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Abstract 

 

    In this study, we presented the newest approaches used for facial detection and recognition 

based on deep learning and specifically convolutional neural networks. 

   In our project, we plan to use a deep convolutional neural network (CNN) to extract the 

characteristics of the input images, and to recognize faces in a complex environment based on 

one of the most accurate architectures (VGG).we focused on transfer learning to make use of 

the existing models that have been already trained on massive datasets, such as VGG16 for 

facial recognition which is trained on the well known ImageNet dataset. We made use of the 

Dlib face detector that also utilize deep learning technology to extract the face’s coordinates. 

We created our own dataset which is a collection of images from the web, and we focused on 

making the dataset richer by applying data augmentation technology (rotation, shifting...) that 

helped to create newer set of images from the existing ones. The performance of our facial 

recognition system was evaluated on our own custom dataset as well as random unknown 

images from the web and it achieved impressive results. 
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General Introduction 

 

ace recognition in images or videos is one of the biggest challenges in computer vision 

and pattern recognition. The problem and the main difficulty comes from variations in 

the appearance of the face caused by factors such as expression, lighting, partial occlusion of 

the face. Briefly, a face recognition system extracts the characteristics of an input image and 

compares them with the characteristics of labeled faces from a database. The comparison is 

based on a characteristic similarity metric and the label of the most similar database entry is 

used to label the input image. 

This technology has seen wider uses in recent years on mobile platforms and in other 

forms of technology, such as robotics. It is typically used as access control in security systems 

and can be compared to other biometrics such as fingerprint or eye iris recognition systems. 

Although the accuracy of facial recognition system as a biometric technology is lower than iris 

recognition or fingerprint recognition, it is still widely adopted due to its contactless and non-

invasive process. Recently, it has also become popular as a commercial identification and 

marketing tool. Other applications include advanced human-computer interaction, video 

surveillance, automatic indexing of images, and video database, among others. 

For the requested work, we plan to use a deep convolutional neural network (CNN) to 

extract the characteristics of the input images, and to recognize faces in a complex environment 

based on one of the most accurate architectures (VGG).  

The Tensorflow architecture across the Keras backend will be used to implement the 

deep neural network (CNN) algorithm. Moreover, in order to align the faces on the input images 

we will use Dlib and OpenCV. The performance of our facial recognition system will be 

evaluated on our own custom dataset.  

The objectives of the system will be broken down into three main stages:  

1. Detect, transform and crop faces from the input images. This ensures that the faces 

are aligned before inserting them into the CNN.  

2. Use CNN to extract representations in reduced dimensions, or incorporations of 

faces from aligned input images to build vectors. In this space, the distance 

corresponds directly to a measure of the similarity of the faces.  

3. Compare the input embedding vectors to the labeled embedding vectors in the 

database. 

F 
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Thesis Organization: 

We chose to articulate our study in three main chapters: 

 Chapter 01: Deep Face Recognition Fundamentals  

 This chapter aims at a detailed analysis of different approaches and techniques used 

for detection and face recognition in the field of Deep Learning. 

      Part 01: Fundamentals of Face Detection and recognition 

      Part 02: History and details on artificial intelligence technology focusing on its 

                     main subset Deep Learning. 

      Part 03: State of the art models and State of the art datasets. 

 Chapter 02: Convolutional Neural Network 

 In this chapter, we explained everything there is to know about CNN starting from its 

basic building block to its implementation. 

 Chapter 03 : Conception, Implementation and results 

 In this chapter, we detail the different system steps that we have elaborate. In addition, 

we present the experimental results obtained. 

    

 Finishing up with a general conclusion, to summarize our contributions, and giving 

some perspective on future work. 
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I. Deep Face Recognition Fundamentals 

1. Introduction: 

Face Recognition is definitely one of the most popular computer vision problems, and 

is one of the many wonders that AI research has brought forward to the world. It is a subject of 

curiosity for many researchers. Thanks to its popularity it has been well studied over the last 50 

years, so we can define it as the problem of identifying and verifying people in a photograph 

by their face. 

It is a task that is trivially performed by humans, even under complex conditions, such 

as varying light and when faces are changed by age or obstructed with accessories and facial 

hair. Nevertheless, it is remained a challenging computer vision problem for decades. 

Deep learning methods are able to leverage very large datasets of faces and learn rich 

and compact representations of faces, allowing modern models to first perform as well and later 

to outperform the face recognition capabilities of humans. 

To understand how a machine can recognize faces, we can start with asking ourselves 

— how do we recognize a face? Most images of human faces have two eyes, a nose, lips, 

forehead, chin, ears, hair… That rarely changes. Yet, faces are different from each other. What 

makes them different? At the same time, face of the same person changes with emotion, 

expression, age… In fact just change in orientation creates a different image. How do we 

identify a person in spite of all that? 

In this Chapter, we will discover the problem of face recognition and how deep learning 

methods can achieve superhuman performance, and for that we are going to present:  

 The fundamentals of face detection and recognition 

 The history and evolution of Artificial Intelligence, Machine Learning and Deep 

Learning 

 A basic explanation of AI and ML, and a deeper focus on AI’s main subset which is 

Deep Learning, starting from its basic building blocks to the last step which is choosing 

a dataset and training a model 

 The latest and state of the art works applied in the field on Deep Face Recognition, with 

most used datasets and models. 
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2. Face Detection and Recognition Overview: 

Faces are a complex multidimensional visual models and developing a computational 

model for face recognition is difficult. However, applying machine learning techniques have 

made it possible and with some real-time variations as well. Face recognition is a technology 

capable of identifying or verifying a person from a digital image or a video frame from a video 

source. 

In order for the facial recognizing system to function, it is necessary to implement two main 

steps. First, it must detect the face within an image. Then, it must recognize that face from an 

existing database.  

 

2.1. Face Detection: 

 Why detect a face 

Face detection cannot be automatic; therefore, it must be implemented accurately. An 

image might contain more than just a face, and in order for the system to function properly and 

recognize the faces precisely, it must separate each face candidate individually and label it, then 

pass it to the next step, which is the recognition. 

 How to detect a face 

Computers unlike us sees the world through combinations of numbers, an image is a 

collection of pixels, which represents the intensities of the colors in a form of a matrix, hence, 

it is only possible to understand an image through mathematical equations. 

Scientists strive to build systems that can detect and recognize faces. One such system 

already exists: the human brain. In order to find the formation of a face in a mathematical 

equation, it needs to be broken into smaller functional problems taking reference on “how the 

brain classifies a face?”  

Figure 1.1: Main Steps of Facial Recognition 



Chapter 1  Deep Face Recognition Fundamentals 

7 
 

A face is a summation of features or shapes (Eyes, eyebrows, mouth, nose, etc.) 

furthermore, the shapes are a set of connected edges and edges are identifiable using math [1], 

many approaches were proposed in order to solve these problems manually [2], but recently 

deep learning, which is based on what scientists think is the brain’s structure of combined 

neurons, made an astonishing revolution in computer vision and many other fields subsidiary 

to artificial intelligence, unlike the standard methods, deep learning provides a new way of 

extracting and comparing features without the complete intervention of the human [3].  

 

 The challenges in face detection 

 Images of faces vary from one picture to another due to the alteration of different 

conditions from capturing equipment to lighting conditions, noises, etc. In face images, in 

addition to those challenges, we encounter the variation of expressions, poses, occlusions, etc. 

which are taken in consideration when building a face database for recognition [4]. 

2.2. Face Recognition:  

 Why recognize faces 

 Contemplating the uniqueness of the human face, made Face recognition (FR) the 

eminent biometric technique and has been widely used in many more areas, such as military, 

finance, security and daily life in general.  

 How to recognize faces 

     There are multiple methods in which facial recognition systems (FR) work [2], but in 

general, it is established through comparison of facial features from a given images with faces 

within a database. Initially, the process of face recognition was fulfilled in two steps. First, the 

effectuation of feature extraction and selection [5]. Second, classification [6][7]. However, with 

the revolution of deep learning and deep FR, the implementation of these two steps in details 

became unnecessary.  

Figure 1.2: Face Detection based on the facial features (eyes, nose...) 
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 The challenges in face recognition 

     The facial recognition system is yet to completely overcome the challenges which have 

constantly played with its quality of delivery, on the level of the image, illumination, 

background, pose, occlusion, expressions, complexity, etc. however, in the aspect of deep FR, 

the lack of saturated databases that affects hugely the learning process and therefore the 

recognition, fusion issues and the particular cases such as identicality (twins) and uncontrolled 

changes, and privacy-preserving concerns which are rising nowadays and made it difficult to 

collect data for study [8]. 

3. The Evolution of Artificial Intelligence: 

3.1. The 1st Period 1950-1970:  

    Trivial problem solving, no practicality, GOFAI – Good old-fashioned AI: 

Year Event 

1942 The 3 Laws of Robotics by Isaac Asimov, Other sets of laws have been proposed by researchers 

since then 

1950 The Turing Test proposed by Alan Turing 

1952 The first self-learning game program 

1956 Dartmouth Conference, first use terms of “Artificial Intelligence/ A.I” 

1957 General Problem Solver (GPS) by Newell 

1958 McCarthy developed LISP programming language 

1959 - The MIT AI Lab (McCarthy and Minsky) 

- The term “Machine Learning” by Samuel 

1961 - First Industrial Robot (Unimate) working at GM 

- “SAINT” the first expert system by slagle (MIT) 

1964 “STUDENT” the first AI program which understands natural language 

1965 “ELIZA” the first AI based Chatbot and expert system 

1966 - “Shakey” the first locomotive and intelligent robot (SRI) 

- “MAC HACK” chess-playing program by Greenblatt, MIT 

1968 “SHRDLU” an early natural language understanding computer program 

1970 “WABOT-1” the first anthropomorphic robot (Waseda University) 

1972 “Prolog” logic programming language 

1973 “Lighthill Report” the poor progress report caused the “First AI winter” which is Reduced 

funding for AI research 

1974 - “MYCIN” the first rule based AI expert system for medical diagnostics 

- The first autonomous vehicle, a mechanical “slider” (Stanford) 

 Table 1.1: First period of the Evolution of AI, ML and DL 1950-1970   
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3.2. The 2nd period 1980-2000: 

 Researchers feeding machines with labeled data, Projects: ICOT – Japan ’82, MCC – 

US ’83, Alvey – UK ’84. And algorithms began to appear as parts of larger systems. AI 

solutions proved to be useful throughout the technology industry, such as data mining, 

industrial robotics...etc.  

Year Event 

1980 - LISP based machines developed and marketed 

- “INTERNIST-1” The first Commercial Expert System  

1986 A driverless van by Mercedes-Benz, with cameras and sensors 

1988 - “Bayesian Network”, BNs or belief nets, in invented by Pearl 

- The chatbots, “Jabberwachy” and “Cleverbot” invented by Carpenter 

1989 The first autonomous vehicle created by CMU using neural network 

1993 “Polly” the tour guide robot, behavior-based robotics (MIT) 

1997 IBM’s Deep Blue beats Gary Kasparov in chess 

1998 “Furby” the first pet toy robot for children 

1999 - “Kismet” emotional AI (MIT AI Lab) 

- “AIBO” introduced the first AI domestic robot by Sony 

2000 “ASIMO” humanoid robot released by Honda 

2002 “Roomba” autonomous robot vacuum is released by i-Robot 

2004 - The first challenge for autonomous vehicles by DARPA 

- NASA rovers “Spirit” and “Opportunity” exploring Mars 

2005 AI based recommendation engines 

2006 “Machine Reading” unsupervised autonomous understanding of text 

2007 - “ImageNet” visual database for object recognition software research 

- “CUDA” launched by NVIDIA, a parallel computing platform and programming interface 

2009 - Self Driving Car build by Google, by 2014 it passed Nevada’s self-driving test 

- AI researchers discover GPU (Graphics Processing Unit) for DL 

Table 1.2: Second period of the Evolution of AI, ML and DL 1980-2000   

3.3. The 3rd Period 2010-2020: 

The age of machine learning, Computers acquire knowledge from data, not humans. 

Large tech companies invest in commercial applications of AI/ML  

Date Event 

2010 - Democratize Data Access begins for Image Recognition 

- Narrative Science’s AI demonstrates ability to write reports 

2011 - Apple released “Siri” 

- IBM’s “Watson” wins Jeopardy clash 
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2013 - “NEIL” by CMU, a semantic image analyzer ML system 

- “Vicarious” passes first Turing test – CAPTCHA 

2014 - “Cortana” by Microsoft 

- “Alexa” by Amazon  

2015 - “TensorFlow” by Google Brain, a ML Library (TPU) 

- “Open AI” open source initiative to develop AI benefit of all humanity 

2016 - “Google Home” by Google 

- “Alpha Go” Google’s Deepmind has defeated Go’s N°1 champion 

- NVIDIA announces supercomputer for DL and AI  

- “Sophia” humanoid robot by Hanson Robotics, the first robot citizen 

- “PyTorch” Open source ML Library 

2017 - The facebook AI research lab trained two chatbots to communicate with each other in order 

to learn how to negotiate; the chatbots diverged from human language and invented their 

own language to communicate with one another. 

- “Caffe” Open source DL framework. 

2018 - “BERT” by Google, the first bidirectional unsupervised language representation 

- “Bixby” introduced by Samsung 

- Facebook detects faces and shares photos with friends to whom those photos belong 

- Alibaba language processing AI outscored human intellect at a Standford reading and 

comprehension test. 

2020 - DeepMind team uses DL algorithms “Agent 57” that outperforms humans at Atari games 

with Deep Reinforcement Learning. 

- Widespread “5G” network deployments worldwide 

Table 1.3: Third period of the Evolution of AI, ML and DL 2010-2020   

4. Deep Face Recognition 

Convolutional Neural Network is one of Deep learning architectures used in the facial 

recognition systems and computer vision in general, DL is subclass of machine learning which 

is a subclass of artificial intelligence, hence, to understand deep learning, it is necessary to start 

with the main fundamentals of AI and ML. 

 
Figure 1.3: Artificial Intelligence’s Subclasses 
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4.1. Artificial Intelligence: 

Artificial intelligence is the effort to automate intellectual tasks normally performed by 

humans. It starts with us identifying a set of rules and code it, the computer than execute this 

set of rules and follow these instructions, more rules resulted better AI, and eventually, AI was 

fully relied on human intervention with lots of programming where some programs were nearly 

half million lines of code and it can be either simple or complex. 

4.2. Machine Learning: 

 British computer scientist Alan Turing and his team, created the first machine to 

decipher Enigma. His invention laid the foundations for Machine Learning. Machine learning 

is a study of computer algorithms that improve automatically through experience [9]. It made 

programming easier by taking in just training data as inputs, which is combined of pairs of data 

(features) and what their outputs should be (labels). ML figures out the patterns or the rules by 

itself, but the main goal in ML is to raise the accuracy as high as possible which means it still 

can make mistakes. However, to raise the accuracy, ML needs a massive amount of inputs as 

examples to train a good model that than predict the best possible output for new unknown data. 

 Tom M. [10] provided a widely quoted, more formal definition of the algorithms studied 

in the machine-learning field:  

"A computer program is said to learn from experience E 

with respect to some class of tasks T and performance 

measure P if its performance at tasks in T, as measured by 

P, improves with experience E."  

 

Figure 1.4: Difference between Classical Programming and ML Programming learning 

steps 
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4.2.1. Machine Learning Data: 

 The data in machine learning is a set of inputs presented as a heterogeneous matrix, 

Rows of the matrix are called observations, examples, or instances, each one contain a set of 

measurements for a subject. Columns of the matrix are called predictors, attributes, or features, 

each are variables representing a measurement taken on every subject. The response data is a 

column vector where each row contains the output of the corresponding observation in the input 

data. To fit or to train a supervised learning model we must choose an appropriate algorithm, 

and then pass this training data to it. 

 The data types can be either numeric vector, categorical vector, Character array, String 

array, Cell array of character vector, or logical vector. For regression, the response data must 

be a numeric vector with the same number of elements as the number of rows of instances. 

While for classification, it can be any of the mentioned types above. 

4.2.2. Machine Learning approaches:  

There are three main machine learning approaches used nowadays [11]: 

1) Supervised Learning: 

 Supervised learning is the most applicable type of learning; its algorithms build a 

mathematical model of a set of data that contains both the inputs and their desired outputs [12]. 

Called the Training data, where each training example is represented by an array or vector, 

sometimes called a feature vector, and the full training data is represented by a matrix. 

 Through iterative optimization of an objective function, supervised learning algorithms 

learn an inferred function that can be used to predict the output associated with new unknown 

inputs [13]. An optimal scenario will allow for the algorithm to correctly determine the class 

labels for unseen instances. This requires the learning algorithm to generalize from the training 

data to unseen situations in a “reasonable” way. The computer “learns” from the observations, 

when exposed to more observations, the computer than improves its predictive performance.  

 Specifically, a supervised learning algorithm takes a known set of input data and known 

responses to the data (output), and trains a model to generate reasonable predictions for the 

response to new data. (figure 1.5).  
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2) Unsupervised Learning: 

 Unsupervised learning algorithms take a set of data that contains only inputs, and find 

structure in the data, like grouping or clustering of data points, without having previously an 

idea of what they can be or how many they should be, by figuring out the similarities between 

the given data with no human intervention.  

3) Reinforcement Learning: 

 Reinforcement learning (RL) is called approximate dynamic programming, or neuro-

dynamic programming, it is an area of machine learning concerned with how software agents 

ought to take actions in an environment in order to maximize the notion of cumulative reward. 

 Basic reinforcement is modeled as a Markov decision process [118]: 

 A set of environment and agent states, S. 

 A set of agent actions, A 

 𝑃𝑎(𝑠, 𝑠
′) = Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) is the probability of transition (at time t) from 

state s to state s’ under action a. 

 𝑅𝑎(𝑠, 𝑠
′) is the immediate reward after the transition from s to s’ with action a. 

4.2.3. Algorithms used in machine learning: 

Type Supervised 

Learning 

Unsupervised Learning Reinforcement Learning 

A
lg

o
rith

m
s 

Classification 

[162]. 

Regression [163]. 

 

Clustering [164]. 

Anomaly Detection [165]. 

Neural Networks [166]. 

Dimensionality reduction 

[167]. 

Criterion of optimality 

[168]. 

Brute force [169]. 

Value function [170]. 

Direct policy search [171]. 

Table 1.4: Most common algorithms used in supervised, unsupervised and reinforcement learning.   

Figure 1.5: Supervised learning steps 
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4.2.4. Machine Learning Steps: 

 The result of the next steps is what’s called a “model” [14], many successful models 

already exists in the field of Face Recognition (see table 1.7). 

1) Preparing the data and choose an algorithm 

 There are various learning algorithms (figure 1.6), each has its strengths and weaknesses, 

and no single one works best on all problems. In order to choose the best data presentation and 

most fitting algorithm for our problem, we must take in consideration the following tradeoffs: 

 Bias-variance tradeoff: 

The bias-variance dilemma is the conflict in trying to simultaneously minimize these 

two sources of error that prevent supervised learning algorithms from generalizing beyond their 

training set. high bias can cause an algorithm to miss the relevant relations between features 

and target outputs, where high variance can cause it to model the random noise in the training 

data rather than intended outputs (overfitting) [15] 

 Function complexity and amount of training data 

The amount of training data available relative to the complexity of the "true" function 

is an important tradeoff. If the true function is simple, then an "inflexible" learning algorithm 

with high bias and low variance will be able to learn it from a small amount of data. But if the 

true function is highly complex, means it behaves differently in different parts of the input 

Figure 1.6: Machine Learning Algorithms application field. 
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space, the function will only be able to learn from a very large amount of training data and using 

a "flexible" learning algorithm with low bias and high variance [16]. 

 Dimensionality of the input space 

A third issue is the dimensionality of the input space. If the input feature vectors have 

very high dimensions, we stumble into the curse of dimensionality, which refers to all the 

problems that arise when working with data in the higher dimensions. The many "extra" 

dimensions can confuse the learning algorithm and cause it to have high variance means 

Overfitted. Hence, high input dimensional typically requires tuning the algorithm to have low 

variance and high bias.  

In practice, human can intervene and manually remove irrelevant features from the input 

data, this is likely to improve the accuracy of the learned function. In addition, many algorithms 

for feature selection seek to identify the relevant features and discard the irrelevant ones. This 

is an instance of the more general strategy of dimensionality reduction, which seeks to map the 

input data into a lower-dimensional space prior to running the learning algorithm. 

The most common and well-known dimensionality reduction methods are the ones that 

apply linear transformations, PCA (Principal Component Analysis), Factor Analysis, and LDA 

(Linear Discriminant Analysis). (figure 1.7) 

Whereas, the non-linear dimensionality reduction methods are MDS (Multi-

dimensional scaling), Isomap (Isometric Feature Mapping), LLE (Locally Linear Embedding), 

HLLE (Hessian Eigenmapping), Laplacian Eigenmaps (Spectral Embedding), t-SNE (t-

distributed Stochastic Neighbor Embedding. (figure 1.8) 

To resume, the dimensionality reduction offers us many advantages such as:  

o Less misleading data means model accuracy improves. 

o Fewer dimensions mean less computing. Less data means that algorithms train faster. 

o Less data means less storage space required. 

o Fewer dimensions allow usage of algorithms unfit for a large number of dimensions 

Figure 1.7: LDA projects the data to signify the class separability, whereas PCA orients data 

along the direction of the component with maximum variance.  
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o Removes redundant features and noise. 

 

2) Fitting/Training a model 

When training for machine learning, an algorithm is passed with the training data. The 

learning algorithm finds patterns in the training data such that the input parameters correspond 

to the target. The output of the training process is a machine learning model which you can then 

use to make predictions. This process is also called “learning”. Fitting or Training the model is 

applying the chosen algorithm on the chosen data with a human supervision using one of the 

validation methods mentioned next. 

3) Choosing a validation method 

There are different validation techniques used to examine the accuracy of the resulting fitted 

model: 

 Resubstitution [172] 

 Hold-out [173] 

 K-fold cross-validation error [174] 

 Bootstrapping [175] 

 Random subsampling [175] 

 LOOCV (Leave-One-Out Cross-Validation) [176] 

4) Examining fit and update until satisfied 

 After validating the model, we might want to change it for better accuracy, better 

speed, or to use less memory as follows: 

 Change fitting parameters to try to get a more accurate model. 

Figure 1.8: The projection from applying different manifold learning methods on a 

3D S-Curve 
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 Change fitting parameters to try to get a smaller model. This sometimes improve 

accuracy.  

 Try a different algorithm. 

5) Using fitted model for predictions 

This is the last step in machine learning, after being satisfied with the accuracy and 

details of the model, it is used to determine and classify a new unknown data. 

4.3. Deep Learning: 

Deep learning is the newest field in computer science, based on what’s called Artificial 

Neural Networks, which is a technology inspired by the brain’s neural network architecture, 

ANN are one of the most popular machine learning algorithms at present, it proved its capability 

at outperforming other algorithms in accuracy and speed. In this part, we present a fundamental 

understanding of what a neural network is starting from its most basic building block, which is 

a neuron, and later diving into its most popular types like CNN, RNN, etc. 

Deep learning is an AI function that mimics the work of the human brain in processing 

data for use in detecting and recognizing objects, speech, translating languages, and making 

decisions. It uses multiple layers to progressively extract higher-level features from the raw 

input. For example, in image processing, lower layers may identify edges, while higher layers 

may identify the concepts relevant to a human such as digits or letters or faces [23]. 

Deep learning is a subset of machine learning that is able to learn without human 

supervision, drawing from data that is both unstructured and unlabeled. Creating patterns for 

use in decision making. Deep learning unravels the huge amounts of unstructured data (Big 

Data) that would normally take humans decades to understand and process. 

Figure 1.9: Artificial Neural Network Architecture with its basic elements 
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4.3.1. Deep Learning terminology: 

1) Artificial Neuron 

The functionality of the artificial neuron is similar to that of a human (figure 1.10), it 

takes in an input and returns an output, however, in mathematical terms, a neuron is a 

placeholder for a mathematical function, it applies the function given on the input and provides 

the result, which is the output. The functions used inside a neuron are generally termed as an 

Activation function. There are many types of these functions but there have been 5 major 

activation functions tried to date, step, sigmoid, tanh, ReLU and Leaky ReLU (table 1.5). 

 

2) Layers 

Artificial neural network architecture is defined by a collection of connected units or 

nodes (neurons); the ANN is combined of three main layers type, the input, the hidden and the 

output. Usually the number of layers is small and known, but in Deep Learning the layers 

number raised to thousands and some Deep Learning ANNs have unknown number of layers, 

hence why, it is called ‘Deep’. 

 Input Layer 

There is one input layer in ANN, each type of ANN receives different kinds of data 

(information) depending on the aimed learning field, for instance, in Computer Vision, the first 

layer consists of neurons holding the pixel’s intensities; for example, an input layer containing 

1024 neurons, expects an image of size 32x32. The terminology layer and neuron here is just a 

way to help us humans perceive the data better, where in application, the image is simply 

flattened to an array of size 1024x1, the array is the layer and the array elements are the neurons. 

However in CNN, the image stays a matrix through the whole network and only flattened in the 

last what’s called “fully-connected” layer. 

Figure 1.10: Neuron’s parts and their functions in Anatomy 
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 Hidden layers 

Each network is unique, there is no specific number of layers, some networks use 

unknown number of layers between the input and output, hence it is called Hidden. The number 

of hidden layers depends on the data type, size, and the aimed learning, for example, for Face 

Detection in CNN, the network needs a layer to detect the edges (diagonal, vertical ..), a second 

to detect the combination of edges, which are shapes (circles, triangles, ..), a third to detect the 

face features (eyes, nose, ..), and another to detect the combination of features and decide 

whether it is a face or not. 

 Output Layer 

The output layer contains the results of the classification, for example, in Computer 

vision and hand-writing digits recognition, the output layer contains 10 neurons according to 

the number of digits used (0,1,2,..,9), after the many calculations in hidden layers, the last layer 

provide an estimation of what could the digit in the input image be. The decision is relying on 

mathematical function called the activation functions (table 1.5). 

3) Weights 

Neural networks connect neurons from layer to layer by weighted associations, the 

networks learn (or are trained) by processing examples containing a known "input" and "output" 

pairs, forming probability-weighted associations between the two, which are stored within the 

data structure of the network itself. The network then adjusts its weighted associations 

according to a learning rule and using the error value. Successive adjustments will cause the 

neural network to produce output, which is increasingly similar to the target output. After a 

sufficient number of these adjustments, the training can be terminated based upon certain 

criteria. This is known as supervised learning. And the result is called model [143]. 

4) Activation Functions 

A given node (neuron) takes the weighted sum of its inputs, and passes it through a non-

linear activation function. This is the output of the node, which then becomes the input of 

another node in the next layer; The activation function is what decides whether the neuron is 

fired (activated) or not, for example in Computer Vision and image processing, if two neurons 

detected two different edges that construct a corner, and one of the neurons in the next layer is 

specified for this corner, the activation function will ‘activate’ the neuron after receiving the 

two positive signals and evidently send a signal to the next layer mentioning there is a corner 

in that certain place [17]. 
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Many activation functions have been used, each has its own formula, hence different 

results, although, the functions can be all used for the same purpose, the learning result varies, 

thus in order to choose the right function, tests need to be done and compared [18]. 

Name Function and graph Pros and cons 

Step 

(biniary) 

 

𝑓(𝑥) = {
0𝑖𝑓𝑥 < 0
1𝑖𝑓𝑥 ≥ 0

  

 

 Binary Classification 

 Doesn’t work in multi-label classification 

 The derivative for the gradient calculation is always 0 so 

impossible to update weights 

Linear  𝑓(𝑥) = 𝑎𝑥 

 

 Binary and multiclass classification 

 Highly interpretable 

 The derivative correspond to “a” so the update of weights and 

biaises during the backprogation will be constant. 

 Not efficient if the gradient is always the same. 

Sigmoid 
𝑓(𝑥) =

1

1 + 𝑒−𝑥

=
𝑒𝑥

𝑒𝑥 + 1
 

 

 The output of each neuron can saturate. 

 The best sensitivity is around the central point (0, 0.5). 

 The algorithm cannot learn during the saturation (it’s the source 

of the vanishing gradient problem, corresponding to the absence of 

direction in the gradient). 

Tanh 𝑓(𝑥) = 2 ∗

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1  

 

 Range [-1,1] 

 The gradient is stronger than sigmoid ( derivatives are steeper) 

 Like sigmoid, tanh also has a vanishing gradient problem 

ReLU [162] 𝑓(𝑥) = 𝑥+ =

max(0, 𝑥)  

 

 Easy to implement and very fast 

 True 0 value 

 Optimization is easy when activation function is linear 

 Most used in the neural networks ecosystem 

 It can’t be differentiable when x = 0. The gradient descent can’t 

be computed for this point 

 “dying ReLU problem” 

 Not appropriate for RNN class algorithms (RNN, LSTM, GRU) 

Leaky 

ReLU 

𝑓(𝑥) =

{
0.01𝑥𝑖𝑓𝑥 < 0
𝑥𝑖𝑓𝑥 ≥ 0

  

 Correct the “dying ReLU problem” 

 Same compartment of the ReLU activation function for the part 

y=x 

Parametric 

ReLU 

𝑓(𝑥) = {
𝑎𝑥𝑖𝑓𝑥 < 0
𝑥𝑖𝑓𝑥 ≥ 0

  
 Generalize the ReLU activation function 

 Avoid the “dying ReLU problem” 

 The parameter “a” is learned by the neural network 
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e-ReLU 𝑓(𝑥) =

{
𝑎(𝑒𝑥 − 1)𝑖𝑓𝑥 < 0

𝑥𝑖𝑓𝑥 ≥ 0
  

 Becomes smooth slowly until its output equal to -α whereas 

RELU sharply smoothes. 

 Strong alternative to ReLU. 

 Unlike to ReLU, ELU can produce negative outputs. 

 For x > 0, it can blow up the activation with the output range of 

[0, ∞]. 

ReLU-6 𝑓(𝑥) =

{
max(0, 𝑥)𝑖𝑓𝑥 < 6
6𝑖𝑓𝑥 ≥ 6

  

 Eliminates the possibility to blow up the activation with the 

output range of [0, ∞] when x>0 

 Fix the step functions and basic ReLU cons 

Softplus 𝑓(𝑥) = ln(1 + 𝑒𝑥)   

Softsign 𝑓(𝑥) =
𝑥

1+|𝑥|
   

Softmax 𝑓(𝑥) =
𝑒𝑥

∑ 𝑒
𝑥𝑗𝐾

𝑗=1

   It is a probability distribution hence the output is different taking 

into account the sum of exponential. 

Swish 𝑓(𝑥) =
𝑥

1 + 𝑒−𝑥
 

= x ∗ sigmoid(x) 

 Differentiable on each point compared to ReLU. 

Table 1.5: The activation functions with their pros and cons. 
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 So we can conclure that the activation function defines the output of a neuron / 

node given an input or set of input (output of multiple neurons). It’s the mimic of the 

stimulation of a biological neuron. 

  

Figure 1.11: Plot corresponds to the activation functions stack in one graphic. 
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4.3.2. Artificial Neural Networks Types: 

 

 

 

 

 

 

Figure 1.12: A mostly complete ANN Chart [144]. 

 

There are multiple Neural Networks types and architectures (figure 1.12), each have its 

own strengths and weaknesses, however, there are three mostly used ones, which are: 
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1) Convolutional Neural Network  

CNN or Convolutional Neural Network is a neural network type that is heavily used in 

Computer Vision due to its capability of obliterating the need for fully connected layers during 

the execution. Regarding the size of the images used, the neurons in the first layer represent all 

the pixels in the image. Hence, it is necessary to find a neural network that can extract the 

features from the image and convert it into lower dimensions without losing its characteristics. 

[19] (View Chapter 2 for more details on CNN) 

2) Recurrent Neural Networks  

A recurrent neural network (RNN) is a class of artificial neural networks in which node-

to-node form a directed graph along a time continuum. This enables it to display temporal 

dynamic behavior. RNNs are derived from feedforward neural networks; thus, they can use 

their internal state (memory) to process variable length sequences of inputs. This makes them 

applicable to tasks such as unsegmented, connected handwriting recognition, or speech 

recognition [21]. 

RNNs are a sequential data processing family of neural networks. Much as a CNN 

which is specialized for processing a grid of values such as an image, an RNN is specialized 

for processing a sequence of values𝑥(1), …, 𝑥(𝜏), and just as CNN can readily scale to images 

with large width and height, and some CNN can process images of variable sizes, RNN can 

scale to much longer sequences than would be practical for networks without sequence-based 

specialization. Most recurrent networks can also process sequences of variable length [21]. 

3) LSTM 

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) 

architecture, used in the field of deep learning. Unlike standard feedforward neural networks, 

LSTM has feedback connections. It can not only process single data points (such as images), 

but also entire sequences of data (such as speech or video) [22]. 

LSTM networks are well-suited to classifying, processing and making predictions based 

on time series data, since there can be lags of unknown duration between important events in a 

time series. LSTMs were developed to deal with the vanishing gradient problem that can be 

encountered when training traditional RNNs. Relative insensitivity to gap length is an 

advantage of LSTM over RNNs, hidden Markov models and other sequence learning methods 

in numerous applications [22]. 
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4.3.3. Artificial Neural networks Application Fields 

CNN RNN LSTM 

 Image recognition 

 Electromyography (EMG) 

recognition 

 Video analysis 

 Natural language 

processing 

 Anomaly Detection 

 Drug discovery 

 Health risk assessment 

and biomarkers of aging 

discovery 

 Checkers game 

 Go the game 

 Time series forecasting 

 Machine Translation 

 Robot control 

 Time series prediction 

 Speech recognition 

 Speech synthesis 

 Time series anomaly detection 

 Rhythm learning 

 Music composition 

 Grammar learning 

 Handwriting recognition 

 Human action recognition 

 Protein Homology Detection 

 Predicting subcellular 

localization of proteins 

 Several prediction tasks in the 

area of business process 

management. 

 Prediction in medical care 

pathways 

 Robot control 

 Time series prediction 

 Speech recognition 

 Rhythm learning 

 Music composition 

 Grammar learning 

 Handwriting recognition 

 Human action recognition 

 Sign language translation 

 Protein homology detection 

 Predicting subcellular localization of 

proteins 

 Time series anomaly detection 

 Several prediction tasks in the area of 

business process management 

 Prediction in medical care pathways 

 Semantic parsing 

 Object co-segmentation 

 Airport passenger management 

 Short-term traffic forecast 

Table 1.6: The application fields of the three most used ANN type (CNN, RNN, LSTM). 

5. Deep extraction 

The architectures can be classified into backbone networks and assembled networks, 

inspired by the extraordinary success of the ImageNet challenge, typical architectures from 

CNN, such as AlexNet, VGGNet, GoogleNet, ResNet and SENet, are presented and widely 

used as a basic model in FR (directly or slightly modified). In more than the mainstream, there 

are still some new architectures designed for FR to improve performance. In addition, when the 

basic networks are adopted as blocks basic FR methods often form assembled networks with 

inputs multiple or multiple tasks. A network is intended for one type of input or one type of 

task. Hu et al [28] show that it makes it possible to increase performance after accumulation of 

the results of the assembled networks. 
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6. Matching faces with deep features 

Once the models are formed with big data and an appropriate loss function, each of the 

test images is passed through the networks to get an in-depth representation of the features. 

Once the characteristics deep extracted, most methods directly calculate the similarity between 

two characteristics using the cosine distance, then the nearest neighbor (PPV) and the Threshold 

comparison are used for identification and verification tasks [27]. 

7. Deep Learning models and architectures for FR 

The training procedure to obtaining a functioning model is based on the following 

steps: 

 Randomly initialize the weights for all the nodes. There are smart initialization methods. 

 For every training example, perform a forward pass using the current weights, and calculate 

the output of each node going from left to right. The final output is the value of the last 

node. 

 Compare the final output with the actual target in the training data, and measure the error 

using a loss function. 

 Perform a backwards pass from right to left and propagate the error to every individual node 

using backpropagation [145]. Calculate each weight’s contribution to the error, and adjust 

the weights accordingly using gradient descent. Propagate the error gradients back starting 

from the last layer. 

Deep learning networks have established themselves as a promising model for face 

recognition. Their success is attributed towards multiple processing layers in order to learn data 

representations with several feature extraction levels. CNN have been presented as the deep 

learning tool in almost all face recognition systems. The significant breakthrough made by 

DeepIDs, DeepFace, Face++, FaceNet, and Baidu has changed the entire investigation scope. 

The deep face recognition techniques leverage hierarchical architecture in order to learn 

discriminative face representation. It has improved the system’s performance appreciably 

which has led to the growth of several successful applications [29]. 
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7.1. State of the art models in Deep FR 

Model Accuracy Extra training Paper Year 

VarGFaceNet 99.85% ✗ [118] 2019 

ArcFace + MS1MV2 + R100 99.83% ✗ [119] 2018 

PFEfuse+match 99.82% ✗ [120] 2019 

VarGNet 99.733% ✗ [121] 2019 

CosFace 99.73% ✗ [122] 2018 

Dyna. AdaCos 99.73% ✗ [123] 2018 

PAENet 99.67% ✓ [124] 2019 

Seesaw-shuffleFaceNet (mobi) 99.65% ✗ [125] 2019 

FaceNet 99.63% ✗ [126] 2015 

DeepID3 99.53% ✗ [127] 2015 

Ring loss 99.52% ✗ [128] 2018 

DeepID2+ 99.47% ✗ [129] 2014 

SphereFace 99.42% ✗ [130] 2017 

Light CNN-29 99.33% ✗ [131] 2015 

Git Loss 99.30% ✗ [132] 2018 

CPG 99.30% ✓ [133] 2019 

Dynamic MTL 99.21% ✗ [134] 2019 

DeepID2 99.15% ✗ [135] 2014 

SeqFace 99.03% ✗ [136] 2018 

SeetaFace 98.62% ✗ [137] 2016 

GaussianFace 98.52% ✗ [138] 2014 

VGG+GANFaces 94.9% ✗ [139] 2018 

3DMM face shape parameters + CNN 92.35% ✗ [140] 2016 

Table 1.7: State-of-the-art models for face recognition (accuracy tested on LFW dataset) 

 

7.2. State of the art Deep Learning architectures in the field of Computer Vision: 
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2015 2016 2017 2018 2019 2020 

Inception2 [37] 

Inception3 [44] 

ResNet[38] 

SegNet[39] 

VGG[40] 

Fast R-CNN [41] 

Faster R-CNN[42] 

Highway [43] 

PReLU-Net [65] 

Inception4[45] 

ResNets[46] 

ResNext[47] 

ENet[48] 

SqueezeNet[49] 

YOLO v1[50] 

Xception[51] 

SSD[52] 

DenseNet[53] 

DarkNet[66] 

WideResNet[67] 

PyramidNet[68] 

FractalNet[69] 

SimpleNet[54] 

CapsNet[55] 

YOLO v2[56] 

MobileNets[57] 

RefineDet[58] 

RetinaNet[59] 

DeformableCNN[60] 

ShuffleNet[70] 

SENet[71] 

CheXNet[72] 

DPN[73] 

RevNet[74] 

McKernel[75] 

YOLO v3[61] 

MobileNets2[62] 

MnasNet[76] 

ShuffleNet2[77] 

AmoebaNet[78] 

DetNet[79] 

PeleeNet[80] 

FBNet[81] 

SqueezeNext[82] 

ProxylessNet[83] 

DenseNet-

Elastic[84] 

ResNet-D[85] 

ESPNet2[86] 

Big-Little Net[87] 

 

YOLO v4[63] 

EfficientNet[88] 

HRNet[89] 

MobileNets3[90] 

Single-path NAS[91] 

SNet[92] 

MixNet[93] 

SpineNet[94] 

VoVNet[95] 

CSPResNeXt[96] 

VoVNet2[97] 

DenseNAS-C[98] 

ScaleNet[99] 

DiCENet[100] 

MoGA-A[101] 

ECA-Net[102] 

GhostNet[103] 

DenseNAS-A[104] 

MultiGrain[105] 

RandWire[106] 

SKNet[107] 

SCARLET[108] 

DetNASNet[109] 

CSPDarknet53[110] 

Deep-Captcha[111] 

RegNetX[112] 

RegNetY[112] 

Assemble-ResNet[113] 

TResNet[114] 

ResNeSt[115] 

GreedyNAS-A[116] 

GreedyNAS-B[116] 

GreedyNAS-C[116] 

Harm-Net[117] 

 

 

 

 

 

 

Table 1.8: State-of-the-art DL architectures in the field of computer vision the past 5 years. 
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Deep Learning Datasets for FR 

    The choice of the dataset is one of the two most important choices in deep learning after the 

architecture of the neural networks. Datasets are as the name suggests a set and a combination 

of data, it can be in different types depending on the field of use or the intentional learning. For 

example, in Computer Vision, the dataset is a collection of images (labeled in supervised 

learning, unlabeled in unsupervised learning). In Face Detection and Recognition for instance, 

the dataset is a set of face images in different variations to give the computer as many cases of 

the as possible in order for it to detect it and recognize it in any given situation.  

    The creation of a face dataset is based on so many criterions, from the image’s visual 

parameters (lighting, color spaces, noises...), to the semantic part of the used images (Genders, 

Poses, Ages...). 

    Many face datasets already exists, each with its own specifics and details, some datasets 

focused on poses and others on ages. However, the newest technology has been 3D face 

reconstruction, that does not only take face recognition to another level, but gives the computer 

the ability to surpass human recognition systems. 

7.3. State of the art of face datasets:  
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Table 1.9: State-of-the-art datasets in the facial recognition field. 
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8. Deep Learning Challenges: 

Although deep learning techniques are proving its best and has been solving various 

complicated applications with multiple layers and high level of abstraction. It is surely accepted 

that the accuracy, acuteness, receptiveness and precision of deep learning systems are almost 

equal or may sometimes surpass human experts. To feel the exhilaration of victory, in today’s 

scenario, the technology has to accept many challenges. So, here is the list of challenges which 

deep learning has to overcome is: 

 Deep learning algorithms have to continuously manage the input data. 

 Algorithms need to ensure the transparency of the conclusion. 

 Deep learning technology requires expensive high performance GPUs and storage 

equipment. 

 It needs improved methods for big data analytics.  

 Deep networks are called black box networks, because of their mysterious mechanism. 

 The presence of hyper-parameters and its complex design. 

 Suffer from local minima. 

 Computationally intractable. 

 Need a large amount of data. 

 Expensive for the complex problems and computations. 

 No strong theoretical foundation. 

 Difficult to find the topology, training parameters for the deep learning. 

 Deep learning provides new tools and infrastructures for the computation of the data and 

enables computers to learn objects and representations. 

9. Conclusion: 

In this Chapter, we have presented the basics of face detection and recognition, as well 

as the newest approach and trend used in recent years, which is Deep Learning, starting from 

Artificial intelligence and Machine Learning concepts, then we presented the different deep 

learning architectures and state of the art face recognition models that are based on CNN, after, 

we have mentioned challenges and obstacles of DL technology and made comparison between 

the most recent works that have been developed for facial recognition. 

This study allowed us to see computer science in a whole different vision, The past 

decades of hard work and studies have led to this astonishing technology of Deep Learning 

which is unlike the usual technologies by all means, it gives the computer the ability to think 

and literally mimic human behavior and in some cases surpass it, with a very small human 
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supervision, thus, working with Deep Learning does not require the human intervention to 

specify or manually program the details in order to accomplish a certain task like face detection 

and recognition. 

Although, the works and as mentioned, surpassed human’s capabilities, this technology 

still needs some progress and development to get to the point where computers think and act on 

their own (Artificial Intelligence). In the next chapter we present CNN in depth and how it is 

used to perform a Facial Recognition task, also, we mention the frameworks available for the 

implementation of CNN, plus the challenges and obstacles and suggest some future work. 
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II. Convolutional Neural Network 

1. Introduction 

In Deep Learning, Convolutional neural network (CNN or ConvNet) is a type of feed-

forward artificial neural network in which the connectivity pattern between neuron is inspired 

by the organization of the human visual cortex. 

With the development of deep learning, face recognition technology based on CNN 

(Convolutional Neural Network) has become the main method adopted in the field of face 

recognition. In this Chapter we studied the basic principles of CNN: 

 The most important methods build in CNN such as convolution and pooling. 

 The different layers presented in CNN architecture, from input to fully connected and 

output layer with the definition of their details from data type to the functions applied 

on it. 

 Techniques used in improving the CNN, such as Normalization, Optimization and 

Regularization, and how to avoid overfitting or underfitting. 

 The frameworks and the predefined functions used to implement the CNN. 

2. Why CNN for Computer Vision 

The average number of neurons in the adult human primary visual cortex in each 

hemisphere has been estimated at around 140 million. The visual cortex has small regions of 

cells that are sensitive to specific regions of the visual field. Some individual neuronal cells in 

the brain reply (or fires) only in the presence of edges of a certain orientation. For example, 

some neurons fires when exposed to vertical edges and some when shown horizontal or 

diagonal edges [142]. 

 

First, The computer sees the image as a collection of color intensities called a Pixel, in 

case of a colored RGB image, each pixel will have three values Red, Green, and Blue, in result, 

the image will be a matrix with three dimensions Width, Height, and Depth (depth=3 in RGB 

images). 

Figure 2.1: How does the computer sees an image in RGB type 
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Second, It is preferable to use convolutional neural networks for image classification 

rather than the traditional neural networks (multilayer perceptron MLP), in CNN the neuron in 

a layer will only be connected to a small region of the layer before it, unlike the neuron in MLP 

which is a fully connected networks, MLPs’ cons are: 

 MLP use one perceptron (neuron) for each input (e.g. pixel in an image, multiplied by 3 in 

RGB case). The amount of weights rapidly becomes unmanageable for large images. For a 

224 x 224 pixel image with 3 color channels there are around 150,000 weights that must be 

trained! As a result, difficulties arise whilst training and overfitting can occur. 

 MLPs react differently to an input (images) and its shifted version, they are not translation 

invariant. For example, if a picture of a face appears in the top left of the image in one 

picture and the bottom right of another picture, the MLP will try to correct itself and assume 

that a face will always appear in this section of the image (figure 2.2).  

 

3. CNN Architecture: 

CNN’s basic architecture includes these layers (figure 2.3), the main difference between 

the existing works that uses CNN as a base is the choice and the order of these layers and 

methods and its parameters.  

 

3.1. Input Layer:  

Input layers in CNN hold the raw pixel values of the image. Image data is represented 

by 3D matrix (width × height × depth). In traditional MLP, the image needs to be reshaped into 

a single column. Supposing an image of dimension 28 x 28 =784, it needs to be converted into 

784 x 1 before feeding it to the input layer. If there are “m” training examples then dimension 

of input will be (784, m). However, in CNN, the image remains of a shape Matrix.  

Figure 2.2: Shifted version of the same image 

Figure 2.3: Basic CNN architecture 
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3.2. Convolution Operation: 

Convolutional layer is sometimes called feature extractor layer, because features of the 

image are extracted within this layer. First of all, a part of the image is connected to convolution 

layer to perform convolution operation and calculating the dot product between receptive field 

(it is a local region of the input image that has the same size as that of filter) and the filter. 

Result of the operation is single integer of the output volume. Then the filter slides over the 

next receptive field of the same input image by a Stride and perform the same operation again. 

This process is repeated again and again until the image’s end. The output will be the input for 

the next layer. 

The convolution operation can be visualized in (Figure 2.5). Here the image dimension 

is 4x4 and filter is 3x3, hence we are getting output after convolution is 2x2. 

 Filters: 

The filters applied in convolution are sets of cube-shaped weights that are applied 

throughout the image. Each 2D slice of the filters are called kernels. These filters introduce 

translation invariance and parameters sharing. 

 

 

Figure 2.4: Example of Convolution operation 

Figure 2.6: Visualization of the use of filters in Convolution Operation 

Figure 2.5: Visualization of the Convolution Operation 
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 Padding  

Applying convolutions on a normal image reside down the image by an amount 

depending on the size of the filter. Hence why padding is used to eliminate the loss of what can 

be an important part of the image.  

 

3.3. ReLU function: 

Activation layers in CNN usually consists of the ReLU function, which is the most 

successful non-linear function; an element wise activation function, such as the max(0,x), 

thresholding at zero. Applying it leaves the size of the volume unchanged (see table 1.5). 

 

3.4. Pooling Operation: 

Pooling is used to reduce the spatial volume of input image after convolutions. It is used 

between two convolutions. If FC (fully connected) is applied after Convo without applying 

pooling or max pooling, then it will be computationally expensive. The max pooling is the only 

way to reduce the spatial volume of input image. In the example bellow, max pooling is applied 

in single depth slice with Stride of 2. the 4x4 dimension input is reduced to 2x2 dimensions. 

 

Figure 2.7: Visualization of different paddings and their resulted output 

Figure 2.8: Usage Over Time of Most known activation functions 

Figure 2.9: Example of Max Pooling in CNN 
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There is no parameter in pooling layer but it has two hyper-parameters — Filter (F) and 

Stride(S). In general, if we have input dimension W1 x H1 x D1, then the W2, H2, D2 of the 

output is:  

W2 = (W1−F)/S+1, H2 = (H1−F)/S+1, D2 = D1

 

 Pooling types: 

Type: Description Pros 

Max 

[176] 

Calculates the maximum value for patches of a feature map, It 

adds a small amount of translation invariance. 

Best at extracting more 

pronounced features like edges 

Average 

[177] 

Calculates the average value for patches of a feature map Extracts features more smoothly 

than max pooling 

Global 

[177] 

With global pooling reduces the dimensionality from 3D to 1D. 

Therefore global pooling outputs 1 response for every feature 

map. This can be the maximum or the average or whatever other 

pooling operation used. 

It is often used at the end of the backend of a convolutional neural 

network to get a shape that works with dense layers. 

Reduces the dimensionality from 

3D to 1D and eliminate the need 

to apply flattening 

Spatial 

Pyramid 

[178] 

SPP works by dividing the feature maps output by the last 

convolutional layer into a number of spatial bins with sizes 

proportional to the image size, so the number of bins is fixed 

regardless of the image size. Bins are captured at different levels 

of granularity 

Maps any size input down to a 

fixed size output. 

Figure 2.10: Example of pooling (down sampling) in CNN 
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Cascade 

Corner 

[179] 

It is a technique for object detection that seeks to better localize 

corners by encoding explicit prior knowledge. Suppose we want 

to determine if a pixel at location is a top-left corner. Let and be 

the feature maps that are the inputs to the top-left corner pooling 

layer, and let and be the vectors at location in and respectively. 

With feature maps, the corner pooling layer first max-pools all 

feature vectors between and into a feature vector, and max-pools 

all feature vectors between and into a feature vector. Finally, it 

adds and together. 

Better localization of the corners 

by encoding explicit prior 

knowledge 

Center 

[180] 

The backbone outputs a feature map, and to determine if a pixel 

in the feature map is a center keypoint, we need to find the 

maximum value in its both horizontal and vertical directions and 

add them together. By doing this, center pooling helps the better 

detection of center keypoints. 

Capture richer and more 

recognizable visual patterns. The 

geometric centers of objects do 

not necessarily convey very 

recognizable visual patterns. 

Table 2.1: Pooling types with their definitions and advantages 

 

3.5. Fully Connected Layer: 

Fully Connected Layer is a feed forward neural network. Fully Connected Layers form 

the last few layers in the network. The input to the fully connected layer is the output from the 

final Pooling or Convolutional Layer, which is flattened and then fed into the fully connected 

layer. 

FC layer computes the class scores, as with ordinary Neural Networks and as the name 

implies, each neuron in this layer will be connected to all the neurons in the previous layer. As 

for the number of FC, it varies depending on the data used. Some famous CNN structure in 

ILSVRC, such as AlexNet, VGG, ZF net, etc. use two fully connected layer, followed by the 

output layer. 

3.6. Softmax/Logistic function: 

Softmax or Logistic function exists in the last layer of CNN. It resides at the end of FC 

layer. Logistic is used for binary classification and softmax is for multi-classification. It is a 

Figure 2.11: Usage Over Time of Most known Pooling methods 



Chapter 2  Convolutional Neural Network 

43 
 

form of multinomial logistic regression that normalizes an input value into a vector of values 

that follows a probability distribution whose total sums up to 1.  

The output values are between the range [0,1] which enable us to avoid binary 

classification and accommodate as many classes or dimensions in our neural network model. 

As an aside, another name for Softmax Regression is Maximum Entropy (MaxEnt) Classifier 

[162]. 

The function is usually used to compute losses that can be expected when training a data 

set. Known use-cases of softmax regression are in discriminative models such as Cross-Entropy 

and Noise Contrastive Estimation. These are only two among various techniques that attempt 

to optimize the current training set to increase the likelihood of predicting the correct word or 

sentence. 

3.7. Output Layer 

The output layer in a CNN as mentioned previously is a fully connected layer, where 

the input from the other layers is flattened and sent so as the transform the output into the 

number of classes as desired by the network. The Output layer contains the label which is in 

the form of one-hot encoded. 

The output of the CNN is also a 4D array. Where batch size would be the same as input 

batch size but the other 3 dimensions of the image might change depending upon the values of 

the filter, kernel size, and padding we use 

3.8. Normalization 

Normalization is an approach which is applied during the preparation of data in order to 

change the values of numeric columns in a dataset to use a common scale when the features in 

the data have different ranges. Hence, it is used to make optimization easier by smoothing the 

loss surface of the network. It normalizes each input channel across a mini-batch. To speed up 

training of convolutional neural networks and reduce the sensitivity to network initialization, it 

is used between convolutional layers and nonlinearities, such as ReLU layers [163]. 

 Normalization Methods: 

# Name Reference Year 

1 Layer Normalization Ba, J.L et al [164] 2016 

2 Batch Normalization Ioffe, S et al [165] 2015 

3 Local Response Normalization Krizhevsky et al [166] 2012 
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4 Instance Normalization Ulyanov D et al [167] 2016 

5 Spectral Normalization Miyato T et al [168] 2018 

6 Adaptive Instance Normalization Ogasawara E et al [169] 2017 

7 Weight Normalization Salimans T et al [170] 2016 

8 Conditional Batch Normalization De Vries H et al [171] 2017 

9 Group Normalization Wu T et al [172] 2018 

10 Activation Normalization Kingma D.P et al [173] 2018 

11 Weight Demodulation Karras T et al [174] 2019 

12 Switchable Normalization Luo P et al [175] 2018 

13 Local Contrast Normalization Foracchia M et al [176]  2009 

14 Weight Standardization Qiao et al [177] 2019 

15 Conditional Instance 

Normalization 

Huang X et al [178] 2016 

16 SyncBN He K et al [179] 2018 

17 Attentive Normalization Li X et al [180] 2019 

18 Decorrelated Batch Normalization Huang L et al [181] 2018 

Table 2.2:Most used Normalization Methods ordered by their number of use 

3.9.  Regularization  

In mathematics, statistics, finance, computer science, particularly in machine learning 

and inverse problems, regularization is the process of adding information in order to solve an 

ill-posed problem or to prevent overfitting. Regularization applies to objective functions in ill-

posed optimization problems. 

Regularization strategies are designed to reduce the test error of a machine learning 

algorithms, possibly at the expense of training error. Many different forms of regularization 

exist in the field of deep learning 

 Dropout 

Dropout is the most used regularization technique, it is a technique where randomly 

selected neurons are ignored during training. They are “dropped-out” randomly. It is a 

stochastic regularization technique that reduces overfitting by (theoretically) combining many 

different neural network architectures. With Dropout, the training process essentially drops out 

neurons in a neural network. They are temporarily removed from the network, which can be 

visualized in (figure 1.12).  



Chapter 2  Convolutional Neural Network 

45 
 

 

This removal of neurons and synapses during training is performed at random, with a 

parameter p that is tunable (or, given empirical tests, best set to 0.5 for hidden layers and close 

to 1.0 for the input layer). This effectively means that, according to the authors, the “thinned” 

network is sampled from the global architecture, and used for training. 

It drops a unit (along with connections) at training time with a specified probability p (a 

common value is p= 0.5). all units are present, but with weights scaled by p (i.e.  becomes pw). 

The idea is to prevent co-adaptation, where the neural network becomes too reliant on particular 

connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of 

as creating an implicit ensemble of neural networks. 

 Regularization Methods: 

# Reference Name 

1 Srivastava N et al [182] Dropout 

2 Loshchilov I et al [183] Weight Decay 

3 Choe J et al [184] Attention Dropout 

4 Pereyra G et al [185] Label Smoothing 

5 Grandvalet Y et al [186] Entropy Regularization 

6 Yao Y et al [187] Early Stopping 

7 Kingma D.P et al [188] Variational Dropout 

8 Wan L et al [189] DropConnect 

9 Elden L et al [190] R1 Regularization 

10 Park M.Y et al [191] L1 Regularization 

11 Gal Y et al [192] Embedding Dropout 

12 Kim S.J et al [193] Off-Diagonal Orthogonal 

13 Oster H.S et al [194] Temporal Activation Regularization 

Table 2.3: Regularization Methods ordered by their number of use 

Figure 2.12: Standard Neural Net VS After applying Dropout 
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3.10. Optimization 

Optimizers are algorithms or methods used to change the attributes of neural network 

such as weights and learning rate in order to reduce the losses. In the simplest case, an 

optimization problem consists of maximizing or minimizing a real function by systematically 

choosing input values from within an allowed set and computing the value of the function. The 

generalization of optimization theory and techniques to other formulations constitutes a large 

area of applied mathematics. More generally, optimization includes finding "best available" 

values of some objective function given a defined domain (or input), including a variety of 

different types of objective functions and different types of domains. 

 Most known Optimizers: 

Name Advantages Disadvantages 

Gradient 

Descent 

 Easy computation 

 Easy to implement 

 Easy to understand 

 May trap at local minima 

 Weights are changed after calculating 

gradients on the whole dataset. So, if the 

dataset is too large, than this may take 

years to converge to the minima. 

 Requires large memory to calculate 

gradients on the whole dataset. 

Stochastic 

Gradient 

Descent 

 Frequent updates of model parameters 

hence, converges in less time. 

 Requires less memory as no need to store 

values of loss functions. 

 May get new minima’s. 

 High variance in model parameters. 

 May shoot even after achieving global 

minima. 

 To get the same convergence as gradient 

descent needs to slowly reduce the value of 

learning rate. 

 

 

Mini-Batch 

Gradient 

Descent 

 Frequently updates the model parameters 

and also has less variance. 

 Requires medium amount of memory. 

 

Momentum  Reduces the oscillations and high 

variance of the parameters. 

 Converges faster than gradient descent. 

 One more hyper-parameter is added which 

needs to be selected manually and 

accurately. 

Nesterov 

Accelerated 

Gradient 

 Does not miss the local minima. 

 Slows if minima’s are occurring. 

 Still, the hyperparameter needs to be 

selected manually. 

Adagrad  Learning rate changes for each training 

parameter. 

 Computationally expensive as a need to 

calculate the second order derivative. 
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 Don’t need to manually tune the learning 

rate. 

 Able to train on sparse data. 

 The learning rate is always decreasing 

results in slow training. 

AdaDelta  Now the learning rate does not decay and 

the training does not stop. 

 Computationally expensive. 

Adam  The method is too fast and converges 

rapidly. 

 Rectifies vanishing learning rate, high 

variance. 

 Computationally costly. 

Table 2.4:Advantages and Disadvantages of popular Optimization algorithms 

 

 Adam is the best optimizers, if we want to train the neural network in less time and more 

efficiently. 

 For sparse data use the optimizers with dynamic learning rate. 

 If, we want to use gradient descent algorithm than min-batch gradient descent is the best 

option. 

 

 Most used Optimization methods: 

# Name Reference Year 

1 Adam Kingma D.P et al [195] 2014 

2 SGD Robbins H and Monro S [196] 1951 

3 ADMM Boyd S et al [197] 2000 

4 RMSProp Hinton G [198] 2013 

5 SGD with Momentum Ning Q et al [199] 1999 

6 AdaGrad Duchi J et al [200] 2011 

7 TTUR Heusel M et al [201] 2017 

8 Gradient Clipping Pascanu et al [202] 2000 

Figure 2.13: Usage Over time of the most popular Optimization methods 
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9 LAMB You Y et al [203] 2019 

10 AMSGrad Reddi et al [204] 2019 

11 Nesterov Accelerated Gradient Nesterov Y [205] 1983 

12 Adafactor Shazeer M et al [206] 2018 

14 Natural Gradient Descent Rattray et al [207] 1998 

15 LARS You Y et al [208] 2017 

16 Population Based Training Jaderberg M et al [209] 2017 

Table 2.5:Most used Optimization Methods and ordered by their use rate 

4. Image Augmentation: 

Image augmentation is a data augmentation method that generates more training data 

from the existing training samples. The common case in most machine learning applications, 

especially in image classification tasks, is that new training data is hard to obtain or expensive.  

Data augmentation is a way to generate more training data from our current set. It 

enriches or “augments” the training data by generating new examples via random 

transformation of existing ones. This way we artificially boost the size of the training set, 

reducing overfitting (figure 2.14). 

 

Data augmentation is done dynamically during training time. Common transformations 

are: rotation, shifting, resizing, exposure adjustment, contrast change etc. data augmentation is 

only performed on the training data. The validation or test set remains unchanged. 

5. Overfitting and Underfitting in CNN 

Overfitting happens when the neural network is good at learning its training set, but is 

not able to generalize its predictions to additional, unseen examples. This is characterized by 

low bias and high variance. Underfitting happens when the neural network is not able to 

accurately predict for the training set, not to mention for the validation set. This is characterized 

by high bias and high variance (details in Chapter 1 -Machine learning-). 

Figure 2.14: Example on Data Augmentation in Computer Vision. 
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Methods to avoid Overfitting Methods to avoid Underfitting 

 Retraining neural networks:  

running the same model on the same training set but 

with different initial weights, and selecting the 

network with the best performance. 

 Multiple neural networks: 

training several neural network models in parallel, 

with the same structure but different weights, and 

averaging their outputs. 

 Early stopping:  

training the network, and monitoring the error on the 

validation set after each iteration, and stopping 

training when the network starts to over-fit the data. 

 Regularization:  

adding a term to the error function equation, 

intended to decrease the weights and biases, smooth 

outputs and make the network less likely to over-fit. 

 Tuning performance ratio:  

similar to regularization, but using a parameter that 

defines by how much the network should be 

regularized. 

 

 Adding neuron layers or inputs: 

adding neuron layers, or increasing the number of 

inputs and neurons in each layer, can generate more 

complex predictions and improve the fit of the 

model. 

 Adding more training samples or improving 

quality:  

the more training samples you feed into the 

network, and the better they represent the variance 

in the real population, the better the network will 

perform. 

 Dropout:  

randomly “kill” a certain percentage of neurons in 

every training iteration. This ensures some 

information learned is randomly removed, reducing 

the risk of overfitting. 

 Decreasing regularization parameter: 

regularization can be overdone. By using a 

regularization performance parameter, you can 

learn the optimal degree of regularization, which 

can help the model to better fit the data. 

Table 2.6:Methods used to avoid both Underfiting and overfitting 

6. Frameworks used to implement CNN 

    Given that deep learning is the key to performing tasks of a higher level of sophistication, 

building them successfully is a proven to be challenging for data scientists and data engineers 

across the globe. Today, we have a big collection of frameworks at our disposal that allows us 

to develop tools that can offer a better level of abstraction along with simplification of difficult 

programming challenges. 

    Each framework is built in a different manner for different purposes. The top eight deep 

learning frameworks with their main highlights are: 

Framework Highlights 

TensorFlow [210] - Robust multiple GPU support. 

- Graph visualization and queues using TensorBoard. 

- Known to be complex and has a steep learning curve. 

- Excellent documentation and community support. 
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PyTorch [211] - Excellent at rapid prototyping. 

- Strong support for GPUs as parallel programs can be implemented on multiple 

GPUs. 

- Provides cleaner interface and is easier to use. 

- Facilitates the exchange of data with external libraries. 

DeepLearningG4J 

[212] 

- Brings together the entire Java ecosystem to execute deep learning. 

- Can process massive amounts of data quickly. 

- Includes both multi-threaded and single-threaded deep learning frameworks. 

- Can be administered on top of Hadoop and Spark. 

CNTK - The 

Microsoft 

Cognitive Toolkit 

[213] 

- Highly efficient and scalable for multiple machines. 

- Supported by interfaces such as Python, C++, and Command Line. 

- Fit for image, handwriting and speech recognition use cases. 

- Supports both RNN and CNN type of neural networks. 

Keras [214] - Easy-to-understand and consistent APIs. 

- Seamlessly integrates with TensorFlow workflow. 

- Supports multiple deep learning backends. 

- Built-in support for distributed training and multi-GPU parallelism. 

ONNX [215] - Provides interoperability and flexibility. 

- Provides compatible runtimes and libraries. 

- Liberty of using the preferred framework with a selected inference engine. 

- Maximizes performance across hardware. 

MXNet [216] - Hybrid programming which provides the best of both imperative and symbolic 

programming. 

- Provides distributed training. 

- Supports deployment in different languages such as Java, Scala, R, Julia, C++, Perl, 

and Clojure. 

- Nearly linear on GPU clusters which provides excellent scalability. 

Caffe [217] - C++ library comes with a Python interface. 

- The configuration defines models without hard-coding. 

- Easier to set up and train, without having to build onto the network. 

- Support for recurrent neural networks is quite poor. 

Table 2.7: Top Eight Framework used in Deep Learning with their main highlights  

7. Conclusion 

In this Chapter, we have presented the basics of CNN, starting from its main 

fundamentals such as Convolutions and Pooling, moving on to its layers types and their detailed 

functioning. then we presented the different ways to improve the work of the CNN using 

Normalization, Regularization, and Optimization methods. Next, the implementation of CNN 

and how to use it for computer vision in general. After, we have made comparison between the 
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most used frameworks to achieve the best recognition rate taking in consideration the storage 

space and the time available. 

We learned that in other machine learning algorithms, the pictures need us to perform 

preprocessing or feature extraction. However, we rarely need to do these operations when using 

CNN for image processing. In terms of algorithms, there are sharing parameters between the 

convolution layers of CNN. The advantage of this is that the memory requirements are reduced, 

and the number of parameters to be trained is correspondingly reduced. The performance of the 

algorithm is therefore improved.  

Today, very good results have been achieved in the field of face recognition and other 

computer vision applications, which will be framed in the next Chapter, where we dived into 

conception, code programming and implementation, and evaluated a CNN on our own face 

dataset called “Actors dataset”, where we obtained some impressive results and accuracy. 
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III. Conception, Implementation and Results 

1. Introduction 

After presenting the fundamentals of Facial Recognition systems and Artificial 

intelligence in chapter one, and taking deeper look into Convolutional neural network’s details 

in chapter two, in this chapter we made our conception and implemented the method we have 

chosen to resolve the facial recognition problem using the newest state of the art Deep Learning 

technology.  

    Using Python programming language in Google Colab’s free programming environment.  

This chapter focuses on the conception and details it into four main stages: 

Stage 1: Loading, augmenting and pre-processing the data. 

Stage 2: Defining, fine-tuning the model’s architecture. 

Stage 3: Training and fitting the model. 

Stage 4: Estimating and testing the model’s performance. 

 

2. Loading and pre-processing the data 

2.1. Loading the Dataset: 

Preprocessing data step consist of the dataset and its partitioning choice, the different 

mathematical image enhancement methods such as noise reduction, data augmentation… 

Figure 3.1: Conception Graph 
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We made a new dataset in this work called “Actors”, it has 12 classes (12 different 

known actors), with an average of 30 images per class, collected from the internet which 

becomes over 3600 images after applying data augmentation, the images are of JPG format 

with different resolutions and varies from high to low quality, with lightning variations and 

background occlusion variation.  

 

The samples of faces we have chosen are in different varieties; first: two facial 

expressions only (neutral and smiling), second: different facial occlusion (Glasses, moustache, 

beard, hat, makeup), the poses are mainly frontal with just few side variations, and there is 

age variation as well. 

Here are the steps we did in order to load our data: 

1) Connect Google Drive with Google Colab to easily manage the images and files. 

2) Imported and used OpenCv to read the images and other python dependencies to 

manage the files in python. 

2.2. Preprocessing the dataset: 

  The preprocessing consist of detecting, aligning, and cropping the faces, and these 

are steps: 

1) Imported Dlib’s face detector which uses CNN. 

2) Read and converted each image to grayscale using OpenCV. 

3) Cropped the faces from the original RGB images using the coordinates from Dlib 

detector.  

Figure 3.2: Example of our Actors Dataset 
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4) Applied face augmentation, on the cropped images that resulted 9 different and new 

images for each image. 

5) Divided the dataset to 80% learning set and 20% validating set. 

3. Defining the model’s architecture 

Defining the model’s architecture requires choosing the hyper-parameters of the model, 

which are: 

 Number of Convolutional layers. 

 Type of activation functions for each layer. 

 Number of hidden units for each layer. 

The choice of these hyper-parameters can be done by copying the existing 

research/studies and doing transfer learning on our own dataset. Or experimenting with new 

values until the best match is found, but this is a time consuming process. In our work we used 

the benchmark CNN architecture VGG16 model, which is combined of 

 16 convolutional layers. 

 5 max pooling layers 

 

Figure 3.4: VGG16 model architecture with details 

Figure 3.3: Example Dlib face detector result 
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After defining the model as it is, prepared the training and test data by encoding it using 

this model, the results are four numpy arrays files and a weight file (train data, train labels, test 

data and test labels) we than removed the last Softmax layer and added these layers:  

4. Training the model 

In short, train the model on the training data and validate it on the test data numpy array 

files. Once we are satisfied with the model’s performance on the validation set, we can use it 

for making predictions on new unknown data. 

In this stage the number of epochs is defined, we tried many choices and settled with 50 

epochs which (epochs are the number of how many times the model training is repeated), it is 

usually done with a shuffle and random choices of the dataset items. After, we saved the model 

for later use.  

 

 

Figure 3.6: The accuracy and loss values in the fitting task 

Figure 3.5: The last layers added to the VGG16 model with their details 
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5. Estimating the model’s performance 

Finally, we load the test data (images) and go through the pre-processing step here as 

well. We then predict the classes for these images using the trained model and estimate how 

well the model perform by comparing how many correct predictions and mistakes (error) were 

made.  

 

The model achieved great results with accuracy over 99% in almost all the new 

unknown test images which is considered to be expected from a strong model such as VGG16, 

although it’s outdated compared to newer models but still outperforms all of them in the field 

of Face Recognition. 

6. Conclusion 

In this Chapter, we have presented the conception with its implementation details, 

starting from the main conception graph, we divided the work into four stages as mentioned in 

the introduction, moving on we provided some real face images examples from the dataset that 

we made with their preprocessing results. Next, we used the model VGG16 for face recognition 

specifying each of its layer’s parameters such as data size and types and also the activation 

functions used.  

Figure 3.7: Some of the result retrieved on new unknown images. 
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Then we added the specification of the layers added after removing the last softmax 

layer from VGG16, for transfer learning using Batch Normalization, dense and other activation 

functions. Last, we compiled the new model using Adam optimizer and Keras’s Cross entropy 

for the calculation of the loss function. 

We learned transfer learning, which is a very important way of taking advantage of 

benchmark pre-trained models which are trained on bigger and richer datasets using faster 

hardware and for longer periods of times that we can’t afford to waste again. 
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General Conclusion 

 The implementation of a real-time face recognition application is an undisputed 

requirement today due to security needs in several areas. Given the quantity of potential 

software (security, social networks, etc.) that can be based on this application, it must meet the 

requirements of robustness and speed of results. Our project is a temptation to realize such an 

application. 

 

 In this thesis, we described the problem of 2D face recognition by an algorithm based 

CNN architecture model, in the presence of illumination variation and poses. The main methods 

of the literature have been studied, whether on face recognition systems or the various works 

on deep learning. And we particularly focused on choosing the best convolutional neural 

network and the best method of loss reduction and performance improvement in a complex 

environment. 

 

The method we used is a very powerful convolutional neural network which is the VGG 

for face recognition specifying each of its layer’s parameters such as data size and types and 

also the activation functions used, the model obtained was tested on the database that we created 

and augmented to test, we added the specification of the layers added after removing the last 

softmax layer from VGG16, for transfer learning using Batch Normalization, dense and other 

activation functions. Last, we compiled the new model using Adam optimizer and Keras’s 

Cross entropy for the calculation of the loss function. the results obtained allowed us to make a 

comparison with some existing work, which has given us very good results. 

 Finally, before moving on to perspectives, this work allowed us to put into practice our 

knowledge of neural networks and to acquire others and the time spent reading articles served 

as a good introduction to the research. 

 

 Based on the performance results obtained, the following perspectives can be proposed: 

 Try other architectures: ResNet, Inception, Xecption, DensNet ... 

 Make an embedded version on mobile, or Rasberrypi. 

 Train the model on a very large database such as VGG face 2. 

 Do a Detection combined with recognition using a YOLO or SSD model. 
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