

 الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire

Ministère de l’enseignement supérieur et de la recherché scientifique

Université de 8 Mai 1945 – Guelma –

Faculté des Mathématique, d’Informatique et des Sciences de la matière

Département d’Informatique

Mémoire de Fin d’études Master

Filière : Informatique

Option:Sciences et Technologie de l’Information et de la Communication

Thème :

Mapping Between Different NoSQL Databases

Octobre 2020

 Réalisé par :
 BOUAFIA Ibtissem

Encadré Par :
 Dr. AGGOUNE Aicha

http://fmism.univ-guelma.dz/fr/content/formations-ouvertes-d%C3%A9taill%C3%A9es#a9

Acknowledgments

 No work would be completed without encouragement, motivation and sacrifice. First and

foremost, most thanks to ALLAH for giving us the strength and health to realize this work,

I am deeply grateful to my esteemed supervisor Dr. AGGOUNE Aïcha who has patiently

guided the production of this work. Special thanks are given to the jury members

Dr.Mehnaoui Zahra and Dr. Madi Leila for accepting to examine my work.

Eventually, special thanks are offered to my best friend Nor El Houda Redjaimia for her

supported me with wise advice, insightful comments and valuable information at various

stages of this work.

Dedication

I dedicate this modest work to the memory of my sympathetic father "Norddine" and the

candle of my life, my adorable mother, thank you for your prayers your help and Support. To

my lovely sisters: Zeyneb, Asma, Chaima, Ikram and Chourouk To all my brothers:

Abdelraouf, Youçef. To my dearest niece Tasnim . To all the members of my family

BOUAFIA and LABADLA. To all my friends with whom I shared the university life

especially my dear friends " Nor El Houda Redjaimia , Nesrine Menai , Saida Souilah". To all

my teachers. To all those who supported me and encouraged me.

IBTISSEM

Abstract

I

Abstract

NoSQL approach represents a new era in data representation and management to allow the

definition and manipulation of large data sets, focusing on scalability and availability. The

NoSQL data can be modeled in different data models, such as key-value, columnar,

document, and graph. In this context, novel opportunities may arise when leveraging the

selection of the NoSQL model, which may be more suitable than another for representing or

handling such data. It seems useful to propose an approach for mapping between different

NoSQL databases to ensure data portability and improve data handling as expected.

Our work aims at providing a bidirectional mapping method between document-oriented and

columnar-oriented NoSQL databases. We also focused on the use of two principal NoSQL

systems: MongoDB document system and Cassandra columnar system.

The proposed method is described through the rule-based algorithm. We define a set of

translation rules between database components to map the document-oriented database to the

columnar database. Thus, from these rules, we generate the list of inverse translation rules for

ensuring the mapping in the other direction.

The proposed method has been validated through experiments, which give a good result.

Keywords: NoSQL databases, Data mapping, Translation rules, Inverse translation rules.

Résumé

II

Résumé

L'approche NoSQL représente une nouvelle ère dans la représentation et la gestion des

données pour permettre la définition et la manipulation de grands ensembles de données, en se

concentrant sur l'évolutivité et la disponibilité. Les données NoSQL peuvent être modélisées

dans différents modèles de données, tels que clé-valeur, colonne, document et graphe. Dans ce

contexte, de nouvelles opportunités peuvent se présenter en tirant parti du choix du modèle

NoSQL, qui peut être plus approprié qu'un autre pour représenter ou traiter ces données. Il

nous a semblé utile de proposer une approche de mappage entre différentes bases de données

NoSQL pour assurer la portabilité des données et améliorer le traitement des données comme

prévu.

Notre travail vise à fournir une méthode de mappage bidirectionnel entre les bases de données

NoSQL orientées document et orientées colonnes. Nous nous sommes également concentrés

sur l'utilisation de deux principaux systèmes NoSQL: le système de documents MongoDB et

le système en colonnes Cassandra.

La méthode proposée est décrit à travers l’algorithme à base de règle. Nous définissons un

ensemble de règles de traduction entre les composants de la base de données pour mapper la

base de données orientée document vers la base de données en colonnes. Ainsi, à partir de ces

règles, nous produisons la liste des règles de traduction inverse pour assurer le mappage dans

l’autre direction.

La méthode proposée a été validée par des expériences, qui donnent un bon résultat.

Mots-clefs: Bases de données NoSQL, Mappage de données, Règles de traduction, Règles de

traduction inverse.

Table of Contents

1

Table of Contents
Table of contents………………………..…………………………….…………..………………..

List of figures………….…………………………………………….…………..………..………..

List of tables…………..……………………………………………….…………..………………...

Abbreviations and Acronyms…………………………………………......................................

General Introduction ………..…………………………………………….…………..…………

1

3

4

5

6

Chapter 01.NoSQL Databases

1. Introduction …………………..………………….……………………………………...…

2. Motivations of the Emergence of NoSQL Data….……….…………………………

3. Definition of NoSQL Data……………………………..………………………………

4. NoSQL Features……………..………………..…………………………..……………….

4.1.NoSQL Vs SQL Features ………………………………………………………...

4.2.CAP theory………………………………………………………………………......

4.3. BASE Properties ……………………………………………………………………

5. NoSQL Categories…………………………………………………………………...……

5.1. Key-Value Databases………………………………………………………………

5.2. Columnar– Oriented Databases………………………………………………..…

5.3. Document– Oriented Databases…………………………………………………

5.4. Graph– Oriented Database ………………………………………………………

6. Conclusion………………………………………………………………………………....

9

9

10

10

10

12

13

13

13

14

15

16

16

Chapter 02. Mapping between NoSQL Databases: Approaches and

Frameworks

1. Introduction…………………………………………………………………………………

2. Motivations of Mapping between NoSQL Databases……………………..………

3. NoSQL Databases Mapping Approaches ……………………………………………

4. Frameworks for NoSQL Data Mapping………………………………………………

5. Conclusion………………………………………………………………………..…………

18

18

18

20

22

Chapter 03. A Bidirectional Mapping Method between Document and

Columnar NoSQL databases.

1. Introduction ………………………………………………………………….…...………… 24

Table of Contents

2

2. Choosing NoSQL Databases ……………………………………………………………

2.1.MongoDB Database ………………………………………………………….……

2.2. Cassandra Database ……………………………………………………………….

3. Bidirectional NoSQL Data Mapping Method Database……………………….…

4. Algorithms of the Data Mapping Method Database………………………………

4.1. Rule-based Algorithm Database ………………………………………………...

4.2.Extraction MongoDB Algorithm …………………………………….………….

4.3.Extraction Cassandra Algorithm …………………………………….………….

5. Conclusion ………………………………….………….……………………….………...…

24

24

26

29

32

32

34

36

37

Chapter 04. Implementation

1. Introduction ………………………………………………………………………………

2. Installation and configuration of the used tools………………………………………

2.1. MongoDB……………………………………………………………………...……..

2.1.1. Installation of MongoDB…………………………………………....……

2.1.2. Configuration of MongoDB………………………………..……….……

2.2. Cassandra………………………...…………………………………………..………

2.2.1. Installation of Cassandra…………………………………………...……

2.2.2. Configuration of Cassandra ………………………………………….…...

2.3. Anaconda………………………………………...……………………………..……

2.3.1. Installation of Anaconda…………………………………………....……

2.3.2. Connection of MongoDB and Cassandra with jupyter ………….…

3. Presentation of the MCCM tool…………………………………………………..…….

3.1. Document to Columnar Data Mapping …………………………………...…..

3.2. Columnar to Document Data Mapping …………………………………...…..

4. Evaluation Study…………………………………………………………………..……….

5. Conclusion ……………………………………………………….……………………..…...

39

39

39

39

40

41

41

41

44

44

45

46

47

48

49

55

General Conclusion...……………….………………..…………..………………..……….… 56

References.………….……………………………………………………..………………..……… 57

List of Figures

3

List of Figures

Figure 1.1 - The CAP theorem..

Figure 1.2 - An example of Key-Value database...

Figure1.3 -An example of columnar-oriented database...

Figure 1.4 - An example of Document-oriented database...

Figure 1.5 - An example of Graph-oriented database. ...

Figure 3.1 - Some data of Management_Stock MongoDB database................................

Figure 3.2 - Chebotko logical data model of Hotel database...

Figure 3.3- Overview of Bi-directional mapping method...

Figure 4.1 - Installation of MongoDB..

Figure 4.2-MongoDB as a Service...…………………………………………...……………

Figure 4.3- Download apache Common daemon………………………………….………

Figure 4.4- Open the service cassandra.bat. ……………………………………………….

Figure 4.5 - Installation of Cassandra service. ……………………………………………..

Figure 4.6-Cassandra service verification. ………………………………………………...

Figure 4.7-MakeCassandra as a service from command Prompt.……………………

Figure 4.8-Cassandra CQL Shell.……………………………………………………………

Figure 4.9-Installing PyCharm……………………………………………………………….

Figure 4.10- Installation of Jupyter Notebook……………………………………………...

Figure 4.11-Connection of MongoDB and Cassandra to jupyter……………………...

Figure 4.12-General implementation architecture of MCCM………...…………………

Figure 4.13-Principal interface of MCCM tool…………………………………………...

Figure 4.14 -Document to Columnar data mapping.……………………………………...

Figure 4.15 -Document-oriented database extraction……………………………………..

Figure 4.16- Result of Doc2Col data mapping……………………………………………...

Figure 4.17 - Columnar-oriented database extraction………………………………………

Figure 4.18-Result of Col2Doc data mapping..……………………………………………..

12

14

15

15

16

25

27

30

40

40

41

42

43

43

43

44

45

45

46

46

47

48

48

49

49

50

List of tables

4

List of tables

Table 1.1 - NoSQL databases versus SQL databases……………….………….…………..

Table 1.2 -Example of Relational table……………...…………..……………….…………

Table 2.1 -Comparative study between NoSQL data mapping.…...……..………………

Table 3.1- Translation rules of data mapping from MongoDB to Cassandra.……....

Table 4.1- Description of the Management-stock document-oriented database ….....

Table4.2 -Queries used in the evaluation study.………….…………..…………………...

Table 4.3- Similarities between answers for Doc2Col. ………….…………..……………

Table 4.4- Description of Cassandra data mapping.………….…………..………………

Table 4.5- Description of the Hotel columnar-oriented database………….………..…

Table 4.6-Similarities between answers for Col2Doc. ………….…………..……………

11

14

21

31

50

52

53

53

54

54

Abbreviations and Acronyms

5

Abbreviations and Acronyms

Abbreviations Significations

RDBMS Relation database management system

NoSQL Not Only SQL

CAP Consistency, Availability, Partition Tolerance

BASE Basically Available, Soft State, Eventual consistency

ACID Atomicity, Consistency, Isolation, and Durability

VDPs virtual data partitions

ETL Extract, Transform and Load

SDCP Service Delivery Cloud Platform

VDPs virtual data partitions

CDPort Cloud Data Portability

CQL Cassandra Query Language

CQLSH Cassandra Query Language Shell

General Introduction

6

GENERAL INTRODUCTION

1. Context

The NoSQL approach was introduced to deal with the problems of big data, for providing

highly scalable systems that are also high performance and highly available. Unliketo

relational database, the data stored in the NoSQL are mostly unstructured or semi-structured.

Furthermore, the storage of NoSQL data is made in a very flexible way without any

constraints or designed schema of data. Hence, the NoSQL system allows the modification of

data structure during database usage whenever required due to the schema-less of NoSQL,

which is easy to make changes at any time.

Besides, the NoSQL data can be modeled in different data models including key-value model,

columnar-oriented model, document-oriented model, and graph-oriented model. Therefore,

the data can be stored differently e.g. the document-oriented database stores data in JSON or

BSON document formats whereas the columnar database stores data in column structure.

Thus, certain NoSQL database may be more suitable than others for representing and

handling the data that needs to be used.

2. Problematic

The NoSQL data can be modelled in different data models, where each model has

characterized by its data modelling and data handling manner. Some of these models may be

more suitable than others for effectively managing the data to be used.

Due to the diversity of NoSQL data model, the possibility of data mapping between different

NoSQL databases is highly desirable.

In our work, we focused on the data mapping between two popular NoSQL databases:

MongoDB and Cassandra to represent the document-oriented and columnar-oriented

databases, respectively.

3. Contribution

This thesis proposes a bidirectional method for the data mapping between MongoDB and

Cassandra that allows us to move the same data from MongoDB into Cassandra and vice

versa. The proposed method is based on the use of translation rules. We define a set of

translation rules between database components to map the document-oriented database to the

General Introduction

7

columnar database. Thus, from these rules, we deduce the list of inverse translation rules for

ensuring the mapping in the other direction.

We also develop a data mapping tool to validate our proposal. The advantages of our data

mapping method are multipurpose:

1. It can be used in data integration to extract information from heterogeneous data

sources by using a unified model.

2. It involves the data portability and improves data management.

3. It simplifies and automates the process of data transformation.

4. Structure of our master thesis

Our thesis is organized as follows. Chapter 01 introduces an overview of NoSQL data. In

chapter 02, we review related work on the mapping between NoSQL databases with a

comparison study between different existing frameworks. In chapter03, we propose a method

for bidirectional data mapping between MongoDB and Cassandra. Chapter04 presents the

implementation of our tool. Finally, we present a general conclusion that resumes the

principal contributions with some perspectives for future research.

Chapter 01. NoSQL Databases

8

Chapter 01:

NoSQL Databases

Chapter 01. NoSQL Databases

9

1. Introduction

The relational databases are considered a vital part that is universally used in information

systems. Relational database management system (RDBMS) allows storage, management,

and retrieval of varied data. However, the execution of large amounts of data becomes an

inefficient process of RDBMS. The non-relational database also known as NoSQL databases

have emerged as the solution to manage a large volume of the database, guaranteeing

availability, scalability, and partition tolerance.

In this first chapter, we will present the state of the art about the NoSQL databases. Firstly, we

describe the NoSQL data with the important motivations of the emergence of NoSQL

databases. After that, we outline the principal features of NoSQL such as the CAP theorem,

BASE properties, etc. Finally, we will present the different data models for storing and

handling the NoSQL data.

2. Motivations of the Emergence of NoSQL Data

Since the appearance of the relational database in 1970, it has taken a big place in the

organizational information systems for good storage and manipulation of data using the SQL

(Structured Query Language) language. However, over the years certain problems have

appeared during the manipulation of these databases, the most important are [1] [2]:

 Volume: the data have become very large that the RDBMS cannot ensure their storage and

querying.

 Velocity: data are evolved quickly, which require a lot of time to process.

 Variety: The huge volume of data causes the variety and heterogeneity of data value that

the RDBMS needs to use complex data types that are sometimes difficult to express. These

data can be structured like a relational database, semi-structured data such as XML

documents and non-structured data as images.

 Rigidity of relational database: the relational data were built according to a fixed

relational schema. We cannot add new data without filling all the columns of the relational

table. In the case of the missing value, we use the special value, well-known Null.

 Limited scalability: relational database is not adapted to the changes of the environment

required by the large volume of data; the only solution is to apply a segmentation of

relational tables for managing the distributed database, which takes a lot of time and effort.

 Limited distributed processing: the processing of huge volume of data involves using

distributed transactions which are often difficult to achieve.

Chapter 01. NoSQL Databases

10

Managing huge quantities of data typically requires the database to be able to scale. A new

approach of a database able to present, store, and process these large data, called NoSQL.

3. Definition of NoSQL Data

The NoSQL data have been appeared to store and manage big data that the relational database

management systems (RDBMS) cannot handle. There has been no strict definition of NoSQL.

The term NoSQL referred to as "Not only SQL" that was first used by Carlo Stozzi in 1998 to

represent a huge volume of data, which can be differentially represented from each other [3].

NoSQL data represent an alternative to traditional relational databases in which data are

placed in tables and data schema is carefully designed before the database is built. They are

especially useful for working with large sets of distributed data [4]. NoSQL began to exploit

in China since 2009 [5]. There are over 250 types of NoSQL databases around the world, the

some notable systems of NoSQL are MongoDB of 10gen Company, Facebook's Cassandra

database, Google's BigTable and Amazon's Dynamo [5]. Compared to the relational database,

the data stored in the NoSQL are mostly unstructured or semi-structured. The storage of

NoSQL data is made in a very flexible way without any constraints or designed schema of

data [6].

Thus, the querying of NoSQL data is faster than in relational databases due to the use of

analytical queries rather than the transactional ones. The data can also be managed by parallel

processing over different clusters of machines through the MapReduce paradigm [7].

The NoSQL data provide highly scalable systems that are also high performance and highly

available[8].

4. NoSQL Features

The NoSQL data are designed to store, process, and analyze extremely large amounts of semi-

structured data. We present below the principal features of NoSQL database.

4.1. NoSQLVs SQL Features

The relational databases are not able to store and process a huge amount of data in the

distributed environment [9]. A new approach for big data modeling has emerged, so-called

NoSQL. In this context, it may be necessary to present the principal features of NoSQL

against SQL approach as follows [10-11]:

1) Schemaless: also called dynamic schema or schema-free, which means there is no

fixed schema of the NoSQL database to follow like in the relational databases. The

Chapter 01. NoSQL Databases

11

NoSQL schema has more flexible in the data storage without any constraints or

designed schema of data.

2) Different data models: unlike to SQL approach where the data must be modeled by

the relational model, NoSQL provides four data models: Key-value, wide columnar,

document, and graph. Therefore, with these four data models, we also distinguish four

types of NoSQL databases.

3) Unacceptable ACID properties: the relational databases strongly follow the ACID

transaction properties (Atomicity, Consistency, Isolation, and Durability) while the

NoSQL databases follow BASE (Basically Available, Soft State, Eventual

consistency) properties.

4) Auto-Sharding with replication: allows the workload to automatically spread across

any number of servers in distributed environments.

5) High Availability: the NoSQL approach ensures the availability of a large data in the

distributed environment with a high scalability, which means the possibility of adding

new nodes without any problem.

6) Simple API: NoSQL data management is done through object-oriented APIs.

The following table illustrates a comparison between NoSQL and SQL databases: [

Features NoSQL database SQL database

Data size Large-scale data Size ≤128 terabytes.

Data structure Unstructured or semi-

structured data

Structured data (tables)

Data type Various data type Homogeneous data type

Scalability Easy scalable without costs Scalable with high cost

Availability High available Available with high cost

Consistency Difficult to achieve High consistent

Partition tolerance High tolerant Less partition tolerant

Query complexity Simple queries More complex

Data schema Schema less Rigid schema

Data model Different data models Relational model

Table 1.1 - NoSQL databases versus SQL databases.

Chapter 01. NoSQL Databases

12

4.2. CAP theory

The CAP Theorem, also called Brewer’s Theorem was posited by Eric Brewer in 1998 and

codified into a formal theorem when its proof was published in 2002 by Nancy Lynch and

Seth Gilbert [13]. Typically, the CAP theorem is applied in the distributed environment,

where the performance of the distributed database is related to the consistency of data, the

availability of data in the network, and the partition tolerant. These three properties are known

by the CAP theorem properties.

 Consistency: All nodes in the network exactly see the same data, even when there are

updates.

 Availability: whatever the system used the data must always be available by duplicating

the data on different notes.

 Partition Tolerance: The ability of a system to cope with the dynamic addition and

removal of nodes that are considered a clean network partition that must be able to operate

autonomously.

Figure 1.1 - The CAP theorem. [14].

The CAP theorem is the idea that a distributed architecture is not able to provide partition

tolerance, consistency and availability at the same time. Only, two CAP properties must be

ensured. The theorem proposes that when a network has been partitioned to ensure that a

network failure will not prevent communication between servers, the distributed system must

choose between consistency and availability [15]. Generally, the distributed relational

Chapter 01. NoSQL Databases

13

databases respect the two first properties (consistency and availability), whereas NoSQL

databases ensure the two last properties (availability and partition tolerance).

4.3. BASE properties

We remember that NoSQL systems do not have all ACID properties for processing the big

data. The NoSQL approach requires different characteristics to enable flexibility and

scalability. These opposing characteristics are cleverly captured in the acronym BASE for

Basically Available, Soft State, and Eventual consistency. So, BASE consists of three

principles properties [16]:

 Basically Available: the system ensures the availability of data even if some nodes of it

are unreachable.

 Soft state: Stores don’t have to be write-consistent, nor do different replicas have to be

mutually consistent all the time.

 Eventual Consistency: the system will eventually become consistent once it stops

receiving input.

The BASE properties accept temporary database inconsistencies, but it is certainly a flexible

alternative to the ACID properties for databases that are large scale, containing various types

of data.

5. NoSQL categories

In contrast to the relational database that founded on the relational model, the NoSQL data

can be modeled in different data models such as Key-value, Document, Columnar, and Graph

[17-19]. As a result, according to these data models, we can distinguish four categories of

NoSQL databases.

5.1. Key-Value Database

This category is known by its simplicity, indeed, it is based on the principle of the couple

(key/value), where the key represents the unique data and the value is the data of any type.

The querying of key-value databases can achieve low latency as well as high performance.

However, if a system claims more complex operations, this data model is not powerful

enough.

Chapter 01. NoSQL Databases

14

Generally, the Key-value databases are used in the areas of e-commerce, log file management,

fraud detection, etc. Examples of key-value systems: Riak, Redis, Aerospike, Oracle NoSQL

Database, Oracle Berkeley DB, Amazon, Dynamo and Voldemort.

For understanding the structure of each NoSQL database, we take the following relational

table which describes some information about a teacher (see table 1.2).

ID Name Last Name Field

1 Aicha Aggoune DB

2 NULL Lafifi AI

3 M.Amine Ferrag Network

4 Nadjib Kouahla NULL

Table 1.2- Example of Relational table

The key-value database corresponds to the about relational table is represented by the

following figure.

Key

Value

Figure 1.2 - An example of Key-Value database

5.2. Columnar-oriented Databases

The data are represented by a key row as an identifier and a set of columns described the same

topic, which constitutes the column family [19]. When a column contains other columns, we

say that this column is a super column. The different column families might be distributed on

several nodes. This model is usually used for an efficient storage and processing of a huge

amount of tables with a high partition data over several machines. It is more suitable for

accounting, averaging, and stock management. The columnar databases do not aggregate all

data from each row, but instead values of the same column family and from the same row

[20]. The most used columnar-oriented systems are Cassandra, HBASE, and Azure Table.

Based on the previous example of a teacher table, the columnar-oriented data is presented

below.

 Last Name: Lafifi

Field: AI

Last Name:

Lafifi

Field: AI

Name:M.Amine

Last Name: Ferrag

Field: Network

Name: Nadjib

Last Name: Kouahla

Name :Aicha

Last Name:
Aggoune

Field: DB

 1 2 3 4

Chapter 01. NoSQL Databases

15

Figure 1.3 -An example of columnar-oriented database

5.3. Document-oriented databases

This NoSQL data category is based on the key/value database, where the value is a document

which contains a list of fields. Each field contains a value which can be simple, list of values,

document that called embedded document, list of documents, reference or list of references to

other documents. The structure of this category is described as follows. [20]

 Collection: a set of documents of the same type. It is equivalent to relational table.

 Document: a set of fields or attributes with their values. It is equivalent to the tuple.

 Key: designed by _id. It is a unique identifier for each document.

The following figure illustrates the structure of document-oriented data.

Figure 1.4- An example of Document-oriented database.

{

"_id": 1,

"Name":"Aicha",

"Last Name":

"Aggoune",

"Field" : "DB"

}

{

"-id": 2,

"Last Name ":

"lafifi",

"Field": "AI"

}

{

"_id": 3,

"Name":"M.Amine"

"Last Name":

"Ferrag",

"Field":"Network"

{

"_id": 4,

"Name": "Nadjib",

"Last Name":

"Kouahla"

}

Collection "Teacher"

Chapter 01. NoSQL Databases

16

5.4. Graph-Oriented databases

The data are represented by a graph, where the nodes represent values and the edges defined

relationships between different nodes. The graph-oriented stores are widely used for

representing complex data like social and biological networks, data of electronic circuits, and

services to establish relationships and properties between multiple values. Hyper GraphDB,

AllegroGraph, IBM Graph, and Neo4J are four examples of a graph-oriented system. The

Neo4j is the popular graph-oriented system because it offers transaction properties, so-called

ACID (atomic, consistency, isolation, and durability) [11].

Figure 1.5 -An example of Graph-oriented database.

6. Conclusion

NoSQL is an approach that offers an alternative to handle large volumes of data. We have

presented the different concepts and properties of NoSQL databases. With the diversity of

NoSQL database models, it may be necessary to propose a method for mapping between

NoSQL databases. Consequently, in the next chapter, we will review the existing approaches

and frameworks for mapping between NoSQL databases.

Chapter 02. Mapping between NoSQL databases: Approaches and Frameworks

17

Chapter 02:

Mapping between NoSQL

databases : Approaches and

Frameworks

Chapter 02. Mapping between NoSQL databases: Approaches and Frameworks

18

1. Introduction

NoSQL databases have emerged to handle large data sets, which are heterogeneous and

arrived at high frequency. They allow the storage and processing of massive data in a

distributed environment, ensuring high availability, scalability, and fault-tolerance. Unlike the

relational databases, where the data have modelled through the relational model, the NoSQL

databases provide four data models that are different from one another (key-value, Columnar,

Document, and Graph). In this context, novel opportunities may arise when leveraging the

selection of the NoSQL database, which may be more suitable than another for representing

such a large amount of data. This chapter presents the literature review on the topic of

mapping between NoSQL databases with different existing frameworks.

2. Motivations of Mapping between NoSQL Databases

We remember that the NoSQL data can be modelled in different data models including, key-

value model, columnar-oriented model, document-oriented model, and graph-oriented model

[21]. Each data model has characterized by its data modelling and data handling manner. We

can identify the following motivations for mapping between NoSQL databases:

1. Some of NoSQL databases may be more suitable than another for representing the

data that needs to use.

2. The appropriate NoSQL database can enhance the executing low-latency queries and

reduce the cost against other databases.

3. The dissatisfaction of the old database in terms of data querying and data optimization.

4. The need to provide data portability allows us to apply a technique of data mapping.

5. The need for a better alternative to manage a NoSQL database and use business or

technology strategy in a good case involves thinking about mapping data rather than

creating a new database from scratch.

Mapping to a new format of data is a suitable solution for getting more information about

specific data.

3. NoSQL Databases Mapping Approaches

In this section, we present grounding research about the NoSQL data mapping approaches.

Shirazi et al [22] have proposed a design pattern-based approach for bidirection mapping

between column-oriented database and graph-oriented database. The design pattern is a

solution to common problems in software design. This data mapping approach is used to

Chapter 02. Mapping between NoSQL databases: Approaches and Frameworks

19

provide data portability in the cloud environment, which means the ability to move data and

applications from one cloud provider to another. The principle idea of this approach is to

define two design patterns. The first one aims to ensure the mapping of the column-oriented

database to the graph-oriented database. The second one aims to map the data in the other

direction. The approach has applied in the healthcare domain, and the results show that the

graph-oriented database is more suitable for representing the complexity data than the

column-oriented database, which is more convenient for maintaining data in large size. The

approach gives a better result when we need to transform the graph-oriented database to a

column-oriented database. Nevertheless, the mapping in the other direction poses some

problems related to the amount of data.

Scavuzzo et al. [23] have proposed a meta-model approach for mapping between two specific

columnar systems, which are Google App Engine Datastore, and Microsoft Windows Azure

Tables. The meta-model is an intermediate model between the source model and the target

model. It is, based on the BigTable data model, which provides support for columnar

databases. This approach is based on a set of extractors, translators, and inverse translators,

where the extractors extract data from the source database and pass them to translators, which

in turn, transform them into the meta-model format. The translators pass the data modeled by

the meta-model to inverse translators, which are in charge for transforming them into a

destination database format. This approach has evaluated using data stored by an application

called Meeting in the Cloud (MIC), and the results show that the extraction and conversion

time is less than the 0.1% of the time needed for the complete mapping. It also allows

developers to easily add new columnar databases, but it is not guaranteed on the one hand,

that all portions of data from the source database have been translated, and on the other hand,

it takes a considerable overall mapping time.

In 2016, Scavuzzo et al. [24] have enhanced their previous work, by supporting fault tolerance

in the mapping of huge amounts of columnar databases. The enhanced approach offers a

virtual data partitions (VDPs) of the source database to provide a set of parallel mappings of

VDP rather than the mapping of the complete database. This approach is more efficient than

the previous one with a speedup of 25 times without losing data. However, the parallel

mapping of VDP can be posed some errors. Other related studies have focused on mapping

different NoSQL databases like document, columnar, and graph.

Thalheim and Wang [25] have proposed a general refinement theory for data migration. This

proposal is derived from the data warehouse technique, well-known by ETL (Extract,

Chapter 02. Mapping between NoSQL databases: Approaches and Frameworks

20

Transform, and Load), and applied general refinement theory for data migration. The data

sources move from legacy systems into new systems in which data sources have different

structures. The refinement theory specified two subclasses of transformations: property-

preserving transformations and property-enhancing transformations. To validate this proposal,

the authors developed a formal framework and introduced an approach for verifying the

efficiency of this proposal.

Bansel et al. [26] have proposed an online compression algorithm approach for mapping

between document and graph databases in the cloud environment. This mapping can be

achieved directly or indirectly through the intermediate model. The indirect mapping consists

of transforming document databases to columnar databases and then to transform them into

the graph format. The experimental study is based on the use of two JSON datasets: Core US

Fundamental for finance and economic data, and Twitter tweets from November 2012.The

results show that the intermediate mapping enhances the read/write efficiency.

Recently, Darko and Neven[27] proposed a semantic web services-based approach for the

mapping of data between different cloud storage systems. The authors focused on dealing

with the data lock-in problem that causes data mapping with high cost, time and effort.

The data mapping process consists of the intermediate transformation to the OWL format of

ontology before the mapping to another cloud provider. These mappings are based on a set of

defined transformation rules. The validation of the approach was done by using two cloud

customer relationship management (CRM) systems: Zoho CRM and Salesforce. This work

provides good solution to map data between cloud providers without the data lock-in problem.

Nevertheless, some limitations can be discovered such as the lack of managing the ontology

using API operations.

4. Frameworks for NoSQL Data Mapping

The need to mapping between different NoSQL databases involves building frameworks,

which are used extensively in practice. The available frameworks have been created to ensure

the mapping between NoSQL databases in the cloud environment. CDPort (Cloud Data

Portability) framework [28] provides a unified common API for ensuring the portability

between different cloud-based NoSQL data. This framework supports Amazon SimpleDB’s

key-value data, MongoDB’s document-oriented data, and Google Datastore’s columnar-

oriented data. The NoSQL data mapping is based on three adapters one for each NoSQL

system. These adapters allow transforming the data. The SDCP (Service Delivery Cloud Plat-

Chapter 02. Mapping between NoSQL databases: Approaches and Frameworks

21

form) [29] represents a middleware infrastructure that uses resources from multiple cloud

columnar-oriented databases for mapping between them.

In [26] a NoSQL data Mapping framework has been proposed, which is based on a meta-

model and a compression Algorithm. Wijaya and Arman[30] have proposed a general

framework, which combines three existing frameworks [22,23,26] to solve the data mapping

problem with a different solution, characteristics, and properties. The developed framework

includes mapping algorithms, mapping models, and mapping schemes of four NoSQL

databases. We focus on these important NoSQL mapping frameworks to establish a

comparative study.

Framework

Criteria

Framework of

Bansel et al.

CDPortFrame-

work

Framework

of Wijaya

and Ar-man

SDCP Frame-

work

NoSQL Data-

bases

Document, Graph,

Columnar

Key-value, co-

lumn, Document

Four

categories

Columnar-oriented

databases

NoSQL DBMS

MongoDB , Azure

Table, Neo4j

Google

Datastore,

Amazon

SimpleDB,

MongoDB

MongoDB,

Redis

Neo4j, Hbase

SimpleDB and

Azure Table

Dataset Twitter Generic Twitter Generic

Algorithm

MetaModel, Com-

pression algorithm

Adapter,

CDPort data mo-

del

ETL

migration

Service-based

Algorithm

Mapping

strategies

Direct and In-

termediate

Intermediate

Direct

Direct

Interface -
CDPort’s API

Nodejs API

Java Persistence

API

Table 2.1 - Comparative study between NoSQL data mapping.

NoSQL databases mapping frameworks commonly provide a uniform interface and unified

data model for various NoSQL databases. Each framework concerns some NoSQL stores and

uses different API and algorithms. The general framework proposed in [31] is composed of

existing frameworks to ensure the mapping between the four NoSQL categories.

As a result, we will propose a new system for mapping between these NoSQL stores without

using any existing framework or tool. Also, our solution leads to handle the bidirectional

conversion between MongoDB and Cassandra databases.

Chapter 02. Mapping between NoSQL databases: Approaches and Frameworks

22

5. Conclusion

In this chapter, we have presented a literature review for mapping between NoSQL databases

with a comparison study of different important approaches and frameworks. Several criteria

must be taken into consideration, such as the domain of the dataset, the size of the database,

and the data complexity. This chapter is intended as a timely introduction to current thinking

about the approach of data mapping which will be held in the next chapter.

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

23

Chapter 03:

A bidirectional Mapping

Method between Document

And Columnar NoSQL

databases

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

24

1. Introduction

In this chapter, we present the conceptual study of our work, which aims to propose a method

of bidirectional mapping between document-oriented and columnar-oriented NoSQL

databases. To appreciate our method, we present our algorithms like the "extractionMongo"

algorithm, the "extractionCassandra" algorithm, and the translation rules-based algorithm. We

also define a set of translation rules for transforming the document-oriented database of

MongoDB to the columnar-oriented database of Cassandra. According to these rules, we

deduce the inverse translation rules for transforming Cassandra to MongoDB databases.

This chapter is outlined as follows: we describe the choosing NoSQL databases such as

MongoDB and Cassandra. After that, we present our method of bidirectional NoSQL data

mapping. Finally, we introduce the different algorithms used in our data mapping method.

2. Choosing NoSQL Databases

Our work aims to propose a method for bi-mapping between two NoSQL databases. Our

research focused on two different NoSQL databases, namely: Document-oriented database

and columnar database. These databases are the most popular NoSQL databases for storing

and managing large amounts of data. To propose such a method, we must first study the

features of each NoSQL database. Due to the various available NoSQL database management

systems, we choose the MongoDB as a document-oriented database and the Cassandra as a

columnar database. The rest of this section briefly describes the principal features of these

databases.

2.1. MongoDB database

MongoDB is a document-oriented database management system that was initially released in

2009 [32]. It was developed by 10gen using the C++ programming language. MongoDB

stores the data as a document in binary encoded JSON format (BSON). BSON document

contains an ordered list of pairs (field name, value) where the value can be simple or complex

like embedded document, reference, list, or array. MongoDB is currently being used by MTV

networks, GitHub, Foursquare.

The querying of the MongoDB database is achieved by Mongo shell commands, which are

expressed in a JSON syntax and send to MongoDB as BSON objects by the database driver.

Furthermore, MongoDB is based on the MapReduce paradigm to more express complex

queries. There are several important features for high performance and efficient MongoDB

database, namely: complex aggregation with the usage of MapReduce for statistical analysis,

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

25

indexing over embedded objects, replication to increase read performance of data, and the

automatic sharding into shards (partitions or chinks) to provide high scalability of a

distributed data [33].

Generally, MongoDB and other NoSQL databases were managed in distributed and cloud

environments. The data in MongoDB can be handled under Master-Slave architecture with

high availability by the support for the replication [34]. The replica pair architecture provides

a high partition tolerance when a salve or a current master of the replica pair fails.

In our work, we have created a MongoDB database for the running example of order

management called Management_Stock, which is composed of three collections:

 Provider collection includes the provider’s information with a list of its orders,

 Product describing the information about the product like the title and the price,

 OrderLine collection introduces the relationship between the product and the order.

Due to the schema-less of NoSQL databases, the following figure depicts some data of our

Management_Stock MongoDB database.

Figure 3.1 -Some data of Management_Stock MongoDB database

In our database, each provider can offer a list of orders, which is defined by a list of

embedded documents. The latter is identified by the identifier of order and can describe the

delivery date and the state’s order. Our database contains 1386 documents distributed in three

collections as follows: 300 documents in each Provider and Product collections, and

OrderLine collection contains 786 documents.

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

26

2.2. Cassandra database

Cassandra is a columnar-oriented database management system, which is developed by

Apache Software Foundations in 2008 [35]. It is written in JAVA and used Thrift API to data

access. Cassandra is a leading transactional distributed database used by Facebook for

handling a large amount of data across many commodity servers. It is used by the most

popular networking websites like Digg.com, Twitter, and eBay. The Cassandra data storage is

very similar to the relational database, made tables, columns, and rows but it does not support

join operations between tables. Unlike the relational model, the data of Cassandra are

organized in columns rather than rows. Cassandra maps a tuple consisting of a row key, a

column name, and a timestamp to a value. Columns are grouped into column families, which

are similar to tables in the relational model.

The data model of Cassandra combines the models of columnar Google Big Table and key-

value Amazon Dynamo [36]. Further, unlike the MongoDB, Cassandra database uses peer-to-

peer replication, namely, Multi-master, providing high availability, scalability with high

partition tolerance and persistence. The data are distributed and replicated among several

nodes in the cluster, in which the node takes the same role with others (there is no primary or

master node) [37]. Cassandra provides two replication strategies: Simple Strategy used when

the cluster is deployed across one data center (a group of related nodes), and the Network

Topology Strategy, which is used when the cluster deployed across multiple data centers.

To create and manage the Cassandra database, we use Cassandra Query Language (CQL)

with the CQLSH driver. Another tool called Data StaxdevCenter provides a graphical user

interface to communicate with the Cassandra database [38].

To more represent the Cassandra's database design; we have used one of the data schemas

available at the Cassandra’s website (https://cassandra.apache.org). In our study, we focused

on the Hotel database schema that describes the general information about the hotel as well as

the specific hotels involving hotels near a point of interest, hotels with available rooms, and

hotels with available amenities by room. The keyspace of Cassandra database is similar to the

relational schema in the relational model. It contains the different column families (also called

tables) and the personnel datatypes that are created by a user called user-defined type (UDT).

The UDT can attach multiple data fields each named and typed, to a single column. The

keyspace of the choosing database called Hotel, is composed of five column families with a

UDT called Address that describes the important fields of address such as street, city, state or

https://cassandra.apache.org/

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

27

province, postal code, and country. The column families of Hotel keyspace are defined as

follows:

- Hotels describes the information about the hotel,

- Hotels_by_poi is used to display a list of hotels near to the point of interest.

- Available_rooms_by_hotels_date helps the user to find available rooms.

- Pois_by_hotels is used to access the details of each point of interest.

- Amenities_by_room allows the user to view amenities for the desired stay dates.

The Hotel database is defined by the application of the most frequently executed queries to

enable the user to easily manage huge amounts of data. To represent the database schema

design, we use the Chebotko diagram, which is a novel visualization technique for big data

modeling, popularized by Artem Chebotko that represents logical and physical data models

by introducing a query-driven application workflow transitions. The logical data model is

derived from the conceptual data model with the application workflow, while the physical

data model is derived from the logical data model after specifying CQL data types for all

columns. Chebotko diagrams compared to the traditional data modeling, improve overall

readability, superior intelligibility for complex data models, and better expressivity of both

Cassandra schema and queries [39].

Each table of logical model is shown with its title and a list of columns. Primary key columns

are identified via symbols such as K for partition key columns, C↑ or C↓ to represent

clustering columns , S to represent Static column , IDE to represent Secondary index column,

++ to represent counter column and Lines are shown entering tables or between tables to

indicate the queries that each table is designed to support.

The following figure depicts the Chebotko logical data model of Hotel database.

Figure 3.2 - Chebotko logical data model of Hotel database [40]

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

28

From the above figure,we define the Hotel keyspacein CQL as follows:

CREATE KEYSPACE hotel WITH replication ={‘class’: ‘SimpleStrategy’, ‘replication_factor’: 3};

The Hotel keyspace is based on the simple strategy for replication the data with set to three in

the replication factor, which means that three copies of each row, where each copy is on a

different node.

The first table (or column family) named "hotels_by_poi", which consists of finding hotels

near a point of interest and that by applying the query Q1. This table is identified by a primary

key, which is represented by the combination of partition key called poi_name, indicated by

the symbol K, and clustering key column sorted by ascending order, named hotel_id, designed

by C. It is defined by three other columns: name, phone, and address. The latter is typed

through the UDT called Address. The following queries illustrate respectively the creation of

hotels_by_poi table and Address UDT.

CREATE TABLE hotel.hotels_by_poi (poi_name text, hotel_id text, name text, phone text,

address frozen<address>, PRIMARY KEY ((poi_name), hotel_id))WITH comment = ‘Q1. Find

hotels near given poi’AND CLUSTERING ORDER BY (hotel_id ASC) ;

CREATE TYPE hotel.address (street text, city text, state_or_province text, postal_code text,

country text);

The second table called "hotels" consists of getting information about specific hotel and that

by applying the query Q2. This table is identified by a primary key called hotel_id and

defined by three other columns: name, phone, and address. The following queries illustrate

the creation of hotels table.

CREATE TABLE hotel.hotels (id text PRIMARY KEY, name text, phone text, address

frozen<address>, pois set<Ttext>) WITH comment = ‘Q2. Find information about a hotel’;

The third table named "pois_by_hotel" describes the points of interest of a specific hotel. This

table is identified by a primary key of a hotel hotel_id and clustering key column of point of

interest poi_name ordered by ascending order and another column "description" for

descripting the point of interest. The following statement illustrates the creation of

pois_by_hoteltable.

CREATE TABLE hotel.pois_by_hotel (poi_name text, hotel_id text, description text, PRIMARY

KEY ((hotel_id), poi_name)) WITH comment = ‘Q3. Find pois near a hotel’;

The forth table called "available_rooms_by_hotel_date " consists of finding available rooms

by hotel date through the query Q4. This table is identified by a primary key hotel_id and

compound of clustering keys columns ordered by ascending order, named (date and

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

29

room_number) designed by C. It is defined by another column "is_available" that indicates

if the room is available or no. The following query illustrates the creation of

available_rooms_by_hotel_date table.

CREATE TABLE hotel.available_rooms_by_hotel_date (hotel_id text, date date, room_number

smallint, is_available boolean, PRIMARY KEY ((hotel_id), date, room_number))WITH

comment = ‘Q4. Find available rooms by hotel date’;

The fifth table named "amenities_by_room" consists of finding amenties for a room that is

available for the desired stay dates through the query Q5. This table is identified by a primary

key, which is represented by the combination of compound of partition keys called (hotel_id,

room_number), and clustering key column ordered by ascending order, named amenity_name.

It is defined by another column called description that gives the description of the amenity.

The following statement illustrates the creation of amenities_by_room table.

CREATE TABLE hotel.amenities_by_room (hotel_id text, room_number smallint,

amenity_name text, description text, PRIMARY KEY ((hotel_id, room_number),

amenity_name)) WITH comment = ‘Q5. Find amenities for a room’;

3. Bi-directional NoSQL data mapping Method

In order to ensure the data portability between different NoSQL databases, we propose a bi-

directional mapping method, which is based on a set of translation rules. In fact, we define a

set of translation rules between database components to transform the document-oriented

database of MongoDB to the columnar database of Cassandra. Thus from these rules, we

deduce the list of inverse translation rules for mapping from the Cassandra to MongoDB

databases. An overview of our proposal is illustrated in the following figure.

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

30

Figure 3.3- Overview of Bi-directional mapping method

The translation rules-based mapping method consists of extracting the components of the

source data and applying a set of translation rules for transforming the MongoDB to

Cassandra. The translation rule is divided into two parts: the left part defines the concepts of

the source model and the right part presents the corresponding concepts of the target model.

And from these rules we can deduce the inverse translation rules by inversing the parts of the

rule. In the following table, we present the translation rules of data mapping.

Rule
Concept of source model

(MongoDB)

Concept of target model

(Cassandra)

R1 The database name db Keyspace name db

R2 Collection name Table name

R3 Document key of a collection Row key in the table

R4 Index Index

R5 Primary key Row key

R6 View that make a noun to the query

result

Materialized view

R7 FieldDocument with atomic value Columnrow with column value

The source db

MongoDB

The targetdb

Cassandra

ExtractionMongo ExtractionCassandra

Mapping

The source db

Cassandra

The targetdb

MongoDB

Translation rules

Inverse rules

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

31

F: value F:value

R8 Field Document with List of

Values

Columnrow with collection type

such as list, set, and map

R9 One embedded document in a

document of a collection

Creation of a user-defined-type UDT

and used it in the mapped table.

R10 List of embedded documents in a

document of a collection

Collection of UDT, like List of UDT

and used it in the mapped table.

R11 The value of field is a reference to

another document of another

collection.

Column has the value of primary key

of the corresponding row of another

table.

R12 Field has a list of references to other

documents of other collections

Column has a list of the values of

Primary key of the corresponding row

of other tables

Table3.1-Translation rules of data mapping from MongoDB to Cassandra.

From the table above, we are defined the possible translation rules between the MongoDB

document-oriented model and Cassandra columnar-oriented model.

The first translation rule R1 consists of using the database name of MongoDB to create the

keyspace of Cassandra. This rule is interpreted by the following CQL statements:

ksp_name = print(db.name);

session.execute("CREATE KEYSPACE IF NOT EXISTS %s WITH REPLICATION = {'class':

'SimpleStrategy', 'replication_factor': 1}" % ksp_name)

session.execute('USE %s' % ksp_name)

The second translation rule R2 indicates that all collections of MongoDB database are

mapped to the creation of column families (via CREATE TABLE statement).

R3: each document key of the collection C is transformed to the row key of the mapped

column family.

R4: the indexes in a collection of MongoDB database corresponds to the indexes in column

family of Cassandra database.

R5: the primary key of a collection is mapped to the primary key in the corresponding column

family.

R6: each View that make a noun to the query result is mapped to the creation of a

materialized view.

According to data type of each field of document, we define the following rules:

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

32

R7: FieldDocument with atomic value F: value is mapped to a column definition, where the

column name is the same name as the field and the column value is the value of this field.

R8: Field Document with a list of values is mapped to a column definition, where the

column name is the same name as the field and the column value is the collection of values of

this field. This collection type can be the list of values, set of values or map of values.

R9: field has one embedded document is mapped to the creation of user-defined-type UDT

used as a type of a column of the mapped column family.

R10: field has a list of embedded documents is mapped to the creation of user-defined-type

UDT used in collection type for defining a collection of UDT directly used as a type of the

column of the mapped column family.

R11: field has a reference value to another collection’s document is mapped to the creation of

column has the value of primary key of the corresponding row of another column family.

R12: field has a list of references to other documents is mapped to Column has a list of the

values of Primary keys of the corresponding rows of another columns family.

These twelve translation rules can be used for data mapping from Cassandra to MongoDB by

inversing their left and right parts.

The mapping method is defined by three algorithms: the "ExtractionMongo" to extract all

components of MongoDB, such as collection, document, field, keys, the

"extractionCassandra" algorithm for extracting the Cassandra database’s components as

column, column family, etc. These algorithms of data extraction are used in the principal data

mapping algorithm called rules-based algorithm. We detail the definition of these algorithms

in the following section.

4. Algorithms of the Data Mapping Method

We proceed to present the different algorithms that are used for clarifying our data mapping

method. The main algorithm of data mapping called rules-based algorithm, which consists in

performing the bi-directional mapping between the MongoDB document-oriented database

and the Cassandra columnar-oriented database.

4.1. Rule-based Algorithm

The rule-based algorithm is described as follows:

Algorithm 1. Rules-based algorithm

Input: SD: source database

TR: translation rules

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

33

Begin

1. SD Select the NoSQL database to transform

2. If SD is a MongoDB database then

3. Begin

4. Execute ExtractionMongoDB algorithm;

5. Ksp_namedb.name;

6. Create Keyspace Ksp_name; // apply the translation rule R1TR

7. for i in T_Collection[i] do

8. Begin

9. TableNameT_Collection[i].name //apply R2

10. for j=1 to Field.len do

11. Begin

12. Column_name Field[j]

13. Type get TYPE of Field[j]

14. If Type is atomic then apply R7TR

15. Else if Type is a list of values then apply R8TR

16. Else if Type is an embedded document then apply R9TR

17. Else if Type is a list of embedded documents then apply R10TR

18. Else if Type is a reference then apply R11TR

19. Else if Type is a list of references then apply R12TR

20. End;

21. Extract primary key and apply R5TR

22. Create TableName with column, Type, primary key

23. IndexC=Extract indexes and apply R4TR

24. Index[] Create index indexC on % ksp_name.columF(indexcolumn);

25. InsertData into Table(% column_name , get value)

26. End;

27. Else // SD is a Cassandra database

28. Begin

29. Execute ExtractionCassandra algorithm;

30. dbkeyspace;

31. dbname = Create the database name ; // apply the inverse translation rule R1TR

32. For i=1 to TABLE[n]do

33. Begin
34. T_Collection= create collection with the same names of table TABLE [i] apply the

inverse R2TR;

35. For j=1 to COLUMN. len and VALUECOLUMN. Len do

36. Begin

37. Fieldcolumn name ;

38. Valuecolumn value ;

39. Insert into collection the document with the field value

40. T_Collection.create_index(PKEY)

41. End;

42. End.

Output: TD: target database

First, we select the type of the input database: if the database type is a document oriented

database then we execute the statements in lines 2-26, else we apply the data mapping from

columnar database to document-oriented database (lines 27-40).

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

34

In the case of mapping MongoDB to Cassandra, we firstly execute the ExtractionMongoDB

algorithm for extracting the components of document-oriented database. After that, we apply

the rule R1for creating the keyspace of Cassandra, which takes the name of DB of MongoDB

(see lines 4-6), then we apply the rule 2 by copy the names of collection(T_Collection)to

another list named TableName (see line 9). For each collection T_collection[i], we store the

name of fields and the data types of each document in variables columns, TypeValues,

respectively (see lines 12–13). Therefore, we apply the rules R7 until R12according to the

data type of the field. After recovering the primary key of a collection, we create the

Cassandra table and inserting the data as well as the indexes if they are existed.

In the case of data mapping from Cassandra to MongoDB, we precede the same strategy

defined for mapping of MongoDB to Cassandra. After extracting all elements of Cassandra

through the ExtractionCassandra algorithm (line 29), we create at the first time, the database

db, which takes the same name as the keyspace of Cassandra (apply the inverse rule of R1).

Applying the inverse rule of R2, we create collections from the column families (lines 32-35).

For each collection, we create the document according to the row and column of column

families (lines 35-39). Finally, we add the indexes in each mapped collection.

4.2. ExtractionMongoDB Algorithm

The following algorithm represents how to extract the data and the components of the

MongoDB database.

Algorithm 2.ExtractionMongoDB

Input: SD: source database

Begin

1. X= connection with the selected MongoDB database;

2. db-name = X[the name of the selected database];

3. T_Collection = extract the collection names;

4. For i=1 to T_Collection.len do

5. Begin

6. Col= T_Collection [i];

7. Docs= extract all documents;

8. Indexes= Extract all indexes of collections;

9. View= Extract views of the selected collection;

10. Key = Extract all primary keys and their values;

11. For D in Docs Do

12. Begin

13. primary_key [] = Store primary keys into primary_key List ;

14. primarykey_val [] = Store values of primary keys into primarykey_val List;

15. For index in indexes do

16. Begin

17. Indk = Stored all indexes’ names of selected collection into Indk;

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

35

18. Indv= Stored all indexes’ values of selected collection into Indv List;

19. End Loop indexes;

20. Item = Extract the pairs (key, value);

21. For it in fieldItem do

22. DocKeys[] =Store fields (also called keys) into DocKeys List;

23. For val in value do

24. Begin

25. if type of val is string or float or int or bool or object then

26. Begin

27. DocValues [] = Store values into DocKeys List;

28. TypeValues[] = Store types of values in TypeValues List;

29. End;

30. Else if type of val is dict then

31. Begin

32. nestedict(val, 1);

33. nestedict(val, 2);

34. nestedict(val, 3);

35. dictpk(val) ;

36. End;

37. Else if type of val is a list then

38. nestedlist(val, 1);

39. nestedlist(val, 2);

40. nestedlist(val, 3);

41. End; //Loop value End; //Loop Docs End; // Loop T_Collection.len

Output:Extracted elements of Data Source

Next, the functions used in the above algorithm

Function 1.Nestedict

Def nestedict(dic,numero) :

1. If numer = 1 then store all nested dict keys into dict_keys[] list.

2. Elif numero = 2 then store all nested dict values into dict_values[] list.

3. Elif numer = 3 then store all nested dict types into dict_types=[] list.

Function 2.Nestedlist

Def nestedlist(qs,numero) :

1. If numer = 1 then store all nested list keys into keys_list [] list.

2. Elif numero = 2 then store all nested list values into values_list [] list.

3. Elif numer = 3 then store all nested list types into types_list=[] list.

The ExtractionMongoDB algorithm illustrates the data extraction process, which represents

the first step of our data mapping method. After the selection of the MongoDB database (line

1) that we need to extract its data and components, we extract the database name as well as

the names of all existing collections (see lines 2-3). Then, in the loop from lines 4-10, the

algorithm extracts all elements comprising in each collection "Col", such as documents

(Docs), indexes, views and keys. For each extracted document D in Docs, we extract both the

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

36

column name and the column value of the primary keys (see loop in lines 11-15). We do the

same for extracting the information about the indexes (see lines16-20)as well as the fields

(lines 21-23).Then, in the loop (lines 36-38), the algorithm verifies if the value of the field is

an atomic value, then we store both the value and type in DocValues, TypeValues,

respectively (see lines 24-30). In the case where the value of a field is an embedded

document, the algorithm calls tow functions: nestedict(val), which extracts all dictionary of

keys (values and types) and dictpk(val) for extract all primary keys(lines 31-35).

After that the algorithm analyses if the value of filed is a list of embedded/referenced

documents, then it calls the function nestedlist(val) for extracting for each element of the list,

their sub elements, such as field name, value (see lines 35-36).

4.3. ExtractionCassandra Algorithm

We give the algorithm for extracting the elements of the columnar databases.

Algorithm 2.ExtractionCassandra

Input: SD: source database

Begin

1. Keyspace_name = extract the name of the selected database;

2. table_name= extract the table names;

3. for table in table_name do

4. Begin

5. column_name= Extract all columns of tables;

6. views = Extract the materialized views;

7. Indexes = Extract the index_name;

8. for cn in column_name do

9. Begin

10. Column [] = extract the column name;

11. Column_values = Extract the column value;

12. Column_kind = Extract kinds of column;

13. Partition_key = Extract partition keys of a column;

14. clustering = Extract clustering key;

15. Column_type = Extract the data type of a column cn;

16. for t in column_type do

17. Begin

18. UDT[] = Stored type_name extracted into UDT list;

19. Udt-field-name = Extract field_names of UDT;

20. Udt-types = Extract types of fields of UDT;

21. End;

22. End;

23. End;

24. End;

25. Output: Extracted elements of Data Source

Chapter 03. A Bidirectional Mapping Method between Document and Columnar NoSQL Databases

37

The ExtractionCassandra algorithm illustrates the data extraction process. We extract the

keyspace name and the names of all existing tables (see lines 1-2). Then, for each extracted

table, we mineits different components such as the column name, views, and indexes (see

lines 3-7). In the loop from line 8, the algorithm stores the information about the column, such

as the column name, column value, Column_kind, partition_key, clustering key. Thus, for

each column type (see loop in line 16), the algorithm extracts the information about UDT for

instance the name, the composed fields and types.

5. Conclusion

We have presented our method of bi-directional data mapping between the document-oriented

database of MongoDB and the columnar-oriented database of Cassandra. This method is

illustrated by algorithms of the extraction of schema elements, ensuring mapping by

translation rules-based algorithm. The latter is based on a set of translation rules, which were

defined according to the source data model and the target data model. The data mapping in the

opposite direction can be carried out by inversing the existing translation rules.

Finally, to validate our method, the next chapter will present the implementation of our tool

with a performance evaluation.

Chapter 04. Implementation

38

Chapter 04:

Implementation

Chapter 04. Implementation

39

1. Introduction

This chapter consists of the prototype implementation of the bidirectional data mapping

method presented in Chapter 3. The key components of the implementation are the MongoDB

and Cassandra NoSQL databases.

The implementation of this tool uses the Python programming language under Jupyter

Notebook application from Anaconda navigator to interact with the MongoDB and Cassandra

NoSQL databases.

To verify the feasibility of our tool called MCCM « MongoDB to Cassandra and Cassandra

to MongoDB», we perform experiments, and the results shall be discussed thoroughly.

In this chapter, we present at the first time the different installations and configurations of

the main tools used to implement the MCCM application. After that, we demonstrate how our

MCCM tool works with evaluation performance.

2. Installation and configuration of the used tools

We present in this section the main tools used to implement MCCM our data mapping tool.

We have used two different NoSQL systems: MongoDB system and Cassandra for managing

the document-oriented databases and columnar databases, respectively. We also describe how

to connect these systems with Jupyter Notebook application from Anaconda navigator. All the

experiments are performed on an Intel® Celeron ® CPU N2830 @2.16GHz PC with 4GB

RAM

2.1. MongoDB

MongoDB is a cross-platform, document oriented database that provides, high performance,

high availability, and easy scalability [41].We use MongoDB

version 3.2.22 for creating and managing our document-oriented

database called “Management-stock”, which is previously presented

in chapter 3.

2.1.1. Installation of MongoDB

After downloading MongoDB(.msi file) from the website

https://www.mongodb.com/download-center/, we start the installation by clicking the Next

button from the startup interface.

https://www.mongodb.com/download-center/

Chapter 04. Implementation

40

Figure 4.1–InstallationofMongoDB.

We follow the MongoDB Community Edition installation wizard and we click on the Finish

button to complete the installation.

2.1.2. Configuration of MongoDB

Step 1 : Add <MongoDB installed directory> as path in variable environment as follow:

C:\Program Files\MongoDB\Server\3.2\bin .

Step 2: Create two folders “log” and “data” in <MongoDB installed directory> inside data

Create another folder name it as db.

Step 3: Open Command Prompt as administrator and Run this Command :

mongod --bind_ip 0.0.0.0 --logpath "C:\Program Files\MongoDB\log\mongodb.txt" --

logappend --dbpath "C:\Program Files\MongoDB\data\db" --port 27017 --serviceName

"MongoDB" --serviceDisplayName "MongoDB" --install .

Step 4 :Start the MongoDB service by the following command : net Start "MongoDB"

Figure 4.2- MongoDB as a Service.

Chapter 04. Implementation

41

2.2. Cassandra

Apache Cassandra is designed to handle large amounts of data across many commodity

servers, providing high availability through robust support for clusters

panning of multiple datacenters and asynchronous masterless

replication and low latency operations [42]. It is essentially a hybrid

system between columnar Google Big Table and key-value Amazon

Dynamo [36].

2.2.1. Installation of Cassandra

Before installing apache Cassandra, JDK, python2.7, and 7Zip must be installed. Thus, the

paths of these tools must be added into windows environment as follows:

Add < JDK installed directory> as JAVA_HOME in variable environment as follow:

C:\Program Files\Java\jdk1.8.0_241

Add <python installed directory >as path in windows environment as follows:

C:\python2.7.

After downloading apache Cassandra (.zip file) from the website

https://archive.apache.org/dist/cassandra/3.11.8/ , we add<apache cassandra installed

directory > as CASSANDRA_HOME in variable environment as follow: C:\cassandra-3.11.8.

Then, we can easily use Cassandra without installation, just go to the bin directory open

Cassandra.bat.

2.2.2. Configuration of Cassandra

Step 1: Download the latest apache Commons daemon from this Link:

archive.apache.org/dist/commons/daemon/binaries/windows.

Figure 4.3- Download apache Common daemon

https://archive.apache.org/dist/cassandra/3.11.8/

Chapter 04. Implementation

42

Step 2: With 7Zip Extract the commons daemon in <Cassandra installed directory >\bin;

And rename this extracted folder as daemon.

Step 3: Add PRUNSRV.exe as path in System variables as follows:

PATH_PRUNSRV=%CASSANDRA_HOME%\bin\daemon\amd64\prunsrv.exe

Step 4:EditCassandra.PSI in <Cassandra installed directory >\bin and replace the value for

the PATH_PRUNSRV as follows:

For winx86, set PATH_PRUNSRV=%CASSANDRA_HOME%\bin\daemon\

For win64, set PATH_PRUNSRV=%CASSANDRA_HOME%\bin\daemon\amd64

Step 5: Edit the file cqlsh in <Cassandra installed directory >\binand replace the value of

DEFAULT_HOST = 'localhost' as follows: DEFAULT_HOST = '127.0.0.1'.

Step 6: Edit the cassandra.yaml file in <Cassandra installed directory >\conf, and set the

absolute path of (data_file_directories, commitlog_directory ,saved_caches_directory,

hints_directory, cdc_raw_directory). After this, we confirm that the value of start_rpc: true,

rpc_port: 9160, and rpc_address:127.0.0.1

Finally, to configure Cassandra as a service in windows server, we precede the following

steps:

1st:Open cmd1and move to %CASSANDRA_HOME%/bin , and Run (Cassandra.bat)

Figure 4.4 - Open the service cassandra.bat.

Chapter 04. Implementation

43

2nd:Open another cmd2 as administrator and run (cassandra.bat install).

Figure 4.5 - Installation of Cassandra service.

3rd:Quit cmd1 and open the services of windows for verifying Cassandra Service.

Figure 4.6 - Cassandra service verification.

Start the Cassandra service by the following command: net Start cassandra

Figure 4.7 - MakeCassandra as a service from command Prompt.

Chapter 04. Implementation

44

For creating and managing Cassandra database, we use CQLSH tool, which is based on

Python programming language. The following figure depicts the principal interface for

creating and managing Cassandra databases through the CQLSH.

Figure 4.8 - Cassandra CQL Shell.

2.3. Anaconda

Anaconda is a free and open-source graphical user interface (GUI)

distribution of the Python and R programming languages for

scientific computing, that aims to simplify package management

and deployment [43]. The distribution includes data-science

packages suitable for Windows, Linux, and macOS. We use

Anaconda navigator for building our MCCM tool, which involves the connection of both

MongoDB and Cassandra

2.3.1. Installation of Anaconda

From the official website https://www.anaconda.com/distribution/#windows, we download

anaconda navigator with Python 3.7 version for 64 bits windows and we follow the Anaconda

installation wizard. After that, we click to the Next button to install PyCharm for Anaconda,

which is a professional Python IDE from JetBrain. PyCharm provides code editors, error

highlighting, and a debugger, all with a GUI. It can also be personalized by allowing the user

to change its color, theme, and so on. It integrates Numpy and Matplotlib, making it easy to

work with graphs and array viewers [44].

https://www.anaconda.com/distribution/#windowswe

Chapter 04. Implementation

45

Figure 4.9 - Installing PyCharm

2.3.2. Connection of MongoDB and Cassandra with Jupyter

First, we must install Jupyter Notebook from Anaconda navigator to write the code source of

our MCCM application. There is no hassle of navigating through various applications just to

download the desired tool.

Figure 4.10-Installation of Jupyter Notebook

Jupyter Notebook application provides users with tools and utilities that make the

programming experience much faster and easier compared to other IDEs. [44]

To connect MongoDB and Cassandra to Jupyter, we need to install two packages pymongo

and conda-driver, respectively. After that, we write the principal statements for connecting

these NoSQL systems (see figure 4.11).

Chapter 04. Implementation

46

Figure 4.11 - Connection of MongoDB and Cassandra to jupyter.

3. Presentation of the MCCM tool

In this section we present in detail the developed MCCM tool for bidirectional data mapping

between document-oriented database from MongoDB and Columnar-oriented database from

Cassandra. Firstly, we present the general implementation architecture of MCCM tool, which

is shown in the following figure.

Figure 4.12 - General implementation architecture of MCCM

Chapter 04. Implementation

47

The MCCM tool provides two types of data mapping from NoSQL database:

- Doc2COL to map the document-oriented database of MongoDB to Columnar-oriented

database of Cassandra.

- COL2Doc to map the Columnar-oriented database to document-oriented database of

MongoDB.

The user can select the database to be mapped and apply the proposed rule-based method to

generate the target database. The main interface of MCCM tool is composed of two principal

buttons: Doc2Col for achieving the first type of NoSQL data mapping and Col2Doc to ensure

the second one.

Figure 4.13 - Principal interface of MCCM tool

3.1. Document to Columnar data mapping

The following figure illustrates the interface to select the document-oriented database to

be mapped.

Chapter 04. Implementation

48

Figure 4.14 - Document to Columnar data mapping.

The first step of data mapping is the extraction of database components

through« ExtractionMongoDB » algorithm and the result has been shown in following figure.

Figure 4.15 - Document-oriented database extraction .

The second step is the data mapping from MongoDB to Cassandra according to the proposed

method. The MCCM shows the result of Doc2cCol mapping.

Chapter 04. Implementation

49

Figure 4.16 - Result of Doc2Col data mapping

3.2. Columnar to Document Data mapping

The second type of NoSQL data mapping is the Col2Doc, which consists of mapping the

columnar data to Document using the inverse rules from the translation rules. From the

principal interface of MCCM tool (see figure 4.13), we click on the Col2Doc button and we

select the data base to be mapped.

The following figure illustrates the extraction of database components using

« ExtractionCassandra » algorithm.

Figure 4.17 - Columnar-oriented database extraction.

The result of data mapping is shown as follows.

Chapter 04. Implementation

50

Figure 4.18 - Result of Col2Doc data mapping.

4. Evaluation study

The main focus of this research is mapping data successfully without any data loss or

data corruption and then to use the mapping data to perform identical operations and

get identical results. On this basis, we created our proper document-oriented database to

verify the utility and usability of our proposal. This database describes the running example of

order management called "Management_Stock", which is composed of three collections of

documents Provider, Product, and OrderLine. The following table describes the document-

oriented database.

Size of

database

Number of

collections

Total number of

documents

Detail

512 MB 3 1386 - 300 documents in Provider

collection

- 300 documents in Product

collection

- 786 documents in OrderLine

collection.

Table 4.1- Description of the Management-stock document-oriented database

We start to evaluate the first data mapping « Doc2Col». The data mapping is achieved

successfully if the data has been moved from the MongoDB to the Cassandra successfully

without any data loss or corruption. To verify these two major factors (data loss and data

corruption), we precede the following strategy:

1. Execute ten CQL queries across the output columnar database.

Chapter 04. Implementation

51

2. Execute ten Mongo queries across the input document-oriented database. These

queries are equivalent to the CQL queries.

3. Compare the similarity between answers.

The following table shows CQL queries with the equivalent Mongo shell queries:

N °

Query

Description CQL query Mongo query

Q1 Insert a new product. INSERT INTO product (id

,title ,price)

VALUES ('100A','Cisco

Networking',17);

db .product.insert(

{"_id":"100A","title":"Cisco

Networking","Price":17}

)

Q2 Show all providers

where their adresses

equal to ‘Guelma’

SELECT * FROM

provider WHERE address

= 'Alger' ALLOW

FILTERING;

db.provider.find(

{"Address" :"Alger"}

)

Q3 Show all providers

where their address =

Guelma and Name =

Ibtissem

SELECT * FROM

provider WHERE address

IN ('Guelma')

AND name IN ('Ibtissem')

ALLOW FILTERING;

db.Provider.find(

{"Address":"Guelma","Nam

e": "Ibtissem"}

)

Q4 Show all Orderlines SELECT * FROM

orderline ;

db.Orderline.find()

Q5 remove product where

id equal to ‘001A’

DELETE FROM Product

WHERE id = '001A';

db.Product .remove(

{_id :’001A’}

)

Q6 Drop orderline DROP TABLE IF EXISTS

management_stock.orderli

ne;

db .Orderline .drop()

Q7 Edit the Name Ibtissem

of Product to Djozelle

UPDATE provider SET

Name =' Djozelle '

WHERE id = 'provider01';

db.Provider.update(

 { "Name": "Ibtissem" },

{"Name": "Djozelle"},

{ upsert: true })

Chapter 04. Implementation

52

Q8 Show

productwithprice>20

SELECT *

FROM product

WHERE price > 20

ALLOW FILTERING;

db.Product.find(

 { Price: { $gt: 20 } }

)

Q9 Count the number of

products which their

prices is more than 60

SELECT COUNT(*)

FROM product

WHERE price > 60

ALLOW FILTERING;

db.Product.count({ Price: {

$gt: 60 } })

Q10 Show

orderlineswithQuantity

<50

SELECT *

FROM orderline

WHERE Quantity < 50

ALLOW FILTERING;

db.Orderline.find(

{Quantity:{$lt:50}}

)

Table4.2 -Queries used in the evaluation study.

For measuring the similarity between answers, we need to select and use the existing

similarity measures. We recall that the answers of the Cassandra database are represented by a

column family of rows, while the answers of MongoDB are described by a collection of

JSON documents. To measure the similarity between two answers having different structures

(document and row) is a tedious task. A natural idea is to give a unified representation of the

results of each NoSQL database. Hence, we focused on the vector representation to represent

each document or row of the query result and we compute the cosine similarity between

vectors. The cosine similarity is one of the most popular similarity, which is applied between

two vectors X, Y. Cosine measure is given by the following formula [45]:

Where ||X||, ||Y|| represent the magnitude of X and Y, respectively. These vectors represent the

term frequency in the response, through the TF (Term Frequency) measure, which is the most

used in the information retrieval domain [46].

Due to the large number of answers of each query, we present in Table 4.2 some vectors of

numeric values of two CQL queries (Q2 and Q8) related to two equivalent Mongo queries.

The rightmost column shows the average of cosine similarities of the query answers.

Chapter 04. Implementation

53

N °

Query

Result of CQL

Query

Result of Mongo

Query

Average

Similarity

Q2 V1 (1, 0, 1, 1, 1, 1, 3, 1, 1, 1)

V2 (1, 5, 3, 1, 3, 1, 0, 2, 1, 0)

V3 (1, 2, 1, 1, 2, 0, 0, 0, 0, 1)

V4 (2, 1, 2, 0, 2, 1, 1, 1, 1, 1)

V5 (0, 1, 1, 1, 1, 1, 5, 1, 0, 1)

V6 (1, 1, 1, 5, 4, 3, 3, 3, 2, 0)

V7 (0, 2, 2, 2, 2, 3, 0, 1, 1, 0)

V8 (0, 1, 3, 1, 4, 0, 0, 2, 0, 1)

T1 (1, 1, 1, 1, 0, 1, 3, 0, 1, 0)

T2 (1, 5, 0, 1, 3, 4, 1, 4, 0, 1)

T3 (2, 2, 1, 1, 2, 4, 2, 1, 1, 0)

T4 (2, 1, 2, 1, 2, 2, 1, 1, 1, 1)

T5 (1, 1, 1, 1, 1, 1, 5, 0, 1, 1)

T6 (0, 1, 1, 5, 0, 3, 4, 6, 0, 1)

T7 (1, 2, 2, 2, 2, 3, 4, 1, 1, 2)

T8 (1, 0, 3, 1, 4, 1, 1, 1, 2, 1)

0.96

Q8 V1 (0, 2, 2, 0, 0, 2, 0, 1)

V2 (2, 0, 0, 3, 2, 2, 0, 1)

V3 (1, 0, 0, 0, 0, 2, 0, 1)

V4 (1, 1, 0, 1, 1, 1, 0, 0)

V5 (2, 2, 1, 1, 1, 0, 0, 0)

V6 (0, 2, 2, 0, 0, 2, 0, 1)

V7 (2, 0, 0, 3, 2, 2, 0, 1)

V8 (1, 2, 0, 0, 0, 0, 2, 0)

V9 (1, 1, 0, 1, 1, 1, 0, 0)

V10 (2, 2, 1, 1, 0, 0, 1, 0)

T1 (1, 0, 0, 2, 1, 1, 2, 0)

T2 (0, 1, 1, 1, 1, 0, 3, 1)

T3 (3, 2, 2, 1, 1, 2, 1, 1)

T4 (0, 1, 1, 1, 0, 0, 1, 1)

T5 (2, 0, 0, 1, 0, 1, 2, 1)

T6 (1, 0, 0, 2, 1, 1, 2, 0)

T7 (0, 1, 1, 1, 1, 0, 3, 1)

T8 (1, 2, 2, 2, 1, 1, 2, 1)

T9 (0, 1, 1, 1, 0, 0, 0, 0)

T10 (2, 0, 0, 0, 1, 2, 1, 1)

0.92

Table4.3 - Similarities between answers for Doc2Col.

From Table 4.3, it can be seen that the data mapping from MongoDB to Cassandra is

achieved successfully. The data mapping rate is close to 0.90.

To appreciate the working of MCCM data mapping tool, the research conducts the five tests

concerning the data mapping from MongoDB to Cassandra, each with different number of

data records (documents) to be mapped.

Metrics Dataset#1 Dataset#2 Dataset#3 Dataset#4 Dataset#5

Source size(MB) 16 64 128 256 512

Records 300 600 900 1100 1386

Mapping Time(sec) 1064 4259 8522 17049 34114

Table4.4 - Description of Cassandra data mapping.

 Using table 4.4, it can be seen that with the increment in source size, the mapping time

accelerates linearly.

Chapter 04. Implementation

54

In the second type of data mapping, where we provide the mapping from the columnar

database of Cassandra to Document-oriented database of MongoDB. We have mentioned in

chapter 3, that we have created Hotel database. The following table describes this database.

Size of

database

Number of Column

family

Total number of

rows

Average number of

columns

256 MB 5 370 4

Table 4.5 - Description of the Hotel columnar-oriented database

We carry out the same study as that giving in the Doc2Col mapping. The following table

shows the similarity of results of two Mongo queries across the output database with the

equivalent CQL queries applied on the input database.

Query Result of Mongo

Query

Result of CQL

Query

Average

Similarity

Select all hotels having more

available rooms

V1 (1, 0, 1, 1, 1)

V2 (1, 0, 2, 1, 0)

V3 (1, 1, 2, 0, 0)

V4 (2, 1, 2, 1, 1)

V5 (0, 1, 0, 0, 1)

T1 (5, 6, 7, 2, 0)

T2 (1, 5, 3, 4, 1)

T3 (2, 2, 4, 1, 2)

T4 (2, 1, 1, 1, 1)

T5 (1, 1, 5, 0, 1)

0.12

Select all amenities by room from

the Hotel identified 15

V1(2, 0, 0)

V2 (3, 2, 2)

V3 (0, 0, 2)

V4 (1, 1, 1)

T1 (3, 1, 1)

T2 (3, 2, 2)

T3 (4, 5, 5)

T4 (2, 1, 1)

0.34

Table4.6 - Similarities between answers for Col2Doc.

From Table 4.6, we can observe that the data mapping Col2Doc is achieved with data

corruption. Therefore, we do not need to realize the second evaluation of the mapping time.

In conclusion, the data mapping from document to columnar is very easy but the vice versa is

quite difficult.

Chapter 04. Implementation

55

5. Conclusion

We have presented the implementation of our MCCM tool for bidirectional data mapping of

the document-oriented database of MongoDB and the columnar-oriented database of

Cassandra. The evaluation study suggests that the data mapping from the document database

to columnar (Doc2Col) gives a good result, while the mapping in the other direction

(Col2Doc) produces data corruption.

General Conclusion

56

General Conclusion

This work proposes a method of bidirectional mapping between the NoSQL MongoDB

document-oriented database and Cassandra columnar-oriented database. The proposed

method is based on a set of translation rules between database components to map the

document-oriented database to the columnar database, and according to these rules, we

generate a set of inverse translation rules for mapping in the other direction (from columnar to

document databases).

Also, we have proposed a rule-based algorithm for presenting our data mapping method. This

algorithm used two other algorithms:"ExtractionMongoDB" to extract all components of

MongoDB, such as collection, document, field, keys, and the "ExtractionCassandra"

algorithm for extracting the Cassandra database components, such as column, column family,

row key, etc.

To validate the proposed method, we have implemented a simple tool by using the Python

programming language. The results show that the first direction of data mapping from

document-oriented to columnar-oriented databases was achieved successfully. However, the

second direction of data mapping was posed a critical problem, especially the mapping with

data corruption. The results also suggest that the mapping from Cassandra to MongoDB is

very complex compared to the first direction of data mapping. This requires more study to

give a better result without data corruption.

Due to the limitation of time to achieve this work, we suggest some perspectives for future

research:

1. Dealing with the problem of data corruption in the data mapping from Cassandra to

MongoDB databases.

2. Extending our work for ensuring data mapping of other NoSQL databases, such as a

graph-oriented database that is more suitable for managing complex data.

3. Incorporating our proposal for data integration from different NoSQL databases.

References

57

References

[1] E.Tang,Y.Fan, «Performance comparison between five NoSQL databases».In

7thInternational Conference on Cloud Computing and Big Data (CCBD), p. 105-109,

IEEE, 2016.

[2] R.Bruchez, «Les bases de données NoSQL et le Big Data: Comprendre et mettre

enoeuvre». Editions Eyrolles, 2015.

[3] R.Arora, R.R.Aggarwal, «Modeling and querying data in mongodb». International Journal

of Scientific and Engineering Research, 4(7), p. 141-144, 2013.

[4] A.Aggoune, M.S.Namoune, «From Object-relational to NoSQL Databases: A Good

Alternative to Deal with Large Data». The 1st International Conference on Innovative

Trends in Computer Science(CITCS), Guelma, 2019.

[5] C.He, «Survey on NoSQL database technology». Journal of applied science and

engineering innovation, 2(2), 2015.

[6] J. Carpenter, E. Hewitt, «Cassandra: the definitive guide: distributed data at web scale».

O'Reilly Media, In, 2016.

[7] A.B.M.Moniruzzaman , S.A.Hossain,« Nosql database: New era of databases for big data

analytics-classification, characteristics and comparison». ArXiv preprint

arXiv:1307.0191,2013.

[8] A.Corbellini, C.Mateos, A.Zunino, D.Godoy, S.Schiaffino, «Persisting big-data: The

NoSQL landscape». Information Systems, 63, p.1-23,2017.

[9] D.G.Chandra, « BASE analysis of NoSQL databases». Future Generation Computer

Systems, 52, p. 13-21, 2015.

[10] A. Gupta, S.Tyagi, N.Panwar, S.Sachdeva, U.Saxena,«NoSQL databases: critical analysis

and comparison». In International Conference on Computing and Communication

Technologies for Smart Nation (IC3TSN), p. 293-299, IEEE, 2017.

[11] D. A. Pereira, W.Ourique de Morais, E. Pignaton de Freitas, «NoSQL real-time database

performance comparison». International Journal of Parallel, Emergent and Distributed

Systems, 33(2), p. 144-156, 2018.

[12] A.H. Laender, B.A.Ribeiro-Neto, A.S. Da Silva, J.S.Teixeira, «A brief survey of web

data extraction tools». ACM Sigmod Record ,31(2), p.84-93, 2002.

[13] S.Simon, « Brewer’s cap theorem ». CS341 Distributed Information Systems, University

of Basel (HS2012), 2000.

[14] J.R.Lourenço, B.Cabral, P.Carreiro, M.Vieira, J.Bernardino, «Choosing the right NoSQL

database for the job: a quality attributes evaluation». Journal of Big Data, 2(1), p. 18, 2015

[15] M.Kleppmann, «A Critique of the CAP Theorem». ArXiv preprint arXiv: 1509.05393,

2015.

[16] D.G.Chandra, «BASE analysis of NoSQL database». Future Generation Computer

Systems, 52, p. 13-21, 2015.

[17] A.AGGOUNE, M.S.NAMOUNE, «Practical study for handling of NoSQL data on the

distributed environment systems». In 2nd edition of Conference on Informatics and

Applied Mathematics, IAM’ 19.Guelma, Algeria, 2019.

References

58

[18] J.Han, E.Haihong, G.Le, J. Du, «Survey on NoSQL database». In 6th international

conference on pervasive computing and applications, p. 363-366, IEEE, 2011.

[19] P. Suárez-Otero González, M.J. Suárez Cabal, P. J, Tuya González, «Leveraging

conceptual data models for keeping cassandra database integrity». In Proceedings of the

14th International Conference on Web Information Systems and Technologies, p.398-403,

2018.

[20] M.Di.Maglie, «Adoption d'une solution NoSQL dans l'entreprise». Doctoral dissertation,

Haute école de gestion de Genève, 2012.

[21] S.Sharma, U.S. Tim, S. Gadia, J. Wong, R. Shandilya, S.K. Peddoju,«Classification and

comparison of NoSQL big data models». International Journal of Big Data Intelligence,

2(3), p. 201-221, 2015.

[22] M.N.Shirazi, H.C.Kuan, H.Dolatabadi, «Design Patterns to Enable Data Portability

between Clouds' Databases». In 12th International Conference on Computational Science

and Its Applications, p. 117-120, IEEE,2012.

[23] M.Scavuzzo, E.Di.Nitto, S.Ceri, «Interoperable data migration between NoSQL columnar

databases».In: IEEE18th International Enterprise Distributed Object Computing

Conference Workshops and Demonstrations, p. 154-162, IEEE, 2014.

[24] M.Scavuzzo, D.A.Tamburri,E.Di.Nitto, «Providing big data applications with fault-

tolerant data migration across heterogeneous NoSQL databases». In: IEEE/ACM 2nd

International Workshop on BIG Data Software Engineering (BIGDSE), p. 26-32, IEEE,

2016.

[25] B.Thalheim, Q.Wang ,«Data migration: A theoretical perspective». Data & Knowledge

Engineering, 87, p.260-278, 2013.

[26] A.Bansel, H.González-Vélez, A.E.Chis, «Cloud-based NoSQL data migration». In

24thEuromicro International Conference on Parallel, Distributed, and Network-

BasedProcessing (PDP), p. 224-231, IEEE, 2016.

[27] D.Andročec, N.Vrček, «Ontology-Based Resolution of Cloud Data Lock-in Problem».

Computing and Informatics, 37(5), p.1231-1257, 2018.

[28] E.Alomari, A.Barnawi, S.Sakr, «Cdport: A framework of data portability in cloud

platforms». In Proceedings of the 16th International Conference on Information Integration

and Web-based Applications & Services, p. 126-133, 2014.

[29] L.A.B.Silva, C.Costa, J.L.Oliveira , «A common API for delivering services over multi-

vendor cloud resources». Journal of Systems and Software,86 (9), p.2309-2317, 2013.

[30] Y.S.Wijaya, A.AkhmadArman, « A Framework for Data Migration Between Different

Datastore of NoSQL Database». In International Conference on ICT for Smart Society

(ICISS), p. 1-6, IEEE, 2018.

[31] K.K.Y. Lee, W.C. Tang, K.S. Choi, «Alternatives to relational database: comparison of

NoSQL and XML approaches for clinical data storage». Computer methods and programs

in biomedicine 110, p.99-109.,2013.

[32] 10gen.com: Home - MongoDB. http://mongodb.org/, 2009. [Accessed 13 July 2020].

[33] K.Orend , « Analysis and Classification of NoSQL Databases and Evaluation of their

Ability to Replace an Object-relational Persistence Layer ». Architecture, 1, p.1-100, 2010.

[34] A.Corbellini, C.Mateos, A.Zunino, D.Godoy,S.Schiaffino,« Persisting big-data: The

NoSQL landscape». Information Systems, 63, p.1-23, 2017.

http://www.cai.sk/ojs/index.php/cai/article/viewArticle/2018_5_1231

References

59

[35] E.Hewitt, «Cassandra: the definitive guide». O'Reilly Media, Inc (2010).

[36] Cassandra, https://cassandra.apache.org/.[Accessed 05 March 2020].

[37] V.Abramova, J .Bernardino, «Nosql databases: Mongodb vs cassandra». In Proceedings

of the International C* Conference on Computer Science and Software Engineering,

C3S2E ’13, ACM,New York, NY, USA, p.14–22,2013.

[38] https://docs.datastax.com/en/cql-oss/3.3/cql. [Accessed 05 March 2020].

[39] A.Chebotko, A.Kashlev, S.Lu «A big data modeling methodology for Apache

cassandra». IEEE International,p. 238-24, 2015

[40] https://www.oreilly.com/content/cassandra-data-modeling/. [Accessed 05 March 2020].

[41] K.Chodorow,« MongoDB: the definitive guide: powerful and scalable data storage ».

O'Reilly Media, Inc,2013.

[42] E.Hewitt, « Cassandra: the definitive guide ».O'Reilly Media, Inc, 2010.

[43] L.Mikkelsen, K.Moesgaard, M. Hegnauer, A.D.Lopez. « ANACONDA: a new tool to

improve mortality and cause of death data ». BMC medicine, 18(1), p.1-13, 2020.

[44] N.Silaparasetty, «Introduction to Jupyter Notebook». In Machine Learning Concepts with

Python and the Jupyter Notebook Environment, Apress, Berkeley, CA, p. 91-118, 2020.

[45] V.H Nguyen, L. Bai, «Cosine similarity metric learning for face verification». In: Asian

conference on computer vision, Springer, p.709-720, 2010.

[46] K. Orkphol, W. Yang, «Word sense disambiguation using cosine similarity collaborates

with Word2vec and WordNet». Future Internet 11(5), p114, 2019.

https://cassandra.apache.org/
https://docs.datastax.com/en/cql-oss/3.3/cql
https://scholar.google.com/citations?user=wwqaZXwAAAAJ&hl=fr&oi=sra
https://scholar.google.com/citations?user=ZsA3NvYAAAAJ&hl=fr&oi=sra
https://www.oreilly.com/content/cassandra-data-modeling/

	1. Introduction
	2. Motivations of the Emergence of NoSQL Data
	3. Definition of NoSQL Data
	4. NoSQL Features
	4.1. NoSQLVs SQL Features
	4.2. CAP theory
	4.3. BASE properties

	5. NoSQL categories
	5.1. Key-Value Database
	5.2. Columnar-oriented Databases
	5.3. Document-oriented databases
	5.4. Graph-Oriented databases
	6. Conclusion
	1. Introduction (1)
	2. Motivations of Mapping between NoSQL Databases
	3. NoSQL Databases Mapping Approaches
	4. Frameworks for NoSQL Data Mapping
	5. Conclusion
	1. Introduction (2)
	2. Choosing NoSQL Databases
	2.1. MongoDB database
	2.2. Cassandra database
	3. Bi-directional NoSQL data mapping Method

	4. Algorithms of the Data Mapping Method
	4.1. Rule-based Algorithm
	4.2. ExtractionMongoDB Algorithm
	4.3. ExtractionCassandra Algorithm

	5. Conclusion (1)
	Implementation
	1. Introduction
	2. Installation and configuration of the used tools
	2.1. MongoDB
	2.1.1. Installation of MongoDB
	2.1.2. Configuration of MongoDB
	2.2. Cassandra
	2.2.1. Installation of Cassandra
	2.2.2. Configuration of Cassandra
	2.3. Anaconda
	2.3.1. Installation of Anaconda
	2.3.2. Connection of MongoDB and Cassandra with Jupyter
	3. Presentation of the MCCM tool
	3.1. Document to Columnar data mapping
	3.2. Columnar to Document Data mapping
	4. Evaluation study
	5. Conclusion

