République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université 8 Mai 1945 Guelma

Faculté des Mathématiques, informatique et sciences de la matière Département de sciences de la matière

THÈSE

EN VUE DE L'OBTENTION DU DIPLOME DE DOCTORAT EN SCIENCE

Filière : Physique

Présentée par

Karfaf Saliha

Intitulée

Étude de premiers principes des pérovskites

Soutenue le : 01/02/2021 Devant le Jury composé de :

Mr BELKHIR Hafid Mr BENNECER Badis Mr ZANAT Kamel Mr GHEMID Sebti Professeur Professeur Professeur Professeur Univ. de Annaba Univ. de Guelma Univ. de Guelma Univ. de Annaba Président Rapporteur Examinateur Examinateur

Année Universitaire : 2020/2021

REMERCIEMENTS

Ce travail de thèse a été réalisé à l'Université de Guelma, au sein du laboratoire de physique de Guelma (LPG) dirigé par le professeur *Badis BENNECER*.

Mes chaleureux remerciements s'adressent tout d'abord à mon directeur de thèse le professeur *Badis BENNECER* qui a proposé et dirigé cette thèse de très près. J'ai beaucoup appris à ses côtés et cela quotidiennement. Chacune de mes discussions avec lui me pousse vers l'excellence par sa créativité et sa passion pour la science. Merci infiniment pour l'opportunité qu'il m'a offert de travailler sous sa supervision, son suivi permanent et ses précieux conseils. J'en suis éternellement reconnaissante.

Mes grands remerciements s'adressent au directeur du laboratoire de physique de Guelma (LPG) *Mr Ahmed BOUFELFEL*, Professeur à l'université de Guelma et, qui m'a permet de réaliser mon travail au sein du laboratoire.

Mes remerciements vont à *Mr Hafid BELKHIR*, Professeur à l'université d'Annaba, qui m'a fait l'honneur de présider mon jury de thèse. Je remercie également *Mr Sebti GHEMID*, Professeur à l'université d'Annaba, et *Mr Kamel ZANAT*, Professeur à l'université de Guelma, d'avoir accepté d'examiner ce travail et de faire d'être membre du jury.

J'exprime également toute ma reconnaissance au *Dr Fateh Kalarasse*, qui ma, grandement fait profiter de ces fructueuses discussions sur les codes de calcul. Son aide a souvent été précieuse.

Merci à tous les membres de mon labo pour leurs encouragements et un grand remerciement s'adressent à : *Souhair Fnides, Mouhamed Boualleg, Dr Mourad Souadkia,* Nassima Guechi et *Dr Lamia Kalaraesse.* Je remercie aussi tous ceux qui ont contribué de près ou de loin au bon déroulement de ce travail.

Saliha Karfaf

RÉSUMÉ

Nous présentons une étude de premiers principes des propriétés structurales, élastiques, vibrationnelles, thermodynamiques et transition de phase pour les deux alliages $Li_x Na_{1-x} MgH_3$ et $Ba_x Sr_{1-x} LiH_3$. L'énergie totale et l'enthalpie de formation obtenues montrent que $Li_x Na_{1-x}MgH_3$ subit une transition de phase structurale de la phase orthorhombique Pnma à la phase polaire R3c autour de la concentration x = 0.7. Sous pression, la phase R3c se transforme en Pnma et les valeurs de la pression de transition obtenues sont respectivement de 0.32, 1.79 et 4.07 GPa pour x = 0.7, 0.75 et 0.8. Les spectres de phonons calculés pour différentes valeurs de x montrent l'apparition d'un mode doux (B_{2u}) au centre de la zone associé à cette transition de phase. Les fréquences de phonons au centre de la zone pour les modes Raman-actif et infrarouge sont prédites pour les deux structures pour différentes concentrations de lithium. Les constantes élastiques ont été étudiées. La variation des grandeurs thermodynamiques avec la température pour différentes valeurs de x dans les deux structures est prédite. La variation des paramètres structuraux, les constantes élastiques, les fréquences des phonons optiques au centre de la zone de Brillouin, les constantes diélectriques électroniques et statiques, les charges effectives de Born ont été étudiées en fonction de la concentration en baryum (x) dans l'alliage $Ba_xSr_{1-x}LiH_3$. Nos résultats indiquent que toutes ces propriétés suivent une loi quadratique en x. Les valeurs des paramètres de bowing sont prédites. De plus, les constantes des forces interatomiques longitudinales de Li - H et $H - (Sr \setminus Ba)$ diminuent avec x tandis que $Li - (Sr \setminus Ba)$ augmentent. La variation des constantes élastiques et des fréquences de mode acoustique avec la pression indique qu'il n'y a pas de transition de phase dans la gamme de pression considérée. La variation des grandeurs thermodynamiques avec la température pour différentes valeurs de x dans les deux structures est prédite.

Mots-Clés : Calcul ab-initio ; l'alliage ; Transition de phase ; Phonon ; Propriétés thermodynamiques.

ABSTRACT

First principles calculations have been used to investigate the structural phase transitions, elastic properties, lattice dynamics and the thermodynamic properties in both alloys $Li_x Na_{1-x} MgH_3$ and $Ba_x Sr_{1-x} LiH_3$. Our total energy and formation enthalpy results show that $Li_x Na_{1-x} MgH_3$ undergoes a phase transition from the orthorhombic Pnma phase to the polar R3c one at a lithium concentration of x = 0.7. Under pressure the system in the R3c structure exhibits a phase transition to the Pnma one and the values of the transition pressure are 0.32, 1.79 and 4.07 GPa for x = 0.7, 0.75and 0.8, respectively. The calculated phonon dispersion curves for different lithium concentration show a softening of the B_{2u} mode at the zone center which vanishes at x = 0.8 in the polar R3c phase confirming the transition of the system from the non polar Pnma structure to the polar R3c one. The phonon frequencies at the zone center for the Raman-active and infrared-active modes are predicted for both structures for different lithium concentrations. The elastic constants were studied as a function of lithium concentration. The thermodynamic properties are evaluated from the calculated phonon spectra and density of states in function of temperature and lithium concentration in both phases. The variation of the structural parameters, the elastic, the optical phonon frequencies at the *Brillouin* zone center, the electronic and static dielectric constants, the Born effective charges are studied as a function of barium concentration (x) in the alloy $Ba_xSr_{1-x}LiH_3$. Our results indicate that all these properties follow a quadratic law in x and the values of the bowing parameters are predicted. Furthermore, the longitudinal interatomic force constant of Li - H and $H - (Sr \setminus Ba)$ decrease with x while $Li - (Sr \setminus Ba)$ increases. The variation of the elastic constants and the acoustic mode frequencies with pressure indicate that is no phase transition in the pressure range considered. In addition, we have also used the calculated phonon dispersions at finite pressure in conjunction with the quasi-harmonic approximation to predict the temperature and concentration of barium dependence of various quantities such as the thermal expansion coefficient, the bulk modulus and the heat capacity.

Keywords : Ab-initio calculation; the alloy; Phase transition; Phonon; Thermodynamic properties.

الملخص

بالاعتماد على المبادئ الأولية أجرينا في هذه الأطروحة دراسة للخصائص البنيوية، المرنة، الاهتزازية ,الديناميكا الحرارية و انتقال الطور للخليطين Ba_xSr_x-1LiH₃ و Li_xNa_{x-1}MgH₃ . يبين كلا من نتائج الطاقة الاجمالية و المحتوى الحراري للتكوين المتحصل عليها ان الخليط Li_xNa_{X-1}MgH₃ . يخضع لعملية انتقال الطور البنيوي من طور Pnma إلى الطور القطبي R3c في حدود التركيز 0.7 . يحت الضغط، يتحول الطور البنيوي من طور Pnma وقيم الضغط التحولي المتحصل عليها متحصل عليها متحد التركيز 0.7 . تحت الضغط، يتحول الطور البنيوي من طور Pnma وقيم الضغط التحولي المتحصل عليها هي على التوالي تحت الضغط، يتحول الطور مع R3c الى الطور القطبي 8.2 R3 في حدود التركيز 0.7 . 2.0، 1.79 . 2.0، 1.79 . 2.0، 1.79 . 2.0، 1.79 . 2.0 . 2.

بالنسبة للجزء الثاني من الأطروحة، قمنا بدراسة التغيرات البنيوية والمرونة والاهتزازية والديناميكية الحرارية للخليط Ba_xSr_{x-1}LiH₃. مع تغير تركيز الباريوم في الخليط جميع النتائج المتحصل عليها تخضع للقانون التربيعي. أثبتت دراسة تغيرات الثوابت المرنة والترددات الاهتزاز مع تغير تركيز الباريوم والضغط انه لا يوجد أي مؤشر لتغيير الطور. قمنا بدراسة تغيرات الخصائص الديناميكية الحرارية مع تغير درجات الحرارة وتركيز الباريوم في الخليط.

الكلمات المفتاحية: المبدأ الأول في الحساب ; الخليط ; انتقال الطور ; الفو نونات ; الخصائص الديناميكية الحرارية.

_____TABLE DES MATIÈRES

In	Introduction		
1	\mathbf{Th}	éorie de la fonctionnelle de la densite	4
	1.1	Introduction	4
	1.2	L'approche <i>ab initio</i>	4
	1.3	Théorie de la fonctionnelle de la densité	7
		1.3.1 Théorèmes de <i>Hohenberg</i> et <i>Kohn</i>	8
		1.3.2 Équations de Kohn et Sham \ldots \ldots \ldots \ldots \ldots	8
	1.4	Potentiel d'échange et corrélation	10
		1.4.1 Approximation de la densité locale	10
		1.4.2 Approximation du Gradient Généralisé	10
	1.5	Résolution des équations de $Kohn$ et $Sham$	10
2	Mé	éthodes de calcul	13
	2.1	Introduction	13
	2.2	Théorème de <i>Bloch</i> et bases d'ondes planes	13
	2.3	Méthode des pseudo-potentiels	15
		2.3.1 Pseudo-potentiels utilisés	15
3	Thé	éorie de la dynamique du réseau cristallin	18
	3.1	Introduction	18
	3.2	Théorie de perturbation de la fonctionnelle de la densité	19
		3.2.1 Formulation non variationnelle de l'énergie au premier ordre	20
		3.2.2 Formulation variationnelle de l'énergie au second ordre	21
	3.3	Dynamique du réseau dans l'approximation harmonique	22
		3.3.1 Calcul les constantes de force	24
		3.3.2 Interpolation de <i>Fourier</i>	25
	3.4	Réponse à la déformation	26
		3.4.1 Élasticité \ldots	26

		3.4.2	Notation de <i>Voigt</i>	27
		3.4.3	Calcul <i>ab initio</i> des constantes élastiques	28
	3.5	Répons	se à la perturbation du champ électrique	30
4	Rés	ultats e	et Discussions	32
	4.1	Introdu	uction	32
			Première Partie $Li_x Na_{1-x}MgH_3$	33
	4.2	Détails	numériques	33
		4.2.1	Approximation du Cristal Virtuel (VCA)	34
	4.3	Proprié	étés structurales	34
	4.4	L'entha	alpie de formation	41
	4.5	Change	ement de phase et pression de transition	42
	4.6	Proprié	étés élastiques	46
		4.6.1	Modules élastiques polycristallins	48
		4.6.2	L'anisotropie élastique	49
	4.7	Dynam	nique du réseau	53
		4.7.1	Tenseur diélectrique	53
		4.7.2	Les charges effectives de Born	54
		4.7.3	Dispersion des phonons et la densité d'états	54
		4.7.4	Modes propres au centre de zone	56
	4.8	Proprié	étés thermodynamiques	67
		4.8.1	La chaleur spécifique et L'entropie	70
		4.8.2	L'énergie libre et L'énergie interne	70
			Deuxième Partie $Ba_xSr_{1-x}LiH_3$	72
	4.9	Détails	numériques	72
	4.10	Proprié	étés structurales	73
	4.11	Proprié	étés élastiques	75
		4.11.1	L'effet de la pression hydrostatique sur les constantes élastiques	77
	4.12	Dynam	nique du réseau	80
		4.12.1	Tenseur diélectrique et les charges effectives de Born	80
		4.12.2	Dispersion des phonons et les constantes des forces interatomiques	80
		4.12.3	L'effet de la pression hydrostatique sur les propriétés Vibration-	
			nelles	85
	4.13	Proprié	étés thermodynamiques	90
Co	onclu	sion		94
	Bibl	liograp	hie	95

_____ TABLE DES FIGURES

1.1	Cycle des calculs SCF pour la résolution des equations de ${\it Kohn-Sham}$.	12
2.1	Principe du pseudo-potentiel.	16
4.1	Cellule unitaire de $NaMgH_3$ dans la structure $Pnma$ et $R3c.$	38
4.2	Cellule unitaire de $NaMgH_3$ dans la structure $Pm\bar{3}m.$	39
4.3	La variation de l'énergie en fonction de la concentration de lithium pour les trois phases $Pnmg$, $Pm^{2}m$ et $P^{2}g$ de Li Ng , MgH	20
4.4	Les constantes de réseau calculées et le volume en fonction de la concen- tration de lithium pour les phases $Pnma$ et $R3c$ de $Li_xNa_{1-x}MgH_3$. Les lignes tiretés sont les résultats de ce travail. Les lignes continues sont les	59
	données expérimentales rapportées dans [18]. Les lignes pointillées sont	
	les données expérimentales rapportées dans [16]	40
4.5	L'enthalpie de formation calculées de $Li_x Na_{1-x} MgH_3$ dans les struc-	
	tures $Pnma$ et $R3c$ le long des quatre voies de réactions possibles	42
4.6	L'énergie en fonction du volume pour les phases $Pnma$ et $R3c$ de $Li_xNa_{1-x}N$	AgH_3
17	pour $x = 0.70, 0.75$ et 0.80.	43
4.7	La variation de l'enthalple en fonction de la pression de $L_x N a_{1-x} M g H_3$ pour $x = 0.70, 0.75$ et 0.80	44
4.8	La relation pression-volume calculée par unité de formule pour $Li_m Na_{1,m} Ma_{2,m} Ma_{2$	H_{2}
1.0	dans ses structures $Pnma$ et $R3c.$	45
4.9	La variation des constantes élastiques calculées en fonction de la concen-	
	tration (x) de $Li_x Na_{1-x}MgH_3$	47
4.10	la variation des constantes diélectriques électroniques (ϵ_{∞}) en fonction de	
	la concentration (x) dans les deux structures $Pnma$ et $R3c$ de $Li_xNa_{1-x}MgR$	$H_3.53$
4.11	Les courbes de dispersion des phonons calculées et densité d'états (DOS)	
	pour la phase $Pnma$ de $Li_x Na_{1-x}MgH_3$, pour les concentrations $x = 0$,	F 0
4 10	0.5 et 0.75	59 60
4.12	Comme la figure (4.11), mais pour les concentrations $x = 0.8, 0.9$ et 1.	00

4.13	Les courbes de dispersion des phonons calculées et densité d'états (DOS) pour la phase $R3c$ de $Li_xNa_{1-x}MgH_3$, pour les concentrations $x = 0.8$,	01
4.14	0.9 et 1	61
4.15	0 et 0.5	62
4.16	0.8 et 1	63
4 17	flèches représentent les déplacements atomiques. Cette figure est tracée à l'aide de VESTA [99]	64
4.10	de la température et de la concentration pour $Li_x Na_{1-x}MgH_3$	68
4.18	La variation de l'énergie interne $E(T)$ et l'énergie libre F en fonction de la température et de la concentration pour $Li_x Na_{1-x}MgH_3$	69
4.19	Cellule unitaire de $SrLiH_3$ dans la structure $Pm\bar{3}m$.	73
4.20	La variation du paramètre du maille en fonction de la concentration (\mathbf{x}) ; ligne continue obtenue par l'ajustement quadratique, ligne pointillée obtenue par la lei de <i>Végard</i>	74
4.21	La variation des constantes élastiques (C_{ij}) calculées en fonction de la	74
4.22	Concentration (x) de $Ba_xSr_{1-x}LiH_3$	((
4.23	en fonction de la concentration (x) et la pression La variation des charges effectives de Born Z^* en fonction de la concen-	79
1 94	tration (x) de $Ba_xSr_{1-x}LiH_3$	81
4.24	triques statiques (ϵ_0) en fonction de la concentration (x) de $Ba_xSr_{1-x}LiH_3$.	82
4.25	Les courbes de dispersion des phonons calculés et densité d'états (DOS) pour la phase $Pm\bar{3}m$ de $Ba_xSr_{1-x}LiH_3$, pour les concentrations $x = 0$	
1.96	et 1. \dots	83
4.20 4.27	Les modes de fréquence au point Γ en fonction de la concentration (x)	00
	de $Ba_x Sr_{1-x} LiH_3$.	87
4.28	Les modes de fréquence aux points X, R et M en fonction de la pression de Ba, Sr, LiH pour les concentrations $r = 0$ et 1	88
1 20	Comme la figure (4.11) mais pour les concentrations $x = 0$ et 1	80
4.30	La variation de la dilatation thermique volumique $\alpha(T)$ en fonction de	03
4.31	la température et de la concentration (x) de $Ba_xSr_{1-x}LiH_3$ La variation du module de compressibilité $B_T(T)$ en fonction de la tem-	91
	pérature et de la concentration (x) de $Ba_x Sr_{1-x} LiH_3$	92

4.32	La variation de la chaleur spécifique $C_V(T)$ en fonction de la température		
	et de la concentration (x) de $Ba_xSr_{1-x}LiH_3$	92	

LISTE DES TABLEAUX

$4.1 \\ 4.2$	Configurations électroniques choisies pour les calculs sur $Li_x Na_{1-x}MgH_3$. Les paramètres structuraux d'équilibre optimisés et le module de com- pressibilité (B_0) pour $Li_x Na_{1-x}MgH_3$ dans les deux phases $Pnma$ et	33
	R3c.	36
4.3	Les constantes élastiques calculées (C_{ij}) pour les phases $Pnma$ et $R3c$	
	$de Li_x Na_{1-x} MgH_3. \dots \dots$	52
4.4	Le module de compressibilité B (B_R , B_V sont Les modules de <i>Reuss</i> et <i>Voiat</i> respectivement), le module de cisaillement G (G_R et G_V sont Les	
	modules de <i>Reuss</i> et <i>Voigt</i> respectivement), le module de Young E (en	
	GPa) et de Poisson ν . Pour les phases $Pnma$ et $R3c$ de $Li_xNa_{1-x}MgH_3$.	52
4.5	Les facteurs anisotropes de cisaillement A_1 , A_2 et A_3 . L'anisotropie de	
	compressibilité A_{B_a} , A_{B_c} et A_B (in %), et A_G (en %) pour les phases	
	$Pnma$ et $R3c$ de $Li_xNa_{1-x}MgH_3$	52
4.6	Les charges effectives de Born (Z^*) pour la phase Pnma de $Li_x Na_{1-x} MgH_3$.	. 58
4.7	Les charges effectives de Born (Z^*) pour la phase $R3c$ de $Li_xNa_{1-x}MgH_3$.	58
4.8	Les fréquences des modes optiques infrarouges calculées $en(cm^{-1})$ du	
	composé $Li_x Na_{1-x} MgH_3$ dans la structure $Pnma$ au centre de zone Γ .	
	Deux chiffres dans une rangée correspondent aux fréquences TO/LO .	65
4.9	Les fréquences des modes optiques Raman calculées (en cm^{-1}) de com-	
	posé $Li_x Na_{1-x} MgH_3$ dans la structure $Pnma$ au centre de zone Γ	65
4.10	Les fréquences des modes optiques silencieux calculés (en cm^{-1}) du com-	
	posé $Li_x Na_{1-x} MgH_3$ dans la structure $Pnma$ au centre de zone Γ	66
4.11	Les fréquences des modes optiques calculées (en cm^{-1}) de composé $Li_x Na_{1-x}$	$_{x}MgH_{3}$
	$(x = 0.80, 0.90 \text{ et } 1)$ dans la structure $R3c$ au centre de zone Γ . Deux	
	chiffres dans une rangée correspondent aux fréquences TO/LO	66
4.12	Configurations électroniques choisies pour les calculs sur $Ba_xSr_{1-x}LiH_3$.	72
4.13	Les paramètres structuraux d'équilibre optimisés et le module de com-	
	pressibilité (B_0) pour $Ba_xSr_{1-x}LiH_3$	75
4.14	Les constantes élastiques calculées (C_{ij}) de $Ba_xSr_{1-x}LiH_3$	76

4.15	Les coefficients de pression du premier et du second ordre, a et b dans	
	l'expression pour $c_{ij}^x = c_{ij}^x(0) + ap + bp^2$ où p est la pression et x est la	
	concentration.	78
4.16	Les charges effectives de $Born$ calculées de $SrLiH_3$ et $BaLiH_3$ avec des	
	valeurs théoriques pour la comparaison	80
4.17	Les fréquences des modes optiques calculées en (cm^{-1}) de composé Ba_xSr_{1-a}	$_{x}LiH_{3}$
	dans la structure $Pm\bar{3}m$ au centre de zone Γ . Les valeurs obtenues sont	
	également comparées aux résultats théoriques et expérimentaux	84
4.18	Les valeurs obtenues de bowing b en (cm^{-1}) aux points Γ .	84
4.19	Les constantes de forces interatomiques longitudinales calculées (IFC)	
	in (10 ⁴ dyn cm^{-1}) pour chaque paire d'atomes pour $Ba_xSr_{1-x}LiH_3$.	85

INTRODUCTION

L'objectif de ce projet de thèse est d'aboutir à une étude de premiers principes des matériaux de structure pérovskite, c'est à dire sans apport explicite de l'expérience. Nous avons consacré une attention particulière à l'investigation des différentes propriétés des hydrures à structure pérovskite de type ABH_3 où A et B sont des métaux alcalins ou alcalino-terreux. L'intérêt particulier accordé à ces matériaux est fortement motivé par leur grande capacité de stockage d'hydrogène [1–5].

La première application que nous allons mettre en œuvre dans le cadre de ce projet est une étude de l'effet de la substitution de l'atome de Sodium Na par l'atome de Lithium Li sur les propriétés physiques, dans l'hydrure ternaire de type pérovskite $NaMgH_3$ [6–18]. La seconde application est l'effet de la présence de Baryum Ba dans l'hydrure ternaire de type pérovskite $SrLiH_3$, sur les propriétés physiques des matériaux [19–23]. Pour ce faire, nous avons utilisé le développement de la réponse à une déformation, au déplacement atomique et à la perturbation du champ électrique, dans le cadre de la théorie de perturbation de la fonctionnelle de la densité (DFPT) [63–66]. Nous effectuons ce développement dans l'approche pseudo-potentiel [28]. La mise en œuvre a été réalisée dans le code de calcul ABINIT [29,30].

Les matériaux possédants une structure pérovskite suscitent un grand intérêt en raison de leurs propriétés électriques et magnétiques ce qui rendent les pérovskites très utiles dans différentes applications technologiques [31]. La structure pérovskite est la structure adoptée par le minéral du même nom, $CaTiO_3$, mais le terme pérovskite désigne, aujourd'hui, un ensemble de composés possédant tous un même arrangement atomique ABX_3 , où A étant le cation le plus gros, B étant le cation le plus petit et X l'anion [32]. La structure pérovskite idéale est décrite par une maille cubique de groupe d'espace $Pm\bar{3}m$ où les atomes A, les cations de plus grande taille, occupent les sommets du cube, les atomes B, de plus petite taille, occupent le centre du cube, et les atomes X aux centres des faces du cube.

Une des sources d'énergie qui répondent en majeur partie à la demande d'éner-

gie primaire dans le monde est les carburants fossiles (pétrole, charbon) qui sont de plus en plus épuisés à cause de la demande sans cesse de ses hydrocarbures. A cette préoccupation d'épuisement des réserves, s'ajoute le souci environnemental, tels que l'échauffement global, l'épuisement de la couche d'ozone, la pollution, etc. Pour cela de vraies solutions devront être proposées afin de trouver d'autres alternatives aux énergies provisoires [33, 34]. De ce fait l'hydrogène, comme vecteur énergétique, se positionne comme le meilleur élément de futur pour surmonter les problèmes rencontrés [35]. L'hydrogène est l'un des vecteurs énergétiques qui s'impose comme source propre et inépuisable [36, 37].

Le stockage de l'hydrogène est au centre d'une recherche intense. Il y a trois méthodes de stockage de l'hydrogène, ces méthodes de stockage sont basées sur la compression et la liquéfaction : stockage de l'hydrogène gazeux, stockage sous forme liquide et la troisième alternative, qui est très prometteuse consiste à stocker l'hydrogène sous formes d'hydrures solides offrant un stockage sécurisé, réversible avec un rendement énergétique excellent [38–40]. Par exemple, $NaMgH_3$ a attiré une attention considérable en raison de sa forte densité gravimétrique et volumétrique (6 wt% et 88 kg/m³, respectivement), ainsi que hydruration réversible et les propriétés de la déshydruration.

La substitution de Na par Li dans $NaMgH_3$ devrait être avantageuse pour la capacité de stockage d'hydrogène du matériau d'origine. Ceci est dû au fait que (i) la masse la plus légère de Li par rapport à Na conduirait à une amélioration de la quantité d'hydrogène par masse d'hydrure et (ii) la stabilité plus faible de la pérovskite de Liproduit une température de désorption d'hydrogène plus basse.

Les travaux de recherche présentés dans cette thèse, sont (i) la transition de phase structurelle de $Li_x Na_{1-x} MgH_3$ causée par la substitution de Na par Li. En outre, une étude approfondie de la dynamique du réseau est réalisée en utilisant la méthode des premiers principes, et l'effet de la pression hydrostatique. (ii) la dynamique du réseau de l'alliage $Ba_xSr_{1-x}LiH_3$ en fonction de la concentration de baryum (x). À partir des spectres et des densités de phonons calculés et en utilisant l'approximation quasi-harmonique, la dépendance à la température, à la pression et à la concentration de diverses quantités telles que la capacité thermique, le coefficient de dilatation thermique et le module de compressibilité sont prédites.

Le présent manuscrit est organisé de la manière suivante : Le premier chapitre est consacré à la présentation de tous les formalismes utilisés dans le développement théorique de la théorie de la fonctionnelle de la densité (DFT), qui permet de calculer l'énergie de l'état fondamental. Le deuxième chapitre présente les développements de l'approche pseudo-potentiel, qui apporte une meilleure précision, sur les spécificités de la réponse à une déformation, au déplacement atomique et à la perturbation du champ électrique. Dans le troisième chapitre, la théorie de perturbation de la fonctionnelle de la densité (DFPT), donnant accès aux fonctions de réponse. Le dernier chapitre est consacré à la mise en œuvre pratique de l'approche théorique développée au cours de ce projet de thèse, les résultats obtenus ainsi que leurs interprétations. Au final, l'ensemble des résultats est résumé dans la conclusion.

CHAPITRE 1_____

THÉORIE DE LA FONCTIONNELLE DE LA DENSITE

1.1 Introduction

Parmi les approches théoriques permettant de décrire le comportement des matériaux, l'approche *ab initio* [41,42]. En physique de la matière condensée, une méthode *ab initio* est fondée sur les premiers principes de la physique, en particulier ceux de la mécanique quantique. Dont la majorité de ces méthodes *ab initio* [43] est basée sur la théorie de la fonctionnelle de la densité (DFT).

Dans ce chapitre, nous présentons brièvement les concepts fondamentaux de la (DFT), qui trouve ses origines dans le modèle développé par *Thomas* [44] et *Fermi* [45], qui ont introduit l'idée d'écrire l'énergie totale d'un système comme une fonctionnelle de la densité totale des électrons. Cette idée suivie par un travail purement théorique dû à *Hohenderg* et *Kohn* [46], qui ont donné la formulation d'une nouvelle théorie. *Kohn* et *Sham* [47] ont proposé ensuite une méthode exacte pour obtenir la densité et l'énergie d'un système pour un potentiel externe donné.

1.2 L'approche *ab initio*

Dans le contexte de la mécanique quantique, les méthodes *ab initio* font référence à un ensemble d'approches numériques se basant sur l'évaluation de l'équation de *Schrödinger*.

Considérons un système matériel constitué de N électrons positionnés en $\{\vec{r_i}\}$, et M noyaux atomiques positionnés en $\{\vec{R_J}\}$, l'équation de *Schrödinger* dépendante du temps est donnée par :

$$\hat{H}\psi\left(\{\vec{R_J}\},\{\vec{r_i}\},t\right) = i\hbar\frac{\partial}{\partial t}\psi\left(\{\vec{R_J}\},\{\vec{r_i}\},t\right)$$
(1.1)

où H est l'opérateur Hamiltonien du système {M noyaux+N électrons}.

La résolution de l'équation (1.1) est très difficile car elle comporte un grand nombre de degrés de liberté, mais on peut les réduire en s'intéressant dans un premier temps, à l'état fondamental du système. Celui-ci est obtenu en résolvant l'équation de *Schrödinger* indépendante du temps :

$$\left[\hat{T}_{n} + \hat{T}_{e} + \hat{V}_{n,e} + \hat{V}_{e,e} + \hat{V}_{n,n}\right] \psi\left(\{\vec{R}_{J}\}, \{\vec{r}_{i}\}\right) = E\psi\left(\{\vec{R}_{J}\}, \{\vec{r}_{i}\}\right)$$
(1.2)

avec E est l'énergie de l'état fondamental décrite par $\psi\left(\{\vec{R_J}\},\{\vec{r_i}\}\right)$, et les termes $\left(\hat{T_n},\hat{T_e},\hat{V_{n,e}},\hat{V_{e,e}},\hat{V_{n,n}}\right)$ correspondent respectivement aux termes suivants :

 \diamondsuit Energie cinétique des M
 noyaux de masse M_n

$$\hat{T}_{n} = \sum_{J}^{M} -\frac{\hbar^{2} \nabla_{\vec{R_{J}}}^{2}}{2M_{n}}$$
(1.3)

 \diamond Energie cinétique des N électrons de masse m_e

$$\hat{T}_e = \sum_i^N -\frac{\hbar^2 \nabla_{\vec{r_i}}^2}{2m_e} \tag{1.4}$$

 \diamond Interaction coulombienne attractive noyaux-électron

$$\hat{V_{n,e}} = -\sum_{i,J} \frac{e^2 Z_J}{|\vec{r_i} - \vec{R_J}|}$$
(1.5)

 \diamond Interaction coulombienne répulsive électron-électron

$$\hat{V_{e,e}} = \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\vec{r_i} - \vec{r_j}|}$$
(1.6)

 \diamondsuit Interaction coulombienne répulsive noyaux-noyaux

$$\hat{V_{n,n}} = \frac{1}{2} \sum_{I \neq J} \frac{e^2 Z_I Z_J}{|\vec{R_I} - \vec{R_J}|}$$
(1.7)

Il existe des solutions analytiques de cette équation pour quelques systèmes très simples et des solutions numériques exactes pour un nombre extrêmement réduit d'atomes et des molécules. Mais malheureusement, la résolution de cette équation devient de plus en plus difficile lorsque le nombre de particules augmente et pratiquement impossible pour un solide (le nombre de particule est de l'ordre de 10^{24}). Cette difficulté nous oblige à passer par des approximations.

L'approximation de Born-Oppenheimer [48], offrant la possibilité de traiter séparément les électrons et les noyaux d'un système réel dans les calculs *ab initio*, s'appuie sur l'importante différence de masse entre les électrons et les noyaux $\left(\frac{m_e}{M_n} = \frac{1}{1830}\right)$. Cette observation implique que les noyaux sont caractérisés par des mouvements beaucoup plus lents que les déplacements concernant les électrons du système, cela signifie que l'échelle de temps associée aux excitations électroniques, est usuellement plus petite que celle caractérisant les ions.

Par conséquent, on découple le mouvement des électrons de celui des noyaux, qui se déplacent plus lentement, en les considérant comme fixes. Grâce à cette approximation, nous allons dans la suite nous intéresser seulement aux quantités électroniques.

La fonction d'onde totale du système peut, dans ce cas, être écrite comme le produit d'une fonction d'onde décrivant les noyaux $\chi(\vec{R})$, et d'une autre fonction d'onde décrivant les électrons et ne dépendant que de façon paramétrique des positions ioniques $\varphi_R(\vec{r})$:

$$\psi_R\left(\vec{R},\vec{r}\right) = \chi\left(\vec{R}\right)\varphi_R\left(\vec{r}\right) \tag{1.8}$$

Dans cette approximation, la résolution de l'équation de Schrödinger revient à calculer les énergies électroniques pour des positions nucléaires fixées : les noyaux sont privés de leur statut dynamique, et sont réduits à une charge positive qui est devenue externe au nuage électronique. Le problème à (N + M) corps a été simplifié dans la mesure où les seules particules à considérer sont désormais les N électrons chargés négativement et se déplaçant dans le potentiel maintenant externe des noyaux.

Dans le cadre de cette approximation, le terme d'énergie cinétique nucléaire s'annule $(\hat{T}_n = 0)$, la corrélation dans l'énergie potentielle attractive électron-noyaux est éliminée et le terme d'énergie potentiel de répulsion noyau-noyau devient une constante. On a alors à résoudre l'équation de *Schrödinger* électronique suivante :

$$\left[\sum_{i}^{N} -\frac{\hbar^2 \nabla_{\vec{r}_i}^2}{2m_e} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} - \sum_{i,J} \frac{e^2 Z_J}{|\vec{r}_i - \vec{R}_J|}\right] \varphi_R(\vec{r}) = E \varphi_R(\vec{r})$$
(1.9)

la nouvelle fonction d'onde $\varphi_R(\vec{r})$ du système dépend des coordonnées de tous les électrons et ne peut pas être découplée en contributions à une seule particule en raison de leur interaction mutuelle de sorte que le problème est trop complexe. En raison de cette difficulté, des approximations supplémentaires sont requises pour réaliser de façon effective la résolution de l'équation de *Schrödinger* pour les matériaux réels.

En 1928, *Hartree* [49] a proposé une approximation qui considère les électrons comme indépendants, chacun d'eux évolua dans un potentiel effectif généré par les noyaux et les autres électrons. A chaque électron correspond une orbitale, et la fonction

d'onde totale $\varphi(r_1, r_2, \dots, r_N)$, est représentée comme le produit des fonctions d'ondes individuelles de toute les particules constituant le système, orthogonales entre elles :

$$\varphi(\vec{r_1}, \vec{r_2},, \vec{r_N}) = \varphi_1(\vec{r_1}) \varphi_2(\vec{r_2}) \varphi_N(\vec{r_N})$$
(1.10)

puis, on minimise l'énergie du système dans l'équation (1.9) par rapport à la variation des fonctions (φ_i), ce qui donne une équation de *Schrödinger* effective pour chaque (φ_i) :

$$\left[-\frac{\hbar^2 \nabla_{\vec{r_i}}^2}{2m_e} + e^2 \sum_{i \neq j} \int \frac{|\varphi_j(\vec{r})|^2}{|\vec{r_i} - \vec{r}|} d\vec{r} - \sum_J \frac{e^2 Z_J}{|\vec{r_i} - \vec{R_J}|}\right] \varphi_i(\vec{r_i}) = E\varphi_i(\vec{r_i})$$
(1.11)

Dans cette théorie de champ moyen, le mouvement des électrons est supposé non corrélé.

En 1930, Fock [50] a montré que la fonction d'onde de *Hartree* (1.10) viole le principe d'exclusion de *Pauli* parce qu'elle n'est pas antisymétrique par rapport à l'échange de deux particules quelconques. Il a proposé de corriger ce défaut en remplaçant la fonction d'onde par un déterminant de *Slater* [51] formé par les fonctions d'onde monoélectroniques qui est antisymétrique par rapport à l'échange.

$$\varphi\left(\{\vec{r_i}\}\right) = \frac{1}{\sqrt{N!}} \begin{pmatrix} \varphi_1(\vec{r_1}) & \varphi_1(\vec{r_2}) & \cdots & \varphi_1(\vec{r_N}) \\ \varphi_2(\vec{r_1}) & \varphi_2(\vec{r_2}) & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_N(\vec{r_1}) & \cdots & \cdots & \varphi_N(\vec{r_N}) \end{pmatrix}$$
(1.12)

on obtient ainsi les équations de Hartree-Fock :

$$\left[-\frac{\hbar^2 \nabla_{\vec{r_i}}^2}{2m_e} + e^2 \sum_{i \neq j} \int \frac{|\varphi_j(\vec{r})|^2}{|\vec{r_i} - \vec{r}|} d\vec{r} - \sum_J \frac{e^2 Z_J}{|\vec{r_i} - \vec{R_J}|}\right] \varphi_i(\vec{r_i}) - e^2 \sum_j \int \frac{\varphi_j^*(\vec{r}) \varphi_j(\vec{r_i}) \varphi_i(\vec{r})}{|\vec{r_i} - \vec{r_j}|} = E\varphi_i(\vec{r_i})$$
(1.13)

Le dernier terme de cette équation (1.13) est le terme d'échange.

Malgré que cette approximation introduise le terme d'échange, les effets de corrélation entre les électrons, reste toujours sous-estimé. L'objectif de l'approximation de *Hartree-Fock* [50] est d'aboutir à une solution numérique exacte de l'équation de *Schrödinger*. Malheureusement, le nombre de configurations augmente très rapidement avec le nombre d'électrons mis en jeu, ce qui limite la portée de ces calculs à de tous petits systèmes.

1.3 Théorie de la fonctionnelle de la densité

La théorie de la fonctionnelle de la densité s'est donnée pour but de calculer l'énergie totale, non pas en utilisant la fonction d'onde $\varphi(\vec{r})$, mais comme fonctionnelle de la

densité $\rho(\vec{r})$. Dans le formalisme de la DFT, l'utilisation de la densité de charge comme fonction principale permet de reformuler le problème de la résolution de l'équation de *Schrödinger* électronique, elle fournit une simplification conceptuelle considérable de ce problème, étant donné qu'elle réduit le nombre de degrés de liberté de 3N à N.

1.3.1 Théorèmes de Hohenberg et Kohn

La théorie de la fonctionnelle de densité se base sur deux théorèmes énoncés par Hohenberg et Kohn en 1964 [43, 46] :

- Théorème 1 : L'énergie de l'état fondamental d'un système à plusieurs électrons dans un potentiel externe V_{ext} est une fonctionnelle unique de la densité électronique $\rho(\vec{r})$.

$$E = E[\rho(\vec{r})] \tag{1.14}$$

Donc, l'énergie fondamentale d'un système peut s'écrire :

$$E[\rho(\vec{r})] = F_{HK}[\rho(\vec{r})] + \int V_{ext}\rho(\vec{r})d\vec{r} \qquad (1.15)$$

où $F_{HK}[\rho(\vec{r})]$ est une fonctionnelle universelle de $\rho(\vec{r})$, ne dépend pas du potentiel externe V_{ext} qui agit sur le système. Le terme $\int V_{ext}\rho(\vec{r})d\vec{r}$ représente l'interaction noyaux - électrons.

- Théorème 2 : L'énergie totale du système $E[\rho(\vec{r})]$ attient sa valeur minimale selon les variations de $\rho(\vec{r})$ quand la densité atteint la valeur de l'état fondamental.

$$E_0 = minE[\rho(\vec{r})] \tag{1.16}$$

ce qui constitue le principe variationnel de cette approche.

La valeur minimale de $E[\rho(\vec{r})]$ est l'énergie de l'état fondamental, La densité qui conduit à cette énergie est la densité exacte de l'état fondamental.

Malheureusement, la fonctionnelle universelle, $F_{HK}[\rho(\vec{r})]$, n'est pas connue en pratique et, de manière à transformer cette relation en un outil utile. Les théorèmes de *Hohenberg-Kohn* ont donc juste permis de voir le problème sous un autre angle, mais ne donnent pas de méthode explicite de résolution. L'approche de *Kohn-Sham* [47] va reprendre ces idées et reformuler la théorie sous une forme permettant d'envisager certaines approximations.

1.3.2 Équations de Kohn et Sham

En 1965, Kohn et Sham considèrent un système fictif de particules sans interaction, supposant ainsi que ce système a la même densité que le système réel [47]. Ils ont réécrit

la fonctionnelle de Hohenberg-Kohn (1.15) à partir d'un système fictif de N électrons indépendants :

$$E[\rho(\vec{r})] = T^*[\rho(\vec{r})] + \int \rho(\vec{r}) V_{ion}(\vec{r}) d\vec{r} + \frac{1}{2} \int \int \frac{\rho(\vec{r})\rho(\vec{r'})}{|\vec{r} - \vec{r'}|} d\vec{r} d\vec{r'} + E_{xc}[\rho(\vec{r})] \quad (1.17)$$

Le premier terme est l'énergie cinétique du gaz d'électrons sans interaction. Le second terme est l'énergie d'interaction électron-noyau exercé par le potentiel extérieur $V_{ext}(\vec{r})$ et le troisième terme représente l'interaction coulombienne entre les distributions totales des charges en \vec{r} et $\vec{r'}$, l'énergie de *Hartree* V_H . Le dernier terme est l'énergie d'échange et corrélation, qui contient toutes les différences entre le système fictif non interactif et le système réel interactif.

L'application du principe variationnel à l'énergie $E[\rho(\vec{r})]$ donne :

$$\frac{\delta T^*[\rho(\vec{r})]}{\delta[\rho(\vec{r})]} + V_{ext}(\vec{r})d\vec{r} + \int \frac{\rho(\vec{r})}{|\vec{r} - \vec{r'}|}d\vec{r'} + V_{xc}[\rho(\vec{r})] = \mu$$
(1.18)

où le potentiel d'échange corrélation $V_{xc}[\rho(\vec{r})]$ est la dérivée fonctionnelle de l'énergie d'échange et corrélation :

$$V_{xc}[\rho(\vec{r})] = \frac{\delta E_{xc}[\rho(\vec{r})]}{\delta \rho(\vec{r})}$$
(1.19)

et μ le multiplicateur de Lagrange qui assure la conservation du nombre d'électrons. Cette expression est identique à celle d'électrons indépendants soumis à un potentiel externe effectif :

$$\frac{\delta T^*[\rho(\vec{r})]}{\delta[\rho(\vec{r})]} + V_{eff}(\vec{r}) = \mu$$
(1.20)

où le potentiel de Kohn-Sham V_{eff} est :

$$V_{eff}(\vec{r}) = V_{ext}(\vec{r})d\vec{r} + \int \frac{\rho(\vec{r})}{|\vec{r} - \vec{r'}|}d\vec{r'} + V_{xc}[\rho(\vec{r})]$$
(1.21)

L'introduction du produit tensoriel d'orbitales sous forme d'un déterminant de *Slater* permet la résolution de l'équation de *Kohn-Sham* mono-particule :

$$\left[-\frac{\hbar^2}{2}\frac{\nabla^2 \vec{r_i}}{m_e} + V_{eff}(\vec{r})\right]\varphi_i(\vec{r}) = \varepsilon_i\varphi_i(\vec{r})$$
(1.22)

où les φ_i sont les orbitales mono-électroniques de Kohn-Sham et les E_i leurs énergies. Au final, la densité électronique de l'état fondamental s'écrit :

$$\rho(\vec{r}) = \sum_{i=1}^{N} |\varphi_i(\vec{r})|^2$$
(1.23)

L'équation (1.22) probablement la plus importante de la théorie de la fonctionnelle de la densité. Elle nous dit que le mouvement des électrons en interaction peut être traité exactement comme un système de particules indépendantes, mais pour que la DFT et les équations de Kohn-Sham deviennent utilisables dans la pratique, on a besoin de proposer une formulation de $E_{xc}[\rho(\vec{r})]$ et pour cela, on est obligé de passer par des approximations.

1.4 Potentiel d'échange et corrélation

1.4.1 Approximation de la densité locale

En 1965, Kohn -Sham [47] proposaient l'approximation de la densité locale (LDA). Cette méthode est basée sur l'utilisation du modèle du gaz uniforme d'électrons où la densité électronique est constante dans tout l'espace, ce qui revient à négliger les effets des variations de la densité. Elle postule qu'en chaque point (\vec{r}) d'une distribution électronique inhomogène où la densité est $\rho(\vec{r})$, les valeurs de $E_{xc}[\rho(\vec{r})]$ et de $\varepsilon_{xc}[\rho(\vec{r})]$ se comportent identiquement au gaz uniforme d'électrons. Dès lors, la densité électronique au voisinage de (\vec{r}) est remplacée par une densité électronique constante qui a la même valeur qu'en (\vec{r}) . Cependant, cette densité électronique est différente en tout point de l'espace. L'énergie d'échange et de corrélation s'exprime comme suit :

$$E_{xc}[\rho(\vec{r})] = \int \rho(\vec{r}) \varepsilon_{xc}[\rho(\vec{r})] d\vec{r}$$
(1.24)

dans laquelle $\varepsilon_{xc}[\rho(\vec{r})]$ représente l'énergie d'échange-corrélation par électron dans un système d'électrons en interaction mutuelle de densité uniforme $\rho(\vec{r})$. En d'autres, dans l'approximation *LDA*, le potentiel d'échange-corrélation prend la forme :

$$V_{xc}^{LDA}(\vec{r}) = \varepsilon_{xc}[\rho(\vec{r})] + \rho(\vec{r}) \frac{\delta \varepsilon_{xc}[\rho(\vec{r})]}{\delta \rho(\vec{r})}$$
(1.25)

Le traitement de l'énergie d'échange-corrélation à partir de la fonctionne *LDA* relativement bien dans le cas des métaux pour lesquels la densité est fortement uniforme.

1.4.2 Approximation du Gradient Généralisé

Une première étape réalisé dans l'objectif d'améliorer le traitement de l'énergie d'change- corrélation consiste à rendre la fonctionnelle $E_{xc}[\rho(\vec{r})]$ dépendante non seulement de la densité électronique mais également de son gradient, $|\nabla \rho(\vec{r})|$. Grâce à cette modification, la fonctionnelle $E_{xc}[\rho(\vec{r})]$ rend compte du caractère non uniforme du gaz d'électrons, et elle soit de la forme [52] :

$$E_{xc}[\rho(\vec{r})] = \int \rho(\vec{r}) \varepsilon_{xc} \left[\rho(\vec{r}), |\nabla \rho(\vec{r})|\right] d\vec{r}$$
(1.26)

L'utilisation d'une fonctionnelle de type GGA permet en effet d'accroître de façon significative la précision des calculs comparativement à la description fournie par le LDA.

1.5 Résolution des équations de Kohn et Sham

Une fois la fonctionnelle d'échange-corrélation choisie, on dispose d'une procédure autocohérente qui nous permet de trouver l'état fondamental du système, tel qu'il est illustré à la figure(1.1). La procédure débute par la définition d'une densité de départ ρ^{in} correspondant à une géométrie déterminée des noyaux. Généralement, la densité cristalline initiale est construite à partir d'une superposition de densités atomiques :

$$\rho_{in} = \rho_{cristal} = \sum_{at} \rho_{at} \tag{1.27}$$

cette densité nous permet de construire le potentiel coulombien V_c à partir de l'équation de Poisson.

$$\nabla^2 V_C(\vec{r}) = 4\pi\rho(\vec{r}) \tag{1.28}$$

Ce potentiel coulombien correspond à la somme du potentiel de Hartree V_H et du potentiel nucléaire V_{ext} . Le potentiel effectif est alors obtenu en sommant cette contribution coulombienne V_C au terme d'échange et corrélation V_{xc} . L'équation de Kohn-Sham mono-particule est alors résolue, lorsque les éléments de la matrice hamiltonienne et de recouvrement ont été calculés, les valeurs propres et les vecteurs propres sont déterminés à partir de la diagonalisation de la matrice :

$$\sum_{j} (H_{kj} - \varepsilon_i S_{kj}) a_{ij} = 0 \tag{1.29}$$

où

$$H_{kj} = \int \phi_k^*(\vec{r}) \left[-\frac{\hbar^2}{2} \frac{\nabla^2}{m_e} + V_{eff}(\vec{r}) \right] \phi_j(\vec{r}) d^3(\vec{r})$$
(1.30)

est la matrice hamiltonienne et

$$S_{kj} = \int \phi_k^*(\vec{r}) \phi_j(\vec{r}) d^3(\vec{r})$$
 (1.31)

Les orbitales de Kohn-Sham φ_i est étendu en termes de fonctions de base ϕ_i

$$\varphi_i(\vec{r}) = \sum_j a_{ij} \phi_j(\vec{r}) \tag{1.32}$$

où a_{ij} sont les coefficients d'expansion.

Les vecteurs propres ainsi obtenus sont les orbitales φ_i de Kohn-Sham, à partir desquelles on détermine une nouvelle densité électronique ρ^{out} qu'on utilise pour recommencer le cycle jusqu'à ce que l'énergie ne change plus ou que la densité soit stable.

$$\rho^{out}(\vec{r}) = \sum_{occupes} |\varphi_i(\vec{r})|^2 \tag{1.33}$$

Lorsque la convergence est atteinte la procédure de converge, quand la différence $(\rho^{out} - \rho^{in})$ est inférieure à la précision imposée, la densité de charge obtenué correspond à l'énergie de l'état fondement du système considéré.

FIG. 1.1: Cycle des calculs SCF pour la résolution des equations de Kohn-Sham

CHAPITRE 2_

MÉTHODES DE CALCUL

2.1 Introduction

Aujourd'hui, il existe plusieurs méthodes qui peuvent résoudre les équations de Kohn-Sham appliquées pour les solides. Leur point commun est la résolution des trois équations de la DFT de façon autocohérente, leurs spécificités respectives se situent au niveau de la façon de représenter le potentiel, la densité électronique et surtout les orbitales monoélectroniques de Kohn-Sham. Ces méthodes se différent aussi dans leurs vitesses de calcul, la précision et leurs applications.

Dans ce chapitre, on présente la méthode utilisée dans cette thése pour résoudre en pratique les équations de la *DFT*. La méthode principale est basée sur la propriété de symétrie par translation propre aux systèmes périodiques, sa conséquence naturelle étant l'utilisation des *ondes planes* comme base d'expansion pour la fonction d'onde. On explicite l'expression de l'énergie totale dans cette base après avoir résolu la question de l'interaction électron-noyau en utilisant l'approche *pseudo-potentiel* [53–55].

2.2 Théorème de *Bloch* et bases d'ondes planes

La description des réseaux cristallins est basée sur l'hypothèse que les atomes adoptent leurs positions d'équilibre et forment une structure qui se répète périodiquement dans les trois directions de l'espace et d'une façon infinie [56]. En termes mathématique, cette définition d'un réseau cristallin impose :

$$V_{eff}(\vec{r}) = V_{eff}(\vec{r} + \vec{R}) \tag{2.1}$$

avec :

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 \tag{2.2}$$

Où \vec{R} est un vecteur de translation du réseau direct. Leur étude pourra donc se limiter à l'exploration d'une zone réduite de l'espace : la maille élémentaire définie par les vecteurs \vec{a}_1 , \vec{a}_2 , et \vec{a}_3 .

Le potentiel effectif a la périodicité du cristal et peut être exprimé comme une série de *Fourier*, et donc le passage de l'espace direct à l'espace réciproque :

$$V_{eff}(\vec{r}) = \sum_{m} V_{eff}(\vec{G}_m) e^{\left(i\vec{G}_m.\vec{r}\right)}$$
(2.3)

Où \vec{G}_m représente un vecteur du réseau réciproque. Cette propriété d'invariance par symétrie de translation se traduit au niveau des fonctions d'onde par le théorème de *Bloch*.

Le théorème de *Bloch* [57] énonce que la fonction d'onde d'un électron dans un potentiel périodique est le produit d'une onde plane et d'une fonction périodique u_i de même périodicité que le potentiel cristallin :

$$\varphi_i(\vec{r}) = u_i(\vec{r})e^{\left(i\vec{K}\cdot\vec{r}\right)} \tag{2.4}$$

Où \vec{K} est un vecteur d'onde de la première zone de *Brillouin* du potentiel périodique et la fonction $u_i(\vec{r})$ a la périodicité du réseau cristallin, c'est-à-dire :

$$u_i(\vec{r}) = u_i(\vec{r} + \vec{R})$$
 (2.5)

La fonction u_i peut ensuite être décomposée par transformée de *Fourrier* sur une base d'ondes planes de vecteurs d'ondes \vec{G} , et telle que :

$$u_i(\vec{r}) = \sum_{\vec{G}} a_i e^{\left(i\vec{G}.\vec{r}\right)} \tag{2.6}$$

En remplaçant par cette expression dans l'équation (2.4) on obtient la fonction d'onde mono-électronique écrite comme une somme d'ondes planes [55] :

$$\varphi_i(\vec{r}) = \sum_{\vec{G}} a_i e^{\left\{i\left(\vec{K} + \vec{G}\right) \cdot \vec{r}\right\}}$$
(2.7)

Lorsque on utilise une base non locale, comme par exemple les ondes planes, pour représenter les fonctions d'onde électroniques; il peut être difficile de traiter numériquement certaines quantités liées aux atomes. En effet, l'orthogonalité des fonctions d'onde dans les régions proches des noyaux atomiques rend leur description très coûteuse (en termes de nombre d'éléments de base) si la base n'est pas liée aux positions atomiques.

Pour représenter les fortes variations de densité électronique dans le voisinage immédiat des noyaux, il est nécessaire d'utiliser un grand nombre d'ondes planes. Cet inconvénient est d'autant plus prononcé lorsque l'on se situe dans la fin de la classification périodique; par exemple, les matériaux tels que les actinides sont très difficiles à modéliser avec des bases non locales. C'est pourquoi la DFT à base d'ondes planes ne s'applique que dans le formalisme des "pseudo-potentiels". Il s'agit d'"adoucir" les fonctions d'onde dans les régions à fortes oscillations.

2.3 Méthode des pseudo-potentiels

Cette méthode repose sur l'hypothèse que les électrons proches du noyau sont fortement liés à celui-ci. De plus, dans de nombreux cas, ils ne participent pas à la liaison chimique. On peut dès lors supposer que ces électrons, dit "de cœur", ne sont que peu affectés par l'environnement et sont donc équivalents à ceux dans l'atome isolé : c'est l'approximation de cœur gelé. En termes de densité, cela revient à supposer :

$$\rho(\vec{r}) = \rho_{coeur}(\vec{r}) + \rho_{valence}(\vec{r}) \tag{2.8}$$

Il faut souligner que cette séparation entre électrons de cœur et électrons de valence n'est pas toujours très claire : tout dépend de l'atome, de son environnement et du degré d'approximation considéré [55].

Les électrons de cœur sont considérés comme "inactifs", leur potentiel associé à celui des noyaux est remplacé par un potentiel effectif, appelé "pseudo-potentiel", qui ne va interagir qu'avec les électrons de valence. Ce potentiel, dans une région proche du noyau, est choisi de manière à faciliter son développement sur la base d'ondes planes. Dans la zone éloignée du noyau, le pseudo-potentiel est égal au potentiel atomique de l'ion formé par le noyau et les électrons de cœur.

En plus de cette séparation entre électrons de cœur et de valence, la méthode des pseudo-potentiel consiste ainsi à remplacer, dans l'Hamiltonien des électrons de valence, le potentiel extérieur dû aux ions par un pseudo-potentiel; qui donne lieu aux mêmes fonctions d'ondes de valence au-delà d'un certain rayon de coupure r_c . Cependant, en dessous de cette distance, les fonctions d'onde sont remplacées par les pseudo-fonctions plus douces que les fonctions d'onde réelles. Le tracé des pseudo-fonctions d'onde et le pseudo-potentiel comparé avec le potentiel réel et la fonction d'one exacte est schématisé dans la figure (2.1).

En résumé, l'utilisation d'un pseudo-potentiel permet de diminuer fortement le nombre d'ondes planes nécessaires pour traiter un système périodique.

2.3.1 Pseudo-potentiels utilisés

Un pseudo-potentiel valide doit être *doux*, *transférable* et la densité de la pseudocharge doit reproduire la densité de charge de valence précisément aussi précisément que possible. Le terme *doux* signifie que le développement des pseudo-fonctions d'ondes de valence doit se faire en utilisant peu d'ondes planes. *La transférabilité* est liée à la reproduction par un pseudo-potentiel construit à partir d'états atomiques pour être utilisé dans un solide.

FIG. 2.1: Principe du pseudo-potentiel.

Plus le rayon de coupure r_c est petit, plus l'intervalle de concordance entre le pseudopotentiel et le potentiel réel est grand mais plus le nombre d'ondes planes nécessaires est important. Le choix d'un rayon de coupure faible augmentera la transférabilité du pseudo-potentiel c'est-à-dire sa capacité à rester le plus efficace possible dans un large domaine d'application.

Il existe plusieurs formalismes de pseudo-potentiels qui diffèrent de par la conservation ou non de la charge dans la région de cœur. On citera en particulier ces pseudopotentiels :

- Les pseudo-potentiels à norme conservée introduits par Hamann et al. [58]
- les pseudo-potentiels "dual-space Gaussians" introduit par Goedecker et al. [59, 60]
- les pseudo-potentiels "ultra-doux" introduits par Venderbilt. [61]
- les pseudo-potentiels PAW (Projector Augmented Wave) introduits par Blöchl. [?]

Dans ce travail, nous avons utilisé des pseudo-potentiels à norme conservée. Cette approche a été développée par Hamann, Schlüter et Chiang [58]. Dans le concept de conservation de norme, les pseudo-potentiels sont construits de manière à être égaux aux fonctions d'ondes réelles en dehors d'un certain rayon de cœur, r_c . Pour $r < r_c$, les pseudo-fonctions d'ondes diffèrent des fonctions d'ondes réelles, mais leurs normes sont imposées comme identiques, comme le montre l'équation suivante :

$$\int_0^{r_c} dr \quad r^2 \varphi^{Ps*}(r) \varphi^{Ps}(r) = \int_0^{r_c} dr \quad r^2 \varphi^*(r) \varphi(r) \tag{2.9}$$

Il faut noter que la fonction d'onde et la valeur propre associée sont variables en fonction du moment angulaire l, ce qui signifie que le pseudo-potentiel devrait dépendre de l. Ce type de pseudo-potentiels est dit "semi-local". Un $V^{Ps}(r)$ étant généré pour chaque valeur de l, et doit pour une configuration électronique donnée satisfaire les critères suivants :

– Les énergies propres obtenues par un calcul tous-électrons (ε^{Te}) et les pseudo-énergies (ε^{Ps}) sont identiques :

$$\varepsilon^{Ps} = \varepsilon^{Te} \tag{2.10}$$

– Les pseudo-fonctions d'onde et les fonctions d'onde tous-électrons sont identiques au-delà d'un rayon de cœur r_c choisi :

$$\varphi^{Ps}(r) = \varphi^{Te}(r) \quad \forall r > r_c \tag{2.11}$$

La méthode des pseudo-potentiels est mise en œuvre avec succès pour de nombreuses applications. Cependant, l'absence de traitement correct des nœuds des fonctions d'onde la rend imprécise dans beaucoup de situations et peu transférable d'un système physique à l'autre.

CHAPITRE 3_

THÉORIE DE LA DYNAMIQUE DU RÉSEAU CRISTALLIN

3.1 Introduction

Le premier chapitre est consacré à la présentation de tous les formalismes utilisés dans le développement de la théorie de la fonctionnelle de la densité (DFT), qui permet de calculer l'énergie de l'état fondamental. Dans ce chapitre, on présente la méthode utilisée pour déterminer la réponse au déplacement atomique, à la déformation de la maille et à la perturbation due au champ électrique. Cette méthode est basée sur une extension perturbative de la (DFT), la théorie de perturbation de la fonctionnelle de la densité (DFPT).

Les fonctions de réponse sont calculées en déterminant la variation de l'énergie suite à une perturbation, et plus précisément sa dérivée par rapport à cette perturbation. La (DFPT) permet de calculer les fonctions de réponse du système directement à partir des dérivées des fonctions d'onde des particules considérées, elle repose sur une dérivation analytique des équations de la mécanique quantique appliquées dans le cadre de la (DFT).

Cette théorie est disponible sous plusieurs formulations *Baroni* a développé une (DFPT) basée sur les fonctions de *Green* [63, 64] tandis que la formulation de *Gonze* se base sur l'extension de la fonctionnelle de l'énergie de *Kohn-Sham* suite à une perturbation [65, 66]. C'est cette seconde approche que nous allons utiliser.

Dans le cadre de la (DFPT), il est possible de calculer par exemple, les modes de vibration d'un cristal, aussi les propriétés élastiques, la polarisation induite, et les charges effectives ainsi que les constantes diélectriques.

3.2 Théorie de perturbation de la fonctionnelle de la densité

La méthode analytique pour déterminer les dérivées de l'énergie que nous allons utiliser est la théorie de perturbation de la fonctionnelle de la densité (DFPT) dans sa formulation proposée par *Gonze* [66].

L'objectif est d'obtenir la réponse du système à une petite perturbation λ . Prenons, par exemple, la perturbation due à une légère modification de la quantité $X(\lambda)$. La perturbation étant petite, $X(\lambda)$ se développe en série de Taylor :

$$X(\lambda) = X^{(0)} + \lambda X^{(1)} + \lambda^2 X^{(2)} + \dots$$
(3.1)

Avec X pouvant être l'énergie, la densité, la fonction d'onde, un potentiel, etc. Nous introduisons ici la notation $X^{(n)}$ qui est reliée aux dérivées de la quantité X par rapport à la perturbation λ :

$$X^{(n)} = \frac{1}{n!} \frac{d^n X}{d\lambda^n} |_{\lambda=0}$$
(3.2)

Pour caractériser au mieux notre système, nous pouvons considérer plusieurs types de perturbations qui vont permettre de calculer différentes fonctions de réponse. Parmi elles, les perturbations utilisées dans le cadre de cette thèse :

- Réponse au déplacement u d'un atome I de la maille $\alpha : \lambda = u_I^{\alpha}$
- Réponse à une déformation e dans les directions i et $j : \lambda = e_{ij}$
- Réponse à une perturbation du champ électrique ε dans la direction $j : \lambda = \varepsilon_j$ Ces différentes perturbations peuvent être associées et appliquées simultanément.

L'énergie $E(u, e, \varepsilon)$ se développe de la manière suivante :

$$E(u, e, \varepsilon) = E_{0}(u, e, \varepsilon) + u \underbrace{\frac{\partial E}{\partial u}}_{\text{Forces Contraintes Polarisation}} + \varepsilon \underbrace{\frac{\partial E}{\partial \varepsilon}}_{\text{Polarisation}} + \frac{1}{2}u^{2} \underbrace{\frac{\partial^{2} E}{\partial u^{2}}}_{\text{Constantes de Forces inter-atomiques Constantes élastiques}}_{\text{Constantes de Forces inter-atomiques}} + \varepsilon \underbrace{\frac{\partial^{2} E}{\partial \varepsilon^{2}}}_{\text{Constantes de force-déformation}} + \varepsilon \underbrace{\frac{\partial^{2} E}{\partial \varepsilon}}_{\text{Tenseur piézoélectrique}} + \varepsilon u \underbrace{\frac{\partial^{2} E}{\partial \varepsilon \partial u}}_{\text{Charges effectives}}(3.3)$$

Dans l'expression, plusieurs dérivées de l'énergie apparaissent ; elles sont toutes reliées à une fonction de réponse. Les dérivées premières par rapport à un déplacement atomique vont permettre de calculer les forces inter-atomiques F_I

$$F_I = -\frac{\partial E}{\partial u_I^{\alpha}} \tag{3.4}$$

Les dérivées par rapport à une déformation définissent les contraintes σ_{ij} subies par le système :

$$\sigma_{ij} = \frac{1}{\Omega} \frac{\partial E}{\partial e_{ij}} \tag{3.5}$$

20

où Ω est le volume de la cellule unité.

La réponse à une perturbation du champ électrique définit la polarisation P:

$$P_j = -\frac{1}{\Omega} \frac{\partial E}{\partial \varepsilon_j} \tag{3.6}$$

En dérivant l'énergie à l'ordre deux, il sera également possible de calculer la matrice dynamique du système (donnant accès aux modes de vibration) en utilisant la dérivée par rapport à deux déplacements atomiques, le tenseur élastique en calculant la dérivée seconde par rapport à deux déformations ainsi que le tenseur diélectrique qui est la réponse au second ordre au champ électrique. Il est possible de mélanger deux perturbations pour obtenir les coefficients de couplage force-déformation, les charges effectives de *Born* et le tenseur piézoélectrique.

3.2.1 Formulation non variationnelle de l'énergie au premier ordre

Pour calculer les dérivées de l'énergie aux premier et second ordres, nous utilisons le théorème dit "2n + 1" [67] qui nous garantit que la seule connaissance des dérivées des fonctions d'onde à l'ordre n est suffisante pour décrire les variations de l'énergie aux ordres 2n et 2n + 1. Le problème variationnel à l'ordre 2n s'écrit :

$$E^{(2n)} = \min_{\delta\varphi} \left(E\left[\sum_{j=0}^{n} \lambda^{j} \varphi^{(j)} + \lambda^{n} \delta\varphi\right] \right)^{(2n)}$$
(3.7)

L'ordre 2n + 1 est obtenu grâce à une expression non variationnelle :

$$E^{(2n+1)} = \left(E\left[\sum_{j=0}^{n} \lambda^{j} \varphi^{(j)}\right] \right)^{(2n+1)}$$
(3.8)

La première équation va nous servir à déterminer les réponses du système au second ordre.

Grâce au théorème 2n+1, les dérivées au premier ordre seront calculées directement à partir d'un calcul d'état fondamental. Pour ce faire, reprenons la fonctionnelle de l'énergie (1.22) et calculons sa dérivée :

$$E^{(\lambda_1)} = \sum_n f_n \left\langle \varphi_n \left| (T + V_{ext})^{(\lambda_1)} \right| \varphi_n \right\rangle + \frac{dE_{Hxc}[\rho]}{d\lambda_1}$$
(3.9)

Avec E_{Hxc} est l'énergie de *Hartree* et d'échange et corrélation $(E_H + E_{xc})$. On détermine $\frac{dE_{Hxc}[\rho]}{d\lambda_1}$ en calculant une dérivée fonctionnelle :

$$\frac{dE_{Hxc}[\rho]}{d\lambda_1} = \frac{dE_{Hxc}[\rho]}{d\lambda_1}|_{\varphi^{(0)}} + \int_{\mathbb{R}^3} \frac{\delta E_{Hxc}[\rho]}{\delta\rho(\vec{r})} \rho^{(\lambda_1)}(\vec{r}) d\vec{r}$$
(3.10)

Nous avons introduit dans l'équation précédente une notation qui va être utilisée dans la suite du document. Le symbole $\frac{dX}{d\lambda_1}|_{\varphi^{(0)}}$ est une notation qui exprime que la dérivée de la quantité X (E_{Hxc} dans l'expression précédente) est réalisée dans l'hypothèse que les fonctions d'onde ne varient pas. Ce qui signifie que les quantités qui pourraient dépendre des dérivées des fonctions d'onde ne seront pas calculées.

Comme nous pouvons le voir, le calcul de la dérivée de l'équation (3.10) requiert la connaissance de la dérivée de la fonction d'onde puisqu'il faut calculer celle de la densité définie par :

$$\rho^{(\lambda_1)}(\vec{r}) = \sum_n \left[\varphi_n^{*(\lambda_1)}(\vec{r}) \varphi_n^{(0)}(\vec{r}) + \varphi_n^{(\lambda_1)}(\vec{r}) \varphi_n^{*(0)}(\vec{r}) \right]$$
(3.11)

Cependant, le théorème 2n+1 implique la nullité de ce terme. L'expression de la dérivée de l'énergie s'écrit donc [66] :

$$E^{(\lambda_1)} = \sum_n f_n \left\langle \varphi_n \left| (T + V_{ext})^{(\lambda_1)} \right| \varphi_n \right\rangle + \frac{dE_{Hxc}[\rho]}{d\lambda_1} \Big|_{\varphi^{(0)}}$$
$$= \sum_n f_n \left\langle \varphi_n \left| (T + V_{ext})^{(\lambda_1)} + \frac{dV_{Hxc}}{d\lambda_1} \Big|_{\varphi^{(0)}} \right| \varphi_n \right\rangle$$
(3.12)

À partir de cette formulation, Il est donc possible de calculer les forces, les contraintes et la polarisation. La dérivée à l'ordre deux, plus complexe, nécessitera la connaissance des dérivées premières des fonctions d'onde qui sont obtenues par résolution du problème variationnel.

3.2.2 Formulation variationnelle de l'énergie au second ordre

La dérivée à l'ordre deux, plus complexe, nécessitera la connaissance des dérivées premières des fonctions d'onde qui sont obtenues par résolution du problème variationnel décrit précédemment. Pour deux perturbations identiques λ_1 , permet d'obtenir l'équation variationnelle suivante dont les seules inconnues sont les dérivées des fonctions d'onde par rapport à λ_1 . Le développement permettant d'obtenir cette équation est détaillée dans une publication de Gonze [66] : :

$$E^{(\lambda_{1}\lambda_{1})}\left\{\varphi^{(0)};\varphi^{(\lambda_{1})}\right\} = \min_{\varphi^{(\lambda_{1})}}\left\{\sum_{n} f_{n}[\langle\varphi^{(0)}_{n}|(T+V_{ext})^{(\lambda_{1}\lambda_{1})}|\varphi^{(0)}_{n}\rangle + \langle\varphi^{(\lambda_{1})}_{n}|T+V_{ext} - \epsilon_{n}|\varphi^{(\lambda_{1})}_{n}\rangle\right\}$$

$$+ \langle\varphi^{(\lambda_{1})}_{n}|(T+V_{ext})^{(\lambda_{1})}|\varphi^{(0)}_{n}\rangle + \langle\varphi^{(0)}_{n}|(T+V_{ext})^{(\lambda_{1})}|\varphi^{(\lambda_{1})}_{n}\rangle] + \frac{1}{2}\frac{d^{2}E_{Hxc}[\rho]}{d\lambda_{1}^{2}}|_{\varphi^{(0)}}$$

$$+ \int_{\mathbb{R}^{3}}\frac{d}{d\lambda_{1}}\frac{\delta E_{Hxc}[\rho]}{\delta\rho(\vec{r})}|_{\varphi^{(0)}}\rho^{(\lambda_{1})}(\vec{r})d\vec{r} + \int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}\frac{1}{2}\frac{\delta^{2}E_{Hxc}[\rho]}{\delta\rho(\vec{r})\delta\rho(\vec{r}')}\rho^{(\lambda_{1})}(\vec{r}')d(\vec{r}')d(\vec{r}')d(\vec{r}')$$

$$- \sum_{n,n'}\Lambda_{n,n'}(\langle\varphi^{(\lambda_{1})}_{n}|\varphi^{(0)}_{n'}\rangle + \langle\varphi^{(0)}_{n}|\varphi^{(\lambda_{1})}_{n'}\rangle)\} \qquad (3.13)$$

Ce problème de minimisation utilise les coefficients de Lagrange $\Lambda_{n,n'}$ et la contrainte associée à cette optimisation est la suivante :

$$\langle \varphi_n^{(\lambda_1)} | \varphi_{n'}^{(0)} \rangle + \langle \varphi_n^{(0)} | \varphi_{n'}^{(\lambda_1)} \rangle = 0$$
(3.14)

L'équation d'*Euler Lagrange* associée au problème variationnel précédent est obtenue en effectuant un développement au second ordre de l'équation de *Schrödinger*.

$$P_C\left(H^{(0)} - \varepsilon_n\right) P_C \left|\varphi_n^{(\lambda_1)}\right\rangle = -P_C H^{(\lambda_1)} \left|\varphi_n^{(0)}\right\rangle \tag{3.15}$$

Où P_C est le projecteur sur l'ensemble des fonctions d'onde de l'état fondamental. La dérivée du Hamiltonien $H^{(\lambda_1)}$ s'obtient avec l'expression suivante :

$$H^{(\lambda_1)} = T^{(\lambda_1)} + V_{ext}^{(\lambda_1)}[\rho] + V_{Hxc}^{(\lambda_1)}[\rho]$$
(3.16)

En utilisant la formule (3.10), nous pouvons réexprimer les dérivées des potentiels de *Hartree* et d'échange et corrélation :

$$V_{Hxc}^{(\lambda_1)}[\rho] = \frac{d}{d\lambda_1} \frac{\delta E_{Hxc}[\rho]}{\delta\rho(\vec{r})}|_{\varphi^{(0)}} + \int_{\mathbb{R}^3} \frac{\delta^2 E_{Hxc}[\rho]}{\delta\rho(\vec{r})\delta\rho(\vec{r'})} \rho^{(\lambda_1)}(\vec{r'})d\vec{r'}$$
(3.17)

Le problème à résoudre ici est auto-cohérent. Il faut donc, comme pour l'état fondamental, résoudre un système d'équations en utilisant un cycle auto-cohérent.

3.3 Dynamique du réseau dans l'approximation harmonique

L'énergie d'un réseau cristallin $E(\{R\})$ peut s'écrire sous la forme d'un développement de *Taylor* avec un petit déplacement atomique u autour de la position d'équilibre R^0 . Dans le cadre de l'approximation harmonique qui consiste à limiter ce développement au second ordre [64, 66] :

$$E(\{R\}) = E(\{R^0\}) + \sum_{I,\alpha} \frac{\partial E(\{R\})}{\partial u_I^{\alpha}} u_I^{\alpha} + \frac{1}{2} \sum_{I,J} \sum_{\alpha,\beta} \frac{\partial^2 E(\{R\})}{\partial u_I^{\alpha} \partial u_J^{\beta}} u_I^{\alpha} u_J^{\beta}$$
(3.18)

 α et β précisent les mailles élémentaires du cristal, I et J les atomes de la maille. Le déplacement de l'atome I de la maille α par rapport à sa position d'équilibre est désigné par le vecteur $u_{I,\alpha}$ dont les composantes sont exprimées dans le repère cartésien, où $u_I = R_I - R_I^0$.

Le premier terme correspond à l'énergie statique du cristal ou l'énergie de Born-Oppenheimer. Le second terme correspond aux forces statiques des atomes, qui disparaissent pour des structures relaxées. Enfin, le troisième terme représente la contribution harmonique du réseau vibrant. Les termes non écrits et d'ordre supérieur correspondent aux contributions anharmoniques, nous avons travaillé avec l'approximation harmonique donc ces termes sont négligés.

Finalement, l'énergie est donnée approximativement par :

$$E(\lbrace R\rbrace) = E(\lbrace R^0\rbrace) + \frac{1}{2} \sum_{I,J} \sum_{\alpha,\beta} \frac{\partial^2 E(\lbrace R\rbrace)}{\partial u_I^\alpha \partial u_J^\beta} u_I^\alpha u_J^\beta$$
(3.19)

Le troisième terme de l'équation (3.18) est relié aux interactions atomiques liées aux constantes de forces interatomiques. On peut donc introduire la matrice des constantes de force interatomique (IFC) définie comme :

$$C_{IJ}^{\alpha\beta} = \frac{\partial^2 E(\{R\})}{\partial u_I^\alpha \partial u_J^\beta} \tag{3.20}$$

Il s'agit de la force exercée sur l'atome I de la cellule α due au déplacement de l'atome J de la cellule β . L'équation du mouvement de l'atome I de masse M_I (elle est gouvernée par la loi de Newton), soit :

$$M_I \frac{d^2 u_I^{\alpha}}{dt^2} = F_I = -\frac{\partial E(\{R\})}{\partial u_I^{\alpha}}$$
(3.21)

Et l'équation du mouvement (3.21) peut s'écrire, on introduit les constantes de forces interatomiques :

$$M_I \ddot{u}_I^{\alpha} = -\sum_{J,\beta} C_{IJ}^{\alpha\beta} u_J^{\beta}$$
(3.22)

Le cristal étant périodique, on recherche les solutions de l'équation (3.22) dans l'espace réciproque sous la forme d'ondes planes qui définit un phonon caractérisé par son vecteur d'onde (\vec{q}) et sa fréquence $\nu = \frac{\omega}{2\pi}$:

$$u_{I}^{\alpha}(\vec{q}) = \frac{1}{\sqrt{M_{I}}} A_{I}(\vec{q}) e^{i(\vec{q}\vec{R}^{\alpha} - \omega t)}$$
(3.23)

avec $A_l(\vec{q})$ étant l'amplitude du déplacement.

Pour obtenir les phonons, on insère l'équation (3.23) dans (3.22) et on définit la matrice dynamique \tilde{D}_{IJ} par :

$$\tilde{D}_{IJ}(\vec{q}) = \frac{1}{\sqrt{M_I M_J}} \sum_{\beta} C_{IJ}^{0\beta} e^{i\vec{q}\vec{R}^{\beta}}$$
(3.24)

qui est une simple transformée de *Fourier* des constantes de forces dans l'espace réel $C_{IJ}^{\alpha\beta}$.

La matrice à diagonaliser est rendue hermétique, ce qui conduit au système :

$$det \left| \omega^2(\vec{q}) \delta_{ij} \delta_{IJ} - \frac{\tilde{D}_{IJ}(\vec{q})}{\sqrt{M_l M_J}} \right| = 0 \tag{3.25}$$

Les vecteurs propres de la matrice dynamique du cristal sont les déplacements atomiques des phonons et les valeurs propres sont les carrés des pulsations ω des phonons. Le quantum d'énergie $\hbar\omega(\vec{q})$ correspond au phonon de fréquence $\nu = \frac{\omega}{2\pi}$.

3.3.1 Calcul les constantes de force.

Le calcul de phonon dans l'approximation harmonique exige de connaître les constantes de force comme point de départ. A partir des constantes de force, on peut construire la matrice dynamique pour un point (\vec{q}) de la zone de *Brillouin*. Les constants des forces peutent être calculées à partir de la différenciation de la force pour des petits déplacements atomiques autour de leurs positions d'équilibre.

$$C_{IJ}^{\alpha\beta} = -\frac{\partial F_{I}}{\partial u_{J}^{\beta}}$$
$$= -\int \frac{\partial \rho(\vec{r})}{\partial u_{J}^{\beta}} \frac{\partial V_{n,e}(\vec{r})}{\partial u_{I}^{\alpha}} d\vec{r} + \delta_{IJ} \int \rho(\vec{r}) \frac{\partial^{2} V_{n,e}(\vec{r})}{\partial u_{I}^{\alpha} \partial u_{J}^{\beta}} d\vec{r} + \frac{\partial^{2} V_{n,n}(\vec{R})}{\partial u_{I}^{\alpha} \partial u_{J}^{\beta}} \quad (3.26)$$

L'équation (3.26) montre que pour déterminer les propriétés vibrationnelles du système, il faut connaître la densité de charge électronique de l'état fondamental $\rho(\vec{r})$, et aussi la réponse linéaire à une perturbation due au mouvement des noyaux $\partial \rho(\vec{r})/\partial u_J^{\beta}$. Ce résultat important a été établi en premier, depuis la fin des années soixante, par *De Cicco* et *Johnson* [68], puis par *Pick* et al [69]. *Baroni* et al [64], ont étendu le résultat à la DFT.

Les constantes de force harmoniques des cristaux dans l'approche de " *la réponse linéaire*" peuvent se déterminer par leur réponse électronique linéaire. Les distorsions du réseau dans un cristal, associées à un phonon, peuvent être vues comme une perturbation statique agissant sur les électrons. Alors, dans cette approximation le calcul des propriétés vibrationnelles d'un système s'obtient à partir de la première et de la seconde dérivée de l'énergie de l'état fondamental d'un système d'électrons interagissant en mouvement dans un champ de noyaux fixes.

Les éléments de la matrice des constantes de force, définie par l'équation (3.24), apparaissent comme une somme de deux contributions qui sont définies par la relation :

$$C_{IJ}^{\alpha\beta} = C_{IJ}^{\alpha\beta,ne} + C_{IJ}^{\alpha\beta,nn} \tag{3.27}$$
$C_{IJ}^{\alpha\beta,nn}$ est une contribution purement nucléaire qui provient des interactions ion-ion. Cette contribution ne dépend pas des propriétés électroniques du système et qui peut être calculée explicitement à partir d'une somme d'*Ewald*

$$C_{IJ}^{\alpha\beta,nn} = \frac{\partial^2 V_{n,n}(\vec{R})}{\partial u_I^\alpha \partial u_J^\beta}$$
(3.28)

 $C_{IJ}^{\alpha\beta,ne}$ est une contribution électronique étant calculé dans le cadre de la (DFPT).

$$C_{IJ}^{\alpha\beta,ne} = \int \frac{\partial \rho(\vec{r})}{\partial u_J^{\beta}} \frac{\partial V_{n,e}(\vec{r})}{\partial u_I^{\alpha}} d\vec{r} + \delta_{IJ} \int \rho(\vec{r}) \frac{\partial^2 V_{n,e}(\vec{r})}{\partial u_I^{\alpha} \partial u_J^{\beta}} d\vec{r}$$
(3.29)

Chacune de ces contributions peut être évaluée pour une perturbation périodique de nombre d'onde \vec{q} quelconque. C'est l'intérêt majeur de cette approche. On peut déterminer tout le spectre vibrationnel, en particulier les points incommensurables de l'espace réciproque.

La méthode de la réponse linéaire calcule directement la transformée de Fourier des constantes de force $C_{IJ}^{\alpha\beta}$. En explicitant les dérivées secondes de l'énergie (relation (3.20)) par rapport aux amplitudes de déplacement $u_I^{\alpha}(\vec{q})$ pour un vecteur \vec{q} fixe, la transformée de Fourier vérifie :

$$\tilde{D}_{IJ}(\vec{q}) = \sum_{\beta} C_{IJ}^{\alpha\beta} exp \left[i\vec{q}(\vec{R}^{\beta} - \vec{R}^{\alpha}) \right] = \frac{1}{N_{cell}} \frac{\partial^2 E}{\partial u_I^{\alpha*}(\vec{q}) \partial u_J^{\beta}(\vec{q})}$$
(3.30)

où N_{cell} représente le nombre de cellules unités du cristal. Les éléments de matrice sont calculés dans l'espace réciproque et se séparent comme les constantes de force en une contribution électronique et ionique :

$$\tilde{D}_{IJ}(\vec{q}) = \tilde{D}_{IJ}^{elc}(\vec{q}) + \tilde{D}_{IJ}^{ion}(\vec{q})$$
(3.31)

où la contribution électronique a pour expression :

$$\tilde{D}_{IJ}^{elc}(\vec{q}) = \frac{1}{N_{cell}} \int \left(\frac{\partial\rho(\vec{r})}{\partial u_I^{\alpha}(\vec{q})}\right)^* \frac{\partial V_{n,e}(\vec{r})}{\partial u_J^{\beta}(\vec{q})} d\vec{r} + \int \rho(\vec{r}) \frac{\partial^2 V_{n,e}(\vec{r})}{\partial u_I^{\alpha}(\vec{q}) \partial u_J^{\beta}(\vec{q})} d\vec{r}$$
(3.32)

La matrice dynamique peut être évaluée en n'importe quel point (\vec{q}) de la 1^{er} zone de Brillouin et ses valeurs propres correspondent aux fréquences propres de vibration en ce point. Il est ainsi possible de reconstruire des courbes de dispersion complètes. En pratique, des techniques existent pour interpoler celles-ci à partir de la connaissance de la matrice dynamique sur une grille de points (\vec{q}) finie.

3.3.2 Interpolation de *Fourier*

Pour déterminer l'ensemble des propriétés vibrationnelles du matériau, il nous faut connaître la matrice dynamique en tout point de la zone de *Brillouin*, ou du moins, sur une grille de points suffisamment grande. Comme la matrice dynamique est une grandeur variant lentement à l'échelle de la zone de *Brillouin*, on préfère avoir recours à des techniques d'interpolation, qui permettent, à partir du calcul "exact" de quelques matrices dynamiques, d'obtenir toutes les autres "approximativement". Celle utilisée ici, dite interpolation de *Fourier*, est basée sur un calcul de la matrice des constantes de force à partir des matrices dynamiques calculées sur une grille régulière de la première zone de *Brillouin* [70,71].

à partir de la méthode de la réponse linéaire, on veut connaître la matrice des constantes de force est en effet, la transformée de *Fourier* inverse de la matrice dynamique $C_{IJ}^{\alpha\beta}(\vec{q})$ selon :

$$C_{IJ}^{\alpha\beta}(\vec{R}_I) = \frac{2\pi}{\Omega_{cell}} \int_{ZB} \tilde{D}_{IJ}(\vec{q}) exp\left[-i\vec{q}(\vec{R}^\beta - \vec{R}^\alpha)\right] d\vec{q}$$
(3.33)

pour la calculer exactement il faudrait connaître l'ensemble des matrices dynamiques dans toute la zone de *Brillouin*. En raison du coût d'un calcul de matrice dynamique, on ne peut concrètement les obtenir que pour un nombre réduit de points \vec{q} . On utilise donc une transformée de *Fourier* discrète, en remplaçant l'intégrale dans (3.33) par une somme sur une grille régulière de points de la zone de *Brillouin*. Les matrices dynamiques ont donc seulement calculées sur cette grille. La transformée de *Fourier* discrète donne des constantes de force approximatives dans une supermaille :

$$\tilde{C}_{IJ}^{\alpha\beta}(\vec{R}_I) = \frac{1}{N_q} \sum_q \tilde{D}_{IJ}(\vec{q}) exp\left[-i\vec{q}.(\vec{R}^\beta - \vec{R}^\alpha)\right]$$
(3.34)

l'idée est de se servir de cette matrice des constantes de force approximée $\tilde{C}_{IJ}^{\alpha\beta}(\vec{R}_I)$ pour obtenir ensuite l'ensemble des matrices dynamiques par transformation de *Fourier* (on remplace $C_{IJ}^{\alpha\beta}(\vec{R}_I)$ par $\tilde{C}_{IJ}^{\alpha\beta}(\vec{R}_I)$ dans (3.30)). C'est cette méthodologie qui porte le nom d'interpolation de *Fourier* : aux points où la matrice dynamique a été déjà calculée, on retombe sur les mêmes matrices, aux points où elles ne l'ont pas été, on retombe sur des matrices approximatives, très proches des matrices réelles si $\tilde{C}_{IJ}^{\alpha\beta}(\vec{R}_I)$ donne $C_{IJ}^{\alpha\beta}(\vec{R}_I)$ avec une bonne précision.

3.4 Réponse à la déformation

3.4.1 Élasticité

Considérons un cristal quelconque. Si on le soumet à une faible contrainte, celui-ci va se déformer. Si la contrainte est supprimée, il va revenir à son état initial. C'est ce que l'on appelle l'élasticité d'un matériau. En revanche, si la déformation est trop importante, le matériau se rompt ou continue à se déformer de manière irréversible. Dans le régime élastique, si la déformation est assez petite, elle sera linéairement proportionnelle à la contrainte, c'est la loi de *Hooke* [72]. C'est dans ce régime que nous allons nous placer. La loi de *Hooke* permet de relier les tenseurs des contraintes σ_{ij} et des déformations e_{kl} grâce à un tenseur que l'on appelle tenseur de raideur ou tenseur des constantes élastiques défini tel que :

$$\sigma_{ij} = C_{ijkl} e_{kl} \tag{3.35}$$

Ce dernier permet de caractériser le comportement (d'un point de vue élastique) d'un solide vis-à-vis d'une déformation.

Si on effectue un développement quadratique de l'énergie par rapport aux variables e_{ij} on obtient :

$$E = E_0 + \sum_{ij} \frac{\partial E}{\partial e_{ij}} e_{ij} + \frac{1}{2} \sum_{ij} \sum_{kl} \frac{\partial^2 E}{\partial e_{ij} \partial e_{kl}} e_{ij} e_{kl}$$
(3.36)

avec

$$C_{ij} = \frac{\partial E}{\partial e_{ij}}, \quad C_{ijkl} = \frac{\partial^2 E}{\partial e_{ij} \partial e_{kl}}$$
(3.37)

Le tenseur C_{ijkl} est le tenseur des constantes élastiques. Le tenseur des contraintes est défini par :

$$\sigma_{ij} = \frac{\partial E}{\partial e_{ij}}$$
$$= C_{ijkl}e_{kl}$$
(3.38)

Donc, on peut déterminer les constantes d'élasticité à partir de la relation contrainte déformation [73] ou à partir de la relation énergie- déformation [74], cette dernière est la méthode que nous avons utilisée dans notre étude.

3.4.2 Notation de *Voigt*

Le tenseur des contraintes σ_{ij} permet de décrire les contraintes auxquelles le solide est soumis. Plus précisément, une contrainte va représenter la force qui s'exerce par unité de surface et s'exprime :

$$\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

Ce tenseur, appelé tenseur de *Cauchy*, représente la contrainte mécanique qui s'applique sur le solide. Il permet notamment de calculer la pression isostatique :

$$P = -\frac{\sigma_{11} + \sigma_{22} + \sigma_{33}}{3} \tag{3.39}$$

En raison des symétries, les tenseurs de déformations et contraintes se réduisent à des vecteurs colonnes (6_*1) et le tenseur de raideur à un tenseur de rang 6. Dans ce cas, la

notation utilisée est celle de *Voigt xx* $\rightarrow 1$, $yy \rightarrow 2$, $zz \rightarrow 3$, $yz \rightarrow 4$, $xz \rightarrow 5$, $xy \rightarrow 6$., on obtient donc :

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ 2e_4 \\ 2e_5 \\ 2e_6 \end{bmatrix}$$
(3.40)

Dans le cas d'un solide orthorhombique, par exemple, le tenseur des constantes élastiques se simplifie par symétrie et certaines constantes élastiques sont nulles. L'explication et le résultat de ces simplifications sont donnés dans [75] et prennent la forme suivante :

$$C = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0\\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0\\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0\\ 0 & 0 & 0 & C_{44} & 0 & 0\\ 0 & 0 & 0 & 0 & C_{55} & 0\\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$
(3.41)

Les conditions de stabilité mécanique sont obtenues en imposant que les valeurs propres de la matrice C soient positives :

$$\begin{cases} C_{11} > 0 & C_{22} > 0 \\ C_{33} > 0 & C_{44} > 0 \\ C_{55} > 0 & C_{66} > 0 \end{cases}$$
(3.42)

$$[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0$$
(3.43)

La dernière condition est équivalente à :

$$\begin{cases} (C_{11} + C_{22} - 2C_{12}) > 0\\ (C_{11} + C_{33} - 2C_{13}) > 0\\ (C_{22} + C_{33} - 2C_{23}) > 0 \end{cases}$$
(3.44)

3.4.3 Calcul *ab initio* des constantes élastiques

Déférentes méthodes existent dans la littérature pour évaluer chacun des tenseurs. Dans ce contexte, nous présentons, seulement la méthode qui nous intéresse dans notre calcul.

Nous avons vu dans le chapitre précédent (sec. 3.2) que le tenseur des constantes élastiques peut se calculer à partir des dérivées secondes de l'énergie. Afin de calculer ce tenseur à partir des premiers principes en intégrant la contribution électronique, la méthode analytique que nous allons utiliser est la DFPT. Cette méthode présente de nombreux avantages par rapport aux méthodes numériques basées sur les différences finies, qui, elles, nécessitent de déformer manuellement le système.

Le développement de *Taylor* de l'énergie en fonction des différentes perturbations (3.3) fait apparaître toutes les réponses d'un système suite à ces perturbations. Chaque dérivée partielle de l'énergie est directement reliée à l'une de ces réponses.

Dans le cas du calcul des constantes élastiques, la dérivée seconde par rapport à deux déformations $\left(\frac{\partial^2 E}{\partial e_{ij}\partial e_{kl}}\right)$ permet de déterminer le tenseur dit "à atomes fixes". Or, suite à une déformation, les atomes vont se relaxer. Pour prendre cette relaxation en compte, il, est nécessaire de calculer les coefficients de couplage qui relient les forces aux déformations internes, obtenus à partir des dérivées partielles mixtes $\left(\frac{\partial^2 E}{\partial e_{ij}\partial u_I^{\alpha}}\right)$. Ces dérivées par rapport à une déformation et à un déplacement atomique peuvent être obtenues comme la réponse des forces à une déformation ou la réponse des contraintes à un déplacement atomique.

Un raisonnement analogue peut être mené pour chaque fonction de réponse; nous considérons ici les réponses à une déformation et au champ électrique qui contiennent une contribution de la relaxation atomique.

Pour calculer les quantités dites "relaxées" notées \tilde{E} , exprimons l'énergie, fonction de différents paramètres (positions atomiques, déformations, champ électrique), qui est minimale par rapport aux seules positions atomiques [78] :

$$\tilde{E}(e_{ij},\varepsilon_j) = \min_{\{u_I^\alpha\}} E(u_I^\alpha, e_{ij}, \varepsilon_j)$$
(3.45)

Le système étant supposé complètement relaxé, les forces qui s'exercent sur lui $\left(\frac{\partial E}{\partial u_I^{\alpha}}\right)$, les contraintes $\left(\frac{\partial E}{\partial e_{ij}}\right)$, et la polarisation $\left(\frac{\partial E}{\partial \varepsilon_j}\right)$ doivent être nulles. Le problème de minimisation (3.45) exprimé à l'ordre deux devient donc :

$$\frac{\partial^2 E}{\partial e_{ij} \partial u_I^{\alpha}} e_{ij} + \frac{\partial^2 E}{\partial u_I^{\alpha} \partial u_J^{\beta}} u_J^{\beta} + \frac{\partial^2 E}{\partial \varepsilon_j \partial u_I^{\alpha}} \varepsilon_j = 0$$
$$- \left(\frac{\partial^2 E}{\partial^2 u_I^{\alpha} u_J^{\beta}}\right)^{(-1)} \left[\frac{\partial^2 E}{\partial e_{ij} \partial u_I^{\alpha}} e_{ij} + \frac{\partial^2 E}{\partial \varepsilon_j \partial u_I^{\alpha}} \varepsilon_j\right] = 0$$
(3.46)

Ce qui nous donne au final :

$$\tilde{E}(u_I^{\alpha},\varepsilon_j) = \frac{1}{2} u_I^{\alpha} u_J^{\beta} \frac{\partial^2 \tilde{E}}{\partial u_I^{\alpha} \partial u_J^{\beta}} + \frac{1}{2} e_{ij} e_j \frac{\partial^2 \tilde{E}}{\partial e_{ij} \partial e_j} + \frac{1}{2} \varepsilon_j \varepsilon_k \frac{\partial^2 \tilde{E}}{\partial \varepsilon_j \partial \varepsilon_k} + 0(\lambda^3)$$
(3.47)

avec :

$$\frac{\partial^{2}\tilde{E}}{\partial e_{ij}\partial e_{j}} = \frac{\partial^{2}E}{\partial e_{ij}\partial e_{j}} - \frac{\partial^{2}E}{\partial e_{ij}\partial u_{J}^{\beta}} \left(\frac{\partial^{2}E}{\partial u_{J}^{\beta}\partial u_{I}^{\alpha}}\right)^{-1} \frac{\partial^{2}E}{\partial e_{j}\partial u_{I}^{\alpha}}$$
$$\frac{\partial^{2}\tilde{E}}{\partial \varepsilon_{j}\partial \varepsilon_{k}} = \frac{\partial^{2}E}{\partial \varepsilon_{j}\partial \varepsilon_{k}} - \frac{\partial^{2}E}{\partial \varepsilon_{j}\partial u_{J}^{\beta}} \left(\frac{\partial^{2}E}{\partial u_{J}^{\beta}\partial u_{I}^{\alpha}}\right)^{-1} \frac{\partial^{2}E}{\partial \varepsilon_{k}\partial u_{I}^{\alpha}}$$
$$\frac{\partial^{2}\tilde{E}}{\partial e_{ij}\partial \varepsilon_{j}} = \frac{\partial^{2}E}{\partial e_{ij}\partial \varepsilon_{j}} - \frac{\partial^{2}E}{\partial e_{ij}\partial u_{J}^{\beta}} \left(\frac{\partial^{2}E}{\partial u_{J}^{\beta}\partial u_{I}^{\alpha}}\right)^{-1} \frac{\partial^{2}E}{\partial \varepsilon_{j}\partial u_{I}^{\alpha}}$$
(3.48)

Les trois formules précédentes permettent donc d'obtenir les quantités relaxées suivantes (à contraintes et champ électrique contrôlé) : le tenseur élastique noté \tilde{C}_{ij} , le tenseur diélectrique $\tilde{\epsilon}_{jk}$ et le tenseur piézoélectrique $\tilde{\xi}_{ji}$. Elles dépendent des tenseurs non relaxés associés $(C_{ij}, \epsilon_{jk} \text{ et } \xi_{ji})$, ainsi que la matrice dynamique, $D_{IJ}^{\alpha\beta}$, les coefficients de couplage force-déformation Λ_{iI}^{α} et les charges effectives Z_{jI}^{α} :

$$\begin{cases} \tilde{C}_{ij} = C_{ij} - \Lambda_{iI}^{\alpha} \left(D_{IJ}^{\alpha\beta} \right)^{-1} \Lambda_{jJ}^{\beta} \\ \tilde{\epsilon}_{jk} = \epsilon_{jk} - Z_{jI}^{\alpha} \left(D_{IJ}^{\alpha\beta} \right)^{-1} Z_{jI}^{\alpha} \\ \tilde{\xi}_{ji} = \xi_{ji} - Z_{iI}^{\alpha} \left(D_{IJ}^{\alpha\beta} \right)^{-1} \Lambda_{iI}^{\alpha} \end{cases}$$
(3.49)

Ces formules font apparaître toutes les dérivées secondes de l'énergie que nous calculerons dans le cadre de cette thèse.

3.5 Réponse à la perturbation du champ électrique

Dans le type des matériaux isolants, il est nécessaire de prendre en compte la réponse du système à une perturbation du champ électrique. Le déplacement collectif des atomes, dans ce type de matériau, va entraîner une modification du champ cristallin ce qui a un impact sur la réponse du système. Un déplacement collectif peut être induit par une vibration collective du réseau (phonons en q=0) ou par une déformation.

Pour le cas des vibrations collectives, l'excitation d'un mode de vibration longitudinal (LO) va engendrer une séparation des atomes qui, sous l'effet des charges, va générer une force. On va donc observer une modification de la fréquence, ce qui engendre une séparation des modes longitudinaux (LO) et transverses (TO). C'est ce que l'on appelle le "splitting LO-TO". Cette dégénérescence peut être quantifiée à partir des charges effectives $Z_{i,I}^{\alpha}$.

Dans le cas de la réponse à une déformation et en présence d'un champ cristallin, on observe une modification de la polarisation de notre matériau suite à cette déformation. C'est ce que l'on appelle la piézoélectricité. Cette propriété est quantifiable, exprimée par le tenseur piézoélectrique ξ_{ji} , en considérant la dérivée seconde par rapport à une déformation et une modification du champ électrique.

Charges effectives et tenseur piézoélectrique sont directement reliés aux dérivées secondes de l'énergie :

$$Z_{j,I}^{\alpha} = -\Omega \frac{\partial^2 E}{\partial \varepsilon_j \partial u_I^{\alpha}}|_e \tag{3.50}$$

$$\xi_{ji} = -\Omega \frac{\partial^2 E}{\partial \varepsilon_j \partial e_{ij}} |_u \tag{3.51}$$

Avec Ω le volume de la cellule unité.

Pour calculer ces quantités grâce à la (DFT), il est nécessaire d'introduire le champ électrique ε_j dans l'expression de la fonctionnelle de la densité. Pour ce faire, le Hamiltonien, en présence d'un champ électrique, s'exprime comme étant :

$$H(\varepsilon) = \underbrace{T + V_{Hxc}(\mathbf{r}) + V_{ext}(\mathbf{r})}_{H(0)} + \underbrace{\varepsilon \cdot \hat{\mathbf{r}}}_{V_{\varepsilon}}$$
(3.52)

où $\hat{\mathbf{r}}$ est l'opérateur position.

Le potentiel qui résulte de l'application d'un champ électrique s'exprime donc :

$$V_{\varepsilon} = \varepsilon \cdot \hat{\mathbf{r}} = \sum_{j} \varepsilon_{j} \hat{\mathbf{r}}_{j}$$
(3.53)

La modélisation d'un tel potentiel est rendue difficile par l'utilisation des conditions aux limites périodiques. En effet, le Hamiltonien dépendant du champ électrique, qui utilise l'opérateur position $\hat{\mathbf{r}}$, n'est pas une quantité périodique. Il ne peut pas être appliqué directement dans les calculs de physique du solide.

Il existe toutefois plusieurs approches pour contourner ce problème :

- La théorie moderne de la polarisation [76] qui utilise le concept de phase de Berry. Elle permet de calculer l'énergie de l'état fondamental d'un système sous champ ainsi que sa polarisation.
- L'approche dite "des grandes longueurs ondes". Plus adaptée à la DFPT, elle consiste à représenter le champ électrique comme étant la limite aux grandes longueurs d'onde d'un champ périodique. Cette formulation a été détaillée par Gonze [77] dans le cadre de la réponse à une perturbation du champ électrique en (DFPT). Cette approche va être utilisée dans ce projet.

CHAPITRE 4

RÉSULTATS ET DISCUSSIONS

4.1 Introduction

Ce dernier chapitre est consacré à la mise en œuvre pratique de l'approche théorique développée au cours de ce projet de thèse. Intégré dans l'outil de calcul *ab initio* ABINIT, le formalisme de la réponse à la déformation (DFPT) en pseudo-potentiel à norme conservée, est mis en application sur des matériaux de structure pérovskite.

La première application que nous allons mettre en œuvre dans le cadre de ce projet est une étude de l'effet de la substitution de l'atome de Na par l'atome de Li sur les propriétés physiques, dans le hydrure ternaire de type pérovskite $NaMgH_3$.

Les hydrures ternaires de type pérovskites AMgH3, où A est un élément alcalin, ont été largement étudiés en raison de leur classification en tant que matériaux pour le stockage de l'hydrogène [6–13]. Nombreux auteurs rapportent que, la substitution de Na par Li dans $NaMgH_3$ a pour effet de diminuer le volume de la cellule unitaire et modifie les propriétés thermodynamiques de ce matériau [14–18]. Cependant, dans les travaux récents de Vasquez et al. [18] sur la déstabilisation et l'absorption et la désorption d'hydrogène de $Li_xNa_{1-x}MgH_3$ (x = 0, 0.2, 0.5 et 0.8), il est constaté que, pour x = 0.8 l'échantillon présente un comportement différent ; le volume de la cellule unitaire au lieu de diminuer il augmente.

La question qui se pose, est de savoir pourquoi cela se produit, bien que le rayon ionique de Li est plus petit que celui de Na?

La seconde application présentée ici est une étude de l'effet de la présence de baryum Ba dans l'hydrure ternaire de type pérovskite $SrLiH_3$, L'un des matériaux qui présentent un intérêt pour le stockage de l'hydrogène à haute température, en raison de leur faible poids et de leur faible coût [19–23]. L'un des objectifs de cette étude est d'étudier les arrangements atomiques, la dynamique du réseau de $Ba_xSr_{1-x}LiH_3$ en fonction de la concentration de baryum (x). Pour vérifier la stabilité de ces matériaux pour les applications de stockage d'hydrogène.

Première Partie $Li_x Na_{1-x} MgH_3$

4.2 Détails numériques

Dans le cadre de la théorie de la fonctionnelle de la densité (DFT), nous avons utilisé les ondes planes comme une base pour le développement des orbitales de *Kohn-Sham* et l'interaction entre les électrons et les ions est décrite par le pseudo-potentiel à norme conservée proposé par *Hamann* et al. [28]. La mise en œuvre a été réalisée dans le code de calcul ABINIT [29,30].

Pour toutes les structures que nous allons étudier, le rayon de coupure de la base d'ondes planes utilisé pour les fonctions d'onde sera fixé à 60 Hartree (1632 eV). Cette valeur a été déterminée en effectuant une étude de convergence sur la valeur de l'énergie totale, de manière à garantir une précision de 10^{-6} Hartree. Elle est relativement élevée pour un calcul s'effectuant dans l'approche pseudo-potentiel.

En ce qui concerne l'échantillonnage des points \vec{k} de l'espace réciproque, nous avons utilisé le maillage standard de *Monkhorst* et *Pack* [79]. La zone de *Brillouin* de la cellule pour toutes les phases sera discrétisée en utilisant une grille de $(8 \times 8 \times 8)$ points.

TAB. 4.1: Configurations électroniques choisies pour les calculs sur $Li_x Na_{1-x}MgH_3$.

Élément	cœur	valence
Н	[]	$1s^1$
Li	$[1s^2]$	$2s^1$
Na	$[1s^2 2s^2 2p^6]$	$3s^1$
Mg	$[1s^2 \ 2s^2 \ 2p^6]$	$3s^2$

Les pseudo-potentiels qu'on a utilisé sont les pseudo-potentiels à norme conservée de *Fritz*, *Haber*, et *Institute*(FHI) [80]. Les fichiers de pseudo-potentiel ont été téléchargés sur le site internet de ABINIT à partir du tableau officiel de pseudo-potentiels fournie [29]. Le potentiel d'échange et de corrélation est traité avec l'approximation du gradient généralisé de *Perdew*, *Burke* et *Ernzerhof* (PBE) [81].

Le formalisme pseudo-potentiel utilise l'approximation des cœurs gelés. Certains électrons (électrons de cœur) sont figés dans leur état atomique. Les électrons de valence sont explicitement traités par ABINIT. Le nombre d'électrons de cœur et de valence pour chaque espèce chimique est donné dans le tableau (4.1). Les compositions et les configurations seront étudiées, dans des conditions statiques (T = 0 K).

Les réponses aux déplacements atomiques, à la déformation et à la perturbation du champ électrique sont calculées en utilisant la méthode de la théorie de perturbation de la fonctionnelle de la densité (DFPT) [63, 65, 66, 77, 83], implémentée dans le code ABINIT.

Les matrices dynamiques ont été calculées dans une maille de $(4 \times 4 \times 4)$ points \vec{q} pour la partie irréductible de la zone de *Brillouin*, et nous avons utilisé l'interpolation de *Fourier* pour calculer les phonons dans n'importe quel point \vec{q} choisi.

4.2.1 Approximation du Cristal Virtuel (VCA)

Pour le traitement de $Li_x Na_{1-x} MgH_3$, nous avons utilisé l'Approximation du Cristal Virtuel (Virtual Crystal Approximation en anglais) [84]. La VCA est l'approche la plus préférée grâce à sa simplicité, elle postule que l'alliage est approximativement représenté par un réseau périodique virtuel avec un potentiel atomique virtuel moyen de ceux des atomes dans les composés de base. En général, le cristal ternaire $A_x B_{1-x}C$ est composé des molécules AC avec une fraction molaire x et des molécules BC avec une fraction molaire (1 - x). Les propriétés physiques F(x) peuvent être représentées comme une simple interpolation analytique des propriétés de ces composés binaires ACet BC, la valeur moyenne de la propriété physique F étant :

$$F(x) = xF_{AC} + (1-x)F_{BC}$$
(4.1)

Dans notre calcul pour $Li_x Na_{1-x} MgH_3$, les pseudo-potentiels de Li et Na sont combinés pour construire les pseudo-potentiels virtuels du $Li_x Na_{1-x}$, i.e.,

$$V_{VCA}^{Ps}[x] = xV_{Li}^{Ps} + (1-x)V_{Na}^{Ps}$$
(4.2)

où V_{Li}^{Ps} et V_{Na}^{Ps} sont les pseudo-potentiels des atomes Li et Na, respectivement.

4.3 Propriétés structurales

Pour déterminer les propriétés structurales à l'équilibre statique, à savoir, les paramètres du réseau, le module de compressibilité B_0 et sa dérivée par rapport à la pression B', on calcule l'énergie totale E pour différentes valeurs du volume de la maille élémentaire. Puis on ajuste les valeurs E(V) calculées par une équation d'état. Dans le présent travail, nous avons utilisé l'équation d'état de Murnaghan [85] donnée par :

$$E(V) = E(V_0) + \frac{B_0}{B'(B'-1)} \left[V\left(\frac{V_0}{V}\right)^{B'} - V_0 \right] + \frac{B_0}{B'}(V-V_0)$$
(4.3)

où $E(V_0)$ est l'énergie totale au volume d'équilibre, V_0 est le volume d'équilibre. Le module de compressibilité est donné par :

$$B_0 = -V\left(\frac{\partial^2 E}{\partial V^2}\right) \tag{4.4}$$

et sa dérivé B' est donnée par :

$$B' = \frac{\partial B_0}{\partial P} \tag{4.5}$$

Afin d'étudier la stabilité du système $Li_x Na_{1-x} MgH_3$, nous avons calculé l'énergie totale en fonction du volume pour chaque valeur de la concentration x de 0 à 1 pour les trois structures communes. Les trois structures étudiées sont l'orthorhombique type $GdFeO_3$ (groupe d'espace Pnma, N°62), la trigonale type $LiTaO_3$ (groupe spatial R3c, N° 161) et la cubique type $CaTiO_3$ (groupe d'espace $Pm\bar{3}m$, N° 221), avec une maille élémentaire de 20, 10 et 5 atomes, respectivement.

Dans la première structure les positions Wyckoff pour les atomes Na/Li sont 4c (x, 1/4, z), pour les atomes de Mg sont 4b (0, 0, 1/2) et pour de H, H1 sont 4c (x, 1/4, z) et H2 sont 8d (x, y, z). Pour la deuxième structure, les atomes de Na/Li occupent les 6a (0, 0, z), les atomes de Mg occupent les sites 6a (0, 0, 0) et les atomes H occupent les 18b (x, y, z). Dans la dernière structure, la position des atomes Na/Li sont (0, 0, 0), Mg (1/2, 1/2, 1/2) et H (0, 1/2, 1/2). La figure (4.1) et (4.2) sont des représentations graphiques de ces structures.

Les positions atomiques ont été relaxées jusqu'à ce que les forces sur tous les sites atomiques soient inférieures à 10^{-6} Hartree/Bohr. Les valeurs de l'énergie d'équilibre par unité de formule en fonction de la concentration (x) sont présentées sur la figure (4.3). Les énergies obtenues pour la phase cubique sont plus élevées que celles correspondant aux deux autres structures. Les spectres de phonons calculés (voir cidessous) pour cette phase indiquent qu'elle n'est pas stable. Il est clair de cette figure (4.3) que dans la gamme de $0 \le x < 0.7$ la structure (*Pnma*) a la plus basse énergie, tandis que la phase trigonale (*R3c*) devient la phase la plus stable lorsque le contenu de *Li* dépasse 0.7.

Il convient d'ajouter que la différence d'énergie entre la structure (R3c) et la structure (Pnma) est $-2.28 \ meV$ pour x = 0.7 et $-11.80 \ meV$ pour x = 0.8. La petite différence d'énergie entre la structure polaire et la structure non polaire pourrait indiquer qu'il est difficile d'affirmer la stabilité relative à partir d'1 seul calcul d'énergie. Mais, les calculs de dispersion des phonons (voir ci-dessous) montrent clairement que $Li_x Na_{1-x} MgH_3$ subit une transition de phase structurale de la structure orthorhombique à la structure trigonale autour de la concentration x = 0.7.

Dans le tableau (4.2), nous avons reporté les valeurs des différents paramètres de réseau calculées, les positions atomiques, ainsi que les valeurs de module de compressibilité B_0 dans les deux phases Pnma et R3c, ensemble avec les résultats théoriques précédents pour les cas limites des alliages et les données expérimentales disponibles.

TAB. 4.2: Les paramètres structuraux d'équilibre optimisés et le module de compressibilité (B_0) pour $Li_x Na_{1-x}MgH_3$ dans les deux phases Pnma et R3c.

Les composés	La cellule unitaire $(Å)$	Les positions atomiques	$B_0(GPa)$
$NaMgH_3$ (Pnma)		Na(4c) : 0.031, 1/4, 0.005 (0.0209, 1/4, 0.006) ¹ , (0.030, 1/4, 0.006) ² (0.015, 1/4, 0.008) ³ , (0.032, 1/4, 0.005) ⁵ Mg(4b) : 0.0, 0.0, 1/2 H1(4c) : 0.473, 1/4, 0.083 (0.503, 1/4, 0.093) ¹ (0.524, 1/4, 0.081) ² (0.467, 1/4, -0.080) ³ (0.474, 1/4, 0.080) ⁵ H2(8d) : 0.293, 0.043, 0.704 (0.304, 0.065, 0.761) ¹ (0.292, 0.042, 0.793) ² (0.285, 0.036, 0.711) ³ (0.296, 0.042, 0.703) ⁵	37.47, 38.4 ²
$x = 0.25 \ (Pnma)$		$\begin{array}{l} (0.265, 0.036, 0.114) \\ (0.265, 0.012, 0.012, 0.012, 0.012) \\ Mg(4b) : 0.0, 0.0, 1/2 \\ H1(4c) : 0.467, 1/4, 0.091(0.480, 1/4, 0.084)^3 \\ H2(8d) : 0.297, 0.0472, 0.700(0.285, 0.036, 0.713)^3 \end{array}$	37.69
$x = 0.5 \ (Pnma)$		$\begin{array}{l} Na(4c): 0.040, 1/4, 0.007(0.012, 1/4, -0.003)^3 \\ Mg(4b): 0, 0, 1/2 \\ H1(4c): 0.459, 1/4, 0.101(0.499, 1/4, 0.087)^3 \\ H2(8d): 0.302, 0.053, 0.694(0.301, 0.0311, 0.706)^3 \end{array}$	38.23
$x = 0.75 \ (R3c)$	a = 5.128 c = 13.483	$\begin{array}{l} \text{Li(6a)}:(0.0,0.0,0.280)\\ \text{Mg(6a)}:(0,0,0)\\ \text{H(18b)}:(0.041,0.364,0.710) \end{array}$	38.99
$LiMgH_3$ (R3c)		Li(6a) :0.0, 0.0, 0.291 (0.0, 0.0, 0.288) ² Mg(6a) : (0, 0, 0) H(18b) :0.039, 0.359, 0.5581 (0.037, 0.362, 0.563) ²	$40.04, 39.8^2$

¹Les données expérimentales de Ref. [6]; ²PP-GGA [7]; ³Les données expérimentales de Ref. [16]; ⁴Les données expérimentales de Ref. [18]; ⁵PP-GGA [14].

En général, les paramètres structuraux calculés sont en bon accord avec les paramètres expérimentaux et théoriques rapportés, cela pourrait être une mesure de la fiabilité des données prédites, qui ne sont pas encore mesurées.

La figure (4.4), représente la variation du paramètre de maille (en haut) et le volume de la cellule par unité de formule (en bas) en fonction de la concentration du Liensemble avec les valeurs mesurées rapportées dans la littérature pour la comparaison. Dans la structure Pnma, les valeurs des paramètres de réseau calculées sont plus petites que celles expérimentales, par exemple, pour x = 0 notre volume calculé est 221.36 (Å³) et celui obtenu par *Vasquez* et al. [18] est 230.487 (Å³). Pour la structure R3c, le paramètre du réseau (a) pour la cellule rhomboédrique est représenté sur la figure (4.4) et l'angle α calculé est égal à 55.80°. Pour le composé $LiMgH_3$ dans la structure R3c, a = 5.248 Å, ainsi que la valeur de α sont proches de celles rapportées par *Vajeeston* et al. [7] (5.283 Å, 55.87°). Bien que les paramètres de la cellule hexagonale calculés sont : a = 4.916 Å (4.958 Å [7]) et c = 13.257 Å (13.337 Å [7]).

Il est évidemment clair de la figure (4.4) et du tableau (4.2) que l'augmentation de la concentration en lithium dans les deux structures de $Li_xNa_{1-x}MgH_3$; a pour effet de diminuer les paramètres de réseau obtenus et le volume de la cellule unitaire; ce comportement peut être expliqué par le fait que, Li a une taille ionique plus petite par rapport aux ions de Na remplacés. De plus, à la transition, le volume de la cellule unitaire de la structure R3c est supérieur à celui de la phase Pnma, et la quantité de discontinuité est 1.07%. Cela pourrait donner une explication aux résultats rapportés dans [18] pour x = 0.8. La substitution des atomes de Na par des atomes de Li a un effet notable sur le module de compressibilité qui augmente avec l'augmentation de la concentration (x), car le volume diminue. Par conséquent, on peut conclure que, lorsque (x) augmente, l'alliage devient généralement moins compressible.

FIG. 4.1: Cellule unitaire de $NaMgH_3$ dans la structure Pnma et R3c.

FIG. 4.2: Cellule unitaire de $NaMgH_3$ dans la structure $Pm\bar{3}m$.

FIG. 4.3: La variation de l'énergie en fonction de la concentration de lithium pour les trois phases Pnma, $Pm\bar{3}m$ et R3c de $Li_xNa_{1-x}MgH_3$.

FIG. 4.4: Les constantes de réseau calculées et le volume en fonction de la concentration de lithium pour les phases Pnma et R3c de $Li_xNa_{1-x}MgH_3$. Les lignes tiretés sont les résultats de ce travail. Les lignes continues sont les données expérimentales rapportées dans [18]. Les lignes pointillées sont les données expérimentales rapportées dans [16].

4.4 L'enthalpie de formation

L'enthalpie de réaction à 0K a été calculée, en prenant la différence de l'énergie totale électronique des réactifs et des produits :

$$\Delta H = \sum E_{ractifs} - \sum E_{produits} \tag{4.6}$$

L'enthalpie de formation a été calculée selon les réactions de décomposition possibles suivantes [14] :

$$Li_x Na_{1-x} MgH_3 \longrightarrow xLi + (1-x)Na + Mg + \frac{3}{2}H_2$$

$$(4.7)$$

$$Li_x Na_{1-x} MgH_3 \longrightarrow xLiH + (1-x)Na + Mg + \frac{3-x}{2}H_2$$

$$(4.8)$$

$$Li_x Na_{1-x} MgH_3 \longrightarrow xLi + (1-x)NaH + Mg + (1+\frac{x}{2})H_2$$

$$(4.9)$$

$$Li_x Na_{1-x} MgH_3 \longrightarrow xLiH + (1-x)NaH + Mg + H_2$$

$$(4.10)$$

Nous avons calculé les énergies totales E des composés LiH, NaH, Li, Na et Mg dans les structures de l'état fondamental, avec une optimisation géométrique complète. On a, le groupe spatial $Fm\bar{3}m$ pour LiH et NaH, $Im\bar{3}m$ pour Li et Na, et $P6_3/mmc$ pour Mg. Nous avons utilisé une supercellule ($2 \times 2 \times 2$) composée de 16 atomes, pour calculer les énergies totales de Li, Na et Mg, et une cellule unitaire constituée de 8 atomes pour LiH et NaH.

L'enthalpie de formation calculée (ΔH) selon les quatre réactions possibles (équations (4.7,4.8,4.9,4.10)) pour les deux structures orthorhombiques et trigonales de $Li_x Na_{1-x}MgH_3$, sont affichées sur la figure (4.5).

D'après cette figure, il est clair que pour $x \leq 0.7$, la phase Pnma est la plus stable en raison de son énergie de formation la plus faible. Pour x > 0.7, (ΔH) de la phase Pnma devient supérieure à celle qui correspond à la structure R3c. Ce qui nous indique que, la phase polaire R3c est la plus stable de $Li_xNa_{1-x}MgH_3$ dans la gamme de $0.7 \leq x \leq 1$ de la concentration de Lithium.

Les quatre réactions de décomposition possibles montrent le même comportement.

Ce résultat est une autre confirmation que l'augmentation du volume de la cellule unitaire rapportée dans [18] est due à une transition de phase.

FIG. 4.5: L'enthalpie de formation calculées de $Li_x Na_{1-x}MgH_3$ dans les structures *Pnma* et *R*3*c* le long des quatre voies de réactions possibles.

4.5 Changement de phase et pression de transition

Nous avons étudié la transition de phase sous pression pour différentes valeurs de concentration (x). L'énergie totale par unité de formule en fonction du volume a été calculée pour les structures Pnma et R3c. Sur la figure (4.6) sont représentées les courbes ayant une tangente commune qui montrent l'existence d'une transition de phase entre les structures correspondantes pour x = 0.7, 0.75 et 0.8. Afin d'évaluer la pression de transition, la variation de l'enthalpie en fonction de la pression pour les deux structures est affichée sur la figure (4.7). De plus, Les valeurs de pression de transition prédite sont 0.32, 1.79 et 4.07 GPa pour x = 0.7, 0.75 et 0.8, respectivement. Il n'y a pas des données expérimentales ou théoriques pour comparer, notre travail est une première tentative dans ce sens.

L'Augmentation de la concentration en lithium dans $Li_x Na_{1-x} MgH_3$ a pour effet d'augmenter la valeur de pression de transition et de diminuer la discontinuité du volume à la transition. La figure (4.8) représente la relation pression-volume. La variation du volume pour ces transitions de phase, de la structure R3c à celle Pnma est 2.18%, 2.06 % et 1.84 % respectivement. Nos résultats confirment que $LiMgH_3$ (x = 1) est stable dans la structure R3c.

FIG. 4.6: L'énergie en fonction du volume pour les phases Pnma et R3c de $Li_xNa_{1-x}MgH_3$ pour x = 0.70, 0.75 et 0.80.

FIG. 4.7: La variation de l'enthalpie en fonction de la pression de $Li_x Na_{1-x}MgH_3$ pour x = 0.70, 0.75 et 0.80.

FIG. 4.8: La relation pression-volume calculée par unité de formule pour $Li_x Na_{1-x}MgH_3$ dans ses structures Pnma et R3c.

4.6 Propriétés élastiques

L'élasticité est un facteur très important dans l'étude de la stabilité, comme elle doit être prise en compte dans l'étude des forces mécaniques. Les constantes élastiques (C_{ij}) déterminent la réponse des matériaux aux forces extérieures et jouent un rôle important dans la détermination de la résistance des composés. Ils fournissent des informations précieuses sur la liaison entre les plans atomiques, le caractère d'anisotropie de la liaison, la stabilité structurale et les vitesses du son.

Dans le tableau (4.3), nous avons reporté les valeurs des constantes élastiques calculées pour la structure orthorhombique et la structure rhomboédrique de l'alliage $Li_x Na_{1-x} MgH_3$, ainsi que les valeurs des autres résultats théoriques disponibles. Il n'y a pas des données expérimentales rapportées sur les constantes élastiques de ces alliages pour comparer. La figure (4.9) montre la variation des constantes élastiques avec la concentration de lithium. Comme on peut le voir sur cette figure, les constantes élastiques calculées montrent un comportement non linéaire entre les cas limites de l'alliage pour la phase Pnma, tandis qu'un comportement presque linéaire pour la phase R3c.

Un matériau ne peut être stable dans une structure sauf si les constantes (C_{ij}) satisfont les critères de stabilité. Pour la structure orthorhombique, la stabilité mécanique implique que les neuf constantes élastiques indépendantes (C_{ij}) satisfont aux critères de stabilité de Born [87] suivante :

$$C_{ii} > 0; (i = 1 - 6) \tag{4.11}$$

$$[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0 (4.12)$$

$$(C_{11} + C_{22} - 2C_{12}) > 0 (4.13)$$

$$(C_{11} + C_{33} - 2C_{13}) > 0 (4.14)$$

$$(C_{22} + C_{33} - 2C_{23}) > 0 (4.15)$$

Dans la phase rhomboédrique, avec seulement six composantes de constantes élastiques indépendantes, puisque $C_{65} = C_{14}, C_{66} = 1/2(C_{11} - C_{12})$, les critères de stabilité de Born [87] sont :

$$C_{11} - |C_{22}| > 0 \tag{4.16}$$

$$(C_{11} + C_{12})C_{33} - 2C_{13}^2 > 0 (4.17)$$

$$(C_{11} - C_{12})C_{44} - C_{14}^2 > 0 (4.18)$$

Comme on peut le voir dans le tableau (4.3), les constantes élastiques obtenues satisfont ces critères de stabilité mécanique.

Dans la structure Pnma, les constantes élastiques C_{11} , C_{22} et C_{33} sont liées au comportement de la déformation et aux caractéristiques de la liaison atomique. On remarque à partir du tableau (4.3) que les valeurs de C_{11} et C_{33} sont presque les mêmes

FIG. 4.9: La variation des constantes élastiques calculées en fonction de la concentration (x) de $Li_x Na_{1-x}MgH_3$.

pour x = 0; donc, la force de la liaison atomique entre les atomes les plus proches voisins le long des plans (100) et (001) est similaire. Au contraire, C_{33} est supérieure à C_{22} , ce qui montre que la liaison entre les atomes le long des plans (001) et (100) est plus forte que celles le long des plans (010). Les constantes C_{44} , C_{55} , et C_{66} sont les constantes élastiques de cisaillement qui reflètent la résistance à la déformation par cisaillement. Ces constantes sont inférieures aux valeurs de C_{11} , C_{22} et C_{33} , ce qui indique que ce système a une résistance plus forte à la compression unidirectionnelle par rapport à la résistance à la déformation par cisaillement.

Dans la structure R3c, les constantes élastiques C_{11} et C_{33} présentent les valeurs les plus élevées que les autres constantes élastiques, ce qui signifie que ces composés ont une anisotropie élastique prononcée. De plus, on remarque sur la figure (4.9) que les constantes élastiques augmentent linéairement en fonction de la concentration (x), contrairement aux C_{12} , C_{13} et C_{14} qui diminuent. Le rapport C_{33}/C_{11} décrit l'anisotropie élastique longitudinale pour le monocristal. D'après le tableau (4.3), le rapport C_{33}/C_{11} est 0.93, 0.97 et 0.97 pour $Li_{0.8}Na_{0.2}MgH_3$, $Li_{0.9}Na_{0.1}MgH_3$ et $LiMgH_3$ respectivement, ce qui nous indique que la rigidité le long de l'axe c est presque la même.

4.6.1 Modules élastiques polycristallins

Les constantes élastique C_{ij} sont estimées à partir des calculs de premiers principes pour les monocristaux. Mais généralement, les propriétés élastiques polycristallines ont une valeur d'application pratique plus élevée. Typiquement, les modules élastiques peuvent caractériser la dureté des matériaux. Le module de compressibilité B des matériaux reflète sa résistance au changement de volume. Le module de cisaillement G décrit sa résistance au changement de forme. Ils peuvent être estimés en utilisant l'approximation de *Hill* [88] à partir des constantes élastiques monocristallines, et ils peuvent être obtenus à partir des équations suivantes :

$$B = (B_R + B_V)/2 \tag{4.19}$$

$$G = (G_R + G_V)/2 (4.20)$$

où les indices V et R se réfèrent respectivement aux approximations de *Voigt* [89] et *Reuss* [90] qui représentent les limites supérieures et inférieures des modules mécaniques pour un matériau polycristallin. Pour les matériaux orthorhombiques, ils sont donnés par :

$$B_V = (1/9)[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})]$$
(4.21)

$$B_R = 1/[S_{11} + S_{22} + S_{33} + 2(S_{12} + S_{13} + S_{23})]$$
(4.22)

$$G_V = (1/15)[C_{11} + C_{22} + C_{33} + 3(C_{44} + C_{55} + C_{66}) - (C_{12} + C_{13} + C_{23})]$$
(4.23)

$$G_R = \frac{15}{[4(S_{11} + S_{22} + S_{33}) - 4(S_{12} + S_{13} + S_{23}) + 3(S_{44} + S_{55} + S_{66})]}$$
(4.24)

où, S_{ij} sont les coefficients du tenseur des complaisances (la matrice de complaisance S est l'inverse de la matrice C_{ij} , $S_{ij} = C_{ij}^{-1}$).

Pour les cristaux rhomboédriques, les modules élastiques sont donnés par :

$$B_V = (1/9)[2C_{11} + C_{33} + 2C_{12} + 4C_{13}]$$
(4.25)

$$B_R = 1/[2S_{11} + S_{33} + 2S_{12} + 4S_{13}]$$
(4.26)

$$G_V = (1/15)[2C_{11} + C_{33} + 6C_{44} + 3C_{66} - C_{12} - 2C_{13}]$$
(4.27)

$$G_R = 15/[8S_{11} + 4S_{33}) - 4S_{12} - 8S_{13} + 6S_{44}) + 3S_{66}]$$
(4.28)

Le module de Young E et le coefficient de Poisson ν sont considérés comme les paramètres importants pour les applications industrielles, qui peuvent être calculés en

utilisant le module de cisaillement G et le module de compressibilité B. Ils sont donnés par les équations suivantes [90] :

$$E = \frac{9BG}{3B+G} \tag{4.29}$$

$$\nu = \frac{3B - 2G}{2(3B + G)} \tag{4.30}$$

Les résultats obtenus pour les deux phases orthorhombique et rhomboédrique sont présentés dans le tableau (4.4), qui contient aussi d'autres résultats théoriques.

Les valeurs de module de compressibilité B obtenues à partir des constantes élastiques, pour toute composition (x) des phases Pnma et R3c de $Li_xNa_{1-x}MgH_3$, sont en bon accord avec celles déterminées par l'équation d'état de Murnaghan [85], données ci-dessus (voir le tableau (4.2)), ceci peut être une mesure de fiabilité pour nos calculs. Et elles sont en excellent accord avec les valeurs théoriques rapportées par Vajeeston et al. [7] pour $NaMgH_3$ et $LiMgH_3$ et Bouhadda et al. [11] pour $NaMgH_3$. Aucune donnée expérimentale est disponible pour comparer.

Le module de Young E est utilisé pour mesurer la rigidité des solides. Plus la valeur de E est élevée, plus le matériau est rigide. Les valeurs du module de Young E rapportées dans le tableau (4.4) démontrent que $Li_xNa_{1-x}MgH_3$ dans sa structure rhomboédrique est un peu plus rigide que dans celle orthorhombique.

Le rapport du module de compressibilité sur le module de cisaillement (B/G) a été proposé pour estimer le comportement fragile ou ductile des matériaux [91]. Le module de cisaillement G représente la résistance à la déformation plastique, tandis que Breprésente la résistance à la rupture. Une grande valeur du rapport B/G est associée à une ductilité, tandis que, une faible valeur correspond à la nature fragile. La valeur critique qui sépare les matériaux ductiles et fragile est d'environ 1.75; si B/G > 1.75le matériau se comporte d'une manière ductile, sinon le matériau se comporte d'une manière fragile. Nous pouvons voir dans le tableau (4.4) que le rapport (B/G) pour toute composition (x) dans les phases Pnma et R3c de $Li_xNa_{1-x}MgH_3$ est inférieur à 1.75. Ce qui signifie que ces composés sont des matériaux fragiles.

Les valeurs du coefficient de Poisson ν sont utilisées pour quantifier la stabilité des cristaux contre la déformation par cisaillement [92]. Les valeurs du coefficient de Poisson dans le tableau (4.4) sont inférieures à 1/3, ce qui implique que tous les composés se comportent de manière fragile, ce qui est exactement en accord avec la prédiction de la relation (B/G).

4.6.2 L'anisotropie élastique

L'anisotropie élastique des cristaux aurait un effet important sur les propriétés physiques, telle que l'instabilité élastique. Une description correcte d'un tel comportement anisotrope a une implication importante en sciences de l'ingénieur ainsi que dans la physique des cristaux [92]. Il est important de calculer l'anisotropie élastique pour les hydrures afin d'améliorer leur durabilité mécanique pour les applications de stockage d'hydrogène [11].

Les facteurs d'anisotropies de cisaillement fournissent une mesure du degré d'anisotropie dans la liaison entre les atomes dans différents plans. Dans le cas des cristaux orthorhombiques, le facteur d'anisotropie de cisaillement pour les plans de cisaillement $\{100\}$ entre les directions < 011 > et < 010 > est défini par [92] :

$$A_1 = \frac{4C_{44}}{C_{11} + C_{33} - 2C_{13}} \tag{4.31}$$

Pour les plans de cisaillement {010} entre les directions < 101 > et < 001 > est défini par :

$$A_2 = \frac{4C_{55}}{C_{22} + C_{33} - 2C_{23}} \tag{4.32}$$

et pour les plans de cisaillement ~001 } entre les directions $<110>{\rm et}<010>{\rm est}$ défini par :

$$A_3 = \frac{4C_{66}}{C_{11} + C_{22} - 2C_{12}} \tag{4.33}$$

Dans le cas d'un cristal trigonal, l'anisotropie de cisaillement est caractérisée par deux paramètres A_1 et A_2 . Le facteur d'anisotropie A_1 , qui décrit l'anisotropie de rigidité entre les plans de base et les plans axiaux, est définie par l'expression suivante :

$$A_1 = \frac{2C_{44}}{C_{11} - C_{12}} \tag{4.34}$$

Le facteur d'anisotropie A_2 mesure les plans de cisaillement {100} entre les directions < 011 > et < 010 >, est définie par l'expression suivante :

$$A_2 = \frac{4C_{44}}{C_{11} + C_{33} - 2C_{13}} \tag{4.35}$$

Pour un cristal isotrope les facteurs A_1 , A_2 , et A_3 sont égaux à 1 tandis qu'une valeur inférieure ou supérieure à 1 indique l'anisotropie du cristal. Les facteurs d'anisotropis de cisaillement sont donnés dans le tableau (4.5). Nos résultats pour la phase orthorhombique indiquent que le facteur anisotrope de cisaillement A_3 montre plus d'isotropie que A_1 , A_2 , mais lorsque x augmente, ce dernier diminue et devient 1 lorsque x atteint (0.75). Pour le cas de la phase rhomboédrique, le facteur d'anisotropie de cisaillement A_1 est le plus proche de l'unité par rapport au facteur A_2 .

Les compressibilités linéaires des trois axes cristallographiques principaux, B_a , B_b et B_c , peuvent également être calculées à partir des coefficients du tenseur des complaisances S_{ij} . Pour les systèmes orthorhombiques, B_a , B_b et B_c sont définis en terme des constantes S_{ij} , comme suit [93] :

$$B_a = 1/[S_{11} + S_{12} + S_{13}], B_b = 1/[S_{12} + S_{22} + S_{23}], B_c = 1/[S_{13} + S_{23} + S_{33}]$$
(4.36)

Pour les composés rhomboédriques, B_a et B_c sont donnés par les expressions suivantes :

$$B_a = 1/[S_{11} + S_{12} + S_{13}], B_c = 1/[S_{33} + 2S_{13}]$$
(4.37)

Les facteurs d'anisotropie élastique longitudinale sont donnés par les rapports des modules de compressibilités linéaires B_a , B_c et B_c comme suit :

$$A_{B_a} = B_a/B_b, A_{B_c} = B_c/B_b \tag{4.38}$$

Une valeur de 1 indique une isotropie élastique, tandis que tout écart par rapport à 1 représente une anisotropie élastique. D'après les valeurs calculées (voir le tableau (4.5), il est clair que pour (x = 0) le système est presque élastiquement isotrope, cependant lorsque x augmente, A_{B_a} augmente légèrement. Le pourcentage d'anisotropie en compressibilité et en cisaillement est donné par :

$$A_B = \frac{B_V - B_R}{B_V + B_R} \tag{4.39}$$

$$A_G = \frac{G_V - G_R}{G_V + G_R} \tag{4.40}$$

Pour ces deux expressions, une valeur de zéro est associée à une isotropie élastique; tandis qu'une valeur de 1 (100%) est la plus grande anisotropie possible. Nos résultats montrent que les valeurs de A_B et A_G sont petites pour les deux structures.

P	hase	0 0	Constar	Constantes élastiques (GPa)								
P	nma	x = 0 $x = 0.25$		$ \begin{array}{c} C_{12} \\ 22.32 \\ 19.80^{1} \\ 21.97 \end{array} $		C_{22} 68.68 67.42 ¹ 69.76	C_{23} 21.55 19.94 ¹ 21.25	C_{33} 76.28 80.28 ¹ 76.13	C_{44} 33.12 33.34 ¹ 32.88	C_{55} 23.00 23.40 ¹ 23.49	C_{66} 33.87 33.59 ¹ 33.26	
R	3c	x = 0.50 x = 0.75 x = 0.80 x = 0.90 x = 1	$\begin{array}{c} 80.92 \\ 86.25 \\ C_{11} \\ 82.49 \\ 83.95 \\ 86.78 \\ 86^2 \end{array}$	$21.2920.35C_{12}21.4820.9420.2823^2$	$15.84 \\ 15.91 \\ C_{13} \\ 15.51 \\ 13.92 \\ 11.45 \\ 15^2 \\$	$71.5374.09C_{14}3.883.472.843^2$	21.12 21.51	$76.3377.03C_{33}76.7581.4984.83832$	$\begin{array}{c} 32.58\\ 32.25\\ C_{44}\\ 28.67\\ 30.24\\ 32.45\\ 32^2 \end{array}$	24.32 25.36	$\begin{array}{c} 32.19\\ 29.95\\ C_{66}\\ 30.50\\ 31.50\\ 33.24\\ 32^2 \end{array}$	

TAB. 4.3: Les constantes élastiques calculées (C_{ij}) pour les phases Pnma et R3c de $Li_x Na_{1-x}MgH_3$.

¹PP-GGA . [11]. ²PP-GGA . [86].

TAB. 4.4: Le module de compressibilité B (B_R , B_V sont Les modules de *Reuss* et *Voigt* respectivement), le module de cisaillement G (G_R et G_V sont Les modules de *Reuss* et *Voigt* respectivement), le module de Young E (en GPa) et de Poisson ν . Pour les phases Pnma et R3c de $Li_xNa_{1-x}MgH_3$.

Phase		Module	s élastique	es polycris	stallins					
		B_R	B_V	В	G_R	G_V	G	E	ν	B/G
Pnma	x = 0.0	37.58	37.58	37.58	28.01	28.81	28.41	68.08	0.198	1.322
		35.94^{1}	35.96^{1}	35.95^{1}	28.80^{1}	29.67^{1}	29.23^{1}	69^{1}	0.180^{1}	1.22^{1}
	x = 0.25	37.83	37.84	37.84	28.27	28.92	28.59	68.52	0.1981	1.323
	x = 0.50	38.34	38.37	38.35	28.72	29.12	28.92	69.34	0.1986	1.326
	x = 0.75	39.15	39.19	39.17	29.15	29.48	29.31	70.39	0.200	1.336
R3c	x = 0.80	38.37	38.53	38.45	29.66	30.18	29.92	71.28	0.191	1.284
	x = 0.90	38.45	38.55	38.50	31.61	31.77	31.55	74.34	0.178	1.220
	x = 1.0	38.20	38.31	38.25	33.61	33.97	33.79	78.32	0.158	1.132
		39.98^2	40.11^2	40.04^{2}	32.33^{2}	32.66^2	32.50^{2}	76.74^2	0.180^{2}	1.232^{2}

 $^{1}\mathrm{PP}\text{-}\mathrm{GGA}$. $[11]\,;^{2}\mathrm{PP}\text{-}\mathrm{GGA}$. [86]

TAB. 4.5: Les facteurs anisotropes de cisaillement A_1 , A_2 et A_3 . L'anisotropie de compressibilité A_{B_a} , A_{B_c} et A_B (in %), et A_G (en %) pour les phases Pnma et R3c de $Li_xNa_{1-x}MgH_3$.

Phase		Facteu	r d'aniso	tropie él				
Pnma	x = 0.0	$A_1 \\ 1.08 \\ 0.98^1$	$A_2 \\ 0.90 \\ 0.87^1$	A_3 1.35 1.29 ¹	$A_{B_a} \\ 1.009 \\ 0.99^{-1}$	$A_{B_c} \\ 1.002 \\ 1.05^{-1}$	$A_B \\ 0.0003$	$\begin{array}{c} A_G \\ 1.41 \end{array}$
R3c	x = 0.25 x = 0.50 x = 0.75 x = 0.80 x = 0.90 x = 1	1.06 1.03 0.98 0.94 0.96 0.97	0.90 0.92 0.93 0.89 0.88 0.87	1.28 1.17 1.00	$1.034 \\ 1.073 \\ 1.108 \\ 1.069 \\ 1.139 \\ 1.142$	0.999 0.995 0.981	$\begin{array}{c} 0.006 \\ 0.031 \\ 0.046 \\ 0.202 \\ 0.117 \\ 0.146 \end{array}$	$1.13 \\ 0.68 \\ 0.57 \\ 0.86 \\ 0.70 \\ 0.54$

 $^1\mathrm{PP}\text{-}\mathrm{GGA}$. [11].

4.7 Dynamique du réseau

4.7.1 Tenseur diélectrique

Pour obtenir les propriétés dynamiques complètes d'un semi-conducteur, on a besoin également de connaître ses propriétés diélectriques, qui correspondent à l'effet d'un champ électrique appliqué au système. Nous avons calculé les valeurs des éléments du tenseur diélectrique électronique (ϵ_{∞}). La figure (4.10), représente la variation du constantes diélectriques électroniques en fonction de la concentration du Lidans les deux structures Pnma et R3c de $Li_xNa_{1-x}MgH_3$. Les résultats obtenus pour $NaMgH_3$, sont $\varepsilon_{\infty}^{xx} = 3.543$, $\varepsilon_{\infty}^{yy} = 3.539$ et $\varepsilon_{\infty}^{zz} = 3.524$ qui sont en accord avec ceux rapportés par Bouhadda et al [10].

A la transition, il y a une discontinuité dans les valeurs des éléments du tenseur diélectrique, l'abaissement est le plus fort le long de la direction x et il y a une élévation selon z. La nature de $Li_x Na_{1-x} MgH_3$ dans R3c est positivement uniaxiale ($\varepsilon_{\infty}^{zz}/\varepsilon_{\infty}^{xx} >$ 1). Les éléments électroniques calculés augmentent avec l'augmentation de composition (x). Cette tendance de variation peut s'expliquer par le fait que la polarisabilité de

FIG. 4.10: la variation des constantes diélectriques électroniques (ϵ_{∞}) en fonction de la concentration (x) dans les deux structures Pnma et R3c de $Li_xNa_{1-x}MgH_3$.

l'atome de Li est supérieure à celle de Na, de sorte que la densité électronique peut se polariser plus efficacement dans les matériaux contenant du Li que dans ceux contenant du Na. Les valeurs obtenues pour $LiMgH_3$ sont $\varepsilon_{\infty}^{xx} = \varepsilon_{\infty}^{yy} = 3.834$ et $\varepsilon_{\infty}^{zz} = 4.013$.

4.7.2 Les charges effectives de Born

Les tenseurs des charges effectives de Born Z^* sont une mesure du changement de polarisation électronique dû aux déplacements atomiques collectifs. Dans le cadre de la DFPT [94], Nous avons calculé les charges effectives de Born pour les anions et les cations; Les résultats obtenues pour les deux phases Pnma et R3c sont également donnés dans les tableaux (4.6), et (4.7), ensemble avec les données théoriques disponibles9.

L'analyse des charges effectives de Born est un autre outil pour évaluer les caractéristiques de liaison. Pour $Li_x Na_{1-x} MgH_3$, les composantes diagonales des charges effectives sur les sites (Na/Li) et Mg sont presque égales $(Z_{xx} \approx Z_{yy} \approx Z_{zz})$ et les composantes qui ne sont pas diagonales, sont négligeables. Aux sites de H, les composantes diagonales sont également presque égales, mais les composantes qui ne sont pas diagonales prennent des petites valeurs mais définies dans la plupart des cas. Ceci est une indication de caractère ionique fort et de faibles liaisons covalentes.

Les composantes des charges effectives de Born de Mg sont légèrement inférieures à la charge nominale (+2), tandis que les charges (Na/Li) et H sont très proches de la charge nominale (+1) et (-1), respectivement. Ce résultat confirme encore le mélange de caractère ionique et covalent de tous les composés Pnma de $Li_xNa_{1-x}MgH_3$. Cependant, il apparaît que lorsque la concentration de lithium augmente, le matériau devient plus ionique.

4.7.3 Dispersion des phonons et la densité d'états

Les spectres des phonons d'un cristal contenant N atomes dans la cellule élémentaire sont caractérisés par 3N modes de vibrations possibles dans le cristal. Chaque atome ayant trois degrés de liberté, le nombre de mode de vibration possible est égal au nombre de dégrée de liberté des atomes du réseau. Trois des 3N branches sont acoustiques, les autres 3(N-1) sont des branches optiques. Pour notre cas, les trois structures étudiées de $Li_xNa_{1-x}MgH_3$ sont l'orthorhombique Pnma, la trigonale R3c, et la cubique $Pm\bar{3}m$, avec une maille élémentaire de N = 20, N = 10 et N = 5 atomes, respectivement. Les spectres de dispersion montrent :

- Pour la phase orthorhombique *Pnma*, 60 branches de dispersion, trois branches acoustiques, deux sont transversales (TA) et une branche longitudinale (LO), et 57 branches optiques, 38 sont transversales (TO) et 19 sont longitudinales (LO).
- Pour la phase trigonal R3c, 30 branches de dispersion, trois branches acoustiques, deux sont transversales (TA) et une branche longitudinale (LO), et 27 branches optiques, 18 sont transversales (TO) et 9 sont longitudinales (LO).

 Pour la phase cubique Pm3m, 15 branches de dispersion, trois branches acoustiques, deux sont transversales (TA) et une branche longitudinale (LO), et 12 branches optiques, 8 sont transversales (TO) et 4 sont longitudinales (LO).

Les branches acoustiques, de basses fréquences, correspondent à la vibration du centre de masse de la maille élémentaire, la dynamique est dominée par l'interaction entre les cellules. Las branches optiques, de hautes fréquences, correspondent au mouvement de vibration à l'intérieur de la maille élémentaire, les ions d'une même cellule vibrent l'un par rapport à l'autre, et la fréquence de vibration est élargie en une bande de fréquence par l'interaction entre les cellules.

Et aussi dans ce cas, il est important d'examiner l'orientation du vecteur de polarisation (\vec{A}) . pour un vecteur (\vec{q}) donné. Il y a donc : Un mode longitudinal soit polarisée le long de la direction de propagation $(\vec{A} \parallel \vec{q})$, et deux modes transversaux soient polarisées perpendiculairement à la direction de propagation $(\vec{A} \perp \vec{q})$.

Dans les figures (4.11) et (4.12), les courbes des spectres de dispersion des phonons calculés, de $Li_x Na_{1-x} MgH_3$ dans la structure Pnma pour différentes concentrations (x), elles sont présentées le long des lignes de haute symétrie de la zone de *Brillouin*, conjointement avec les densités d'états des phonons totales et partielles (DOS)correspondantes. Le comportement du spectre de dispersion des phonons de $NaMgH_3$ obtenu sont en bon accord avec celui rapporté dans [10].

Comme il est clair d'après la densité d'états partielle que les branches de basses fréquences sont dues aux vibrations des atomes les plus lourds, tandis que de hautes fréquences sont causées par le mouvement des atomes H. On remarque, que toutes les branches ont les valeurs de fréquence positives c-à-dire aucun de ces modes n'a une fréquence imaginaire, ce qui indique la stabilité de la phase Pnma de $Li_xNa_{1-x}MgH_3$ dans la gamme de $(0 \le x \le 0.75)$ de la concentration de lithium.

Cependant, il est clair d'après la figure (4.11), que la fréquence du mode actif infrarouge (*IR*) B_{2u} diminue avec l'augmentation de la concentration (*x*). Cette diminution de la valeur de fréquence est une indication qu'une instabilité se développe. En réalité, d'après la figure (4.12), à la concentration (*x* = 0.8). Les fréquences du mode B_{2u} deviennent imaginaires (le spectre de phonons a des fréquences négatives), ce qui nous montrent l'existence d'une transition de phase qui se produit. Ce résultat est exactement en accord avec la prédiction des calculs d'énergie totale (voir section (4.5)).

L'augmentation de la concentration en Lithium, a pour effet d'augmenter fortement l'instabilité de la phase Pnma de $Li_xNa_{1-x}MgH_3$ dans la gamme de $(0.8 \le x \le 1)$. Et également les modes de vibration deviennent imaginaires le long des directions $(\Gamma \longrightarrow X \longrightarrow S)$ et $(\Gamma \longrightarrow T)$. Comme nous le voyons sur la figure (4.12). $LiMgH_3$ est instable dans la structure Pnma, et ceci est consistant avec ce qui a été rapporté dans [12,17]. La figure (4.13) représente les courbes de dispersion des phonons, pour $Li_{0.8}Na_{0.2}aMgH_3$, $Li_{0.9}Na_{0.1}MgH_3$ et $LiMgH_3$ dans la phase polaire R3c, le long des directions de hautes symétries de la première zone de *Brillouin*. Les densités d'états totales et partielles (DOS) correspondantes à chacun des composés, sont également présentées dans cette figure.

Il est clair d'après cette figure que les spectres des phonons ne possèdent aucune fréquence imaginaire pour aucun vecteur d'onde, c'est-à-dire que tous les modes de fréquence sont positifs. Ce qui nous indique que, la phase polaire R3c est la plus stable de $Li_xNa_{1-x}MgH_3$ dans la gamme de $0.75 \le x \le 1$ de la concentration de Lithium.

Par ailleurs, ces résultats montrent clairement que la substitution de l'atome Li au niveau des sites de l'atome de Na dans $Li_xNa_{1-x}MgH_3$ conduit à une transition de phase structurale de la structure orthorhombique (Pnma) à la structure rhomboédrique (R3c), avec une augmentation de volume de la maille élémentaire à la concentration de transition (x = 0.8) (voir figure (4.4)). Cela pourrait être une explication à l'augmentation du volume de la maille élémentaire pour x = 0.8, malgré l'atome de Li est la plus petite taille, rapporté par *Contreras Vasquez* et al. [18]. Ensuite, le volume diminue avec l'augmentation de la concentration de Li dans la structure R3c, comme le montre la figure (4.4).

Nos résultats, pour les spectres de phonons calculés avec les densités d'états des phonons correspondantes (DOS), de $Li_x Na_{1-x} MgH_3$ dans la structure cubique $Pm\bar{3}m$ pour différentes concentrations (x), sont illustrés aux figures (4.14) et (4.15) respectivement. Ils sont présentés le long de lignes de haute symétrie de la zone de *Brillouin*, conjointement avec les densités d'états des phonons totales et partielles (DOS)correspondants.

Il est clair d'après ces figures que, les spectres de phonons possèdent des fréquences imaginaires (fréquence imaginaire est représentée par la présence de fréquence négative sur la figure), ce qui nous montrent que, $Li_xNa_{1-x}MgH_3$ est instable dans la phase $Pm\bar{3}m$. Ce résultat est exactement en accord avec la prédiction des calculs d'énergie totale (voir section (4.3)).

4.7.4 Modes propres au centre de zone

La théorie des groupes permet de classer les modes propres du centre de zone selon leur symétrie. Dans la symétrie orthorhombique de la structure Pnma, la théorie des groupes prévoit huit types distincts de modes optiques au centre de zone, correspondants à :

$$\Gamma = 10B_{1u} + 8B_{2u} + 10B_{3u} + 8A_u + 7A_q + 5B_{1q} + 7B_{2q} + 5B_{3q}$$

pour la structure Pnma de $Li_x Na_{1-x}MgH_3$, il y a 20 atomes par maille, ce qui

porte à 60 le nombre de modes propres de vibration. Au cours de cette décomposition, les 60 modes de phonons peuvent être classés comme :

3 acoustiques (B_{1u}, B_{2u}, B_{3u}) .

24 Raman actifs $(7A_g, 5B_{1g}7B_{2g}, 5B_{3g})$.

25 infrarouge IR-actif $(9B_{1u}, 7B_{2u}, 9B_{3u})$.

8 sont silencieux (non actif) $(8A_u)$.

Les fréquences des modes optiques au centre de zone et leurs symétries qui ont été effectuées à l'aide du serveur cristallographique de Bilbao [95] sont reportées dans les tableaux (4.8), (4.10) et (4.9)pour les modes IR (dipôle actif), Raman (quadripolaire actif) et silencieux (c'est-à-dire ne développant aucun moment dipolaire ou quadripolaire). Seuls les modes non dégénérés existent dans cette symétrie $D_{2h}(mmm)$. Les modes IR actifs se divisent en deux, phonons optiques transversaux (TO) et optiques longitudinaux (LO) avec des fréquences différentes en raison des champs électriques macroscopiques associés aux phonons (LO).

La fréquence du mode B_{2u} diminue avec l'augmentation de la concentration de lithium, jusqu'à ce qu'elle atteigne la valeur de i32.40 cm⁻¹ pour x = 0.8 (voir tableau (4.8)). Les déplacements atomiques associés au ce mode B_{2u} sont indiqués sur la figure (4.16).

Pour la structure polaire R3c de $Li_xNa_{1-x}MgH_3$, il y a 10 atomes dans la cellule unitaire primitive qui conduisent à 30 modes de vibration. La théorie des groupes prédit les symétries suivantes de modes de vibration en centre de zone :

 $\Gamma = 5A_1 + 5A_2 + 10E$

Les trois modes acoustiques sont $A_1 + 2E$. Les modes optiques A_1 et les modes E doublement dégénérés sont à la fois Raman et infrarouge actifs, tandis que les modes A_2 sont silencieux.

Les modes de symétries A_1 et E pour lesquels les barycentres des charges positives et négatives sont en mouvement relatifs, créant ainsi un dipôle qui va rayonner un champ électromagnétique lors du mouvement des atomes au passage de l'onde mécanique. En retour, le mouvement des atomes va subir la force de *Lorentz* consécutivement à l'existence de ce champ électromagnétique. Il y a donc un couplage entre les aspects mécaniques et électromagnétiques associés à ces phonons, qui sont qualifiés de polaires. Ces modes sont actifs en spectroscopies infrarouge et Raman.

Le mode de symétrie A_2 pour lequel il n'y a pas de mouvement relatif des barycentres des charges positives et négatives. Il n'y a pas donc de dipôle rayonnant, c'est pourquoi ce mode est qualifié de non polaire [96].

Les fréquences des modes optiques de centre de zone et leurs symétries de la structure trigonale R3c, de symétrie $C_{3v}(3m)$ sont listées dans le tableau (4.11). Sans prendre en compte le splitting LO-TO dû à la structure non centro-symétrique et à la double dégénérescence des modes E au point Γ .

	77	уу	ZZ	лу	AZ	ух	уz	ZA	Zy
$NaMgH_3$ (Pnma)									
Z_{Na}	1.061	1.069	1.046	0.00	-0.005	0.00	0.00	0.006	0.00
	1.066^{1}	1.071^{1}	1.051^{1}	0.00^{1}	-0.007^{1}	0.00^{1}	0.00^{1}	0.005^{1}	0.00^{1}
Z_{Ma}	1.769	1.762	1.759	-0.026	0.076	-0.005	0.120	-0.086	-0.113
5	1.760^{1}	1.759^{1}	1.761^{1}	-0.027^{1}	0.070^{1}	-0.004^{1}	0.120^{1}	-0.086^{1}	-0.109^{1}
Z_{H1}	-0.799	-1.208	-0.813	0.00	0.026	0.00	0.00	-0.017	0.00
** *	-0.801^{1}	-1.208^{1}	-0.814^{1}	0.00^{1}	0.027^{1}	0.00^{1}	0.00^{1}	-0.017^{1}	0.00^{1}
Z_{H2}	-1.015	-0.811	-0.996	-0.003	-0.192	0.003	-0.011	-0.196	-0.015
	-1.012^{1}	-0.811^{1}	-0.999^{1}	-0.003^{1}	-0.192^{1}	-0.003^{1}	-0.011^{1}	-0.199^{1}	-0.0142^{1}
$x = 0.25 \ (Pnma)$									
$Z_{Na/Li}$	1.069	1.084	1.056	0.00	0.003	0.00	0.00	-0.011	0.00
Z_{Mq}	1.772	1.753	1.759	0.028	0.079	0.005	-0.123	-0.089	0.117
Z_{H1}	-0.806	-1.201	-0.824	0.00	0.025	0.00	0.00	-0.018	0.00
Z_{H2}	-1.017	-0.823	-0.995	-0.003	-0.182	0.001	-0.013	-0.186	-0.017
$x = 0.5 \ (Pnma)$									
$Z_{Na/Li}$	1.078	1.104	1.066	0.00	0.00	0.00	0.00	-0.018	0.00
Z_{Mq}	1.775	1.765	1.758	0.030	0.081	0.004	-0.121	-0.088	0.127
Z_{H1}	-0.817	-1.187	-0.8403	0.00	0.020	0.00	0.00	-0.019	0.00
Z_{H2}	-1.018	-0.804	-0.992	-0.003	-0.165	-0.002	-0.016	-0.167	-0.022
$x = 0.75 \ (Pnma)$									
$Z_{Na/Li}$	1.089	1.128	1.074	0.00	-0.002	0.00	0.00	-0.053	0.00
Z_{Mq}	1.779	1.771	1.763	0.032	0.079	0.001	-0.109	-0.082	0.140
Z_{H1}	-0.834	-1.166	-0.861	0.00	0.008	0.00	0.00	-0.221	0.00
Z_{H2}	-1.016	-0.866	-0.988	-0.002	-0.137	-0.019	-0.019	-0.135	-0.026

 $\frac{\text{TAB. 4.6: Les charges effectives de Born}(Z^*) \text{ pour la phase } Pnma \text{ de } Li_x Na_{1-x}MgH_3}{xx \quad yy \quad zz \quad xy \quad xz \quad yx \quad yz \quad zx \quad zy}.$

 $^1\mathrm{PP}\text{-}\mathrm{GGA}$. [10].

TAB. 4.7: Les charges effectives de Born (Z^*) pour la phase R3c de $Li_xNa_{1-x}MgH_3$.

	XX	уу	$\mathbf{Z}\mathbf{Z}$	xy	XZ	yx	yz	ZX	zy
$x = 0.80 \ (R3c)$									
$Z_{Na/Li}$	1.069	1.084	1.056	0.00	0.003	0.00	0.00	-0.011	0.00
Z_{Mg}	1.772	1.753	1.759	0.028	0.079	0.005	-0.123	-0.089	0.117
Z_H	-0.806	-1.201	-0.824	0.00	0.025	0.00	0.00	-0.018	0.00
$x = 0.90 \ (R3c)$									
$Z_{Na/Li}$	1.078	1.104	1.066	0.00	0.00	0.00	0.00	-0.018	0.00
Z_{Mg}	1.775	1.765	1.758	0.030	0.081	0.004	-0.121	-0.088	0.127
Z_H	-0.817	-1.187	-0.8403	0.00	0.020	0.00	0.00	-0.019	0.00
$LiMgH_3$ (R3c)									
Z_{Na}	1.061	1.069	1.046	0.00	-0.005	0.00	0.00	0.006	0.00
	1.066^{1}	1.071^{1}	1.051^{1}	0.00^{1}	-0.007^{1}	0.00^{1}	0.00^{1}	0.005^{1}	0.00^{1}
Z_{Mg}	1.769	1.762	1.759	-0.026	0.076	-0.005	0.120	-0.086	-0.113
	1.760^{1}	1.759^{1}	1.761^{1}	-0.027^{1}	0.070^{1}	-0.004^{1}	0.120^{1}	-0.086^{1}	-0.109^{1}
Z_H	-0.799	-1.208	-0.813	0.00	0.026	0.00	0.00	-0.017	0.00
	-0.801^{1}	-1.208^{1}	-0.814^{1}	0.00^{1}	0.027^{1}	0.00^{1}	0.00^{1}	-0.017^{1}	0.00^{1}

 $^1\mathrm{PP}\text{-}\mathrm{GGA}$. [10].

FIG. 4.11: Les courbes de dispersion des phonons calculées et densité d'états (DOS) pour la phase Pnma de $Li_xNa_{1-x}MgH_3$, pour les concentrations x = 0, 0.5 et 0.75.

FIG. 4.12: Comme la figure (4.11), mais pour les concentrations x = 0.8, 0.9 et 1.

FIG. 4.13: Les courbes de dispersion des phonons calculées et densité d'états (DOS) pour la phase R3c de $Li_xNa_{1-x}MgH_3$, pour les concentrations x = 0.8, 0.9 et 1.

FIG. 4.14: Les courbes de dispersion des phonons calculées et densité d'états (DOS) pour la phase $Pm\bar{3}m$ de $Li_xNa_{1-x}MgH_3$, pour les concentrations x = 0 et 0.5.

FIG. 4.15: Les courbes de dispersion des phonons calculées et densité d'états (DOS) pour la phase $Pm\bar{3}m$ de $Li_xNa_{1-x}MgH_3$, pour les concentrations x = 0.8 et 1.

FIG. 4.16: Déplacements atomiques de mode optique de vibration B_{2u} , associés à la transition de phase de la structure *Pnma* vers *R3c*, pour x = 0.8. Les flèches représentent les déplacements atomiques. Cette figure est tracée à l'aide de VESTA [99].

TAB. 4.8: Les fréquences des modes optiques infrarouges calculées $en(cm^{-1})$ du composé $Li_x Na_{1-x}MgH_3$ dans la structure Pnma au centre de zone Γ . Deux chiffres dans une rangée correspondent aux fréquences TO/LO.

	infrarouge								
Mode	$B_{1u}(1)$	$B_{1u}(2)$	$B_{1u}(3)$	$B_{1u}(4)$	$B_{1u}(5)$	$B_{1u}(6)$	$B_{1u}(7)$	$B_{1u}(8)$	$B_{1u}(9)$
x = 0	107/107	189/189	268/268	295/295	566/599	705/719	745./803	803/817	1268/1339
x = 0.25	115/115	198/199	268/268	299/299	561/561	716/732	759/820	825/825	1270/1332
x = 0.5	124/124	208/213	266/266	309/309	552/552	735/736	781/824	860/860	1279/1321
x = 0.75	133/136	226/232	261/261	328/328	538/538	767/790	814/828	912/912	1302/1305
x = 0.8	135/143	231/236	260/260	334/334	534/534	775/801	821/829	925/925	1308/1374
Mode	$B_{2u}(1)$	$B_{2u}(2)$	$B_{2u}(3)$	$B_{2u}(4)$	$B_{2u}(5)$	$B_{2u}(6)$	$B_{2u}(7)$		
x = 0	157/157	172/172	286/286	503/503	686/687	1225/1225	1250/1252		
x = 0.25	154/154	173/173	284/284	489/489	697/716	1221/1221	1245/1253		
x = 0.5	140/140	174/174	280/280	465/465	714/735	1219/1219	1240/1240		
x = 0.75	69/69	175/175	276/276	429/429	742/743	1231/1213	1240/1240		
x = 0.8	-i32.40/-i32.40	176/176	275/275	422/422	751/754	1210/1210	1242/1242		
Mode	$B_{3u}(1)$	$B_{3u}(2)$	$B_{3u}(3)$	$B_{3u}(4)$	$B_{3u}(5)$	$B_{3u}(6)$	$B_{3u}(7)$	$B_{3u}(8)$	$B_{3u}(9)$
x = 0	116/121	173/189	236/238	293/294	559/566	605/619	843/855	920/929	1243/1250
x = 0.25	122/128	183/185	235/239	301/302	563/602	605/612	854/865	932/941	1242/1245
x = 0.5	129/136	198/200	236/241	314/315	569/586	605/710	869/881	953/961	1246/1261
x = 0.75	132/133	217/224	239/247	337/339	562/587	609/610	886/904	988/994	1261/1281
x = 0.8	131/135	222/225	240/249	343/346	558/585	610/614	889/908	999/1004	1265/1287

TAB. 4.9: Les fréquences des modes optiques Raman calculées (en cm^{-1}) de composé $\frac{Li_x Na_{1-x} Mg H_3 \text{ dans la structure } Pnma \text{ au centre de zone } \Gamma.$ Raman

_	Itaman										
Mode	$A_g(1)$	$A_g(2)$	$A_g(3)$	$A_g(4)$	$A_g(5)$	$A_g(6)$	$A_g(7)$				
x = 0	116	148	350	542	686	909	1064				
x = 0.25	130	162	377	562	695	916	1067				
x = 0.5	147	180	414	600	741	925	1079				
x = 0.75	167	209	468	742	814	937	1106				
x = 0.8	171	217	482	751	821	941	1113				
Mode	$B_{1g}(1)$	$B_{1g}(2)$	$B_{1g}(3)$	$B_{1g}(4)$	$B_{1g}(5)$	Mode	$B_{3g}(1)$	$B_{3g}(2)$	$B_{3g}(3)$	$B_{3g}(4)$	$B_{3g}(5)$
x = 0	170	388	705	1076	1354		138	665	896	1073	1429
x = 0.25	198	409	697	1077	1353		145	692	904	1071	1422
x = 0.5	209	430	714	1085	1357		148	605	917	1073	1414
x = 0.75	226	453	754	1104	1371		142	600	938	1075	1408
x = 0.8	231	459	757	1109	1308		130	597	944	1075	1407
Mode	$B_{2g}(1)$	$B_{2g}(2)$	$B_{2g}(3)$	$B_{2g}(4)$	$B_{2g}(5)$	$B_{2g}(6)$	$B_{2g}(7)$				
x = 0	129	155	383	745	870	943	1392				
x = 0.25	143	170	419	759	880	958	1388				
x = 0.5	164	190	471	753	894	983	1389				
x = 0.75	193	224	534	767	912	1024	1397				
x = 0.80	201	229	548	775	915	1035	1399				

TAB. 4.10: Les fréquences des modes optiques silencieux calculés (en cm^{-1}) du composé $Li_x Na_{1-x}MgH_3$ dans la structure Pnma au centre de zone Γ .

	shencie	ux						
Mode	$A_u(1)$	$A_u(2)$	$A_u(3)$	$A_u(4)$	$A_u(5)$	$A_u(6)$	$A_u(7)$	$A_u(8)$
x = 0 x = 0.25 x = 0.5 x = 0.75 x = 0.8	122 130 142 157 160	173 173 172 170 171	203 202 202 197 197	295 293 293 296 296	541 530 510 472 461	726 732 781 799 814	1223 1215 1203 1183 1177	1268 1270 1279 1302 1301

TAB. 4.11: Les fréquences des modes optiques calculées (en cm^{-1}) de composé $Li_x Na_{1-x} MgH_3$ (x = 0.80, 0.90 et 1) dans la structure R3c au centre de zone Γ . Deux chiffres dans une rangée correspondent aux fréquences TO/LO.

	Infrarouge	e et Raman	actif							
Mode	E(1)	E(2)	E(3)	E(4)	E(5)	E(6)	E(7)	E(8)	E(9)	
x = 0.8	232/236	267/268	294/298	569/569	599/676	767/787	947/980	1065/1083	1260/1334	
x = 0.9	237/238	286/286	316/318	604/609	617/695	779/816	946/973	1079/1101	1270/1339	
x = 1	240/241	311/311	351/352	621/656	664/721	798/848	948/1003	1096/1120	1284/1345	
	Infraroug	e et Raman	actif			Silencieux	C C			
Mode	$A_1(1)$	$A_1(2)$	$A_1(3)$	$A_1(4)$	Mode	$A_2(1)$	$A_2(2)$	$A_2(3)$	$A_2(4)$	$A_2(5)$
x = 0.8	230/232	512/546	788/830	1202/1224	x = 0.8	107	317	830	945	1384
x = 0.9	260/264	519/555	818/844	1205/1231	x = 0.9	181	336	844	973	1381
x = 1	296/297	531/566	852/864	1207/1237	x = 1	190	368	864	1010	1376

4.8 Propriétés thermodynamiques

La densité d'états vibrationnelle correspond à une intégration de la relation de dispersion par rapport à la zone de *Brillouin*. Elle contient moins d'information que cette dernière. Cependant, toutes les propriétés thermodynamiques d'origine vibrationnelle peuvent être vues comme une intégrale sur la densité d'états vibrationnelle dans le cadre de l'approximation harmonique.

On cite ci-dessous les expressions des grandeurs thermodynamiques qu'on a calculées par la méthode abinitio en fonction de la température (T) dans l'approximation harmonique.

• La chaleur spécifique C_V du réseau est donnée par :

$$C_V = 3nNk_B \int_0^{\omega_{max}} \left(\frac{\hbar\omega}{2k_BT}\right)^2 \cosh^2\left(\frac{\hbar\omega}{2k_BT}\right) g(\omega)d\omega \tag{4.41}$$

• *L'entropie S* est donné par :

$$S = 3nNk_BT \int_0^{\omega_{max}} \left[\frac{\hbar\omega}{2k_BT} \coth \frac{\hbar\omega}{2k_BT} - \ln\left(2\sinh \frac{\hbar\omega}{2k_BT}\right) \right] g(\omega)d\omega \qquad (4.42)$$

• L'énergie interne E est donnée par :

$$\Delta E = 3nN \frac{\hbar}{2} \int_0^{\omega_{max}} \omega \coth\left(\frac{\hbar\omega}{2k_BT}\right) g(\omega) d\omega \qquad (4.43)$$

• L'énergie libre de Helmholtz F est donnée par :

$$\Delta F = 3nNk_BT \int_0^{\omega_{max}} \ln\left(2\sinh\frac{\hbar\omega}{2k_BT}\right)g(\omega)d\omega \qquad (4.44)$$

avec, k_B est la constante de *Boltzmann*, n est le nombre des atomes dans la maille élémentaire, N est le nombre des cellules unitaires, ω_{max} la fréquence la plus élevée des phonons, ω la fréquence des phonons.

Nous avons obtenu les spectres de dispersion et la densité d'états des phonons de $Li_x Na_{1-x} MgH_3$ dans les deux structures Pnma et R3c pour différentes concentrations (x). Par conséquent, nous avons calculé les fonctions thermodynamiques d'origine vibrationnelle. La chaleur spécifique à volume constant C_V , l'énergie interne E, l'entropie S, et l'énergie libre de Helmholtz F, sont calculé dans le cadre de l'approximation harmonique, en fonction de la température dans l'intervalle de 0 à 1200K pour différentes concentrations (x).

FIG. 4.17: La variation de la chaleur spécifique $C_V(T)$ et l'entropie S en fonction de la température et de la concentration pour $Li_x Na_{1-x} MgH_3$.

FIG. 4.18: La variation de l'énergie interne E(T) et l'énergie libre F en fonction de la température et de la concentration pour $Li_x Na_{1-x} MgH_3$.

4.8.1 La chaleur spécifique et L'entropie

La capacité d'un corps est une grandeur permettant de quantifier la possibilité qu'a un corps d'absorber ou restituer de l'énergie par échange thermique au cours d'une transformation pendant laquelle sa température varie.

$$C_V = \frac{(\delta Q)_V}{dT} \tag{4.45}$$

autrement dit C_V est la quantité de chaleur nécessaire pour élever T, la température du système, de 1 degré à volume constant.

La figure (4.17) montre la variation de la capacité calorifique à volume constant pour $Li_x Na_{1-x} MgH_3$ dans les structures Pnma et R3c en fonction de la concentration (x) et la température (T). D'après la figure (4.17), on remarque qu'à basse température, la contribution des phonons à la capacité calorifique C_V augmente avec la température et diminue avec une concentration croissante.

Pour chaque T, $NaMgH_3$ (x = 0) a la valeur la plus élevée, tandis que $LiMgH_3$ (x = 1) a la valeur la plus basse. Tandis que, à haute température, C_V revient indépendante de la valeur de la concentration et de la température, il se rapproche de la valeur limite asymptotique classique de *Dulong-Petit* de $3NR = 124.72 \ Jmol^{-1}K^{-1}$, où R est la constante de gaz parfaite ($R = 8.31451 \ Jmol^{-1}K^{-1}$) et N est le nombre des atomes dans la maille élémentaire [97].

La capacité calorifique du $NaMgH_3$ dans la phase Pnma, à température ambiante est $C_V = 486.8j/mol.K$, qui est en bon accord avec la valeur théorique rapportée par Bouhadda et al [10] $C_V = 488.8J/molK$.

En mécanique statistique, l'entropie S est liée au désordre, une tendance à augmenter l'entropie en augmentant le désordre du système.

La figure (4.17) montre la variation de l'entropie pour $Li_x Na_{1-x} MgH_3$ dans les structures Pnma et R3c en fonction de la concentration (x) et la température (T).

D'après la figure (4.17), on voit que l'entropie s'approche d'une valeur très petite quand la température tend vers zéro, et elle augmente avec l'augmentation de la température $S_{final} \gg S_{init}$ c'est la loi d'accroissement de l'entropie qui correspond à l'accroissement du désordre microscopique du système (second principe de la thermodynamique). On note que l'entropie diminue avec l'augmentation de la concentration.

4.8.2 L'énergie libre et L'énergie interne

L'énergie libre F est une grandeur d'état puisqu'elle est définie en fonction de l'énergie interne et l'entropie :

$$F = E - TS \tag{4.46}$$

La variation de l'énergie interne ΔE et l'énergie libre ΔF en fonction de la concentration (x) et la température (T), pour $Li_x Na_{1-x}MgH_3$ dans les deux phase Pnma et R3c, est illustrée sur la figure (4.18).

D'après la figure, la valeur de température zéro ΔE_0 et ΔF_0 n'est pas nulle, en raison

du mouvement des molécules, elle égale au niveau de la plus basse énergie de système, et peut être calculée à partir de l'expression asymptotique

$$\Delta F_0 = \Delta E_0 = 3nN \int_0^{\omega_{max}} \frac{\hbar\omega}{2} g(\omega) d\omega \qquad (4.47)$$

où, n est le nombre des atomes dans la maille élémentaire , N est le nombre des cellules unitaires , ω_{max} la fréquence la plus élevée des phonons et ω la fréquence des phonons. Les valeurs de ΔF_0 et ΔE_0 à température zéro pour $NaMgH_3$ dans la phase Pnma est 20460J/mol.

A haute température, la contribution de l'entropie à l'énergie libre est importante le système évolue vers un état d'entropie maximale, et l'énergie libre devient négative. Avec l'augmentation de la température F diminue pour chaque concentration de lithium, $NaMgH_3$ a la valeur la plus basse et $LiMgH_3$ a la valeur la plus élevée pour chaque T.

Deuxième Partie $Ba_xSr_{1-x}LiH_3$

4.9 Détails numériques

Dans le cadre de la théorie de la fonctionnelle de la densité (DFT) [47], nous avons utilisé les ondes planes comme une base pour le développement des orbitales de *Kohn-Sham* et l'interaction entre les électrons et les ions est décrite par le pseudo-potentiel à norme conservée proposée par *Hamann* et al [28]. La mise en œuvre a été réalisée dans le code du calcul ABINIT [29,30].

Pour toutes les concentrations (x) que nous allons étudier, le rayon de coupure de la base d'ondes planes utilisé pour les fonctions d'onde sera fixé à 50 Hartree (1360 eV). Cette valeur a été déterminée en effectuant une étude de convergence sur la valeur de l'énergie totale, de manière à garantir une précision de 10^{-6} Hartree. Elle est relativement élevée pour un calcul s'effectuant dans l'approche pseudo-potentiel.

En ce qui concerne l'échantillonnage des points \vec{k} de l'espace réciproque, nous avons utilisé le maillage standard de *Monkhorst* et *Pack* [79]. La zone de *Brillouin* de la cellule sera discrétisée en utilisant une grille de $(8 \times 8 \times 8)$ points.

Élément	cœur	valence
Н		$1s^1$
Li	$[1s^2]$	$2s^1$
Sr	$[1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}]$	$4s^2 4p^6 5s^2$
Ba	$[1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10}]$	$5s^2 \ 5p^6 6s^2$

TAB. 4.12: Configurations électroniques choisies pour les calculs sur $Ba_xSr_{1-x}LiH_3$.

Les pseudo-potentiels qu'on a utilisés sont les pseudo-potentiels à norme conservée de *Troullier* et *Martins* (TM). Les fichiers du pseudo-potentiel ont été téléchargés du site internet de ABINIT à partir du tableau officiel de pseudo-potentiels fourni [29]. Le potentiel d'échange et de corrélation est traité avec l'approximation du gradient généralisé de *Perdew*, *Burke* et *Ernzerhof* (PBE) [81].

Le formalisme pseudo-potentiel utilise l'approximation des cœurs gelés. Certains électrons (électrons de cœur) sont figés dans leur état atomique. Les électrons de valence sont explicitement traités par ABINIT. Le nombre d'électrons de cœur et de valence pour chaque espèce chimique est donné dans le tableau (4.12). Les compositions et les configurations seront étudiées, dans des conditions statiques (T = 0 K).

Pour le traitement de $Ba_xSr_{1-x}LiH_3$, nous avons utilisé l'Approximation du Cristal Virtuel (VCA) [84]. Les pseudo-potentiels de Ba et Sr sont combinés pour construire

les pseudo-potentiels virtuels du Ba_xSr_{1-x} (voire section 4.2.1), c'est-à-dire :

$$V_{VCA}^{Ps}[x] = xV_{Ba}^{Ps} + (1-x)V_{Sr}^{Ps}$$
(4.48)

où V_{Ba}^{PS} et V_{Sr}^{PS} sont les pseud-opotentiels des atomes Ba et Sr, respectivement.

Les Réponse au déplacement atomique, à la déformation et à la perturbation du champ électrique sont calculées en utilisant la méthode de la théorie de perturbation de la fonctionnelle de la densité (DFPT) [63,64,77,82], implémentée dans le code ABINIT. Les matrices dynamiques ont été calculées dans une maille de $(4 \times 4 \times 4)$ points \vec{q} pour la partie irréductible de la zone de *Brillouin*, et nous avons utilisé l'interpolation de *Fourier* pour calculer les phonons dans n'importe quel point \vec{q} choisi.

4.10 Propriétés structurales

Notre étude est consacrée à l'alliage $Ba_xSr_{1-x}LiH_3$, qui se cristallise dans une structure anti-pérovskite du groupe d'espace $Pm\bar{3}m$ (N° 221). Les atomes du Strontium Sret Baryum Ba occupent les positions (0, 0, 0), les atomes de lithium Li occupent les positions (1/2, 1/2, 1/2), les atomes de l'hydrogène H occupent les positions (0, 1/2, 1/2). La figure (4.19) est une représentation graphique de cette structure.

FIG. 4.19: Cellule unitaire de $SrLiH_3$ dans la structure $Pm\bar{3}m$.

FIG. 4.20: La variation du paramètre du maille en fonction de la concentration (x); ligne continue obtenue par l'ajustement quadratique, ligne pointillée obtenue par la loi de *Végard*.

Pour déterminer les propriétés structurales à l'équilibre statique, à savoir, les paramètres du réseau, le module de compressibilité B_0 et sa dérivée par rapport à la pression B', on calcule l'énergie totale E pour différentes valeurs du volume de la maille élémentaire et pour chaque concentration (x). Puis on ajuste les valeurs E(V) calculées par une équation d'état. Dans le présent travail, nous avons utilisé l'équation d'état de Murnaghan [79].

Dans le tableau (4.13), nous avons reporté les valeurs des différents paramètres de réseau calculés a_0 , ainsi que les valeurs du module de compressibilité B_0 , ensemble avec les résultats théoriques précédents et les données expérimentales disponibles pour les cas limites de $Ba_xSr_{1-x}LiH_3$. Nous avons remarqué que les valeurs du paramètre du réseau a_0 de notre calcul sont en bon accord avec les valeurs expérimentales et théoriques, la différence est de l'ordre 1.19 % et 0.2 % des valeurs expérimentales [19] pour $SrLiH_3$ et $BaLiH_3$, respectivement. Cela pourrait être une mesure de la fiabilité des données prédites, qui ne sont pas encore mesurées.

La figure (4.20), représente la variation du paramètre de maille en fonction de la concentration (x). La déviation par rapport à la loi de *Végard* est clairement observée.

Cette grande déviation est due à la différence entre les paramètres de réseau (4.7%), des composés ternaires constituant l'alliage (3.714 Å pour $SrLiH_3$ et 4.033 Å pour $BaLiH_3$).

Nous avons calculé le facteur du désordre (bowing) du paramètre de réseau, en utilisant la relation suivante :

$$a_{Ba_x Sr_{1-x} LiH_3} = x a_{BaLiH_3} + (1-x) a_{SrLiH_3} - bx(1-x)$$
(4.49)

où a_{BaLiH_3} et a_{SrLiH_3} sont les paramètres du réseau d'équilibre pour les composés $BaLiH_3$ et $SrLiH_3$, respectivement. Le paramètres du bowing *b* calculés pour $Ba_xSr_{1-x}LiH_3$ est -0.2939 Å.

TAB. 4.13: Les paramètres structuraux d'équilibre optimisés et le module de compressibilité (B_0) pour $Ba_xSr_{1-x}LiH_3$.

		$a_0(\text{\AA})$			$B_0(GPa)$	
	x	ce travail	Exp.	Autres	ce travail	Autres
$\operatorname{Ba}_{x}\operatorname{Sr}_{1-x}\operatorname{LiH}_{3}$	0	3.714	3.833^{1}	$3.702^2, 3.804^3$ $3.788^4, 3.696^5$	47.51	$50.31^2, 42.95^3$ $34.15^4, 50.62^5$
	0.1	3.773		$3.731^2, 3.833^3$	45.28	$49.72^2, 42.07^3$
	0.3	3.871		$3.782^2, 3.885^3$	42.23	$48.25^2, 40.60^3$
	0.5	3.945		$3.824^2, 3.927^3$	40.43	$47.07^2, 39.71^3$
	0.7	3.999		$3.859^2, 3.963^3$	40.01	$46.19^2, 38.83^3$
	0.9	4.031		$3.886^2, 3.992^3$	39.17	$45.30^2, 38.24^3$
	1	4.033	4.023^{1}	$3.893^2, 4.000^3$ $3.989^5, 3.892^6$	39.30	$45.01^2, 37.95^3$ $37.83^5, 45.91^6$

¹Les données expérimentales de Ref. [19] . ²PP-LDA [20]. ³PP-GGA [20]. ⁴PP-GGA [21]. ⁵PP-LDA [21].

4.11 Propriétés élastiques

L'élasticité est un facteur très important dans l'étude de la stabilité, comme elle doit être prise en compte dans l'étude des forces mécaniques. Les constantes élastiques (C_{ij}) déterminent la réponse des matériaux aux forces extérieures et jouent un rôle important dans la détermination de la résistance des composés. Ils fournissent des informations précieuses sur la liaison entre les plans atomiques, le caractère d'anisotropie de la liaison, la stabilité structurales et les vitesses du son.

Le tenseur élastique des cristaux cubiques a seulement trois constantes élastiques indépendantes, à savoir C_{11}, C_{12} et C_{44} [100]. Les valeurs des constantes élastiques C_{ij} obtenues pour $Ba_xSr_{1-x}LiH_3$ sont données dans le tableau (4.14), ainsi que les valeurs des autres résultats théoriques disponibles. Il n'y a pas des données expérimentales rapportées sur les constantes élastiques de ce alliage pour comparer. A partir de ces résultats, on remarque que les valeurs obtenues des constantes élastiques sont en bon

		C_{11}		C_{12}		C_{44}	
	x	ce travail	Autres	ce travail	Autres	ce travail	Autres
$\operatorname{Ba}_{x}\operatorname{Sr}_{1-x}\operatorname{LiH}_{3}$	0	121.45	$\frac{107.67^1,124.28^2}{105.38^4}$	10.08	$\frac{10.33^1, 12.49^2}{10.58^4}$	53.37	$\frac{46.16^1,53.62^2}{45.11^4}$
	0.1	112.63		11.30		50.36	
	0.3	100.43		13.06		46.34	
	0.5	92.78		14.30		44.02	
	0.7	87.90		15.23		42.72	
	0.9	84.98		16.08		42.30	
	1	84.33	$\frac{84.14^1,106.3^2}{86.54^4}$	16.47	${\begin{array}{c}11.76^{1},22.59^{2}\\13.10^{4}\end{array}}$	42.42	${}^{42.75^1,48.79^2}_{40.46^4}$

TAB. 4.14: Les constantes élastiques calculées (C_{ij}) de $Ba_xSr_{1-x}LiH_3$.

⁴PP-GGA [21]. ⁵PP-LDA [21].

accord avec les valeurs théoriques.

Un matériau ne peut être stable dans une structure cubique sauf si les constantes (C_{ij}) satisfont les critères de stabilité suivantes :

$$\begin{cases} (C_{11} + 2C_{12}) > 0\\ (C_{11} - C_{12}) > 0\\ C_{44} > 0 \end{cases}$$
(4.50)

Comme on peut le voir dans le tableau (4.14), les constantes élastiques obtenues satisfont ces critères de stabilité mécanique. Ce qui nous indique que, $Ba_xSr_{1-x}LiH_3$ est mécaniquement stable dans la structure cubique.

la figure (4.21) montre la variation des constantes élastiques en fonction de la concentration (x) de baryum pour $Ba_xSr_{1-x}LiH_3$ dans la phase $Pm\bar{3}m$. les constantes C_{11} et C_{44} diminuent en fonction de la concentration (x), contrairement aux C_{12} , qui augmentent légèrement.

D'après cette figure (4.21) on remarque que, les constantes élastiques calculées présentent un comportement non-linéaire entre les cas limites de l'alliage. Cette dépendance est de forme quadratique et elle est représentée dans la figure par des lignes continues. Pour calculer la déviation de ces paramètres, on utilise la forme quadratique suivante :

$$c_{ij}^{Ba_x Sr_{1-x} LiH_3} = x c_{ij}^{BaLiH_3} + (1-x) c_{ij}^{SrLiH_3} - b_{ij} x (1-x),$$
(4.51)

où $c_{ij}^{BaLiH_3}$ et $c_{ij}^{SrLiH_3}$ sont les constantes élastiques des composés $BaLiH_3$ et $SrLiH_3$, $c_{ij}^{Ba_xSr_{1-x}LiH_3}$ est la constante élastique de l'alliage et b_{ij} le paramètre de déviation (bowing). Les valeurs obtenues pour b_{ij} sont $b_{11} = 41.5237$, $b_{12} = -4.18137$ et $b_{44} = 15.9412$ GPa pour $Ba_xSr_{1-x}LiH_3$.

FIG. 4.21: La variation des constantes élastiques (C_{ij}) calculées en fonction de la concentration (x) de $Ba_xSr_{1-x}LiH_3$.

4.11.1 L'effet de la pression hydrostatique sur les constantes élastiques

Nous avons également étudié l'effet de la pression sur les constantes élastiques pour différentes concentrations (x) dans la gamme de de pression de 0 à 40 *GPa* et les résultats sont présentés dans la figure (4.22). Il est clair de cette figure que pour chaque concentration de baryum et chaque valeur de pression, les valeurs de (C_{ij}) sont comprises entre celles des cas limites de l'alliage $Ba_xSr_{1-x}LiH_3$, c'est-à-dire $SrLiH_3$ et $BaLiH_3$, avec $SrLiH_3$ ayant les valeurs les plus élevées de C_{11} et C_{44} et le plus bas pour C_{12} . Ceci est cohérent avec les résultats affichés dans la figure (4.22).

Pour un cristal cubique sous pression P, les critères généraux de la stabilité élastique

[101] sont les suivants :

$$\begin{cases} (C_{11} + 2C_{12} + P)/3 > 0\\ (C_{11} - C_{12} - 2P)/2 > 0\\ (C_{44} - P) > 0 \end{cases}$$
(4.52)

les constantes élastiques obtenues satisfont ces critères de stabilité mécanique dans cette gamme de pression. Comme on peut le voir sur cette figure (4.22), les constantes élastiques calculées montrent un comportement non linéaire entre les cas limites de l'alliage, et elles augmentent avec l'augmentation de la pression.

Les valeurs calculées des constantes élastiques sont ajustées à la fonction quadratique $c_{ij}^x = c_{ij}^x(0) + ap + bp^2$, où c_{ij}^x est en GPa, p est la pression en GPa, a et b sont les coefficients de pression du premier et du second ordre, respectivement, et x indique la concentration de baryum. Les valeurs obtenues de a et b sont affichées dans le tableau (4.15). C_{11} a le coefficient de pression de premier ordre le plus élevé pour toutes les concentrations. Les coefficients de pression du second ordre sont petits.

TAB. 4.15: Les coefficients de pression du premier et du second ordre, a et b dans l'expression pour $c_{ij}^x = c_{ij}^x(0) + ap + bp^2$ où p est la pression et x est la concentration.

		C_{11}		C_{12}		C_{44}		
	x	a	b	a	b	a	b	
$Ba_xSr_{1-x}LiH_3$	0	5.82632	-0.0399757	1.13968	0.00302319	2.52873	-0.017902	
	0.1	5.36861	-0.0300606	1.2285	0.000768807	2.34675	-0.0131594	
	0.3	5.03945	-0.0296214	1.34647	-0.00080718	2.26919	-0.0135768	
	0.5	4.85688	-0.0303928	1.47521	-0.00207107	2.024438	-0.0142884	
	0.7	4.72217	-0.0312734	1.59641	-0.00310496	2.24315	-0.0150904	
	0.9	4.53127	-0.0315135	1.67275	-0.0035622	2.21449	-0.0153669	
	1	4.44692	-0.0333539	1.7247	-0.00443505	2.21332	-0.0162781	

FIG. 4.22: La variation des constantes élastiques (C_{ij}) calculées de $Ba_xSr_{1-x}LiH_3$, en fonction de la concentration (x) et la pression.

4.12 Dynamique du réseau

4.12.1 Tenseur diélectrique et les charges effectives de Born

Nos valeurs de la charge effective de Born Z^* , la constante diélectrique électronique ϵ_{∞} et la constante diélectrique statique ϵ_0 de l'alliage $Ba_xSr_{1-x}LiH_3$ sont représentées dans les figures figure (4.23) et (4.24). Rappelons aussi que la règle de la sommation acoustique a été respectée :

$$\sum Z^* = 0 \tag{4.53}$$

Ces valeurs obtenues sont ajustées selon les équations suivantes :

$$Z^*_{Ba_x Sr_{1-x} LiH_3} = x Z^*_{BaLiH_3} + (1-x) Z^*_{SrLiH_3} - b_{Z^*} x (1-x)$$
(4.54)

$$\epsilon_{\infty}^{Ba_x Sr_{1-x} LiH_3} = x \epsilon_{\infty}^{BaLiH_3} + (1-x) \epsilon_{\infty}^{SrLiH_3} - b_{\epsilon_{\infty}} x(1-x)$$

$$(4.55)$$

$$\epsilon_0^{Ba_x Sr_{1-x} LiH_3} = x \epsilon_0^{BaLiH_3} + (1-x) \epsilon_0^{SrLiH_3} - b_{\epsilon_0} x(1-x), \qquad (4.56)$$

Les valeurs de bowing pour ϵ_{∞} et ϵ_0 sont respectivement $b_{\epsilon_{\infty}} = 0.325428$ et $b_{\epsilon_0} = -0.269048$. Les valeurs de bowing de Z^* sont reportées dans le tableau (4.16).

TAB. 4.16: Les charges effectives de *Born* calculées de $SrLiH_3$ et $BaLiH_3$ avec des valeurs théoriques pour la comparaison.

	\mathbf{Z}^*_{Sr}		\mathbf{Z}^*_{Ba}		\mathbf{Z}^*_{Li}		$\mathbf{Z}^*_{H_{\parallel}}$		$\mathbf{Z}^*_{H_\perp}$	
	Present	other	Present	other	Present	other	Present	other	Present	other
$SrLiH_3$ $BaLiH_3$	1.98749	2.17921^{1}	2.03490	2.25193^{1}	$0.77196 \\ 0.87327$	$\begin{array}{c} 0.77103^1 \\ 0.87449^1 \end{array}$	-0.92233 -0.97751	-1.05603^1 -1.17611^1	-0.91478 -0.95317	-0.88771^{1} -0.85578^{1}
1DD CC. [99]	1									

¹PP-GGa [23].

La charge effective de *Born* est très proche des charges nominales pour Sr ou Ba: + 2, Li: +1 et H: -1, ce qui signifie que les sites Sr, Ba et Li des séries $SrLiH_3$ et $BaLiH_3$ abandonner à près de deux et un des électrons, respectivement, alors que les atomes H chacun gagnent par conséquence près d'un électron. Les valeurs de ϵ_{∞} pour $SrLiH_3$ (4.15) et $BaLiH_3$ (4.04) sont proches de celles rapportées dans la Réf. [23]; (4.80) et (3.73) respectivement.

4.12.2 Dispersion des phonons et les constantes des forces interatomiques

Les spectres des phonons d'un cristal contenant N atomes dans la cellule élémentaire sont caractérisés par 3N modes de vibrations possibles dans le cristal. Pour la structure de pérovskite cubique $Pm\bar{3}m$, il y a 5 atomes par maille élémentaire, les spectres des phonons ont 15 branches de dispersion pour chaque vecteur d'onde dans la zone de *Brillouin*. Trois branches sont acoustiques, deux sont transversales (TA) et

FIG. 4.23: La variation des charges effectives de Born Z^* en fonction de la concentration (x) de $Ba_xSr_{1-x}LiH_3$.

une branche longitudinale (LO), et 12 branches optiques, 8 sont transversales (TO) et 4 sont longitudinales (LO).

Dans les figures (4.25) et (4.26), les courbes des spectres de dispersion des phonons calculés, de $Ba_xSr_{1-x}LiH_3$ dans la structure $Pm\bar{3}m$ pour différentes concentrations (x). Ils sont présentés le long de lignes de haute symétrie de la zone de Brillouin, conjointement avec les densités d'états des phonons totales et partielles (DOS)correspondantes. Le comportement du spectre de dispersion des phonons de $SrLiH_3$ et $BaLiH_3$ obtenu est en bon accord avec celui rapporté dans [23].

Comme il est clair d'après la (DOS) partielle que les branches de basses fréquences sont dues aux vibrations des atomes les plus lourds, tandis que celles de hautes fréquences sont causées par le mouvement des atomes H. On remarque, que toutes les

FIG. 4.24: La variation des constantes diélectriques (ϵ_{∞}) et les constantes diélectriques statiques (ϵ_0) en fonction de la concentration (x) de $Ba_xSr_{1-x}LiH_3$.

branches ont les valeurs de fréquence positives c-à-dire aucun de ces modes n'a une fréquence imaginaire, ce qui indique la stabilité de la phase $Pm\bar{3}m$ de $Ba_xSr_{1-x}LiH_3$.

La théorie des groupes permet de classer les modes propres de centre de zone selon leur symétrie. Dans la symétrie cubique de la structure $Pm\bar{3}m$, la théorie des groupes prévoit deux types distincts de modes optiques au centre de zone, correspondants à : $\Gamma(O_h^1) = F_{1u}^1 + F_{1u}^2 + F_{1u}^3 + F_{2u}$. Les modes F_{1u} sont infrarouges IR-actif et le F_{2u} est silencieux (non actif) [22, 23].

Les modes F_{1u} sont infrarouges IR-actif et le F_{2u} est silencieux (non actif) [22, 23]. Les fréquences des modes optiques de centre de zone et leurs symétries qui ont été effectués à l'aide du serveur cristallographique de Bilbao [95] sont reportées dans le tableau (4.17), pour les modes IR (dipôle actif) et silencieux (c'est-à-dire ne développant

FIG. 4.25: Les courbes de dispersion des phonons calculés et densité d'états (DOS) pour la phase $Pm\bar{3}m$ de $Ba_xSr_{1-x}LiH_3$, pour les concentrations x = 0 et 1.

aucun moment dipolaire ou quadripolaire), ainsi que d'autres résultats théoriques et expérimentaux pour $SrLiH_3$ et $BaLiH_3$.

Les fréquences des phonons calculées pour $Ba_xSr_{1-x}LiH_3$ sont ajustées en utilisant la relation quadratique suivante :

$$\omega_{Ba_x Sr_{1-x} LiH_3} = x \omega_{BaLiH_3} + (1-x) \omega_{SrLiH_3} - bx(1-x)$$
(4.57)

Les valeurs obtenues de bowing b sont données dans le tableau (4.18). Les modes de fréquence calculés sont en bon accord avec les valeurs théoriques [22] et les valeurs rapportées récemment pour les cas limites de l'alliage par *Yalcin* [23]. La figure (4.27) montre la variation des fréquences des modes au point Γ en fonction de la concentration

de baryum.

TAB. 4.17: Les fréquences des modes optiques calculées $en(cm^{-1})$ de composé $Ba_xSr_{1-x}LiH_3$ dans la structure $Pm\bar{3}m$ au centre de zone Γ . Les valeurs obtenues sont également comparées aux résultats théoriques et expérimentaux.

		F_{1}	$1 \\ 1 \\ u$	F_{1u}^{2}		F_{1u}^{3}		F_{2u}
	Dégénérescence	Double		Double		Double		Triple
	Mode	TO_1	LO_1	TO_2	LO_2	TO_3	LO_3	Γ_{25}
Ba _x Sr _{1-x} LiH ₃	x=0 other Exp. x=0.1 x=0.3 x=0.5 x=0.7 x=0.9 x=1 other Exp.	$\begin{array}{r} 308.92\\ 298^1\\ 300.24\\ 289.04\\ 281.10\\ 275.40\\ 272.55\\ 273.39\\ 293^1\\ \end{array}$	$\begin{array}{c} 333.38\\ 332^1\\ 340^2\\ 320.93\\ 302.00\\ 288.97\\ 279.83\\ 274.96\\ 275.17\\ 302^1\\ 320^2\\ \end{array}$	$\begin{array}{c} 675.20\\ 629^1\\ 659.85\\ 636.01\\ 614.96\\ 599.90\\ 595.56\\ 602.33\\ 613^1\\ \end{array}$	$\begin{array}{c} 962.04\\ 916^1\\ 950^2\\ 960.73\\ 951.61\\ 934.29\\ 903.79\\ 879.90\\ 876.28\\ 891^1\\ 780^2\\ \end{array}$	$\begin{array}{c} 1103.7\\ 1093^1\\ 1054.22\\ 982.64\\ 936.25\\ 906.16\\ 888.41\\ 885.41\\ 914^1\\ \end{array}$	$\begin{array}{c} 1153.9\\ 1142^1\\ 1130^2\\ 1102.24\\ 1022.58\\ 975.48\\ 960.25\\ 957.52\\ 960.14\\ 972^1\\ 920^2\\ \end{array}$	$\begin{array}{c} 712.78\\ 664^1\\ 660^2\\ 708.13\\ 702.64\\ 699.36\\ 697.78\\ 698.05\\ 699.75\\ 657^1\\ 650^2\\ \end{array}$

²Exp. [22]. ¹PP-GGa [23].

		F_{\pm}	1 1 u	F_{1u}^{2}		F_{1u}^{3}		F_{2u}
	Dégénérescence	Double		Double		Double		Triple
	Mode	b_{TO_1}	b_{LO_1}	b_{TO_2}	b_{LO_2}	b_{TO_3}	b_{LO_3}	$b_{\Gamma_{25}}$
$\operatorname{Ba}_{x}\operatorname{Sr}_{1-x}\operatorname{LiH}_{3}$		42.6795	63.0964	9.9498	-45.4082	38.708	16.499	28.3295

TAB. 4.18: Les valeurs obtenues de bowing b en (cm^{-1}) aux points Γ .

Le splitting LO-TO dans les modes les plus élevés est le suivants, c'est-à-dire LO_3 - TO_3 et $LO_2 - TO_2$, respectivement, correspondant au mode élongation (Stretching) de LiH et le mode déformation (Bending) de Li - H [22].

• Le mode élongation (Stretching) : variation de la longueur d'une liaison.

• Le mode déformation (Bending) : variation dans l'angle fait par deux liaisons.

Il convient de noter que pour le mode d'élongation, les fréquences sont sensibles à la distance Li - H dans le réseau, ils diminuent avec l'augmentation de la concentration (x), car la distance Li - H devient plus grande, (1.92 Å pour $SrLiH_3$ et 2.01 Å pour $BaLiH_3$).

Par conséquent, la constante de force interatomique (IFC) pour la liaison augmente, comme il est montré dans le tableau (4.19), qui affiche la variation des constantes des forces interatomiques (IFC) calculées avec la concentration de baryum. Le splitting LO - TO caractérise la longue portée des forces électrostatiques sur le réseau vibrant, sa diminution pour les modes les plus faibles d'énergie indique que la liaison $Ba - LiH_3$ est moins ionique que la $Sr - LiH_3$.

La constance du splitting LO - TO montre que la liaison conserve le même degré d'ionicité. De plus, dans $SrLiH_3$ en utilisant les valeurs de l'IFC (voir le tableau (4.18)), nous avons trouvé que l'IFC de Li - H est 98 % plus élevé et 4.8 % inférieur à Sr - H et Li - Sr, montrant respectivement la covalence relativement élevée du Li - Sr. En $BaLiH_3$, l'IFC entre Ba - H devient plus élevé de 27 % et plus bas de 69 % que les Li - H et Li - Ba respectivement. Par conséquent, nous concluons que le comportement de liaison dans le système $Ba_xSr_{1-x}LiH_3$ est une combinaison de nature covalente et ionique.

TAB. 4.19: Les constantes de forces interatomiques longitudinales calculées (IFC) in $(10^4 \text{ dyn } cm^{-1})$ pour chaque paire d'atomes pour $Ba_x Sr_{1-x} LiH_3$.

<u> </u>	, =			
	х	Li - H	$Li - (Ba \backslash Sr)$	$H - (Ba \backslash Sr)$
$\operatorname{Ba}_x\operatorname{Sr}_{1-x}\operatorname{LiH}_3$	0 0.1 0.3 0.5 0.7 0.9 1	$\begin{array}{c} 1.325007\\ 1.069659\\ 0.708435\\ 0.474885\\ 0.34254\\ 0.256905\\ 0.260019\end{array}$	1.390401 1.3312355 1.247157 1.197333 1.169307 1.155294 1.155294	$\begin{array}{c} 0.03114\\ 0.023355\\ 0.118332\\ 0.194625\\ 0.256905\\ 0.317628\\ 0.356553\end{array}$

4.12.3 L'effet de la pression hydrostatique sur les propriétés Vibrationnelles

L'effet de la pression sur les spectres de phonon du système $Ba_xSr_{1-x}LiH_3$ a été déterminé dans le cadre de la méthode de la réponse linéaire.

Dans les figures (4.28) et (4.29), nous montrons simplement les résultats obtenus pour la variation des modes acoustiques avec la pression aux points de haute symétrie X, R et M pour différentes concentrations (x).

On constate clairement une dépendance linéaire de la pression et les fréquences de vibration, dans tous les points de hautes symétries, dans cette gamme considérée de pression.

Les branches acoustiques de hautes fréquences dans tous les points augmentent avec une pression croissante. Et tous les modes ont des fréquences positives, ce qui indique la stabilité dynamique de cet alliage dans cette structure.

FIG. 4.26: Comme la figure (4.11), mais pour les concentrations x = 0.1, 0.5 et 0.9.

FIG. 4.27: Les modes de fréquence au point Γ en fonction de la concentration (x) de $Ba_xSr_{1-x}LiH_3$.

FIG. 4.28: Les modes de fréquence aux points X, R et M en fonction de la pression de $Ba_xSr_{1-x}LiH_3$, pour les concentrations x = 0 et 1.

FIG. 4.29: Comme la figure (4.11), mais pour les concentrations x = 0.1, 0.5 et 0.9.

4.13 Propriétés thermodynamiques

Dans cette section, nous présentons nos résultats sur les propriétés thermodynamiques en utilisant l'approximation quasi-harmonique dans laquelle les vibrations du réseau sont traitées comme harmoniques, mais avec des fréquences supposées dépendantes du volume et de la pression. Pour, une température T et volume V donnés, l'état d'équilibre d'un cristal est déterminé par la minimisation de l'énergie libre de Helmholtz

$$F(V,T) = E - TS \tag{4.58}$$

où E est l'énergie interne et S est l'entropie.

La contribution vibrationnelle à l'énergie libre pour chaque mode j est donnée par [?] :

$$F_{vib}j = \frac{\hbar\omega_j}{2k_BT} \ln\left[1 - e^{\frac{\hbar\omega_j}{k_BT}}\right]$$
(4.59)

Donc, on peut écrire la contribution vibrationnelle de l'énergie libre pour tous les modes :

$$F_{vib} = \frac{1}{2} \sum_{j=1}^{3nN} \hbar \omega_j + k_B T \sum_{j=1}^{3nN} \ln \left[1 - e^{\frac{-\hbar \omega_j}{k_B T}} \right]$$
(4.60)

Dans l'approximation quasi-harmonique, l'énergie libre de *Helmholtz* est donnée par [?] :

$$F(V,T) = E(V) + F_{vib} \tag{4.61}$$

En remplace (4.60) dans (4.61), on trouve :

$$F(V,T) = E(V) + \frac{1}{2} \sum_{j=1}^{3nN} \hbar \omega_j + k_B T \sum_{j=1}^{3nN} \ln \left[1 - e^{\frac{-\hbar \omega_j}{k_B T}} \right]$$
(4.62)

où E est l'énergie interne statique. Le second terme vient de l'énergie du point zéro (free energy from zero point motion), le troisième terme est le seul qui dépend de la température. ω_j est la fréquence de phonon de mode j. n est le nombre d'atomes par cellule élémentaire, N est le nombre de cellules élémentaires, k_B est la constante de *Boltzmann* et \hbar est la constante de *Plank* divisée par 2π .

La première étape du calcul consiste à ajuster F(V, T) à l'équation d'état de Murnaghans [85] à chaque T. Les propriétés thermodynamiques sont dérivées de ces équations d'état isothermes en utilisant des relations thermodynamiques standard. La dilatation thermique volumique $\alpha(T)$ peut être obtenue en utilisant une différenciation numérique directe du volume par rapport à la température :

$$\alpha(T) = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_P \tag{4.63}$$

Nos résultats prédits sont présentés dans la figure (4.30) pour des concentrations différentes en fonction de la température. Les résultats indiquent que le coefficient de

FIG. 4.30: La variation de la dilatation thermique volumique $\alpha(T)$ en fonction de la température et de la concentration (x) de $Ba_xSr_{1-x}LiH_3$.

dilatation thermique augmente avec l'augmentation de la température et ne présente aucun comportement négatif. De plus, $SrLiH_3$ a la valeur la plus élevée pour chaque T, tandis que la plus basse correspond à x = 0.5. Les valeurs ambiantes de la dilatation thermique sont $(9.182 \times 10^{-5} K^{-1})$ et $(6.613 \times$

Les valeurs ambiantes de la dilatation thermique sont (9.182 × 10 °K °) et (0.01, $10^{-5}K^{-1}$) pour $SrLiH_3$ et $BaLiH_3$, respectivement.

On peut évaluer le module de compressibilité par rapport à la température B_T , à partir de l'équation d'état, définie par :

$$B(T) = V\left(\frac{\partial^2 F}{\partial V^2}\right) = V\frac{\partial^2 E}{\partial V^2} + V\left(\frac{\partial^2 F_{vib}(\omega, T)}{\partial V^2}\right)_T$$
(4.64)

Dans la figure (4.31), nous présentons la variation du module de compressibilité pour déférentes concentrations (x) en fonction de la température. On remarque que, le module de compressibilité diminue avec l'augmentation de la température pour chaque concentration de baryum. $BaLiH_3$ a la plus petite valeur. Á notre connaissance, il n'existe pas de données expérimentales ou des calculs théoriques pour comparer nos résultats avec ceux.

La variation de la chaleur spécifique $C_V(T)$ en fonction de la température (T) et

FIG. 4.31: La variation du module de compressibilité $B_T(T)$ en fonction de la température et de la concentration (x) de $Ba_xSr_{1-x}LiH_3$.

FIG. 4.32: La variation de la chaleur spécifique $C_V(T)$ en fonction de la température et de la concentration (x) de $Ba_xSr_{1-x}LiH_3$.

de la concentration (x) de $Ba_xSr_{1-x}LiH_3$, est calculée. D'après la figure (4.32), on remarque qu'à basse température, la contribution des phonons à la capacité calorifique C_V est augmentée avec la température et la concentration.

Pour chaque T, $SrLiH_3$ (x = 0) a la valeur la plus basse, tandis que $BaLiH_3$ (x = 1)a la valeur la plus élevée. Tandis que, à haute température, C_V revient indépendante de la valeur de la concentration et de la température, elle se rapproche de la valeur limite asymptotique classique de *Dulong-Petit* de $3NR = 124.72 \ Jmol^{-1}K^{-1}$, où R est la constante du gaz parfait $(R = 8.31451 \ Jmol^{-1}K^{-1})$ et N est le nombre des atomes dans la maille élémentaire [97].

CONCLUSION

Nous avons effectué des calculs de premiers principes de $Li_x Na_{1-x}MgH_3$ afin d'étudier la transition de phase causée par la substitution de Na par Li et la pression hydrostatique. Nos résultats indiquent que la phase Pnma orthorhombique non polaire présente une transition de phase vers la phase polaire R3c à une concentration de Lithium de x = 0.7. Ce système dans les deux structures Pnma et R3c est classé comme matériau fragile. Les spectres des phonons calculés pour différentes valeurs de xmontrent l'apparition d'un mode doux (B_{2u}) au centre de la zone associé à cette transition de phase. Sous pression, la phase R3c se transforme en Pnma et les valeurs de la pression de transition obtenues à partir de la variation d'enthalpie avec la pression pour les deux structures sont respectivement de 0.32, 1.79 et 4.07 GPa pour x = 0.7, 0.75et 0.8. Le $LiMgH_3$ est stable dans la structure polaire R3c. Les valeurs des fréquences au centre de zone sont données. Enfin, la variation des grandeurs thermodynamiques avec la température pour différentes valeurs de x dans les deux structures est prédite.

Nous avons effectué des calculs détaillés de premier principe dans le cadre de la théorie de perturbation de la fonctionnelle de la densité pour étudier la dynamique du réseau et les propriétés thermodynamiques de $Ba_xSr_{1-x}LiH_3$. Les paramètres structuraux, l'élasticité, les fréquences optiques des phonons dans la zone de *Brillouin*, les constantes diélectriques électroniques et statiques, les charges effectives de *Born* suivent une loi quadratique en x. La variation des constantes de force interatomique avec la concentration de Baryum calculée, révèle clairement la nature différente de chaque paire d'atomes. La variation des constantes élastiques pour différentes concentrations et des modes acoustiques aux points X, R et M avec pression montre qu'il n'y a pas de transition de phase et que le système $Ba_xSr_{1-x}LiH_3$ est stable dans la structure cubique $Pm\bar{3}m$. Enfin, la variation de la capacité calorifique, la dilatation thermique et le module de compressibilité avec la température pour différentes valeurs de x sont prédits.

Nos résultats sont en bon accord avec les données expérimentales disponibles et peuvent donner des prévisions fiables où les données manquent.

BIBLIOGRAPHIE

- D. Pottmaier, E. R. Pinatel, J. G. Vitillo, S. Garroni, M. Orlova, M. D. Baro, Chem. Mater. 23(9) (2011) 2317.
- [2] F. Gingl, T. Vogtb, E. Akiba, K. Yvona, J. Alloys Compd. **282** (1999) 125.
- [3] B. Bertheville, T. Herrmannsdörfer, K. Yvon, J. Alloys Compd. **325** (2001) L13.
- [4] H. Fujii, T. Ichikawa, Physica B. **383** (2006) 45.
- [5] D. Li, T. Zhang, S. Yang, Z. Tao, Chen Jun, J. Alloys Compd. **509** (2011) 8228.
- [6] A. Bouamrane, J. P. Laval, J. P. Soulie, J. P. Bastide, Mater. Res. Bull. 35 (2000) 545.
- [7] P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvåg, J. Alloys Compd. 450 (2008) 327.
- [8] H. Wu, W. Zhou, T. J. Udovic, J. J. Rush, T. Yildirim, Chem. Mater. 20 (6) (2008) 2335.
- [9] Y. Bouhadda, Y. Boudouma, N. Fennineche, A. Bentabet, J. Phys. Chem. Solids. 71 (2010) 1264.
- [10] Y. Bouhadda, N. Fenineche, Y. Boudouma, Phys. B. **406** (2011) 1000.
- [11] Y. Bouhadda, M. Bououdina, N. Fenineche, Y. Boudouma, Int. J. Hydrogen Energy. 38 (2013) 1484.
- [12] K. Ikeda, Y. Kogue, Y. Nakamori, S. Orimo, Scr. Mater. 53 (2005) 319.
- [13] K. Ikeda, S. Kato, Y. Shinzato, N. Okuda, Y. Nakamori , A. Kitano , H. Yukawa , M. Morinaga, S. Orimo, J. Alloys Compd. 446-447 (2007) 162.
- [14] X. B. Xiao, B. Y. Tang, S. Q. Liao, L. M. Peng, W. J. Ding, J.Alloys Compd. 474 (2009) 522.
- [15] K. Ikeda, Y. Nakamori, S. Orimo, Acta Mater. **53** (2005) 3453.
- [16] R. Martinez-Coronado, J. Sánchez-Benitez, M. Retuerto, M. T. Fernández-Diaz, J. A. Alonso, J. Alloys Compd. 522 (2012) 101.

- [17] Zhong-min Wang , Jia-jun Li ,S. Tao , Jian-qiu Deng , H. Zhou ,Q. Yao , J. Alloys Compd. 660 (2016) 402.
- [18] L.F.Contreras Vasquez, Y.Liu, C.Paterakis, D.Reed, D.Book, Int. J. Hydrogen Energy. 42 (2017) 22589.
- [19] T. Sato, D. Noréus, H. Takeshita, U. Haussermann, J. Solid State Chem. 178(2005) 3381.
- [20] B. Bahloul, A. Bentabet, L. Amirouche, Y. Bouhadda and N. Fenineche, Phys. Scr. 84 (2011) 065705.
- [21] B. Ghebouli, M. A. Ghebouli and M. Fatmi, Eur. J. Appl. Phys. **51** (2010) 20302.
- [22] A. J. Maeland, J. Chem. Phys. **51** (1969) 2915.
- [23] B. G. Yalcin, B. Salmankurt and S. Duman, Mater. Res. Express. **3** (2016) 036301.
- [24] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58 (1987) 1861.
- [25] S. Baroni, S. de Gironcoli, A. D. Corso et P. Giannozzi, Rev. Mod. Phys. 73 (2001) 515.
- [26] X. Gonze and J. P. Vigneron, Phys. Rev. B. **39** (1989) 13120.
- [27] X. Gonze, Phys. Rev. A. **52** (1995) 1086.
- [28] D. R. Hamann, Phys. Rev. B. 40 (1989) 2980.
- [29] Le code ABINIT est un projet commun de l'université Catholique de Louvain, Corning Incorpreted et autre collaborateurs, URL http://www.abinit.org.
- [30] X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genoverse, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G. M. Rignanese, D. Sangalli, R. Shaltf, M. Torrent, M. J. Verstraete, G. Zerah, J. W. Zwanziger, Comput. Phys. Commun. **180** (2009) 2582.
- [31] R. H. Mitchell : "Perovskites : Modern and Ancient." Thunder Bay, Ont. : Almaz Press (2002).
- [32] E. C. C. Souza, R. Muccillo, Materials Research. **13(3)** (2010) 385.
- [33] D. J. Durbin, C. Malardier-Jugroot, Int. J. Hydrogen Energy. 38 (2013) 14595.
- [34] S. Dutta, J. Ind. Eng. Chem. **20** (2014) 1148.
- [35] I. P. Jain, Int. J. Hydrogen Energy. **34** (2009) 7368.
- [36] I. P. Jain, P. Jain, A. Jain, J. Alloys Compd. **503** (2010) 303.
- [37] S. Niaz, T. Manzoor, A. H. Pandith, Renew. Sustain. Energy Rev. 50 (2015) 457.
- [38] Y. Yang, Y. Liu, Y. Zhang, et al., J. Alloys Compd. 585 (2014) 674.
- [39] Z. J. Cao, L. Z. Ouyang, H. Wang, et al., J. Alloys Compd. 608 (2014) 14.
- [40] D. Wu, L. Ouyang, C. Wu, et al., J. Alloys Compd. 642 (2015) 180.
- [41] Richard M. Martin : "Electronic Structure : Basic Theory and Practical Methods." Combridge University Press(2004).
- [42] James D. Patterson, Bernard C. Bailey : "Solid State Physics." Springer-Verlag Berlin Heidelberg (2007).
- [43] PHilip L. Taylor and Olle heinonen : "A Quantum Approach to Condensed Matter Physics." Combridge University Press(2002).
- [44] L. H. Thomas, Proc. Com. Phil. Soc. 23 (1927) 542.
- [45] E. Fermi, Z. Phys. 48 (1928) 73.
- [46] P. Hohenberg and W. Kohn, Phys. Rev. B. **136** (1964) 864.
- [47] W. Kohn and L. J. Sham, Phys. Rev. B. **140** (1965) 1133.
- [48] M. Born, J. R. Oppenheimer, Ann. Phys. 87 (1927) 457.
- [49] D. R. Hartree, Proc. Cambridge Philos. Soc. 25 (1929) 310.
- [50] V. Fock. Z, Phys. **61** (1930) 126.
- [51] J. C. Slater, Phys. Rev. **81** (1951) 385.
- [52] J. P. Perdew et K. Burke, Int. J. Quant. Chem. 57 (1996) 309.
- [53] W. E. Pickett, Computer Physics Reports. 9 (1989) 115.
- [54] Michael P. Marder : "Condensed Matter Physics." Library of Congress Cataloging in Publication Data (1960).
- [55] David J. Singh : "planewaves, pseudopotentiels and the LAPW Method." Kluwer Academic Publishers (1994).
- [56] N-W Ashcroft et N. D Mermin : "Physique des Solides." EDP Sciences (2002).
- [57] F. Bloch, Z. Physik. **52** (1928) 555.
- [58] D. R. Hamman, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43 (1979) 1494.
- [59] S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B. 54 (1996) 1703.
- [60] C. Hartwigsen, S. Gœdecker and J. Hutter, Phys. Rev. B. 58 (1998) 3641.
- [61] D. Vanderbilt, Phys. Rev. B. 41 (1990) 7892.
- [62] P. E. Blöchl, Phys. Rev. B. **50** (1994) 17953.
- [63] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58 (1987) 1861.
- [64] S. Baroni, S. de Gironcoli, A. D. Corso et P. Giannozzi, Rev. Mod. Phys. 73 (2001) 515.
- [65] X. Gonze and J. P. Vigneron, Phys. Rev. B. **39** (1989) 13120.
- [66] X. Gonze, Phys. Rev. A. **52** (1995) 1086.
- [67] Hylleraas, Z. Physik. **65** (1930) 209.
- [68] P. D. De Cicco and F. A. Johnson, Proc. R. Soc. London Ser. A310 (1969) 111.
- [69] R. Pick, M. H. Cohen and R. M. Martin, Phys. Rev. **B1** (1970) 910.
- [70] S. Goedecker, SIAM J. Sci. Comput. 18 (1997) 1605.
- [71] S. Goedecker, Comp. Phys. Commun. **76** (1993) 294.

- [72] Martin H. Sadd : "Elasticity theory, applications, and numerics." Amsterdam; Boston : Elsevier/Academic Press (2009).
- [73] O. H. Nielson and R. M. Martin, Phys. Rev. B. **32** (1985) 3792.
- [74] J. H. Westbrook, R L Fleischer : "Intermetallic Compounds : Principles and Practice, Vol. 1 :Principles." John Wiley and Sons Ltd (1995)
- [75] J. Nye : "Propriétés Physiques des Cristaux." Dunod impr. Jouve (1961).
- [76] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B. 47 (1993) 1651(R).
- [77] X. Gonze and C. Lee, Phys. Rev. B. 55 (1997) 10355.
- [78] X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B. **72** (2005) 035105.
- [79] H. J. Monkhorst and J. D. Pack, Phys. Rev. B. 13 (1976) 5188.
- [80] M. Fuchs and M. Scheffler, Comput. Phys. Commun. **119** (1999) 67.
- [81] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
- [82] X. Gonze, Phys. Rev. B. 55 (1997) 10337.
- [83] X. Gonze, D. C. Allan and M. P. Teter, Phys. Rev. Lett. 68 (1992) 3603.
- [84] W. A. Harrison : " Elementary electronic structure." World Scientific Publishing, Singapore (1999).
- [85] F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A **30** (1944) 244.
- [86] A. Jain*, S.P. Ong*, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson (*=equal contributions) The Materials Project : A materials genome approach to accelerating materials innovation APL Materials, 2013, 1(1),011002.
- [87] M. Born, Proc. Cambridge Philos. Soc. **36** (1940) 160.
- [88] R. Hill, Proc. Phys. Soc. A 65 (1952) 350.
- [89] W. Voigt : "Lehrbuch der Kridtallphysik." Leipzig, Berlin, B.G. Teubner (1928).
- [90] A. Reuss, Z. Angew, Math. Mech. 9 (1929) 55.
- [91] S. F. Pugh, Philos. Mag. J. Sci. **45** (1954) 823.
- [92] P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84 (1998) 4891.
- [93] J.F. Nye : "Physical properties of crystals." Oxford University Press (1985).
- [94] R. Shaltaf, E. Durgun, J. Y. Raty, Ph. Ghosez, X. Gonze, Phys. Rev. B 78 (2008) 205203.
- [95] E. Kroumova, M. I. Aroyo, J. M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev and H. Wondratschek, Phase Transitions. 76 (2003) 155; www.cryst.ehu.es.
- [96] J. Kaczkowski, Chem. Phys. **177** (2016) 405.
- [97] A. T. Petit, P. L. Dulong, Ann. Chim. Phys. **10** (1819) 95.
- [98] C. Lee and X. Gonze, Phys. Rev. B. **51** (1995) 8610.

- [99] K. Momma and F. Izumi, J. Appl. Crystallogr. 41 (2008) 653.
- [100] Y. U. Peter, M. Cardona : "fundamental of semiconductors." Spinger-Verlage, Berlin (1999).
- [101] J. H. Westbrook, R. L. Fleischer : "Intermetallic Compounds : Principles and Practice, Vol. 1 :Principles." John Wiley and Sons Ltd (1995).