIDIA, a parallel computing platform and programming interface

2009 - Self Driving Car build by Google, by 2014 it passed Nevada’s self-driving test

- AI researchers discover GPU (Graphics Processing Unit) for DL

Table 1.2: Second period of the Evolution of AI, ML and DL 1980-2000

3.3. The 3rd Period 2010-2020:

The age of machine learning, Computers acquire knowledge from data, not humans.

Large tech companies invest in commercial applications of AI/ML

Date Event

2010 - Democratize Data Access begins for Image Recognition

- Narrative Science’s AI demonstrates ability to write reports

2011 - Apple released “Siri”

- IBM’s “Watson” wins Jeopardy clash

Chapter 1 Deep Face Recognition Fundamentals

10

2013 - “NEIL” by CMU, a semantic image analyzer ML system

- “Vicarious” passes first Turing test – CAPTCHA

2014 - “Cortana” by Microsoft

- “Alexa” by Amazon

2015 - “TensorFlow” by Google Brain, a ML Library (TPU)

- “Open AI” open source initiative to develop AI benefit of all humanity

2016 - “Google Home” by Google

- “Alpha Go” Google’s Deepmind has defeated Go’s N°1 champion

- NVIDIA announces supercomputer for DL and AI

- “Sophia” humanoid robot by Hanson Robotics, the first robot citizen

- “PyTorch” Open source ML Library

2017 - The facebook AI research lab trained two chatbots to communicate with each other in order

to learn how to negotiate; the chatbots diverged from human language and invented their

own language to communicate with one another.

- “Caffe” Open source DL framework.

2018 - “BERT” by Google, the first bidirectional unsupervised language representation

- “Bixby” introduced by Samsung

- Facebook detects faces and shares photos with friends to whom those photos belong

- Alibaba language processing AI outscored human intellect at a Standford reading and

comprehension test.

2020 - DeepMind team uses DL algorithms “Agent 57” that outperforms humans at Atari games

with Deep Reinforcement Learning.

- Widespread “5G” network deployments worldwide

Table 1.3: Third period of the Evolution of AI, ML and DL 2010-2020

4. Deep Face Recognition

Convolutional Neural Network is one of Deep learning architectures used in the facial

recognition systems and computer vision in general, DL is subclass of machine learning which

is a subclass of artificial intelligence, hence, to understand deep learning, it is necessary to start

with the main fundamentals of AI and ML.

Figure 1.3: Artificial Intelligence’s Subclasses

Chapter 1 Deep Face Recognition Fundamentals

11

4.1. Artificial Intelligence:

Artificial intelligence is the effort to automate intellectual tasks normally performed by

humans. It starts with us identifying a set of rules and code it, the computer than execute this

set of rules and follow these instructions, more rules resulted better AI, and eventually, AI was

fully relied on human intervention with lots of programming where some programs were nearly

half million lines of code and it can be either simple or complex.

4.2. Machine Learning:

 British computer scientist Alan Turing and his team, created the first machine to

decipher Enigma. His invention laid the foundations for Machine Learning. Machine learning

is a study of computer algorithms that improve automatically through experience [9]. It made

programming easier by taking in just training data as inputs, which is combined of pairs of data

(features) and what their outputs should be (labels). ML figures out the patterns or the rules by

itself, but the main goal in ML is to raise the accuracy as high as possible which means it still

can make mistakes. However, to raise the accuracy, ML needs a massive amount of inputs as

examples to train a good model that than predict the best possible output for new unknown data.

 Tom M. [10] provided a widely quoted, more formal definition of the algorithms studied

in the machine-learning field:

"A computer program is said to learn from experience E

with respect to some class of tasks T and performance

measure P if its performance at tasks in T, as measured by

P, improves with experience E."

Figure 1.4: Difference between Classical Programming and ML Programming learning

steps

Chapter 1 Deep Face Recognition Fundamentals

12

4.2.1. Machine Learning Data:

 The data in machine learning is a set of inputs presented as a heterogeneous matrix,

Rows of the matrix are called observations, examples, or instances, each one contain a set of

measurements for a subject. Columns of the matrix are called predictors, attributes, or features,

each are variables representing a measurement taken on every subject. The response data is a

column vector where each row contains the output of the corresponding observation in the input

data. To fit or to train a supervised learning model we must choose an appropriate algorithm,

and then pass this training data to it.

 The data types can be either numeric vector, categorical vector, Character array, String

array, Cell array of character vector, or logical vector. For regression, the response data must

be a numeric vector with the same number of elements as the number of rows of instances.

While for classification, it can be any of the mentioned types above.

4.2.2. Machine Learning approaches:

There are three main machine learning approaches used nowadays [11]:

1) Supervised Learning:

 Supervised learning is the most applicable type of learning; its algorithms build a

mathematical model of a set of data that contains both the inputs and their desired outputs [12].

Called the Training data, where each training example is represented by an array or vector,

sometimes called a feature vector, and the full training data is represented by a matrix.

 Through iterative optimization of an objective function, supervised learning algorithms

learn an inferred function that can be used to predict the output associated with new unknown

inputs [13]. An optimal scenario will allow for the algorithm to correctly determine the class

labels for unseen instances. This requires the learning algorithm to generalize from the training

data to unseen situations in a “reasonable” way. The computer “learns” from the observations,

when exposed to more observations, the computer than improves its predictive performance.

 Specifically, a supervised learning algorithm takes a known set of input data and known

responses to the data (output), and trains a model to generate reasonable predictions for the

response to new data. (figure 1.5).

Chapter 1 Deep Face Recognition Fundamentals

13

2) Unsupervised Learning:

 Unsupervised learning algorithms take a set of data that contains only inputs, and find

structure in the data, like grouping or clustering of data points, without having previously an

idea of what they can be or how many they should be, by figuring out the similarities between

the given data with no human intervention.

3) Reinforcement Learning:

 Reinforcement learning (RL) is called approximate dynamic programming, or neuro-

dynamic programming, it is an area of machine learning concerned with how software agents

ought to take actions in an environment in order to maximize the notion of cumulative reward.

 Basic reinforcement is modeled as a Markov decision process [118]:

 A set of environment and agent states, S.

 A set of agent actions, A

 𝑃𝑎(𝑠, 𝑠
′) = Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) is the probability of transition (at time t) from

state s to state s’ under action a.

 𝑅𝑎(𝑠, 𝑠
′) is the immediate reward after the transition from s to s’ with action a.

4.2.3. Algorithms used in machine learning:

Type Supervised

Learning

Unsupervised Learning Reinforcement Learning

A
lg

o
rith

m
s

Classification

[162].

Regression [163].

Clustering [164].

Anomaly Detection [165].

Neural Networks [166].

Dimensionality reduction

[167].

Criterion of optimality

[168].

Brute force [169].

Value function [170].

Direct policy search [171].

Table 1.4: Most common algorithms used in supervised, unsupervised and reinforcement learning.

Figure 1.5: Supervised learning steps

Chapter 1 Deep Face Recognition Fundamentals

14

4.2.4. Machine Learning Steps:

 The result of the next steps is what’s called a “model” [14], many successful models

already exists in the field of Face Recognition (see table 1.7).

1) Preparing the data and choose an algorithm

 There are various learning algorithms (figure 1.6), each has its strengths and weaknesses,

and no single one works best on all problems. In order to choose the best data presentation and

most fitting algorithm for our problem, we must take in consideration the following tradeoffs:

 Bias-variance tradeoff:

The bias-variance dilemma is the conflict in trying to simultaneously minimize these

two sources of error that prevent supervised learning algorithms from generalizing beyond their

training set. high bias can cause an algorithm to miss the relevant relations between features

and target outputs, where high variance can cause it to model the random noise in the training

data rather than intended outputs (overfitting) [15]

 Function complexity and amount of training data

The amount of training data available relative to the complexity of the "true" function

is an important tradeoff. If the true function is simple, then an "inflexible" learning algorithm

with high bias and low variance will be able to learn it from a small amount of data. But if the

true function is highly complex, means it behaves differently in different parts of the input

Figure 1.6: Machine Learning Algorithms application field.

Chapter 1 Deep Face Recognition Fundamentals

15

space, the function will only be able to learn from a very large amount of training data and using

a "flexible" learning algorithm with low bias and high variance [16].

 Dimensionality of the input space

A third issue is the dimensionality of the input space. If the input feature vectors have

very high dimensions, we stumble into the curse of dimensionality, which refers to all the

problems that arise when working with data in the higher dimensions. The many "extra"

dimensions can confuse the learning algorithm and cause it to have high variance means

Overfitted. Hence, high input dimensional typically requires tuning the algorithm to have low

variance and high bias.

In practice, human can intervene and manually remove irrelevant features from the input

data, this is likely to improve the accuracy of the learned function. In addition, many algorithms

for feature selection seek to identify the relevant features and discard the irrelevant ones. This

is an instance of the more general strategy of dimensionality reduction, which seeks to map the

input data into a lower-dimensional space prior to running the learning algorithm.

The most common and well-known dimensionality reduction methods are the ones that

apply linear transformations, PCA (Principal Component Analysis), Factor Analysis, and LDA

(Linear Discriminant Analysis). (figure 1.7)

Whereas, the non-linear dimensionality reduction methods are MDS (Multi-

dimensional scaling), Isomap (Isometric Feature Mapping), LLE (Locally Linear Embedding),

HLLE (Hessian Eigenmapping), Laplacian Eigenmaps (Spectral Embedding), t-SNE (t-

distributed Stochastic Neighbor Embedding. (figure 1.8)

To resume, the dimensionality reduction offers us many advantages such as:

o Less misleading data means model accuracy improves.

o Fewer dimensions mean less computing. Less data means that algorithms train faster.

o Less data means less storage space required.

o Fewer dimensions allow usage of algorithms unfit for a large number of dimensions

Figure 1.7: LDA projects the data to signify the class separability, whereas PCA orients data

along the direction of the component with maximum variance.

Chapter 1 Deep Face Recognition Fundamentals

16

o Removes redundant features and noise.

2) Fitting/Training a model

When training for machine learning, an algorithm is passed with the training data. The

learning algorithm finds patterns in the training data such that the input parameters correspond

to the target. The output of the training process is a machine learning model which you can then

use to make predictions. This process is also called “learning”. Fitting or Training the model is

applying the chosen algorithm on the chosen data with a human supervision using one of the

validation methods mentioned next.

3) Choosing a validation method

There are different validation techniques used to examine the accuracy of the resulting fitted

model:

 Resubstitution [172]

 Hold-out [173]

 K-fold cross-validation error [174]

 Bootstrapping [175]

 Random subsampling [175]

 LOOCV (Leave-One-Out Cross-Validation) [176]

4) Examining fit and update until satisfied

 After validating the model, we might want to change it for better accuracy, better

speed, or to use less memory as follows:

 Change fitting parameters to try to get a more accurate model.

Figure 1.8: The projection from applying different manifold learning methods on a

3D S-Curve

Chapter 1 Deep Face Recognition Fundamentals

17

 Change fitting parameters to try to get a smaller model. This sometimes improve

accuracy.

 Try a different algorithm.

5) Using fitted model for predictions

This is the last step in machine learning, after being satisfied with the accuracy and

details of the model, it is used to determine and classify a new unknown data.

4.3. Deep Learning:

Deep learning is the newest field in computer science, based on what’s called Artificial

Neural Networks, which is a technology inspired by the brain’s neural network architecture,

ANN are one of the most popular machine learning algorithms at present, it proved its capability

at outperforming other algorithms in accuracy and speed. In this part, we present a fundamental

understanding of what a neural network is starting from its most basic building block, which is

a neuron, and later diving into its most popular types like CNN, RNN, etc.

Deep learning is an AI function that mimics the work of the human brain in processing

data for use in detecting and recognizing objects, speech, translating languages, and making

decisions. It uses multiple layers to progressively extract higher-level features from the raw

input. For example, in image processing, lower layers may identify edges, while higher layers

may identify the concepts relevant to a human such as digits or letters or faces [23].

Deep learning is a subset of machine learning that is able to learn without human

supervision, drawing from data that is both unstructured and unlabeled. Creating patterns for

use in decision making. Deep learning unravels the huge amounts of unstructured data (Big

Data) that would normally take humans decades to understand and process.

Figure 1.9: Artificial Neural Network Architecture with its basic elements

Chapter 1 Deep Face Recognition Fundamentals

18

4.3.1. Deep Learning terminology:

1) Artificial Neuron

The functionality of the artificial neuron is similar to that of a human (figure 1.10), it

takes in an input and returns an output, however, in mathematical terms, a neuron is a

placeholder for a mathematical function, it applies the function given on the input and provides

the result, which is the output. The functions used inside a neuron are generally termed as an

Activation function. There are many types of these functions but there have been 5 major

activation functions tried to date, step, sigmoid, tanh, ReLU and Leaky ReLU (table 1.5).

2) Layers

Artificial neural network architecture is defined by a collection of connected units or

nodes (neurons); the ANN is combined of three main layers type, the input, the hidden and the

output. Usually the number of layers is small and known, but in Deep Learning the layers

number raised to thousands and some Deep Learning ANNs have unknown number of layers,

hence why, it is called ‘Deep’.

 Input Layer

There is one input layer in ANN, each type of ANN receives different kinds of data

(information) depending on the aimed learning field, for instance, in Computer Vision, the first

layer consists of neurons holding the pixel’s intensities; for example, an input layer containing

1024 neurons, expects an image of size 32x32. The terminology layer and neuron here is just a

way to help us humans perceive the data better, where in application, the image is simply

flattened to an array of size 1024x1, the array is the layer and the array elements are the neurons.

However in CNN, the image stays a matrix through the whole network and only flattened in the

last what’s called “fully-connected” layer.

Figure 1.10: Neuron’s parts and their functions in Anatomy

Chapter 1 Deep Face Recognition Fundamentals

19

 Hidden layers

Each network is unique, there is no specific number of layers, some networks use

unknown number of layers between the input and output, hence it is called Hidden. The number

of hidden layers depends on the data type, size, and the aimed learning, for example, for Face

Detection in CNN, the network needs a layer to detect the edges (diagonal, vertical ..), a second

to detect the combination of edges, which are shapes (circles, triangles, ..), a third to detect the

face features (eyes, nose, ..), and another to detect the combination of features and decide

whether it is a face or not.

 Output Layer

The output layer contains the results of the classification, for example, in Computer

vision and hand-writing digits recognition, the output layer contains 10 neurons according to

the number of digits used (0,1,2,..,9), after the many calculations in hidden layers, the last layer

provide an estimation of what could the digit in the input image be. The decision is relying on

mathematical function called the activation functions (table 1.5).

3) Weights

Neural networks connect neurons from layer to layer by weighted associations, the

networks learn (or are trained) by processing examples containing a known "input" and "output"

pairs, forming probability-weighted associations between the two, which are stored within the

data structure of the network itself. The network then adjusts its weighted associations

according to a learning rule and using the error value. Successive adjustments will cause the

neural network to produce output, which is increasingly similar to the target output. After a

sufficient number of these adjustments, the training can be terminated based upon certain

criteria. This is known as supervised learning. And the result is called model [143].

4) Activation Functions

A given node (neuron) takes the weighted sum of its inputs, and passes it through a non-

linear activation function. This is the output of the node, which then becomes the input of

another node in the next layer; The activation function is what decides whether the neuron is

fired (activated) or not, for example in Computer Vision and image processing, if two neurons

detected two different edges that construct a corner, and one of the neurons in the next layer is

specified for this corner, the activation function will ‘activate’ the neuron after receiving the

two positive signals and evidently send a signal to the next layer mentioning there is a corner

in that certain place [17].

Chapter 1 Deep Face Recognition Fundamentals

20

Many activation functions have been used, each has its own formula, hence different

results, although, the functions can be all used for the same purpose, the learning result varies,

thus in order to choose the right function, tests need to be done and compared [18].

Name Function and graph Pros and cons

Step

(biniary)

𝑓(𝑥) = {
0𝑖𝑓𝑥 < 0
1𝑖𝑓𝑥 ≥ 0

 Binary Classification

 Doesn’t work in multi-label classification

 The derivative for the gradient calculation is always 0 so

impossible to update weights

Linear 𝑓(𝑥) = 𝑎𝑥

 Binary and multiclass classification

 Highly interpretable

 The derivative correspond to “a” so the update of weights and

biaises during the backprogation will be constant.

 Not efficient if the gradient is always the same.

Sigmoid
𝑓(𝑥) =

1

1 + 𝑒−𝑥

=
𝑒𝑥

𝑒𝑥 + 1

 The output of each neuron can saturate.

 The best sensitivity is around the central point (0, 0.5).

 The algorithm cannot learn during the saturation (it’s the source

of the vanishing gradient problem, corresponding to the absence of

direction in the gradient).

Tanh 𝑓(𝑥) = 2 ∗

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1

 Range [-1,1]

 The gradient is stronger than sigmoid (derivatives are steeper)

 Like sigmoid, tanh also has a vanishing gradient problem

ReLU [162] 𝑓(𝑥) = 𝑥+ =

max(0, 𝑥)

 Easy to implement and very fast

 True 0 value

 Optimization is easy when activation function is linear

 Most used in the neural networks ecosystem

 It can’t be differentiable when x = 0. The gradient descent can’t

be computed for this point

 “dying ReLU problem”

 Not appropriate for RNN class algorithms (RNN, LSTM, GRU)

Leaky

ReLU

𝑓(𝑥) =

{
0.01𝑥𝑖𝑓𝑥 < 0
𝑥𝑖𝑓𝑥 ≥ 0

 Correct the “dying ReLU problem”

 Same compartment of the ReLU activation function for the part

y=x

Parametric

ReLU

𝑓(𝑥) = {
𝑎𝑥𝑖𝑓𝑥 < 0
𝑥𝑖𝑓𝑥 ≥ 0

 Generalize the ReLU activation function

 Avoid the “dying ReLU problem”

 The parameter “a” is learned by the neural network

Chapter 1 Deep Face Recognition Fundamentals

21

e-ReLU 𝑓(𝑥) =

{
𝑎(𝑒𝑥 − 1)𝑖𝑓𝑥 < 0

𝑥𝑖𝑓𝑥 ≥ 0

 Becomes smooth slowly until its output equal to -α whereas

RELU sharply smoothes.

 Strong alternative to ReLU.

 Unlike to ReLU, ELU can produce negative outputs.

 For x > 0, it can blow up the activation with the output range of

[0, ∞].

ReLU-6 𝑓(𝑥) =

{
max(0, 𝑥)𝑖𝑓𝑥 < 6
6𝑖𝑓𝑥 ≥ 6

 Eliminates the possibility to blow up the activation with the

output range of [0, ∞] when x>0

 Fix the step functions and basic ReLU cons

Softplus 𝑓(𝑥) = ln(1 + 𝑒𝑥)

Softsign 𝑓(𝑥) =
𝑥

1+|𝑥|

Softmax 𝑓(𝑥) =
𝑒𝑥

∑ 𝑒
𝑥𝑗𝐾

𝑗=1

 It is a probability distribution hence the output is different taking

into account the sum of exponential.

Swish 𝑓(𝑥) =
𝑥

1 + 𝑒−𝑥

= x ∗ sigmoid(x)

 Differentiable on each point compared to ReLU.

Table 1.5: The activation functions with their pros and cons.

Chapter 1 Deep Face Recognition Fundamentals

22

 So we can conclure that the activation function defines the output of a neuron /

node given an input or set of input (output of multiple neurons). It’s the mimic of the

stimulation of a biological neuron.

Figure 1.11: Plot corresponds to the activation functions stack in one graphic.

Chapter 1 Deep Face Recognition Fundamentals

23

4.3.2. Artificial Neural Networks Types:

Figure 1.12: A mostly complete ANN Chart [144].

There are multiple Neural Networks types and architectures (figure 1.12), each have its

own strengths and weaknesses, however, there are three mostly used ones, which are:

Chapter 1 Deep Face Recognition Fundamentals

24

1) Convolutional Neural Network

CNN or Convolutional Neural Network is a neural network type that is heavily used in

Computer Vision due to its capability of obliterating the need for fully connected layers during

the execution. Regarding the size of the images used, the neurons in the first layer represent all

the pixels in the image. Hence, it is necessary to find a neural network that can extract the

features from the image and convert it into lower dimensions without losing its characteristics.

[19] (View Chapter 2 for more details on CNN)

2) Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural networks in which node-

to-node form a directed graph along a time continuum. This enables it to display temporal

dynamic behavior. RNNs are derived from feedforward neural networks; thus, they can use

their internal state (memory) to process variable length sequences of inputs. This makes them

applicable to tasks such as unsegmented, connected handwriting recognition, or speech

recognition [21].

RNNs are a sequential data processing family of neural networks. Much as a CNN

which is specialized for processing a grid of values such as an image, an RNN is specialized

for processing a sequence of values𝑥(1), …, 𝑥(𝜏), and just as CNN can readily scale to images

with large width and height, and some CNN can process images of variable sizes, RNN can

scale to much longer sequences than would be practical for networks without sequence-based

specialization. Most recurrent networks can also process sequences of variable length [21].

3) LSTM

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN)

architecture, used in the field of deep learning. Unlike standard feedforward neural networks,

LSTM has feedback connections. It can not only process single data points (such as images),

but also entire sequences of data (such as speech or video) [22].

LSTM networks are well-suited to classifying, processing and making predictions based

on time series data, since there can be lags of unknown duration between important events in a

time series. LSTMs were developed to deal with the vanishing gradient problem that can be

encountered when training traditional RNNs. Relative insensitivity to gap length is an

advantage of LSTM over RNNs, hidden Markov models and other sequence learning methods

in numerous applications [22].

Chapter 1 Deep Face Recognition Fundamentals

25

4.3.3. Artificial Neural networks Application Fields

CNN RNN LSTM

 Image recognition

 Electromyography (EMG)

recognition

 Video analysis

 Natural language

processing

 Anomaly Detection

 Drug discovery

 Health risk assessment

and biomarkers of aging

discovery

 Checkers game

 Go the game

 Time series forecasting

 Machine Translation

 Robot control

 Time series prediction

 Speech recognition

 Speech synthesis

 Time series anomaly detection

 Rhythm learning

 Music composition

 Grammar learning

 Handwriting recognition

 Human action recognition

 Protein Homology Detection

 Predicting subcellular

localization of proteins

 Several prediction tasks in the

area of business process

management.

 Prediction in medical care

pathways

 Robot control

 Time series prediction

 Speech recognition

 Rhythm learning

 Music composition

 Grammar learning

 Handwriting recognition

 Human action recognition

 Sign language translation

 Protein homology detection

 Predicting subcellular localization of

proteins

 Time series anomaly detection

 Several prediction tasks in the area of

business process management

 Prediction in medical care pathways

 Semantic parsing

 Object co-segmentation

 Airport passenger management

 Short-term traffic forecast

Table 1.6: The application fields of the three most used ANN type (CNN, RNN, LSTM).

5. Deep extraction

The architectures can be classified into backbone networks and assembled networks,

inspired by the extraordinary success of the ImageNet challenge, typical architectures from

CNN, such as AlexNet, VGGNet, GoogleNet, ResNet and SENet, are presented and widely

used as a basic model in FR (directly or slightly modified). In more than the mainstream, there

are still some new architectures designed for FR to improve performance. In addition, when the

basic networks are adopted as blocks basic FR methods often form assembled networks with

inputs multiple or multiple tasks. A network is intended for one type of input or one type of

task. Hu et al [28] show that it makes it possible to increase performance after accumulation of

the results of the assembled networks.

Chapter 1 Deep Face Recognition Fundamentals

26

6. Matching faces with deep features

Once the models are formed with big data and an appropriate loss function, each of the

test images is passed through the networks to get an in-depth representation of the features.

Once the characteristics deep extracted, most methods directly calculate the similarity between

two characteristics using the cosine distance, then the nearest neighbor (PPV) and the Threshold

comparison are used for identification and verification tasks [27].

7. Deep Learning models and architectures for FR

The training procedure to obtaining a functioning model is based on the following

steps:

 Randomly initialize the weights for all the nodes. There are smart initialization methods.

 For every training example, perform a forward pass using the current weights, and calculate

the output of each node going from left to right. The final output is the value of the last

node.

 Compare the final output with the actual target in the training data, and measure the error

using a loss function.

 Perform a backwards pass from right to left and propagate the error to every individual node

using backpropagation [145]. Calculate each weight’s contribution to the error, and adjust

the weights accordingly using gradient descent. Propagate the error gradients back starting

from the last layer.

Deep learning networks have established themselves as a promising model for face

recognition. Their success is attributed towards multiple processing layers in order to learn data

representations with several feature extraction levels. CNN have been presented as the deep

learning tool in almost all face recognition systems. The significant breakthrough made by

DeepIDs, DeepFace, Face++, FaceNet, and Baidu has changed the entire investigation scope.

The deep face recognition techniques leverage hierarchical architecture in order to learn

discriminative face representation. It has improved the system’s performance appreciably

which has led to the growth of several successful applications [29].

Chapter 1 Deep Face Recognition Fundamentals

27

7.1. State of the art models in Deep FR

Model Accuracy Extra training Paper Year

VarGFaceNet 99.85% ✗ [118] 2019

ArcFace + MS1MV2 + R100 99.83% ✗ [119] 2018

PFEfuse+match 99.82% ✗ [120] 2019

VarGNet 99.733% ✗ [121] 2019

CosFace 99.73% ✗ [122] 2018

Dyna. AdaCos 99.73% ✗ [123] 2018

PAENet 99.67% ✓ [124] 2019

Seesaw-shuffleFaceNet (mobi) 99.65% ✗ [125] 2019

FaceNet 99.63% ✗ [126] 2015

DeepID3 99.53% ✗ [127] 2015

Ring loss 99.52% ✗ [128] 2018

DeepID2+ 99.47% ✗ [129] 2014

SphereFace 99.42% ✗ [130] 2017

Light CNN-29 99.33% ✗ [131] 2015

Git Loss 99.30% ✗ [132] 2018

CPG 99.30% ✓ [133] 2019

Dynamic MTL 99.21% ✗ [134] 2019

DeepID2 99.15% ✗ [135] 2014

SeqFace 99.03% ✗ [136] 2018

SeetaFace 98.62% ✗ [137] 2016

GaussianFace 98.52% ✗ [138] 2014

VGG+GANFaces 94.9% ✗ [139] 2018

3DMM face shape parameters + CNN 92.35% ✗ [140] 2016

Table 1.7: State-of-the-art models for face recognition (accuracy tested on LFW dataset)

7.2. State of the art Deep Learning architectures in the field of Computer Vision:

Chapter 1 Deep Face Recognition Fundamentals

28

2015 2016 2017 2018 2019 2020

Inception2 [37]

Inception3 [44]

ResNet[38]

SegNet[39]

VGG[40]

Fast R-CNN [41]

Faster R-CNN[42]

Highway [43]

PReLU-Net [65]

Inception4[45]

ResNets[46]

ResNext[47]

ENet[48]

SqueezeNet[49]

YOLO v1[50]

Xception[51]

SSD[52]

DenseNet[53]

DarkNet[66]

WideResNet[67]

PyramidNet[68]

FractalNet[69]

SimpleNet[54]

CapsNet[55]

YOLO v2[56]

MobileNets[57]

RefineDet[58]

RetinaNet[59]

DeformableCNN[60]

ShuffleNet[70]

SENet[71]

CheXNet[72]

DPN[73]

RevNet[74]

McKernel[75]

YOLO v3[61]

MobileNets2[62]

MnasNet[76]

ShuffleNet2[77]

AmoebaNet[78]

DetNet[79]

PeleeNet[80]

FBNet[81]

SqueezeNext[82]

ProxylessNet[83]

DenseNet-

Elastic[84]

ResNet-D[85]

ESPNet2[86]

Big-Little Net[87]

YOLO v4[63]

EfficientNet[88]

HRNet[89]

MobileNets3[90]

Single-path NAS[91]

SNet[92]

MixNet[93]

SpineNet[94]

VoVNet[95]

CSPResNeXt[96]

VoVNet2[97]

DenseNAS-C[98]

ScaleNet[99]

DiCENet[100]

MoGA-A[101]

ECA-Net[102]

GhostNet[103]

DenseNAS-A[104]

MultiGrain[105]

RandWire[106]

SKNet[107]

SCARLET[108]

DetNASNet[109]

CSPDarknet53[110]

Deep-Captcha[111]

RegNetX[112]

RegNetY[112]

Assemble-ResNet[113]

TResNet[114]

ResNeSt[115]

GreedyNAS-A[116]

GreedyNAS-B[116]

GreedyNAS-C[116]

Harm-Net[117]

Table 1.8: State-of-the-art DL architectures in the field of computer vision the past 5 years.

Chapter 1 Deep Face Recognition Fundamentals

29

Deep Learning Datasets for FR

 The choice of the dataset is one of the two most important choices in deep learning after the

architecture of the neural networks. Datasets are as the name suggests a set and a combination

of data, it can be in different types depending on the field of use or the intentional learning. For

example, in Computer Vision, the dataset is a collection of images (labeled in supervised

learning, unlabeled in unsupervised learning). In Face Detection and Recognition for instance,

the dataset is a set of face images in different variations to give the computer as many cases of

the as possible in order for it to detect it and recognize it in any given situation.

 The creation of a face dataset is based on so many criterions, from the image’s visual

parameters (lighting, color spaces, noises...), to the semantic part of the used images (Genders,

Poses, Ages...).

 Many face datasets already exists, each with its own specifics and details, some datasets

focused on poses and others on ages. However, the newest technology has been 3D face

reconstruction, that does not only take face recognition to another level, but gives the computer

the ability to surpass human recognition systems.

7.3. State of the art of face datasets:

Chapter 1 Deep Face Recognition Fundamentals

30

N
a
m

e

Y
e
a
r

Im
a
g

e
s

c
la

sse
s

T
y
p

e

F
o
rm

a
t

R
e
so

lu
tio

n

G
e
n

d
er

 M
/F

A
g
e

E
th

n
ic

ity

L
a
n

d
m

a
r
k

s

P
o
se

s

Illu
m

in
a

tio
n

E
x
p

r
e
ssio

n
s

O
cc

lu
sio

n

S
iz

e

F
re

e

Yale

[146]

1
9

9
7

1
6

5

1
5

G
s

GIF - - - - - Frontal Center

Left

Right

6 (Neutral

Happy

Sad

Sleepy

Surprised

Wink)

Glasses 6.4

MB

✓

FERET

Color

[147]

1
9

9
3

 - 1
9

9
6

1
4

1
2

6

1
1

9
9

R
G

B

TIFF 256×

384

- - - - - - - - 8.5

GB

✓

PIE

[148]

2
0

0
0

4
0

0
0

0

6
8

R
G

B

RAW

PPM

640×

486

- All - - 13 43 4 Glasses

Beard

&more

40

GB

✓

Multi

PIE

[149]

2
0

0
0

7
5

0
0
0
0

3
3

7

R
G

B

JPG

PNG

Low -

High

235/10

2

27yo 60% Eur-

Am

35% Asian

3% Af-Am

39-68

manual

15 19 6 (Neutral

Smile

Surprise

Squint

Disgust

Scream)

Glasses 308

GB

✗

Yale B+

[150]

2
0
0

1

1
6
1

2
8

2
8

G
s

PGM 680×

480

- - Very few - - 64 - - 2GB ✓

Chapter 1 Deep Face Recognition Fundamentals

31

N
a
m

e

Y
e
a
r

Im
a
g

e
s

c
la

sse
s

T
y
p

e

F
o
rm

a
t

R
e
so

lu
tio

n

G
e
n

d
er

 M
/F

A
g
e

E
th

n
ic

ity

L
a
n

d
m

a
r
k

s

P
o
se

s

Illu
m

in
a

tio
n

E
x
p

r
e
ssio

n
s

O
cc

lu
sio

n

S
iz

e

F
re

e

CAS-

PEAL-

R1 [151]

2
0

0
2

 - 2
0

0
3

3
0

9
0

0

1
0

4
0

G
s

BMP 320×

240

595/44

5

All Asian - 3 (Frontal

Up

Down)

15

(Ambiant

Fluorescent

Incandesce

nt

Elevation+

45°

Elebvation

0°

Elevation-

45°

And more)

6 (Neutral

Smile

Frown

Surprise

Eyes closed

Mouth open)

Glasses

Hats

26.6

GB

✓

FiA

[152]

2
0
0

4

 1
8
0

R
G

B

MP4

(20s)

- - - - - - varies - - 257

GB

✗

CelebA

[153]

2
0

0
5

2
0

2
5
9
9

1
0

1
7
7

R
G

B

JPG 218×

178

84434/

11816

5

- Varies but

Mostly

White

5 Varied Varied Varied Glasses

Bangs

Hats

And

more

- -

Chapter 1 Deep Face Recognition Fundamentals

32

N
a
m

e

Y
e
a
r

Im
a
g

e
s

c
la

sse
s

T
y
p

e

F
o
rm

a
t

R
e
so

lu
tio

n

G
e
n

d
er

 M
/F

A
g
e

E
th

n
ic

ity

L
a
n

d
m

a
r
k

s

P
o
se

s

Illu
m

in
a

tio
n

E
x
p

r
e
ssio

n
s

O
cc

lu
sio

n

S
iz

e

F
re

e

LFW

[154]

2
0

0
7

1
3

2
3

3

5
7

4
9

R
B

G

G
s

JPEG 250×

250

Mostly

men

10-

80yo

Very few - - Poor - Strong 232

MB

✓

SCface

DB

[155]

2
0

1
1

4
1

6
0

1
3

0

R
G

B

G
s

JPEG Not

fixed

115/15 20-

75yo

Caucasians 21

manual

9 Varied - - - -

3DMAD

[156]

2
0

1
3

7
6

5
0

0

1
7

R
G

B

MP4

(300

frame)

680×

480

- - - - - - - - 58

GB

✓

FFHQ

[157]

2
0

1
9

7
0

0
0

0

- R
G

B

PNG 1024×

1024

- - Varied - Varied Varied Varied Glasses

Hats

And

more

2.56

TB

✓

AR

[158]

1
9

9
8

4
0

0
0

1
2

6

 JPG 576×

768

70/56 - Frontal

Left on

Right on

Both on

Neutral

Smile

Anger

Scream

Sunglass

es

Scarf

-

CVL

[159]

2
0

0
3

7
9

8

1
1

4

 JPEG 640×

480

Male

(90%)

Young Frontal

Left/Right

45 Degrees

left/right

Uniform Serious

Smile (teeth)

with/without

None -

Chapter 1 Deep Face Recognition Fundamentals

33

N
a
m

e

Y
e
a
r

Im
a
g

e
s

c
la

sse
s

T
y
p

e

F
o
rm

a
t

R
e
so

lu
tio

n

G
e
n

d
er

 M
/F

A
g
e

E
th

n
ic

ity

L
a
n

d
m

a
r
k

s

P
o
se

s

Illu
m

in
a

tio
n

E
x
p

r
e
ssio

n
s

O
cc

lu
sio

n

S
iz

e

F
re

e

Muct

[160]

2
0

1
0

3
7

5
5

2
7

6

 - 640×

480

50%

50%

All Frontal

Left/Right

Up/Down

Low

Medium

High

Neutral

Smile

Glasses

Headdres

ses

-

UTKFa

ce [161]

2
0

1
7

2
0

0
0

0

- R
G

B

JPG Not

fixed

- 0-

116yo

All 68 Varied Varied - - 1.5

GB

✓

VGG

Face 2

[218]

2
0

1
8

3
.3

1
M

9
1

3
1

R
G

B

JPG Not

fixed

M>F All different - Varied Varied Varied Varied 37

GB

✓

CASIA

web

[219]

2
0

1
4

4
9

4
4
1

4

1
0

5
7
5

R
G

B

BMP 640×

480

- All Varied - Varied Varied Varied Glasses

And

more

 ✓

CelebM

ask-hq

[220]

2
0

2
0

+
3
0

0
0
0

1
9

R
G

B

JPG 512×

512

- - varied - Varied Varied Varied Hair

Hat

Glasses

And

more

 ✓

FFDB

[221]

2
0
1

0

2
8
4

5

5
1
7

1

R
G

B

G
S

JPG low - - Varied - Varied Varied Varied Hat

Glasses

And

more

550

MB

✓

Chapter 1 Deep Face Recognition Fundamentals

34

N
a
m

e

Y
e
a
r

Im
a
g

e
s

c
la

sse
s

T
y
p

e

F
o
rm

a
t

R
e
so

lu
tio

n

G
e
n

d
er

 M
/F

A
g
e

E
th

n
ic

ity

L
a
n

d
m

a
r
k

s

P
o
se

s

Illu
m

in
a

tio
n

E
x
p

r
e
ssio

n
s

O
cc

lu
sio

n

S
iz

e

F
re

e

Wider

face

[222]

2
0

1
6

3
2

2
0

2

3
9

3
7

0
3

R
G

B

JPG low - - Varied - Varied Varied Varied Scarf

Makeup

And

more

5 GB ✓

IMDb -

Wiki

[223]

2
0

1
5

5
2

3
0

5
1

2
0

2
8

4

R
G

B

 Not

fixed

- - - - Varied Varied Varied Hat

And

more

3 TB ✓

Table 1.9: State-of-the-art datasets in the facial recognition field.

Chapter 1 Deep Face Recognition Fundamentals

35

8. Deep Learning Challenges:

Although deep learning techniques are proving its best and has been solving various

complicated applications with multiple layers and high level of abstraction. It is surely accepted

that the accuracy, acuteness, receptiveness and precision of deep learning systems are almost

equal or may sometimes surpass human experts. To feel the exhilaration of victory, in today’s

scenario, the technology has to accept many challenges. So, here is the list of challenges which

deep learning has to overcome is:

 Deep learning algorithms have to continuously manage the input data.

 Algorithms need to ensure the transparency of the conclusion.

 Deep learning technology requires expensive high performance GPUs and storage

equipment.

 It needs improved methods for big data analytics.

 Deep networks are called black box networks, because of their mysterious mechanism.

 The presence of hyper-parameters and its complex design.

 Suffer from local minima.

 Computationally intractable.

 Need a large amount of data.

 Expensive for the complex problems and computations.

 No strong theoretical foundation.

 Difficult to find the topology, training parameters for the deep learning.

 Deep learning provides new tools and infrastructures for the computation of the data and

enables computers to learn objects and representations.

9. Conclusion:

In this Chapter, we have presented the basics of face detection and recognition, as well

as the newest approach and trend used in recent years, which is Deep Learning, starting from

Artificial intelligence and Machine Learning concepts, then we presented the different deep

learning architectures and state of the art face recognition models that are based on CNN, after,

we have mentioned challenges and obstacles of DL technology and made comparison between

the most recent works that have been developed for facial recognition.

This study allowed us to see computer science in a whole different vision, The past

decades of hard work and studies have led to this astonishing technology of Deep Learning

which is unlike the usual technologies by all means, it gives the computer the ability to think

and literally mimic human behavior and in some cases surpass it, with a very small human

Chapter 1 Deep Face Recognition Fundamentals

36

supervision, thus, working with Deep Learning does not require the human intervention to

specify or manually program the details in order to accomplish a certain task like face detection

and recognition.

Although, the works and as mentioned, surpassed human’s capabilities, this technology

still needs some progress and development to get to the point where computers think and act on

their own (Artificial Intelligence). In the next chapter we present CNN in depth and how it is

used to perform a Facial Recognition task, also, we mention the frameworks available for the

implementation of CNN, plus the challenges and obstacles and suggest some future work.

Chapter 2 Convolutional Neural Network

37

II. Convolutional Neural Network

1. Introduction

In Deep Learning, Convolutional neural network (CNN or ConvNet) is a type of feed-

forward artificial neural network in which the connectivity pattern between neuron is inspired

by the organization of the human visual cortex.

With the development of deep learning, face recognition technology based on CNN

(Convolutional Neural Network) has become the main method adopted in the field of face

recognition. In this Chapter we studied the basic principles of CNN:

 The most important methods build in CNN such as convolution and pooling.

 The different layers presented in CNN architecture, from input to fully connected and

output layer with the definition of their details from data type to the functions applied

on it.

 Techniques used in improving the CNN, such as Normalization, Optimization and

Regularization, and how to avoid overfitting or underfitting.

 The frameworks and the predefined functions used to implement the CNN.

2. Why CNN for Computer Vision

The average number of neurons in the adult human primary visual cortex in each

hemisphere has been estimated at around 140 million. The visual cortex has small regions of

cells that are sensitive to specific regions of the visual field. Some individual neuronal cells in

the brain reply (or fires) only in the presence of edges of a certain orientation. For example,

some neurons fires when exposed to vertical edges and some when shown horizontal or

diagonal edges [142].

First, The computer sees the image as a collection of color intensities called a Pixel, in

case of a colored RGB image, each pixel will have three values Red, Green, and Blue, in result,

the image will be a matrix with three dimensions Width, Height, and Depth (depth=3 in RGB

images).

Figure 2.1: How does the computer sees an image in RGB type

Chapter 2 Convolutional Neural Network

38

Second, It is preferable to use convolutional neural networks for image classification

rather than the traditional neural networks (multilayer perceptron MLP), in CNN the neuron in

a layer will only be connected to a small region of the layer before it, unlike the neuron in MLP

which is a fully connected networks, MLPs’ cons are:

 MLP use one perceptron (neuron) for each input (e.g. pixel in an image, multiplied by 3 in

RGB case). The amount of weights rapidly becomes unmanageable for large images. For a

224 x 224 pixel image with 3 color channels there are around 150,000 weights that must be

trained! As a result, difficulties arise whilst training and overfitting can occur.

 MLPs react differently to an input (images) and its shifted version, they are not translation

invariant. For example, if a picture of a face appears in the top left of the image in one

picture and the bottom right of another picture, the MLP will try to correct itself and assume

that a face will always appear in this section of the image (figure 2.2).

3. CNN Architecture:

CNN’s basic architecture includes these layers (figure 2.3), the main difference between

the existing works that uses CNN as a base is the choice and the order of these layers and

methods and its parameters.

3.1. Input Layer:

Input layers in CNN hold the raw pixel values of the image. Image data is represented

by 3D matrix (width × height × depth). In traditional MLP, the image needs to be reshaped into

a single column. Supposing an image of dimension 28 x 28 =784, it needs to be converted into

784 x 1 before feeding it to the input layer. If there are “m” training examples then dimension

of input will be (784, m). However, in CNN, the image remains of a shape Matrix.

Figure 2.2: Shifted version of the same image

Figure 2.3: Basic CNN architecture

Chapter 2 Convolutional Neural Network

39

3.2. Convolution Operation:

Convolutional layer is sometimes called feature extractor layer, because features of the

image are extracted within this layer. First of all, a part of the image is connected to convolution

layer to perform convolution operation and calculating the dot product between receptive field

(it is a local region of the input image that has the same size as that of filter) and the filter.

Result of the operation is single integer of the output volume. Then the filter slides over the

next receptive field of the same input image by a Stride and perform the same operation again.

This process is repeated again and again until the image’s end. The output will be the input for

the next layer.

The convolution operation can be visualized in (Figure 2.5). Here the image dimension

is 4x4 and filter is 3x3, hence we are getting output after convolution is 2x2.

 Filters:

The filters applied in convolution are sets of cube-shaped weights that are applied

throughout the image. Each 2D slice of the filters are called kernels. These filters introduce

translation invariance and parameters sharing.

Figure 2.4: Example of Convolution operation

Figure 2.6: Visualization of the use of filters in Convolution Operation

Figure 2.5: Visualization of the Convolution Operation

Chapter 2 Convolutional Neural Network

40

 Padding

Applying convolutions on a normal image reside down the image by an amount

depending on the size of the filter. Hence why padding is used to eliminate the loss of what can

be an important part of the image.

3.3. ReLU function:

Activation layers in CNN usually consists of the ReLU function, which is the most

successful non-linear function; an element wise activation function, such as the max(0,x),

thresholding at zero. Applying it leaves the size of the volume unchanged (see table 1.5).

3.4. Pooling Operation:

Pooling is used to reduce the spatial volume of input image after convolutions. It is used

between two convolutions. If FC (fully connected) is applied after Convo without applying

pooling or max pooling, then it will be computationally expensive. The max pooling is the only

way to reduce the spatial volume of input image. In the example bellow, max pooling is applied

in single depth slice with Stride of 2. the 4x4 dimension input is reduced to 2x2 dimensions.

Figure 2.7: Visualization of different paddings and their resulted output

Figure 2.8: Usage Over Time of Most known activation functions

Figure 2.9: Example of Max Pooling in CNN

Chapter 2 Convolutional Neural Network

41

There is no parameter in pooling layer but it has two hyper-parameters — Filter (F) and

Stride(S). In general, if we have input dimension W1 x H1 x D1, then the W2, H2, D2 of the

output is:

W2 = (W1−F)/S+1, H2 = (H1−F)/S+1, D2 = D1

 Pooling types:

Type: Description Pros

Max

[176]

Calculates the maximum value for patches of a feature map, It

adds a small amount of translation invariance.

Best at extracting more

pronounced features like edges

Average

[177]

Calculates the average value for patches of a feature map Extracts features more smoothly

than max pooling

Global

[177]

With global pooling reduces the dimensionality from 3D to 1D.

Therefore global pooling outputs 1 response for every feature

map. This can be the maximum or the average or whatever other

pooling operation used.

It is often used at the end of the backend of a convolutional neural

network to get a shape that works with dense layers.

Reduces the dimensionality from

3D to 1D and eliminate the need

to apply flattening

Spatial

Pyramid

[178]

SPP works by dividing the feature maps output by the last

convolutional layer into a number of spatial bins with sizes

proportional to the image size, so the number of bins is fixed

regardless of the image size. Bins are captured at different levels

of granularity

Maps any size input down to a

fixed size output.

Figure 2.10: Example of pooling (down sampling) in CNN

Chapter 2 Convolutional Neural Network

42

Cascade

Corner

[179]

It is a technique for object detection that seeks to better localize

corners by encoding explicit prior knowledge. Suppose we want

to determine if a pixel at location is a top-left corner. Let and be

the feature maps that are the inputs to the top-left corner pooling

layer, and let and be the vectors at location in and respectively.

With feature maps, the corner pooling layer first max-pools all

feature vectors between and into a feature vector, and max-pools

all feature vectors between and into a feature vector. Finally, it

adds and together.

Better localization of the corners

by encoding explicit prior

knowledge

Center

[180]

The backbone outputs a feature map, and to determine if a pixel

in the feature map is a center keypoint, we need to find the

maximum value in its both horizontal and vertical directions and

add them together. By doing this, center pooling helps the better

detection of center keypoints.

Capture richer and more

recognizable visual patterns. The

geometric centers of objects do

not necessarily convey very

recognizable visual patterns.

Table 2.1: Pooling types with their definitions and advantages

3.5. Fully Connected Layer:

Fully Connected Layer is a feed forward neural network. Fully Connected Layers form

the last few layers in the network. The input to the fully connected layer is the output from the

final Pooling or Convolutional Layer, which is flattened and then fed into the fully connected

layer.

FC layer computes the class scores, as with ordinary Neural Networks and as the name

implies, each neuron in this layer will be connected to all the neurons in the previous layer. As

for the number of FC, it varies depending on the data used. Some famous CNN structure in

ILSVRC, such as AlexNet, VGG, ZF net, etc. use two fully connected layer, followed by the

output layer.

3.6. Softmax/Logistic function:

Softmax or Logistic function exists in the last layer of CNN. It resides at the end of FC

layer. Logistic is used for binary classification and softmax is for multi-classification. It is a

Figure 2.11: Usage Over Time of Most known Pooling methods

Chapter 2 Convolutional Neural Network

43

form of multinomial logistic regression that normalizes an input value into a vector of values

that follows a probability distribution whose total sums up to 1.

The output values are between the range [0,1] which enable us to avoid binary

classification and accommodate as many classes or dimensions in our neural network model.

As an aside, another name for Softmax Regression is Maximum Entropy (MaxEnt) Classifier

[162].

The function is usually used to compute losses that can be expected when training a data

set. Known use-cases of softmax regression are in discriminative models such as Cross-Entropy

and Noise Contrastive Estimation. These are only two among various techniques that attempt

to optimize the current training set to increase the likelihood of predicting the correct word or

sentence.

3.7. Output Layer

The output layer in a CNN as mentioned previously is a fully connected layer, where

the input from the other layers is flattened and sent so as the transform the output into the

number of classes as desired by the network. The Output layer contains the label which is in

the form of one-hot encoded.

The output of the CNN is also a 4D array. Where batch size would be the same as input

batch size but the other 3 dimensions of the image might change depending upon the values of

the filter, kernel size, and padding we use

3.8. Normalization

Normalization is an approach which is applied during the preparation of data in order to

change the values of numeric columns in a dataset to use a common scale when the features in

the data have different ranges. Hence, it is used to make optimization easier by smoothing the

loss surface of the network. It normalizes each input channel across a mini-batch. To speed up

training of convolutional neural networks and reduce the sensitivity to network initialization, it

is used between convolutional layers and nonlinearities, such as ReLU layers [163].

 Normalization Methods:

Name Reference Year

1 Layer Normalization Ba, J.L et al [164] 2016

2 Batch Normalization Ioffe, S et al [165] 2015

3 Local Response Normalization Krizhevsky et al [166] 2012

Chapter 2 Convolutional Neural Network

44

4 Instance Normalization Ulyanov D et al [167] 2016

5 Spectral Normalization Miyato T et al [168] 2018

6 Adaptive Instance Normalization Ogasawara E et al [169] 2017

7 Weight Normalization Salimans T et al [170] 2016

8 Conditional Batch Normalization De Vries H et al [171] 2017

9 Group Normalization Wu T et al [172] 2018

10 Activation Normalization Kingma D.P et al [173] 2018

11 Weight Demodulation Karras T et al [174] 2019

12 Switchable Normalization Luo P et al [175] 2018

13 Local Contrast Normalization Foracchia M et al [176] 2009

14 Weight Standardization Qiao et al [177] 2019

15 Conditional Instance

Normalization

Huang X et al [178] 2016

16 SyncBN He K et al [179] 2018

17 Attentive Normalization Li X et al [180] 2019

18 Decorrelated Batch Normalization Huang L et al [181] 2018

Table 2.2:Most used Normalization Methods ordered by their number of use

3.9. Regularization

In mathematics, statistics, finance, computer science, particularly in machine learning

and inverse problems, regularization is the process of adding information in order to solve an

ill-posed problem or to prevent overfitting. Regularization applies to objective functions in ill-

posed optimization problems.

Regularization strategies are designed to reduce the test error of a machine learning

algorithms, possibly at the expense of training error. Many different forms of regularization

exist in the field of deep learning

 Dropout

Dropout is the most used regularization technique, it is a technique where randomly

selected neurons are ignored during training. They are “dropped-out” randomly. It is a

stochastic regularization technique that reduces overfitting by (theoretically) combining many

different neural network architectures. With Dropout, the training process essentially drops out

neurons in a neural network. They are temporarily removed from the network, which can be

visualized in (figure 1.12).

Chapter 2 Convolutional Neural Network

45

This removal of neurons and synapses during training is performed at random, with a

parameter p that is tunable (or, given empirical tests, best set to 0.5 for hidden layers and close

to 1.0 for the input layer). This effectively means that, according to the authors, the “thinned”

network is sampled from the global architecture, and used for training.

It drops a unit (along with connections) at training time with a specified probability p (a

common value is p= 0.5). all units are present, but with weights scaled by p (i.e. becomes pw).

The idea is to prevent co-adaptation, where the neural network becomes too reliant on particular

connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of

as creating an implicit ensemble of neural networks.

 Regularization Methods:

Reference Name

1 Srivastava N et al [182] Dropout

2 Loshchilov I et al [183] Weight Decay

3 Choe J et al [184] Attention Dropout

4 Pereyra G et al [185] Label Smoothing

5 Grandvalet Y et al [186] Entropy Regularization

6 Yao Y et al [187] Early Stopping

7 Kingma D.P et al [188] Variational Dropout

8 Wan L et al [189] DropConnect

9 Elden L et al [190] R1 Regularization

10 Park M.Y et al [191] L1 Regularization

11 Gal Y et al [192] Embedding Dropout

12 Kim S.J et al [193] Off-Diagonal Orthogonal

13 Oster H.S et al [194] Temporal Activation Regularization

Table 2.3: Regularization Methods ordered by their number of use

Figure 2.12: Standard Neural Net VS After applying Dropout

Chapter 2 Convolutional Neural Network

46

3.10. Optimization

Optimizers are algorithms or methods used to change the attributes of neural network

such as weights and learning rate in order to reduce the losses. In the simplest case, an

optimization problem consists of maximizing or minimizing a real function by systematically

choosing input values from within an allowed set and computing the value of the function. The

generalization of optimization theory and techniques to other formulations constitutes a large

area of applied mathematics. More generally, optimization includes finding "best available"

values of some objective function given a defined domain (or input), including a variety of

different types of objective functions and different types of domains.

 Most known Optimizers:

Name Advantages Disadvantages

Gradient

Descent

 Easy computation

 Easy to implement

 Easy to understand

 May trap at local minima

 Weights are changed after calculating

gradients on the whole dataset. So, if the

dataset is too large, than this may take

years to converge to the minima.

 Requires large memory to calculate

gradients on the whole dataset.

Stochastic

Gradient

Descent

 Frequent updates of model parameters

hence, converges in less time.

 Requires less memory as no need to store

values of loss functions.

 May get new minima’s.

 High variance in model parameters.

 May shoot even after achieving global

minima.

 To get the same convergence as gradient

descent needs to slowly reduce the value of

learning rate.

Mini-Batch

Gradient

Descent

 Frequently updates the model parameters

and also has less variance.

 Requires medium amount of memory.

Momentum Reduces the oscillations and high

variance of the parameters.

 Converges faster than gradient descent.

 One more hyper-parameter is added which

needs to be selected manually and

accurately.

Nesterov

Accelerated

Gradient

 Does not miss the local minima.

 Slows if minima’s are occurring.

 Still, the hyperparameter needs to be

selected manually.

Adagrad Learning rate changes for each training

parameter.

 Computationally expensive as a need to

calculate the second order derivative.

Chapter 2 Convolutional Neural Network

47

 Don’t need to manually tune the learning

rate.

 Able to train on sparse data.

 The learning rate is always decreasing

results in slow training.

AdaDelta Now the learning rate does not decay and

the training does not stop.

 Computationally expensive.

Adam The method is too fast and converges

rapidly.

 Rectifies vanishing learning rate, high

variance.

 Computationally costly.

Table 2.4:Advantages and Disadvantages of popular Optimization algorithms

 Adam is the best optimizers, if we want to train the neural network in less time and more

efficiently.

 For sparse data use the optimizers with dynamic learning rate.

 If, we want to use gradient descent algorithm than min-batch gradient descent is the best

option.

 Most used Optimization methods:

Name Reference Year

1 Adam Kingma D.P et al [195] 2014

2 SGD Robbins H and Monro S [196] 1951

3 ADMM Boyd S et al [197] 2000

4 RMSProp Hinton G [198] 2013

5 SGD with Momentum Ning Q et al [199] 1999

6 AdaGrad Duchi J et al [200] 2011

7 TTUR Heusel M et al [201] 2017

8 Gradient Clipping Pascanu et al [202] 2000

Figure 2.13: Usage Over time of the most popular Optimization methods

Chapter 2 Convolutional Neural Network

48

9 LAMB You Y et al [203] 2019

10 AMSGrad Reddi et al [204] 2019

11 Nesterov Accelerated Gradient Nesterov Y [205] 1983

12 Adafactor Shazeer M et al [206] 2018

14 Natural Gradient Descent Rattray et al [207] 1998

15 LARS You Y et al [208] 2017

16 Population Based Training Jaderberg M et al [209] 2017

Table 2.5:Most used Optimization Methods and ordered by their use rate

4. Image Augmentation:

Image augmentation is a data augmentation method that generates more training data

from the existing training samples. The common case in most machine learning applications,

especially in image classification tasks, is that new training data is hard to obtain or expensive.

Data augmentation is a way to generate more training data from our current set. It

enriches or “augments” the training data by generating new examples via random

transformation of existing ones. This way we artificially boost the size of the training set,

reducing overfitting (figure 2.14).

Data augmentation is done dynamically during training time. Common transformations

are: rotation, shifting, resizing, exposure adjustment, contrast change etc. data augmentation is

only performed on the training data. The validation or test set remains unchanged.

5. Overfitting and Underfitting in CNN

Overfitting happens when the neural network is good at learning its training set, but is

not able to generalize its predictions to additional, unseen examples. This is characterized by

low bias and high variance. Underfitting happens when the neural network is not able to

accurately predict for the training set, not to mention for the validation set. This is characterized

by high bias and high variance (details in Chapter 1 -Machine learning-).

Figure 2.14: Example on Data Augmentation in Computer Vision.

Chapter 2 Convolutional Neural Network

49

Methods to avoid Overfitting Methods to avoid Underfitting

 Retraining neural networks:

running the same model on the same training set but

with different initial weights, and selecting the

network with the best performance.

 Multiple neural networks:

training several neural network models in parallel,

with the same structure but different weights, and

averaging their outputs.

 Early stopping:

training the network, and monitoring the error on the

validation set after each iteration, and stopping

training when the network starts to over-fit the data.

 Regularization:

adding a term to the error function equation,

intended to decrease the weights and biases, smooth

outputs and make the network less likely to over-fit.

 Tuning performance ratio:

similar to regularization, but using a parameter that

defines by how much the network should be

regularized.

 Adding neuron layers or inputs:

adding neuron layers, or increasing the number of

inputs and neurons in each layer, can generate more

complex predictions and improve the fit of the

model.

 Adding more training samples or improving

quality:

the more training samples you feed into the

network, and the better they represent the variance

in the real population, the better the network will

perform.

 Dropout:

randomly “kill” a certain percentage of neurons in

every training iteration. This ensures some

information learned is randomly removed, reducing

the risk of overfitting.

 Decreasing regularization parameter:

regularization can be overdone. By using a

regularization performance parameter, you can

learn the optimal degree of regularization, which

can help the model to better fit the data.

Table 2.6:Methods used to avoid both Underfiting and overfitting

6. Frameworks used to implement CNN

 Given that deep learning is the key to performing tasks of a higher level of sophistication,

building them successfully is a proven to be challenging for data scientists and data engineers

across the globe. Today, we have a big collection of frameworks at our disposal that allows us

to develop tools that can offer a better level of abstraction along with simplification of difficult

programming challenges.

 Each framework is built in a different manner for different purposes. The top eight deep

learning frameworks with their main highlights are:

Framework Highlights

TensorFlow [210] - Robust multiple GPU support.

- Graph visualization and queues using TensorBoard.

- Known to be complex and has a steep learning curve.

- Excellent documentation and community support.

Chapter 2 Convolutional Neural Network

50

PyTorch [211] - Excellent at rapid prototyping.

- Strong support for GPUs as parallel programs can be implemented on multiple

GPUs.

- Provides cleaner interface and is easier to use.

- Facilitates the exchange of data with external libraries.

DeepLearningG4J

[212]

- Brings together the entire Java ecosystem to execute deep learning.

- Can process massive amounts of data quickly.

- Includes both multi-threaded and single-threaded deep learning frameworks.

- Can be administered on top of Hadoop and Spark.

CNTK - The

Microsoft

Cognitive Toolkit

[213]

- Highly efficient and scalable for multiple machines.

- Supported by interfaces such as Python, C++, and Command Line.

- Fit for image, handwriting and speech recognition use cases.

- Supports both RNN and CNN type of neural networks.

Keras [214] - Easy-to-understand and consistent APIs.

- Seamlessly integrates with TensorFlow workflow.

- Supports multiple deep learning backends.

- Built-in support for distributed training and multi-GPU parallelism.

ONNX [215] - Provides interoperability and flexibility.

- Provides compatible runtimes and libraries.

- Liberty of using the preferred framework with a selected inference engine.

- Maximizes performance across hardware.

MXNet [216] - Hybrid programming which provides the best of both imperative and symbolic

programming.

- Provides distributed training.

- Supports deployment in different languages such as Java, Scala, R, Julia, C++, Perl,

and Clojure.

- Nearly linear on GPU clusters which provides excellent scalability.

Caffe [217] - C++ library comes with a Python interface.

- The configuration defines models without hard-coding.

- Easier to set up and train, without having to build onto the network.

- Support for recurrent neural networks is quite poor.

Table 2.7: Top Eight Framework used in Deep Learning with their main highlights

7. Conclusion

In this Chapter, we have presented the basics of CNN, starting from its main

fundamentals such as Convolutions and Pooling, moving on to its layers types and their detailed

functioning. then we presented the different ways to improve the work of the CNN using

Normalization, Regularization, and Optimization methods. Next, the implementation of CNN

and how to use it for computer vision in general. After, we have made comparison between the

Chapter 2 Convolutional Neural Network

51

most used frameworks to achieve the best recognition rate taking in consideration the storage

space and the time available.

We learned that in other machine learning algorithms, the pictures need us to perform

preprocessing or feature extraction. However, we rarely need to do these operations when using

CNN for image processing. In terms of algorithms, there are sharing parameters between the

convolution layers of CNN. The advantage of this is that the memory requirements are reduced,

and the number of parameters to be trained is correspondingly reduced. The performance of the

algorithm is therefore improved.

Today, very good results have been achieved in the field of face recognition and other

computer vision applications, which will be framed in the next Chapter, where we dived into

conception, code programming and implementation, and evaluated a CNN on our own face

dataset called “Actors dataset”, where we obtained some impressive results and accuracy.

Chapter 3 Conception, Implementation and Results

52

III. Conception, Implementation and Results

1. Introduction

After presenting the fundamentals of Facial Recognition systems and Artificial

intelligence in chapter one, and taking deeper look into Convolutional neural network’s details

in chapter two, in this chapter we made our conception and implemented the method we have

chosen to resolve the facial recognition problem using the newest state of the art Deep Learning

technology.

 Using Python programming language in Google Colab’s free programming environment.

This chapter focuses on the conception and details it into four main stages:

Stage 1: Loading, augmenting and pre-processing the data.

Stage 2: Defining, fine-tuning the model’s architecture.

Stage 3: Training and fitting the model.

Stage 4: Estimating and testing the model’s performance.

2. Loading and pre-processing the data

2.1. Loading the Dataset:

Preprocessing data step consist of the dataset and its partitioning choice, the different

mathematical image enhancement methods such as noise reduction, data augmentation…

Figure 3.1: Conception Graph

Chapter 3 Conception, Implementation and Results

53

We made a new dataset in this work called “Actors”, it has 12 classes (12 different

known actors), with an average of 30 images per class, collected from the internet which

becomes over 3600 images after applying data augmentation, the images are of JPG format

with different resolutions and varies from high to low quality, with lightning variations and

background occlusion variation.

The samples of faces we have chosen are in different varieties; first: two facial

expressions only (neutral and smiling), second: different facial occlusion (Glasses, moustache,

beard, hat, makeup), the poses are mainly frontal with just few side variations, and there is

age variation as well.

Here are the steps we did in order to load our data:

1) Connect Google Drive with Google Colab to easily manage the images and files.

2) Imported and used OpenCv to read the images and other python dependencies to

manage the files in python.

2.2. Preprocessing the dataset:

 The preprocessing consist of detecting, aligning, and cropping the faces, and these

are steps:

1) Imported Dlib’s face detector which uses CNN.

2) Read and converted each image to grayscale using OpenCV.

3) Cropped the faces from the original RGB images using the coordinates from Dlib

detector.

Figure 3.2: Example of our Actors Dataset

Chapter 3 Conception, Implementation and Results

54

4) Applied face augmentation, on the cropped images that resulted 9 different and new

images for each image.

5) Divided the dataset to 80% learning set and 20% validating set.

3. Defining the model’s architecture

Defining the model’s architecture requires choosing the hyper-parameters of the model,

which are:

 Number of Convolutional layers.

 Type of activation functions for each layer.

 Number of hidden units for each layer.

The choice of these hyper-parameters can be done by copying the existing

research/studies and doing transfer learning on our own dataset. Or experimenting with new

values until the best match is found, but this is a time consuming process. In our work we used

the benchmark CNN architecture VGG16 model, which is combined of

 16 convolutional layers.

 5 max pooling layers

Figure 3.4: VGG16 model architecture with details

Figure 3.3: Example Dlib face detector result

Chapter 3 Conception, Implementation and Results

55

After defining the model as it is, prepared the training and test data by encoding it using

this model, the results are four numpy arrays files and a weight file (train data, train labels, test

data and test labels) we than removed the last Softmax layer and added these layers:

4. Training the model

In short, train the model on the training data and validate it on the test data numpy array

files. Once we are satisfied with the model’s performance on the validation set, we can use it

for making predictions on new unknown data.

In this stage the number of epochs is defined, we tried many choices and settled with 50

epochs which (epochs are the number of how many times the model training is repeated), it is

usually done with a shuffle and random choices of the dataset items. After, we saved the model

for later use.

Figure 3.6: The accuracy and loss values in the fitting task

Figure 3.5: The last layers added to the VGG16 model with their details

Chapter 3 Conception, Implementation and Results

56

5. Estimating the model’s performance

Finally, we load the test data (images) and go through the pre-processing step here as

well. We then predict the classes for these images using the trained model and estimate how

well the model perform by comparing how many correct predictions and mistakes (error) were

made.

The model achieved great results with accuracy over 99% in almost all the new

unknown test images which is considered to be expected from a strong model such as VGG16,

although it’s outdated compared to newer models but still outperforms all of them in the field

of Face Recognition.

6. Conclusion

In this Chapter, we have presented the conception with its implementation details,

starting from the main conception graph, we divided the work into four stages as mentioned in

the introduction, moving on we provided some real face images examples from the dataset that

we made with their preprocessing results. Next, we used the model VGG16 for face recognition

specifying each of its layer’s parameters such as data size and types and also the activation

functions used.

Figure 3.7: Some of the result retrieved on new unknown images.

Chapter 3 Conception, Implementation and Results

57

Then we added the specification of the layers added after removing the last softmax

layer from VGG16, for transfer learning using Batch Normalization, dense and other activation

functions. Last, we compiled the new model using Adam optimizer and Keras’s Cross entropy

for the calculation of the loss function.

We learned transfer learning, which is a very important way of taking advantage of

benchmark pre-trained models which are trained on bigger and richer datasets using faster

hardware and for longer periods of times that we can’t afford to waste again.

Chapter 3 Conception, Implementation and Results

58

General Conclusion

 The implementation of a real-time face recognition application is an undisputed

requirement today due to security needs in several areas. Given the quantity of potential

software (security, social networks, etc.) that can be based on this application, it must meet the

requirements of robustness and speed of results. Our project is a temptation to realize such an

application.

 In this thesis, we described the problem of 2D face recognition by an algorithm based

CNN architecture model, in the presence of illumination variation and poses. The main methods

of the literature have been studied, whether on face recognition systems or the various works

on deep learning. And we particularly focused on choosing the best convolutional neural

network and the best method of loss reduction and performance improvement in a complex

environment.

The method we used is a very powerful convolutional neural network which is the VGG

for face recognition specifying each of its layer’s parameters such as data size and types and

also the activation functions used, the model obtained was tested on the database that we created

and augmented to test, we added the specification of the layers added after removing the last

softmax layer from VGG16, for transfer learning using Batch Normalization, dense and other

activation functions. Last, we compiled the new model using Adam optimizer and Keras’s

Cross entropy for the calculation of the loss function. the results obtained allowed us to make a

comparison with some existing work, which has given us very good results.

 Finally, before moving on to perspectives, this work allowed us to put into practice our

knowledge of neural networks and to acquire others and the time spent reading articles served

as a good introduction to the research.

 Based on the performance results obtained, the following perspectives can be proposed:

 Try other architectures: ResNet, Inception, Xecption, DensNet ...

 Make an embedded version on mobile, or Rasberrypi.

 Train the model on a very large database such as VGG face 2.

 Do a Detection combined with recognition using a YOLO or SSD model.

59

References

[1]. Turk, M. and Pentland, A., (1991). Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1),

pp.71-86.

[2]. Bouzit Dhikra and Hallaci Samir « Reconnaissance de visage basée sur une approche triangulaire » page

8_26 Mémoire Master informatique,Université 8 mai 1945 Guelma, 2019.

[3]. https://goldenmeancalipers.com/2011/12/phi-and-the-human-face/ last visit 08/09/2020

[4]. Chellappa, R., Wilson, C.L. and Sirohey, S., (1995). Human and machine recognition of faces: A survey.

Proceedings of the IEEE, 83(5), pp.705-741.

[5]. R. Brunelli, R. and Poggio, T., (1993). Face recognition: Features versus templates. IEEE transactions

on pattern analysis and machine intelligence, 15(10), pp.1042-1052.

[6]. Alpaydin, Ethem (2010). Introduction to Machine Learning. MIT Press. p. 9.

[7]. P. Parveen and B. Thuraisingham, (2006) "Face Recognition Using Multiple Classifiers," 2006 18th

IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06), Arlington, VA , pp. 179-

186.

[8]. Wang, M. and Deng, W. (2018), Deep face recognition: A survey. arXiv preprint arXiv:1804.06655.

[9]. LeCun, Y., Bengio, Y. and Hinton, G., (2015). Deep learning. nature, 521(7553), pp.436-444.

[10]. Mitchell, T.M., 1997. Machine learning. (1997). Burr Ridge, IL: McGraw Hill, 45(37), pp.870-877.

[11]. https://wordstream-files-prod.s3.amazonaws.com/s3fs-public/machine-learning.png last access

08/05/2020

[12]. Russell, S.J. and Norvig, P., (2010). Artificial Intelligence-A Modern Approach, Third International

Edition.

[13]. Mohri, M., Rostamizadeh, A. and Talwalkar, A., (2018). Foundations of machine learning. MIT press.

[14]. Glorot, X. and Bengio, Y., (2010), March. Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and

statistics (pp. 249-256).

[15]. Kohavi, R. and Wolpert, D.H., (1996), July. Bias plus variance decomposition for zero-one loss

functions. In ICML (Vol. 96, pp. 275-83).

[16]. Zhu, X., Vondrick, C., Fowlkes, C.C. and Ramanan, D., 2016. Do we need more training data?.

International Journal of Computer Vision, 119(1), pp.76-92. arXiv:1503.01508

[17]. Prajit Ramachandran, Barret Zoph, Quoc V. Le, Searching for activation functions (2017),

arXiv:1710.05941

[18]. Ramachandran, P., Zoph, B. and Le, Q.V., (2017). Searching for activation functions. arXiv preprint

arXiv:1710.05941.

[19]. Yamashita, R., Nishio, M., Do, R.K.G. and Togashi, K., (2018). Convolutional neural networks: an

overview and application in radiology. Insights into imaging, 9(4), pp.611-629.

60

[20]. https://cs231n.github.io/convolutional-networks/, last access 02/05/2020

[21]. http://www.deeplearningbook.org/contents/rnn.html, last access 04/05/2020

[22]. Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735-

1780.

[23]. Goodfellow, I., Bengio, Y. and Courville, A., (2016). Deep learning. MIT press.

[24]. Schmidhuber, J. (2015). "Deep Learning in Neural Networks: An Overview". Neural Networks. 61: 85–

117. arXiv:1404.7828. doi:10.1016/j.neunet.2014.09.003. PMID 25462637. S2CID 11715509.

[25]. Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural networks, 61, pp.85-

117.

[26]. LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. nature, 521(7553), pp.436-444.

[27]. Masi, I., Wu, Y., Hassner, T. and Natarajan, P., (2018), October. Deep face recognition: A survey. In

2018 31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI) (pp. 471-478). IEEE.

[28]. Hu, G., Yang, Y., Yi, D., Kittler, J., Christmas, W., Li, S.Z. and Hospedales, T., (2015). When face

recognition meets with deep learning: an evaluation of convolutional neural networks for face recognition.

In Proceedings of the IEEE international conference on computer vision workshops (pp. 142-150).

[29]. Chaudhuri, A., (2020). Deep Learning Models for Face Recognition: A Comparative Analysis. In Deep

Biometrics (pp. 99-140). Springer, Cham.

[30]. Shepley, A.J., (2019). Deep Learning For Face Recognition: A Critical Analysis. arXiv preprint

arXiv:1907.12739.

[31]. C. Szegedy, W. Liu, Y. Jia, et al (2014) “Going deeper with convolutions,” arXiv preprint

arXiv:1409.4842

[32]. P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. (2014) Overfeat: Integrated

recognition, localization and detection using convolutional networks. In ICLR

[33]. Goodfellow, I., (2014). Pouget⁃ Abadie J, Mirza M, et al. Generative Adversarial Nets, 2672, p.2680.

[34]. Sutskever, I., Vinyals, O. and Le, Q.V., (2014). Sequence to sequence learning with neural networks.

In Advances in neural information processing systems (pp. 3104-3112).

[35]. K. Simonyan and A. Zisserman (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556,.

[36]. Girshick, R., Donahue, J., Darrell, T. and Malik, J., (2014). Rich feature hierarchies for accurate object

detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 580-587).

[37]. Ioffe, S. and Szegedy, C., (2015). Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv preprint arXiv:1502.03167.

[38]. He, K., Zhang, X., Ren, S. and Sun, J., (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). arXiv preprint

arXiv:1512.03385.

61

[39]. Badrinarayanan, V., Handa, A. and Cipolla, R., (2015). Segnet: A deep convolutional encoder-decoder

architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293.

[40]. Badrinarayanan, V., Kendall, A. and Cipolla, R., (2017). Segnet: A deep convolutional encoder-decoder

architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12),

pp.2481-2495. arXiv preprint arXiv:1511.00561

[41]. Girshick, R., (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision

(pp. 1440-1448). arXiv:1504.08083

[42]. Ren, S., He, K., Girshick, R. and Sun, J., (2015). Faster r-cnn: Towards real-time object detection with

region proposal networks. In Advances in neural information processing systems (pp. 91-99).

[43]. Srivastava, R.K., Greff, K. and Schmidhuber, J., (2015). Training very deep networks. In Advances in

neural information processing systems (pp. 2377-2385).arXiv preprint arXiv:1507.06228v2

[44]. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., (2016). Rethinking the inception

architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 2818-2826).arXiv:1512.00567

[45]. Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A., (2016). Inception-v4, inception-resnet and the

impact of residual connections on learning. arXiv preprint arXiv:1602.07261.

[46]. He, K., Zhang, X., Ren, S. and Sun, J., (2016), October. Identity mappings in deep residual networks.

In European conference on computer vision (pp. 630-645). Springer, Cham. arXiv preprint

arXiv:1603.05027v3

[47]. Xie, S., Girshick, R., Dollár, P., Tu, Z. and He, K., (2017). Aggregated residual transformations for

deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition

(pp. 1492-1500). arXiv preprint arXiv:1611.05431v1

[48]. Paszke, A., Chaurasia, A., Kim, S. and Culurciello, E., (2016). Enet: A deep neural network architecture

for real-time semantic segmentation. arXiv preprint arXiv:1606.02147.

[49]. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K., (2016). SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint

arXiv:1602.07360.

[50]. Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., (2016). You only look once: Unified, real-time

object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-

788).

[51]. Chollet, F., (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of

the IEEE conference on computer vision and pattern recognition (pp. 1251-1258). arXiv preprint

arXiv:1610.02357

[52]. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, A.C., (2016), October.

Ssd: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer, Cham.

[53]. Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q., (2017). Densely connected

convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition

(pp. 4700-4708).

62

[54]. Hasanpour, S.H., Rouhani, M., Fayyaz, M. and Sabokrou, M., (2016). Lets keep it simple, using simple

architectures to outperform deeper and more complex architectures. arXiv preprint arXiv:1608.06037.

[55]. Sabour, S., Frosst, N. and Hinton, G.E., 2017. Dynamic routing between capsules. In Advances in neural

information processing systems (pp. 3856-3866).

[56]. Redmon, J. and Farhadi, A., 2017. YOLO9000: better, faster, stronger. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 7263-7271).

[57]. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam,

H., 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861.

[58]. Zhang, S., Wen, L., Bian, X., Lei, Z. and Li, S.Z., 2018. Single-shot refinement neural network for

object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.

4203-4212).arXiv preprint arXiv:1711.06897

[59]. Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollár, P., 2017. Focal loss for dense object detection. In

Proceedings of the IEEE international conference on computer vision (pp. 2980-2988). arXiv preprint

arXiv:1708.02002.

[60]. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H. and Wei, Y., 2017. Deformable convolutional

networks. In Proceedings of the IEEE international conference on computer vision (pp. 764-773).

[61]. Redmon, J. and Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767.

[62]. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.C., 2018. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 4510-4520).

[63]. Wong, A., Famuori, M., Shafiee, M.J., Li, F., Chwyl, B. et al 2019. YOLO nano: A highly compact you

only look once convolutional neural network for object detection. arXiv preprint arXiv:1910.01271.

[64]. Kaiming He et Al (2014), Spatial Pyramid Pooling in Deep Convolutional Networks for Visual

Recognition, arXiv:1406.4729

[65]. Kaiming He et Al (2015), Delving Deep into Rectifiers: Surpassing Human-Level Performance on

ImageNet Classification, arXiv:1502.01852

[66]. Redmon, J et Al (2017), YOLO9000: Better, Faster, Stronger, arXiv:1612.08242

[67]. Sergey Z et Al (2016), Wide Residual Networks, arXiv:1605.07146

[68]. Dongyoon H et Al (2017), Deep Pyramidal Residual Networks, arXiv:1610.02915

[69]. Gustav L et Al (2016), FractalNet: Ultra-Deep Neural Networks without Residuals, arXiv:1605.07648

[70]. Xiangyu Z et Al (2017), ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile

Devices, arXiv:1707.01083

[71]. Jie Hu, Li Shen et Al (2017), Squeeze-and-Excitation Networks, arXiv:1709.01507

[72]. Rranav Rajpurkar, Jeremy Irvin et Al (2017), CheXNet: Radiologist-Level Pneumonia Detection on

Chest X-Rays with Deep Learning, arXiv:1711.05225

63

[73]. Yunpeng C et Al (2017), Dual Path Networks, arXiv:1707.01629

[74]. Aidan N et Al (2017), The Reversible Residual Network: Backpropagation Without Storing Activations,

arXiv:1707.04585

[75]. Joachim D et Al (2017), McKernel: A Library for Approximate Kernel Expansions in Log-linear Time,

arXiv:1702.08159

[76]. Mingxing T et Al (2018), MnasNet: Platform-Aware Neural Architecture Search for Mobile,

arXiv:1807.11626

[77]. Ninging M et Al (2018), ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,

arXiv:1807.11164

[78]. Esteban R et Al (2018), Regularized Evolution for Image Classifier Architecture Search,

arXiv:1802.01548

[79]. Zeming L, Chao P et Al (2018), DetNet: A Backbone network for Object Detection, arXiv:1804.06215

[80]. Robert J. Wang et Al (2018), Pelee: A Real-Time Object Detection System on Mobile Devices,

[81]. Bichen W et Al (2018), FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural

Architecture Search, arXiv:1812.03443

[82]. Amir Gholami, Kiseok K et Al (2018), SqueezeNext: Hardware-Aware Neural Network Design,

arXiv:1803.10615

[83]. Han C. et Al (2018), ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware,

arXiv:1812.00332

[84]. Huiyu W et Al (2018), ELASTIC: Improving CNNs with Dynamic Scaling Policies, arXiv:1812.05262

[85]. Tong He, Zhi Z et Al (2018), Bag of Tricks for Image Classification with Convolutional Neural

Networks, arXiv:1812.01187

[86]. Sachin M et Al (2018), ESPNetv2: A Light-weight, Power Efficient, and General Purpose

Convolutional Neural Network, arXiv:1811.11431

[87]. Chun-Fu C, Quanfu F et Al (2018), Big-Little Net: An Efficient Multi-Scale Feature Representation for

Visual and Speech Recognition, arXiv:1807.03848

[88]. Mingxing Tan, Quoc V. Le (2019), EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks, arXiv:1905.11946

[89]. Jingdong W et Al (2019), Deep High-Resolution Representation Learning for Visual Recognition,

arXiv:1908.07919

[90]. Andrew W, Mark S et Al (2019), Searching for MobileNetV3, arXiv:1905.02244

[91]. Dimitrios S, Ruizhou D et Al (2019), Single-Path NAS: Designing Hardware-Efficient ConvNets in

less than 4 Hours, arXiv:1904.02877

[92]. Zheng Q, Zeming L et Al (2019), ThunderNet: Towards Real-time Generic Object Detection, arXiv:

1903.11752

64

[93]. Mingxing Tan, Quoc V. Le (2019), MixConv: Mixed Depthwise Convolutional Kernels, arXiv:

1907.09595

[94]. Xianzhi D et al (2019), SpineNet: Learning Scale-Permuted Backbone for Recognition and

Localization, arXiv:1912.05027

[95]. Youngwan L et al (2019), An Energy and GPU-Computation Efficient Backbone Network for Real-

Time Object Detection, arXiv:1904.09730

[96]. Chien-Yao W et al (2019), CSPNet: A New Backbone that can Enhance Learning Capability of CNN,

arXiv:1911.11929

[97]. Youngwan L, Jongyoul P (2019), CenterMask : Real-Time Anchor-Free Instance Segmentation,

arXiv:1911.06667

[98]. Jiemin F et al (2019), Densely Connected Search Space for More Flexible Neural Architecture Search,

arXiv:1906.09607

[99]. Yi L et al (2019), Data-Driven Neuron Allocation for Scale Aggregation Networks, arXiv:1904.09460

[100]. Sachin M et al (2019), DiCENet: Dimension-wise Convolutions for Efficient Networks,

arXiv:1906.03516

[101]. Xianxiang C et al (2019), MoGA: Searching Beyond MobileNetV3, arXiv:1908.01314

[102]. Qilong W et al (2019), ECA-Net: Efficient Channel Attention for Deep Convolutional Neural

Networks, arXiv:1910.03151

[103]. Kai H et al (2019), GhostNet: More Features from Cheap Operations, arXiv:1911.11907

[104]. Jiemin F et al (2019), Densely Connected Search Space for More Flexible Neural Architecture Search,

arXiv:1906.09607

[105]. Maxim B, Hervé J et al (2019), MultiGrain: a unified image embedding for classes and instances,

arXiv:1902.05509

[106]. Saining X et al (2019), Exploring Randomly Wired Neural Networks for Image Recognition,

arXiv:1904.01569

[107]. Xiang L et al (2019), Selective Kernel Networks, Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2019, pp. 510-519

[108]. Xiangxiang C et al (2019), SCARLET-NAS: Bridging the gap between Stability and Scalability in

Weight-sharing Neural Architecture Search, arXiv:1908.06022

[109]. Yukang C et al (2019), DetNAS: Backbone Search for Object Detection, arXiv:1903.10979

[110]. Alexey B et al (2020), YOLOv4: Optimal Speed and Accuracy of Object Detection, arXiv:2004.1093

[111]. Zahra Noury, Mahdi Rezaei (2020), Deep-CAPTCHA: a deep learning based CAPTCHA solver for

vulnerability assessment, arXiv:2006.08296

[112]. Ilija R et al (2020), Designing Network Design Spaces, arXiv:2003.13678

[113]. Jungkyu L et al (2020), Compounding the Performance Improvements of Assembled Techniques in a

Convolutional Neural Network, arXiv:2001.06268

65

[114]. Tal R et al (2020), TResNet: High Performance GPU-Dedicated Architecture, arXiv:2003.13630

[115]. Hang Z, Chongruo W et al (2020), ResNeSt : Split-Attention Networks, arXiv:2004.08955

[116]. Shan Y et al (2020), GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet,

arXiv:2003.11236

[117]. Matej U et al (2020), Harmonic Convolutional Networks based on Discrete Cosine Transform,

arXiv:2001.06570

[118]. François-Lavet et al (2018). "An Introduction to Deep Reinforcement Learning". Foundations and

Trends in Machine Learning. 11 (3–4): 219–354. arXiv:1811.12560.

[119]. Mengja Y et al (2019), VarGFaceNet: An Efficient Variable Group Convolutional Neural Network

for Lightweight Face Recognition, arXiv:1910.04985

[120]. Jiankang D et al (2019), ArcFace: Additive Angular Margin Loss for Deep Face Recognition,

arXiv:1801.07698

[121]. Yichun S et al (2019), Probabilistic Face Embeddings, arXiv:1904.09658

[122]. Qian Z et al (2020),VarGNet: Variable Group Convolutional Neural Network for Efficient Embedded

Computing,arXiv:1907.05653

[123]. Hao W et al (2018), CosFace: Large Margin Cosine Loss for Deep Face

Recognition,arXiv:1801.09414

[124]. Xiao Z et al (2019), AdaCos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face

Representations, arXiv:1905.00292

[125]. Hung, S.C., Lee, J.H., Wan, T.S., Chen, C.H., Chan, Y.M. and Chen, C.S., (2019), June. Increasingly

packing multiple facial-informatics modules in a unified deep-learning model via lifelong learning. In

Proceedings of the 2019 on International Conference on Multimedia Retrieval (pp. 339-343).

[126]. Jintao Z, DiDiChuxing (2019), SeesawFaceNets: sparse and robust face verification model for mobile

platform, arXiv:1908.09124

[127]. Florian S et al (2015), FaceNet: A Unified Embedding for Face Recognition and Clustering,

arXiv:1503.03832

[128]. Yi Sun et al (2015), DeepID3: Face Recognition with Very Deep Neural Networks, arXiv:1502.00873

[129]. Yutong Z et al (2018), Ring loss: Convex Feature Normalization for Face

Recognition,arXiv:1803.00130

[130]. Yi S, Xiaogang W et al (2014), Deeply learned face representations are sparse, selective, and robust

,arXiv:1412.1265

[131]. Weiyang L et al (2018), SphereFace: Deep Hypersphere Embedding for Face Recognition

,arXiv:1704.08063

[132]. Xiang W et al (2018), A Light CNN for Deep Face Representation with Noisy

Labels,arXiv:1511.02683

[133]. Alessandro C et al (2018), Git Loss for Deep Face Recognition,arXiv:1807.08512

66

[134]. Steven C et al (2019), Compacting, Picking and Growing for Unforgetting Continual Learning

,arXiv:1910.06562

[135]. Zuheng M et al (2019), Dynamic Multi-Task Learning for Face Recognition with Facial Expression

,arXiv:1911.03281

[136]. Yi S et al (2014), Deep Learning Face Representation by Joint Identification-

Verification,arXiv:1406.4773

[137]. Wei H et al (2018), SeqFace: Make full use of sequence information for face

recognition,arXiv:1803.06524

[138]. Xin L et al (2016), VIPLFaceNet: An Open Source Deep Face Recognition SDK,arXiv:1609.03892

[139]. Chaochao L et al (2014), Surpassing Human-Level Face Verification Performance on LFW with

GaussianFace,arXiv:1404.3840

[140]. Baris G et al (2018), Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of

New Identities from 3D Morphable Model,arXiv:1804.03675

[141]. Anh T et al (2016), Regressing Robust and Discriminative 3D Morphable Models with a very Deep

Neural Network,arXiv:1612.04904

[142]. Mather, G., (2012). The visual cortex. School of Life Sciences: University of Sussex. University of

Sussex.

[143]. Zell, Andreas (2003). "chapter 5.2". Simulation neuronaler Netze [Simulation of Neural Networks] (in

German) (1st ed.). Addison-Wesley. ISBN 978-3-89319-554-1. OCLC 249017987.

[144]. The Neural Network Zoo | Stefan Leijnen and Fjodor van Veen | Research Gate |

https://www.researchgate.net/publication/341373030_The_Neural_Network_Zoo last access 20/08/2020

[145]. LeCun, Y et al (1990). Handwritten digit recognition with a back-propagation network.Advances in

Neural Information Processing Systems, 2, 396–404, Morgan Kaufman.

[146]. Belhumeur, P.N., Hespanha, J.P. and Kriegman, D.J., (1997). Eigenfaces vs. fisherfaces: Recognition

using class specific linear projection. IEEE Transactions on pattern analysis and machine intelligence, 19(7),

pp.711-720.

[147]. Phillips, P.J., Wechsler, H., Huang, J. and Rauss, P.J., (1998). The FERET database and evaluation

procedure for face-recognition algorithms. Image and vision computing, 16(5), pp.295-306.

[148]. Sim, T., (2003). S. Baker, and M. Bsat. The cmu pose, illumination, and expression (pie) database.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), pp.1615-1618.

[149]. Gross, R., Matthews, I., Cohn, J., Kanade, T. and Baker, S., (2010). Multi-pie. Image and Vision

Computing, 28(5), pp.807-813.

[150]. http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html 02/04/2020

[151]. Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X. and Zhao, D., (2007). The CAS-PEAL

large-scale Chinese face database and baseline evaluations. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 38(1), pp.149-161.

67

[152]. Goh, R., Liu, L., Liu, X. and Chen, T., 2005, October. The CMU face in action (FIA) database. In

International Workshop on Analysis and Modeling of Faces and Gestures (pp. 255-263). Springer, Berlin,

Heidelberg.

[153]. Liu, Z., Luo, P., Wang, X. and Tang, X., 2018. Large-scale celebfaces attributes (celeba) dataset.

Retrieved August, 15, p.2018.

[154]. Huang, G.B., Mattar, M., Berg, T. and Learned-Miller, E., 2008, October. Labeled faces in the wild:

A database forstudying face recognition in unconstrained environments.

[155]. Grgic, M., Delac, K. and Grgic, S.,(2011). SCface–surveillance cameras face database. Multimedia

tools and applications, 51(3), pp.863-879.

[156]. Lei L et al (2019), 3D Face Mask Presentation Attack Detection Based on Intrinsic Image Analysis,

arXiv:1903.11303

[157]. Karras, T., Laine, S. and Aila, T., 2019. A style-based generator architecture for generative adversarial

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4401-

4410).

[158]. A. M. Martinez and R. Benavente.(1998) The AR face database. Technical Report 24, Computer

Vision Center, University of Barcelona,

[159]. Kleber, F., Fiel, S., Diem, M. and Sablatnig, R., 2013, August. Cvl-database: An off-line database for

writer retrieval, writer identification and word spotting. In 2013 12th international conference on document

analysis and recognition (pp. 560-564). IEEE.

[160]. Milborrow, S., Morkel, J. and Nicolls, F., 2010. The MUCT landmarked face database. Pattern

Recognition Association of South Africa, 201(0).

[161]. Geralds, J (2017), UTKFace Large Scale Face Dataset. github. com.

[162]. Florian, R., Ittycheriah, A., Jing, H. and Zhang, T., 2003. Named entity recognition through classifier

combination. In Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003

(pp. 168-171).

[163]. Salimans, T. and Kingma, D.P., 2016. Weight normalization: A simple reparameterization to

accelerate training of deep neural networks. In Advances in neural information processing systems (pp. 901-

909).

[164]. Ba, J.L., Kiros, J.R. and Hinton, G.E., 2016. Layer normalization. arXiv preprint arXiv:1607.06450.

[165]. Ioffe, S. and Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv preprint arXiv:1502.03167.

[166]. Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep convolutional

neural networks. In Advances in neural information processing systems (pp. 1097-1105).

[167]. Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2016. Instance normalization: The missing ingredient

for fast stylization. arXiv preprint arXiv:1607.08022.

[168]. Miyato, T., Kataoka, T., Koyama, M. and Yoshida, Y., 2018. Spectral normalization for generative

adversarial networks. arXiv preprint arXiv:1802.05957.

68

[169]. Ogasawara, E., Martinez, L.C., De Oliveira, D., Zimbrão, G., Pappa, G.L. and Mattoso, M., 2010,

July. Adaptive normalization: a novel data normalization approach for non-stationary time series. In The

2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

[170]. Salimans, T. and Kingma, D.P., 2016. Weight normalization: A simple reparameterization to

accelerate training of deep neural networks. In Advances in neural information processing systems (pp. 901-

909).

[171]. De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O. and Courville, A.C., 2017. Modulating

early visual processing by language. In Advances in Neural Information Processing Systems (pp. 6594-6604).

[172]. Wu, Y. and He, K., 2018. Group normalization. In Proceedings of the European conference on

computer vision (ECCV) (pp. 3-19).

[173]. Kingma, D.P. and Dhariwal, P., 2018. Glow: Generative flow with invertible 1x1 convolutions. In

Advances in neural information processing systems (pp. 10215-10224).

[174]. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J. and Aila, T., 2020. Analyzing and improving

the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (pp. 8110-8119).

[175]. Luo, P., Ren, J., Peng, Z., Zhang, R. and Li, J., 2018. Differentiable learning-to-normalize via

switchable normalization. arXiv preprint arXiv:1806.10779.

[176]. Foracchia, M., Grisan, E. and Ruggeri, A., 2005. Luminosity and contrast normalization in retinal

images. Medical Image Analysis, 9(3), pp.179-190.

[177]. Qiao, S., Wang, H., Liu, C., Shen, W. and Yuille, A., 2019. Weight standardization. arXiv preprint

arXiv:1903.10520.

[178]. Huang, X. and Belongie, S., 2017. Arbitrary style transfer in real-time with adaptive instance

normalization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1501-1510).

[179]. He, K., Girshick, R. and Dollár, P., 2019. Rethinking imagenet pre-training. In Proceedings of the

IEEE international conference on computer vision (pp. 4918-4927).

[180]. Li, X., Sun, W. and Wu, T., 2019. Attentive normalization. arXiv preprint arXiv:1908.01259.

[181]. Huang, L., Yang, D., Lang, B. and Deng, J., 2018. Decorrelated batch normalization. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 791-800).

[182]. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R., 2014. Dropout: a

simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1),

pp.1929-1958.

[183]. Loshchilov, I. and Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint

arXiv:1711.05101.

[184]. Choe, J. and Shim, H., 2019. Attention-based dropout layer for weakly supervised object localization.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2219-2228).

[185]. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł. and Hinton, G., 2017. Regularizing neural networks

by penalizing confident output distributions. arXiv preprint arXiv:1701.06548.

[186]. Grandvalet, Y. and Bengio, Y., 2006. Entropy Regularization.

69

[187]. Yao, Y., Rosasco, L. and Caponnetto, A., 2007. On early stopping in gradient descent learning.

Constructive Approximation, 26(2), pp.289-315.

[188]. Kingma, D.P., Salimans, T. and Welling, M., 2015. Variational dropout and the local

reparameterization trick. In Advances in neural information processing systems (pp. 2575-2583).

[189]. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y. and Fergus, R., 2013, February. Regularization of neural

networks using dropconnect. In International conference on machine learning (pp. 1058-1066).

[190]. Elden, L., 1977. Algorithms for the regularization of ill-conditioned least squares problems. BIT

Numerical Mathematics, 17(2), pp.134-145.

[191]. Park, M.Y. and Hastie, T., 2007. L1‐regularization path algorithm for generalized linear models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), pp.659-677.

[192]. Gal, Y. and Ghahramani, Z., 2016. A theoretically grounded application of dropout in recurrent neural

networks. In Advances in neural information processing systems (pp. 1019-1027).

[193]. Kim, S.J., Koh, K., Lustig, M., Boyd, S. and Gorinevsky, D., 2007. An interior-point method for large-

scale $\ell_1 $-regularized least squares. IEEE journal of selected topics in signal processing, 1(4), pp.606-

617.

[194]. Oster, H.S. and Rudy, Y., 1992. The use of temporal information in the regularization of the inverse

problem of electrocardiography. IEEE transactions on biomedical engineering, 39(1), pp.65-75.

[195]. Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

[196]. Robbins, H. and Monro, S., 1951. A stochastic approximation method. The annals of mathematical

statistics, pp.400-407..

[197]. Boyd, S., Parikh, N. and Chu, E., 2011. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Now Publishers Inc.

[198]. Geoffrey Hinton Neural Networks for machine learning online course, RMSprop-Optimization

algorithms, https://www.cs.toronto.edu/~hinton/nntut.html last access 06/08/2020

[199]. Duchi, J., Hazan, E. and Singer, Y., 2011. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of machine learning research, 12(7).

[200]. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and Hochreiter, S., 2017. Gans trained by a two

time-scale update rule converge to a local nash equilibrium. In Advances in neural information processing

systems (pp. 6626-6637).

[201]. Pascanu, R., Mikolov, T. and Bengio, Y., 2013, February. On the difficulty of training recurrent neural

networks. In International conference on machine learning (pp. 1310-1318).

[202]. You, Y., et al 2019. Large batch optimization for deep learning: Training bert in 76 minutes. arXiv

preprint arXiv:1904.00962.

[203]. Reddi, S.J., Kale, S. and Kumar, S., 2019. On the convergence of adam and beyond. arXiv preprint

arXiv:1904.09237.

[204]. Nesterov, Y. (1983). A method for solving a convex programming problem with convergence rate

O(1/k 2). Soviet Math. Dokl., 27, 372--376.

70

[205]. Shazeer, N. and Stern, M., 2018. Adafactor: Adaptive learning rates with sublinear memory cost. arXiv

preprint arXiv:1804.04235.

[206]. Rattray, M., Saad, D. and Amari, S.I., 1998. Natural gradient descent for on-line learning. Physical

review letters, 81(24), p.5461.

[207]. You, Y., Gitman, I. and Ginsburg, B., 2017. Large batch training of convolutional networks. arXiv

preprint arXiv:1708.03888.

[208]. Jaderberg, M., et al 2017. Population based training of neural networks. arXiv preprint

arXiv:1711.09846.

[209]. Abadi, M., et al 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467.

[210]. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,

L. and Lerer, A., 2017. Automatic differentiation in pytorch.

[211]. Patterson, J. and Gibson, A., 2017. Deep learning: A practitioner's approach. " O'Reilly Media, Inc.".

[212]. Seide, F. and Agarwal, A., 2016, August. CNTK: Microsoft's open-source deep-learning toolkit. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(pp. 2135-2135).

[213]. Lin, W.F., Tsai, D.Y., Tang, L., Hsieh, C.T., Chou, C.Y., Chang, P.H. and Hsu, L., 2019, March.

ONNC: A compilation framework connecting ONNX to proprietary deep learning accelerators. In 2019 IEEE

International Conference on Artificial Intelligence Circuits and Systems (AICAS) (pp. 214-218). IEEE.

[214]. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C. and Zhang, Z.,

2015. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv

preprint arXiv:1512.01274.

[215]. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S. and Darrell,

T., 2014, November. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the

22nd ACM international conference on Multimedia (pp. 675-678).

[216]. Q. Cao, L. Shen, W. Xie, O. M. Parkhi, A. Zisserman, VGGFace2: A dataset for recognising faces

across pose and age. Arxiv: https://arxiv.org/abs/1710.08092.

[217]. Dong Y et al, “Learning Face Representation from Scratch”. arXiv preprint arXiv:1411.7923. 2014.

[218]. Yi, D., Lei, Z., Liao, S. and Li, S.Z., 2014. Learning face representation from scratch. arXiv preprint

arXiv:1411.7923.

[219]. Lee, C.H., Liu, Z., Wu, L. and Luo, P., 2020. Maskgan: Towards diverse and interactive facial image

manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(pp. 5549-5558).

[220]. Jain, V. and Learned-Miller, E., 2010. Fddb: A benchmark for face detection in unconstrained settings

(Vol. 2, No. 4, p. 5). UMass Amherst technical report.

[221]. Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou.(2016) WIDER FACE: A Face

Detection Benchmark,(CVPR), arXiv:1511.06523

71

[222]. Rothe, R., Timofte, R. and Van Gool, L., 2015. Dex: Deep expectation of apparent age from a single

image. In Proceedings of the IEEE international conference on computer vision workshops (pp. 10-15).

